

DOE/ER/60995-TI

SUMMARY OF RESEARCH ACTIVITIES
FOR 1991

Enhanced Research Program on the
Long-Range Climatic Effects of Increased
Atmospheric Carbon Dioxide—A Continuation

to be carried out by NCAR
with support from the
Department of Energy

as an increment to NCAR's
continuing program of research
sponsored by the
National Science Foundation

Principal Investigator: Warren M. Washington
Cointvestigator: Gerald A. Meehl

HH January 1992
Boulder, Colorado

PROCESSED FROM BEST AVAILABLE COPY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Summary

In the past year, we have reached several important milestones in the modeling and analysis of increased greenhouse-gas-caused climate change. Some of this work was highlighted in the recent update of the 1992 Intergovernmental Panel on Climate Change report. Our milestones are (1) analysis of the ongoing control and transient experiments out to 70 years, (2) development and testing of a new-generation coupled model, (3) analysis of natural variability and El Niño-Southern Oscillation (ENSO) climate change, (4) examination of the role of cirrus albedo in global climate sensitivity, (5) participation in various model intercomparisons, and (6) assistance with an exhibit on the greenhouse effect at the Franklin Institute Museum in Philadelphia, Pennsylvania. (Although this latter activity was not part of our planned research, we felt that our contribution to the exhibit would benefit science education.)

1. Analyses of Control and Transient Experiments

We have continued to analyze climate variability and climate anomalies from a slow increase of carbon dioxide (CO_2) in the global coarse-grid coupled climate model (Meehl et al., 1992b). Annual mean surface air temperature differences for several regions show that the Northern Hemisphere warms faster than the Southern Hemisphere and that land areas warm faster than ocean. The high northern latitudes outside the North Atlantic contribute most to global warming but also exhibit greater variability, while the high southern latitudes contribute least because of deep mixing in the circumpolar ocean (Figure 1). Geographic patterns of regional climate anomalies forced by increased CO_2 in the model are more evident with a longer averaging interval taken later in the integration. We have recently initiated further examination of trends and variability in the coupled model through the use of empirical orthogonal function analysis.

In collaboration with David Karoly (Monash University, Melbourne, Australia), we have continued to explore the possibility of using the consis-

tent zonal mean cross-section temperature change patterns from a number of model simulations as an example of a CO₂ climate-change signal that could be detected in observations (Karoly et al., 1992). Several other candidate mechanisms that could also produce such climate-change signals (e.g., increases of sea-surface temperature (SST), ENSO, and decreases of stratospheric ozone concentrations) were also studied. The other candidate mechanisms all had somewhat different signatures compared to the CO₂ signal in zonal mean temperatures as a function of height.

2. New Generation of Coupled Atmosphere, Ocean, and Sea-Ice Model

We have made considerable progress in putting together a new set of coupled atmosphere, sea-ice, and ocean models for global-change studies. These models are configured to run very efficiently on present-day supercomputers. Figure 2 shows the present synchronous coupled climate model with atmosphere (R15), and ocean and sea-ice dynamical components of 1° (the latter using the method of Flato and Hibler). The thermodynamic part of the sea-ice model has three levels, as devised by A. Semtner. Preliminary tests are encouraging in that the coupled model is yielding realistic distributions of sea-ice thickness, fractional area, and velocities. These quantities are much closer to observations than previous modeling studies of greenhouse-gas impacts. In comparing the model with observations (mostly from NASA satellite), we extensively used NASA Arctic and Antarctic sea-ice atlases for monthly ice limits and concentrations.

We configured a 1° 20-level ocean model for greenhouse sensitivity studies. This resolution is greatly enhanced over our previous 5° 4-level ocean version. We have completed several 100-year runs of the 1° ocean model with observed forcing and we are now comparing these integrations with available observations. This 1° model is also being compared with the eddy-resolving 0.5° version of A. Semtner and R. Chervin. The 1° version produces a realistic simulation of the major ocean circulations (Figures 3, 4, and 5) and regions of eddy activity as confirmed by satellite observations. This is an example of how pre-EOS data are instrumental in building better

climate models—in this case, ocean and sea-ice models.

The atmospheric model is an updated version of the Community Climate Model (CCM0) (R15) which has an improved cumulus convection scheme, cirrus albedo, surface albedos, and surface hydrology. The coupled system will be configured to use CCM2 when it becomes available, starting with studies with a slab (50 m) ocean.

3. Natural Variability and ENSO Climate Change

We have continued to study the effects on ENSO of increased CO₂ in several model versions (Meehl et al., 1992a). The global coarse-grid coupled model shows that ENSO continues to function in the tropical Pacific, but the ENSO SST anomalies are superimposed upon a warmer average SST caused by the mean increase of atmospheric CO₂. This warmer mean SST causes the evaporation, low-level moisture convergence, and resulting precipitation to be proportionately greater than in present-day events. The anomalous east-west Walker circulation is then intensified, and areas prone to drought during ENSO experience increased risk of more severe moisture deficits in an increased CO₂ environment. The change in climate basic state due to the mean increase of CO₂ and resulting decrease of equator-to-pole temperature gradient is associated with altered extratropical teleconnections during ENSO events with increased CO₂. The Pacific North American teleconnection pattern, evident in present-day composite ENSO events, is more zonal in the ENSO events in the increased CO₂ environment (Figure 6), resulting in changes of areas of anomalous warming and cooling in the extratropics, particularly over North America.

In a separate study based on these results, it was shown that, in the paleoclimate record, ENSO could have a different signature in the extratropics compared to present because of past climate basic states that were significantly different from the present (Meehl and Branstator, 1992).

In one of our earlier studies, we noted a biennial tendency for ENSO oscillations in the coupled model used for our CO₂ climate sensitivity experiments (Meehl, 1990). In a further exploration of this phenomenon, we studied the biennial signals of the observed coupled ocean-atmosphere system in the tropical Indian and Pacific Ocean regions (Meehl, 1992a). Analysis of vertical ocean temperature profiles from hydrographic station data showed that changes in upper-ocean heat content contribute to the persistence of SST anomalies on the annual time scale. These anomalies are important to a biennial mechanism (first proposed by Meehl in 1987). Results also suggested that both the Indian and Pacific Oceans are actively involved in ENSO, and that ENSO could be an amplification of the biennial cycle in the observations and the coupled model.

4. Role of Cirrus Albedo in Global Change

It has been hypothesized that cirrus albedo changes can have a major effect on climate and thus a limiting effect on global warming due to increased greenhouse gases. The suggestion is that penetrative convection under the conditions of warm ocean temperatures is strong enough to put large amounts of moisture into the upper troposphere and to generate dense cirrus clouds capable of reflecting sizable amounts of solar energy. It is well known that clouds can enhance or decrease the greenhouse effect. The simplified conventional wisdom is that, if low-level clouds increase, they will increase the planetary albedo and cool the climate system. Likewise, if cirrus clouds, which are not usually highly reflective of solar radiation, increase, the trapping of infrared radiation within the troposphere will increase the surface and tropospheric temperatures.

