

LOCKHEED MARTIN

RECEIVED

JUN 04 1997

OSTI

**PORTSMOUTH  
GASEOUS  
DIFFUSION  
PLANT**

**Estimated Critical Conditions for  
UF<sub>4</sub>-Oil Systems in Fully Oil-Reflected  
Spherical Geometry**

M. J. Plaster

May 1997

**MASTER**

**DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED**

— NOTICE —

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to Doe and DOE contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401.

Available to the public from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

**Estimated Critical Conditions for UF<sub>4</sub>-Oil Systems  
in Fully Oil-Reflected Spherical Geometry**

M. J. Plaster

May 1997

**DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**Lockheed Martin Utility Services, Inc.  
PORTSMOUTH GASEOUS DIFFUSION PLANT**

P. O. Box 628 Piketon, Ohio 45661

Under Contract USEC-96-C-0001  
to the  
**U. S. Enrichment Corporation**

**DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED**

Page 1 of 34

114

## Distribution

### **Portsmouth Gaseous Diffusion Plant**

D. M. D'Aquila  
R. Dunham (4)  
M. Hone  
R. E. Lemming  
M. J. Plaster (10)  
J. Rapp  
J. A. Smith  
E. R. Wagner  
Central Files (2)  
Technical Library (2)  
Technical Review (2)

### **Lawrence Livermore National Laboratory**

M. K. Sheaffer  
S. Keeton

### **Parallax**

J. Huffer  
D. Kearnaghan  
B. L. Lee  
D. Lindenschmidt  
R. Winiarski

### **Battelle - Columbus**

C. W. Skapik

### **Paducah Gaseous Diffusion Plant**

C. Dean (4)

### **Oak Ridge National Laboratory**

H. R. Dyer  
W. C. Jordan

### **Y-12 Plant**

C. F. Haught

### **K-25**

J. C. Ingram

### **H&R Technical Associates**

M. LeTellier  
D. Smallwood

## **DISCLAIMER**

**Portions of this document may be illegible  
in electronic image products. Images are  
produced from the best available original  
document.**

### Summary

Paraffinic oil has been exposed to  $\text{UF}_6$  gas in seal exhaust pumps and cascade equipment at the Portsmouth Gaseous Diffusion Plant. The resulting mixture is more nuclearly reactive than mixtures of  $\text{UO}_2\text{F}_2$  and  $\text{H}_2\text{O}$  and is not bounded by the subcritical mass limits presented in several nuclear criticality safety guides. The purpose of this analysis is to determine several critical parameters; specifically, 1)  $k_\infty$  and the critical mass for several enrichments and moderation levels and 2) the mass limits for these mixtures.

The estimated critical masses for the  $\text{UF}_4$ -oil systems are smaller than for the  $\text{UO}_2\text{F}_2\text{-H}_2\text{O}$  systems. The suggested mass limits for the  $\text{UF}_4$ -oil systems are 0.240, 0.280, 0.350, 0.430, 0.670, and 1.170 kg  $^{235}\text{U}$  for enrichments of 100, 50, 20, 10, 5, and 3 wt. %  $^{235}\text{U}$  respectively.

## Table of Contents

| <u>Section</u> | <u>Subject</u>                                                            | <u>Page</u> |
|----------------|---------------------------------------------------------------------------|-------------|
|                | Summary . . . . .                                                         | 3           |
| 1.0            | Introduction . . . . .                                                    | 6           |
| 2.0            | Products of Reaction of UF <sub>6</sub> with Paraffinic Oil . . . . .     | 6           |
| 2.1            | UF <sub>4</sub> -Oil Mixture Density . . . . .                            | 7           |
| 2.2            | Selection of Hydrocarbon to Represent Oil . . . . .                       | 8           |
| 3.0            | Infinite Multiplication Factor for UF <sub>4</sub> -Oil Systems . . . . . | 11          |
| 3.2            | Estimated Critical Masses . . . . .                                       | 11          |
| 4.0            | Suggested Mass Limits for the UF <sub>4</sub> -Oil Systems . . . . .      | 18          |
| 5.0            | Applicability of the CSAS25 Validation . . . . .                          | 18          |
| 6.0            | Conclusions . . . . .                                                     | 20          |
|                | References . . . . .                                                      | 21          |
| Appendix-A     | Example Input Decks . . . . .                                             | 22          |
| Appendix-B     | Estimated Critical Conditions . . . . .                                   | 26          |
| Appendix-C     | Documentation of Peer Review . . . . .                                    | 33          |

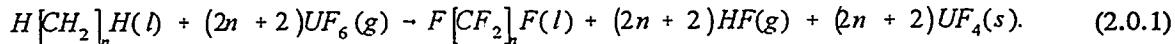
## List of Figures

| <u>Figure</u> | <u>Title</u>                                                                                    | <u>Page</u> |
|---------------|-------------------------------------------------------------------------------------------------|-------------|
| 2.2.1         | Hydrogen Density of Paraffins . . . . .                                                         | 10          |
| 3.0.1         | $K_{\infty}$ as a Function of H/X for Various $^{235}\text{U}$ Enrichments . . . . .            | 13          |
| 3.1.1         | Estimated Critical Mass as a Function of H/X for Various $^{235}\text{U}$ Enrichments . . . . . | 16          |

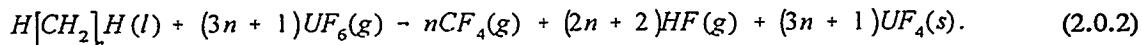
## List of Tables

| <u>Table</u> | <u>Title</u>                                                                                                                                                                                                                                                                                                                                                    | <u>Page</u> |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2.2.1        | Density and Hydrogen Density of Various Paraffins . . . . .                                                                                                                                                                                                                                                                                                     | 9           |
| 3.0.1        | $K_{\infty}$ for Various H/X Ratios and Enrichments . . . . .                                                                                                                                                                                                                                                                                                   | 12          |
| 3.0.2        | Comparison of $k_{\infty}$ Calculated by the CSAS1X and CSAS25 Modules for Various Enrichments and H/X Ratios . . . . .                                                                                                                                                                                                                                         | 14          |
| 3.1.1        | H/X Ratio where Minimum Critical Mass Occurs and the Estimated Critical Mass for Various $^{235}\text{U}$ Enrichments . . . . .                                                                                                                                                                                                                                 | 15          |
| 3.1.2        | $K_{\text{eff}} \pm \sigma$ Calculated Using the Validated CSAS25 Module . . . . .                                                                                                                                                                                                                                                                              | 15          |
| 3.1.3        | Uranium Densities for the $\text{UO}_2\text{F}_2\text{-H}_2\text{O}$ and $\text{UF}_4\text{-C}_{29}\text{H}_{60}$ Systems, the Estimated Critical Mass for the $\text{UO}_2\text{F}_2\text{-H}_2\text{O}$ System, and the Calculated Critical Mass for the $\text{UF}_4\text{-C}_{29}\text{H}_{60}$ System at an H/X=500 Using Reduction Factor 3.3.1 . . . . . | 17          |
| 4.0.1        | Suggested Mass Limits for Various Enrichments and the Corresponding Approximate Safety Factors . . . . .                                                                                                                                                                                                                                                        | 18          |
| 5.0.1        | Average Energy Group Causing Fission (AEGCF) for the $k_{\infty}$ Confirmation Calculations . . . . .                                                                                                                                                                                                                                                           | 19          |
| 5.0.2        | Average Energy Group Causing Fission (AEGCF) for the Critical Mass Confirmation Calculations . . . . .                                                                                                                                                                                                                                                          | 19          |
| B.1          | H/U Ratio, $\text{UF}_4$ and $\text{C}_{29}\text{H}_{60}$ Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 100 wt. % $^{235}\text{U}$ . . . . .                                                                                                                                                      | 27          |
| B.2          | H/U Ratio, $\text{UF}_4$ and $\text{C}_{29}\text{H}_{60}$ Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 50 wt. % $^{235}\text{U}$ . . . . .                                                                                                                                                       | 28          |
| B.3          | H/U Ratio, $\text{UF}_4$ and $\text{C}_{29}\text{H}_{60}$ Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 20 wt. % $^{235}\text{U}$ . . . . .                                                                                                                                                       | 29          |
| B.4          | H/U Ratio, $\text{UF}_4$ and $\text{C}_{29}\text{H}_{60}$ Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 10 wt. % $^{235}\text{U}$ . . . . .                                                                                                                                                       | 30          |
| B.5          | H/U Ratio, $\text{UF}_4$ and $\text{C}_{29}\text{H}_{60}$ Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 5 wt. % $^{235}\text{U}$ . . . . .                                                                                                                                                        | 31          |
| B.6          | H/U Ratio, $\text{UF}_4$ and $\text{C}_{29}\text{H}_{60}$ Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 3 wt. % $^{235}\text{U}$ . . . . .                                                                                                                                                        | 32          |

## 1.0 Introduction


Paraffinic oil has been exposed to  $\text{UF}_6$  gas in seal exhaust pumps and cascade equipment at the Portsmouth Gaseous Diffusion Plant.<sup>1</sup> When the  $\text{UF}_6$  gas reacts with paraffinic oil, the resulting mixture is more nuclearly reactive than mixtures of  $\text{UO}_2\text{F}_2$  and  $\text{H}_2\text{O}$ , due to the higher hydrogen density of the oil as compared to  $\text{H}_2\text{O}$ , which increases the uranium density at all moderation levels. Therefore, oily mixtures of uranium-bearing material are not bounded from a nuclear criticality safety perspective by the subcritical mass limits for mixtures of  $\text{UO}_2\text{F}_2$  and  $\text{H}_2\text{O}$  presented in various nuclear criticality safety guides. Hence, the mass limits for these oily mixtures need to be determined.

