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Abstract

Ton temperature gradient (ITG or 7;) driven microinstabilities are studied, us-
ing kinetic theory, for tokamak plasmas with very weak (positive or negative)
magnetic shear (VWS). The gradient of magnetic shear as well as the effects
of parallel and perpendicular velocity shear (vl'l and v) are included in the
defining equations. Two eigenmodes: the double (D) and the global (G) are
found to coexist. Parametric dependence of these instabilities, and of the cor-
responding quasilinear transport is systematically analyzed. It is shown that,
in VWS plasmas, a parallel velocity shear (PVS) may stabilize or destabilize
the modes, depending on the individual as well as the relative signs of PVS
and of the gradient of magnetic shear. The quasilinear transport induced by
the instabilities may be significantly reduced with PVS in VWS plasmas. The
vy values required to completely suppress the instabilities are much lower in
VWS plasmas than they are in normal plasmas. Possible correlations with

tokamak experiments are discussed.
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I. INTRODUCTION

One of the major goals of recent tokamak experiments has been to investigate and deter-
mine optimal operational conditions which will lead to long-lived discharges with enhanced
confinement and reactor-like plasma parameters. A particularly promising regime was uncov-
ered recently by a manipulation of the current density profile to create a negative (reversed)
magnetic shear region in the main body of the plasma. On many devices,! =3 dramatic parti-
cle and energy confinement improvements are observed in these regions. It is natural that an
explanation of these experimental results should be sought in the effects such optimized mag-
netic configurations have on microinstabilities, and on the consequent turbulent transport.
This provided the main motivation for a recent paper* in which two important instabilities
of a standard plasma (with positive magnetic shear), the ITG (ion temperature gradient),
and the PVS (parallel velocity shear) modes were studied for plasmas with negative mag-
netic shear. From an integral gyrokinetic analysis, it was found that in toroidal geometry,
the conventional modes not only have lower growth rates, but also have higher instability
thresholds when the sign of the magnetic shear is reversed.

Theoretical estimates, however, reveal that the lowering of the virulence of the instabil-
ities caused by negative magnetic shear is perhaps not sufficient to account for the experi-
mentally observed spectacular improvement in confinement. Therefore, more experimental
and theoretical studies are needed to delineate the related physics.

One notable characteristic of the optimized configuration is that, besides the negative
magnetic shear at small radii, there is positive but weak magnetic shear at interinediate
radii.>® In other words, a relatively broad transition region exists where the magnetic shear,
positive or negative, is very weak (even close to zero). It is also clearly evident from the
experimental datal® that the region of improved confinement is not limited to the radial

region with reversed shear but it extends deep into the region of reduced but positive shear.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.




Within the general category of negative central magnetic shear (NCS) experiments on
DIII-D,% a new subclass of discharges with a broad region of weak or slightly negative mag-
netic shear (WNS), have also been investigated. This subclass is comparable to the standard
NCS discharges in good confinement, high fusion reactivity, and a large fraction of bootstrap
current, but shows higher 3 values. In fact, the DIII-D experiments reached their highest
normalized £, énd confinement enhancement in the WNS configuration.

In the WNS(VWS) magnetic geometry, there is a finite transition region (where the
shear changes sign) of near zero shear. It is important to notice that the best confinement is
measured precisely in the neighborhood of this unusual region.>® Since most of the existing
instability theories were derived for finite shear, it is clear that a new (certainly a modified
one) microinstability theory must be developed to deal with this important and interesting
region. Only then, one might be able to establish a possible connection between improved
confinement and mode-stabilization in the new shear geometry.

Before deriving the new equations, we must dwell on another crucial experimental
observation,®5® the existence of a strongly peaked ion toroidal velocity (with a larger PVS)
in the region of improved confinement. It is also known”® that a large PVS may play an
important role in the improved particle confinement of ions, and that the PVS induced asym-
metric Reynolds stress may be a possible source for the perpendicular (or E x B) velocity
shear generation. Thus an explanation of improved confinement in VWS plasmas is likely to
require an understanding of the effects of PVS on the mode-stability in a plasma with very
low magnetic shear.

In this work, we study the drift-type microinstabilities driven by ITG and PVS in kinetic
plasmas with VWS structures. In Sec. II, we explain the physical model, and display the
modified eigenmode equation in a sheared slab. The gradient of magnetic shear (an essential
factor in this regime), the interaction between ITG and PVS, and the suppression effects of

the E x B perpendicular velocity shear are all taken into account. The numerical results



on the eigenvalues and the mode structure for various parameters are presented in Sec. III.
An estimate for the quasilinear transport induced by the fluctuations is also calculated and
displayed. In Sec. IV, we recapitulate the main conclusions of this work and discuss their

implications.