We tested the hypothesis of cloud cirrus feedback by modifying cloud albedo in the radiation package in a version of the CCM, with albedos specified for low (0.6), middle (0.3), and high (0.15) clouds. When the ocean surface temperature exceeded 303 K, the middle and high clouds increased linearly to 0.6 within the range of 303 to 308 K. The climate model in this study makes use of a penetrative convection scheme, which enables water vapor to be easily transported to the mid- and upper tropi-

cal troposphere where it can yield more tropical warming for doubled CO₂ concentration. This increased sensitivity may show up more in climate models with penetrative convection than in models with convective adjustment. The penetrative scheme adds a significant amount of water vapor, with an accompanying change in lapse rate, to the entire tropical tropospheric column in which precipitation occurs. Because water vapor is the largest greenhouse gas in the atmosphere, it further enhances the greenhouse effect. The reduced solar absorption, suggested in the mechanism hypothesized by Ramanathan and Collins (1991) with respect to dense cirrus, can counter the strong water vapor feedback process. It, however, is not a local phenomenon in that the general circulation changes and the compensation mechanisms play major roles. In regions such as parts of the Indian Ocean, where the SST may be higher than 300 K, this mechanism is not invoked because regional dynamics do not allow large-scale cumulus convection. Thus, other mechanisms like evaporation and circulation changes must play important roles in limiting the SSTs. Increasing the cirrus albedo in the model keeps the tropical temperature of the simple mixed-layer ocean model near 303 K and cools the entire planet. Increasing the cirrus albedo as a function of the SST (above 303 K) lowers the tropical and global temperatures. There is evidence in this study that a definite limit on the SSTs is not taking place, but the overall increase in planetary albedo is creating a negative feedback, thus causing a cooler planet than there would otherwise be. Another important finding in this model study is that surface air temperature increase from doubled CO₂ is less in a model study with the cirrus albedo feedback than without.

5. Model Intercomparisons

Indian summer monsoon characteristics were compared in a number of general circulation model (GCM) simulations in preparation for a more detailed analysis of monsoon sensitivity experiments (Meehl, 1992b). These models included several versions and resolutions of the CCM at NCAR, as well as a GCM from the Bureau of Meteorology Research Centre in Melbourne, Australia. The results were surprisingly consistent in

showing that larger land-sea temperature contrast (between southern Asia and the Indian Ocean) results in a stronger monsoon with more precipitation. The results also suggest that the effects of land-surface conditions could be as strong as those of interannually varying SSTs for year-to-year changes in Indian monsoon intensity. This result has implications for sensitivity of the Indian monsoon to an increase of CO₂ in the atmosphere.

As another part of our studies of the factors contributing to monsoon sensitivity, we reviewed the role of tropical topography in global climate (Meehl, 1992c). The Tibetan Plateau provided the strongest topographical forcing of any of the tropical regions considered. Upper-level heating, as well as the mechanical effects associated with the elevated topography of the Plateau, has a significant influence on global climate. Other tropical continental areas without elevated topographical heat sources can maintain monsoon regimes, but not of comparable intensity. This result has implications for the expected increase of land-sea temperature contrast with increased CO₂.

We also participated in an intercomparison of coupled model simulations of ENSO (Neelin et al., 1991). The results showed that the coarse-grid coupled GCMs (such as the one we have used for CO₂ sensitivity studies) simulated coupled sets of anomalies that appeared in the eastern equatorial Pacific and moved west (SST modes), while the higher-resolution coupled models produced coupled anomalies that either developed in place or slowly propagated from west to east (ocean modes). This intercomparison clarified the relative role of internal ocean wave dynamics in the models' simulations of ENSO.

6. Science Museum Exhibit

The Franklin Institute Science Museum, Philadelphia, Pennsylvania, is putting together an exhibit entitled "Greenhouse Earth" that describes many aspects of the greenhouse effect, such as the carbon cycle, ozone, clouds, water vapor, solar radiation, and climate change. The exhibit will open in Philadelphia in February 1992 and travel to various museums throughout the country during the next two years (June to August 1992

at the Museum of Science, Boston, Massachusetts; October to December 1992 at SciPort, Shreveport, Louisiana).

One portion of the exhibit covers the use of computer models to simulate the climate. It is an interactive touch-screen display that teaches some of the basic concepts about global climate change, the greenhouse effect, and computer modeling. It allows the viewer to examine various future climates based upon choices involving fossil-fuel use. Our contribution was twofold—to provide consultation on the use of computer models and to provide computer images of potential surface temperature change based upon future scenarios.

References

Karoly, D.J., J.A. Cohen, G.A. Meehl, J.F.B. Mitchell, A.H. Oort, R.J. Stouffer, and R.T. Wetherald, 1992: An example of fingerprint detection of greenhouse climate change. *Climate Dynamics*, accepted.

Meehl, G.A., 1990: Seasonal cycle forcing of El Niño in a global coupled ocean-atmosphere GCM. *Journal of Climate*, 3, 72–98.

Meehl, G.A., 1992a: A coupled air-sea biennial mechanisms in the tropical Indian and Pacific regions: Role of the ocean. *Journal of Climate*, submitted.

Meehl, G.A., 1992b: Simulated Indian summer monsoon climatology: Influence of land surface conditions. *TOGA Monsoon Numerical Experimentation Group Workshop Report*, World Meteorological Organization, Geneva, in press.

Meehl, G.A., 1992c: Effect of tropical topography on global climate. *Annual Review of Earth and Planetary Science*, 20, 85–112.

Meehl, G.A., and G.W. Branstator, 1992: Coupled climate model simulation of El Niño-Southern Oscillation: Implications for paleoclimate. *El Niño-Southern Oscillation: Historical Review and Paleoclimate Reconstruction*. H. Diaz and V. Markgraf, editors, Cambridge University Press, in press.

Meehl, G.A., G.W. Branstator, and W.M. Washington, 1992a: El Niño-Southern Oscillation and CO₂ climate change. *Journal of Climate*, submitted.

Meehl, G.A., W.M. Washington, and T.R. Karl, 1992b: Low-frequency variability and CO₂ transient climate change. Part 1: Time-averaged differences. *Climate Dynamics*, submitted.

Neelin, J.D., M. Latif, M.A.F. Allaart, M.A. Cane, U. Cubasch, W.L. Gates, P.R. Gent, M. Ghil, C. Gordon, N.C. Lau, G.A. Meehl, C.R. Mechoso, J.M. Oberhuber, S.G.H. Philander, P.S. Schopf, K.R. Sperber, A. Sterl, T. Tokioka, J. Tribbia, and S.E. Zebiak, 1991: Tropical air-sea interaction in general circulation models. *Climate Dynamics*, in press.

Ramanathan, V. and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from the 1987 El Niño. *Nature*, 351, 27-32.

FIGURE LEGENDS

Figure 1. Time series of warming in various regions (Meehl et al., 1992b).

Figure 2. Schematic of interactive components of the coupled atmosphere, ocean, and sea-ice model.

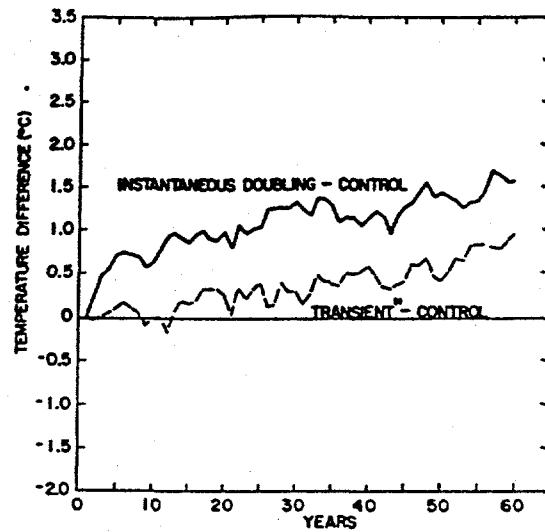
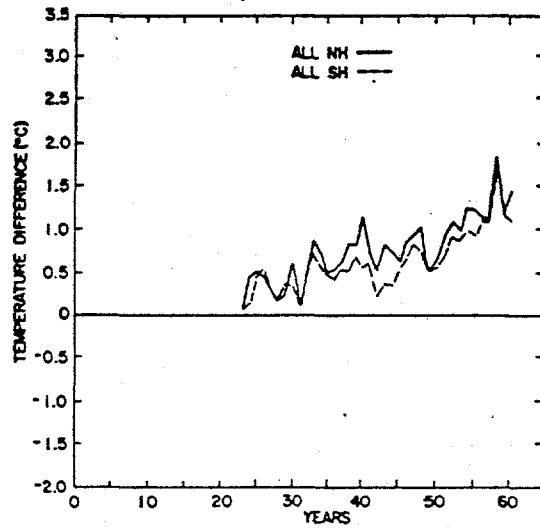
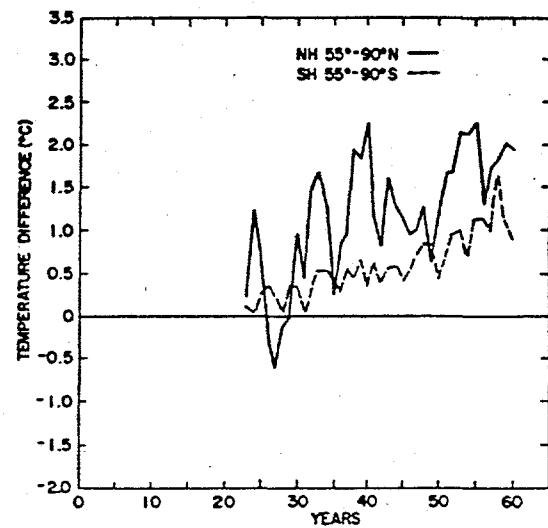