The purpose of this analysis is to investigate several critical parameters for mixtures of  $\text{UF}_4$  and oil; specifically, to 1) determine  $k_\infty$  and estimate the critical masses for several enrichments and moderation levels, and 2) determine mass limits for these mixtures.


Initial scoping calculations were performed with the unvalidated PC version of SCALE 4.3.<sup>2</sup> Final confirmation calculations were performed with a validated version of SCALE 4.3.<sup>3</sup>

## 2.0 Products of Reaction of $\text{UF}_6$ with Paraffinic Oil

$\text{UF}_6$  gas is reactive with liquid hydrocarbons, *e.g.*, paraffinic oil. At the operating temperatures and pressures of the cascade, most of the reactions between the liquid hydrocarbons and  $\text{UF}_6$  gas produce  $\text{UF}_4$ , HF, and hydrofluorocarbons.<sup>4</sup> One of the theoretical reactions that produce  $\text{UF}_4$  is the complete conversion of the paraffinic oil to the corresponding fluorocarbon, which is expressed as:



Another theoretical reaction is the complete reaction of  $\text{UF}_6$  with the paraffinic oil, which is expressed as:



If water vapor or oxidation products are present in the paraffinic oil,  $\text{UO}_2\text{F}_2$  and HF may be formed.<sup>5</sup>  $\text{UF}_4$  and  $\text{UO}_2\text{F}_2$  are both essentially insoluble in liquid hydrocarbons;<sup>5,6</sup> therefore, the  $\text{UF}_4$ -oil systems will typically have higher uranium densities than compared to the  $\text{UO}_2\text{F}_2$ -oil systems at all moderation levels. In general, the  $\text{UO}_2\text{F}_2$ -oil systems are bounded by the  $\text{UF}_4$ -oil systems due to the higher uranium density of  $\text{UF}_4$ .

In this analysis the reaction product of  $\text{UF}_6$  and paraffinic oil is assumed to be a mixture of the paraffinic oil and  $\text{UF}_4$ . This assumption provides the highest system hydrogen density, thus making the system more nuclearly reactive (See Section 2.2).

## 2.1 $\text{UF}_4$ -Oil Mixture Density

The volume additive method for calculating densities for the  $\text{UF}_4$ -oil systems is applicable, because  $\text{UF}_4$  is essentially insoluble in oil.<sup>5,6</sup> The material densities are calculated as a function of the H/U ratio. The H/U ratio for a mixture of  $\text{UF}_4$  and oil is:

$$\frac{H}{U} = \frac{\gamma \text{ } ND^{oil}}{\text{ } ND^{UF_4}}, \quad (2.1.1)$$

where,

$$\begin{aligned} \gamma &= \text{number of hydrogen atoms per molecule of oil, and} \\ ND^x &= \text{number density of material x.} \end{aligned}$$

The number densities for  $\text{UF}_4$  and oil in molecules per  $\text{cm}^3$  are calculated as:

$$ND^{oil} = \frac{v_f \rho_{oil} A_0}{MW_{oil}}, \text{ and} \quad (2.1.2)$$

$$ND^{UF_4} = \frac{(1-v_f)\rho_{UF_4} A_0}{MW_{UF_4}}, \quad (2.1.3)$$

where,

$$\begin{aligned} v_f &= \text{oil density multiplier (volume fraction),} \\ \rho_x &= \text{density of material x,} \\ A_0 &= \text{Avogadro's Number (6.0221367x10}^{23} \text{ "entities"/mole),} \\ MW_x &= \text{Molecular weight of material x.} \end{aligned}$$

Inserting Equations 2.1.2 and 2.1.3 into Equation 2.1.1, and upon simplification yields:

$$\frac{H}{U} = \frac{\gamma v_f \rho_{oil} MW_{UF_4}}{(1 - v_f) \rho_{UF_4} MW_{oil}}. \quad (2.1.4)$$

Solving the above equation for the oil density multiplier ( $v_f$ ) yields:

$$v_f = \frac{H}{U} \left[ \gamma \left( \frac{\rho_{oil}}{\rho_{UF_4}} \right) \left( \frac{MW_{UF_4}}{MW_{oil}} \right) + \frac{H}{U} \right]^{-1}. \quad (2.1.5)$$

The oil density for a given H/U ratio is calculated by multiplying the oil density by the oil density multiplier. The  $UF_4$  density for a given H/U ratio is calculated by multiplying the crystalline density of  $UF_4$  (6.7 g/cm<sup>3</sup>)<sup>5,6</sup> by the quantity one minus the oil density multiplier.

## 2.2 Selection of Hydrocarbon to Represent Oil

Oil is a mixture of relatively pure hydrocarbons with impurities of other organic compounds. Of all the organic molecules, paraffins have the highest H/C ratio. The moderation provided by each of the various organic compounds is dependent on this ratio and the density of the compound. As shown in Table-2.2.1 and Figure-2.2.1, the paraffin with the largest hydrogen density is  $C_{17}H_{36}$ . Also, as shown in Table-2.2.1 the density increases and the H/C ratio decreases as the carbon chains become longer.

The melting points of the paraffins increase as the carbon chains become longer. The longest carbon chain in Table-2.2.1,  $C_{43}H_{88}$ , has a melting point of approximately 85.5 °C.<sup>7</sup> Even though the paraffin densities increase as the carbon chains become longer, the use of the paraffins becomes less suitable as a lubricant due to the higher melting points, and are omitted from this analysis.

“The effective molecular weight of a typical vacuum pump oil is approximately 400, suggesting that the average material is  $C_{29}H_{60}$ .<sup>5</sup> A typical pump oil, *e.g.*, Rarus 929, has a density of 0.87 g/ml.<sup>5</sup> The hydrogen density for this typical oil is 0.076898 atoms per barn·cm, compared to 0.066856 atoms per barn·cm for  $H_2O$ . The hydrogen density for this oil is larger than for the pure paraffins presented in Table-2.2.1 because; 1) oils contain impurities which increase the density, and 2) the value for H/C is over predicted by assuming oil is a pure paraffin. Assuming oil is  $C_{29}H_{60}$  with a density of 0.87 g/ml is conservative from a nuclear criticality safety perspective, because this assumed paraffinic oil will have a higher hydrogen density than the paraffins presented in Table-2.2.1.

The hydrogen density affects the minimum critical mass more than the carbon density, because hydrogen more effectively decreases the energy of neutrons than carbon. Carbon does have a smaller absorption cross section than hydrogen, but the downscattering properties of hydrogen outweigh the difference in absorption cross sections. This may be shown by comparing the critical radii of spheres reflected by 30 cm of  $C_{29}H_{60}$  for a mixture of; 1)  $^{235}UF_4$  and  $C_{29}H_{60}$  at a  $C/X \approx 222$  ( $\rho_C = 0.731867$  g C/cm<sup>3</sup>,  $H/X = 460$ ), and 2)  $^{235}UF_4$  and C at the same carbon density. The calculated critical radius for the  $^{235}UF_4$  and  $C_{29}H_{60}$  mixture is approximately 12.9308 cm compared to approximately 100.873 cm for the  $^{235}UF_4$  and C mixture.

The critical radii searches were performed with the unvalidated PC version of the SCALE 4.3 XSDRNPM code,<sup>8</sup> with cross section preprocessing by the CSASI Module.<sup>9</sup> The 27 group ENDF-B/IV cross section set was used for these calculations.<sup>10</sup> The input decks are presented in Appendix A.

Table-2.2.1: Density and Hydrogen Density of Various Paraffins.

| Compound       | Density <sup>7,11</sup><br>[g/cm <sup>3</sup> ] | H Density<br>[H atoms per<br>barn-cm] | Compound       | Density <sup>7,11</sup><br>[g/cm <sup>3</sup> ] | H Density<br>[H atoms per<br>barn-cm] |
|----------------|-------------------------------------------------|---------------------------------------|----------------|-------------------------------------------------|---------------------------------------|
| $C_5H_{12}$    | 0.6262                                          | 0.062721                              | $C_{17}H_{36}$ | 0.7767                                          | 0.070023                              |
| $C_6H_{14}$    | 0.6594                                          | 0.064512                              | $C_{18}H_{38}$ | 0.7767                                          | 0.06984                               |
| $C_7H_{16}$    | 0.6838                                          | 0.065753                              | $C_{19}H_{40}$ | 0.7776                                          | 0.069756                              |
| $C_8H_{18}$    | 0.7025                                          | 0.066664                              | $C_{20}H_{42}$ | 0.7777                                          | 0.069617                              |
| $C_9H_{20}$    | 0.7176                                          | 0.067388                              | $C_{21}H_{44}$ | 0.7782                                          | 0.069527                              |
| $C_{10}H_{22}$ | 0.7301                                          | 0.067983                              | $C_{22}H_{46}$ | 0.7782                                          | 0.069405                              |
| $C_{11}H_{24}$ | 0.7402                                          | 0.068442                              | $C_{23}H_{48}$ | 0.7785                                          | 0.06932                               |
| $C_{12}H_{26}$ | 0.749                                           | 0.068849                              | $C_{24}H_{50}$ | 0.7786                                          | 0.069227                              |
| $C_{13}H_{28}$ | 0.7563                                          | 0.069171                              | $C_{26}H_{54}$ | 0.7783                                          | 0.069019                              |
| $C_{14}H_{30}$ | 0.7627                                          | 0.069455                              | $C_{30}H_{62}$ | 0.7795                                          | 0.068834                              |
| $C_{15}H_{32}$ | 0.7684                                          | 0.06971                               | $C_{36}H_{74}$ | 0.7795                                          | 0.068518                              |
| $C_{16}H_{34}$ | 0.7733                                          | 0.069922                              | $C_{43}H_{88}$ | 0.7812                                          | 0.06841                               |

