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ABSTRACT

The PM-1 water cooled and moderated core contains 741 highly
enriched stainless steel cermet tubular fuel elements and 90 lumped
boron stainless steel burnable poison elements, and it is controlled
by 6 Y-shaped europium titanate movable control rods. The core
has a lifetime of 1. 95 years when operated at its design power level
of 9.37 mw of thermal energy. The control of the core is designed so
that there is a positive shutdown margin at all times with either one
rod stuck completely out of the core or with two rods stuck in the
operating condition. The core power is removed by 2125 gpm of
pressurized water at an average temperature of 463° F and pressure
of 1300 psia. In reactors of this type, the core is stable with a nega-

tive temperature coefficient of approximately 2.5 x 10_4 AK/K/°F.

1ii



Blank Page


williamsonc
Text Box
   Blank Page
      


FOREWORD

This report is submitted to the Atomic Energy Commission, Divi-
sion of Reactor Development as an account of work performed under
Contract AT(30-1)-2345. It contains the final design and analysis of
the PM-1 reactor core.

In addition to the authors, the following have participated in this
program:

P, A. Gilmore L. I. Kopp
R. A. Hoffmeister Ww. P, Kutz
D. Schweller



Blank Page


williamsonc
Text Box
   Blank Page
      


II,

III,

CONTENTS

Abstract. . . . ¢ ¢ o v i i i e s i e e e e s e e e s
Foreword . . . ..o v i v it i i ottt oo ae s naoens
Introduction . ... ... ¢t i ittt it
Mechanical Design . . . . . . ¢ ¢t i v v vt vt oo o v v oo o
A, CoreShroud ... ... .« e et e enoenseanonssoosns
B. FuelBundles. ... ......0it i veeeeneenenon
C. SOUFCE .+ + v v v v v o v e ot e o o o s oo oo o oo a s o nnon
D, CoreElements .........¢..... e e e e
E. Control Rod ........¢.c0totieetennteenas
F, Upper Skirt. . . .. .. ottt ot v i ot eeeenseaas
Physics Design . . . . .o vt v vt o ittt et v v o v oo oo
A, Radial Uniform and Nonuniform Burnup .........
B. Axial Uniform and Nonuniform Burnup .........
C. Total Nonuniform Burnup with Control Rods . . .. ..
D. Effect of U-235 Tolerance Loading .......... .
E. Initial Reactivity Worth of Changes to the Center

Bundle......... S e s e e e s e s e e e e e e e
F. Reactivity Worth of Lumped Poison Rods . . . ... ..

. Relative Distribution of U-235 and B-10 During the

Lifeofthe Core. . ... oo v eueeeeeneeoeoenos

10
11
12
12
13
14
17
17
21
22

25

27
28

28

vii



viii

CONTENTS (continued)

H. Xenon Reactivity Worth. ...................
I. Worth of Boron and Stainless Steel in Lump Poison
Rods (end of life) ... ...... e e e e e e
J. ReactorControl. ... ...... ...
K. Power Distributions . . ... .................
IV. Thermal and Hydraulic Design . . .. ..............
A, DesignCriteria . . ... ... ..ttt eeeeen.
B. Selection of the "Hot" Channel ...............
C. HotChannel Factors. . .. ... ... .0 ennn
D. Resultsand Conclusions ...................
Appendix A--Mechanical Design Studies. .. ............
Appendix B--Physics Supporting Data ... .............
Appendix C--Thermal and Hydraulic Supporting Data . ... ..
Appendix D--Preshipment Wet Critical Tests . . . .. ......

Engineering Drawings . . . . . . ... ...ttt it

37
38
54
63
63
63
63
65

71



I. INTRODUCTION

This report presents and evaluates the final design of the reactor
core for the PM-1 Nuclear Power Plant. The design criteria required
a pressurized water cooled and moderated core with a two-year life at
design power and a positive shutdown margin under all conditions with
either one control rod stuck completely out or with two control rods
stuck in the operating condition. A brief description of the core de-
signed to satisfy these requirements is given here, together with a
table of core characteristics. A detailed description of the core and
its characteristics is contained in the body of the report. The results
of supporting studies, tests and analytical techniques required to
support the design effort are also included in an appendix.

The PM-1 reactor (refer to Drawing 372-210500) is designed
to produce 9.37 mw of thermal energy. At this level, the entire PM-1
plant produces the required 1000 kw of net electric energy and 7 mil-
lion Btu of heat energy.

The single -pass reactor operates at 1300 psia, with a mean coolant
temperature of 463° F. Single inlet and outlet nozzles are located above
the level of the core, providing an inherent safety feature in the event
of a leak in the primary coolant system. The vessel internal structure
consists of two major assemblies--the core shroud and the upper
skirt assembly. The core shroud supports and aligns the core bundles.
The upper skirt forms the vessel upper plenum and guides the control
rods as they are withdrawn from the core.

Coolant flow entering the reactor is distributed around the vessel
inside periphery by a plenum having an orificed plate on its underside.
This plate distributes flow downward around the thermal shields to a
plenum in the bottom of the vessel. Here the flow turns and flows
upward through the core, which is located in the lower half of the ves-
sel. Coolant leaving the core enters an upper vessel plenum from
which it is again directed around the vessel perimeter and into the
vessel outlet nozzle. Some of the flow from this upper plenum is di-
rected toward the vessel head before leaving the vessel, in order to
provide for head cooling.

The reactor core consists of seven individual fuel bundles containing
a total of 741 fuel elements, 90 boron-stainless steel burnable poison
elements and 18 dummy elements. All elements are in a triangular
array of 0.665-inch pitch and have nominal diameters of approximately
1/2 inch. The fuel elements are tubular, containing an annular fuel
section which is clad on its Inner and outer surfaces. The fuel is a

UOz-stainless steel dispersion containing 28 wt % of 93% enriched U02.



Six identical truncated pie -shaped bundles make up the core pe-!
riphery. These surround the small center bundle, which was designed
to be replaced either with the core or to be removed and replaced
through a port in the center of the reactor vessel head. This feature
permits additional design flexibility for future experimentation.

The six control rods are of Y-blade configuration with blade widths
of 3.5 inches and active absorber lengths of 32 inches. The absorber
material is E\:1203'2Ti02 dispersed in stainless steel which, in the

finished control rod element, is equivalent to approximately 30 wt %

Eu203 .

All internal structural material is AISI Type 304 or 347 stainless
steel modified to 1limit the cobalt and tantalum contents of the material.

The lifetime of the PM-1 core was determined both with and with-
out control rods inserted. The more realistic calculation, which
accounted for control rod withdrawal, indicated a lifetime of 17. 33
mw -yr. To provide a check on the burnup calculation, the lifetime of
the SM-1 core was calculated. The result was slightly conservative
with respect to the reported value of the actual SM-1 lifetime. There-
fore, the PM-1 core lifetime was corrected* to compensate for the
conservatism., The resultant best estimate of the PM-1 core life is
18.2 mw-yr.

The PM-1 core has a large initial inventory of fuel which reflects
itself in high initial reactivity. The high initial reactivity of the core
is reduced through the use of discrete burnable poison in boron alloy
stainless steel rods. The rods are 0.496 inch in diameter and contain
0.2794 wt % of natural boron. These rods initially control about 10%
reactivity. The resultant initial clean reactivity of the PM-1 is 0.1327
at 68° F and 0.0908 at 463° F. The reactivity value at 68° F has been
verified experimentally.

As in all designs, tolerances must be considered. The allowable
2% variation in fuel loading could result in an increase of reactivity
of as much as 0. 44%; thus exceeding the shutdown margin., In event
of such a condition, adjustment is made by replacement of some center
bundle fuel elements by dummy elements and/or poison rods. It has
been determined analytically that this method is adequate. The final
determination of shutdown margin is made with the fully assembled
core and control rods in a 'wet critical" test, which is a final proof
test under experimentally controlled conditions.

*The correction factor is defined as

Reported SM-1 life PM-1 (unrodded) _ 15.0 mw-yr _ 685 days

Calculated SM-1 1ife (unrodded) . PM-1 (rodded) = I4.5 mw-yr . 875 days



The reactivity of the PM-1 core is controlled through the use of
six Y -shaped control rods located symmetrically in a ring. The con-
trol system has the capability of shutting down the reactor at any time
with one control rod fully withdrawn or with two control rods at the
operating six-rod bank level.

The six-rod bank reactivity worths calculated at both 68° F and
463° F, are 20.22% and 23.05%, respectively. The calculated six-rod
bank worth versus insertion at 68° F was compared with experimental
data. The agreement was excellent, lending credence to the calculated
full insertion worth at 68° F.

The shutdown criteria for the PM-1 have been stated previously.
Both conditions are met in the design core. The shutdown reactivity
margin at 68° F for the condition of one rod fully withdrawn is 0. 39%.
With two rods stuck at the hot operating six-rod bank position (14.65
inches withdrawn), the shutdown reactivity margin at 68° F is 0. 10%,.

The reactivity of the PM-1 core decreases over life. As a result,
the shutdown margins are a minimum for a clean core. This behavior
allows a complete verification of shutdown margin in a "wet critical"
test (see Appendix D).

The maximum peak-to-average power density in the PM-1 occurs
at reactor startup. The value is 3.56, of which 1.95 and 1. 83 are the
axial and radial components, respectively. Shortly after startup, the
peak-to-average power drops to about 3.42, due to control rod with-
drawal necessitated by fission product buildup. The power peaking
decreases nearly linearly over the life of the core to a value of 1,97
after 18.2 mw-yr of energy release.

The temperature coefficient was evaluated analytically at the be -
ginning and end of core life at 68® F and 463° F, respectively. In each
case, the control rods were at the critical bank position. The temper-
ature coefficlent is negative over the operating range of the reactor
and decreases slightly with core life.

The 9.37 mw of heat developed in the PM-1 core is removed by
increasing the temperature of pressurized coolant water from 447°
to 479®* F. The average flow rate inside each element is 1,20 gpm,
and the average flow rate outside each element is 1.25 gpm. The

average heat flux in the core is 71,200 Btu/hr ftz. Local boiling (sub-
cooled boiling) conditions exist in some high power regions of the core;
however, adequate cooling is provided to preclude bulk boiling under
all expected operating conditions.



The fundamental thermal criterion in the design of this core was
that no bulk boiling of the primary loop shall occur. The "hot" channel,
due to variations in channel flow rates and channel powers, will pro-
duce the maximum coolant outlet temperature. The BITE code and the
results of the flow and power distribution tests were used to determine
the hot channel. In determination of the maximum coolant temperature,
consideration was also given to uncertainties due to manufacturing
tolerances and imperfections in the analytical techniques by applying
hot channel factors. An additional factor of 1.2 to the power gener-
ation was included, since accident studies indicate that the peak power
increases almost 20% during certain plausible transients.

The following table lists the main characteristics and parameters
of the core.

Design Data--PM-1 Reactor Core

1. Overall performance data:

Reactor power, nominal (mw) 9.37
Reactor power, thermal design (mw) 10.4
Operating pressure, nominal (psia) 1300
Design pressure, structural (psig) 1485
Design pressure, thermal (psia) 1200
Core life, nominal (mw-yr) 18.2

2. Core design characteristics:
Geometry--right circular cylinder

(approx)
Diameter (m)
Core shroud, outside 23.6
Fuel element envelope 22.8
Equivalent 22.74
Length (m)
Overall 33-1/4
Active 30
Structural material Modified AISI

Type 304 and 347



Moderator, coolant and reflector

U-235 inventory (kg)
B-10 inventory (g)
U-235 burnup (kg)

Fuel element data:

Type

Number

Diameter (in.)
Outside
Inside

Length (in.)
overall

Total active
Clad thickness (in.)
Average
Minimum
Meat thickness (in.)
Clad material

Meat composition (wt %)

Type 304 stainless steel

Loading per tube (g)
U-235

Lumped poison rods:

Type

Diameter (in.)

Light water at 1300
psia and 463° F

29.14 £ 0.60
32.16
9.0

Tubular, cermet
741

0. 506
0.417

33-1/4
30

0.0085
0.0065
0.0285

AISI Type 347 stainless
steel, modified, 0.01
wt % Co maximum and
0.03 wt % Co plus Ta
maximum

28
72

40.13 £ 0.80

Boron-stainless steel
alloy rod, unclad

0.470 - 0.500 varies to
compensate for actual
boron-loading obtained



Material--stainless steel

B-10 per rod (g)

Number
Poison (30-in. length)
Poison (20-in. length)

Control rods:

Type

Number

Length (absorbing) (in.)

Blade width (in.)
Absorber
Total

Blade thickness (in.)
Absorber
Clad thickness (in.)
Total

Clad material

Absorber material

Europium content of each blade (g)
Average (per blade)
Maximum (per blade)
Minimum (per blade)

AISI Type 304, modified
0.01 wt % Co maximum
and 0,03 wt % Co plus
Ta maximum containing
0. 27 wt % natural boron
(nominal)

0.383

72
18

Y, cermet contained,
europium titanate dis-
persed in stainless
steel

6
32

3.5
3.875

0.250
0. 030
0.310

AISI Type 347 stainless
steel, modified, 0.05 wt

% Co maximum and 0. 15 wt

% Co plus Ta maximum
Europium titanate Eu203,
2 TiO2 dispersed in

stainless steel (equiva-
lent to 25 wt % europium
metal)

790
828
752



6. Fuel bundle data:

Element pitch (in.) 0.665
Elements in peripheral bundle
Fuel 121
Poison (30-in. length) 12
Poison (20-in. length)
Dummy
Elements in center bundle
Fuel 15
Poison 0
Dummy

Structural rods

Control rods

Peripheral bundle 1
Center bundle 0
7. Nuclear characteristics:
Core reactivity (max) (%) 13.28
Control rod worth, 68° F (%)
6 -rod bank -20,22
5-rod bank -13.66
4-rod bank, minimum -8.83
3-rod bank, alternating -9.19
Minimum shutdown margin, 68° F (%)
One rod completely withdrawn 0.38
Two rods at operating position 0.10
Core reactivity (initial) (%)
At 68* F 13.28
At 463° F 9.08
Temperature coefficient
Beginning of life at 68° F -0.675 x 10'2

At 463° F -2.827x 10
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End of life at 68° F -0.650 x 10~
At 463° F -2.433 x 107*
Burnup
Peak U-235 (%) 61.7
Peak B-10 (%) 97.9
8. Heat transfer characteristics:
Coolant flow rate (gpm) 2125
Coolant temperature (°F)
Average 463
Inlet (full power) 4417
Outlet (full power) 479
Maximum coolant temperatures (°F)
Without hot channel factors 515
With hot channel factors 555
Surface temperatures, maximum (°F)
Without hot channel factors 588
With hot channel factors 580
Flow rate (gpm)
Inside fuel element 1.20
Flow ratio, flow inside element/total
flow 0.51
Heat flux, Btu/ hr-ft2
Average 71,200
Maximum, without hot channel
factors 257,000

Maximum, with hot channel factors 366,000
Fraction of burnout heat flux

Without hot channel factors 0.12

With hot channel factors 0.18



IO. MECHANICAL DESIGN

This chapter describes the PM-1 reactor core and explains features
of the design. In reading this section, reference should be made to
the design drawings which are listed by title and number at the end of
this chapter and included in the appendix of this report. Conclusions
and results of supporting studies and tests that were conducted for
this design are to be found in the appendix.

The shroud, which rests on the pressure vessel orifice plate, main-
tains the alignment of each fuel bundle relative to the vessel. The
upper skirt assembly distributes the primary flow from the core to the
exit plenum to minimize any radial flow perturbation within the core
proper. A portion of this flow is also directed to the head for cooling.
In addition, this assembly provides guidance for the control rodsas
they are withdrawn and supplies the necessary holddown force to each
fuel bundle.

The overall reactor core structural installation (Drawing 372-
2105002) shows the upper skirt and core shroud assemblies positioned
within the pressure vessel. The core shroud (Drawing 372-2105009)
is located axially and radially at its upper end by the pressure vessel's
inlet orifice plate. This allows free downward thermal expansion of
the shroud relative to the orifice plate. Two diametrically opposed
guide bars welded onto the pressure vessel waterbox fit into slots in
the core shroud flange. These guide bars bring the shroud into ap-
proximate angular alignment as the shroud is lowered into the vessel.
Three dowel pins, located on the shroud, fit into slots on the orifice
plate to provide the exact orientation of the shroud (and subsequently,
the contained fuel bundles) relative to the pressure vessel and control
drive mechanisms. Three such pins are provided to allow the shroud
to sit level while rotating the shroud to locate the alignment slots dur-
Ing assembly. Improper positioning of the shroud is prevented by
asymmetrical location of the pins.

The upper skirt assembly (Drawing 372-2105004) is supported on
the core shroud upper flange. A heavy ring forms the lower bearing
surface of the skirt assembly and contains three alignment slots which
engage mating pins on the shroud flange. The ring also has an inte-
grally machined pilot lip that centers the skirt radially on the shroud.
Four integral pads at 90° intervals on the skirt upper plate locate its
top radially within the throat of the pressure vessel. One of these
pads is smaller than the remaining three. The smaller pad is used
during refueling to angularly orient the skirt assembly as the assembly
is lowered into position in the vessel. A double leaf spring, loaded
against the pressure vessel head, supplies the holddown force through
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the skirt and core shroud to the orifice plate. Supported by the core
shroud, the skirt is free to expand thermally upward against this
spring. The load of all the reactor core components plus the total
spring holddown force is taken out at a single plane, the orifice plate.

To keep the overall systems activation to a minimum, some ma-
terials have their cobalt and tantalum contents limited. Because of
the high surface area and neutron flux level within the core region,
the fuel and poison elements have their cladding and dead end material
compositions limited to 0.01 wt % cobalt and 0. 03 wt % cobalt and
tantalum. The remaining in-core structural stainless steel and that
in the core shroud is limited to 0. 05 wt % cobalt and 0. 15 wt % cobalt
and tantalum. The relatively larger average distance between the
skirt assembly and the active core eliminated the need for such limi-
tations in the skirt components. The material composition limits
on the various components are specified on the applicable design draw -
ings or specifications.

The basic PM-1 core is made up of six identical peripheral fuel
bundles and one center bundle. The center bundle was designed into
the system to permit easy substitution by an instrumented bundle (if
desired) through a small access port in the vessel head.

A. CORE SHROUD

The core shroud (Drawing 372-2105009) rests upon the pressure
vessel orifice plate with its primary function being to hold the fuel
bundles and to position them relative to the control drive mechanisms
located in the head of the pressure vessel. As a secondary function,
it provides the first thermal shield and directs the primary coolant
from the pressure vessel orifice plate to the core inlet. An alignment
spider is incorporated integrally into the bottom of the shroud. Each
of the six peripheral fuel bundles contained within the core rests di-
rectly upon this spider. Alignment of the bottom of each bundle is
assured through the use of legs which fit into the accurately positioned
holes in the spider. Although each bundle sits on three legs, to ease
handling during remote assembly, only the two outermost are used
for radial positioning. The centrally located hole is made slightly
oversize to provide only the seat without accurately controlling the
location. Bundle positioning at the top is accomplished by the fit of
each bundle's alignment structure over two alignment pins located
in the top flange of the core shroud. This flange also contains the
alignment pins and seat used in positioning the skirt assembly and
shroud relative to the orifice plate, as discussed previously. Each
of these pins is pressed into place and is secured by a smaller lock
pin. These lock pins are held mechanically and have their motion
limited at assembly by adjoining components, The shroud flange has
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two vertical slots at diametrically opposite positions on its outer
diameter. During core insertion, these slots engage guide bars on
the pressure vessel waterbox to prealign the shroud angularly as the
shroud alignment pins approach their slots in the vessel orifice plate.
These slots and the vessel guide bars assure positive angular orien-
tation of the close-fit final alignment pins before they actually reach
the orifice plate.

B. FUEL BUNDLES

The active core contained within the shroud consists of seven fuel
bundles: one hexagon-shaped center bundle (Drawing 372-2105003)
and six identical pie-shaped bundles located around the periphery
(Drawing 372-2105010). Each of the peripheral bundles is individually
held and positioned within the core shroud, as shown on the core in-
stallation drawing (Drawing 372-2105005). The center bundle, in turn,
rests upon the lower grids of the peripheral bundles and is positioned
within their supporting guide rail structure.

Each peripheral bundle is constructed basically from three control
rod guide rails, an upper and lower grid, a guide alignment structure
and the necessary core elements (fuel, poison and dummy). The
control rod guides provide the fundamental structural connections for
the bundle. They extend over the full length of the assembly and form
a continuous track for the control rod wear pads. Positioning of the three
guide rails relative to each other is achieved by a fit into the align-
ment structure at their top (Drawing 372-2105015) and through the
lower grid at the bottom (Drawing 372-2105012). Sleeves thread over
the portion of the guide rails which extend through the lower grid to
lock it into place. These sleeves provide the seat upon which the bundle
rests, as well as the required spacing to form a plenum between the
grid and the alignment spider for flow redistribution. Each sleeve is
mechanically locked into place by deforming its side wall at two places
into corresponding grooves. A portion of the turned diameter on the
guide rail extends through the sleeve to fit into the positioning holes
in the core shroud alignment spider during assembly. Correct upper
alignment is achieved through the alignment structure, which fits
over two alignment pins in the core shroud flange, as discussed earlier.
Thus, each control rod guide rail in a peripheral bundle is aligned at
its top and bottom and the complete bundle is allowed free thermal
expansion above its seat in the core shroud.