Figure 3. Simulation from ocean model showing Atlantic time mean upper-ocean currents and the Gulf and other strong flows.

Figure 4. Simulation from ocean modeling showing Pacific instantaneous upper-ocean currents and the weak eddy in the tropical Pacific.

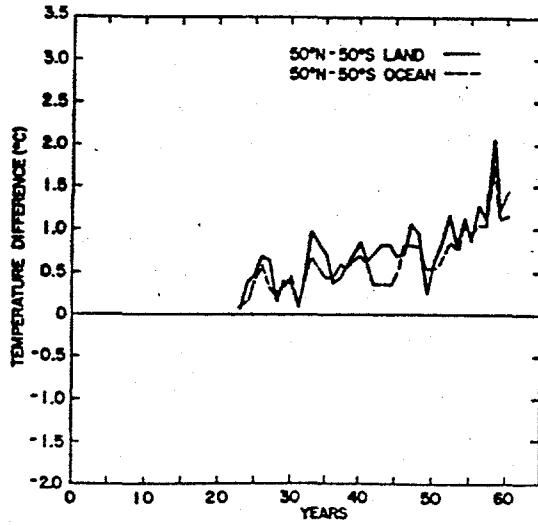
Figure 5. Simulation of return circulation of thermohaline "conveyor-belt" circulation at Atlantic Ocean bottom, showing the deep flow of the North Atlantic water into the southern hemisphere.


Figure 6. Sea-level pressure anomalies in (a) observed ENSO events, (b) $1\times\text{CO}_2$ ENSO events, and (c) $2\times\text{CO}_2$ ENSO events (Meehl et al., 1992a).

a) GLOBALLY AVERAGED OCEAN SURFACE TEMPERATURE DIFFERENCE



"TRANSIENT IS A LINEAR 1% INCREASE OF CO₂ PER YEAR


b) SURFACE AIR TEMPERATURE DIFFERENCES, TRANSIENT MINUS CONTROL

c) SURFACE AIR TEMPERATURE DIFFERENCES, TRANSIENT MINUS CONTROL

d) SURFACE AIR TEMPERATURE DIFFERENCES, TRANSIENT MINUS CONTROL

e) SURFACE AIR TEMPERATURE DIFFERENCES, TRANSIENT MINUS CONTROL

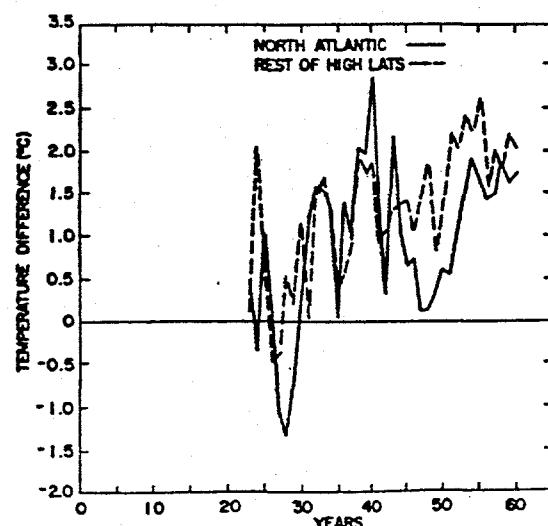
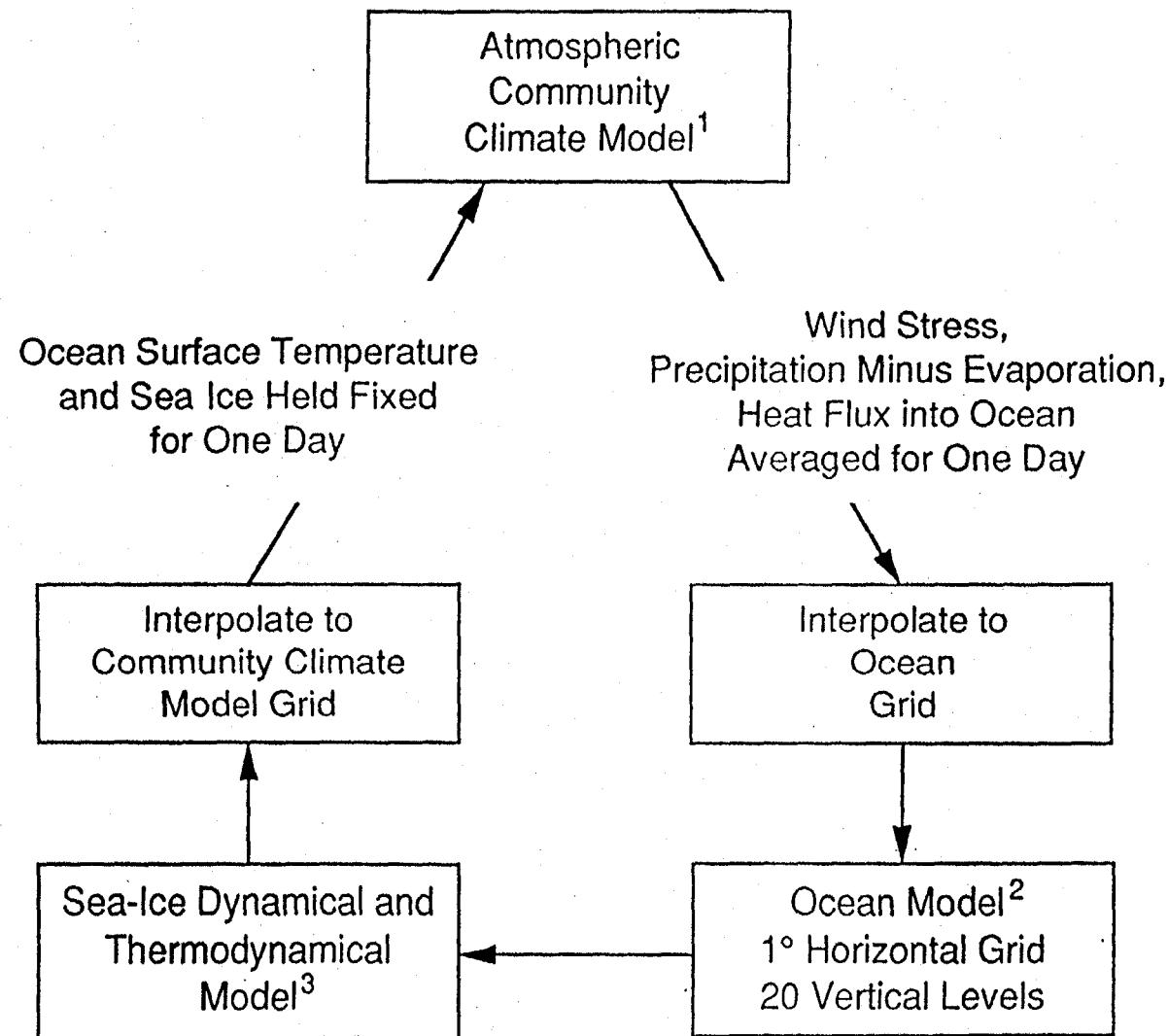