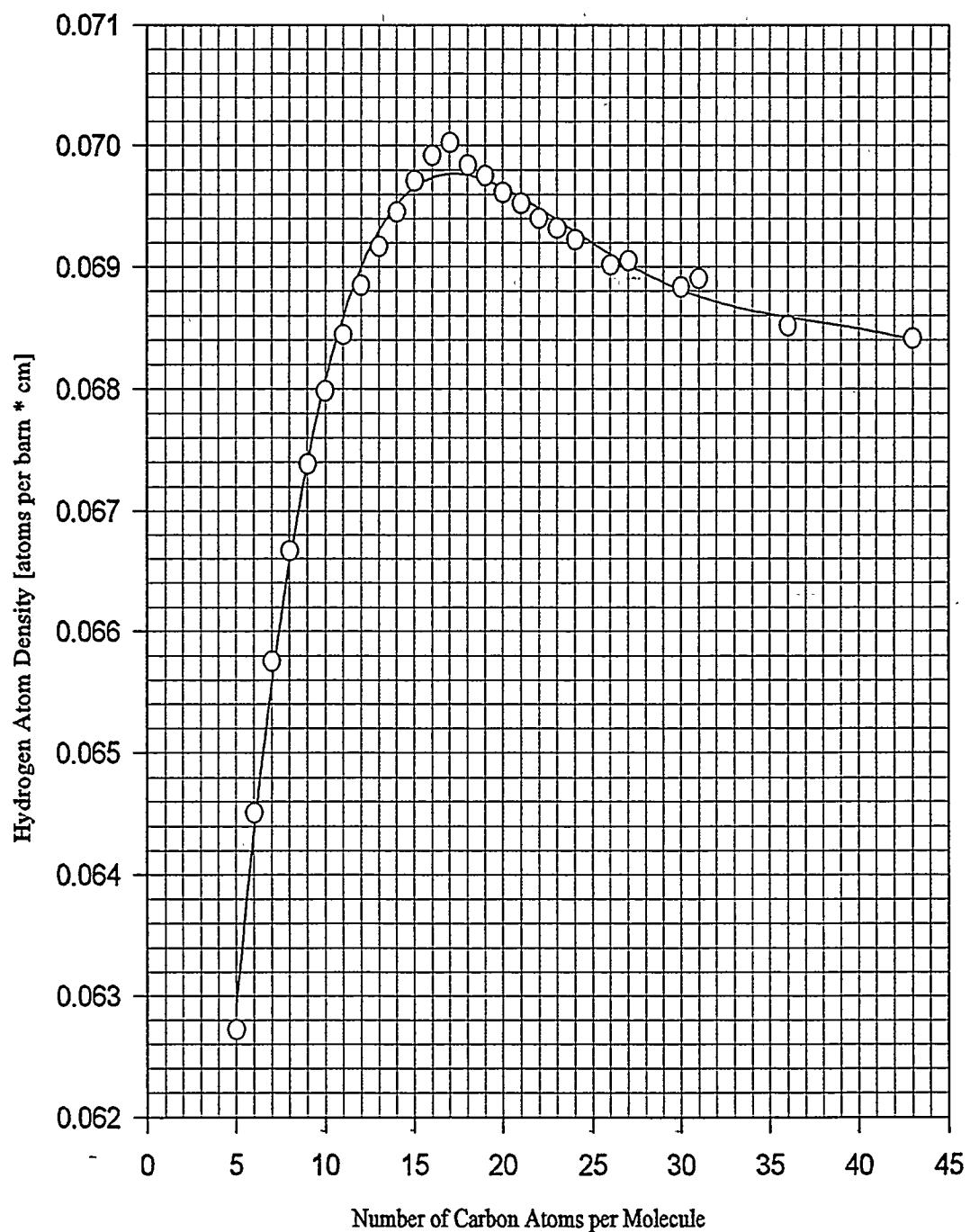



Figure-2.2.1: Hydrogen Density of Paraffins.

### 3.0 Infinite Multiplication Factor for $\text{UF}_4$ -Oil Systems

The infinite multiplication factor,  $k_{\infty}$ , yields important information about the reactivity of a system. It indicates 1) where criticality is possible, 2) the moderation region where peak reactivity occurs (minimum critical volume), and 3) the reactivity characteristics of under-moderated and over-moderated systems.

The  $k_{\infty}$  calculations were performed with the unvalidated version of the PC SCALE 4.3 CSAS1X Module.<sup>9</sup> The 27 group ENDF-B/IV cross section set was used for these calculations. The  $k_{\infty}$  values for the various H/X values and  $^{235}\text{U}$  enrichments are presented in Table-3.0.1 and Figure-3.0.1. An example CSAS1X input deck is presented in Appendix A.

The  $k_{\infty}$  values calculated with the CSAS1X Module were compared to the values calculated using the validated version of the CSAS25 Module.<sup>9</sup> The CSAS25 Module does not have an option for calculating  $k_{\infty}$  values; therefore, an infinite system was approximated as a 10-meter mirror reflected cube. The CSAS25 results are in close agreement with the CSAS1X results as shown in Table-3.0.2. The 27 group ENDF-B/IV cross sections were used for the CSAS25 calculations. An example input deck is presented in Appendix A.

### 3.1 Estimated Critical Masses

A series of critical radius searches for  $\text{C}_{29}\text{H}_{60}$  reflected spheres was performed to estimate the critical masses for the  $\text{UF}_4$ -oil system for various  $^{235}\text{U}$  enrichments and moderation levels. The spheres were reflected by 30 cm of  $\text{C}_{29}\text{H}_{60}$ . The searches were performed with the unvalidated PC version of the SCALE 4.3 XSDRNP code, with cross section preprocessing by the CSASI Module. The 27 group ENDF-B/IV cross section set was used for these calculations. The estimated minimum critical mass for the various enrichments occurs at an  $\text{H}/\text{X} \approx 500$  as shown in Table-3.1.1, Figure-3.1.1, and Tables-B.1-B.6 in Appendix B. Several of the estimated critical conditions were modeled using the validated SCALE 4.3 CSAS25 Module to confirm the XSDRNP results. The confirmation results are presented in Table-3.1.2.

Table-3.0.1:  $K_{\infty}$  for Various H/X Ratios and  $^{235}\text{U}$  Enrichments.

| H/X  | $K_{\infty}$                |        |        |        |        |        |
|------|-----------------------------|--------|--------|--------|--------|--------|
|      | $^{235}\text{U}$ Enrichment |        |        |        |        |        |
|      | 3                           | 5      | 10     | 20     | 50     | 100    |
| 5    | 0.6678                      | 0.8648 | 1.1438 | 1.3893 | 1.6309 | 1.8030 |
| 10   | 0.7482                      | 0.9528 | 1.2167 | 1.4317 | 1.6391 | 1.8066 |
| 20   | 0.8719                      | 1.0774 | 1.3198 | 1.5063 | 1.6848 | 1.8420 |
| 50   | 1.0792                      | 1.2683 | 1.4722 | 1.6210 | 1.7631 | 1.8916 |
| 100  | 1.2214                      | 1.3871 | 1.5576 | 1.6785 | 1.7946 | 1.8938 |
| 200  | 1.3077                      | 1.4454 | 1.5823 | 1.6774 | 1.7693 | 1.8384 |
| 300  | 1.3196                      | 1.4400 | 1.5577 | 1.6390 | 1.7170 | 1.7700 |
| 400  | 1.3073                      | 1.4150 | 1.5194 | 1.5912 | 1.6594 | 1.7022 |
| 450  | 1.2969                      | 1.3994 | 1.4984 | 1.5664 | 1.6306 | 1.6695 |
| 500  | 1.2849                      | 1.3827 | 1.4769 | 1.5416 | 1.6021 | 1.6378 |
| 600  | 1.2580                      | 1.3476 | 1.4336 | 1.4925 | 1.5468 | 1.5772 |
| 700  | 1.2291                      | 1.3119 | 1.3910 | 1.4450 | 1.4942 | 1.5205 |
| 1000 | 1.1417                      | 1.2086 | 1.2722 | 1.3154 | 1.3531 | 1.3714 |
| 1500 | 1.0113                      | 1.0612 | 1.1085 | 1.1400 | 1.1661 | 1.1777 |
| 2000 | 0.9042                      | 0.9433 | 0.9801 | 1.0043 | 1.0235 | 1.0316 |