II. PHYSICAL MODEL AND EIGENMODE EQUATION

In a slab model, the principal modification to the standard kinetic theory, so that it can

adequately deal»with the low shear regime, is to write the equilibrium magnetic field as
B =Bg[2+($/Ls+$2/L32)§’], (1)

where L;, and Lg = (d/dz)(1/Ls) are the measures of the magnetic shear and its gradient.
The z, y, and z directions in the sheared slab geometry mimic the radial, poloidal, and
toroidal directions in a tokamak. The modes are usually confined in the vicinity of the
rational surface defined by ky = k - B = 0, where k is the wave vector for the perturbation,
and B is the total magnetic field given in Eq. (1). The third term on the right-hand side
of Eq. (1) is important only when the magnetic shear is very weak (Ls — 00) at the mode
rational surface (z = 0).

The kinetic differential dispersion equation for the above magnetic configuration is easy
to obtain.®!® In order to concentrate on the new physics peculiar to this geometry, it is
essential to use a reasonably simplified model: we treat only the ion dynamics in detail,
the electron response is taken to be adiabatic. Both PVS and perpendicular velocity shear
of ions are assumed to be spatially independent. In the long wavelength approximation,
kp; < 1 (p; is the ion Larmor radius), the normalized perturbed electrostatic potential ¢(z)

obeys

d*¢(x)
dz?

—be(a) + g%qsm —o, (2)




where
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and ¢(z,y,t) = ¢(z) exp(ikyy — iwt). The notation is standard: 7 = T, /T; is the ratio of the
electron to the ion temperature, vl’l = (Lp/cs)(dvy/dx) is the normalized PVS, n; = L,/Lp;
is ion temperature gradient parameter, w,. is electron diamagnetic drift frequency, L,, is the
density scale length, by = k‘y P2, cs = \/Te—/m: is the speed of sound, v;; is ion thermal velocity,
and ps = ¢/ with (; being the ion gyrofrequency in the toroidal magnetic field.

The main change brought about by the new expression for the magnetic field (needed to
describe the VWS system) in the mode equation can be seen in the argument of the plasma
dispersion function Z(¢;),

W — k”’l)” - kyUE T W .ZL‘U/E
i = =\ 5
¢ |k|||’Uti 2 IZZI(S + 82£C)| ( )

which now contains the parameter s, absent in the conventional formulation. In Eq. (5),

w L, . Lyps r £7_3£i_v_E_

W= §=—, Sy= Vp = ,
w*e, Ls’ Ls2’ E Cs d.fC’

and z is normalized to p;.

It is easy to notice that when velocity shear effects are neglected, the eigenvalue of Eq. (2)
is independent of the signs of s and s,. The eigenfunction, however, is shifted to right (left)
with respect to the mode rational surface when the signs are opposite (same). The s; term is
important only in the region (in the vicinity of mode rational surface where the eigenmode is
confined) where z R s/sy. Generally speaking, the typical mode-width is determined by ion
Landau damping scale defined by w ~ kv which gives & ~ /7@/ v/2s when s, is neglected.

Thus, a necessary condition for the s, term to significantly influence the mode is
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From Eq. (5), it is straightforward to see that an additional resonant surface, besides the
rational surface at * = 0, appears at z = —s/s, if condition Eq. (6) holds. This is expected
to bring more free energy for destabilization in a particular parameter regime. The most
significant effects introduced by the gradient of the magnetic shear in VWS plasma.é are the

changes in the mode structure and the consequent effects on driving or damping.

III. NUMERICAL RESULTS

In this section, we present the salient aspects of the results obtained by solving Eq. (2)
using a WKB shooting code. Unless stated otherwise, the following parameters: 7= 1,n; =
3,82 = —0.01, b, = 0.1, will be kept fixed while the others (like s) are varied. For a given set of
parameters, two distinct modes with significantly different structures emerge; this is similar
to what was found for the tearing modes in a parabolic g-profile.!! Typical eigenfunctions
are given in Fig. 1 where the real parts of the perturbed potential ¢, are plotted versus the
radial coordinate z for several values of s, the magnetic shear parameter. For the modes
displayed in Fig. 1(a), ¢, has two well-defined peaks whose separation increases rapidly with
increasing magnetic shear. As expected, these peaks appear at the two resonant surfaces,
z =0 and z = —s/s,. Hereafter, this mode will be referred to as the double (D) mode. In
contrast, the plots in Fig. 1(b) have a more global structure and correspond to what will
be called the global (G) mode. In the latter case, the coupling between the two resonances
is rather strong leading to a two-peak structure (of ¢.) not quite as pronounced as it is
for the D-mode. When the magnetic shear s is negligibly small, both of these modes are
centered at the mode rational surface since the two resonant surfaces are close to each other.
The additional resonant surface is pushed away from the rational surface when the magnetic

shear increases. For the D-mode, the coupling between the two resonances decreases rather
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rapidly and finally vanishes with increasing magnetic shear; at this stage the mode is still
unstable. On the other hand, with increasing shear, the coupling between the two resonances

of the G-mode decreases slowly and becomes negligible only when the mode becomes stable.