The guide rails fit through cutouts in the upper grid in a manner
similar to the lower grid. The upper grid is located vertically by a
shoulder on the guide rail and is secured by a sleeve fitting over the
reduced portion of the guide rail which extends above the grid. When
the alignment structure is locked into place at assembly, this sleeve
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extend at three points from the center bundle lower grid to rest upon
the peripheral bundle lower grids. The center bundle is free to expand
axially upward from this point with top radial alignment being obtained
by tabs bearing against the peripheral bundle upper grids. Three solid
rods extend axially along the length of the center bundle to provide
positioning for the pickup plate and the upper and lower grids. Each
bar threads into the lower grid, captures the upper grid through the
use of a sleeve and secures the pickup plate in place through the use
of a special nut. This nut, which completely locks the assembly, is
both encapsuled and prevented from rotating by the positive displace-
ment of its housing into grooves in the nut. As will be discussed later,
the upper skirt assembly applies a holddown force to the pickup plate
of the center bundle and the guide rail alignment structure of each pe-
ripheral bundle.

C. SOURCE

The primary neutron source (Drawing 372-2105018) is located at
the middle of the center bundle, where a core element has been dis-
placed. Installation of the source into the center bundle will be made
just prior to loading the core into the pressure vessel. Because of the
relatively low source strength requirements, this operation is per-
formed with two simple tools from a distance of approximately three
feet., The source is lifted from the shipping cask and threaded into
the upper grid with the source lifting tool. Positive locking into the
upper grid by thread deformation is accomplished with the source lock-
ing tool. The source element is supported and aligned at the center
bundle upper grid, with radial guidance (but free axial expansion) pro-
vided by the lower grid.

D. CORE ELEMENTS

Three types of core elements are included in each fuel bundle:
fuel, poison and dummy. The general construction and dimensions of
these elements are shown on Drawing 372-210501 while their loca-
tions within each fuel bundle are given on the bundle drawings. As
mentioned previously, these elements have identical end construction
to allow complete interchangeability.

The fuel element contains UO2 dispersed in and clad with stainless

steel. Its meat is nominally 0.0285 inch thick and it is sandwiched be-
tween cladding 0,008-inch thickness. Fabrication and testing are to

the applicable design drawing, as referenced, and to PM-1-Type Reactor
Fuel Element Specification MN-7891, When the element is assembled
into a fuel bundle, the beginning of the active fuel region lies one inch
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above the top surface of the lower grid. This distance provides for
equalization of flow after it is orificed by the lower grid, and it also
allows the diameter reduction of the tube end to start well away from
the fuel-dead end interface.

Lumped burnable poison elements are substituted for fuel elements
as required to provide the desired nuclear characteristics. These
elements, which are unclad, contain natural boron alloyed in stainless
steel. The poison length may be varied easily by the use of unpoisoned,
tubular ""dead ends' which are mechanically locked to the boron steel
section. Two poison lengths are used in the PM-1 reactor. The 18
poison elements closest to the control rod centerlines contain boron
steel only in the lower 20 inches of the 30-inch active core length. All
other poison elements are the full active core length.

The use of an unclad poison element also offers a nuclear advantage
in addition to the mechanical simplification realized. Normally the
melting process for the boron-stainless steel cannot be controlled to
provide a material composition tolerance much tighter than +10% of the
desired boron loading. With the unclad PM-1 element, the final ma-
chined diameter is varied slightly on the basis of the final material
analysis to meet the prescribed loading with tolerances of ‘approximately
+2%. These elements are manufactured to the referenced design draw-
ing and to PM-1-Type Reactor Burnable Poison Element Specification
MN-7892,

Dummy core elements are incorporated into each peripheral bundle
to fill in at the core periphery where the basic triangular element pat-
tern ends and thus reduce the total core flow requirements, These
elements are tubular with swaged ends to fit the upper and lower grids
in a manner identical to that of the fuel elements. A plug is entrapped
within the tube to maximize the flow blockage., However, a small bleed
is provided to eliminate a stagnant water area.,

E. CONTROL ROD

The control rod (Drawing 372-2105016) utilizes a Y-shaped config-
uration to fit within the triangular core element pattern, Its poisoned
region, consisting of europium titanate (Eu203' 2TiO2 dispersed in stain-

less steel, is contained within cladding of nominal 0.030-inch thickness.
Manufacture of this element is to the reference design drawing and to
PM-1-Type Reactor Control Rod Specification MN-7893.

Each control rod is guided by wear pads contained on the lower edge
of each blade and a wear cap located at its upper hub, This wear cap
also integrally incorporates the pickup ball utilized in latching with the
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control rod drive mechanism. The rod wear pads are contained within
the three control rod guide rails that run the full length of each periph-
eral bundle. These pads provide the lower radial and overall angular
alignment for the control rod. Upper alignment is obtained through the
wear cap which is encaptured within the guide tube of the upper skirt
assembly. This tube, which is split to fit over the control rod during
rod withdrawal, interlocks with the guide alignment structure contained
in each peripheral bundle. As discussed previously, the rod guide rails
also terminate in this structure, thus providing a continuous structure
for guidance and alignment, Both the wear cap and pads are made from
hardened 17-4PH material to minimize wear between these areas and
the guiding structure. The 17-4PH wear surfaces are hardened by a
heat treatment process which ensures that the desired tensile strength
and ductility are obtained without making the material susceptible to
stress corrosion in the core operating environment.

F. UPPER SKIRT

The upper skirt assembly (Drawing 372-2105004) is both supported
and positioned angularly by the core shroud. Itsprincipal functions are
to direct the primary flow after it exits from the active core region, to
provide partial guidance to the control rods, and to provide the nec-
essary holddown forces to the fuel bundles and the core shroud.

A series of 1-1/2-inch diameter holes is used to separate the fuel
exit flow area from the single pressure vessel outlet pipe. These ori-
fices provide sufficient pressure drop to prevent any local radial flow
perturbations within the fuel region which might be caused by the single
outlet,

The skirt assembly contains seven tubes which supply the holddown
forces to,the fuel bundles. Six split tubes are utilized for the peripheral
bundles to provide guidance for the control rods, as previously discussed.
A multifigured leaf spring (Drawing 372-2105017), deflected by the pres-
sure head, simultaneously loads each individual tube and the skirt. Two
such springs, operating in series, are used to provide maximum deflec-
tion while keeping the working stresses within allowable limits, As an
extra precaution in the event of a failure, these springs are insulated
from the primary system by the solid base plate and the raised section
or fence at its periphery and at each holddown tube.

The center bundle holddown tube uses a sliding collar loaded by a
completely enclosed spring to obtain the required loads. This tube
bears against a plug extending downward from the center bundle access
port located in the pressure vessel head. This design provides con-
siderable versatility in that (1) the core may be refueled as a unit in
the conventional manner, or (2) by means of a suitable locking tool,



the center fuel bundle, holddown tube and plug may be removed through
the pressure vessel head as a single assembly, This latter is a desir-
able feature in that in-core instrumentation or irradiation test bundles
may be inserted into the reactor without removing the pressure vessel
head. This holddown tube also provides a positive flow of coolant to
the vessel head by bypassing a portion of the primary flow around the
main skirt orifices. Restrictions were also incorporated into each of
the peripheral bundle tubes to maximize the center tube cooling flow.
Although in opposition to this, an annular-type orifice was included at
the radial support point between the skirt and the throat of the pressure
vessel. This was necessary to reduce the hydrodynamic forces which
tend to lift the skirt from its seat.

COMPONENT LIST AND SPECIFICATIONS
Martin Nuclear Specifications

MN-7890 PM-1 Reactor Core, Specification for

MN-7891 PM-1-Type Reactor Fuel Elements,
Specification for

MN-7892 PM-1-Type Reactor Burnable Poison
Elements, Specification for

MN-7893 PM-1-Type Reactor Control Rods,
Specification for
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Peripheral Bundle 372-2105010
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III, PHYSICS DESIGN

This chapter describes the physics of the PM-1 core. It is divided
into several sections for ease of presentation. The first section dis-
cusses the core life and core reactivities; the second section discusses
the control rods, théir worths and shutdown margins; the third section
discusses power distributions; the fourth section discusses temperature
coefficients. Supporting data, test results, analytical techniques and
intermediate calculations required to support the design are to be found
in the appendix.

The core lifetime of the PM-1 was determined by two different but
closely allied methods. One method consisted of performing both radial
uniform and nonuniform burnup calculations, determining the reactivity
defect between the two, then performing a nonuniform axial burnup with
control rods and iterating on the positive value of the radial reactivity
defect to determine the position of the rods with burnup. The other
method involved performing both uniform and nonuniform axial burnup
calculations, determining the reactivity defect between the two and
applying it to a radial nonuniform burnup.

A, RADIAL UNIFORM AND NONUNIFORM BURNUP

The radial nonuniform burnup calculation was performed using the
six core region configuration and the C3—F3 burnup program, The pro-

gram performs a region-wise burnup, as described in the appendix.
Time steps of 100 days were used. The three-group nuclear constants
at time zero are tabulated in the appendix. The resulting core reactiv-
ity versus time with the reactor operating at a power level of 9.37 mw
is shown in Fig. III-1.

The radial uniform burnup calculation was performed in a similar
manner to the nonuniform burnup, except that the reactor core was
homogenized into one region. The homogenization process causes the
calculated reactivity to increase due to the displacement of materials
to regions where they have a different worth. The increase in calcu-
lated reactivity is caused primarily be smearing out the boron in the
LPR's; however, the steel in the rod guides, LPR's and fuel elements
also makes a contribution. To reduce the homogenized core reactivity
to that of the six-region core, burnable boron poison was added uni-
formly.

The three-group core constants used in the uniform burnup calcula-
tion are given in Table III-1,

17
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TABLE III-1
Homogenized Core Constants (463° F, beginning of life)

Constants Groups
1 2 3
B? (axial, cm 2) 1.92437 x 10°°  2.29971 x 10™°  2.40020 x 10”3
D (cm) 1.85068 x 10°  5.70307 x 107! 2.47739 x 10!
=2 (em™1) 1.14928 x 10”3 2.96948 x 10°2 1.80890 x 10}
vz, (em™ 1) 1.48811 x 10™2  3.93176 x 10”2 2.58534 x 101
-1 -2 -2
%y, (em™) 5.67988 x 10 4.86415 x 10
18

*Includes 4.8165 x 10"~ atom/cc of B-10 to compensate
for homogenization,

The resulting uniform core burnup reactivity versus full power
operating time is shown in Fig, III-1. The difference in core reactivity
between uniform and nonuniform radial burnup as a function of core
life is presented in Fig. III-2, Due to the difficulty in reading curves
precisely, the reactivity data is also presented in tabular form in Table
IIr-2.

TABLE III-2

Radial Uniform and Nonuniform Burnup Reactivity
Versus Core Life (463° F, 9.37 mw)

Days (uni?orm) (nonugliform) Ap
0 0.09080% 0.09080* 0.00000
100 0.07346 0.06267 0.01079
200 0.07646 0.05789 0.01857
300 0.07744 0.05232 0.02512
400 0.07629 0.04540 0.03089
500 0.07290 0.03653 0.03637

*No xenon.
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TABLE III-2 (continued)

[ [o
Days (uniform) (nonuniform) Ap
600 0.06709 0.02506 0.04203
700 0.05863 0.01033 0.04830
800 0.04726 -0.00825 0.05551
900 0.03269

* No xenon

B. AXIAL UNIFORM AND NONUNIFORM BURNUP

The axial uniform burnup calculation was performed in a manner
similar to the radial uniform burnup. The same core constants were
used as given in Table III-1, except the radial bucklings were used,

which have values of 4.7844 x 10”5, 5.7495 x 10”5, 6.0092 x 10> cm
for the fast, epithermal and thermal groups, respectively.

-2

The axial nonuniform burnup calculation with control rods withdrawn
was performed in a manner identical to the uniform burnup except that
the core was divided into 12 equally spaced axial regions. The initial
constants used were identical to those given in Table III-1, except for
the radial bucklings which are given above,

The resulting axial uniform and nonuniform burnup reactivity versus
core life is shown in Fig, II[-1. The difference between the two burnup
reactivities versus core life is plotted in Fig. III-2, The data is also
tabulated in Table IIT-3,

TABLE III-3

Axial Uniform and Nonuniform Burnup Reactivity
Versus Core Life (463° F, 9.37 mw, no rods)

p P
Days (uniform) (nonuniform) Ap
0 0.09080 0.09080 0.00000
100 0.07350 0.07303 0.00047
200 0.07665 0.07597 0.00068
300 0.07779 0.07619 0.00160

400 0.07682 0.07354 0.00328



22

TABLE III-3 (continued)

Days (uniteorm) (nonugiform) Ap
500 0.07360 0.06786 0.00574
600 0.06798 0.05893 0.00905
700 0.05972 0.04662 0.01310
800 0.04856 0.03074 0.01782
900 0.03423

C. TOTAL NONUNIFORM BURNUP WITH CONTROL RODS

The axial nonuniform burnup with control rods was calculated by the
"window shade' method. This method, which is used frequently, involves
distributing a uniform poison over the rodded region of the core. For
the present study, europium was used as the poison because it corre-
sponds to the material in the control rods.

To burn out the core accurately, it is necessary to obtain the proper
power generation split between the rodded and unrodded regions of the
core. Also, the ratio of the thermal to epithermal worth of the poison
should have the proper value. From the results of the PMZ-1 critical
experiments, the necessary data concerning the control rods was avail-
able and is given in Table III-4.

TABLE III-4
Experimental Control Rod Data* (68° F)

Thermal/ epithermal worth 3.06
Power (rodded)/power (total) 0.478
Critical bank position (in, withdrawn) 8.25

* Adjusted to account for the small difference be-
tween the experimental and the PM-1 cores,

To obtain agreement with the measured control rod data, it was
necessary to perform a small parametric study in which the amount of

poison and the thermal self-shielding of the poison were varied. The

calculations were based on an axial two-core region (rodded and un-
rodded) model, using the F3 program with the rods at the critical bank

position. The poison was only allowed to effect the three-group absorp-
tion cross sections, The ratio of the epithermal to the fast cross
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section of the poison was held constant. It had been determined pre-
viously from an eighteen-group, two-region diffusion theory cell cal-
culation. The calculation was performed in slab geometry; one region
was control rod material and the other, homogenized core material.

The results of the study to determine the proper values of the three-
group poison cross sections are presented in Fig. III-3. The poison
cross-section values which were used in the axial burnup calculation
with control rods are given in Table III-5.

TABLE III-5
Polson Cross Sections Used in Window Shade Calculation

Cross Section

Group (=p)
1 3.646 x 1072
2 3.7055 x 10~3
3 5.3778 x 10”2

Although the use of the poison cross sections in Table III-5 forces
agreement, the experimentally determined power split and thermal-to-
epithermal rod worth do not provide a '"just critical" condition with the
control rods at the measured critical bank position. The reactivity
bias* is caused by the inadequacy of the model to take into account such
effects as changes in perpendicular buckling and smeared-out absorber.
However, since the prime concern is to burn out the core properly, the
reactivity bias is not of major importance, although it must be taken in-
to account. The axial initial reactivity calculations without the rods
inserted did not have any bias. Since it is felt that the bias is associ-
ated with the rodded region at the end of life, when the rods are com-
pletely withdrawn, it was assumed that there would not be any bias.
Therefore, the bias was assumed to vary linearly with rod insertion,
being zero when the rods are fully withdrawn.

The axial nonuniform burnup calculation was performed on a 12-
region core, using a modified version of the C3-F3 program. This

program varies the control rod bank position on a pointwise basis
throughout the core life to obtain a desired reactivity which is not
necessarily zero. The values of the reactivity which were iterated on
during the burnup calculation were the sums of the biases discussed
in the previous paragraph and the radial burnup reactivity defect plot-
ted in Fig. ITI-2

*Control rod reactivity bias is 1.406% p at 463° F,
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The resulting core reactivity based on burnup with control rods is
shown in Fig. III-4. The data is also tabulated in Table III-6. For
comparison purposes, the nonuniform burnup core reactivity without
control rods is also included in Fig. III-4. It can be seen that the
calculation with control rods indicates a core life which is essentially
the same as that obtained by a nonuniform burnup without control rods.
However, the atom density distribution at the end of life is somewhat
different.

TABLE III-6

Total Nonuniform Burnup Reactivity Versus
Core Life (463° F, 9.37 mw, rods at critical bank position)

Days Reactivity
0 0.09094
100 0.06691
200 0.06175
300 0.05397
400 0.04281
500 0.02900
600 0.01209
700 -0.00661

D. EFFECT OF U-235 TOLERANCE LOADING

The effects of the +2% U-235 loading tolerance per fuel element on
the initial reactivity of the PM-1 was determined. The calculation was
based on the six-region core geometry using the Cs—F3 (linked) program.

The resulting hot and cold initial reactivities are shown in Table III-7.

TABLE III-7
Initial Reactivity for Tolerance U-235 Loading

AU-235/Element P(68°F) AP(68°F) p(463°F) Ap(463°F)
-2% 0.1282 -0. 0045 0.0859 -0. 0049
0 0.1327 0.0 0. 0908 0.0
+2% 0.1371 0. 0044 0. 0955 0.0047
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E. INITIAL REACTIVITY WORTH OF CHANGES
TO THE CENTER BUNDLE

The center bundle of the PM-1 core is composed of 19 elements.
Three of these elements are 0.50-inch OD stainless steel rods re-
quired for structural purposes, 15 are fuel elements and the center
location is occupied by a stainless steel tube containing the neutron

source.,

The worth in reactivity due to various changes made to the center
The changes were as follows:

bundle was determined both cold and hot.

(1) Three fuel tubes in the center bundle were replaced by:

(2)

(a) Three lumped poison rods.

(b) Three stainless steel rods.

(c) Three stainless steel tubes.

Six fuel tubes in the center bundle were replaced by:

(a) Six lumped poison rods.

(b) Six stainless steel rods.

(c) Six stainless steel tubes.

Reactivity worth due to the center bundle changes is represented in
tabular form in Table III-8.

TABLE III-8

Reactivity Worth of Changes in Center Bundle

Material Fuel Eleme..ts

Cold (68° F)

Replacement Replaced [4 Ap
None None 0.1327 0.0
LPR 3 0.1250 -0.0077
LPR 6 0.1195 -0.0132
SS rods 3 0.1286 -0.0041
SS rods 6 0.1250 -0.0077
SS tubes 3 0.1304 -0.0023
SS tubes 6 0.1275 -0.0052

Hot (463° F)
p Ap

0.0908 0.0

0.0818 -0,0092
0.0745 -0,0163
0.0860 -0.0048
0.0816 -0.0092
0.0882 -0.0028
0.0850 -0.0058
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F. REACTIVITY WORTH OF LUMPED POISON RODS

A study was performed to determine the reactivity worth of the
boron and stainless steel contained in the lumped poison rods. The
purpose of the study was threefold: (1) to determine the worth of
boron per rod in different regions of the core, (2) to indicate what
magnitude of reactivity increase could be expected if steel rods were
somehow inserted in place of LPR's, and (3) to show the overall re-
duction in reactivity due to the stainless steel in the rods. The six-
region core configuration was used with the C3-F3 program., The

boron in Regions 3, 4 and 5 was removed individually to determine
the worth per region. The total boron in the three regions was then
removed, and finally the stainless steel in the lumped poison rods was
removed. The volume displaced by the steel was assumed to be re-
placed by inert material after removal of the rods. Thus, the volume
fraction of water remained constant.

The results of the preceding study are shown in Table III-9. Re-
ferring to this table, it can be seen that the average worth of the boron
in a lumped poison rod is slightly less than 0. 1% in reactivity. How-
ever, it should be noted that the reactivity worth of the stainless steel
is about 1/3 that of the boron. Since steel is a nonburnable poison, the
results indicate that the use of a different carrier for the boron would
be desirable. This point is discussed further under the section on
core lifetime.

G. RELATIVE DISTRIBUTION OF U-235 AND B-10
DURING THE LIFE OF THE CORE

The burnup and buildup of the various isotopes in the core were
calculated as a function of core lifetime during the nonuniform burnup
study. The concentrations of the two most important isotopes, U-235
and B-10 have been converted to "fraction present' as a function of
lifetime and position. The resulting distributions for both the radial
and axial directions are shown plotted in Figs. III-5 through III-8.

The maximum burnup of the B-~10 and U-235 was obtained from the
data in the preceding figures by:

a (t) in
B®max =1 - {a—mm—}

{a (t) } (II-1)
min
avg ) xial radial

where
B(t) = Fractional burnup

a(t) = Fraction remaining
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TABLE III-9

Reactivity Effect of Boron and Stainless Steel in Lumped Poison Rods

Material Removed P(68°F) Ap(68°F) p(463°F) Ap(463°F) No. LPR's Ap/LPR(68°F) AP/LPR (463°F)
Boron Region 3 0.15976 -0,02703 0.12226 ~-0,03146 24 -0.00113 -0.00131
Boron Region 4 0.16948 -0.03675 0.13292 -0.04212 30 + 18% -0.00088 ~-0.00100
Boron Region 5 0.14261 -0. 00988 0.10258 -0.01178 18 -0. 00055 -0.00065
Boron Regions 3, 4 and 5 0.20266 -0.06996 0.17216 -0.08136 72 + 18% -0.00083 -0,00097
Boron and SS Regions 3, 4 and 5 0.23330 -0.10057 0. 19955 -0.10875 72 + 18%* -0.00120 -0.00129
None 0.13273 0.0 0, 09080 0.0 72 + 18%

* Indicates 2/3 length boron rod; remaining length SS
A p Indicates average reactivity change over region considered

€€
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The values of the maximum burnup after 675 days of core life are
97.9% and 61, 7% for the B-10 and U-235, respectively.