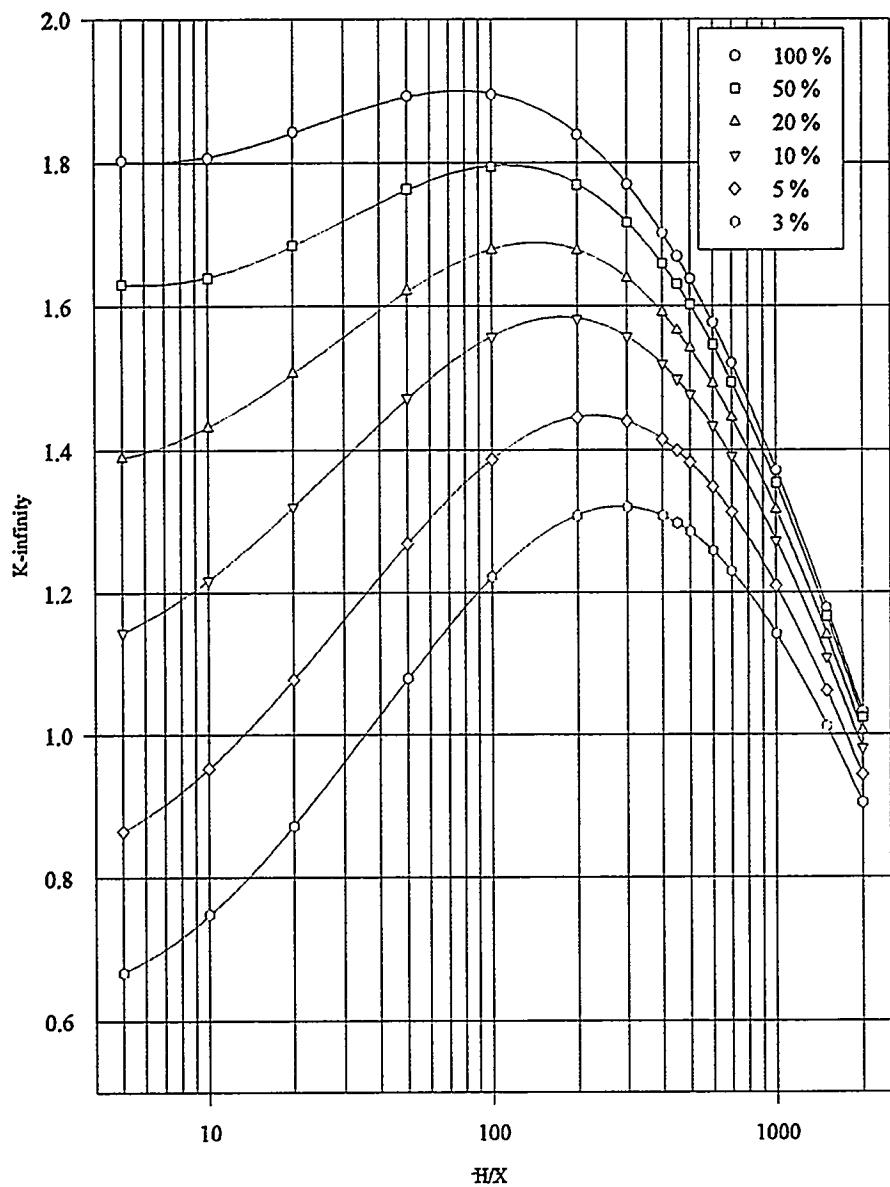



Figure-3.0.1:  $K_{\infty}$  as a Function of  $H/X$  for Various  $^{235}\text{U}$  Enrichments.

Table-3.0.2: Comparison of  $k_{\infty}$  Calculated by the CSAS1X and CSAS25 Modules for Various Enrichments and H/X Ratios.

| $^{235}\text{U}$ Enrichment<br>[wt. %] | Calculational<br>Sequence | $k_{\infty}$        |                     |                     |
|----------------------------------------|---------------------------|---------------------|---------------------|---------------------|
|                                        |                           | H/X                 |                     |                     |
|                                        |                           | 10                  | 100                 | 1000                |
| 3                                      | CSAS1X                    | 0.7482              | 1.2214              | 1.1417              |
|                                        | CSAS25                    | $0.7478 \pm 0.0013$ | $1.2219 \pm 0.0017$ | $1.1418 \pm 0.0011$ |
| 5                                      | CSAS1X                    | 0.9528              | 1.3871              | 1.2086              |
|                                        | CSAS25                    | $0.9509 \pm 0.0014$ | $1.3892 \pm 0.0017$ | $1.2085 \pm 0.0012$ |
| 10                                     | CSAS1X                    | 1.2167              | 1.5576              | 1.2722              |
|                                        | CSAS25                    | $1.2173 \pm 0.0019$ | $1.5573 \pm 0.0017$ | $1.2762 \pm 0.0012$ |
| 20                                     | CSAS1X                    | 1.4317              | 1.6785              | 1.3154              |
|                                        | CSAS25                    | $1.4332 \pm 0.0017$ | $1.6791 \pm 0.0018$ | $1.3131 \pm 0.0013$ |
| 50                                     | CSAS1X                    | 1.6391              | 1.7946              | 1.3531              |
|                                        | CSAS25                    | $1.6371 \pm 0.0018$ | $1.7928 \pm 0.0016$ | $1.3555 \pm 0.0013$ |
| 100                                    | CSAS1X                    | 1.8066              | 1.8938              | 1.3714              |
|                                        | CSAS25                    | $1.8056 \pm 0.0018$ | $1.8935 \pm 0.0019$ | $1.3706 \pm 0.0013$ |

Table-3.1.1: H/X Ratio where Minimum Critical Mass Occurs and the Estimated Critical Mass for Various  $^{235}\text{U}$  Enrichments.

| Enrichment<br>[wt. % $^{235}\text{U}$ ] | H/X where<br>Estimated Minimum<br>Critical Mass<br>Occurs | Estimated Critical<br>Mass<br>[Kg U] | Estimated Critical<br>Mass<br>[Kg $^{235}\text{U}$ ] |
|-----------------------------------------|-----------------------------------------------------------|--------------------------------------|------------------------------------------------------|
| 100                                     | 470                                                       | 0.583                                | 0.583                                                |
| 50                                      | 480                                                       | 1.29                                 | 0.645                                                |
| 20                                      | 475                                                       | 3.95                                 | 0.790                                                |
| 10                                      | 500                                                       | 10.1                                 | 1.01                                                 |
| 5                                       | 535                                                       | 31.0                                 | 1.55                                                 |
| 3                                       | 520                                                       | 90.2                                 | 2.71                                                 |

Table-3.1.2:  $K_{\text{eff}} \pm \sigma$  Calculated Using the Validated CSAS25 Module.

| H/X                       | $k_{\text{eff}} \pm \sigma$ | H/X                        | $k_{\text{eff}} \pm \sigma$ |
|---------------------------|-----------------------------|----------------------------|-----------------------------|
| 3 wt. % $^{235}\text{U}$  |                             | 5 wt. % $^{235}\text{U}$   |                             |
| 100                       | $0.9992 \pm 0.0018$         | 100                        | $0.9946 \pm 0.0019$         |
| 520                       | $0.9977 \pm 0.0016$         | 535                        | $0.9989 \pm 0.0018$         |
| 1000                      | $1.0004 \pm 0.0014$         | 1000                       | $1.0016 \pm 0.0015$         |
| 10 wt. % $^{235}\text{U}$ |                             | 20 wt. % $^{235}\text{U}$  |                             |
| 100                       | $0.9975 \pm 0.0021$         | 100                        | $0.9955 \pm 0.0024$         |
| 500                       | $1.0032 \pm 0.0021$         | 475                        | $1.0018 \pm 0.0022$         |
| 1000                      | $0.9965 \pm 0.0016$         | 1000                       | $1.0002 \pm 0.0018$         |
| 50 wt. % $^{235}\text{U}$ |                             | 100 wt. % $^{235}\text{U}$ |                             |
| 100                       | $0.9984 \pm 0.0024$         | 100                        | $0.9955 \pm 0.0024$         |
| 480                       | $0.9929 \pm 0.0023$         | 470                        | $1.0003 \pm 0.0022$         |
| 1000                      | $0.9975 \pm 0.0017$         | 1000                       | $0.9987 \pm 0.0018$         |