Figure 1

SYNCHRONOUS COUPLING METHOD

¹CCM

²A. Semtner and R. Chervin

³G.M. Flato and W.D. Hibler, III-dynamics; A. Semtner-thermodynamics

ATLANTIC OCEAN CURRENTS SHOWING GULF STREAM AND OTHER CURRENTS

Figure 4

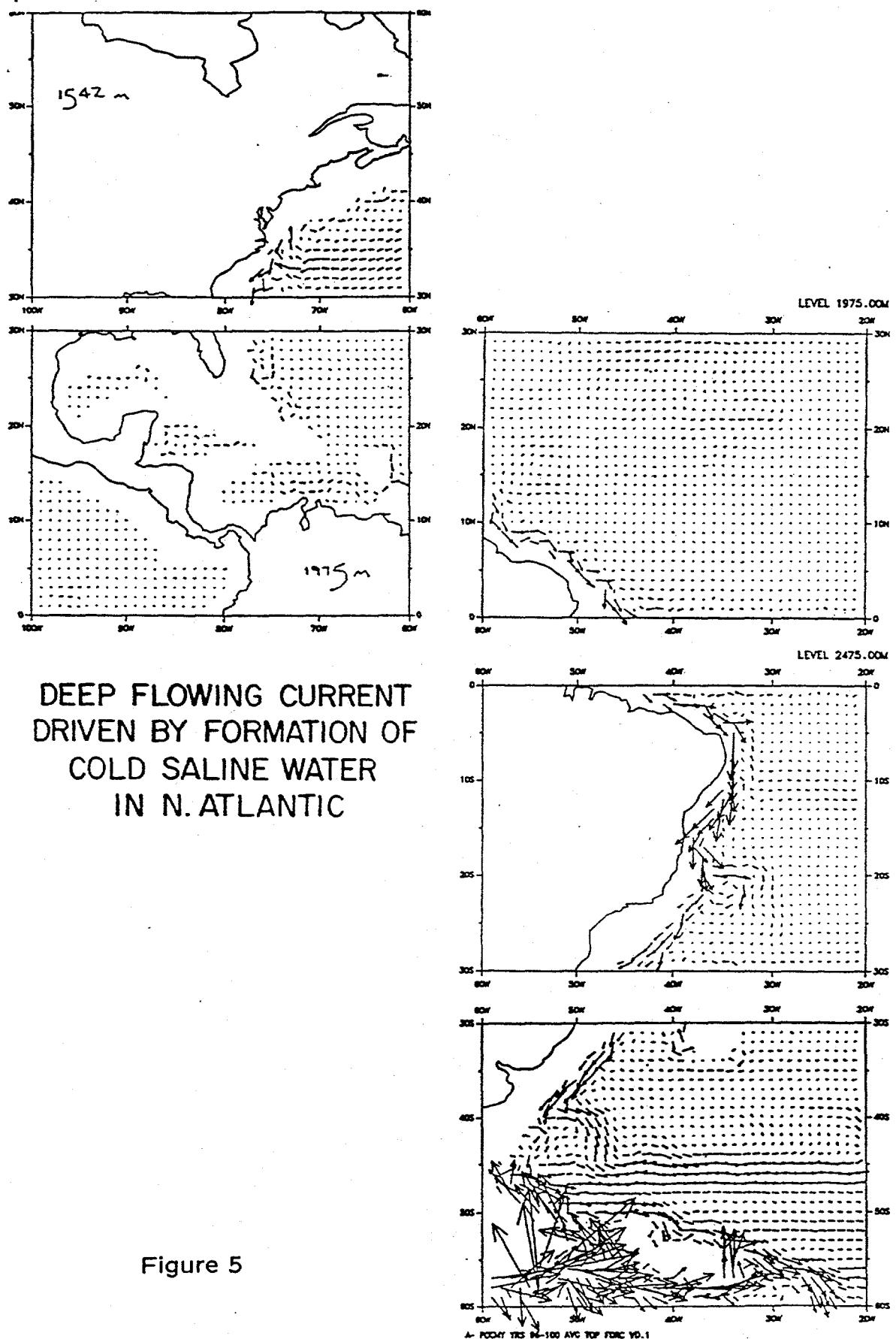
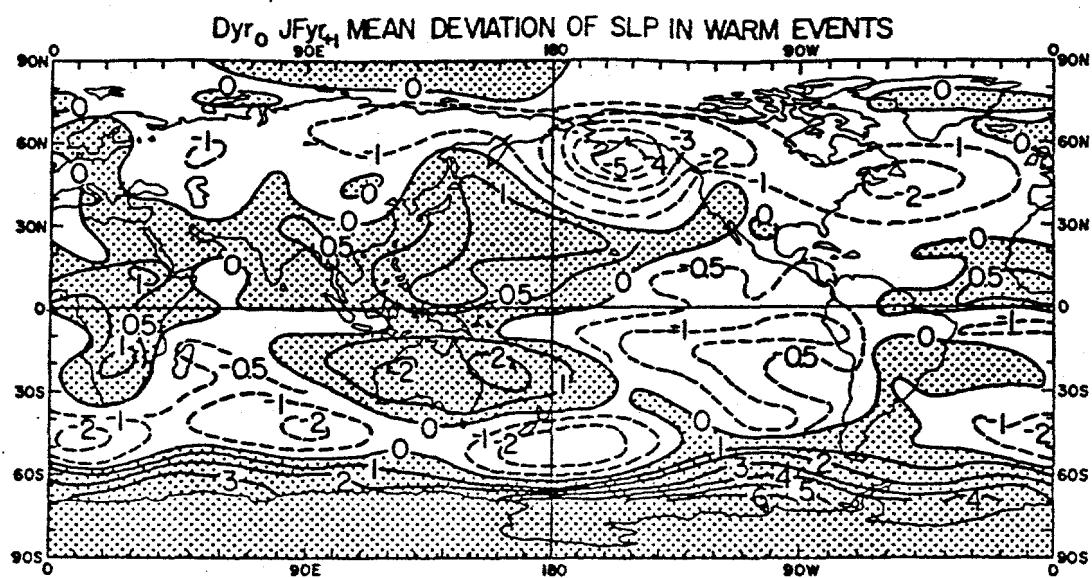
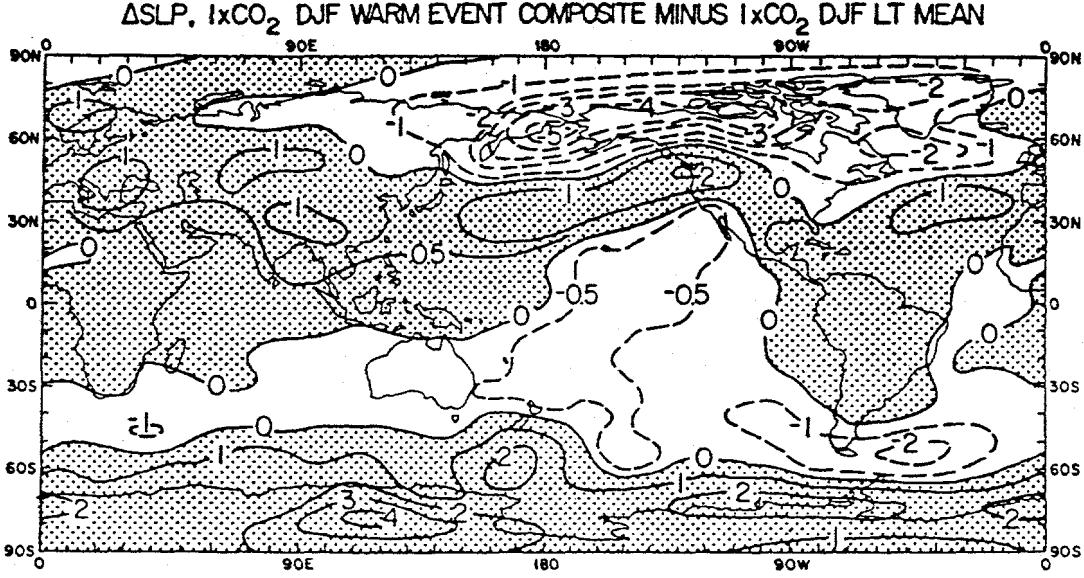




