
325-

MASTER

723 62

**AMES LABORATORY
RESEARCH AND DEVELOPMENT REPORT
U.S.A.E.C.**

IOWA
STATE
UNIVERSITY

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

IS-437

Metals, Ceramics, and Materials (UC-25)
TID 4500, December 15, 1960

UNITED STATES ATOMIC ENERGY COMMISSION

Research and Development Report

THE ELECTRICAL RESISTIVITY OF
MOLTEN AND SOLID THORIUM-
MAGNESIUM EUTECTIC

by

Douglas M. Provow and Ray W. Fisher

May, 1962

Ames Laboratory
at
Iowa State University of Science and Technology
F. H. Spedding, Director
Contract W-7405 eng-82

This report is distributed according to the category Metals, Ceramics, and Materials (UC-25) as listed in TID 4500, December 15, 1960.

Legal Notice

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty of representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Price \$.50. Available from the

Office of Technical Services
U. S. Department of Commerce
Washington 25, D. C.

CONTENTS

	Page
ABSTRACT.....	5
INTRODUCTION	5
SAMPLE PREPARATION	6
EQUIPMENT AND EXPERIMENTAL PROCEDURES.....	9
THORIUM-MAGNESIUM SOLID	9
THORIUM-MAGNESIUM LIQUID.....	11
SUMMARY AND CONCLUSION.....	15
ACKNOWLEDGMENT.....	15
REFERENCES.....	16

4

IS-437

THE ELECTRICAL RESISTIVITY OF MOLTEN AND SOLID THORIUM-MAGNESIUM EUTECTIC

Douglas M. Provow and Ray W. Fisher

ABSTRACT

The electrical resistivity properties of polycrystalline 39 w/o thorium-magnesium eutectic are reported for the solid from room temperature to its melting point of 589°C and as a liquid from its melting point to 900°C. The electrical resistivity of this eutectic at the melting point was 69.5 microhm-centimeters; it decreased to a value of 64.8 microhm-centimeters at 900°C.

Tantalum tubing was used to contain the alloy in the molten state.

INTRODUCTION

Considerable interest has been shown in atomic breeder reactors which produce more usable nuclear fuel than is expended. Eight or more reactors of this type have been completed or are under construction in the United States, Great Britain and the USSR. These reactors utilize thorium as a solid metal or as compounds in an aqueous slurry.

Advances have been recently completed in the pyrometallurgical separations and studies on molten metal components.¹ One of the low melting alloy eutectics, thorium-magnesium, was found to have suitable properties for the circulation of the blanket material.

It is important to know the electrical resistivity of the metal alloys used in these systems in order to (1) calculate the flow through electromagnetic pumps and (2) determine the characteristics of a heating transformer which is a loop containing molten alloys.

For the above reasons, this work was undertaken to obtain the electrical resistivity for thorium-magnesium eutectic which will be circulated as a molten liquid in a closed system.

SAMPLE PREPARATION

The literature values for the alloy composition of thorium-magnesium eutectic vary from ~ 35 w/o thorium as reported by Jones and Nash,² to 42 w/o by Yamamoto and Rostoker,³ and 38-39 w/o by Peterson.⁴ The melting points reported by these groups are 596, 582 and 588°C, respectively.

The thorium metal used for the alloy in the present work was prepared at the Ames Laboratory and the magnesium was obtained from the New England Lime Company and double distilled at Ames. The analyses for these materials are listed in Table I. Turnings from these metals were blended, compressed into briquettes and heated in a tantalum crucible by the use of an induction coil. The metals were heated to 500°C under vacuum at which time argon was admitted and the heating continued to 700°C. The furnace was maintained at this temperature for 4 hr and allowed to cool.

A micrograph of this material is shown in Fig. 1.

Table I

Analysis of Metals used in Preparing the Eutectic

Impurities	Thorium	Magnesium
Nitrogen	84 ppm	50 ppm
Carbon	250	200
Beryllium	110	N. D.
Iron	80	10
Calcium	N. D.	Trace
Oxygen	750	100
Nickel	N. D.	N. D.
Zinc	N. D.	N. D.
Aluminum	N. D.	N. D.
Manganese	N. D.	N. D.