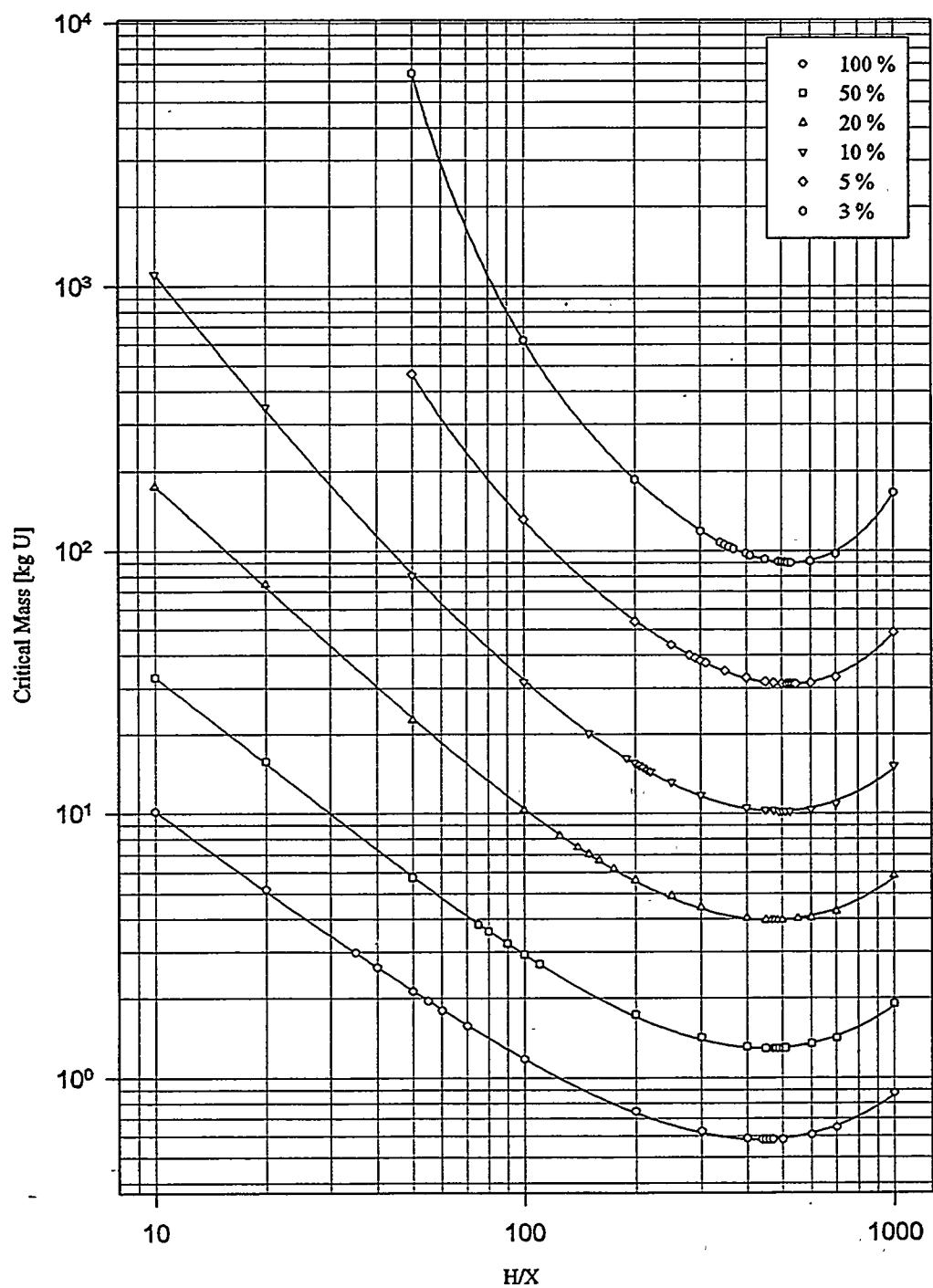



Figure-3.1.1: Estimated Critical Mass as a Function of H/X for Various  $^{235}\text{U}$  Enrichments.

The critical masses for the  $\text{UF}_4\text{-C}_{29}\text{H}_{60}$  system may also be calculated by reducing the estimated critical mass for the  $\text{UO}_2\text{F}_2\text{-H}_2\text{O}$  system by:<sup>12,13</sup>

$$\left( \frac{\rho_0}{\rho} \right)^2 \quad (3.3.1)$$

where,

$\rho_0$  = uranium density at the moderation level where the critical mass occurs for the  $\text{UO}_2\text{F}_2\text{-H}_2\text{O}$  system, and  
 $\rho$  = uranium density at the same moderation level for the  $\text{UF}_4\text{-C}_{29}\text{H}_{60}$  system.

The minimum critical mass for all enrichments occurs at an  $\text{H}/\text{X} \approx 500$  for the  $\text{UO}_2\text{F}_2\text{-H}_2\text{O}$  systems and other hydrogen moderated systems.<sup>12,14</sup> Therefore, the uranium density at an  $\text{H}/\text{X}=500$  is used to determine the minimum critical masses for various  $^{235}\text{U}$  enrichments. The calculated critical masses using this method for the  $\text{UF}_4\text{-oil}$  system are presented in Table-3.1.3.

Table-3.1.3: Uranium Densities for the  $\text{UO}_2\text{F}_2\text{-H}_2\text{O}$  and  $\text{UF}_4\text{-C}_{29}\text{H}_{60}$  Systems, the Estimated Critical Mass for the  $\text{UO}_2\text{F}_2\text{-H}_2\text{O}$  System, and the Calculated Critical Mass for the  $\text{UF}_4\text{-C}_{29}\text{H}_{60}$  System at an  $\text{H}/\text{X}=500$  Using Reduction Factor 3.3.1.

| Enrichment<br>[wt. % $^{235}\text{U}$ ] | Uranium<br>Density for<br>$\text{UO}_2\text{F}_2\text{-H}_2\text{O}$<br>Mixture<br>[g U/cm <sup>3</sup> ] | Uranium<br>Density for<br>$\text{UF}_4\text{-C}_{29}\text{H}_{60}$<br>Mixture<br>[g U/cm <sup>3</sup> ] | Estimated<br>Critical Mass<br>for $\text{UO}_2\text{F}_2\text{-H}_2\text{O}$<br>Mixture <sup>14,15</sup><br>[kg $^{235}\text{U}$ ] | Calculated<br>Critical Mass<br>for $\text{UF}_4\text{-C}_{29}\text{H}_{60}$<br>Mixture<br>[kg $^{235}\text{U}$ ] |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 100                                     | $5.1687 \times 10^{-2}$                                                                                   | $5.9324 \times 10^{-2}$                                                                                 | 0.7751                                                                                                                             | 0.588                                                                                                            |
| 50                                      | $1.0256 \times 10^{-1}$                                                                                   | $1.1728 \times 10^{-1}$                                                                                 | 0.8522                                                                                                                             | 0.651                                                                                                            |
| 20                                      | $2.5054 \times 10^{-1}$                                                                                   | $2.8338 \times 10^{-1}$                                                                                 | 1.0209                                                                                                                             | 0.798                                                                                                            |
| 10                                      | $4.8269 \times 10^{-1}$                                                                                   | $5.3680 \times 10^{-1}$                                                                                 | 1.27471                                                                                                                            | 1.030                                                                                                            |
| 5                                       | $8.9889 \times 10^{-1}$                                                                                   | $9.7098 \times 10^{-1}$                                                                                 | 1.851                                                                                                                              | 1.586                                                                                                            |
| 3                                       | 1.3734                                                                                                    | 1.4353                                                                                                  | 3.07734                                                                                                                            | 2.817                                                                                                            |

#### 4.0 Suggested Mass Limits for the UF<sub>4</sub>-Oil Systems

The minimum critical masses for the various enrichments presented in Tables-3.1.1 and 3.1.3 are in good agreement. The masses calculated using XSDRNP (Table-3.1.1) are slightly smaller than the masses calculated using the square of the uranium densities (Table-3.1.3). Therefore, the critical masses presented in Table-3.1.1 are used to determine the mass limits for mixtures of UF<sub>4</sub> and oil presented in Table-4.0.1.

A safety factor of approximately 2.3 is used to determine the mass limits. This factor ensures that a container filled under these limits will remain subcritical.

Table-4.0.1: Suggested Mass Limits for Various Enrichments and the Corresponding Approximate Safety Factors.

| Enrichment<br>[wt % <sup>235</sup> U] | Mass Limit<br>[Kg <sup>235</sup> U] | Approximate Safety Factor |
|---------------------------------------|-------------------------------------|---------------------------|
| 100                                   | 0.240                               | 2.43                      |
| 50                                    | 0.280                               | 2.30                      |
| 20                                    | 0.350                               | 2.25                      |
| 10                                    | 0.430                               | 2.33                      |
| 5                                     | 0.670                               | 2.32                      |
| 3                                     | 1.170                               | 2.32                      |

#### 5.0 Applicability of the CSAS25 Validation

The principal moderator for the UF<sub>4</sub>-C<sub>29</sub>H<sub>60</sub> system is hydrogen (See Section 2.2). The validation contains many hydrogen moderated experiments over a wide range of moderation levels. Also, the validation contains many experiments containing uranium, oxygen, and fluorine and some contain carbon.

The average energy group causing fission for the  $k_{\infty}$  confirmation calculations presented in Table-5.0.1 and the critical mass confirmation calculations presented in Table-5.0.2 are within the energy range of the validation.<sup>3</sup> Therefore, the validation is applicable to the results presented in this analysis.

Figure-5.0.1: Average Energy Group Causing Fission (AEGCF) for the  $k_{\infty}$  Confirmation Calculations.

| $^{235}\text{U}$ Enrichment<br>[wt. %] | AEGCF   |         |         |
|----------------------------------------|---------|---------|---------|
|                                        | H/X     |         |         |
|                                        | 10      | 100     | 1000    |
| 3                                      | 11.6811 | 21.2007 | 24.6337 |
| 5                                      | 12.5069 | 21.7490 | 24.7587 |
| 10                                     | 13.3236 | 22.2115 | 24.8518 |
| 20                                     | 13.8639 | 22.4867 | 24.8963 |
| 50                                     | 14.3396 | 22.6731 | 24.9271 |
| 100                                    | 14.7349 | 22.7646 | 24.9369 |

Table-5.0.2: Average Energy Group Causing Fission (AEGCF) for the Critical Mass Confirmation Calculations.

| H/X                       | AEGCF   | H/X                        | AEGCF   |
|---------------------------|---------|----------------------------|---------|
| 3 wt. % $^{235}\text{U}$  |         | 5 wt. % $^{235}\text{U}$   |         |
| 100                       | 21.4406 | 100                        | 22.0545 |
| 520                       | 24.1941 | 535                        | 24.4151 |
| 1000                      | 24.6315 | 1000                       | 24.7584 |
| 10 wt. % $^{235}\text{U}$ |         | 20 wt. % $^{235}\text{U}$  |         |
| 100                       | 22.5513 | 100                        | 22.8248 |
| 500                       | 24.5259 | 475                        | 24.5773 |
| 1000                      | 24.8501 | 1000                       | 24.8980 |
| 50 wt. % $^{235}\text{U}$ |         | 100 wt. % $^{235}\text{U}$ |         |
| 100                       | 23.0047 | 100                        | 23.0981 |
| 480                       | 24.6310 | 470                        | 24.6420 |
| 1000                      | 24.9267 | 1000                       | 24.9346 |

## 6.0 Conclusions

The estimated critical masses for  $\text{UF}_4$ -oil systems are smaller than for the  $\text{UO}_2\text{F}_2\text{-H}_2\text{O}$  systems. Therefore, the resulting mixture are more nuclearly reactive than mixtures of  $\text{UO}_2\text{F}_2$  and  $\text{H}_2\text{O}$ , and are not bounded by the subcritical limits presented in several nuclear criticality safety guides. The suggested mass limits for  $\text{UF}_4$ -oil systems are 0.240, 0.280, 0.350, 0.430, 0.670, and 1.170 kg  $^{235}\text{U}$  for enrichments of 100, 50, 20, 10, 5, and 3 wt. %  $^{235}\text{U}$  respectively.