A. Instability and transport—no velocity shear

In this subsection, the interesting but complicating effects of velocity shear are neglected.
The normalized growth rate (a) and real part of the frequency (b) are shown in Fig. 2 as
functions of s for both the D- and the G-mode. For both kinds of modes, the growth rate
increases in the VWS region (s < 0.1, here), and then decreases with increasing magnetic
~ shear. The growth rate of the D-mode is lower than that of the G-mode in the VWS regime.
However, in the parameter regime studied here, the G-mode is stabilized at s ~ 0.22. At
this value of s, the D-mode is still noticeably unstable. The mode structures shown in Fig. 1
hold the secret for this difference: the eigenfunction for the G-mode becomes broader with
increasing magnetic shear, and the stabilization results due to enhanced Landau damping.
At comparable shear, the two resonances comprising the D-mode decouple from each other
and the mode behavior will effectively correspond to that of a singly peaked mode; the mode
shrinks in size and hence suffers less ion Landau damping.

The real frequency of the G-mode is much higher than that of the D-mode. Both modes
rotates in the ion direction and their respective frequencies increase with increasing magnetic
shear. For zero s, the real frequency of the D-mode goes to zero and it is ~ 0.5w,, for the
G-mode.

In Fig. 3, the normalized growth rate and the real frequency (for both D- and G-mode)
are plotted as functions of s,, the parameter measuring the gradient of the magnetic shear
$. For G-mode, the growth rate increases slightly first, and then decreases very rapidly as s

increases; the mode is stabilized at s; ~ 0.02. This holds for both of the displayed s = 0.001



and s = 0.11 cases. In contrast, for the D-mode, the results for s = 0.0001 and s = 0.1

are qualitatively different for sy < 0.03; the effects of magnetic shear are quite negligible
for s3 £ 0.1. In the low s, region, the growth rate of the D-mode increases (decreases) for
s =0.1 (s = 0.0001) as sy decreases. At s ~ 0.1, the D-mode survives only if s approaches
zero. It may be safely concluded, therefore, that the D-mode is the VWS version of the
conventional ITG mode, and that the gradient of magnetic shear has a stabilizing effect on
it.

The real frequencies for both the modes increase with s, with the G-modes increasing
much faster than the D-modes. The real frequency of the D-mode is always much lower than
the electron diamagnetic frequency w,., while for the G-mode it is comparable with w,e.

The mixing length estimates for the transport, v* A?, induced by these modes are shown
in Fig. 4 as functions of s. Here, v is the normalized growth rate, and A is the averaged
mode width normalized to p;. The averaged mode width as well as the displacement of ;che

mode center from the rational surface can be readily defined as the weighted averages

__ /a:|¢(x)|2dx
© [1e@Pds

and

o J@- @i
[ 1(@)de
It is clear from Fig. 4 that if D-mode were dominant, the transport would considerably
decrease for low magnetic shear. The transport due to G-mode, however, does not change
much with magnetic shear. Compared to D-mode, the G-mode induced transport is higher
in the VWS region and lower in the moderate shear region.
| Thus, from the results shown in Fig. 4, a possible scenario for improved confinement in the

VWS plasmas emerges: if the parameter s, is high enough so that the G-mode is stabilized,




the total transport will precipitously fall because the D-mode contribution is rather small.
This is eminently possible since the values required are not very high (see Fig. 3(a)).

If this mechanism turns out to be inadequate (for example if s, is not high enough)
additional physical elements such as velocity shear will have to be introduced in the theory

in order to explain experimental observations.

B. Parallel velocity shear effects

We begin by introducing the effects of a PVS on the instabilities just discussed. In Fig. 5,
we show how the mode growth rate (a), and the real frequency (b) change with PVS. An
examination of the relevant terms in Eq. (2) reveal that the‘eigenvalue is independent of the
sign of the PVS when the so term is not included. With the inclusion of the gradient of
magnetic shear, the symmetry with respect to the vﬁ =' 0 axis is broken as shown in Fig. 5.
In the VWS region (the curves for s = 0.005 and s = 0.001), a negative PVS has a strong
stabilizing influence on both the G- and the D-mode and a positive PVS is destabilizing for
sy < 0 and s > 0. For larger s (s = 0.15, for example), a negative PVS is alway destabilizing
for both modes. A positive PVS is stabilizing for the G-mode, but for the D-mode, it is
slightly stabilizing for low values, and becomes destabilizing for larger values.