H. XENON REACTIVITY WORTH
Xenon, due to its high cross section, short half life and relatively
high production rate, is of particular concern over the life of the core.
Therefore, it is treated in somewhat more detail than the remaining

fission products.

1. Cold Reactivity, No Xenon (Early Life)

The maximum reactivities experienced in the PM-1 occur at the
beginning of life, without xenon present. The stuck control rod criteria
is such that the maximum reactivity caused by shutdown after a few
days of operation is also important. Therefore, the cold (68° F) re-
activity with no xenon present was calculated during the early portion
of core life, The results are shown plotted in Fig. III-9 and are tab-
ulated in Table III-10.

TABLE III-10
Cold Core Reactivity, No Xenon (68° F)

Days Burnup P
0 0.13273
100 0.11960
200 0.11450
300 0.11014

2. Hot Reactivity, Xenon Buildup (Beginning of Life)

During the initial phase of the core life, the xenon concentration is

built up rapidly, approaching its equilibrium value after about four days
of full power operation.

The hot reactivity of the PM-1 core during the first few days of
operation was calculated to follow the xenon buildup. By extrapolating
back to time zero, the initial reactivity worth of equilibrium xenon can
be obtained. The results are shown plotted in Fig. III-9 and are tab-
ulated in Table III-11.
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TABLE ITI-11
Reactivity During Xenon Buildup (463° F, 9.37 mw)

Hours P
0 (no xenon) 0.09080
8 0.08561
24 0.07594
0 (equilibrium xenon) 0.07217

From the results in Table ITI-11, it can be seen that the worth of
equilibrium xenon at time zero is 1.86% A p. *

3. Hot Reactivity, Peak Xenon (End of Life)

When the reactor is shut down after sustained power operation, peak
xenon bullds, causing a temporary reduction in the core reactivity. If
the shutdown occurs very near the end of core life, the loss in reac-
tivity can prevent the reactor from being brought up to power until a
portion of the xenon has decayed.

The peak xenon atom concentration was calculated for the PM-1 after
700 days of full power operation (end of life), by Eq. (III-2).

A
2
1+ I 1T
Xe =X 1 ° PR o B Y
max € xl Yl- Xe
Ao
(I1I-2)
and
Y
1 L]
Io X—I FD

*(Obtained by extrapolating data in Fig. III-9 back to zero time.
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where:
Xe .. = Maximum Xe-135 atom density (at/cm3)
Xe, = Equilibrium Xe-135 atom density (at/cm3)
I, = Equilibrium I-135 atom density (at/cm’)
FD = Fission density before shutdown (fiss/cm3~sec)
Ny = 1-135 decay constant (2,87 x 1072 sec_l)
g = Xe-135 decay constant (2.09 x 10 % sec™ )
\ = 1-135 yield/fission (0. 061 at/fiss)
Y, = Xe-135 yield/fission (0.002 at/fiss) (Value used in

calculating Xeo)

The reactivity worth of peak xenon above that for equilibrium, cal-
culated after 700 days of core lifeis -0.460%A p. This point is plotted
on Fig. III-13 for comparison purposes.

4. Reactivity Worth of High Cross-Section Fission Products (End of Life)

The fission products utilized in the calculation of core lifetime are
divided into two groups: the high cross-section and the low cross sec-
tion fission products. The reactivity worth of the high cross-section
fission products was calculated at the end of life (700 days) and found
to be 0.891% p.

I. WORTH OF BORON AND STAINLESS STEEL IN
LUMP POISON RODS (END OF LIFE)

The reactivity worth of the boron and stainless steel in the lumped
poison rods at the beginning of life has been discussed. As the core
is operated over its life, fuel and boron are depleted, resulting in a
decrease of core blackness or overall neutron absorption characteris-
tics. Since the steel in the LLPR's does not burn out, it should con-
tribute a larger fraction to core absorption at the end of life and thus
be worth more in terms of reactivity. To determine its worth, the
steel in the LPR's was removed after 700 days of operation and the
increase in core reactivity calculated. The basic six-region core
model, with all the fission products present, was used. The results
are given in Table III-12.
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In any-core which contains a burnable poison material, the optimum
condition at the end of life is to have burned all the poison and thus not
have the core life shortned by residual neutron capture. Of course,
this condition is unattainable, so the next best thing is to come as close
to the optimum as possible, In Fig. III-6, it is shown that the percent
of B-10 remaining after 700 days of operation varies between roughly
10% and 30%. Because of the relatively high concentration remaining,
the B-10 reactivity worth at the end of life was analyzed. The results
are shown in Table III-12.

TABLE IIT-12

Reactivity Worth of B-10 and Stainless Steel in the
Lumped Poison Rods (463° F, 9.37 mw)

Material Ap Days
Stainless steel 0.03845 700
Boron-10 0.02521 700
Stainless steel 0.02739 0
Boron-10 0.08136 0

It is worthwhile to note that at the end of life the steel in the LLPR's
has a reactivity worth of over 150% of that of the boron. The data
indicates that a substantial increase in core life could be obtained if
the steel in the LPR's were reduced or eliminated.

J. REACTOR CONTROL

The analysis of the effect of control rods on the reactivity of a re-
actor is, in general, a fairly difficult problem; and the results usually
contain a degree of uncertainty. However, in the PM-1, a series of
critical experiments was performed on a core which was practically
identical to the final design core. The control rod measurements which
were made in these experiments were normalized to the present core
and used as end points in the calculations. This technique lent con-
siderable credence to the analytic results.

1. Measured Critical Rod Bank Position

Control rod bank evaluations were performed experimentally on the
reference design mockup described in the appendix. The control rod
configurations investigated are presented in Table III-13.



TABLE III-13

Control Rod Configuration Experimental Evaluations
(reference design mockup, 68° F)

No. of Rods No. of Rods in

Location of

Experiment No. Withdrawn Critical Bank Critical Bank
1 5 1 Any one rod
3 2 4 Adjacent rods
4 1 5 Adjacent rods
5 0 6 All rods

No. of Rods No. of Rods in

T,ocation of

Experiment No. Inserted Critical Bank Inserted Rods
6 1 5 Any one rod
7 4 2 Adjacent rods

Comments

Stuck rod
condition

Stuck rod
condition

Stuck rod
condition

Operating
condition

Comments

Stuck rod
condition

Stuck rod
condition

6€



40

The critical bank position was determined for each obtainable bank
configuration. At each of the reactivity levels established during the
measurements of critical bank position, the total core reactivity was
evaluated.

The results of the study, corrected for the 0. 14% reactivity differ-
ence between the mockup core and the final design core, are given in
Figs. III-10 and III-11. The measurable critical bank positions
and the total rod worths are tabulated in Tables III-14 and III-15, re-

spectively.
TABLE III-14
Measured Critical Bank Positions
{(normalized to final design core, 68° F)

Critical Position
Experiment No. Bank Description (in. withdrawn)

4 5 rod bank--1 full out 3.90

5 6 rod bank 8.25

6 5 rod bank--1 full in 9.25

7 2 rod bank--4 full in 15. 00

TABLE III-15

Measured Full Insertion Rod Reactivity Worth
(normalized to final design core, 68° F)

No. Rods Inserted No. Rods Withdrawn Worth (%p)
1 5 -2.37
3% 3 -9.19
4% 2 -8.83
5 1 -13.66

*Configuration as given in Table III-13.
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The data in Fig. III-10 and Table III-15 clearly show that the cri-
terion of subcriticality with one rod stuck in the withdrawn position
will be met. The shutdown margin of the five remaining rods is from
full insertion to 3.9 inches withdrawn. The margin was measured by
adding fuel to the core edge to increase the core reactivity so that the
five-rod bank could be fully inserted. Period measurements from full
insertion to 3.9 inches withdrawn showed the margin to be 0.38% re-
activity.

2. Control Rod Worth Versus Insertion

The control rod worth as a function of six-rod bank position was
calculated utilizing the "window shade'' technique. The detalls of this
calculation were described under '"Total Nonuniform Burnup with
Control Rods. "

The calculation of the worth versus insertion at 463° F was per-
formed in the same manner as for 68° F, except the worth of the rods
at the hot critical bank position was increased by 0.45% reactivity
over the cold rod worth at that position. The increase was necessary
to compensate for the change in blackness of the core due to tempera-
ture. The magnitude of the increase was based on the change in the
experimental rod worths of the two PMZ cores whose change in black-
ness gave them a difference in reactivity similar to the cold-to-hot
change in reactivity of the PM-1. It was realized that the extrap-
olation was only approximate, so the results were checked using
blackness theory and were found to be conservative.

The resulting rod worths versus insertion, both hot and cold, are
presented in Fig. III-13. The fully inserted six-rod bank worths are
given in Table III-16.

TABLE III-16
Six-Rod Bank Reactivity Worth, Fully Inserted

Temperature % Reactivity
68° F -20,22
483° F -23.05

3. Comparison of Analytic and Measured Rod Worth Versus Insertion

Experimental rod worth from the critical six-rod bank position
(8.25 inches withdrawn) to full withdrawal was obtained as outlined
above for the PM-1 reference design core. An analytical rod worth-
versus-insertion curve of the six-rod bank was obtained over the full
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core length from a series of window shade calculations. The results
are compared in Fig. III-13, which shows excellent agreement between
analytical and experimental values over the measured portion of the
bank.

4. Hot-to-Cold Rod Worth Change

In general, the worth of control rods increases as the temperature
of the core is raised. The increase is due to a change in overall black-
ness of the core relative to that of the control rods. To gain a better
insight into the magnitude of the change in rod worth with temperature,
a series of calculations were performed utilizing Blackness Theory
(Ref. 11).

The calculations consisted of determining the reactivity of a homo-
genized PM-1 core both with and without a 0. 25-inch thick ring of eu-
ropium absorber. * The ring was located at the radius of six inches
from the center of the core to approximate the control rods. The cal-
culations were performed using the diffusion theory program, F3. The

constants for the rod region were obtained from blackness theory and
are given in Table III-17.

TABLE III-17
Blackness Theory Constants for a 0.25-Inch Slab

(30 wt % Eu,, Og in SS)
Constants* Temperature
68° F 463° F
z,? 1.9030 x 1072 1.9030 x 10 2
z,® 6.6291 x 10} 6.3723 x 107}
z,° 2.4952 2.4615
D, 9.5815x 107! 9.5815 x 107
D, 2.0563 x 107} 2.1083 x 107!
D, 4.7000 x 1074 1.8700 x 1073

* Based on one internal mesh point

* 30 wt % Eu2 03 in stainless steel
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The change in the worth of the absorber between 68° F and 463° F was
inferred by determining the hot-to-cold change in core reactivity with-
out the absorber and subtracting this from the hot-to-cold change with
the absorber inserted. The worth of the absorber, hot and cold, and
the percentage change is shown in Table III-18.

TABLE ITI-18
Worth of a Eu, O, Absorber Inserted in the PM-1 Core

2 73
Temperature (°F) Reactivity
463 -0.1664
68 -0.1312
Hot to cold, Ap -0. 00355

The hot-to-cold change in reactivity worth of the europium ring, as
shown in Table III-18, is 0.1% greater than that determined for the
PM-1 with the control rods fully inserted. Although the results are
not directly comparable, they tend to indicate that the hot worth of the
PM-~-1 rods is probably conservative.

5. Critical Bank Position Versus Core Life

47

During the analysis of the axial nonuniform burnup with control rods,
the withdrawal of the rods with core energy release was calculated. The

above data has been plotted in Fig. III-14 in terms of six-rod bank in-
sertion versus megawatt years. This information is of particular in-
terest because it can be followed during the burnout of the operating
reactor. Therefore, it gives an indication of the accuracy of the burn-
out calculation within the limitations imposed by errors in measuring
the core energy release.

The initial hot critical six-rod bank position, both with and without
equilibrium xenon, is given in Table III-19.

TABLE III-19
Initial Six-Rod Bank Position, 463° F

No xenon 30.5 cm withdrawn
Equilibrium xenon 37.2 cm withdrawn
The value of the initial bank position with equilibrium xenon was ob-

tained by extrapolating back to time zero from the first time step in
the burnup calculation.
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6. Shutdown Reactivity Versus Life

The ability of the control system to meet the stuck rod requirements
was evaluated by using experimental cold control rod worths and cal-
culated reactivities as a function of life.

The one rod stuck out condition was evaluated by using the experi-
mentally determined five-rod bank worth of 13.66%. The initial cold
reactivity of 13.28% yields a shutdown margin for one rod stuck out of
0.38% at the beginning of life. The cold reactivity of the core as a
function of life was obtained by recalculating the nonuniform depletion
case with cold contents, no xenon, and equilibrium fission products at
various times in life. Table ITII-20 summarizes the results obtained in
this study. Figure III-15 shows these results graphically. From the
results, it is quite clear that the condition of one rod stuck full out is
met at all times in life: with the least margin (0. 38%) occurring at the
beginning of life.

TABLE III-20

Cold Reactivity Shutdown Margin for One
Rod Fully Withdrawn, 68° F

(five-rod bank worth, 0.1366 p)

Core Life Ap Shutdown Margin
(days) Core Reactivity (with life) (p)
0 0.1328 0 -0, 0038
100 0.1191 -0.0137 -0.0175
200 0.1138 -0.0190 -0, 0228
300 0.1085 -0. 0243 -0. 0281

The shutdown margin for the two rods stuck condition is more complex,
since the six-rod bank position for the operating conditions must be
determined, as well as the cold no-xenon equilibrium fission product
core reactivity, as a function of life. The most stringent rod pattern
for this requirement is the maximum worth of two rods (minimum worth
of four rods) which is obtained when the two rods are adjacent. This
presents the largest uncontrolled region to the core with the most shad-
owing of the four-rod bank. This particular pattern was evaluated ex-
perimentally, as shown in Fig. III-11, and was used to determine the
shutdown margin of the core for the two rod stuck condition. Table
III-21 shows the results of the analysis, and Fig. III-15 shows these
results graphically.
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TABLE III-21

Cold Reactivity Shutdown Margin for Two
Rods Stuck at the Operating Position, 68° F

Critical 2-Rod Shutdown Margin
Bank Position, - Reactlvity
Core Operating Four Rods Fully Inches of of the 2-
Life Bank Position Core Inserted (inches the 2-Rod Rod Bank
(days) (inches withdrawn) Reactivity withdrawn) Bank (Ap)

0 14.65 0.1328 14, 98% 0.25 -0.0010
100 14,85 0.1191 17.90 3.05 -0.0140
200 15.35 0.1138 19.50 4,15 -0.0170
300 16.47 0.1085 20,90 4.43 -0.0170

* Experimental value

16
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From the preceding table it is clear that, while the margin at the
beginning of life (-0.10%) is small, it is negative and increases with
life,

7. Effect of U-235 Tolerance on the Stuck Rod Criteria

The effect of an increase of 2% in the U-235 loading on the total
core reactivity and life was evaluated in Table III-21,

In the present section, the effect of the 2% increase in U-235 load-
ing on the ability to meet the stuck rod criteria is evaluated. Two as-
sumptions were made in the following analysis: (1) the hot-to-cold
reactivity change of the core with the increased loading is the same as
that of the final design core, and (2) the rod worth is unchanged by the
2% increase in loading.

Using the above assumptions and the methods outlined in Section 6,
it was found that the ''one rod stuck full out' condition is not met at the
beginning of life, but is met thereafter. The results are summarized
in Table III-22 and plotted in Fig. III-16.

TABLE III-22
Shutdown Margin with 2% Increase in U-235 Loading
(one rod stuck full out, 68° F)

Core Life Core Reactivity Shutdown Margin
(days) (p) (p)
0 0.13786 +0.0010
100 0.1242 -0.0124
200 0.1190 -0.0176
300 0.1139 -0. 0227

The condition of two rods stuck at the operating bank position was
treated as in Section 6. The results indicate that this shutdown cri-
terion is not met at the beginning of life either, but it is met shortly
thereafter. The results are tabulated in Table III-23 and are included
on Fig, III-16. If this situation should occur, the initial reactivity will
be decreased as described previously.



53

2.4 _
Temperature = 463° F
2.2 Power = 9. 37 mw
2.0
1.8 L One rod stuck full out
= 1.6l Two rods stuck at
<T operating position
:? 1.4
ke
3 1.2 L
Q
oo
1.0 L
0.8 |
0.6 |
0.4 |
0.2 |
0 1 1 1 L A
0 50 100 150 200 250

Core Life (days)

Fig. III-16. Minimum Shutdown Margin for a Two-Percent Increase in U-235
Loading Versus Core Life



54

TABLE III-23
Shutdown Margin with 2% Increase in U-235 Loading
(two rods stuck in operating position, 68° F)

Core Life Operating Bank Core Reactivity

(days) Position Cold Shutdown Margin
0 14,1 0.1376 +0. 0010
100 14.3 0.1242 -0.0111
200 14.8 0.1190 -0.0143
300 15.8 0.1139 -0.0149

K. POWER DISTRIBUTIONS

1. Axial and Radial Power Distributions

The axial and radial power density distributions over the life of the
PM-1 core were determined from the results of the nonuniform burnup
calculation. The axial power distribution, which is plotted in Fig.
III-17 for zero, 400 and 600 days of life, reflects the effect of control
rod movement during the life of the core. The radial power distribu-
tion is shown in Fig, III-18 for zero, 400 and 700 days. Referring to
this figure, it can be seen that the power level peaks at a radius of
about 4 centimeters, then drops sharply to a low level and rises again
to about a 7.5-centimeter radius. The low level of power density in
this region is caused by the lack of fuel. The six inner control rod
guides occupy most of the space. Since there is little fuel in this re-
gion, the neutron absorption is low and the neutron flux quite high. The
high neutron flux overflows into the adjacent regions, causing the power
to peak,

Axial power peaking occurs just below the end of the control rods
and at the very bottom of the core.

a. Fast, epithermal and thermal power split

The PM~-1 is usually referred to as a thermal reactor; however,
like most compact heavily loaded cores, it has a large percentage of
epithermal fissions.

The fractions of thermal, epithermal and fast fissions occurring
over the life of the core are shown in Fig. III-19. The epithermal
group, which extends from just above thermal to a lethargy of six, ac-
counts for about 1/3 of all fissions. Fissions in the fast group account
for less than two percent of the total, the remainder being thermal.
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b. Maximum-to-average power during burnup

The maximum-to-average power density occurring over the life of
the core has been determined and is presented in Fig. III-20. The high-
est power peaks occur at the beginning of life. The axial and radial
values are 1.95 and 1. 83, respectively. The location of the power peak
can be seen on the power distribution curves shown in Figs. III-17 and
IIT-18.

c. Temperature coefficient

To assure that a reactor responds in a stable manner to changes in
power level or to any change which affects the temperature of the core,
it is necessary that the temperature coefficient be negative. The mag-
nitude of the temperature coefficient is related to the speed of response.

In general, for pressurized water reactors, a value of about 10-4 is

very acceptable.
d. Temperature coefficient, beginning and end of life

The temperature coefficient of the PM-1 was evaluated at both the
beginning and the end of core life (700 days). The calculations were
based on axial geometry, using a 12-region core. The control rods
were inserted to their critical bank position through use of the ''window -
shade' model, which has been described in previous sections. The ac-
tual calculations involved determining the core reactivity at 30° ¥ above
and below the operating temperature and then evaluating the temperature
coefficient at the operating temperature from the change in reactivity
with temperature.

The calculations were performed at 68® F and 463° F at the beginning
and end of life (700 days). The results are presented in Table III-24.

TABLE III-24
Temperature Coefficient, Beginning and End of Life

Temperature (°F) Ap [AT(°F)
468, initial -2.827x 107%
468, end of life 2,433 x 1074
68, initial -0.675 x 10'1

68, end of life ~-0.650 x 10
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From the results in Table III-24, it is seen that the temperature
coefficient is negative and slightly decreasing over the life of the core.

e. Measured temperature coefficient

The beginning-of-life temperature coefficient was determined ex-
perimentally for the PM-1 reference design core with the six-rod bank
at the critical position. The temperature range covered by the exper-
iments was from 77°to 158° F. The temperature coefficient was
found to be linear and negative over the entire range. The resulting
values for 77® and 158° F are shown in Table III-25. Figure III-21
shows the results obtained experimentally over the entire temperature
range.

TABLE II-25
Measured Temperature Coefficients, Beginning of Life

Temperature (°F) Ap[AT(°F)
77 -0.44 x 1074
158 ~1.20x 1074

Comparing the calculated temperature coefficient at 68° F (Table
II1-24) with the measured values, it is seen that the calculated value

is high and corresponds to that measured at about 100° F rather than
68° F.
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IV. THERMAL AND HYDRAULIC DESIGN

This chapter describes the thermal and hydraulic design for the
PM-1 core. Supporting data, test results and analytical techniques
required to support the design are to be found in the appendix.

A. DESIGN CRITERIA

The fundamental thermal criteria in the design of this core are that
no bulk boiling of the primary loop shall occur and that burnout heat
flux shall not be exceeded. The former is found to impose the more
severe limitation.

To preclude the existence of bulk boiling, the maximum coolant
temperature must be lower than the saturation temperature correspond-
ing to the minimum operating pressure. The pressurizer is designed
to limit the minimum operating pressure to 1200 psia, corresponding
to a saturation temperature of 567.2° F, Thus, the maximum coolant
temperature, under all expected operating conditions, may not exceed
567.2° F.