## References

1. M. E. Kerr, R. L. Newvahner, and R. D. Jackson, "Significant Non-Critical Incident Number 41 - Status of Process Cells Containing Solid Uranium Accumulations in the X-326 Building," (GAT-SI-41), Portsmouth Gaseous Diffusion Plant, 7 Oct 1974. (C-RD)
2. "SCALE-4.3, Modular Code System for Performing Standardized Computer Analysis for Licensing Evaluation for Workstations and Personal Computers," (CDC-545), Oak Ridge National Laboratory. (U)
3. B. L. Lee, Jr., "Validation of the CSAS25 Calculational Sequence in SCALE-4.2 and the 27 Energy Group ENDF/B-IV Cross Sections on the Portsmouth Gaseous Diffusion Plant Nuclear Criticality Safety Section IBM RS/6000 Workstation," (POEF-LMUS-13), Portsmouth Gaseous Diffusion Plant, June 1996. (U)
4. A. J. Saraceno, Personal Conversation, Portsmouth Gaseous Diffusion Plant, 6 May 97.
5. E. J. Barber, R. G. Russel, and A. J. Saraceno, "Reaction of Uranium Hexafluoride with Hydrocarbon Oil," (K/ETO-143), Paducah Gaseous Diffusion Plant, August 1994. (U)
6. K. E. Rapp and R. L. Smitherman, "Uranium Density of Systems Involving Mutually Insoluble Materials," (K-1609), Oak Ridge Gaseous Diffusion Plant, 9 June 1964. (U)
7. D. R. Lide, ed., "CRC Handbook of Chemistry," seventy-first edition, CRC Press, 1990. (U)
8. N. M. Greene and L. M. Pitrie, "XSDRNP: A One-Dimensional Discrete-Ordinates Code for Transport Analysis," (NUREG/CR-0200, Rev. 5, Vol. 1, Section F3), Oak Ridge National Laboratory, September 1995. (U)
9. N. F. Landers and L. M. Petrie, "CSAS: Control Module for Enhanced Criticality Safety Analysis Sequences," (NUREG/CR-0200, Rev. 5, Vol. 1, Section C4), Oak Ridge National Laboratory, September 1995. (U)
10. W. C. Jordan, "SCALE Cross-Section Libraries," (NUREG/CR-0200, Rev. 5, Vol. 3, Section M4), Oak Ridge National Laboratory, September 1995. (U)
11. J. A. Dean, ed., "Lange's Handbook of Chemistry," thirteenth edition, McGraw-Hill Book Company, 1985. (U)
12. J. L. Feuerbacher, "Nuclear Criticality Safety Guide for the Portsmouth Gaseous Diffusion Plant," (GAT-225, Rev. 4), Portsmouth Gaseous Diffusion Plant, 15 March 1981. (U)
13. H. F. Henry, A. J. Mallet, C. E. Newlon, and W. A. Pryor, "Criticality Data and Nuclear Safety Guide Applicable to the Oak Ridge Gaseous Diffusion Plant," (K-1019, Rev. 5), Oak Ridge Gaseous Diffusion Plant, 22 May 1959. (U)
14. W. C. Jordan and J. C. Turner, "Estimated Critical Conditions for  $UO_2F_2-H_2O$  Systems in Fully Water-Reflected Spherical Geometry," (ORNL/TM-12292), Oak Ridge National Laboratory, December 1992. (U)
15. M. J. Plaster, "Confirmation Calculations of the Critical Masses for Various Enrichments at an H/X=500 as Reported in ORNL/TM-12292," (POEF-832-97-057), Portsmouth Gaseous Diffusion Plant, 24 March 97. (U)

## **Appendix A**

### **Example Input Decks**

### Example Input Decks for Section 2.2

```

=csasi
uf4-oil (c only) mixture, min crit mass calcs, enh=100%, c460
27groupndf4
infhommedium
uf4          1  0.0127229 293 92235 100.0      end
c            1 den=0.731867 1.0 293      end
arbm-oil  0.87 2 0 1 0 6012 29 1001 60 2 1.0 293      end
end comp
end
=xsdrn
minimum mass req for criticality series
0$$ a3 2 e
1$$ 3 2 80 1 0 2 2 8 3 4 a12 400 e
2$$ -2 0 e
3$$ a12 1 e
5** a4 0 -1 a10 1.00 e      1t
13$$ 1 2
14$$ 1 2 15** f1.          2t
33## f1.                  4t
35** 49i0. 29i4.0 34.0
36$$ 50rl 30r2
39$$ 1 2
41** .8 0                  5t
end

=csasi
uf4-oil mixture, min crit mass calcs, enh=100%, cm290460
27groupndf4
infhommedium
uf4          1  0.0127229 293 92235 100.0      end
arbm-oil  0.87 2 0 1 0 6012 29 1001 60 1 0.9872771 293      end
arbm-oil  0.87 2 0 1 0 6012 29 1001 60 2 1.0 293      end
end comp
end
=xsdrn
minimum mass req for criticality series
0$$ a3 2 e
1$$ 3 2 80 1 0 2 2 8 3 4 a12 400 e
2$$ -2 0 e
3$$ a12 1 e
5** a4 0 -1 a10 1.00 e      1t
13$$ 1 2
14$$ 1 2 15** f1.          2t
33## f1.                  4t
35** 49i0. 29i4.0 34.0
36$$ 50rl 30r2
39$$ 1 2
41** .8 0                  5t
end

```

### Example Input Decks for Section 3.1

```

#csas1x
uf4-oil mixture, kinf calcs, enh=100%, k000100
27groupndf4           infhommedium
uf4      1  0.0559622 293 92235 100.0      end
arbm-oil 0.87 2 0 1 0 6012 29 1001 60 1 0.9440378 293 end
arbm-oil 0.87 2 0 1 0 6012 29 1001 60 2 1.0 293      end
end comp
cellmix      1
more data szf=0.8 end
end

#csas25
uf4-oil mixture, csas25 k-inf comparison, ki000100
27groupndf4           infhommedium
uf4      1  0.0559622 293 92235 100.0 end
arbm-oil 0.87 2 0 1 0 6012 29 1001 60 1 0.9440378 293 end
end comp
uf-oil mixture, csas25 k-inf comparison,
read parm gen=210 npg=500 nsk=10 run=yes plt=yes nub=yes end parm
read geom
unit 1
com=!cuboid, 10m x 10m x 10m!
cuboid      1 1      500 -500 500 -500 500 -500
end geom
read bnds +xb=reflect -xb=reflect +yb=reflect -yb=reflect
+zb=reflect
-zb=reflect end bnds
end data
end

```

**Example Input Decks for Section 3.2**

```

=csasi
uf4-oil mixture, min crit mass calcs, enh=100%, cm290470
27groupndf4          inhommedium
uf4          1  0.0124556 293 92235 100.0      end
arbm-oil  0.87 2 0 1 0 6012 29 1001 60 1 0.9875444 293  end
arbm-oil  0.87 2 0 1 0 6012 29 1001 60 2 1.0 293      end
end comp
end
=xsdrr
minimum mass req for criticality series
0$$ a3 2 e
1$$ 3 2 80 1 0 2 2 8 3 4 a12 400 e
2$$ -2 0 e
3$$ a12 1 e
5** a4 0 -1 a10 1.00 e          1t
13$$ 1 2
14$$ 1 2 15** f1.          2t
33## f1.          4t
35** 49i0. 29i4.0 34.0
36$$ 50rl 30r2
39$$ 1 2
41** .8 0          5t
end

```

```

=csas25
uf4-oil mixture, confirmation calcs, enh=100%, c000470
27groupndf4          inhommedium
uf4          1  0.0124556 293 92235 100.0      end
arbm-oil  0.87 2 0 1 0 6012 29 1001 60 1 0.9875444 293  end
arbm-oil  0.87 2 0 1 0 6012 29 1001 60 2 1.0 293      end
end comp
confirmation calcs
read parm tme=1000 gen=310 npg=500 nsk=10 nub=yes run=yes
end parm
read geom
global unit 1
sphere 1 1 13.0231
sphere 2 1 43.0231
end geom
end data
end

```

**Appendix B**  
**Estimated Critical Conditions**

Table-B.1: H/U Ratio,  $\text{UF}_4$  and  $\text{C}_{20}\text{H}_{60}$  Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 100 wt. %  $^{235}\text{U}$ .