It is well known that a PVS enhances the ITG driving mechanism and that this effect is
independent of the sign of the PVS in plasmas with not very low magnetic shear.!®!2 Our
results for the D-mode at s = 0.15 (moderate shear) are in complete agreement with this
conclusion. However, as shown above, our results for VWS plasmas are completely different
from these standard results. An obvious implication is that most of the microinstability
theories valid for magnetically confined plasmas with moderate or strong shear will need to

be seriously reexamined, and possibly modified, to extend their validity to VWS plasmas.

The modes rotate in ion direction except that the D-mode turns to rotate in electron




direction for some parameters; for example, s = 0.005 and v} > 0.3. For both modes, the
effects of a PVS on the real frequency in VWS plasmas are opposite to that found in the
normal ones. As it increases from —1 to 1, a PVS pushes the modes to the ion diamagnetic
direction at s = 0.15, and to the electron direction at s = 0.005 (s = 0.001) for the D-mode
(G-mode).

It is worthwhile to point out that the results for s, = 0.01 are the mirror image (with
respect to the vy = 0 axis) of Fig. 5. This can be seen from the dispersion equation (2).

The quasilinear mixing length estimate of the transport is plotted versus PVS in Fig. 6.
The transport induced by the D-mode is much lower in the s = 0.005 VWS plasmas than
it is in the moderately sheared plasma with s = 0.15 for the broad range of PVS from —1
to 1. A positive PVS enhances the D-mode induced transport for both low s = 0.005 and
moderate s = 0.15. In contrast, a negative PVS reduces the transport for low s = 0.005,
and increases it slightly for the moderate s = 0.15. The situation for the G-mode related
transport is similar. For s = 0.001, it is one order of magnitude lower at vI/I = —1 than
it is at U|’| = 0, and is close to that induced by the D-mode. At s = 0.15, the G-mode
induced transport is lower (higher) than it is for s = 0.001 when vj; > 0 (v} < 0). In
conclusion, a PVS may bring down the turbulent G-mode induced transport by a factor of
10 from the value without PVS effects in VWS plasmas. Thus, the total transport in VWS
plasmas (s ~ 0.001) is significantly lower than it is in plasmas with moderate magnetic shear

(s ~ 0.1). This is certainly in line with the experimental observations.?>°

C. Perpendicular velocity shear effects

The effects of a perpendicular velocity shear v, on G-mode are given in Fig. 7 where
the normalized growth rate (a) and the real freqﬁency (b) are shown as function of v;. The

stabilization effects of v are clearly evident. The v values required to completely suppress
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the instabilities are much lower at low shear (s = 0.001) than they are at moderate shear
(s = 0.15) for v} ranging from ~1 to 0. The most noticeable difference occurs at vy = -1
where at s = 0.15, stability is achieved at v < —0.2 or v > 0.15 while much smaller
lvgl > 0.02 is required for mode stabilization when s = 0.001. For v = 1, on the other
hand, the required vj to completely suppress the mode is higher at s = 0.001 than it is at
s = 0.15. However, the difference is not significant. Considering that the growth rate for
the former is about five times higher than that for the latter, it is legitimate to conclude
that the suppression effect of perpendicular velocity shear is stronger in VWS than it is in a
plasma with high or moderate magnetic shear. This is qualitatively in line with the finding
from the investigation with a toroidal integral kinetic equation, that suppression effect of
a perpendicular velocity shear on the instabilities is stronger in regions with low magnetic
shear than it is in plasmas with high shear.!?

The mode rotates in the ion direction except for s = 0.15 and vfl = 0 or —1 for which the
mode turns to rotate in electron direction with w ~ w,, when v ~ 0.1.

In Fig. 8, the eigenfrequency of the D-mode is displayed. The legend for Fig. 8 is the
same as that of Fig. 7 except that in Fig. 8, s = 0.005 instead of s = 0.001. Again, the
required v to completely suppress the mode is lower at s = 0.005 (the open symbols) than
it is at s = 0.15 (the close symbols) for v} values from —1 to 0. Even for vy = 1, the
window in which the mode is unstable is wider (—0.34 < v, < 0.18) at s = 0.15 than it is
(—0.26 < v}y < 0.26) at s = 0.005.