B. SELECTION OF THE "HOT" CHANNEL

Due to variations in channel flow rates and channel powers, the
selection of the "hot' channel, i.e., the channel with the highest exit
coolant temperature, is not an intuitive process. Simplified hand
calculations yielded sufficient information to reduce the selection to
one of three possibilities, all of which lie in the high power region of
the core. These were: the element producing the most power, the
highest power-producing element in the "infinite'" array, and the element
receiving the least coolant flow. These elements, chosen on the basis
of the full scale model flow test and the zero power test, are designated
A, B and C, respectively, in Fig. IV-1l. The power and flow rates in
each of these elements appear in Table IV~-1,

C. HOT CHANNEL FACTORS

In the determination of the maximum coolant temperature in the
core, consideration must be given to uncertainties in power generation
and flow rate due to manufacturing tolerances and imperfections in the
analytical techniques. These effects are accounted for through the use
of the hot channel factors Fq and Fb’ which are applied as follows:
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Q= Fq Q' (IvV-1)
1

W, =W, /Fbi (IV-2)
1

W, =W, /Fbo (Iv-3)

where

@ = maximum power produced in element

w i = minimum flow rate inside element

Wo = minimum flow rate outside element

F = hot channel factor to account for uncertainties

q in power generation

Fb = hot channel factor to account for uncertainties
in flow rate inside element

Fb = hot channel factor to account for uncertainties
in flow rate outside element

! = denotes expected value of parameter without the
hot channel factor

The uncertainties contributing to these hot channel factors are
itemized in Table IV-2 (Ref. 7). Conservatism is maintained by as~-
suming that all of these uncertainties act simultaneously in a detri-
mental fashion, i.e., the contributing factors are multiplied together
to determine the resultant hot channel factor.

To preclude bulk boiling during plausible transients, an addition
factor of 1.2 is applied to the power generation in the hot channel.
This is based upon a reactor control system scram setting of 120% of
full power.

D. RESULTS AND CONCLUSIONS

The three potentially "hot'' elements (see Section B) and the average
element were analyzed with the BITE code. It was found that the high-
est coolant temperature in the core occurred at the exits of the inside
flow path of the element receiving the least flow (Element C of Fig.
IV=-1).

Axial distributions of the coolant and surface temperatures for the
"average' and "hot" elements are shown in Figs. IV-2 and IV-3,
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respectively. The nearest approach to burnout heat flux also occurred in-
side Element C, where the flux is 18. 2% of the burnout flux. It should
be noted that the 'hot' element analyses incorporated both the hot chan-
nel factors and the 20% power overshoot condition.

The maximum coolant temperature in the core, under all anticipated
operating conditions, is 555.3° F. This compares favorably with the
allowable value of 567.2° F'. By simple linear extrapolation,

567,2 - 446.7 x 9.37 mw(t)
000.3 - 446,71

Allowable

H

Allowable = 10.4 mw(t),
it is apparent that the thermal aspect of this core would permit opera-
tion at a nominal operating power of 10. 4 mw (t).

The hydraulic stability of the core is assured if, and only if, the
pressure drop increases with respect to flow rate at all times for all
of the channels (Ref. 8). This is certainly the case in all nonboiling
channels. For the local boiling elements, an increase in flow rate tends
to decrease the amount of local boiling, thereby decreasing the friction-
al pressure drop. However, the coolant temperature in these channels
is decreased, and this raises the average coolant density. The latter
effect results in an increased elevation head loss. Analyses, employ-
ing temperature-dependent coolant properties, have shown that the
pressure drop decreasing effect of the local boiling is less significant
than the pressure drop increasing effect of the density change (Ref. 9).
Thus, the pressure drop increases monotonically with flow rate, and
the core is hydraulically stable.
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TABLE IV-1

Description of Potentially ''Hot'" Elements

Ratio of Power Produced Measured Measured Maximum Exit Coolant Temperature
In this Element to Power Flow Rate Flow Rate Without Hot Channel With Hot Channel
Produced in the Average Inside Element Outside Element Factors Factors
Element (gpm) (gpm) (°F) (°F)
1.83 1.131 3.250 510.6 546.9
1.40 1.075 1.395 501.1 531.7
1.77 1.208 1,205 515, 2 555.3
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TABLE IV-2
Hot Channel Factors

F

_9q Fbi Fbo
Uncertainty in neutron flux
distribution 1.10 - -
Uncertainty in reactor power
level 1.01 - -
Variation in meat thickness 1.04 - -
Variation in fuel concentration 1.02 - -=
Plenum chamber flow variations - 1.07 1.07
Flow variation due to dimensional
uncertainties - 1,01 1.03
Resultant hot channel factor 1.18 1.08 1.10



APPENDIX A

MECHANICAL DESIGN STUDIES

During the design of the reactor core and associated in-vessel com-
ponents, several general studies were accomplished in order to pro-
vide analytical support for pertinent phases of the mechanical, thermal
and hydraulic design. These studies resulted in detailed reports, which
are summarized below.

1. Stress Analysis Summary

The PM-1 core structure is primarily designed for the core dead
weight and mechanical loads from the hold-down spring assembly.
Thermal stress presents no problems, since the structure consists of
thin sections, and thermal growth is allowed to take place without re-
straint. The structural components having significant stresses or
deflections are discussed below.

a. Core shroud (Drawing 372-2105009)

The critical loading on the lower shroud occurs during lifting of the
core (estimated weight of 1400 1b). Applying an ultimate load factor of
3 g, the resulting bending stress from eccentric loading around the
circumference of the upper ring is approximately 8000 psi. The cor-
responding shear stress is negligible,

The lower alignment spider of the core shroud is designed to carry
the dead weight of the fuel bundles plus half the total hold-down spring
load. In the design of the spider, stiffness, rather than strength, was
the primary concern, The estimated deflection along the inner ring of
the spider is 0.014 inch. This deflection was considered in the overall
design of the core and was found to be satisfactory.

b. Upper alignment structure (Drawing 372-2105015)

The bundle upper alignment structures were designed for the load
from the hold-down spring assembly. Under the worst possible buildup
of tolerances, the maximum spring load at each control rod is approxi-
mately 230 lb. The resulting bending stress and torsional shear stress
are 8900 psi and 3200 psi, respectively., The corresponding maximum
principal stress is 10,000 psi. The minimum allowable yield stress
for Type 304 stainless steel at 500° F is 19,000 psi. It should be noted
that the 19,000-psi allowable stress is the absolute minimum guaranteed
under the ASTM specification, and typical expected propertiez of Type
304 would be significantly higher, resulting in an even greater margin
of safety.
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2. Fuel Element Deflection Thermally Induced

Possible fuel element bowing due to the neutron flux peaking in the
control rod water gaps was investigated. It was found that the bowing
under the worst expected condition would amount to less than 0,011 inch
in the direction of the control rod blade., It was recognized that flux
peaking in the control rod channel water gaps would cause an uneven
circumferential power distribution in the adjacent fuel tubes. This
uneven power distribution would obviously result in a similarly varying
temperature distribution in the fuel element. The maximum thermal
gradient would be along a tube diameter perpendicular to the control
rod blade., Zero power tests verified that this gradient was greatest
in the elements adjacent to the control rod blade, with the maximum
circumferential distribution being +23%. Due to the proximity of the
control rod blade and adjacent fuel elements, a detailed analysis of
fuel element thermal deflection was considered necessary.

Analysis of the extent of fuel element bowing required the following
general steps:

(1) Determination of the most critical fuel element location and
calculation of its temperature distribution in a vertical plane
through the tube centerline and perpendicular to the control
rod blade,

(2) Analysis of the PM-1 element as a fixed end, simply sup-
ported beam to determine the amount and direction of curva-
ture resulting from the differential expansion induced by
the calculated temperature variation along the tube,

(3) The effect of fuel tube-to-lower grid attachment on the cal-
culated bowing.

The results of the above analysis showed that (1) maximum deflec-
tion of the critical element was 0.013 inch in the direction away from
the control rod, and (2) the deflection toward the control rod would be
less than 0.011 inch for the worst possible case. Bowing toward other
fuel or poison elements is not critical from a thermal standpoint be-
cause of the nominal 0.159 clearance between the elements. In addi-
tion, this maximum bow exists above the control rod operating posi-
tion, where power production is reduced to a low level. The maximum
bow of 0.011 inch toward the control rod is not considered serious be-
cause,

(1) With the control rod displaced from its centerline by the
amount of the clearance at the guide rails or guide tube, the
nominal remaining clearance between control rod and fuel
elements is at least 0.100 inch.



(2) The maximum bow toward the rod occurs only 7 inches above
the lower end of the active core., This position is 5 inches
below the control rods in the hot operating position at the
start of core life, At the operating level of the control rods,
there actually would be no deflection toward the rods.

For the maximum tube deflection of 0.013 inch, the end
restraint imposed by the fixity of the lower grid causes a
maximum bending stress of only 6500 psi.

Conclusions reached as a result of the thermal deflection analysis
were;

(1) Bowing of the PM-1 fuel elements, due to an uneven circum-
ferential temperature distribution, is not of sufficient magni-
tude to create alignment or wear problems between the bowed
element and adjacent core components.

(2) Stress induced in the bowed element is low enough to preclude
yielding or creep relaxation over the anticipated core life.

3. Fuel Element Vibration

Burgreen's analysis and experimental work at NDCA (Nucleonics,
August 1959, p 78) showed that the amplitude and frequency of vibra-
tion of rods in parallel flow can be related to several physical con-
stants which are known for the PM-1 core environment., Applying this
method of analysis to the PM-1 fuel element, the maximum possible
vibration amplitude found was 0.0001 inch, This amplitude is considered
insignificant because:

(1) The nominal clearance between neighboring fuel elements
is 0.165 inch,

(2) The induced bending stress in the tube is only 100 psi. This
stress is not significant from a fatigue standpoint, because
a cyclic stress of this level imposes virtually no limit on
element lifetime,

(3) Successfully operating fuel rods in existing reactors indicated
similar vibration amplitudes when evaluated by this method.

4. Fuel Element--Upper Grid Clearance

The sliding fit between fuel element and upper grid is necessary for
differential thermal expansion of the fuel elements with respect to the
surrounding bundle structure, Since the degree of corrosion of the
surfaces around and in this sliding clearance fit is difficult to predict,
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the necessity of using as large a clearance as possible to prevent seiz-
ing is apparent., However, alignment requirements and the necessity
for restricting any vibration induced by coolant flow dictate as small

a sliding clearance as can feasibly be maintained throughout the core
life. The diametrical clearance of the PM-1 elements in the bundle
upper grid is nominally 0.005 inch, with tolerances extending this to
0.002 to 0.008 inch.

Test samples of two sections of grid plate carrying 10 tubes with
varying clearances in the plate were autoclaved in demineralized water
at PM-1 operating temperature and pressure for 90 days. Checks on
the condition of the samples were made every 30 days. No tubes showed
evidence of binding or seizing after 90 days' exposure in the grid plates,
even though tubes and plates had acquired the characteristic black oxide
formation found on Type 304 stainless steel exposed to high temperature
water,

Two tubes appeared to bind in the holes after 30 days, but these tubes
were free again after 90 days' exposure,

The two seized tubes could be attributed largely to the poor water
conditions and to the fact that it was a static autoclave test. No attempt
was made to control either the pH or the oxygen content of the water
during the test,

Under reactor conditions, this area of the grid is exposed to the
primary coolant flow in a manner which would prohibit the formation
of local, static water pockets and their atténdant high corrosion rates,
The small flow-induced vibration and the cyclic axial thermal growth
of the elements are also expected to contribute to maintaining a "clean,"
free-sliding fit between tube and grid,

Seizure of the tube diameter in the grid from differential thermal
expansion was investigated. To close even the minimum 0.002-inch
diametrical clearance would require a difference of approximately
430° F between grid and tube operating temperatures, Even if the ele-
ment dead end operated at centerline fuel temperatures, a differential
of 120° F could not be attained.

The possibility of interference between the swaged portion of the
upper end of the fuel element and the lower surface of the upper grid
due to axial thermal growth of the fuel element was investigated, The
maximum axial differential expansion between the hottest fuel element
and the adjacent core structure was conservatively calculated to be 0.050
inch. Since the tapered portion of the fuel element upper end is at least
0.154 inch below the upper grid at assembly, no interference from ther-
mal expansion would occur, even under the worst transient conditions.



5. Alignment

An overall alignment study (Drawing 372-2105019) of the reactor
vessel and core components was completed to verify that the final
assembly would provide complete freedom of movement for the con-
trol rods over their total length of travel, even under ''worst case"
cumulative tolerance conditions. It is, of course, realized that the
probability that all components will have their extreme manufacturing
tolerances additive in the most unfavorable manner is quite remote.

The results of the study were drawn to scale on the referenced
drawing, and the following results were obtained from the information:

(1) The nominal expected operating clearance between a control
rod blade and the adjacent upper grid is 0.163 inch. The
running cleararce between the control rod guide cap and the
guide tube is a nominal 0.062 inch, so the control rod would
still be 0.1 inch away from the upper grid and the fuel ele-
ments even with the guide cap fully deflected to one side of
the guide tube.

Assuming maximum control rod displacement and "worst
case' manufacturing and assembly tolerances of all core
components, a minimum clearance of 0.024 inch between
a control rod blade and the adjacent upper grid would result.

(2) The maximum possible mismatch between the control drive
mechanism rod latch and the control rod pickup ball center-
line at the moment before latching is 0.202 inch. The latch
is designed to pick up a ball as much as 0.250 inch off center.

The alignment study showed that, for the proper combination of the
approximately 30 variable tolerances, some drive mechanism shaft
deflection could be induced by relative misalignment of the mechanism
and control rod. This deflection could approach a maximum of approxi-
mately 1/16 inch at the fully extended shaft length and would reduce to
zero as the control rod is withdrawn from the core. Since the drive
mechanism shaft is actually a split bundle of four shaft segments, cal-
culations verified that the 50-inch shaft (extended length) could easily
absorb the 1/16-inch shaft deflection with a negligible bearing reaction.

To provide additional verification of the flexural properties of the
drive mechanism shaft, the prototype actuator was tested at Martin
Marietta to determine allowable shaft deflection that would still permit
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reliable operation of the control rod. These tests indicated that the small

deflection possible in the PM-1 core would not adversely affect the
operation of the control drive mechanism.
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Conclusions drawn from the alignment study and the drive mechanism
tests were:

(1) There are no significant alignment problems anticipated or
demonstrated that would adversely affect normal control rod
extraction and insertion.

(2) A control rod operating in its guide rails would have no op-
portunity to contact the structural components or a neighbor-

ing fuel element.



APPENDIX B

PHYSICS SUPPORTING DATA

In preparing the physics design of the PM-1 core, various analytical
techniques, experimental studies and intermediate studies were per-
formed. For the sake of clarity, these have all been assembled in this
appendix.

1. Analytical Techniques

a. Neutron diffusion calculations (few- group)
In general, the core reactivity and spatial neutron flux distributions

were obtained from a three-group, multiregion, one-dimensional dif-
fusion calculation. The basic equation is

([Z}i’(r) + Zi (r) + D1 (r) B?] 4)1 (r) (B-1)

v [py@m ve,m]=s (r)) S

where the source is defined as,

3
X
Si (I‘) ='X1 . Z Y Zi (I‘) 4)1 (r) + Ei‘-l (I') ¢1_1 (I‘)
i=1

The symbols are defined as follows:

82 = perpendicular buckling

Z = neutron cross section for absorption, degradation or
fission, as noted by superscript

¢ = neutron flux

D = diffusion coefficient

X = fraction of fission neutrons born in group i
V = neutrons produced per fission

N = eigenvalue

i = group index.
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Equation (B-1) has been programmed for a digital computer and is
designated as program F3. A more detailed description of the computer

code is given in (Ref. 1),

b. Neutron transport calculation (few-group)

To obtain a more accurate representation of the neutron leakage,
the core reactivity was obtained for some specific calculations from a

three-group, multiregion, one-dimensional transport calculation. The
calculation employed the Sn approximation to the transport equation as

described in (Ref. 2), The basic equation is

Vl-yz.(cos¢§_§—lsm¢g_§.)+zl\r=s(r) (B-2)

r
where the symbols are defined as:

Z = total transport cross section, including in-group scattering,
leakage and degradation

= angular flux

N

S = source, including fission, scattering and degradation

¢ angular variable in the plane perpendicular to the cylinder
7 = cosine of scattering angle relative to the polar axis of the
cylinder.

For details on the derivation and numerical solution of Eq (B-2), see
Ref. 2,

The above transport equation has been programmed for a digital
computer and is incorporated in a larger computer code designated
SYNFAR (Ref. 3). The code is written to utilize up to 8th order ap-
proximation to the transport equation in cylindrical geometry and a
16th order approximation in siab geometry. It also has provision for
performing a two~dimensional synthesis by iterating on the buckling
to obtain a consistent value of Keff'

c. Dynamic reactivity calculation
Reactivity values based on experimental period measurements and

on the in-hour equation cannot be compared with static reactivity cal-
culations., This incompatibility is caused by the relative effectiveness



of delayed neutrons due to the difference in their spectrum compared

to that of prompt neutrons. However, the experimental reactivity can

be compared with dynamic reactivity calculations. The dynamic reactiv-
ity equations for P1 and Sn were obtained by modifying the static equa-

tions of Sections and by the method developed by Gross and
Marable (Ref. 4). The terms,

w é/vand w N/v

were added to the left side of the P1 and Sn equations, respectively,
i.e., Eq (B-1) and (B-2)

where
w = inverse stable period
v = velocity.

The fission source spectrum, normalized to unity, was modified as
follows,

1

Xd(u’“’)=Xs (u)'*'m . (B-3)

B; w
(%, @ -x @] - L
1

w

e

A

where

1 % © By
a(w)— -__/ w +)\i
i=1

X = static prompt plus delayed spectrum

X1 = gpectrum of delayed group i

B1 = neutron fraction of delayed group i
NS decay constant of precursors of group {.

The preceding modifications to the diffusion and transport equations
have been included in the SYNFAR computer program (Ref. 2).

d. Calculation of fast, epithermal and thermal group constants
The fast and epithermal nuclear constants were determined by a

multigroup (19 groups) slowing down calculation based on "Modified
Age Theory" (Ref. 5). The neutron balance condition is written as
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= (E)¢ (E) dE = S (E) dE + M(E) dE (B-4)
where

= (E) = total cross section including scattering absorption and

leakage
¢ (E) = neutron flux per unit energy at E
S (E) = fission source per unit energy at E

M(E) = neutrons moderated to energy E per unit energy.

The neutron flux is eliminated from Eq (B-4), and it is solved in terms
of slowing down. The analytic expression for the slowing down is:

dq §>DS(S(u)+q(u))

- q (u). (B-5)
du ED + T, + DB?

After the slowing down distribution as a function of lethargy is determined,
the neutron flux spectrum is obtained from

b (u) = q (u) + S (u) 5 (B-6)
3 ZS + Za + DB

where the symbols in Egs (B-5) and (B-6) are defined as:
¢ (u) = neutron flux per unit lethargy
q (u) = slowing down per unit lethargy
S (u) = source neutrons per unit lethargy
3 = log energy decrement
u = Jethargy
D = diffusion coefficient

The diffusion coefficient i3 represented by the expreasion

D =

, 1 -
3 (y [Za + zs] +E _-Z) (B-7)
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The term vy is a transport correction, which is set equal to unity if the
constants are to be used in a transport calculation,

The fast and epithermal group cross sections are obtained by flux
weighting the multigroup cross sections,

2 Uy
Ei =S 21 (u) ¢ (u) du/‘Sﬁu ¢ (u) du (B-8)
1

el

The thermal neutron cross sections were evaluated over a Maxwellian
spectrum at an effective hardened temperature. The effective tempera-
ture was calculated from (Ref. 6).

5 (kT)) 2 5.0

= A
Teff To (1.0 +0,75. >

s
where T0 is the thermal temperature in °K, z, is evaluated at energy
kT, and gZS is the last epithermal energy level.

The preceding equations, which are used to obtain the three-group
nuclear constants, have been programmed for a digital computer which
is given the designation of program C3. The program has been linked

with both the three-group diffusion and three-group transport calcula-
tions.

