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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
hehalf of the Commission: 

A. Makes any warranty or representation, express or implied, with 
respect to the accuracy, completeness, or usefulness of the infor­
mation contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any llahillties with respect to the use of, or for 
damages resulting from the use of any information, apparatus, 
method, or process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission to the extent 
that such employee or contractor prepares, handles or distributes, or 
provides access to, any Information pursuant to his employment or con­
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FOREWORD 

This report has been prepared in compliance with Contract AT(30-1)-
217. It STommarizes the study conducted on aerodynamic re-entry analysis 
of the Task 2 thermoelectric generator. 
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SUMMARY 

An analytical trajectory and aerothermodynamic analysis of a satel­
lite containing a Task 2 thermoelectric generator has been completed. A 
300-statute mile circular polar orbit was used for this analysis and the 
launch was assumed to be from Vandenberg Air Force Base. 

Results of this study show that upon natural decay from a successful 
mission, the radio-cerium fuel will burn up in space at high altitude, 
thus only a very minor amount of radio cerium will be released to the 
stratosphere. 

A complete analyses of the fate of the radio-cerium fuel following 
various aborted launching attempts also has been carried out. Charts 
summarizing the various assximed failures and locations of the fuel fol­
lowing failure are shown. 

A technical discussion of the methods used in performing the analy­
sis is Included in the report. 
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I. INTRODUCTION 

To establish that a radioisotope fueled thermoelectric generator 
can be safely used in an orbital vehicle, all phases of the vehicle op­
eration must be analyzed. One extremely critical phase occurs when a 
vehicle, near orbital velocity, re-enters the atmosphere. This could 
occur upon natural decay of the satellite from orbit or during an aborted 
final stage operation. One of the important aspects of this problem is 
the severe aerodynamic heating that the generator will undergo and its 
ultimate effect on the fate of the radio-cerium fuel. In addition, the 
location of the re-entering body is of Importance when the possibility 
of release of even minute amounts of fuel is being considered. 

The object of the present report is to analyze all possible re-entry 
conditions that might be imposed upon the Task 2 thermoelectric generator 
when used as a power supply for a typical satellite mission. 
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II. TECHNICAL DISCUSSION * 

The following technical discussion involves calculating case his­
tories of the radioisotope fueled unit during re-entry following a final 
stage failure while attempting to achieve a circular orbit. The problems 
of trajectory analysis, determination of aerodynamic heating and subse­
quent heat transfer including generator melting and/or oxidation are in­
volved . 

A. FINAL STAGE SATELLITE 

A typical satellite installed in a launching vehicle is shown in 
Fig. 1. For the purpose of this study, the satellite is assumed to be 
entering a circular orbit at an altitude of 3OO statute miles. The 
launch is from Vsmdenburg Air Force Base (VAFB) and is to establish a 
southerly polar orbit. At the end of the boost, and immediately before 
firing the injection stage, the characteristics of the satellite are: 

Flight Altitude 

7, Flight path angle—degrees 2 

h. Altitude--feet l,52î •,000 

V, Velocity—feet/second 17^781 

A, Longitude—degrees West 121.67 

(|), Latitude—degrees North l6.37 

Physical Characteristics 

W , Initial weight—pounds 11,600 

W , Fuel weight—pounds 6,6UO 
F 

Ig , Specific Impulse—seconds 266.^3 
DP 

t , Burning time--seconds 106.kO 

« • « 

• • • 

• a 

« • 

* Trajectory Analysis—W. Hagls 
Aerodynamic Heating Analysis—C Milewski 
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Satellite Vehicle 

Atlas 

IRFNA Oxidizer 

UDMH Fuel 
Final Stage Engine 

Thermoelectric 
Generator (2 places) 

Liquid Oxygen 

JP-î - Fuel 

Booster 

Sustainer 

Fig. 1. Typical Vehicle Configuration 
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B. THERMOELECTRIC GENERATOR 

The detailed configuration of the Task 2 generator is shown in Fig. 
2. The fuel is a Cerium-l^i+-loaded assembly shown as Configuration A 
in Fig. 3» The heavy inner construction has been devised to withstand 
terminal velocity impacts. The material for this core is a super alloy 
such as Inconel Hastelloy. Lead telluride thermoelectric elements are 
mounted between thin concentric outer shells as shown in Fig. 2. The 
inner wall of the outer shell is stainless steel and is supported with 
a stainless steel truss structure as shown in Fig. k. 