Figure 5

a)

b)

c)

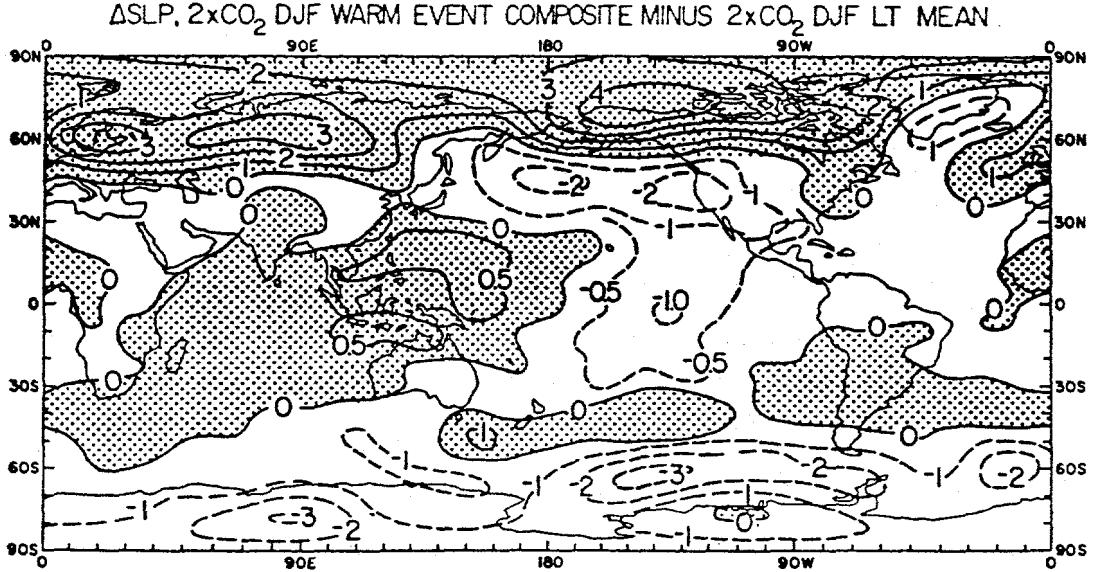


Figure 6

NCAR/DOE CO₂-Related Publications List

The following summary of NCAR publications, resulting totally or in part from DOE funding, can be divided into several broad areas—(1) obtaining climatic response from coupled model experiments, (2) verifying model, (3) improving and documenting cloud-radiation treatment, (4) documenting model, and (5) developing methods for applying model experiment results to climatic impact studies.

Bates, G.T. and G.A. Meehl, The effect of CO₂ concentration on the frequency of blocking in a general circulation model coupled to a simple mixed layer ocean, *Mon. Wea. Rev.*, 14, 687-701, 1986.

Bettge, T.W., *An Ocean Model Processor for Climate Studies*, Technical Note, NCAR/TN-279+IA, National Center for Atmospheric Research, Boulder, CO, 31 pp., 1987.

Bond, F., NCAR-NCSA collaborate on greenhouse effect study, *NCSA Access* (NCSA Newsletter), July-August 1989, 3, 4, 1-5, 1989.

Cess, R.D., G.L. Potter, J.P. Blanchet, G.J. Boer, S.J. Ghan, J.T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J.F.B. Mitchell, J.-J. Morcrette, D.A. Randall, M.R. Riches, E. Roeckner, U. Schlese, A. Slingo, K.E. Taylor, W.M. Washington, R.T. Wetherald, and I. Yagai, Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models, *Science*, 4 August, 513-516, 1989.

Cess, R.D., G.L. Potter, J.P. Blanchet, G.J. Boer, A.D. Del Genio, M. Déqué, V. Dymnikov, V. Galin, W.L. Gates, S.J. Ghan, J.T. Kiehl, A.A. Lacis, H. LeTreut, Z.-X. Li, X-Z. Liang, B.J. McAvaney, V.P. Meleshko, J.F.B. Mitchell, J.-J. Morcrette, D.A. Randall, L. Rikus, E. Roeckner, J.F. Royer, U. Schlese, D.A. Sheinin, A. Slingo, A.P. Sokolov, K.E. Taylor, W.M. Washington, R.T. Wetherald, I. Yagai, and M.-H. Zhang, Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. *J. Geophys. Res.*, 95, 16,601-16,615, 1990.

Cess, R.D., G.L. Potter, M.-H. Zhang, J.-P. Blanchet, G.J. Boer, S. Chalita, D.A. Dazlich, A.D. Del Genio, V. Dymnikov, V. Galin, D. Jerrett, E. Keup, A.A. Lacis, H. LeTreut, X.-Z. Liang, J.-F. Mahfouf, B.J. McAvaney, V.P. Meleshko, J.F.B. Mitchell, J.-J. Morcrette, P.M. Norris, D.A. Randall, L. Rikus, E. Roeckner, J.-F. Royer, U. Schlese, D.A. Sheinin, J.M. Slingo, A.P. Sokolov, K.E. Taylor, W.M. Washington, R.T. Wetherald, and I. Yagai, 1991: Interpretation of snow-climate feedback as produced by 17 general circulation models. *Science*, 253, 888-892.

Chervin, R.M., On the impact of interannually varying ocean surface temperatures on the variability of Southern Hemisphere time-averaged atmospheric states, *Preprint Volume, Second Conference on Southern Hemisphere Meteorology*, Wellington, New Zealand, 1-5 December 1985, American Meteorological Society, Boston, MA, 208-211, 1986.

Chervin, R.M., Predictability of time-averaged atmospheric states. In *Physically-Based Modelling and Simulation of Climate and Climatic Change—Part II*, M.E. Schlesinger, Ed., Kluwer Academic Publishers, Dordrecht, Boston and London, 983–1008, 1988.

Chervin, R.M., On the relationship between computer technology and climate modelling. In *Physically-Based Modelling and Simulation of Climate and Climatic Change—Part II*, M.E. Schlesinger, Ed., Kluwer Academic Publishers, Dordrecht, Boston and London, 1053–1068, 1988.

Chervin, R.M., DO GLOBAL: A climate modeling imperative as well as a microtasking directive. In *Science and Engineering on Cray Supercomputers, Proceedings of Fourth International Symposium*, Minneapolis, MN, 12–14 October 1988, Cray Research, Inc., 429–436, 1988.

Chervin, R.M., High performance computing and the grand challenge of climate modeling. *Computers in Physics*, May/June 1990, 234–239, 1990.

Chervin, R.M., Numerical exploration of the world ocean. In *Science and Engineering on Supercomputers, Proceedings of the Fifth International Conference*, London, England, 22–24 October 1990, Computational Mechanics Publications, Southampton and Boston, 189–192 and 584–586, 1990.

Chervin, R.M. and A.J. Semtner, An ocean modeling system for supercomputer architectures of the 1990s. In *Climate–Ocean Interaction*, M.E. Schlesinger, Ed., Kluwer Academic Publishers, Dordrecht, Boston and London, 87–95, 1990.

Dickinson, R.E., G.A. Meehl, and W.M. Washington, Ice-albedo feedback in a CO₂ doubling simulation, *Climatic Change*, 10, 241–248, 1987.