The multigroup lethargy levels and cross sections used in the cal-
culations are given in Tables B-1 through B-8.

e. The reflector savings and/or buckling calculations
The reflector savings and buckling were determined by two methods:

(1) The consistent Keff method which involved performing both

axial and radial one-dimensional diffusion or transport cal-
culations and iterating on the reflector savings to obtain a
consistent Keff'

(2) The average regional buckling method, which consists of
integrating the gradient of the flux (angular fluxes in transport
theory) over the surface of the core,.
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TABLE B-1

Multigroup U-235 Cross Sections

Designation Formula
CF 235 URAN U235 CFINE
Atomic Atomic
Number Weight
92. 00000 235.11750
Cross Sections
Sigma Xi Sigma
Level Lethargy Scatter Scatter
1 0. 000 3.4374614 0.6763955
2 0.500 5.1834738 3.2801998
3 1. 000 6.2512301 4,0615421
4 1.500 5.7645340 2.6008012
5 2. 000 5.1522307 1.7468553
6 2.500 5.3590515 1.6220368
7 3. 000 6.1992431 1,3476928
8 3.500 7.4234471 1,0129796
9 4.000 9.2629858 0.8042408
10 6.000 10.352577  0.0985557
11 8. 000 10.199984  0.0872915
12 10. 000 13,149161  0.1125305
13 12,000 21.319517  0.1824524
14 14. 000 10.675002 0.0913567
15 15.500 11,171581 0. 0956064
16 16. 500 12.644239 0.1082094
17 17.500 13.656149  0.1168693
18 18.500 14.209185 0.1216022
19 19.795 14.427859 0.1234730
3000 17.675 14, 000000 0.1198000
2500 17.831 14, 000000 0.1198000
2000 18,016 14,000000 0.1198000
1500 18. 243 14, 000000 0.1198000
1000 18.537 14,000000 0.1198000
500 18. 957 14, 000000 0.1198000
68 19.555 14,000000 0,1198000

Code Density
-1. 0820 0. 00000
XI 1-S
1.00000 0. 00000
Sigma Sigma
Transport  Absorption
0.6910081 2.3352148
2.3465369 1.7129494
3.4982190 1.4451706
3.3766386 1.5123018
3.2729288 1.4681921
3.7601081 1.3968770
4,6034080 1.4404724
5.8534204 1.6239860
8.1910087 2.1108953
10. 245376 3.7301160
10.170812 7.3692298
13.111553 21.010643
21.258541 54, 873752
10.644471 79.567306
11.139630 35.867774
12.608076 85.865986
13.617092  221,39245
14, 168546 326.47052
14.386597 520.62417
13.960000 214,.20000
13.960000  234.80000
13.960000 260.70000
13.960000 294.60000
13.960000  343.40000
13.960000  429.40000
13.960000 600.39998



TABLE B=~1 (continued)

Designation Formula Code Density

CF 235 URAN U235 CF INE -1. 0820 0. 00000
Mu Sigma Fission
Level Lethargy Fission Spectrum
1 0. 000 6.9925210 0. 0000000
2 0.500 4,5403728 0. 0000000
3 1. 000 3.6345988 0. 0000000
4 1.500 3.6462461 0. 0000000
5 2,000 3.4146576 0. 0000000
6 2.500 3.1485105 0. 0000000
7 3.000 3.1571243 0. 0000000
8 3.500 3.4727327 0. 0000000
9 4,000 4.3411736 0. 0000000
10 6.000 7.2096283 0. 0000000
11 8. 000 13.321375 0. 0000000
12 10. 000 35.433343 0. 0000000
13 12,000 88.213590 0. 0000000
14 14. 000 116.75076 0. 0000000
15 15,500 67.543470 0. 0000000
16 16.500 180.91095 0. 0000000
17 17,500 454,13146 0. 0000000
18 18.500 684. 54809 0. 0000000
19 19,795 1085. 1309 0. 0000000
3000 17,675 436.80000 0. 0000000
2500 17,831 478,80000 0. 0000000
2000 18. 016 532.10000 0. 0000000
1500 18, 243 602.60000 0. 0000000
1000 18,537 705.60000 0. 0000000
500 18.957 886.89999 0. 0000000
68 19.555 1242, 0000 0. 0000000
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Multigroup U-238 Cross Sections

TABLE B-2

Designation Formula Code Density
CF 238 URAN U238 CFINE -1. 0840 0. 00000
Atomic Atomic Xi 1-S
Number Weight
92. 00000 238.12520 1.00000 0. 00000
Cross Sections
Sigma Xi Sigma Sigma Sigma
Level Lethargy Scatter Scatter Transport  Absorption
0 0. 000 4,8740267 6.6944607 3.0368882 1.0150000
1 0.500 6.2302029 5.8982034 3.1788638 0.7200939
2 1. 000 7.1895432 4.5505559 3.3670933 0.5822751
3 1.500 6.6943703 3.2884843 3.7677715 0.5990790
4 2.000 6.5530605 2.3073481 4,4849035 0.2665853
5 2.500 6.9065034 1.3932751 5.0202868 0.1523061
6 3.000 8.0344107 0.7122479 6.1540152 0.1270516
7 3.500 9.3166157 0.3632919 7.5274119 0.1369370
8 4.000 11.472360 0. 1656840 10.174524 0.2397217
9 6.000 13.264913 0.1138595 13.129704 0.4704326
10 8. 000 14.298487 0.1201073 14.258450 1.1110579
11 10. 000 23.668785 0.1988178 23.602509 6.0971205
12 12,000 56.919174 0.4781211 56. 759800 37.908871
13 14. 000 24,137062 0.2027513 24,069479 11.31363
14 15.500 7.9855257 0.0670784 7.9631663 0.5335789
15 16. 500 8.2824273 0.0695724 8.2592366 .0.5906141
16 17,500 8.3449018 0.0700972 8.3215362 0. 8863046
17 18. 500 8.3663111 0.0702770 8.3428853 1.4152286
18 19,795 8.3502400 0.0701420 8.3268591 2.0570701
3000 17.675 8.6575999 0.0727238 8.6333586 0.9525000
2500 17.831 8.6163000 0.0723769 8.5921743 1.0298000
2000 18.016 8.5649999 0.0719460 8.5410179 1.1296000
1500 18. 243 8.4957999 0.0713647 8.4720116 1.2656000
1000 18,537 8.3967999 0.0705331 8.3732888 1.4664000
500 18. 957 8.2340000 0.0691656 8.2109447 1.8085000
68 19. 555 7.9182000 0.0665129 7.8960289 2.4389000



TABLE B-2 (continued)

Designation
CF 238 URAN
Level Lethargy
0 0.000
1 0.500
2 1.000
3 1.500
4 2.000
5 2.500
6 3.000
7 3.500
8 4.000
9 6.000
10 8.000
11 10.000
12 12,000
13 14.000
14 15.500
15 16.500
16 17.500
17 18.500
18 19. 795
3000 17.675
2500 17,831
2000 18.016
1500 18.243
1000 18,5317
500 18,957
68 19.555

Formula

U238 CF INE

Nu Sigma
Fission

COO0OO0OOOO0O COO0OCOCOOCO0OOOO0OOOCOO =MW

. 7597239
. 4032950
.6843074
.5529864
. 4584836
.0190008
. 0004298
.0000000
. 0000000
. 0000000

0000000

. 0000000
.0000000
. 0000000
. 0000000
. 0000000
. 0000000
. 0000000
.0000000

. 0000000
. 0000000
. 0000000
. 0000000
. 0000000
. 0000000
. 0000000

Code
-1,0840

Density
0.00000

Fission
Spectrum

COOOOOO COOOOOCOOCOO0OOOOOOOOOO

.0000000
.0000000
. 0000000
. 0000000
.0000000
. 0000000
. 0000000
. 0000000
. 0000000
.0000000
.0000000
.0000000
. 0000000
. 0000000
. 0000000
.0000000
.0000000
.0000000
. 0000000

. 0000000
. 0000000
. 0000000
. 0000000
. 0000000
. 0000000
. 0000000
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TABLE B-3

Multigroup Oxygen Cross Sections

Designation

CF Oxygen
Atomic
Number
8.00000

Level Letha{&

0 0. 000

1 0.500

2 1,000

3 1,500

4 2,000

5 2,500

6 3.000

7 3.500

8 4.000

9 8. 000

10 8.000

11 10. 000

12 12. 000

13 14,000

14 15.500

15 16.500

16 17.500

17 18.500

18 19. 795

3000 17,675

2500 17,831

2000 18. 016

1500 18. 243

1000 18.537

500 18. 957

68 19.555

Formula Code Density
0 CFINE 3.6010 0. 00000
Atomic X1 1-B
Weight
16. 00400 0.12090 0.95800
Cross Sections

Sigma Xi Sigma Sigma Sigma

Scatter Scatter Transport Absorption
0.9265122 0.4342585 0.7044189 0.2505446
1.2480409 0.2392801 1. 0225726 0.1639934
2,1944859 0.2321665 1.7079913 0. 0263153
1.3575250 0.2089150 1,2629528 0,0000000
2,7172039 0.4169699 2.6028992 0.0000000
4.0768085 0.6247430 3.8266198 0.0000000
6.6930608 0.8152686 5.1178707 0.0000000
3.7219412 0.5910943 3.8983901 0.0000000
3.4242966 0.4142240 3.2828088 0.0000001
3.4770600 0,.,4203765 3.3310234 0,0000002
3.7663525 0,4553520 3.6081659 0.0000006
3.7999963 0.4594196 3.6403962 0.0000018
3.7999956 0.4594194 3.6403961 0.0000042
3.7999889 0.4594187 3.6403894 0.0000107
3.7999776 0.4594173 3.6403785 0.0000223
3.7999610  0.4594153 3.6403626 0. 0000389
3.7999357  0.4594122 3.6403384 0.0000641
3.8513539 0.4656287 3.6895970 0.0001058
4, 0342928 0.4877460 3.8648524  0.0001550
3.7624000 0.4548742 3.6043791 0.0000700
3.7747000 0.4563612 3.6161626 0. 0000700
3.7931000 0.4585858 3.6337898 0.0000800
3.8217000 0.4620435 3.6611885 0.0000900
3.8699000 0.4878709 3.7073642 0.0001100
3.9634000 0.4791751 3.7969371 0.0001300
4,1623999 0.5032341 3.9875791 0. 0001800



TABLE B-4

Multigroup SS-304 Cross Sections

Designation Formula Code Density
CF 304 SS CF 304 SS 4,1520 7.94000
Composition
Code 3.3010 4.0020 4.1020
Designation of carbon CF iron CF nickel
Weight 0.714200 0. 095000
Fraction 0,000800
Code 4.2020
Designation of chromium
Weight
Fraction 0.190000
CF 58304
Sigma XI Sigma Sigma Sigma
Level Lethargy Scatter Scatter Transport  Absorption
0 0. 000 0.282322 0.286407 0.141157 0.001419
1 0.500 0.313261 0.262345 0.157981 0. 001575
2 1. 000 0.305017 0.212968 0.200323 0.001533
3 1.500 0.269231 0.138661 0.209048 0.001353
4 2. 000 0.242328 0. 063515 0.200450 0.001216
5 2.500 0.242635 0.030815 0.204045 0.001208
6 3.000 0.289813 0. 019407 0.259242 0.001453
7 3.500 0.272747 0. 009546 0.236502 0.001368
8 4,000 0.471531 0.016805 0.457955 0. 002046
9 6.000 0.818129 0. 029390 0.808252 0. 004063
10 8. 000 1.256303 0.045036 1.241170 0. 005218
11 10. 000 0. 834456 0.029976 0.824379 0. 002278
12 12,000 0.902051 0. 032390 0.891164 0.005663
13 14. 000 0.897666 0. 032234 0.886831 0.013646
14 15. 500 0.890925 0. 031994 0.880171 0. 029035
15 16.500 0.882050 0.031677 0.871403 0. 049240
16 17.500 0.876468 0. 031479 0.865888 0.080418
17 18. 500 0.864004 0.031035 0.853568 0.132047
18 19.795 0.855370 0.030721 0.845037 0.192781
3000 17.675 0.869091 0.030867 0.858676 0. 085396
2500 17.831 0.869393 0.030880 0.858974 0. 092441
2000 18. 016 0.869237 0.030875 0.858822 0.101531
1500 18. 243 0.868392 0.0308486 0.858004 0.113590
1000 18. 537 0.867001 0. 030796 0.856611 0.132172
500 18. 957 0.865711 0. 030751 0.855367 0.162794
68 19. 555 0.863765 0.030677 0.853418 0.221774
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TABLE B-5

Multigroup Boron-10 Cross Sections

Designation Formula Code Density
CF 10 Boron B-10 CFINE 8.0210 0.00000
Atomic Atomic X1 1-B
Number Weight
5.00000 10.01612 0.00000 0.00000
Cross Sections
Sigma XI Sigma Sigma Sigma
Level Lethargy Scatter Scatter Transport Absorption
0 0.000 2.079054 0.9694629 0.8934764 0.001179
1 0.500 1.731479 0.8620323 1.0003378 0.001647
2 1.000 1.898694 0.7051461 1.0854042 0.036662
3 1.500 1.940459 0.5470276 1.0968336 0.259121
4 2.000 2.222853 0.4415455 1.2149479 0.247331
5 2.500 3.079442 0.5359558 2.3583194 0.313209
6 3.000 3.558259 0.6539903 3.4214214 0.629752
7 3.500 5.009459 0.7030258 3.7549426 0.898985
8 4.000 3.969926 0,.5453959 2.9130231 1.837100
9 6.000 0.999988 0.2907177 1.5527569 4.468368
10 8.000 0.608084 0.2773495 1.4813558 11.533301
11 10.000 3.9508978 0.6937771 3.7055456 31.529204
12 12,000 4,0000000 0.7023995 3.7515986 85.739193
13 14.000 4,0000000 0.7024000 3.7516000 216.7589
14 15,500 4,0000000 0.7024000 3.7516002 451.8750
15 16,500 4,0000000 0.7023999 3.7515998 788.3194
16 17.500 4.0000000 0.7024000 3.7515999 1299.814
17 18.500 4.0000000 0.7024000 3.7515999 2143.239
18 19.795 4.0000000 0.7037634 3.7510732 3143.066
3000 17.675 4.0000000 0.7552000 3.7312000 1388.9000
2500 17.831 4.0000000 0.7552000 3.7312000 1501.7000
2000 18.016 4.,0000000 0.7552000 3.7312000 1647.2000
1500 18.243 4,0000000 0.7552000 3.7312000 1845.5000
1000 18.537 4.,0000000 0.7552000 3.7312000 2138.3000
500 18. 957 4.0000000 0.7552000 3.7312000 2637.1000
68 19. 555 4.0000000 0.7552000 3.7312000 3556.4000




TABLE B-6

Multigroup Slag Cross Sections

Designation
Slag
Atomic
Number
0.00000
Level Lethargy
0 0.000 0
1 0.500 0
2 1.000 0
3 1.500 0
4 2.000 0
5 2.500 0
6 3.000 0
7 3.500 0
8 4,000 0
9 6.000 0
10 8.000 0
11 10.000 0
12 12,000 0
13 14,000 0
14 15,500 0
15 16. 500 0
16 17.500 0
17 18.500 0
18 19,795 0
3000 17.675 0
2500 17.831 0
2000 18,016 0
1500 18. 243 0
1000 18.537 0
500 18. 957 0
68 19.555 0

Formula Code Density

Slag 9.0000 0.00000

Atomic 1-B

Weight

235.11700 0.00000 0.00000

Cross Sections
Sigma XI Sigma Sigma Sigma
Scatter Scatter Transport Absorption
.0000000 0.0000000 0.0000000 0.0060000
.0000000 0.0000000 0.0000000 0.0235000
.0000000 0.0000000 0.0000000 0.0465000
.0000000 0.0000000 0.0000000 0.0695000
. 0000000 0.0000000 0.0000000 0.0920000
.0000000 0.0000000 0.0000000 0.1165800
.0000000 0.0000000 0.0000000 0.1435000
.0000000 0.0000000 0.0000000 0.1705000
.0000000 0.0000000 0.0000000 0.2227932
.0000000 0.0000000 0.0000000 0.4211325
.0000000 0.0000000 0.0000000 1.6250000
.0000000 0.0000000 0.0000000 7.0283390
.0000000 0.0000000 0.0000000 22.537875
.0000000 0.0000000 0.0000000 42,590582
.0000000 0.0000000 0.0000000 32.851332
. 0000000 0.0000000 0.0000000 14,859245
. 0000000 0.0000000 0.0000000 15. 980321
.0000000 0.0000000 0.0000000 27.408326
.0000000 0.0000000 0.0000000 42,596197
.0000000 0.0000000 0.0000000 18.048666
. 0000000 0.0000000 0.0000000 19.024478
.0000000 0.0000000 0.0000000 20,.5771173
.0000000 0.0000000 0.0000000 22,922639
.0000000 0.0000000 0.0000000 26,524411
.0000000 0.0000000 0.0000000 32.704353
.0000000 0.0000000 0.0000000 44,097605
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Designation
CF 135 Xenon
Atomic
Number
54,00000
Level Lethargy
0 0.000
1 0. 500
2 1.000
3 1.500
4 2.000
5 2.500
6 3.000
7 3.500
8 4.000
9 6.000
10 8.000
11 10,000
12 12,000
13 14,000
14 15.500
15 16.500
16 17.500
17 18. 500
18 19.795
3000 17,675
2500 17,831
2000 18.016
1500 18.243
1000 18.537
500 18, 957
68 19.555

TABLE B-7

Multigroup Xe-135 Cross Sections

Formula Code Density

CF Xe 135 8.6010 0.00000

Atomlic XI 1-B

Weight

134. 95000 0.00000 0.00000

Cross Sections
Sigma XTI Sigma Sigma Sigma
Scatter Scatter Transport  Absorption

4,6888320 4,3737525 1.7120412 0.0052639
4.6186875 4.4117042 2.5957216 0.0064765
5.2306638 4,4159474 3.1601389 0.0084975
6.5604843 3.7698022 3.4311806 0.0111738
7.2736731 2.6320066 4.0364805 0.0146672
T7.4594834 1.2804293 5.2907375 0.0193330
T.4787897 0.5025002 5.5053765 0.0256356
7.4840171 0.2316186 5, 9604051 0.0340942
7.5290931 0.1339775 7.0767743 0.0555902
8.1750412 0.1250781 8.1333482 0.1413984
8.6062756 0.1316760 8.5623833 0.4121033
8.2756726 0.1266178 8.2334652 1.2584392
8.4404134 0.1291383 8.3973682 3.9953981
T1.322224 1.0912300 70. 958475 22.865817
1043.6990 15.968595 1038.3761 827.93378
9755. 8055 149.26382 9706.0505 12832.087
94853, 821 1451.2635 94370.067 216891.02
558803.13 8549.6880 555953. 23 1966054. 1
519767. 31 7948. 6067 517117.39 2489305. 4
119040.00 1771. 3152 118444, 80 567200.00
143120.00 2129.6256 142404. 40 697660, 00
175070.00 2605.0416 174194, 65 878160.00
217980.00 3243. 5424 216890. 10 1135900.0
274720.00 4087.8336 273346. 40 1513900.0
339220.00 5047.5936 337523. 90 2062000.0
353430.00 5259.0383 351662, 85 2623400.0



TABLE B-8
Multigroup Water Cross Sections

Designation Formula Code Density
CF Water CF H20 2,512 0.99800
Composition
Code 2.512 3.601
Designation CF END H CF Oxygen
Weight 0.1119005 0.8880995
Fraction
Cross Sections
Sigma Xi Sigma Sigma Sigma
Level Lethargy Scatter Scatter Transport  Absorption
0 0. 000 0.100601 0. 084175 0.046704 0.008362
1 0.500 0.136012 0.102350 0.065537 0.005474
2 1.000 0.206682 0.141200 0.101422 0.000880
3 1.500 0.226492 0.188163 0.102464 0. 000002
4 2.000 0.327534 0.2507176 0.165710 0. 000002
5 2,500 0.452968 0.337773 0.233199 0.000004
6 3.000 0.636019 0.439876 0.308162 0. 000005
7 3.500 0.952842 0.548365 0.306074 0. 000006
8 4,000 0.886138 0.785692 0.366503 0.000010
9 6.000 1.263230 1.161230 0.493059 0. 000023
10 8.000 1.446180 1.335690 0.559996 0.000063
11 10. 000 1.461440 1.349960 0.565778 0.000172
12 12,000 1.461140 1.349660 0.565680 0. 000469
13 14. 000 1.468150 1.356670 0.568013 0.001185
14 15.500 1.505350 1.393880 0.580398 0.002471
15 16.500 1.543040 1.337700 0.660645 0.004312
16 17.500 1.858110 1.435540 0.919276 0,007109
17 18. 500 2,368599 1.4617742 1.431200 0.011722
18 19,795 2.919055 1.417512 2,035157 0.017160
3000 17.675 1.903505 1.420723 0.993237 0.007630
2500 17.831 1.973993 1.431452 1,057701 0.008251
2000 18.016 2,065060 1. 444920 1.142710 0. 009056
1500 18. 243 2,185620 1,458760 1.257360 0.010122
1000 18.537 2.364570 1.472580 1.434150 0.011759
500 18.957 2.646200 1.480760 1.721500 0. 014429
68 19. 555 3.158120 1.487740 2,249960 0.019540
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f. Consistent Ke method of obtaining buckling

ff

In the three-group formulation, the neutron multiplication can be
defined as:

K

eff

3 1-p P
,Z K - n.n "j-1 (B-10)
e )

n=

where

p resonance escape probability
k = multiplication factor (infinite)
M = inverse nonleakage probability
n = group index.

The inverse nonleakage probability is calculated from the equation

2

2
_ 2 ™ 4,81 _
My =1+ Ly [<H+2AH+25)\j> * D F 6’*3] (B-11)

where

2

L = slowing down or diffusion length

AH, AR = axial or radial reflector savings

6)\ = extrapolation distance.

The core reflector savings were determined by assuming an axial
reflector savings (AH), and using this value in a few-group multiregion
radial core calculation of Keff‘ Equation (B-10) was then solved for AR

using core constants, Keff and the assumed AH. The radial reflector savings
(AR) are then used in an axial core calculation, and the resulting Keff used

to solve for a new value of AH, The procedure is then repeated until consistent
values of AH and AR are obtained which yield identical results for Keff in

either axial or radial one-dimensional core calculations. The final value of
reflector savings were then used to determine the buckling.
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g. Buckling from the flux shape

The few-group bucklings for use in transport calculations were
obtained from the few-group transport angular flux shape., The average
buckling can be represented by integrating the Laplacian over the region,

Sv- vV ¢.,dV
A\'4
B, =
{opav
\'2

By applying the Divergence Theorem, the buckling can be expressed
in terms of the gradient of the flux integrated over the region surface,

(B-12)

gv $.dS
B.=-2 (B-13)
(ooav
A\'2

The above method, which is incorporated in the SYNFAR (Ref, 3)
computer code, was used only with transport theory fluxes because
of the inherent error in diffusion theory fluxes near boundaries.

h., Fine-flux calculations

The fine~flux calculations are to be distinguished from gross or
overall flux calculations in that they are performed to obtain the detailed
spatial neutron flux distribution in small regions where relatively large
flux perturbations occur. Since the regions are generally small both
physically and in terms of mean free path, diffusion theory is not appli-
cable and transport theory is required.