N. D. (Not Detected)

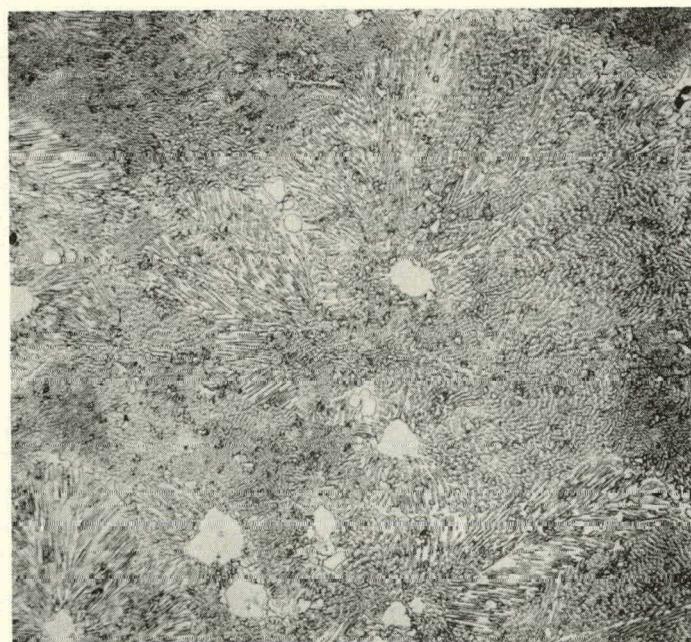


Fig. 1 - 39 w/o Thorium-Magnesium Eutectic, 250X.

EQUIPMENT AND EXPERIMENTAL PROCEDURES

All of the electrical measurements at high temperatures were conducted in the vacuum system described by Fullhart and Fisher.⁵ The electrical circuit used is shown in Fig. 2. This circuit provides a means of current reversal between potential measurements and minimizes one of the chief sources of error caused by Seebeck effects as stated by Lark-Horovitz and Johnson.⁶

A temperature difference of 3°C at 925°C was observed across the sample from the center to the ends. Two platinum/13% rhodium thermocouples were used to obtain the proper average for the temperature of the sample. The resistivity system was standardized using platinum wire and the temperature was maintained by an automatic Beck program controller which maintained a temperature $\pm 0.25\%$ of full scale.

A Ribicon potentiometer capable of being read to one microvolt was used for potential measurements. A current of 0.075 amp or less was utilized to keep the heating effect of the current at a negligible level.

THORIUM-MAGNESIUM SOLID

The alloy of 39 w/o thorium-magnesium was milled to a rectangular bar having a cross section of approximately 0.070 in. The final dimensions were obtained at room temperature by means of a traveling microscope and a comparison micrometer capable of accuracy to ± 0.00005 in.