The dependence of the real frequency on v for the D-mode is quite different from that
of the G-mode. Now, the mode rotates in the electron direction at s = 0.005 if 0 < vl’l <1
and 0.05 < |vp|. For s = 0.15, the D-mode rotates in the electron direction with w ~ w,e
only for vy = —1 when vy > 0. This is in contrast to that for the G-mode where the mode

rotates in electron direction for both v} = —1 and 0 when v > 0 and s = 0.15.




IV. CONCLUSIONS AND DISCUSSION

Using kinetic ion and adiabatic electron responses, we have investigated drift-type mi-
croinstabilities driven by ion temperature gradient (ITG or #;) in tokamak plasmas embedded
in very weakly sheared magnetic fields (VWS). In this regime, the gradient of magnetic shear
plays an essential role in determining the stability as well as the structure of the eigenmode.
We have also included the effects of parallel and perpendicular velocity shear and studied the
interplay of these two ‘shears’. Numerical solutions reveal the simultaneous presence of two
distinct structures respectively called the double (D) and the global (G) mode. Parametric
dependence of these instabilities and of the corresponding induced quasilinear transport is
systematically analyzed.

It is found that the modes are less unstable in VWS plasmas than they are in plasmas
with moderate or strong magnetic shear. It is also shown, however, that the instability
properties and the confinement in VWS plasmas do not differ significantly from those in
normal ones when PVS and perpendicular velocity sheér effects are not included and the
parameter s; for the gradient of magnetic shear is not high enough to suppress G-mode.

Inclusion of PVS in VWS plasmas is found to stabilize or destabilize the modes, depending
on its intrinsic sign and also on its sign relative to the gradient of the magnetic shear. This
is in distinct contrast with the behavior of a standard (moderate to strong shear) plasma
which is always destabilized by PVS.1%!2 In addition, the quasilinear mixing length transport
induced by these modes is estimated to be significantly {more than one order of magnitude)
reduced by a negative PVS for s, = —0.01 in VWS plasmas compared to the values iﬁ normal
plasmas. A positive PVS is expected to have the same effects for positive so = 0.01.

The perpendicﬁlar velocity shear has equally strong effect on the instabilities in VWS
plasmas. It is found that v%; values required to completely suppress the instability are much

lower at s ~ 0.001 than they are at s ~ 0.1 for v <0 (> 0) when the gradient of magnetic
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shear is negative (positive).

The experimental results %% have shown a strong peaking of plasma toroidal rotation
frequency 1, in the region of improved confinement. The preceding simple theoretical model
seems to suggest a possible basis for the correlation between improved confinement and
PVS. It is proposed that a strong stabilization of the microinstabilities brought about by
a combination of very weak shear and a large PVS might lie at the heart of significantly
improved ion confinement. It is also likely that the gradient of PVS-induced Reynolds stress
may be the driving force for the perpendicular (or E x B) velocity shear which further
suppresses turbulence and the corresponding transport.”®
In order to focus on the basic physical processes, the toroidal and finite Larmor radius

effects are neglected in this paper. These are expected to be important in high temperature

tokamak plasmas. Studies on these effects are in progress and will be published separately.
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FIGURE CAPTIONS

. Fig. 1(a) The real part of the eigenfunction for the double (D) mode. The other

parameters are by = 0.1, 7; =3, so = —0.01,7 =1, v =vp =0.

(b) The real part of the eigenfunction for the global (G) mode. The other parameters

are the same as in Fig. 1(a).

. Normalized growth rate (a) and real frequency (b) versus magnetic shear s for double

(D) and global (G) mode. The other parameters are the same as in Fig. 1.

. Normalized growth rate (a) and real frequency (b) versus s, the gradient of magnetic

shear s, for double (D) and global (G) mode. The other parameters are the same

as in Fig. 1.

. Quasilinear turbulent transport versus magnetic shear s for double (D) and global

(G) mode. The other parameters are the same as in Fig. 1.

. Normalized growth rate (a) and real frequency versus normalized parallel velocity

shear vy for global (G) and double (D) mode. The other parameters are the same

as in Fig. 1.

. Quasilinear turbulent transport versus normalized parallel velocity shear v{l for

global (G) and double (D) mode. The other parameters are the same as in Fig. 1.

. Normalized growth rate (a) and real frequency (b) versus normalized perpendicular

velocity shear v, for global (G) mode. The other parameters are the same as in

Fig. 1.
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FIG. 8. Normalized growth rate (a) and real frequency (b) versus normalized perpendicular
velocity shear vy for double (D) mode. The other parameters are the same as in

Fig. 1.
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