The calculations of the fine flux were based on the use of the Sn

approximation to the transport equation as discussed in Section b,
Equation was used in a one-group model, with the neutron source
distribution as an input quantity. Because of the discrepancies in-
volved in the zero flux gradient boundary condition in cylindrical
geometry transport theory, all calculations were set up so that a zero
flux boundary condition was applicable,.
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i. Core burnup calculations

The core burnup and lifetime calculations were based on a re-
gion-by-region, one-dimensional, three-group depletion calcula-
tion.

The few-group diffusion program F,,, discussed above, was used

3)
to obtain the average three-group neutron flux in each of the reactor
core regions. The average fluxes were then used to deplete the
burnable materials in each region over a time increment which was
usually taken to be 100 days. The atom concentrations remaining

in each region at the end of each time increment were then used to
evaluate a new set of three-group nuclear constants. These new
constants were used to obtain a new flux distribution, and the pro-
cedure was repeated until the core became subcritical.

Buildup and/or depletion was allowed for B-10, U-235, U-238
(and chain), Xe-135 and fission products.

The fission products were separated into two types; those with
low cross sections and those with high cross sections. Multigroup
cross sections for the stable, low cross-section fission products
were obtained from Ref. 7 and are identified as SLLAG. These are
presented in Table B-6.

The fission yields and thermal cross sections of the high cross
section fission products were obtained from Ref. 8 and are shown
in Table B-9. With the exception of xenon, which was treated exactly,
the concentrations were assumed to be at equilibrium after the first
time step (100 days).

The burnup of B-10 and U-235 was also reflected in the values
of the applied cell corrections, which were varied with core life-
time.



TABLE B-9
High Cross-Section Fission Product Isotopes (Ref. 8)

Isotope o aps (68° F) Yield/Fission (%) Half Life
Re-135 27.2 x 10° 6.3 9.2 h
Sm-149 4.08 x 10% 1.13 Stable
Sm-151 1.24 x 10% 0.45 80 Y
Gd-155 5.62 x 10 0.03 Stable
Eu-155 1.40 x 10% 0.03 1.9Y
Cd-113 2,00 x 10% 0. 01 Stable
Gd-157 2.42 x 10° 0.0078 Stable

2., Cell Corrections

The local flux distribution in the PM-1 is perturbed quite severely
due to the heterogeneous nature of the core. To account for this phe-
nomenon in the homogenization of various core materials, it was neces-
sary to perform a series of fine flux calculations. These calculations
then yielded cell corrections which were applied to the atom densities
of the appropriate materials,

Since the core is composed primarily of fuel elements, the repre-
sentative neutron flux in the core would be that in a fuel element cell.
Therefore, all cell corrections were based on the ratio of the average
flux in a given material to the average flux in a fuel element cell.

The cell correction calculations were based on the method described
above (fine-flux calculation), and consisted of surrounding the cell to be
analyzed with homogenized core material, The source was given a zero
order Bessel function radial distribution and weighted by the volume
fraction of moderator in each region. A zero flux gradient boundary
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condition was imposed at the center of the cell, and at the outer boundary,

the flux was forced to zero.

The object of using the above geometry and boundary conditions was
to avoid the use of a zero-current boundary condition at the outer radius

of the cell. In cylindrical geometry, this condition yields cell corrections

which are consistently low (Ref. 9).
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Thermal neutron spectrum hardening was included in all cell cal-
culations by evaluating the thermal cross sections over a Maxwell-
Boltzmann neutron distribution at an effective hardened neutron tem-
perature obtained from Eq (B-4).

a. Thermal and epithermal cell corrections

The cell correction calculations for the LPR's were extended to
include the lower five epithermal energy groups (to lethargy 15.5), as
well as the thermal energy group. Each group was treated as a sep-
arate one-group calculation. In the epithermal calculations, the neu-
tron absorption term was modified to include removal by neutron
slowing down, and in-group scattering was allowed.

The configuration for the LPR cell calculation consisted of a lump
poison rod at the center, with its associated water, surrounded by a
homogeneous cell-corrected mixture of five fuel elements. The cell
was then surrounded by homogeneous core material as described above
and shown in Fig. B-1. The ratio of one lumped poison rod to five
fuel elements was used because it approximates the true ratio in that
portion of the core in which the LPR's are located.

The results of LPR cell calculations for the beginning of life are
shown in Table B-10, stainless steel rods are also included, as they
are LPR's with zero weight percent boron.

TABLE B-10
Beginning-of-Life Cell Corrections for Lumped Poison Rods

Cell Correction @iIEFE)

68° F 463° F

———

Energy Groups Owt% B 0.27Twt% B Owt% B 0.27Twt%B

15 0.9706 0.8858 0.9686 0.8850
16 0.9631 0.8250 0.9616 0.8253
17 0.9626 0.7519 0.9617 0.7536
18 0.9408 0.6389 0.9411 0.6423
19 0.9273 0.5532 0.9406 0.6232
68° F * 0.9451 0.5215

436° F ** 0.9574 0.6104

The thermal fineflux distribution through the lumped poison cell is
shown in Fig. B-2

*68° F corresponds to an effective temperature of 259° F
*%*463° F corresponds to an effective temperature of 779° F
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b. Cell corrections versus burnup

During operation of the PM~-1, the boron in the lumped poison rods
is depleted, causing a change in the neutron absorption properties of
the rods. The result is a change in the cell correction with core burn-
up and a corresponding change in the rate of boron depletion. In order
to account for this change, cell calculations were based on conditions
existing at the end of core life (about 700 days).

The conditions, which were based on the results of previous burn-
up calculations, are that when the boron is 81% depleted, the average
fuel burnup is 29%. Using the above data, cell calculations were made
in which both the boron and uranium were partially depleted. The re-
sults of the calculation are shown in Table B-11,

TABLE B-11

End-of-Life Cell Corrections for L.umped Poison Rods
(N(t)/No (U-235) = 0. 71, N(t)/No(B-10) = 0.192)

Cell Corrections (Ei/EFE)

68° F 463° F

Energy Groups 700 Days 100% Burnup** 700 Days 100% Burnup

15 0.9564 0.9748 0.9546 0.9728
16 0.9341 0.9643 0.9320 0.9615
17 0.9088 0.9560 0.9075 0.9537
18 0. 8544 0.9287 0.8545 0.9270
19 0.8062 0.9043 0. 8455 0.9236
68° F* 0.7963 0.9097

463° F* 0.8448 0.9295

The data presented in Table B-11 for 700 days of reactor operation
was combined with the data in Table B-10 (0. 27 wt % B) and fitted, at
each energy level, with the expression

0 = (B-14)

*Evaluated at an effective temperature of 259° F and 779° F, re-
spectively.
**¥Extrapolated to 100% boron burnup.
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where
g(t) = cell correction (with time)
_ 1 11 )
Y ‘BT700) \g(0) ~ g(700)

BB(t)= fractional burnup of boron (days)

:1—
b =—mwor Y

Equation (B-14) was used to obtain the variation in the LPR cell cor-
rection as a function of burnup of boron. The resulting cell corrections
are shown in Figs. B-3 and B-4.

The stainless steel in the lumped poison rods is subjected to the
same neutron flux depression as the boron, so it was given the same
cell correction. However, stainless steel in other portions of the
core was treated differently, i.e., steel in the fuel elements was given
the cell correction obtained from a fuel cell calculation.

¢c. Lumped poison rod cell corrections--comparison with experiment

A definitive series of experiments to determine the effects of lumped
poison rods has been performed at the Martin Marietta critical facility.
The experiments consisted of a series of repeating cells containing one
lumped poison rod surrounded by six fuel tubes. The lumped poison
rods studied were from 0.3 to 0.5 inch in diameter and from 0 wt %
(stainless steel rods) to 0. 84 wt % natural boron in stainless steel.

Thermal fine~-flux distributions were measured for each core
through the central cell, using 1/16-inch diameter by 0. 002-inch thick
10% dysprosium in aluminum foils. The measurements were made
through a 1/16-inch hole in the lumped poison rod, through the water
channel between the lumped poison rod and the fuel tube, and inside
the inner fuel tube water hole. Measurements in the water were
effected by a plastic foil holder with a 1/16-inch hole drilled through
it. In both the lumped poison rod and plastic foil holder, slugs 1/16
inch in diameter by 1/16 inch long of either lumped poison rod material
or plastic were used to space the foils and provide a constant cross
section of the particular material.

Figure B-5 shows the results obtained for two different runs for
the 0. 5-inch diameter, 0.27 wt % boron rod similar to that used in
the PM-1 core. The computed accuracy for an individual data point
is approximately +2%. The observed spread in data points was also
found to be #29%. The errors are primarily due to counting statistics,
foil positioning and normalization.
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Figure B-5 also contains the results of a SYNFAR S-6 transport
calculation. The analytical model consisted of a lumped poison rod
region, water region, fuel-bearing region and the homogenized core
region as described previously. Experimental and analytical values
were normalized so that the areas under the two curves are equal. A
comparison of the two curves shows a steeper analytic flux gradient,
yielding a maximum difference of about 9% between the two curves.
The difference is believed to be caused by increased spectrum hardening
in the lumped poison rod relative to that used in the calculation. The
calculation was based on an average core hardening and, thus, did not
account for differences between the spectrum in the water and that in
the rod.

The relative average flux in the lumped poison rod in the experi-
mental measurement was found to be about 0.50 compared to 0. 46
determined analytically. However, the net effect on core reactivity
would be very small. Spectrum hardening would reduce the cross
section, whereas higher flux would increase the cell correction; thus,
the product would remain nearly constant.

d. Thermal cell corrections for fuel elements

The cell correction calculation for the fuel elements was performed
for the thermal neutron energy group only. Preliminary calculations
have shown that epithermal corrections approach unity.

The configuration for the fuel element cell calculation was that of
a cylindrical core having a fuel element at the center, with its
associated water, surrounded by homogeneous core material. This is
shown in Fig. B-6.

The results of the fuel element cell calculations for the beginning
of life are given in Table B-12,

TABLE B-12
Beginning of Life Cell Corrections for Fuel Elements

Cell Corrections

Material 68° F* 463° F*
UO2 0.8288 0.8772
SS 0.8494 0.8928
HZO 1.0316 1.0225

*68° F and 463° F correspond to effective temperatures of 259 F and
779° F, respectively.
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The cell corrections are based on an average neutron flux of one in
a fuel element cell. The values for SS are based on the average volume
weighted flux in the steel in the matrix and in both the inner and outer
clad. The values for water are based on the volume weighted average
flux in both water regions.

The fine~-flux distribution through the fuel element cell is shown in
Fig. B-T.

e. Cell correction versus burnup

As the fuel is depleted with lifetime, the cell corrections for the
materials in the fuel cell increase. Since the fuel element walls are
relatively thin, it was assumed that when the uranium is completely
removed, the cell corrections are unity. On this basis, the fuel ele-
ment cell corrections as a function of uranium burnup were fitted with

_ 1
where
= 1 -1
Y g (o)

st(t) = fractional burnup of U~235

The cell corrections obtained from Eq (B-15) as a function of fuel
burnup are presented in Figs. B-8 and B-9 for 68° F and 463° F, re-
spectively.

f. Effect of U-235 loading tolerance

The manufacturing tolerance on the U-235 loading per fuel element
allows a difference of 2% from the nominal loading. Fuel element cell
corrections were determined for the end points of the tolerance through
use of the time~dependent cell correction formulas, Eq (B-15). Both
hot and cold cell corrections were determined by setting the burnup,
325, in Eq (B-15) equal to £0.02., The results are given in Table B -13.
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TABLE B-13
Fuel Element Cell Corrections for Tolerance U-235 Loading

Cold (68° F) Hot (463° F)*
Fuel I.oading
U-235 (gm U-235/FE) 8(U03) 4(ss) 8(H0) &(UOy) ,(qq)  &(H,0)
~2% 39.32885 0.8316 0.8520 1.0309 0.8794 0.8947 1.0220
0 40.13148 0.8288 0.8494 1.0316 0.8772 0.8928 1,0225
+2% 40.93411 0.8260 0.8468 0,0322 0.8750 0.8909 1.0230

g. Comparison of analytical and experimental results

In the series of experiments described above, measurements were
made of the fine~flux distribution through a fuel tube water hole and at
both the inner and outer surfaces of the tube. No measurements were
made through the matrix of the fuel tube because of the difficulties in-
volved in mocking up the meat and clad structure. While the measure-
ments are not directly compatible with the analytical results, due to
the differences in geometry, they do serve to indicate whether general
agreement exists. The measurements were made using plastic holders
with 1/16-inch diameter by 0.002 inch thick 10% dysprosium-alumi-
num foils. The accuracy of the experimental data is +2%. The ana-
lytical and experimental results are shown in Fig. B-10, with the
normalization accomplished by equating the areas under the curves
in the inner fuel tube water hole. The data shows good agreement
(approximately +5%) in the water, and therefore lends credence to the
resultant flux shapes within the fuel tube.

3. Reactivity Determinations and Lifetime Calculations

a. Reflector savings and buckling

The PM-1 axial and radial three-group reflector savings and
bucklings were obtained by the consistent Ke fr method. The three-

group core constants for use in the above calculation were calculated
by the multigroup slowing down code, program Cg. The constants

for the reflector regions, which include water, stainless steel and
dead ends, were also determined by C3; however, the core neutron

energy spectrum was used as a source rather than a fission spectrum.

*68° F and 463° F correspond, respectively, to effective temperatures
of 259° F and 779° F.
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The thermal neutron constants were evaluated at an effective tem-
perature to account for spectrum hardening.

The resulting reflector constants are shown in Table B-14.

The geometrical configuration used to calculate the buckling con-
sisted of a homogenized core region, and

(1) In the axial direction, a region containing stainless steel
and water (dead ends) and a water region.

(2) In the radial direction, a water reflector plus a series of
four stainless steel regions with water in between.

The axial and radial reflector savings, buckling and extrapolation
length obtained using the reflector constants shown in Table B-14 and
the geometries listed above are given in Table B-15,

b. Radial six-region core reactivity

The radial composition of the PM~1 reactor core is extremely
heterogeneous. The lumped poison rods are not distributed evenly,
but tend to be clustered in about 67% of the core. This means that the
relative concentration of fuel elements in these areas is reduced.
Fairly massive pieces of stainless steel used for control rod guides
also displace fuel elements and further contribute to the nonuniformity
of the core. Therefore, in order to analyze the core with a reasonable
degree of accuracy, it is necessary to use a multiregion radial model.

A good approximation to the radial core geometry can be obtained
by using a six-region core model. The six-region core model was
adopted and used in all the radial calculations, except where a one-
region core was required because of other considerations. A diagram
showing the core regions and the number of elements in each region
is presented in Fig. B-11. The volume fraction and atom densities
of the materials initially present in each region are given in Table
B-186.

The initial reactivity of the PM-1 was calculated, using program
C3 to obtain regionwise group constants and program F3 to perform

the three~group multiregion diffusion calculation. The moderation
calculation tends to underestimate the neutron age and thus, the core
leakage. Therefore, the perpendicular core buckling was modified
through a change in core height to normalize the calculated initial core
reactivity to that measured experimentally. * The resulting hot and
cold initial reactivities are given in Table B-17.

*The reactivity bias was 1.8%p




TABLE B-14

Three-Group Reflector Constants
Based on Core Neutron Source Spectrum

Material Water Stainless Steel Dead Ends
Temp (°F) 68 463 68 463 68 463
Teff °F) 78.4 476.8 268 663 106.9 522.4
D1 1.39434E8&0 1.67686E&0 8.71515E-1 .73629E-1 1.26475E&D 1.44793E&0
D2 .49779E-1 4,.81423E-1 3.60331E-1 3.62217E-1 .47447E-1 4,47879E-1
D3 1,46850E-1 2.31459E-1 3.18812E-1 3.30601E-1 1.67731E-1 .51273E-1
Za .33326E-~-4 1.04026E-4 .376T0E-3 .37273E-3 . T4483E-4 .DT578E-4
1
Za .10810E-3 5.68113E-3 .91786E-2 .28148E-2 .58666E-2 .89203E-2
2
Za .95390E-2 1.19930E-2 .89584E-1 .50968E-1 .64905E-2 .01953E-2
3
ESL .76689E-1 1.45343E-1 .49535E-3 L4T7579E-3 .49476E-1 .23696E-1
1
}:SL .04133E-1 3.37521E-1 L91771E-3 .37203E-3 . 22809E-1 .69716E-1
2

€11



AD/2, AH/2 (CM)
sh; (CM)
&\, (CM)

oy (CM)

TABLE B-15

PM-~-1 Reflector Savings, Buckling and Extrapolation Length

68° F
Radial
4.4835 x 1073
-3
5.2366 x 10
-3
5.4601 x 10
3.3116
3.17283
1. 0447
0.3574

Axial

1.3083 x 103

1.4863 x 1073

1.5377 x 103

1.6000

463° F
Radial
4.0876 x 1073
-3
4.8410 x 10
-3
5.0410 x 10
4.4666
4.2732
1.2210
0.5280

Axial

1.2245 x 10~
1.4097 x 10~
1.4576 x 10

2.5150

3

3

3

AN
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Region 1 (2] 3 4 5 6
O Fuel element 156|126 | 156 |180 | 258
Lumped poison rods
® Full length 0lO0 24 30 { 18
® 2/3 length 0 o 18| o
O Stainless steel rods
(center bundle structure)| 3 | 0 0 0 0 0
© Stainless steel tubes 10 0 0 0 0
Control rod guides 0|6 0 0] 12 0
4 Source o{1| o] o] of o

Fig. B-11. Radial Six~Region Core Configuration




Volume fraction UO2
Atomic density U-235
Atomic density U-238
Atomic density Oxygen
Volume fraction SS1%
Volume fraction SS2**
Volume fraction SS3#+*
N B-10

Volume fraction H20 (68° F)

Volume fraction HZO (463° F)#kx%6,51208 x 10~

Volume fraction/region

Volume (CC)/region

Regional Volume Fractions (\F

TABLE B-16

) and Atomic Densgities (N)

for the Component Materials of the PM-1 Core

Core

1.65648 x 1072

3. 81580 x 1020

2. 78406 x 1012

8. 18840 x 1020

1.00673 x 107!

3.92149 x 1072

4.11502 x 1072

9.70267 x 10%8

7.97678 x 1071

1

1.0

1,99642 x 10°

Regionvl
1.73655 x 10~

4,00023 x 102
2.91862 x 101
8.58420 x 102
1.02731 x 10~
7.51191 x 10~

0

0
8.00213 x 10~
6.53278 x 10~
0.01931

3.8550 x 10°

*SS1 includes SS in the fuel elements and SS tubes
*#3S2 includes SS in the SS rods and control rod guides
*%*353 includes SS in the lumped poison rods
***xxEffective volume fraction accounts for thermal expansion

2
0
9
0
1
2

1
1

Reglon 2

2.82732 x 1073

6.51290 x 102

4.75190 x 108

1.39762 x 1020

1.67259 x 1072

2.65349 x 107}

]

0

7.14354 x 107!

5.83184 x 107!

0.04744

9.4710 x 10°

Region 3
1.73891 x 1072

4.00568 x 1020

2.92260 x 101°

8. 59589 x 1020

1.02870 x 107!

0

7.10094 x 1072

1.71144 x 10°

8.03524 x 107}

6.55981 x 1071

0.16198

32,3380 x 10°

Region 4
1.43246 x 10~
20

2

3,29976 x 10

2.40755 x 10]'9

7. 08103 x 1020

8.47417 x 1072

0

8. 63485 x 1072

1.99275 x 10°

8.10081 x 107}

6.61334 x 107}

0.24345

48,6028 x 10°

Reglon 5
1.52864 x 10~

3.52132 x 102°

2

2.56920 x 1019

7.55645 x 1020

9.04314 x 1072

9.56437 x 10”2

3.27720 x 1072

7.89858 x 1018

7.61553 x 107!

6.21717 x 107}

0.26323

52.5518 x 103

Region 6
2,17979 x 10°

5.02126 x 1020

2

3.66358 x 10°°

1.07752 x 1021
1.39076 x 107}
0
0
0

8.33389 x 107!

6.80362 x 107!