C. CALCULATION PROCEDURE 

The scheme for the analytical procedure carried out in this report 
is presented in Fig. 5» Essentially, the final stage is ignited at such 
an altitude and flight condition that if the stage fires successfully, 
the satellite would enter a 300-mlle circular polar orbit. If the thrust 
is prematurely cut off or misaligned during this stage of injection, an 
undesirable flight altitude will be obtained. Depending upon the degree 
of error, the satellite will enter into an elliptical orbit or immediately 
re-enter the atmosphere. The case history of the thermoelectric generator 
then becomes of concern. In particular, the location and condition of 
the isotopic fuel and its containment must be determined. Figure 5 il­
lustrates a case where the satellite does not go into orbit, but re-enters 
the atmosphere due to a premature thrust cutoff. Aerodynamic forces be­
come significant at an altitude near 375,000 feet and the thin outer shell 
of the satellite vehicle will fail. As the Isotope unit with some struc­
tural aluminum attached is released, the aluminum outer wall and steel 
inner wall of the generator shell are subsequently melted and the core 
is exposed to the atmosphere. The fuel core then finally melts and burns 
up at altitude. A change in ballistic coefficient between the less dense 
complete unit and heavier core is noted. For purposes of determining final 
terminal velocities, these ballistic coefficient values are Increased when 
the velocity becomes subsonic. 

1. Program 

The burning time for the final powered stage of the satellite injec­
tion is given as 106.k seconds. Thrust cutoffs were assumed to occur at 
times of 21.5, 58.8, 85.6, 100.8 and 103.^ seconds. These values corre­
spond to velocity increments (AV) of 6OOO, 4000, 2000, 60O and i+OO feet 
per second less than the velocity required to achieve a circular orbit at 
300 statute miles. 

In addition, at each of these times the engine axis of thrust was 
assumed to tilt 5* ^5 and 90 degrees in pitch and yaw with no thrust cut­
off. The history of the unit was calculated for each of these cases. 
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2.k6k 
Dia 

Th i rd R e l i e f I - I / 8 Dla x 1/8 (Typ) 

Cerlim F u e l 

-32 Typ a l l Holes 

11.010 

10.010 
9.990 

10.990 

3-755 
3T755 

Dla 

3-3/1+ Dla 
(Ref) 

3/8 R (Typ) -

h-
- 1 1 - 5 / 1 6 -

.4-7/8-

JL 
Weld D e t a i l -

-h-ye-

Ce 

t 5/8 E 
K- . 5 - 1 3 / 1 6 -

2 - 1 / 4 Dla 

T 

1.550 In. Diameter 

a 

0.130 In. (Ref.) 

_»J U-I/2 In. y- (4 places) (8 places)-

V \ \ \ \ \ \ \ \ v ^ ' v ^ ^ v v ^'.^^^^^^^^^ \ - T ^ 

T 10 In. m 
^ Block 

\ \ \ \ \ ' v V ^ ^'^ V ^ '̂ '̂  'v'^'^V'^ V.'^'sk'vVk^^^ 

- ̂  Unit 

^ Block 
11 in. 

2.192 In 
Diameter 
(Ref.) 

Fig. 3. Fuel Capsule Configurations 
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Fig. 5« Steps of Analytical Procedure 
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Further, re-entries for thrust cutoffs during various portions of 
the booster stage were also investigated. 

Methods used for this analysis are described. 