| H/U  | H/X  | Volume Fraction $\text{UF}_4$ | Volume Fraction $\text{C}_{20}\text{H}_{60}$ | Radius [cm] | Mass U [kg] |
|------|------|-------------------------------|----------------------------------------------|-------------|-------------|
| 5    | 5    | 0.5424579                     | 0.4575421                                    | 11.6626     | 18.250      |
| 10   | 10   | 0.3721731                     | 0.6278269                                    | 10.8782     | 10.161      |
| 20   | 20   | 0.2286319                     | 0.7713681                                    | 10.2260     | 5.185       |
| 35   | 35   | 0.1448388                     | 0.8551612                                    | 9.9052      | 2.985       |
| 40   | 40   | 0.1290708                     | 0.8709292                                    | 9.8701      | 2.632       |
| 50   | 50   | 0.1059927                     | 0.8940073                                    | 9.8227      | 2.130       |
| 55   | 55   | 0.0972945                     | 0.9027055                                    | 9.8199      | 1.954       |
| 60   | 60   | 0.0899157                     | 0.9100843                                    | 9.8201      | 1.806       |
| 70   | 70   | 0.0780734                     | 0.9219266                                    | 9.8412      | 1.578       |
| 100  | 100  | 0.0559622                     | 0.9440378                                    | 9.9805      | 1.180       |
| 200  | 200  | 0.0287866                     | 0.9712134                                    | 10.6937     | 0.747       |
| 300  | 300  | 0.0193770                     | 0.9806230                                    | 11.5135     | 0.627       |
| 400  | 400  | 0.0146035                     | 0.9853965                                    | 12.3863     | 0.589       |
| 440  | 440  | 0.0132935                     | 0.9867065                                    | 12.7454     | 0.584       |
| 450  | 450  | 0.0130020                     | 0.9869980                                    | 12.8394     | 0.584       |
| 460  | 460  | 0.0127229                     | 0.9872771                                    | 12.9308     | 0.583       |
| 470  | 470  | 0.0124556                     | 0.9875444                                    | 13.0231     | 0.583       |
| 500  | 500  | 0.0117170                     | 0.9882830                                    | 13.3042     | 0.585       |
| 600  | 600  | 0.0097833                     | 0.9902167                                    | 14.3133     | 0.608       |
| 700  | 700  | 0.0083974                     | 0.9916026                                    | 15.3818     | 0.648       |
| 1000 | 1000 | 0.0058930                     | 0.9941070                                    | 19.1310     | 0.875       |
| 1500 | 1500 | 0.0039364                     | 0.9960636                                    | 29.9239     | 2.237       |
| 2000 | 2000 | 0.0029552                     | 0.9970448                                    | 99.7062     | 62.123      |

Table-B.2: H/U Ratio,  $\text{UF}_4$  and  $\text{C}_{29}\text{H}_{60}$  Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 50 wt. %  $^{235}\text{U}$ .

| H/X  | H/U   | Volume Fraction $\text{UF}_4$ | Volume Fraction $\text{C}_{29}\text{H}_{60}$ | Radius [cm] | Mass U [kg] |
|------|-------|-------------------------------|----------------------------------------------|-------------|-------------|
| 5    | 2.516 | 0.7030459                     | 0.2969541                                    | 15.8445     | 59.400      |
| 10   | 5.032 | 0.5420746                     | 0.4579254                                    | 14.1887     | 32.889      |
| 20   | 10.06 | 0.3718123                     | 0.6281877                                    | 12.5926     | 15.770      |
| 50   | 25.16 | 0.1914307                     | 0.8085693                                    | 11.2177     | 5.740       |
| 75   | 37.74 | 0.1363190                     | 0.8636810                                    | 10.9646     | 3.817       |
| 80   | 40.25 | 0.1288973                     | 0.8711027                                    | 10.9412     | 3.586       |
| 90   | 45.29 | 0.1162401                     | 0.8837599                                    | 10.9229     | 3.218       |
| 100  | 50.32 | 0.1058465                     | 0.8941535                                    | 10.9232     | 2.930       |
| 110  | 55.35 | 0.0971590                     | 0.9028410                                    | 10.9334     | 2.697       |
| 200  | 100.6 | 0.0558806                     | 0.9441194                                    | 11.3622     | 1.741       |
| 300  | 151.0 | 0.0379608                     | 0.9620392                                    | 12.0875     | 1.424       |
| 400  | 201.3 | 0.0287434                     | 0.9712566                                    | 12.9099     | 1.314       |
| 450  | 226.4 | 0.0256316                     | 0.9743684                                    | 13.3536     | 1.296       |
| 475  | 239.0 | 0.0243153                     | 0.9756847                                    | 13.5796     | 1.293       |
| 480  | 241.5 | 0.0240681                     | 0.9759319                                    | 13.6264     | 1.293       |
| 490  | 246.6 | 0.0235885                     | 0.9764115                                    | 13.7204     | 1.294       |
| 500  | 251.6 | 0.0231277                     | 0.9768723                                    | 13.8134     | 1.295       |
| 510  | 256.6 | 0.0226845                     | 0.9773155                                    | 13.9096     | 1.297       |
| 600  | 301.9 | 0.0193476                     | 0.9806524                                    | 14.8566     | 1.348       |
| 700  | 352.2 | 0.0166297                     | 0.9833703                                    | 15.8954     | 1.419       |
| 1000 | 503.2 | 0.0116991                     | 0.9883009                                    | 19.7225     | 1.906       |
| 1500 | 754.8 | 0.0078300                     | 0.9921700                                    | 31.1835     | 5.043       |
| 2000 | 1006  | 0.0058840                     | 0.9941160                                    | 125.8240    | 248.962     |

Table-B.3: H/U Ratio,  $\text{UF}_4$  and  $\text{C}_{29}\text{H}_{60}$  Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 20 wt. %  $^{235}\text{U}$ .

| H/X  | H/U      | Volume Fraction $\text{UF}_4$ | Volume Fraction $\text{C}_{29}\text{H}_{60}$ | Radius [cm] | Mass U [kg] |
|------|----------|-------------------------------|----------------------------------------------|-------------|-------------|
| 5    | 1.0102   | 0.8553517                     | 0.1446483                                    | 26.4005     | 334.622     |
| 10   | 2.0204   | 0.7472616                     | 0.2527384                                    | 22.2195     | 174.280     |
| 20   | 4.0408   | 0.5965026                     | 0.4034974                                    | 18.0628     | 74.738      |
| 50   | 10.1021  | 0.3715957                     | 0.6284043                                    | 14.2006     | 22.624      |
| 100  | 20.2042  | 0.2281962                     | 0.7718038                                    | 12.8384     | 10.266      |
| 125  | 25.2552  | 0.1912872                     | 0.8087128                                    | 12.657      | 8.246       |
| 140  | 28.2858  | 0.1743657                     | 0.8256343                                    | 12.6184     | 7.448       |
| 150  | 30.3062  | 0.1646554                     | 0.8353446                                    | 12.6122     | 7.023       |
| 160  | 32.3267  | 0.1559695                     | 0.8440305                                    | 12.6147     | 6.656       |
| 175  | 35.3573  | 0.1445329                     | 0.8554671                                    | 12.6366     | 6.201       |
| 200  | 40.4083  | 0.1287932                     | 0.8712068                                    | 12.7082     | 5.620       |
| 250  | 50.5104  | 0.1057587                     | 0.8942413                                    | 12.948      | 4.881       |
| 300  | 60.6125  | 0.0897136                     | 0.9102864                                    | 13.2556     | 4.443       |
| 400  | 80.8166  | 0.0688289                     | 0.9311711                                    | 14.0242     | 4.036       |
| 450  | 90.9187  | 0.0616528                     | 0.9383472                                    | 14.4624     | 3.965       |
| 465  | 93.9494  | 0.0597829                     | 0.9402171                                    | 14.6024     | 3.958       |
| 475  | 95.9698  | 0.0585980                     | 0.9414020                                    | 14.6964     | 3.954       |
| 485  | 97.9902  | 0.0574592                     | 0.9425408                                    | 14.7944     | 3.956       |
| 500  | 101.0208 | 0.0558317                     | 0.9441683                                    | 14.9437     | 3.961       |
| 550  | 111.1229 | 0.0510150                     | 0.9489850                                    | 15.4755     | 4.020       |
| 600  | 121.2250 | 0.0469634                     | 0.9530366                                    | 15.9542     | 4.055       |
| 700  | 141.4291 | 0.0405263                     | 0.9594737                                    | 17.0689     | 4.285       |
| 1000 | 202.0416 | 0.0287175                     | 0.9712825                                    | 21.2195     | 5.833       |
| 1500 | 303.0624 | 0.0193301                     | 0.9806699                                    | 34.7515     | 17.248      |

Table-B.4: H/U Ratio,  $\text{UF}_4$  and  $\text{C}_{29}\text{H}_{60}$  Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 10 wt. %  $^{235}\text{U}$ .