0.26459

52,8233 x 10°

911



TABLE B-17

PM-1 Initial Core Reactivities

T (°F) Reactivity
68 0.13273
463 0.09080

The three-group, six-region core constants used to obtain the
above reactivities are listed in Table B-18,

c. Reactivity versus stable period

To utilize the results of the PM-1 critical experiments (PMZ-1), it
was necessary to convert the period measurements to reactivities. To

perform the conversion properly, the difference in the energy spectrum

of delayed neutrons relative to prompt neutrons must be considered.
Delayed neutrons are born at a somewhat lower energy than prompt
neutrons; thus, their fast constants are different, particularly the
neutron age. If we define

i
K eff
= Y, (B-16)
KS i
eff
where:

Kieff = multiplication based on a delayed spectrum, i
Kseff = multiplication based on regular prompt plus delayed

spectrum,

then the conversion from period to reactivity can be represented by
weighting the delayed fraction, Bi’ by v;. Thus,

Y, B.
Xy 171
Py = 5 + 3‘: w‘*’+)‘i (B-117)
eff i
where:
£ * = neutron lifetime
p. = static reactivity
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1

Group

LW N = LW BN W N = W N = L DN ==

W N =

TABLE B-18

Regional 3-Group Constants for the PM-1 Core
Beginning of Life (68° F)

Axial
Buckling

2.09143E-03
2.46096 E~03
2.57138E-03

2.09143E-03
2.46096E-03
2.57138E-03

2.09143E-03
2.46096E-03
2.57138E-03

2.09143E-03
2.46096 E-03
2.57138E-03

2.09143E-03
2.46096E-03
2.57138E-03

2.09143E-03
2.46096E-03
2.57138E-03

[T Sy Y e = — e s

—

Diffusion Sigma

Coefficient Absorption
.62833E-00 1.209¢3E-03
.88357E-01 3.33531E-02
.66632E-01 2.15548E-01
.54298E-00 7.44291E-04
.65232E-01 1.43939E-02
.7T6309E-01 9.86454E-02
.63300E-00 1.20617E-03
.89553E-01 3.33524E-02
.66254E-01 2.15308E-~01
.63763E-00 1.07913E-03
.90120E-01 2.94768E-02
.64990E-01 1,89148E-01
.59150E-00 1.17343E-03
.79283E-01 3.10480E-02
.11419E-01 2.02583E-01
.66440E-00 1.34544E-03
.97558E-01 3.84223E-02
.63233E-01 2.47361E-01

Cross Sections

L [ LY Sy LW U DO LW Ul

> O

Nu Sigma Sigma
Fission Slowing Down

.56031E-03 6.89377E-02

.11342E-02 5.81148E-02

.53471E-01

.54269E-04 6.43796 E~-02

.81165E-03 6.09976 E-02

.23950E-02

.56239E-03 6.91013E-02

.12792E-02 5.84256 E-02

.54278E-01

.28705E-03 6.95334E-02

.40059E-02 6.12195E-02

.98482E-01

.37391E-03 6.68228E-02

.52865E-02 5.97357E-02

.11945E-01

.95810E-03 7.06162E~02

.20053E-02 5.84767E-02

.35282E-01

811



Region  Group
1 1
2
3
2 1
2
3
3 1
2
3
4 1
2
3
5 1
2
3
6

W N =

TABLE B-18 (continued)

Regional 3-Group Constants for the PM-1 Core
Beginning of Life (463° F)

Axial
Buckling

1.92437E-03
2.29971E-03
2.40020E-03

1.92437E-03
2.29971E-03
2.40020E-03

1.92437E-03
2.29971E-03
2.40020E-03

1.92437E-03
2.29971E-03
2.40020E-03

1.92437E-03
2.29971E-03
2.40020E-03

1.92437E-03
2.29971E-03
2.40020E-03

N OY N O N Oy = DN O N OV

& OV =

Diffusion
Coefficient

.85443E-00
LT11125E-01
.45829E-01

.72405E-00
.34220E-01
.97893E-01

.86106 E-00
.73620E-01
48749E-01

.86897TE~00
.76091E-01
.48944E-01

.79660E-00
.95059E-01
.51986E-01

.91087E ~-00
.86945E-01
.41968E-01

Cross Sections

Sigma Nu Sigma Sigma
Absorption Fission Slowing Down
1.16549E-03 1.56000E-03 5.69005E-02
2.78736E-02 4,22068E-02 5.00238E-02
1.66006 E-01 2.75097E-01
7.08182E-04 2.54291E-04 5.34475E-02
1.15919E-02 7.98052E-03 5.22408E-02
7.34901E-02 4.82517E-02
1.17593E-03 1.56205E-03 5.70151E-02
3.07180E-02 4.10144E-02 4.85541E-02
1.83744E-01 2.70954E-01
1.05063E-03 1,28676 E-03 5.73565E-02
2.79938E-02 3.48453E-02 5.04503E-02
1.66465E-01 2.27270E-01
1.13969E-03 1.37378E-03 5.52869E-02
2.72571E-02 3.68009E-02 4.71673E-02
1.64180E-01 2.40731E-01
1.29760E-03 1.95755E-03 5.8147T7E-02
3.22658E-02 5.13087E-02 5.03580E-02
1.91420E-01 3.39261E-01

611
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The dynamic reactivity calculation, which was described before,
takes into account the effect of delayed neutrons when the reactor is
on a stable period. Thus, the relationship between inverse stable
period and dynamic reactivity is

£ kw N i
. + Z S (B-18)

©
Q.
I}

Py = dynamic reactivity

Experiment measurements are usually made on a relatively long
stable period, so the first term on the right side of both Eqs. (B-17
and B-18) is negligible. Therefore, the average weighting factor,
Y, is 8
Vi Py

w + X\

Ps i i v
= = Y (B-19)

Pq ﬁi
wWAEN,

The dynamic and static reactivity were calculated for the PM-1
cold core poisoned out to near critical with europium. The calcula-
tion was based on a two-dimensional synthesis which iterated on the
buckling. The S2 approximation was used in the axial direction and
S4 in the radial direction. The extreme detail used in the calculation
is required for determination of the small difference between Py and

[P which is caused primarily by differences in neutron leakage. The

results are given in Table B-19.

TABLE B-19

Results of Static and Dynamic Reactivity Calculation
(Core Poisoned Out with Eu, 68° F)

o4 = 0.00415
o = 0.00467
v = 1.125

j{ By = 0.0072

i
g% - 8.9x 1070
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By using the above delayed neutron weighting factor (Y) and the
delayed neutron data given in Table B~20, the reactivity versus period
was calculated for periods of 10 to 200 seconds, The results are
shown in Fig. B-12,

TABLE B-20
Delayed Neutron Data (Ref. 10)

Delayed Group (i) Decay Constant ()‘i) Delay Fraction (Bi)
1 1.24 x 1072 2.112 x 1072
2 3.05 x 1072 1.402 x 1073
3 1.11x 107} 1.255 x 1075
4 3.01x 107! 2.528 x 1075
5 1.13 7.360 x 1074
6 3.00 2.680 x 1072

d. Comparison of experimental and analytical reactivities

The total reactivity of the reference design core was determined
experimentally. The reference design core differs slightly from the
experimental mockup in that the clad thickness is increased by 1-1/2
mils, and the weight of U-235 is increased by 0. 794 gram per fuel
element. Table B-21 summarizes the major differences in the two
cores.

TABLE B-21

Differences in Experimental and Final Design Core

Experimental Core Final Design Core

UO,, per active element 47,989 gm 48.958 gm
U=-235 per active element 39.337 gm 40,131 gm
U-235 total core 29.1 kg 29.7 kg

Stainless steel per active
element 192.044 gm 209.631 gm

Volume of water per active 3 3
fuel cell 158.567 cm 156.237 cm
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The total core reactivity was determined experimentally by the
poison substitution method. Boron plastic strips, uniformly distributed
throughout the core by inserting them in the fuel tube water holes,
were used to poison out the core. The resultant reactivity for the
reference design mockup was 13.42 £ 0.41% AK/K. An analytical
evaluation of the differences in the mockup fuel element and design
fuel element, as shown in Table B-21, result in a decrease in the ex-
perimental total reactivity of 0.14% A K/K or a corrected reactivity of
13.28 + 0.41% A K/K. The total reactivity determined analytically
was found to be 13.273% AK/K. *

e. Reactivity versus boron strip loading

The reactivity measurements carried out at the Martin Marietta
critical facility were performed with the reactor near critical. The
gross reactivity of the core is several orders of magnitude larger
than that which is measured incrementally by boron strip addition.

It is usually assumed that the reactivity worth per boron strip is inde-
pendent of the number of strips in the core. Since the measured
values of reactivity are used in several areas of this report, it was
deemed necessary to check the above assumption analytically.

A comparison was made of the thermal flux depression in a typical
fuel element with that in an element containing a boron polyethylene
strip. The strip contained 5. 09 wt % boron, which is equivalent to
0.491 gram of natural boron per strip per 30 inches of length. SS

cell correctiohs were computed by the homogenized core method by
mocking up a boron strip into an equivalent cylinder at the center of
the fuel tube. Cell corrections for the fuel element with and without
the boron are given in Table B-22. The thermal flux distribution
through both fuel elements is shown in Fig. B-13.

*This value was obtained by correcting the perpendicular buckling to
account for the 1. 8% p bias.
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TABLE B-22

Fuel Element Cell Correction with and Without Plastic
Boron Strip at Center of Cell (68° F)

Without Strip (9, /$FE) With Strip (§,)*
(UO,) = 0.8288 (B) =0.6177
(SS) =0.8494 (U0,) = 0. 7741
(H,0) = 1.0316 (SS) =0.7942

(HZO) = 0.9509

Several radial six-region core calculations were made with varying
amounts of boron added to the core regions in which the boron poly-
ethylene strips are placed during the reactivity measurements. The
amount of boron added to each region was assumed to be proportional
to the number of fuel elements in the various regions. The reactivity
and number of strips per region for the cases of 0, 200, 400 and 600
total strips in the core are given in Table B-23.

TABLE B-23
Reactivity and Boron Strip Load for the PM~1 (68° F)

Strips per Region

Total Strips Reactivity 1 2 3 4 2 6
0 0.13273 0 0 0 0 0 0
200 0.08671 4 2 34 42 48 70
400 0.04353 8 4 68 84 96 140
600 -0. 00254 12 6 102 126 144 210

A plot of initial cold reactivity versus number of boron strips in the
core, based on the preceding analysis, is shown in Fig. B-14, From
the results shown in Fig. B~-14, it can be seen that the assumption of
a linear change in reactivity with boron strip loading is valid.

*Flux normalized at outer boundary of cell to that of a fuel element
cell without the plastic boron strip inserted.
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f. Fission, flux and slowing-down spectrum

The moderation program utilized in the analysis of the PM-1 per-
forms a 19-group slowing-down calculation. From the results of the
slowing-down calculation, the constants for the fast and epithermal
groups are obtained. Therefore, it seems pertinent that the 19-group
flux and slowing-down distribution should be available. These are
presented in Figs. B-15 and B-16.

The multigroup fission spectrum is presented in Fig. B-17 to show
the effect of lethargy on the fission distribution.

All three of the above curves are based on 463° F and end-of-life
(700 days) conditions. The data was obtained using the properties of
core region five, as this is typical of the whole core.

g. Comparison with SM~1 burnup

To check the accuracy of the cross sections and methods used to
calculate the PM-1 core lifetime, it was felt that the lifetime of an
existing burned-out core should be calculated. Since the SM-1 core
is similar in many respects to the PM-1, it was decided that this core
would serve as an excellent check on our capability to predict core
lifetime.

The material concentrations of the SM~1 that were used in the cal-
culation are given in Table B-24.

TABLE B-24
Material Concentrations in the SM-1

U0, (kg) 27.54
U-235 (kg) 22,50
B,C (gm) 114,71
B-10 (gm) 15.75
SS (kg) 208. 92
H,0 (kg) 111.08

The cell corrections used in the calculation were obtained from a
two~-dimensional synthesis of an SM-~1 fuel element. An S’B approxi-

mation in slab geometry was used. The resulting cell corrections,
normalized to an average flux of one in the fuel element cell, for the
beginning of life, are presented in Table B-25.
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Relative Neutron Flux per Unit Lethargy
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Relative Slowing Down per Unit Lethargy

Temperature = 463°F
Operating power = 9,37 mw
Time = 700 days

[ VNS G S SRS SN SR T N SN S DU S SN R SN N U S R
5

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Lethargy

Fig. B-16. Slowing Down Spectrum Versus Lethargy

6¢T



130

Temperature = 463° F

Power = 9,37 mw
1071 —
r
s
£y
o
S
) -
-
X
[=]
pan)
®
0. -2
2 10 =
el
.9 =
)] =
k2
m =
o
% -
m -
—i
)
m
1073 1 1 I |
0 5 10 15 20
Lethargy

Fig. B-17. PM-1 Fission Spectrum 700 Days



131

TABLE B-25

SM-1 Thermal Cell Corrections, Beginning of Life (440° F)
(Normalized to an Average Cell Flux of Unity)

Material Cell Correction
Uo,, 0.8945
SS 1.0972
HZO 1.0015

The SM-1 core lifetime was calculated in the axial and radial di-
rections with both uniform and nonuniform burnup. Control rods were
not included in the calculation because their net effect on core life is
small and, therefore, was not considered necessary for comparative
purposes. The total nonuniform core life was obtained by subtracting
the axial nonuniform burnup reactivity defect from the radial nonuni-
form burnup reactivity. The results of the calculations are shown in
Fig. B-18 as plots of lifetime versus core reactivity. The final SM~1
core life was calculated to be 14.52 mw-yr.* This compares very
favorably with the extrapolated actual core life of 15 mw-yr reported
in APAE 65. The difference between the actual and calculated core
life indicates that the analysis is conservative by about 3%. If this
factor is applied to the PM-1 core life, it would yield an increase of
about 32 days.

¥Normalized to an initial hot reactivity of 10.37% (APAE 42)
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APPENDIX C

THERMAL AND HYDRAULIC SUPPORTING DATA

In preparing the thermal and hydraulic design, analytical techniques
were developed, experimental programs were conducted and supporting
studies were performed.

1. Analytical Techniques

All steady-state thermal and hydraulic analyses of the fuel elements
were performed with BITE, an IBM-7090 machine program,

BITE (Boiling in Tubular Elements) may be used for the analysis
of tubular elements operating in any combination of the nonboiling,
local boiling and bulk boiling regimes. The required input data include:
element and orifice dimensions, coolant inlet conditions, flow distri-
bution, radial and axial power distribution. Among the output data are
axial distributions, both inside and outside the element, of: coolant
temperature, quality, void fraction, slip ratio, pressure, surface tem-
perature, heat flux and burnout heat flux,

Calculations of wall superheat in local boiling are based upon the
Jens and Lottes correlation; local boiling friction factors are determined
by means of the Martin Marietta correlation; and burnout heat fluxes
are obtained from the -33% line of the Griffith correlation.

2. Experimental Programs

The experiments pertaining to the thermal and hydraulic design of
the core are the full scale model flow test, heat transfer and burnout
tests, and the zero power test.

a, Full Scale Model Flow Test

Core flow distributions were obtained by hydraulic testing of a full
scale model of the reactor (Ref. 1). Using water at 100° F as the
circulating medium, distributions were obtained with the control rods
fully inserted at flow rates of 1750, 2125 and 2900 gpm, and, with the
control rods fully withdrawn, at 2125 gpm. Actual operating conditions
involve a mean coolant temperature of 463° F, It has been shown that
the flow distribution is relatively insensitive to Reynolds number
(within the turbulent range); hence, application of the experimental data
is justified.
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Analysis of the test data indicated that the measured flow allocation
in the core was very close to that predicted (a maximum negative
deviation of 7% was anticipated). No appreciable circumferential vari-
ations were observed; however, significant variations in velocity oc-
curred in the radial direction. In this regard, the core may be divided
into three areas: peripheral elements, elements above the lower align-
ment spider, and all remaining elements.

The average flow rate inside the three rows of tubes adjacent to the
peripheral boundary was found to be 5.7% lower than the measured core
average, with a maximum negative deviation of 13%. Since this is a
relatively low power region of the core, a reduction in flow rate is
desirable, as it provides additional coolant for the higher power regions.

The flow rates in the tubes above the outer region of the lower align-
ment spider were found to be somewhat lower than the core average.
The results of a series of flow blockage tests were employed to demon-
strate that this flow rate reduction was, in fact, due to the presence of
the spider. Once again, the power density in this region of the core is
relatively low; hence, adequate heat removal capacity is available.

Only one tube in the remainder of the core had a flow rate less than
the anticipated minimum. The flow rate in this tube was 8.6% lower
than the measured core average. Structural members below the core
could account for this deviation.

b. Heat transfer tests

A series ot experiments was performed to determine the thermal
and hydraulic characteristics of tubular fuel elements in local boiling
operation (Ref. 2). Single-tube test sections, with flow inside the tube
only, were employed throughout. The ranges of local boiling parameters
investigated were: pressure, 800 to 1500 psia; flow rate, 1.2 to 9.0

gpm; heat flux, 0.1 x 10% to 1.3 x 10® Btu/hr-1t?; and inlet coolant
temperature, 445° F.

The measured values of wall superheat were consistently higher
than those predicted by the Jens and Lottes correlation (Ref. 3)

q 1/4 p
A = : — -
where

AT = difference between surface temperature and saturation

SAT temperature, °F
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q heat flux, Btu/ hr-ft°

P

pressure, psia

These differences were not sufficiently large to warrant modification
of the relationship,

Local boiling friction factor data were correlated by

f/fiSO = a+bj+cNp, (C-2)
and
j - v 573 (C-3)
NRe NPr
where
f/fiso = ratio of local boiling friction factor to isothermal

friction factor

a,b,c = pressure-dependent constants
3} = dimensionless heat transfer factor
NRe = Reynolds number
NNu = Nusselt number
N = Prandtl number
Pr

¢. Burnout tests

Local boiling burnout data was obtained with a single-tube test
section, having coolant flow both inside and outside of an electrically
heated tube (Ref. 4). To obtain the high heat fluxes required to achieve
burnout conditions, it was essential that the dimensions of the test
section tube differ from those of the actual PM-1 element. The tube
dimensions were: 0.457-inch inside diameter, 0,416 -inch outside
diameter, and a 15-inch long section of stainless steel with a 4-inch
nickel "A'" extension. The outer diameter of the annular flow path was
0.688 inch.
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The ranges of the parameters investigated were: flow ratio (ratio
of flow inside tube to total flow rate), 0.43 to 0.56; pressure, 1100 and

1300 psia; mass flux, 4.2 x 10° to 15.0 x 10° 1b/hr-ft%; and outlet sub-
cooling, 20° to 165° F. It was found that the resultant burnout data agreed
favorably with the -33% line of the Griffith correlation (Ref. 5),

d. Zero power tests
The zero power testing of the PM-1 core has been reported in
detail (Ref. 6). Insofar as the core thermal analysis is concerned, the

items of interest are the radial and axial power distributions.

3. Supporting Studies

Several thermal and hydraulic analyses have been performed in
support of the core design. Of particular interest in this area are the
analyses of operational transients, scram conditions and decay heat
removal,

a. Operational transients

The reactor coolant system was simulated on an analog computer.
Various transient maneuvers were executed to determine that which
caused the most severe thermal problems. This was determined to be
an instantaneous closing of the main steam valve while operating at
full power. Control rods were assumed to be locked in place and power
to the primary coolant pump was cut off instantaneously (a natural con-
vection flow of 3% of rated flow was assumed). Computer traces of
reactor power and average reactor coolant temperature, as functions
of time, are shown in Fig, C-1. The pressurizer safety valve set point
is 1500 psia, which is adequate to assure that bulk boiling of the primary
coolant does not take place,

b. Scram conditions and decay heat removal

The PM-1 control system is designed so that a reactor scram is
always accompanied by a primary coolant pump scram. This safeguard
reduces the magnitude of the thermal shock to the fuel elements and
prevents, by means of an interlock, inadvertent withdrawal of the con-~
trol rods.

Insofar as the heat removal aspects of a scram are concerned, an
analog computer study has shown that the afterheat removal capacity
is more than adequate., This study is described below.

After a reactor scram, core heat is produced by two means, i.e.,
fission decay and fission product decay. The former was determined
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from a two-delay-group analog model of the reactor kinetics. This is
shown as Curve A in Fig. C-2, The fission product decay source,
shown as Curve B, was determined through the use of an IBM-7090 code
which computes the inventory and energy release of the fission prod-
ucts as functions of time. Curve C is the total heat production rate

(the sum of Curves A and B), and Curve D is the analog computer
simulation of Curve C.

An equation describing the flow after pump cutoff was derived and
incorporated in the simulation of the power plant (Ref. 10).

d /w 3 2 w 2
g (W;) = __E__N - [AP + Z PiZy - kW, (Wo )
Z J =1
A
y=1"1
sk wi8(¥ 1.8 (C-4)
2 W,
where
w = flow rate
W, = initial flow rate
I“j = length of the jth section of the primary loop
A. = cross-sectional area of the jth section of the primary
J loop

APO = initial pump head
p = density
Z = elevation
Kl’ K2 = constants

Subscripts 1,2 and 3 refer to hot leg, cold leg and core, respectively.
The flow coastdown obtained from the simulation is plotted in Fig. C-3.
Curve A depicts this coastdown, neglecting the effects of natural con-
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3
vection, viz.,the z P, Z; term in Eq (C-1). Curve B is obtained

i=1
when this effect is included.

Evaluation of the power production in the hot channel was based
upon a power factor of 2,72, viz, The power produced in the hot channel
is 2.72 times that in the average channel. Results of the Zero Power
Test indicate that the value of this factor is 2.16; hence, an additional
factor of conservatism has been included. A series of runs was per-
formed to determine the hot channel outlet temperature for the loss-
of-flow scram. In the low flow region (flow less than 10% of normal),
the pressure drop through the reactor channels is almost entirely due
to the elevation head loss. Since the pressure drop across all channels
must be equal, the flow in each channel tends to be proportional to the
power production in that channel. For this reason, the exit coolant
temperatures of all channels are very nearly equal and the concept
of a hot channel is not applicable, The maximum coolant temperature
is plotted as a function of scram set point (fraction of rated flow) and
instrumentation time constant in Fig. C-4.