2. Trajectory Analysis 

For the thirst cutoff and pitch program, a general N stage two-di­
mensional powered trajectory was used. In this case, zero lift powered 
phases were used. Where power or aerodynamic effects were predominate, 
the trajectory was integrated; when these conditions did not exist an 
elliptic path was used. Details of this method are presented in Ref. 1. 
The basic equations for integration are shown in Fig. 6. 

The three-dimensional equations used to determine re-entry trajectories 
caused by thrust misalignments in yaw become somewhat more complicated and 
are not presented here. (These are reported in Refs. 2 and 3«) Typical 
trajectories obtained from these calculations are shown in Figs. 7, 8 and 
9. 

3. Aerodynamic Heating 

On a blunt nose the aerodynamic heating becomes a function of nose 
shape, Mach number, atmospheric pressure and nose radius. The relations 
used are shown in Fig. 10. 

For the present shell analysis, the laminar hemispherical values were 
used. An integration of the value aroxind the entire nose indicates that 
an average value of 0.35 of the stagnation value would be applicable for 
the timibling outer sphere. This method is somewhat conservative since no 
turblent flow heating was used. (Figure 10 shows that a considerable 
amount of heating could be derived from this source.) In general, on a 
roughened spherical nose, turbulent flow will be obtained back of the kO-
degree total central arc. 

For the round cylindrical core analysis, the two-dimensional equiva­
lent of K-. and K must be used. These are shown on Fig. 10. 

Figure 11 shows a typical re-entry heating rate. 

k. Heat Transfer 

With the trajectory and aerodynamic heating methods established it 
becomes necessary to calculate the heat transfer through the unit. 

MND-P-2291 



orrnrT 10 

X, Y Inertial axis 

R Radius of earth e 

r Radius of vehicle from center of earth 

<P Range angle 

6L Vehicle ajigle of attack 

y Local flight path angle 

^ Inertial flight path angle 

<r Thrust alignment in pitch 
P 

ju. Earths gravitational constant 

m Miass of vehicle 

Equations 

X = 

s 
F T sin (-f + ̂  ) 4 L 

E _ d^ 
I m 2 

T sin (-c • ,f ) + L 

E 

cos i* 

m 
cos y cos ̂ + 

r T cos {j. t 4 ) - T> 

j - L — j - ^ — - ' ^ 
V— r 

T cos {^ * i 

L m 
£ it 

] sin ir zos^ 

sin 3̂  

Fig. 6. Basic Two-Dimensional Trajectory Equations 
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First, an equivalent heat transfer configuration for the basic thermo­
electric generator was established and is shown here. 

Free Floating 
Min K Insulation 

Steel Supports 
Fig. h 

Dimensions given 
in inches. 

(l) Aluminum 
0.062 Actual 
0.125 Used 

/n\ 04- 1 0.0^7 Actual (2) Steel Q^QgQ y^^^ 

Stainless Steel 
Core See Fig. 3 

(1) To represent the effect of light aluminum satellite structure, 
the outer shell of the generator was increased to 0.125 from 
the actual value of O.O625. 

(2) An additional five pounds of steel were distributed both to 
the outer steel shell and the stainless core. The five pounds 
represent I/6 of the support stioicture weight. This increased 
the stainless steel shell from the actual value of 0.0^7 to 
0.068 and the core diameter from 3*75 to U.O inches. 

The following material properties were used. 

Outer Shell Aluminum 

C , Specific heat—Btu/lb F 

T ) Melting temperature-- R 

I. , Heat of fission—Btu/lb 

p. Density—Ib/cu ft 

Steel 

0.226 

1670 

167 

169 

0.150 

3000 

117 

k96 

• • • • 
• • • 
• • • • 

• • • 
• • • 
• • • 
• • • 

• • • 

• •• • 

MND-p-2291 
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Core 

Since the heating elements are already molten, it is assumed that 
this liquid has no effect on the heat balance and serves only to main­
tain shape. 

C _ 0.105 at 100° F 
P — 

0.120 at 1000° F 

*K — 3.3 at 100° F 

6.35 at 1000° F 

T = 3000° R 
m 

I. = 117 Btu/lb 

*P - 0.126 Ib/cu in. 

