

HW-24898

Cover Sheet for a Hanford Historical Document Released for Public Availability

Released 1995

**Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830**

**Pacific Northwest Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DECLASSIFIED RECORD CENTER FILE

HW-24898

Classification Cancelled And Changed To:
DECLASSIFIED

By Authority of R M Item,
4-7-92, CG-PR-2
by J.R. Hanson, 4-16-92
Verified By TL BURNSIDE, 4-30-92
NOT UCNI

Security Information

1. C.N. Gross - J.E. Maider, Jr.
2. A.B. Greninger
3. O.H. Greager - W.K. Woods
4. AEC, HOO, Attn: D.F. Shaw, Mgr.
5. R.S. Bell - V.R. Chapman
6. T. Prudich - L.M. Meeker
7. O.F. Beaulieu - S.G. Smolen
8. W.J. Ozeroff
9. R.B. Richards - J.B. Work
10. W.N. Mobley - L.M. Knights
11. T.W. Hauff
12. F.W. Albaugh
13. J.W. Hall - R.E. Roberts
14. V.R. Cooper
15. P.E. Collins - R.E. Isaacson - File PD-1
16. K.M. Harmon
17. B.E. Kirkendall - G.V. Packer
18. O.F. Hill - W.H. Reas
19. V.D. Donihee
20. 700 Extra
21. Pink Copy
22. Yellow Copy
23. 700 File
24. 300 File

July 1, 1952

This document consists of
4 pages, No. 12 of
25 copies, [REDACTED]

To: File

COPY 1 OF 1 [REDACTED]

From: P.E. Collins - Leader
234-5 Building - Process Assistance
Separations Technology Unit
Technical Section
by R.E. Isaacson - Engineer *R.E.I.*

PRODUCTION TEST 234-5 SUPPLEMENT A
PLANT PROCESS EVALUATION PRECIPITATION OF
PLUTONIUM (IV) OXALATE

RECEIVED
100-1000
300 AREA
"FILED FILES"

DECLASSIFIED

MASTER

ALL INFORMATION CONTAINED HEREIN IS UNCLASSIFIED

At

DECLASSIFIED

HW-24898

-2-

Production Test 234-5⁽¹⁾ proposed the in-line evaluation of precipitating plutonium (IV) oxalate instead of plutonium (III) oxalate, the main advantage being the elimination of the excessively corrosive HI used to adjust Pu (IV) and Pu (VI) to the Pu (III) oxidation stage. Another advantage proposed was the recycle of supernates directly to the 224 Building without processing through recovery equipment.

The Pu (IV) oxalate process was adopted on March 21, 1952: the main process steps for a 160 unit batch of plutonium nitrate solution being as follows:

<u>Item</u>	<u>Approx. Time</u>	<u>Vol. to R.C.</u>
1. Transfer 500 cc product and 1500 cc 6M HNO ₃ Sample Can washes to Reactor.	1/4 hr.*	
2. Add 1000 cc 6% H ₂ O ₂ to reactor, agitate.	1/2 hr.*	
3. Add 2000 cc 0.8M H ₂ C ₂ O ₄ , agitate, settle decant.	1-3/4 hr.*	5 liters
4. Add 6 liters 1.5M HNO ₃ -0.05M H ₂ C ₂ O ₄ , agitate, settle, decant.	3/4 hr.*	6
5. Add 6 liters 1.5M HNO ₃ -0.05M H ₂ C ₂ O ₄ , agitate settle, decant.	3/4 hr.*	6
6. Add 6 liters 1.5M HNO ₃ -0.05M H ₂ C ₂ O ₄ , agitate settle, decant.	3/4 hr.*	6
7. Transfer Pu (C ₂ O ₄) ₂ slurry to TF.	1/2 hr.*	
8. Transfer Pu (C ₂ O ₄) ₂ to fluorination boat.	1/2 hr.*	
TOTALS (approximate)	5-3/4 hrs.*	23 liters**

* All times indicated are approximations and vary from run to run.

** The decanted supernatant solutions from two batches (46 l.) are charged directly to a Recycle Can for shipment to 224 Building.

(1) W.B. Kerr and J.M. Hay, "Production Test 234-5 Plant Process Evaluation Precipitation of Plutonium (IV) Oxalate", Secret Document No. HW-23203, (1-8-52).

A preliminary investigation indicates the product content of the supernatant solutions to be greater than that reported by laboratory analysis. Dissolution of solids, present as a result of either the decantation process or post-precipitation, should increase the accuracy of sampling and analyses.

This supplement proposes that 50 runs be processed to include:

1. Omission of one acid wash (Item 6 page 2).
2. Combining three batches of supernates in one Recycle Can.
3. Addition of potassium permanganate or other oxidizing reagents to dissolve solids.

Advantages expected to be derived from the above proposals are:

1. A decrease in purification time of approximately 45 minutes to 1 hour per 160 unit batch.
2. Approximately 25% decrease in recycled supernate volumes which will result in a 33% decrease in number of Recycle Cans handled.
3. More accurate determination of product content in supernates.

Purity of product will theoretically be adequate after one of the 6 liter acid washes is omitted. Impurities that are subject to removal by washing will be theoretically decreased by a factor of ca. 1.25×10^{-3} when using two acid washes; using 3 acid washes the factor is ca. 1.4×10^{-4} . Recent AT analyses indicate a maximum sodium impurity of 40,000 ppm, this should be reduced to ca. 50 ppm by two acid washes. Other elements were not reported in excess of 5,000 ppm.

All responsibilities will remain as outlined in Production Test 234-5.

A B-1 Sample of all material processed during this test program will be submitted to the control laboratory for a complete spectro-chemical analysis.

The test shall be completed in one month and the write-up will be included in the final report of Production Test 234-5.

DECLASSIFIED

DECLASSIFIED

Approvals234-5 Process Discussion Committee

T. Frudich
T. Frudich
Separation Section
Manufacturing Department

7-3-52 Date

V. R. Cooper
V. R. Cooper
Separations Technology Unit
Engineering Department

7/3/52 Date

200 Areas Process Committee

R. B. Richards
R. B. Richards
Separations Technology Unit
Engineering Department

7/9/52 Date

W. N. Mobley
W. N. Mobley
Separations Section
Manufacturing Department

7/7/52 Date

V. R. Chapman
V. R. Chapman
Separations Section
Manufacturing Department

7/2/52 Date

R. S. Bell
R. S. Bell
Separations Section
Manufacturing Department

7/8/52 Date

O. H. Greager
O. H. Greager
Management
Technical Section
Engineering Department

7/10/52 Date

C. N. Gross
C. N. Gross
Manufacturing Department

7-11-52 Date

Date issued 7-15-52