The loss-of-flow scram point is set at 90% of power to the pump,
which corresponds to approximately 96% of rated flow; and the time
constant of the instrumentation is only a few milliseconds. Thus, from
Fig. C-4, with (W/Wo = 0.96, 7 = 0), it can be seen that the maximum

coolant temperature is 543° ¥, This compares favorably with the
567.2° F boiling point of 1200~-psia water. It may, therefore, be con-
cluded that bulk boiling will not occur under these conditions; hence,
the core is thermally safe,

Adequate heat removal capacity is available in event of an extended
shutdown period. Two methods of dissipating decay heat are:

(1) Through the steam generator and main condenser, using
secondary system water., This method is employed during
initial cooldown.

(2) Through the coolant purification demineralizer cooler, where
the shield water serves as the heat sink, This method is used
after initial cooldown is accomplished, The system has an
85-kw capacity.
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APPENDIX D
PRESHIPMENT WET CRITICAL TESTS

A series of zero power tests, referred to as Wet Critical Tests,
was performed with the PM-1 core to demonstrate the achievement of
several design characteristics in the as-built core. These properties
are concerned with safety and operating characteristics of the core
and include:

(1) Assurance that the core is subcritical when flooded with
all control rods inserted.

(2) The ability of the core to meet stuck rod criteria,

(3) Achievement of the design lifetime as indicated by the initial
cold, clean reactivity.

(4) The similarity between the PM-1 and the PMZ (development)
cores,

Extensive measurements of flux and power distribution, tempera-
ture coefficient and other core characteristics have been performed
in the PMZ core, which is a zero power experimental assembly. *
The similarity between the experimental and PM~-1 core is established
so that this data may be attributed to either core.

Table D-1 summarizes the results of the Wet Critical Tests and
includes PMZ-based predicted results. Control rod and bundle worths
presented are the average deviations from the most reactive rod or
bundle in that core. The critical five-rod bank data is for the case of
minimum shutdown. All data were adjusted to 20° C.

*MND-M-1858
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TABLE D-1

Summary of Wet Critical Test Results

Predicted

Average deviation relative
bundle worth (% A K/K)

Average deviation relative
rod worth (% A K/K)

Critical 6 -rod bank

(inches withdrawn) 8.

Critical 5 rods--1 rod full
out (inches withdrawn) 3

Critical 2 rods--4 rods full

in (inches withdrawn) 14,

Shutdown margin--1 stuck rod

(% AK/K) -0.

Total core reactivity

(% A K/K) 12,

15

.08

87

PM-1

-0.074

-0.014

8.959

5.25

15.37

-0.73

12.32

The PM-1 core differs from the PMZ core primarily in fuel ele-
ment size and U-235 loading. The dimensions and loading of these

fuel elements are listed in Table D-2 below.

TABLE D-2

Comparison Between PM-1 and PMZ Fuel Elements

Outer diameter, in.
Inner diameter, in.
Cladding thickness, in.
Meat thickness, in.
Active length, in.
U-235 loading, gm

PM-1 PMZ
0.507 0.500
0.417 0.416
0.008 0.006
0.028 0.030
30. 14 30. 14
40. 43 39.34
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Conclusions reached as a result of the Wet Critical Tests are:

(1) The PM-1 core (with control rods fully inserted) is sub-
critical when flooded.

(2) With one rod stuck full out, the core is shut down by -0.73%
AK/K.

(3) From the critical positions of two adjacent rods with four
rods in, the two stuck rod shutdown margin may be calcu-
lated.

(4) The similarity of the PM-1 and PMZ cores was demonstrated.
(5) The adequacy of the PM sources was demonstrated.

The data in this appendix indicates that the differences in the fuel
and stainless steel content of the fuel tubes are largely self-compen-
sating with respect to total core reactivity. Furthermore, data de-
veloped in the experimental assembly* indicate that the small dif-
ferences listed above have a negligible effect on such parameters as
temperature coefficient of reactivity and power distribution. Finally,
the data presented here indicate that sufficient shutdown is available
in the rods of the PM~1 core to assure operating safety under con-
ditions of the most stringent ''stuck rods' requirement.

The PM-1 core Wet Critical Tests were conducted in Test Cell 1 of
the Martin Marietta Critical Experiments Facility using the PMZ
assembly** with minor modifications. The assembly is shown in Fig.
D-1. The PM-1 core shroud was installed on the PMZ core support
stand. Both the inner and outer PMZ thermal shield mockups were
located in their proper positions. These were required, since they
increase the reactivity of the core by 1.83% AK/K. Special turnbuckle
brackets were installed to assure that the core shroud was held rigidly
in place. The only control rods used were the six PM-1 rods. To
drive these rods, four nonscrammable Teleflex actuators were used.
In two adjacent locations (Core Locations I and VI, Fig. D-2) the rods
were driven by scrammable Lear actuators. Appropriate interlocks
were associated with the Lear actuators to assure that a minimum of
2% A K/K was always available for fast shutdown. The use of only two
scrammable actuators imposed limitations on performance of the tests,
but did not prevent any required test from being conducted.

¥MND-M-1858.
**Described in MND-M-1858, ""PM Critical Experiments and Zero
Power Testing"



Fig, D-1,

PMZ Assembly in Test Cell One in Critical Experiment Facility
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The boron polyethylene strips, used to assure nuclear safety of
the fuel bundles during the cleaning process after fabrication, were
in each fuel tube when the fuel bundles were delivered to the critical
facility. These strips were 0.25 inch square and 32 inches long and
contained 10% natural boron by weight. The strips were positioned in
the fuel tubes so that the lower end of each strip was located at the
bottom plane of the core. These strips were not only removed ex-
perimentally to assure a safe approach to criticality, but were also
used to poison the core for the evaluation measurements made during
the tests.

The measurements made in the Wet Critical Test Program con-
sisted of determining the deviations in relative worth of the individual
bundles for each core, the deviations in relative worth of the individual
control rods for each core, and the following critical rod bank positions
for each core:

(1) Critical six-rod bank position.
(2) Critical five-rod bank position with one rod fully withdrawn.

(3) Critical position of two adjacent rods with the remaining
four rods fully inserted.

In addition, miscellaneous measurements were made. One was the
evaluation of the boron polyethylene strips. The other was an eval-
uation to determine that the PM sources are sufficiently strong that
they will produce a minimum of five counts per second on the PM
startup channels.

All reactivities presented in this appendix are based on an effective
delayed neutron fraction of 0.0069. This value was obtained from the
latest reactivity-versus-stable reactor period calculations for the
PM-1 core.

1. Bundle and Rod Evaluation

The relative reactivity worths of the bundles and the control rods
in each core were determined so that rods and bundles could be
matched to maximize shutdown margins under the stuck rod conditions
and to ensure that the most stringent shutdown cases were tested.

a. Relative bundle evaluation

The deviations in relative bundle worths were obtained by peaking
the neutron flux into the bundle being evaluated to maximize differences
and then measuring relative reactivity on the control rod opposite the
bundle being evaluated. Peaking the flux into the test bundle depressed



the flux in the measuring rod bundle, thus increasing the sensitivity
of the measurement (maximum rod motion per unit change in re-
activity). The flux was peaked into the test bundle by poisoning the
remaining bundles with a uniform distribution of boron polyethylene
strips. Criticality was established with five rods fully withdrawn and
the sixth rod (in the bundle opposite the one being evaluated) partially
withdrawn. Thus, the relative reactivity worth of the bundle was de-
termined by the position at criticality of the sixth rod. The relative
rod positions were translated into reactivity by period evaluation.
For these measurements, six PMZ control rods were used. In pre-
vious work, the differences in reactivity worths of these rods were
found to be extremely small in comparison to the reactivity differences
between fuel bundles.

The reactivity differences had been magnified by peaking the flux
into the bundle being evaluated. From data obtained in the PMZ-1
program*, it was determined that peaked reactivity worths under
similar conditions to those of this study were approximately 1.5 times
the unpeaked worth,

Table D-3 presents the worths of the bundles of each core relative
to the most reactive bundle in that core. Also listed are the average
variations from the most reactive bundle, both in the peaked flux con-
dition and corrected to the unpeaked condition, as described above.

TABLE D-3
Relative Bundle Worths

Reactivity
Difference
Bundle (% A K/K)
1 -0.065
2 -0.110
3 -0. 154
4 -0.175
5 -0.164
6 .
Average -0.111
Average (unpeaked) -0.074

*MND-M-1858, "PM Critical Experiments and Zero Power Testing."
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In considering the deviations in relative worth of the bundles, it
should be recognized that the deviations shown in Table D-3 are very
small, representing less than 0. 5% of the total worth of the bundle.
This assumes that 1/6 of the Keff of the core (1. 1474, based on PMZ-1

data) is contributed by each bundle.
b. Relative rod evaluation

The relative reactivity worths of the control rods for each core
were obtained by fully inserting each rod successively in the same
location in the core and evaluating the reactivity worths on a PMZ
rod in the opposite bundle. The four remaining rod locations were
occupied by PMZ rods. In each case, the rod was located in the core
so that the poison was one inch above the top of the bottom grid at full
insertion. This located the bottom of the poison in the same plane as
the bottom of the active core. The poison location used for the rod was
the average of the locations of poison in the three blades of the rod.
The location of the poison in each blade was determined by X-rays as
the distance from the end of the blade to the furthest extremity of the
poison within the blade.

The measurement was performed with the rod being measured fully
inserted and the evaluation made on the opposite rod. This approach
was taken to assure evaluation of the total rod and to increase the sensi-
tivity of the measurement by using a rod in the minimum flux region
for the evaluation.

To establish criticality with one rod (the rod being measured) fully
inserted, the opposite rod partially inserted and the remaining rods
fully withdrawn, the core was uniformly poisoned with 126 boron poly-
ethylene strips (21 per bundle) as shown in Fig. D-2. The relative
worths of the rods being evaluated were seen as differences in position
of the opposite rod. These differences were related to reactivity by
period evaluations,

The worths of the rods in each core relative to the most effective
rod in that core are presented in Table D-4, which also shows the
average variation from the strongest rod.

The average deviation from the most effective rod represents less
than 1% of the worth of the rod, which was found in the PMZ-1 program
to be 2.27% AK/K.



155

TABLE D-4
Relative Rod Worths

Reactivity
Difference
Rod (% & K/K)
15 ~0.012
16 -0. 027
18 -0.012
19 -0.016
20 -0.018
22 --
Average -0.014

c. Bundle-rod matching

To maximize the four-rod shutdown margin under the two stuck rods
condition, the bundles and rods were matched in the order of their
relative worths, i.e., the most effective rod with the strongest bundle,
etc. Although the differences in the reactivity associated with individual
bundles are seen to be too small to produce a significant amount of flux
tilting, a core configuration was chosen which alternates bundles of
high and low reactivity. Table D-5 shows the bundle and rod configu-
rations for the core. The configuration shown is relative, since the
position of Location I in the pressure vessel is arbitrary.

TABLE D-5
Bundle and Rod Configurations for Shipment

Location Bundle Rod
I 6 22

I 3 19

III 2 18

v 5 16

v 1 15

VI 4 20
Spare 7 21
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Figure D-3 shows the configurations of the PM-1 core. Included
in this figure are bundle location, rod location and the blade orientation
for each rod.

2. Critical Bank Positions

Critical positions were determined for three different rod bank
configurations. The critical position of the six-rod bank gives an
approximate measure of total core reactivity. With one rod fully with-
drawn, the critical position of the remaining five rods yields a measure
of the shutdown margin for the condition of one rod stuck full out of the
core. The critical position of two adjacent rods with the remaining
rods fully inserted presents the reference point from which the shut-
down margin with two rods stuck in the operating position may be calcu-
lated.

For the critical bank position measurements, the two most reactive
bundle -rod combinations, as described in Section 1lc, were located
under the adjacent scrammable Lear actuators. The two weakest
bundle-rod combinations were on the opposite side of the core. This
permitted the evaluation of the shutdown margin for either of the two
worst conditions of one rod stuck full out and for the worst two-stuck-
rod condition. All rods were adjusted so that the bottom of the poison
was in the bottom plane of the active core, as described in Section 1b.

Table D-6 presents the bundle=rod orientation which was used for
the critical bank position determinations. Locations I and VI were
the adjacent bundles under the scrammable Lear actuators.

TABLE D-6

Bundle and Rod Configurations for
Critical Bank Position Determinations

Location Bundle Rod
I 1 15
II 2 18
III 3 19
v 4 20
v 5 16
VI 6 22
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Table D-T presents the critical bank positions as measured at the
temperatures indicated for each core studied, including spare bundles.
The spare bundle was evaluated by replacing simultaneously the bundle
in Location I and the center bundle with the respective spare bundles
and determining the critical bank positions. Only the critical 5-rod
bank with one rod out and the critical 2-rod bank with 4 in were re-
quired to demonstrate that the core with spare bundles would meet the
stuck rod requirements.

Critical positions are presented in Table D-7 as inches withdrawn
from the zero position, defined in Section 1b,

The shutdown margins and reactivities were obtained from PMZ-1
data, as described below.

TABLE D-7
Critical Bank Positions (in.)

Predicted PM-1 Spare

Temperature (°C) 20.0 13.7 13.4
Critical 6 rods 8.15 8.55 8.58
Critical 5 rods 3.08
Rod I out 5.10 4,96
Rod VI out 5,26
Rod in Position I 15 21
Rod in Position VI 22
Critical 2 rods 14.53 15,27 15.13

Shutdown margin for
worst case of 1

stuck rod (% A K/K) -0.21 -0.173 -0.68
Total core reactivity
(% A K/K) 12, 87 12.37

In Table D-8, the bank positions and reactivities have been corrected
to 20° C, using the temperature coefficient of -0.0079% AK/K per degree
centigrade observed in the temperature range of 20° to 30° C in the PMZ-1
program.
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TABLE D-8
Critical Bank Positions Corrected to 20° C (in.)

Predicted PM-1 Spare

Critical 6 rods 8.15 8.59 8.62
Critical 5 rods 3.08
Rod I out 5.25 5.11
Rod VI out 5.41
Rod in Position I 15 21
Rod in Position VI 22
Critical 2 rods 14,53 15.37 15.23

Shutdown margin
for 1 stuck rod

(% A K/K) -0.21 -0.78 -0.73
Total core reactivity
(% A K/K) 12.87 12.32

The shutdown margins and reactivities presented in Tables D-7
and D-8 were based on extrapolations of data obtained in the PMZ-1
program. In the PMZ studies, it was demonstrated that control rod
worth was not appreciably affected by minor changes in material
composition of the core. The material differences between the PMZ
and PM cores were sufficiently small that the PMZ-1 data can be
used for the extrapolation considered herein. In the PMZ-1 with one
rod fully withdrawn, criticality was established with the remaining
five rods withdrawn to 3.17 inches. This represented a shutdown
margin of -0.23% AK/K. The shutdown margins shown in Tables D-7
and D-8 were obtained by determining the reactivity difference between
the five-rod bank at 3.17 inches and at the measured position for each
of the PM cores, using the PMZ-1 curve for the worth of five rods
with one rod fully withdrawn. The shutdown margin presented is the
sum of this difference and -0.23% A K/K. The total reactivity of the
PMZ-1 core was 12.85% A K/K, with the critical six-rod bank at 8.17
inches withdrawn. Total reactivities shown in Tables D-7 and D-8
were obtained by subtracting from 12. 85% the reactivity differences
between 8. 17 inches and the measured critical six~rod bank positions
for the PM cores, using the six-rod bank worth curve from PMZ-1.

3. Miscellaneous Measurements

a. Boron polyethylene strip evaluation

As described in the beginning of this appendix, all cores were
delivered to the critical facility with a boron polyethylene strip in each
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fuel tube. These strips were removed experimentally to assure a
safe approach to criticality and were used to poison the core for the
bundle and rod worth evaluations,

The boron strips were removed incrementally from each core,
using the standard multiplication technique in which inverse multipli-
cation is plotted as a function of number of strips removed to predict
the safe next incremental removal. The strips removed for each in-
crement were uniformly distributed throughout the core. The end point
of the strip removal for each core was the appropriate strip loading for
the evaluation which followed. In the case of the first core studied,
this end point was with all strips removed.

As an aid in determining strip distribution requirements for the
various evaluations that were made, the reactivity worth of an average
boron polyethylene strip was measured. Because of the heavy boron
loading in the strips, they were sufficiently "black' that the differences
in strip worth were a function of location in the core only. The strips
were evaluated by locating 10 strips uniformly in the core, as shown
in Fig. D-4. The worth of the 10 strips was determined by period
evaluation. From this measurement, the worth of an average strip
was determined to be 0.064% A K/K. This is slightly less than 3 times
the worth (average of 0.024% A K/K) of the strips used in the PMZ
program.

From the strip evaluation data combined with the inverse multipli-
cation data obtained during the strip removal, it was determined that
175 uniformly distributed strips were required to control the reactivity
of the core with all control rods out at 20° C. A total of 300 uniformly
distributed strips would maintain the core 8% A K/K subcritical with
no control rods in the core. Thus, a core with 300 uniformly distributed

strips and six control rods fully inserted would have a Keff of approxi-
mately 0.8,

b. PM source evaluation

To determine whether the PM sources will be adequate to produce
a minimum of five counts per second on the PM startup channels at
initial startup, an evaluation was obtained in the wet critical assembly
with operating conditions mocked up as closely as practical. Figure
D-5 shows the location of the startup chamber with respect to the
source and core for both the PM systems and the wet critical assembly
mockup. As Fig. D-5 indicates, the only difference between the ge-
ometries of the PM and wet critical systems was the material between
the pressure vessel and the chamber. The wet critical mockup had 9
inches of water instead of the fiberglas, 5 inches of lead and 2-1/4
inches of water in the PM system. Since the attenuation of neutrons
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is greater in water than in lead, measurements in the wet critical
mockup would be more pessimistic than the actual case. In addition,
the lead is primarily a gamma ray shield for the chamber, and at the
initial startup, there will be negligible gamma present. The measure-
ment was made using a Po-Be source with a strength of approximately
1.4 curies, compared to 30 curies for the PM sources. The difference
in source strength was therefore a factor of 21, assuming the same
efficlency for the two sources.

For the measurement, a BF3 proportional counter from a PM

startup channel was used with the instrumentation from PMZ Channel
2. If a proportional counter is operated on its plateau, the efficiency
of the channel will be independent of the electronics which follow the
chamber. The operating plateau for the system used was measured to
extend from 2200 to 2500 volts, The test was run with the chamber op-
erated at 2300 volts.

Measurements were made in a PM core with six PMZ control rods
and no boron strips. Since previous measurements had demonstrated
that the PMZ rods differed from the PM rods by less than 2% of the
total worth, the use of the PMZ rods did not prejudice the results of
this measurement. The background count rate was measured with the
PMZ source in the storage pig, which resulted in a higher than normal
background count rate (15.1 counts per second). To reduce counting
statistics, each measurement was made for sufficient time to produce
a minimum of 10, 000 counts.

With the test source installed in the core (and the PMZ source in
the storage pig), measurements were made with all rods fully inserted
and with the two rods on scrammable Lear actuators (the rods located
between the source and the PM chamber) withdrawn to 10. 25 and 12. 50
inches. The reason for using different rod positions was to demon-
strate that adequate count rates would be seen at startup and to show
that the chamber would see multiplication as the control rods were
withdrawn. Table D=9 presents the measured count rates after sub-
tracting background and the anticipated count rates for the PM source
for the various positions of the two control rods with the other four
rods fully inserted. The anticipated PM count rates were obtained,
using the factor of 21 difference between the sources described above.

TABLE D-9

Source Count Rates

Anticipated PM

Rod Position Measured Count Rates Count Rates
(inches withdrawn) (counts per second) (counts per second)
In 10.5 220
10. 25 27 570

12.50 37 1200
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Table D-9 demonstrates that the PM sources will be adequate to
produce more than the minimum required count rate at startup and to
permit the PM chambers to see multiplication, The differences in
count rates presented in Table D~-9 were verified by comparable differ-
ences seen on the PMZ startup channel.

4. Water Samples

To assure that the PM cores were not contaminated by the water
of the PMZ systems, samples of the water were chemically analyzed
periodically throughout the program. The purpose of the analyses was
not to demonstrate that the PMZ water met the specifications of re-
actor grade water. Specifications for reactor grade water are based
on operation at elevated temperatures for extended periods of time.
The wet critical tests were performed with water below 20° C. Each
core was blown dry prior to packaging for shipment. Thus, the re-
quirements for the PMZ water were that it not exceed the reactor
grade water specifications by more than a factor of about 10.

Table D-10 presents the results of the chemical analyses of the
PMZ water at significant times throughout the Wet Critical Test pro-
gram. Specifications for reactor grade water are included for refer-
ence.

TABLE D-10
Water Analysis

Reactor Grade

Water Sample 4 Sample 9
Time - Initial run After final
run
Ph 6.8 6.9 6.1
Resistivity () >500, 000 2,600,000 121, 000
Chlorine ions (ppm) <0.1 0.2 0.25
Boron (ppm) * none none
detected detected
Suspended solids <2 - 0.7
(ppm)
Dissolved solids <0.5 - 1.1
(ppm)
Total solids <2.5 0.15 1.8

(ppm)

FBoron content was not a reactor grade water specilication,

It was

included in the analysis to detect any contamination resulting from use

of the boron polyethylene strips.
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