| H/X  | H/U      | Volume Fraction $\text{UF}_4$ | Volume Fraction $\text{C}_{29}\text{H}_{60}$ | Radius [cm] | Mass U [kg] |
|------|----------|-------------------------------|----------------------------------------------|-------------|-------------|
| 5    | 0.5057   | 0.9220150                     | 0.0779850                                    | 54.8851     | 3241.970    |
| 10   | 1.0115   | 0.8553134                     | 0.1446866                                    | 39.3680     | 1109.846    |
| 20   | 2.0230   | 0.7472032                     | 0.2527968                                    | 27.9952     | 348.656     |
| 50   | 5.0575   | 0.5417675                     | 0.4582325                                    | 19.1259     | 80.609      |
| 100  | 10.1150  | 0.3715234                     | 0.6284766                                    | 15.8547     | 31.490      |
| 150  | 15.1725  | 0.2826911                     | 0.7173089                                    | 14.9607     | 20.131      |
| 190  | 19.2185  | 0.2372998                     | 0.7627002                                    | 14.7452     | 16.179      |
| 200  | 20.2300  | 0.2281417                     | 0.7718583                                    | 14.7230     | 15.485      |
| 205  | 20.7357  | 0.2238227                     | 0.7761773                                    | 14.7222     | 15.189      |
| 210  | 21.2415  | 0.2196642                     | 0.7803358                                    | 14.7196     | 14.899      |
| 215  | 21.7472  | 0.2156574                     | 0.7843426                                    | 14.7191     | 14.626      |
| 220  | 22.2530  | 0.2117942                     | 0.7882058                                    | 14.7195     | 14.365      |
| 250  | 25.2875  | 0.1912393                     | 0.8087607                                    | 14.7671     | 13.097      |
| 300  | 30.3450  | 0.1646128                     | 0.8353872                                    | 14.9552     | 11.710      |
| 400  | 40.4600  | 0.1287584                     | 0.8712416                                    | 15.6306     | 10.457      |
| 450  | 45.5174  | 0.1161131                     | 0.8838869                                    | 16.0798     | 10.267      |
| 475  | 48.0462  | 0.1106783                     | 0.8893217                                    | 16.3285     | 10.247      |
| 490  | 49.5634  | 0.1076549                     | 0.8923451                                    | 16.4304     | 10.155      |
| 500  | 50.5749  | 0.1057295                     | 0.8942705                                    | 16.5178     | 10.134      |
| 510  | 51.5864  | 0.1038717                     | 0.8961283                                    | 16.6204     | 10.142      |
| 525  | 53.1037  | 0.1012043                     | 0.8987957                                    | 16.7649     | 10.142      |
| 600  | 60.6899  | 0.0896883                     | 0.9103117                                    | 17.5444     | 10.301      |
| 700  | 70.8049  | 0.0778735                     | 0.9221265                                    | 18.7306     | 10.883      |
| 1000 | 101.1499 | 0.0558154                     | 0.9441846                                    | 23.3602     | 15.132      |
| 1500 | 151.7248 | 0.0379157                     | 0.9620843                                    | 40.7182     | 54.437      |

Table-B.5: H/U Ratio,  $UF_4$  and  $C_{29}H_{60}$  Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 5 wt. %  $^{235}U$ .

| H/X  | H/U     | Volume Fraction<br>$UF_4$ | Volume Fraction<br>$C_{29}H_{60}$ | Radius<br>[cm] | Mass U<br>[kg] |
|------|---------|---------------------------|-----------------------------------|----------------|----------------|
| 20   | 1.0121  | 0.8552943                 | 0.1447057                         | 75.5376        | 7841.152       |
| 50   | 2.5304  | 0.7027553                 | 0.2972447                         | 31.4780        | 466.230        |
| 100  | 5.0607  | 0.5417291                 | 0.4582709                         | 22.5001        | 131.253        |
| 200  | 10.1215 | 0.3714873                 | 0.6285127                         | 18.9527        | 53.794         |
| 250  | 12.6518 | 0.3210425                 | 0.6789575                         | 18.5783        | 43.788         |
| 280  | 14.1700 | 0.2968562                 | 0.7031438                         | 18.5196        | 40.107         |
| 290  | 14.6761 | 0.2895840                 | 0.7104160                         | 18.5138        | 39.087         |
| 300  | 15.1822 | 0.2826597                 | 0.7173403                         | 18.5176        | 38.176         |
| 310  | 15.6883 | 0.2760588                 | 0.7239412                         | 18.5381        | 37.409         |
| 350  | 17.7125 | 0.2524747                 | 0.7475253                         | 18.6488        | 34.829         |
| 400  | 20.2429 | 0.2281145                 | 0.7718855                         | 18.9077        | 32.798         |
| 450  | 22.7733 | 0.2080414                 | 0.7919586                         | 19.2648        | 31.639         |
| 475  | 24.0385 | 0.1992739                 | 0.8007261                         | 19.4721        | 31.294         |
| 500  | 25.3036 | 0.1912154                 | 0.8087846                         | 19.7008        | 31.099         |
| 515  | 26.0627 | 0.1866857                 | 0.8133143                         | 19.8438        | 31.028         |
| 525  | 26.5688 | 0.1837833                 | 0.8162167                         | 19.9433        | 31.008         |
| 535  | 27.0749 | 0.1809698                 | 0.8190302                         | 20.0455        | 31.005         |
| 545  | 27.5810 | 0.1782411                 | 0.8217589                         | 20.1500        | 31.018         |
| 600  | 30.3644 | 0.1645915                 | 0.8354085                         | 20.7615        | 31.330         |
| 700  | 35.4251 | 0.1444755                 | 0.8555245                         | 22.0613        | 32.996         |
| 1000 | 50.6073 | 0.1057148                 | 0.8942852                         | 27.9136        | 48.906         |
| 1500 | 75.9109 | 0.0730507                 | 0.9269493                         | 58.5148        | 311.313        |

Table-B.6: H/U Ratio,  $\text{UF}_4$  and  $\text{C}_{29}\text{H}_{60}$  Volume Fractions, Critical Radius, and Critical Mass of Uranium for Various H/X Ratios for an Enrichment of 3 wt. %  $^{235}\text{U}$ .

| H/X  | H/U     | Volume Fraction $\text{UF}_4$ | Volume Fraction $\text{C}_{29}\text{H}_{60}$ | Radius [cm] | Mass U [kg] |
|------|---------|-------------------------------|----------------------------------------------|-------------|-------------|
| 50   | 1.5186  | 0.7975766                     | 0.2024234                                    | 72.378      | 6432.708    |
| 100  | 3.0372  | 0.6633077                     | 0.3366923                                    | 35.3646     | 624.055     |
| 200  | 6.0744  | 0.4962306                     | 0.5037694                                    | 26.0132     | 185.809     |
| 300  | 9.1116  | 0.3963868                     | 0.6036132                                    | 24.1535     | 118.812     |
| 340  | 10.3265 | 0.3668612                     | 0.6331388                                    | 23.9772     | 107.572     |
| 350  | 10.6302 | 0.3601545                     | 0.6398455                                    | 23.9621     | 105.406     |
| 360  | 10.9340 | 0.3536886                     | 0.6463114                                    | 23.9557     | 103.431     |
| 370  | 11.2377 | 0.3474508                     | 0.6525492                                    | 23.9597     | 101.657     |
| 400  | 12.1489 | 0.3299912                     | 0.6700088                                    | 24.0502     | 97.647      |
| 410  | 12.4526 | 0.3245548                     | 0.6754452                                    | 24.0553     | 96.100      |
| 450  | 13.6675 | 0.3044898                     | 0.6955102                                    | 24.3176     | 93.140      |
| 490  | 14.8823 | 0.2867613                     | 0.7132387                                    | 24.618      | 91.008      |
| 500  | 15.1861 | 0.2826471                     | 0.7173529                                    | 24.7171     | 90.790      |
| 510  | 15.4898 | 0.2786494                     | 0.7213506                                    | 24.8048     | 90.462      |
| 520  | 15.7935 | 0.2747631                     | 0.7252369                                    | 24.901      | 90.242      |
| 530  | 16.0972 | 0.2709837                     | 0.7290163                                    | 25.017      | 90.251      |
| 600  | 18.2233 | 0.2471836                     | 0.7528164                                    | 25.9041     | 91.396      |
| 700  | 21.2605 | 0.2196271                     | 0.7803729                                    | 27.5292     | 97.469      |
| 1000 | 30.3721 | 0.1645830                     | 0.8354170                                    | 36.1476     | 165.358     |
| 1500 | 45.5582 | 0.1160909                     | 0.8839091                                    | 245.459     | 36520.496   |

## **Appendix C**

### **Documentation of Peer Review**

A-3548# (3/20/97)

## NUCLEAR CRITICALITY SAFETY CALCULATION CHECK-OFF SHEET

Problem: Estimated Critical Conditions for UF<sub>6</sub>-Oil Systems in Fully Oil-Reflected Spherical GeometryComputer: PORTS NCS IBM RS/6000 Workstation Code: CSAS25 **DESIGN CALCULATIONAL MODEL** (Attach Calculational Model Description)

The calculational model was designed by

W.P. Bissell 12 May 97  
(analyst)

The calculational model was reviewed and found to be neither too conservative nor non-conservative.

Tom D'Aquila 5/12/97  
(technical reviewer) **PREPARE INPUT DATA** (Attach Input Data)

The computer input was prepared by

W.P. Bissell 12 May 97  
(analyst)

The computer input was reviewed and found to be correct with proper selection of options.

Tom D'Aquila 5/12/97  
(technical reviewer) **COMPUTER CODE**

The computer code and cross sections have been validated and this is documented in

POEF-LMUS-13  
(document)

The range of validated applicability is not exceeded in the calculations.

Tom D'Aquila 5/12/97  
(technical reviewer)

No changes have been authorized to the computer program or cross sections without subsequent retesting or validation. The job was run on the correct computer.

R. M. Lemming 5/12/97  
(NCS Computer Systems Manager) **INTERPRET RESULTS** (Attach Sample Output and Results)

The assumptions, results, bias, and conclusions of the calculational study are documented in

POEF-LMUS-44  
( retrievable document)

The assumptions, results, bias, and conclusions have been checked for logic and errors. The answers were not misread, the calculations converged, there was representative sampling for Monte Carlo calculations, and no conclusion is based on only one calculation.

Tom D'Aquila 5/12/97  
(technical reviewer)