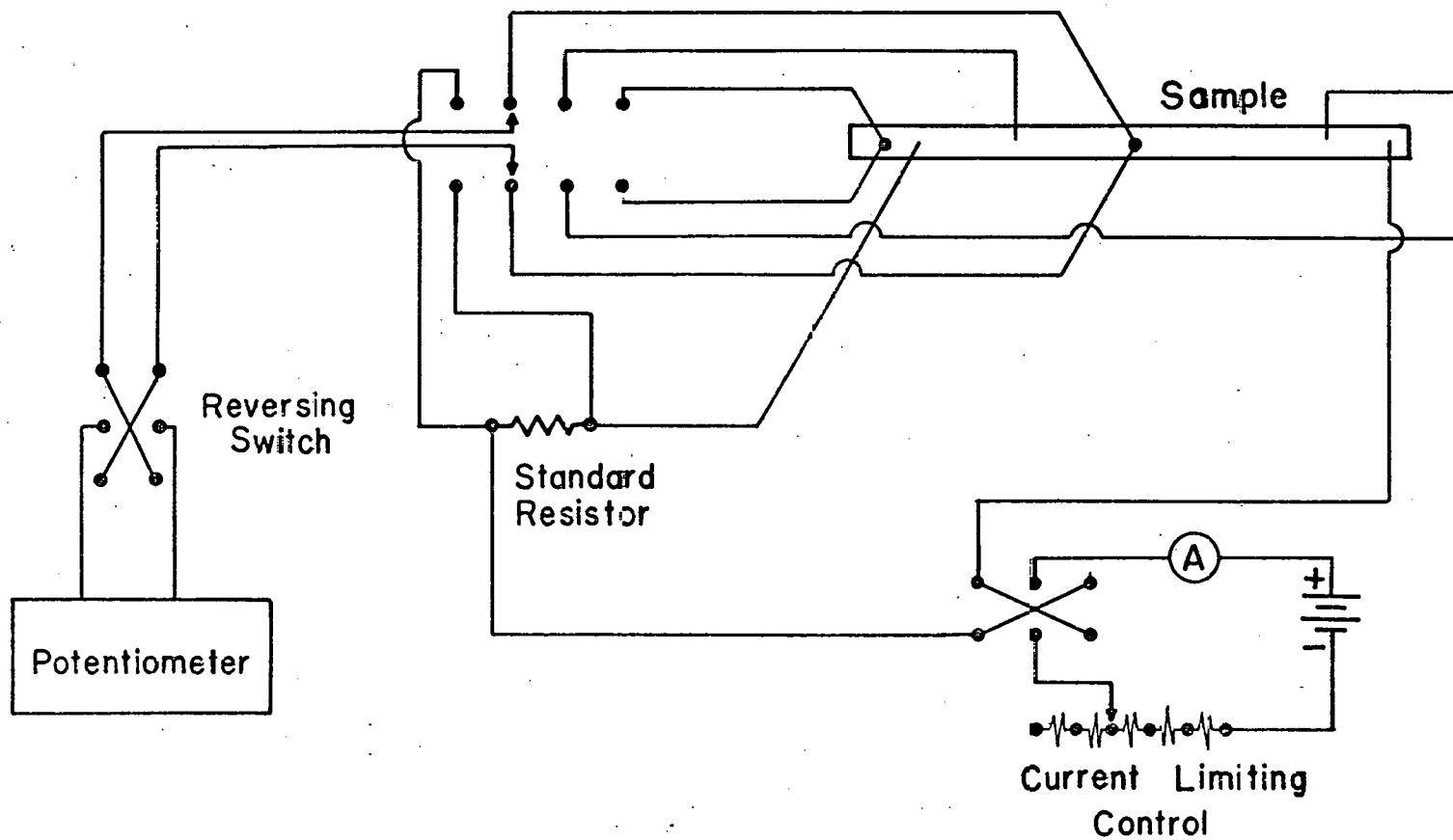


Fig. 2 - Potentiometric Circuit for Measuring Resistance.

Tantalum wire (20 mil) was used for current and potential leads which were spot welded to the sample in a helium atmosphere. The distance between leads was determined from the wire centers as described by Lark-Horovitz and Johnson.⁶

The electrical resistivity of these bars is shown in Fig. 3. The data were obtained for the alloy contained in tantalum. It should be noted that magnesium was volatilized from the solid bars beginning at 400°C.

THORIUM-MAGNESIUM LIQUID

Magnesium and thorium react readily with most container materials and gases, at and above the melting point of the eutectic. The vapor pressure of magnesium is one mm at 621°C.⁷ Because of these factors and the corrosion resistance as determined previously,¹ tantalum was chosen for the container material.