IDAP (Interactive Data Analysis Processor), *Graphical Analysis System for General Circulation Model and Observational Data. Users' Guide*, National Center for Atmospheric Research, Boulder, CO, 50 pp., 1986.

Karoly, D.J., J.A. Cohen, G.A. Meehl, J.F.B. Mitchell, A.H. Oort, R.J. Stouffer, and R.T. Wetherald, An example of fingerprint detection of greenhouse climate change. *Climate Dynamics*, accepted, 1992.

Kellogg, W.W., Climate change and society: Environmental effects and societal consequences of climate change induced by increased carbon dioxide, *Proceedings of Climate Change Seminar*, 129–153, 1981.

Kellogg, W.W., Precipitation trends on a warmer earth, *Interpretation of Climate and Photochemical Models, Ozone and Temperature Measurements*, 35–46, 1982.

Kellogg, W.W., Anomalies in temperature and rainfall during warm Arctic seasons, *Climatic Change*, 5, 39–60, 1983.

Kellogg, W.W., Feedback mechanisms in the climate system affecting future levels of carbon dioxide, *J. Geophys. Res.*, 88, 1263–1269, 1983.

Kellogg, W.W., Future climate on a warmer earth, chapter in *Water—A Resource in Demand, Proceedings of Symposium on Future Climate and Potential Impacts on Natural Resource Management*, Texas A&M University, August 1982, W.F. Miller, Ed., Mississippi State University, MS, 2–8, 1983.

Kellogg, W.W., Identification of the climate change induced by increasing carbon dioxide and other trace gases in the atmosphere, *WMO Bulletin*, World Meteorological Organization, 32, 1, 23-32, 1983.

Kellogg, W.W., Impacts of a CO₂-induced climate change, chapter in *Carbon Dioxide: A Text on Current Views and Developments in Energy/Climate Research*, 379-413, 1983.

Kellogg, W.W., Society, science, and climate change, *Foreign Affairs*, 60, 1076-1109, 1982; reprinted by permission in *Dialogue*, 61, 62-69, 1983.

Kellogg, W.W., Carbon dioxide and climate changes: Implication for mankind's future, chapter in *Absolute Values and the New Cultural Revolution*, 201-229, 1984.

Kellogg, W.W., Future climate: Reasons for a warm outcome, chapter in *Illinois Climate: Trends, Impacts, and Issues*, 64-83, 1984.

Kellogg, W.W., Modeling the prospects for climate change: Current state of the art and implications, *Advances in Applied Micro-Economics*, 3, 109-132, 1984.

Kellogg, W.W., Possible effects of a global warming on Arctic sea ice, precipitation and carbon balance, chapter in *The Potential Effects of Carbon Dioxide Induced Climatic Change in Alaska*, Misc. Publ. 83-1, 59-66, 1984.

Kellogg, W.W., Symposium on Interdependence of Clouds, Radiation, Trace Substances, and Climate, Hamburg, Federal Republic of Germany, 22-26 August 1983, *Bull. Amer. Meteorol. Soc.*, 65, 1083-1091, 1984.

Kellogg, W.W., How well can we forecast climate change? *Proceedings of Symposium on Human Intervention in the Climatology of Arid Lands: A State-of-the-Art Review*, Boulder, CO, 3 April 1986, AAAS Committee for Desert and Arid Zones (CODAZR), 1986.

Kellogg, W.W., Mankind's impact on climate: The evolution of an awareness, *Climatic Change*, 10, 113-136, 1987.

Kiehl, J.T., Satellite detection of effects due to increased atmospheric carbon dioxide, *Science*, 222, 504-506, 1983.

Kiehl, J.T., Changes in the radiative balance of the atmosphere due to increases in CO₂ and trace gases, *Adv. Space Res.*, 6, 55-60, 1987.

Kiehl, J.T. and R.E. Dickinson, A study of the radiative effect of enhanced atmospheric CO₂ and CH₄ on early earth surface temperatures, *J. Geophys. Res.*, 92, 2991-2998, 1987.

Kiehl, J.T. and V. Ramanathan, Radiative heating due to increased CO₂: The role of H₂O continuum absorption in the 12-18 μ m region, *J. Atmos. Sci.*, 39, 2923-2926, 1982.

Kiehl, J.T. and V. Ramanathan, CO₂ radiative parameterization used in climate models: Comparison with narrow band models and with laboratory data, *J. Geophys. Res.*, 88, 5191-5202, 1983.

Kiehl, J.T., Chr. Brühl, and T. Yamanouchi, A parameterization for the absorption due to the near infrared bands of CO₂, *Tellus*, 37B, 189-196, 1985.

Kukla, G., T. Karl, R. Knight, G.A. Meehl, W.M. Washington, and J. Gavin, Current temperature trends: Transient response to the CO₂ increase? *Nature*, submitted, 1990.

Kutzbach, J.E., P.J. Guetter, and W.M. Washington, Simulated circulation of an idealized ocean for Pangaean time, *Paleoceanography*, 5, 299-317.

MacCracken, M. (Chairman), U. Cubasch, W.L. Gates, L.D. Harvey, B. Hunt, R. Katz, E. Lorenz, S. Manabe, B. McAvaney, N. McFarlane, G. Meehl, V. Meleshko, A. Robock, G. Stenchikov, R. Stouffer, W.-C. Wang, W. Washington, R. Watts, and S. Zebiak, Working Group 2: A critical appraisal of model simulations. In *Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations*, M.E. Schlesinger, editor, Elsevier Science Publishers B.V., Amsterdam, 583-591, 1991.

Meehl, G.A., *Observed World Ocean Seasonal Surface Currents on a 5° Grid*, Technical Note, NCAR-TN/IA-159+STR, National Center for Atmospheric Research, Boulder, CO, 23 pp., 1980.

Meehl, G.A., Characteristics of surface current flow inferred from a global ocean current data set, *J. Phys. Oceanogr.*, 12, 538-555, 1982.

Meehl, G.A., A calculation of ocean heat storage and effective mixed layer depths for the Northern Hemisphere, *J. Phys. Oceanogr.*, 14, 1746-1760, 1984.

Meehl, G.A., Modeling the earth's climate, *Climatic Change*, 6, 259-286, 1984.

Meehl, G.A., Soil moisture, a simple mixed layer ocean and the Southern Hemisphere semiannual oscillation in the NCAR Community Climate Model, in *Studies in Climate*, H. van Loon, Ed., Technical Note, NCAR/TN-227+STR, National Center for Atmospheric Research, Boulder, CO, NTIS #PB84 196385, 115-150, 1984.

Meehl, G.A., Climates and climate models, *Planet Earth and the New Geoscience*, V. Schmidt, Ed., University External Studies Program, University of Pittsburgh, 296-297, 1985.

Meehl, G.A., The global climate system, *Planet Earth and the New Geoscience*, V. Schmidt, Ed., University External Studies Program, University of Pittsburgh, 244-245, 1985.

Meehl, G.A., The tropics and their role in the climate system, *Geogr. J.*, 153, 21-36, 1987.

Meehl, G.A., The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions, *Mon. Wea. Rev.*, 115, 27-50, 1987.

Meehl, G.A., Interactions between the tropics and Southern Hemisphere mid-latitudes: Observations and GCM simulations, *Preprint Volume Second International Conference on Southern Hemisphere Meteorology*, Wellington, New Zealand, 1-5 December 1986, American Meteorological Society, Boston, 217-220, 1987.

Meehl, G.A., *Interactions between the Asian Monsoons, the Tropical Pacific, and the Southern Hemisphere Midlatitudes*, NCAR Cooperative Ph.D. Thesis No. 106, University of Colorado, Boulder, CO, 172 pp, 1987.

Meehl, G.A., Tropical-midlatitude interactions in the Indian and Pacific sectors of the Southern Hemisphere, *Mon. Wea. Rev.*, 116, 472-484, 1988.