Tantalum tubing of special purity was ordered from Kawecki Chemical Company for this work. The analysis of this material is shown in Table II. The electrical resistivity of the tubing without the alloy sample was determined for the temperatures and vacuum conditions used. It was found that even in a vacuum of 10^{-5} mm mercury at temperatures of 800-1000°C tantalum absorbs oxygen and consequently the electrical resistivity of the tubing changes. Variations from 14 to 17.4 microhom-centimeters have been observed in tantalum when measured at room temperature. The change in impurities from the original material to the oxidized material after four cycles of heating to 900°C in a vacuum of 1×10^{-5} mm mercury is shown in Table II. This

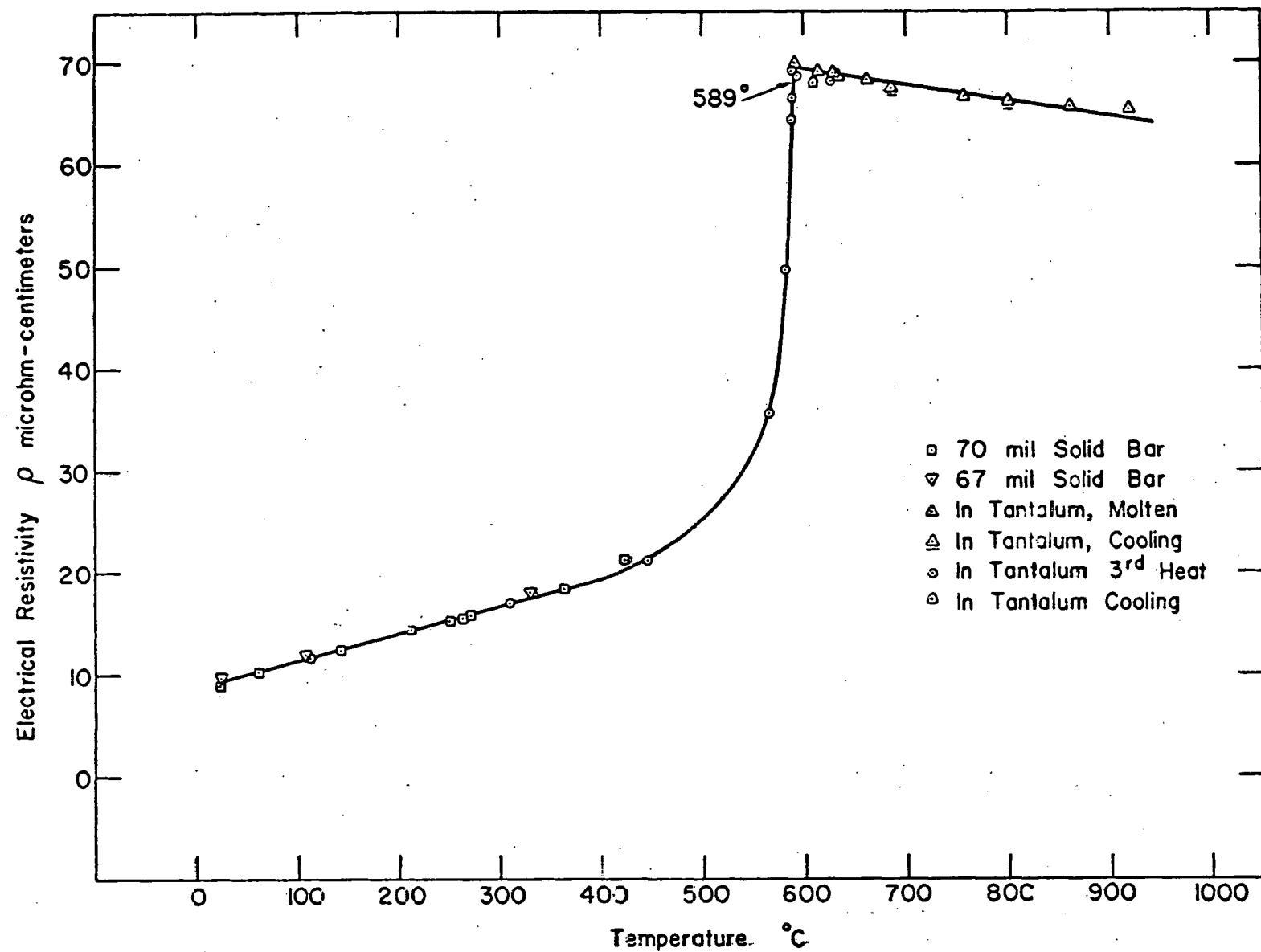


Fig. 3 - Electrical Resistivity of 39 w/o Thorium-Magnesium Eutectic.