Meehl, G.A., The coupled ocean-atmosphere modeling problem in the tropical Pacific and Asian monsoon regions, *J. Climate*, 2, 1146-1163, 1989.

Meehl, G.A., Seasonal cycle forcing of El Niño in a global coupled ocean-atmosphere climate model, *J. Climate*, 3, 72-98, 1990.

Meehl, G.A., Southern oscillation phenomena in a coupled ocean-atmosphere GCM. *Proceedings of the Thirteenth Annual Climate Diagnostics Workshop*, Cambridge, MA, 31 October-4 November 1988, U.S. Dept. Commerce, Washington, DC, 289-291, 1989.

Meehl, G.A., The Southern Oscillation in a coupled GCM: Implications for climate sensitivity and climate change. *Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations*, M.E. Schlesinger, ed., Elsevier, Amsterdam, 111-128, 1991.

Meehl, G.A., The Southern Oscillation in a coupled GCM: Implications for climate sensitivity and climate change, *Preprint Volume Third International Conference on Southern Hemisphere Meteorology*, Buenos Aires, Argentina, 13-17 November 1989, American Meteorological Society, Boston, 315-318, 1990.

Meehl, G.A., Development of global coupled ocean-atmosphere general circulation models. *Climate Dynamics*, 5, 19-33, 1990.

Meehl, G.A., ENSO and CO₂ climate change in a coupled ocean-atmosphere GCM. *Proceedings of the Fourteenth Annual Climate Diagnostics Workshop*, La Jolla, CA, 16-20 October 1989, U.S. Department of Commerce, Washington, DC 41-46, 1990.

Meehl, G.A., A reexamination of the mechanism of the semiannual oscillation in the Southern Hemisphere. *Fifth Conference on Climate Variations*, 14-18 October 1991, AMS, Boston, 105-108, 1991.

Meehl, G.A., A reexamination of the mechanism of the semiannual oscillation in the Southern Hemisphere. *J. Climate*, 4, 911-926, 1991.

Meehl, G.A., A mechanism for the biennial signals in the coupled ocean-atmosphere system in the tropical Indian and Pacific regions. *Proceedings of the Fifteenth Annual Climate Diagnostics Workshop*, Asheville, NC, 29 October-2 November 1990, U.S. Department of Commerce, Washington, DC, 81-86, 1991.

Meehl, G.A., Global coupled models. *Climate Systems Modeling*, K. Trenberth, ed., Cambridge University Press, in press, 1992.

Meehl, G.A., Effect of tropical topography on global climate. *Annual Review of Earth and Planetary Science*, 20, 85-112, 1992.

Meehl, G.A., A coupled air-sea biennial mechanism in the tropical Indian and Pacific regions: Role of the ocean. *J. Climate*, submitted, 1992.

Meehl, G.A., Simulated Indian summer monsoon climatology: Influence of land surface conditions. *TOGA Monsoon Numerical Experimentation Group Workshop Report*, World Meteorological Organization, Geneva, in press, 1992.

Meehl, G.A. and B.A. Albrecht, Tropospheric temperatures and Southern Hemisphere circulation, *Mon. Wea. Rev.*, 116, 953-960, 1988.

Meehl, G.A. and B.A. Albrecht, Response of a GCM with a hybrid convection scheme to a tropical Pacific sea surface temperature anomaly. *J. Climate*, **4**, 672-688.

Meehl, G.A. and G.W. Branstator, Coupled climate model simulation of El Niño-Southern Oscillation: Implications for paleoclimate. *El Niño-Southern Oscillation: Historical Review and Paleoclimate Reconstruction*, H. Diaz and V. Markgraf, eds., Cambridge University Press, accepted, 1992.

Meehl, G.A., G.W. Branstator, and W.M. Washington, El Niño-Southern Oscillation and CO₂ climate change. *J. Climate*, submitted, 1992.

Meehl, G.A. and W.M. Washington, Sea surface temperatures computed by a simple ocean mixed layer coupled to an atmospheric GCM, *J. Phys. Oceanogr.*, **15**, 92-104, 1985.

Meehl, G.A. and W.M. Washington, Tropical response to a doubling of CO₂ with an atmospheric GCM coupled to a simple mixed layer ocean model, *Proceedings of Third Conference on Climate Variations: Symposium on Contemporary Climate 1850-2100*, Los Angeles, CA, 8-11 January 1985, American Meteorological Society, Boston, MA, 130-131, 1985.

Meehl, G.A. and W.M. Washington, Tropical response to increased CO₂ in a GCM with a simple mixed layer ocean: Similarities to an observed Pacific Warm Event, *Mon. Wea. Rev.*, **114**, 667-674, 1986.

Meehl, G.A. and W.M. Washington, A comparison of soil-moisture sensitivity in two global climate models, *J. Atmos. Sci.*, **45**, 1476-1492, 1988.

Meehl, G.A. and W.M. Washington, Climate simulation pathology in a freely coupled ocean-atmosphere GCM. *Preprint Volume Seventh Conference on Ocean-Atmosphere Interaction*, Anaheim, CA, 1-5 February 1988, American Meterological Society, Boston, 30-33, 1988.

Meehl, G.A. and W.M. Washington, CO₂ climate sensitivity and snow-sea-ice albedo parameterization in an atmospheric GCM coupled to a mixed-layer ocean model, *Climatic Change*, **16**, 283-306, 1990.

Meehl, G.A., W.M. Washington, and T.R. Karl, Low-frequency variability and CO₂ transient climate change. Part 1: Time-averaged differences. *Climate Dynamics*, submitted, 1992.

Meehl, G.A., W.M. Washington, and A.J. Semtner, Experiments with a global ocean model driven by observed atmospheric forcing, *J. Phys. Oceanogr.*, **12**, 301-312, 1982.

Neelin, J.D., M. Latif, M.A.F. Allaart, M.A. Cane, U. Cubasch, W.L. Gates, P.R. Gent, M. Ghil, C. Gordon, N.C. Lau, G.A. Meehl, C.R. Mechoso, J.M. Oberhuber, S.G.H. Philander, P.S. Schopf, K.R. Sperber, A. Sterl, T. Tokioka, J. Tribbia, and S.E. Zebiak, Tropical air-sea interaction in general circulation models. *Climate Dynamics*, in press, 1991.

Potter, G.L., J.T. Kiehl, and R.D. Cess, A clarification on certain issues related to the CO₂-climate problem, *Climatic Change*, **10**, 87-95, 1987.

Ramanathan, V., M. Lian, and R. Cess, Increased atmospheric CO₂ zonal and seasonal estimates of the effect on the radiation energy balance and surface temperature, *J. Geophys. Res.*, **84**, 4949-4958, 1979.

Randall, D.A., R.D. Cess, J.P. Blanchet, G.J. Boer, D.A. Dazlich, A.D. Gel Genio, M. Déqué, V. Dymnikov, V. Galin, S.J. Ghian, A.A. Lacis, H. LeTreut, Z-X. Li, X.-Z. Liang, B.J. McAvaney, V.P. Meleshko, J.F.B. Mitchell, J.-J. Morcrette, G.L. Potter, L. Rikus, E. Roeckner, J.F. Royer, U. Schlese, D.A. Sheinin, J. Slingo, A.P. Sokolov, K.E. Taylor, W.M. Washington, R.T. Wetherald, I. Yagai, and M.-H. Zhang, Intercomparison and interpretation of surface energy fluxes in atmospheric general circulation models. *J. Geophys. Res.*, in press, 1991.

Semtner, A.J., Jr., On modelling the seasonal cycle of sea ice in studies of climatic change, *Climatic Change*, 6, 27-37, 1984.

Semtner, A.J., Jr., Modelling the ocean in climate studies, *Ann. Glaciol.*, 5, 133-140, 1984.

Semtner, A.J., Jr., Ocean modeling of the North Atlantic, *North Atlantic Deep Water Formation: Report of a Miniworkshop*, National Aeronautics and Space Administration, Washington, DC, 1984.