Table II
Impurities in Tantalum Tubing

Impurities	As Procured	After Four Runs in Vacuum
Oxygen	150 ppm	740 ppm
Carbon	50	
Nitrogen	50	70
Hydrogen	2	2
Niobium	100	
Iron	50	
Titanium	30	
Silicon	200	
Aluminum	50	
Other	100	

absorption of oxygen on tantalum has also been observed by Andrews.⁸ The tantalum surface did not change appearance even though in some of the experiments tantalum was heated through four cycles during which measurements were taken.

The 39.1 w/o thorium-magnesium eutectic sample was placed in tantalum tubing and sealed under a partial atmosphere of helium. The current and potential leads were spot welded to the tantalum. The sample was heated to 700°C, cooled to 100°C, and reheated to above the melting point before data were taken.

During the test run the sample was heated to 920°C and cooled to 100°C. The sample was measured again to check the reproducibility of the data. For each point obtained the sample was heated until the system was at a steady state before data were taken. The resistance values obtained from one current direction were averaged with those obtained by reversing the current.

The resistance of the thorium-magnesium was calculated by subtracting the resistance of the tantalum at temperature from the total resistance shown in the following equation:

$$\frac{1}{R_{ThMg}} = \frac{1}{R_{Total}} - \frac{1}{R_{Ta}}$$

The standard equation $\rho = \frac{RA}{L}$ was used to calculate the values for both solid and liquid eutectic, where L is the distance in centimeters measured between potential lead centers and A is the cross sectional area in square centimeters determined from measurements of the inside diameter of the tantalum tubes.

SUMMARY AND CONCLUSION

The electrical resistivity of solid 39 w/o thorium-magnesium was determined between room temperature and 400°C. Two rectangular bars of 70 and 67 mil cross section were used to obtain these data. The alloys had a high magnesium vapor pressure above 400°C. The resistivity of the alloy increased quite sharply above this point; therefore, only the resistivity values in tantalum were used, and are shown in Fig. 3.

The electrical resistivity of the molten 39 w/o thorium-magnesium alloy was determined between 589°C (its melting point) and 900°C. A sealed tantalum tube was used to contain the alloy as well as the magnesium vapor. The results of the solid alloy in tantalum agreed well with the results from the solid bars. The resistivity decreased as the temperature increased, similar to that for molten magnesium as reported by Freedman.⁹

It should be noted that tantalum tubing will absorb oxygen at these temperatures, even in a vacuum of 10^{-5} mm mercury, leading to changes in resistivity of as much as four microhm-centimeters.

ACKNOWLEDGMENT

The authors wish to thank Dr. David Peterson for the preparation of the alloy and Mr. Charles B. Fullhart for the use of much of the equipment.

REFERENCES

- 1 Fisher, R. W. and Fullhart, C. B., Feasibility Studies on Molten Metal Reactor Components, ISC-1020 Rev. (1958).
- 2 Jones, A. and Nash, R. R., Magnesium Alloy Research, WADC Report 53-113 (October 1953).
- 3 Yamamoto, A. S., Klimek, E. J., and Rostoker, W., The Constitutional and Aging Characteristics of Magnesium-Thorium and Magnesium-Thorium Ternary Alloys, WADC Report 56-411 (1957).
- 4 Peterson, D., Unpublished Data (1962).
- 5 Fullhart, C. B. and Fisher, R. W., Electrical Resistivity of Molten Metal Reactor Components, ISC-1039 (1958).
- 6 Lark-Horovitz, K. and Johnson, V. A., Methods of Experimental Physics (Academic Press, New York and London, 1959) Vol. 6, Part B.
- 7 Loftness, R. L., A Vapor Pressure Chart for Metals, NAA-SR-132 (1951).
- 8 Andrews, M. R., J. Am. Chem. Soc. 54, 1845-1854 (1932).
- 9 Freedman, J. F., J. Chem. Phys. 34, 769-80 (1961).