Semtner, A.J., Jr., On modelling the oceanic environment of West Antarctica, including CO₂-induced changes, *Environment of West Antarctica: Potential CO₂-Induced Changes*, Polar Research Board, National Academy of Sciences, Washington, DC, 197-211, 1984.

Semtner, A.J., Jr., Sensitivity of ocean circulation to sea-ice processes, *Proceedings of CAS/JSC Meeting of Experts on Sea-Ice and Climate Modelling*, Geneva, 12-16 December 1983, World Meteorological Organization, 63 pp., 1984.

Semtner, A.J., Jr., Finite-difference formulation of a world ocean model, *Proceedings of NATO Institute on Advanced Physical Oceanographic Numerical Modelling*, Reidel, Dordrecht, Holland, 187-202, 1986.

Semtner, A.J., Jr., History and methodology of modelling the circulation of the world ocean, *Proceedings of NATO Institute on Advanced Physical Oceanographic Numerical Modelling*, Reidel, Dordrecht, Holland, 23-32, 1986.

Semtner, A.J., Jr., A numerical study of sea ice and ocean circulation in the Arctic, *J. Phys. Oceanogr.*, 17, 1077-1099, 1987.

Semtner, A.J., Jr. and R.M. Chervin, A simulation of the global ocean circulation with resolved eddies, *J. Geophys. Res.*, 93, 15,502-15,522 and 15,767-15,775, 1988.

Semtner, A.J. and R.M. Chervin, Breakthroughs in ocean and climate modeling made possible by supercomputers of today and tomorrow. In *Supercomputing 88: Volume II Science and Applications*, ed., J.L. Martin and S.F. Lundstrom, IEEE Computer Society Press, Washington, DC, 230-239, 1989.

Semtner, A.J., Jr. and R.M. Chervin, Environmental effects on acoustic measures of global ocean warming. *J. Geophys. Res.*, 95, 12,973-12,982 and 13,551-13,552, 1990.

Van den Dool, H.M., and R.M. Chervin, A comparison of month-to-month persistence of anomalies in a general circulation model and in the earth's atmosphere, *J. Atmos. Sci.*, 43, 1454-1466, 1986.

Van Ypersele, J.-P., *A Numerical Study of the Response of the Southern Oscillation and Its Sea Ice to a CO₂-Induced Atmospheric Warming*, NCAR Cooperative Thesis No. 99, University of Colorado, Boulder, CO, 135 pp., 1986.

Wang, W.-C., G. Molnar, M.K.W. Ko, S. Goldenberg, and N.D. Sze, Atmospheric trace gases and global climate: A seasonal model study, *Tellus*, **42B**, 149–161, 1990.

Wang, W.C., W.M. Washington, D.J. Wuebbles, R.G. Isaacs, and G. Molnar, Model projections of the potential climatic effects of perturbations other than CO₂, chapter 6 in SOA Volume, 86 pp., 1984.

Wang, W.C., D.J. Wuebbles, W.M. Washington, R.G. Isaacs and G. Molnar, Trace gases and other potential perturbations to global climate, *Rev. Geophys.*, **24**, 110–140, 1986.

Washington, W.M. (Ed.), *Documentation for the Community Climate Model (CCM), Version 0*, NTIS PB82-194192, Climate Section, NCAR, Boulder, CO, 222 pp., 1982.

Washington, W.M., Where's the heat? *Natural History*, March 1990, 66–72.

Washington, W.M. and T.W. Bettge, Computer simulation of the greenhouse effect, *Computers in Physics*, May/June, 240–246, 1990.

Washington, W.M. and G.A. Meehl, Coupled and uncoupled atmosphere-ocean general circulation model experiments on summer and winter monsoon, *International Conference on Early Results of FGGE and Large-Scale Aspects of the Monsoon Experiments, Condensed Papers and Meeting Report*, Tallahassee, FL, 12–17 January 1981, World Meteorological Organization, Geneva, 4–20 to 4–29, 1981.

Washington, W.M. and G.A. Meehl, A summary of recent NCAR general circulation experiments on climatic effects of doubled and quadrupled amounts of CO₂, *Proceedings of U.S. Department of Energy CO₂ Research, Conference on Carbon Dioxide, Science, and Consensus*, Coolfont Conference Center, Berkeley Springs, WV, 19–23 September 1982, U.S. Dept. of Energy Conf.-820970, Dist. Category UC-11, Washington, DC, pp. III.177–III.192, 1983.

Washington, W.M. and G.A. Meehl, General circulation model experiments on the climatic effects due to a doubling and quadrupling of carbon dioxide concentration, *J. Geophys. Res.*, **88**, 6600–6610, 1983.

Washington, W.M. and G.A. Meehl, Seasonal cycle experiment on the climate sensitivity due to a doubling of CO₂ with an atmospheric general circulation model coupled to a simple mixed layer ocean model, *J. Geophys. Res.*, **89**, 9475–9503, 1984.

Washington, W.M. and G.A. Meehl, Using climate models to investigate global habitability issues, *Proceedings of AIAA 22nd Aerospace Sciences Meeting*, Reno, NV, 9–12 January 1984, 1984.

Washington, W.M. and G.A. Meehl, General circulation model CO₂ sensitivity experiments: Snow-sea ice albedo parameterizations and globally averaged surface air temperature, *Climatic Change*, **8**, 231–141, 1986.

Washington, W.M. and G.A. Meehl, Climate sensitivity due to increased CO₂: Experiments with a coupled atmosphere and ocean general circulation model. *Climate Dynamics*, **4**, 1–38, 1989.

Washington, W.M. and G.A. Meehl, Characteristics of coupled atmosphere-ocean CO₂ sensitivity experiments with different ocean formulations. *Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations*, M.E. Schlesinger, ed., Elsevier Scientific Publishers, Amsterdam, 79–110, 1991.

Washington, W.M. and G.A. Meehl, Description of new coupled atmosphere-ocean-sea-ice models to be used in greenhouse-effect studies. In preparation, 1992.

Washington, W.M. and C.L. Parkinson, *An Introduction to Three-Dimensional Climate Modeling*, University Science Books, Mill Valley, CA, and Oxford University Press, New York, 422 pp., 1986.

Washington, W.M. and V. Ramanathan, Climatic response due to increased CO₂: Status of model experiments and the possible role of the oceans, *Proceedings of Carbon Dioxide and Climate Research Program Conference*, Washington, DC, 24-25 April 1980, L.E. Schmitt, ed., Carbon Dioxide Effects Research and Assessment Program. Prepared by the Institute for Energy Analysis/Oak Ridge Associated Universities. Work supported by U.S. Department of Energy, Office of Environment, Contract No. DE-AC05-76OR00033, December 1980, CONF-8004110, 107-131, 1980.

Washington, W.M. and L. VerPlank, *A Description of Coupled General Circulation Models of the Atmosphere and Oceans Used for CO₂ Studies*, Technical Note, NCAR/TN-271+EDD, National Center for Atmospheric Research, Boulder, CO, 29 pp., 1986.

Washington, W.M., T.W. Bettge, G.A. Meehl, and J.B. Yost, Computer simulation of the global climatic effects of increased greenhouse gases, *International Journal of Supercomputer Applications*, 4, 5-19, 1990.

Washington, W.M., G.A. Meehl, W.L. Gates, and G.L. Potter, The role of the ocean in climate change resulting from increased CO₂. *Research Project of the Month*, October 1987, Carbon Dioxide Research Division, Office of Basic Energy Sciences, U.S. Department of Energy, 1987.

Washington, W.M., A.J. Semtner, G.A. Meehl, D.J. Knight, and T.A. Mayer, A general circulation experiment with a coupled atmosphere, ocean and sea ice model, *J. Phys. Oceanogr.*, 10, 1887-1908, 1980.