Using this information and heat input data from curves similar to 
Fig. 11, the heat balance equation for a number of elements may be cal'-
culated as shown in Fig. 12. The method illustrated in Fig. 12 is re­
ported in Ref. k. 

To further illustrate the use of the method, consider the outer shell 
with its thin walls. 

For the outer aluminum shell. 

Heat In - Heat Radiated = Heat Stored 4- Phase Change 

(q. - oeT ) At = W C AT + L W 
^ in w ' p F 

= W C 
P 
(.̂ 4) 

For a time increment. At, the temperature increases an amount AT. 
The heat of fusion is equivalent to a temperature Increase l^jc . The 

material of a thin element can therefore be considered to be removed at 
T « T ^^ •»- lirJc . For aluminum, T is 1670° R and the radiation is 

melt F p ' melt 
small. 

* Forty-four percent of the core volume is steel, hence K » 0.44 K steel 
and P - 0.44 P steel. 

MND-P-2291 



Aerodynamic _ Heat Radiated Heat Conducted ̂  ^^^^ g^^^^^ ^̂ ^̂ ^̂  ̂  
Element Heat In Out In -Out 

Q q, - ae 
^ in 

(̂ x̂  - ^ : ) -S(^i-V=^^i*^^ 
p C Ax 
_ J ^ 

At G^i^i) 

© + ^ ( T - T ) - — ( T - T ) = 
^ Ax ^ 1 ^2^ Ax ^ 2 ^3^ At 

p C Ax 

(D + — (T ^ Ax -̂"̂  3 Ax ' 3 

p C ZiX 

^in 

Ax.. ® 
T @ 

^ 

©. 

T, 

e t c . 

M!-. — increment of tem.perature T for a time increment At 

For initial values of T , Tp etc. a step by step solution 
of a series of set of simultaneous equation is performed. T^ 

increases until T,= T ,, at this time the heat balance (T„, 1 melt 2' 
1 etc.) is held until T^ increases an amount ly/C . At this 

time the outer element (l) is melted and the old element (2) 
now becomes new element ̂ l) and the process is repeated. For 
a sphere or cylinder, the heating rate is increased for a de­
crease in radius. 

Fig. 12. Heat Transfer Scheme (Per Unit Area) 



9t?CWT 19 

. PA Ax , ^ 
q_ As — AT 
in At 

AT = ' ^^ ^ At 
PAx C 

P 

Ax, Shell thicknesB—feet 0.0104 

A t , Time increment—seconds 10 

q. f 0*35 stagnation heating ra t e Fig. 11 

T„. -, _ T + ^ = 1670 + ^ \ L =2404° R f i n a l — m C 0.226 
P 

AT = 8.85 q. for 10-second in te rva l 
i n 

stagnation 

t 

20 

10 

0 

10 

20 

30 

40 

50 

'lin 

0 

2 

4 

10 

26 

70 

150 

300 

\ v 

1.0 

3.0 

7 .0 

18.0 

48.0 

110.0 

225.0 

AT 

8.9 

26.5 

62.0 

159.0 

425.0 

975.0 

1990.0 

T 

400.0 

408.9 

435.4 

497.4 

656.4 

1081.4 

2056.4 

4o46.o 

Aluminum is considered melted at t = 44 seconds and 24o4 R 

For the steel inner wall of the outer shell, radiation is no longer 
negligible. 

1, - ^ ^ R 

• • • • 

• •• • 

« • * • • 
• • • 

> • • 

• • • • 

A 4 -,. +. oeT or Aq„ 
radia t ion = w R 

= [1230) 
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For Steel 

Ax, Shell thickness--feet O.OO566 

At, Time Increment--seconds 1 

Kj,, Heat of fusion--Btu/lb II7 

^f inal = 3010 4 ^ = 3790° R 

T - 0.835 q. 
in 

stagnation 

t 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

^m 

210 

225 

240 

255 

270 

285 

300 

315 

330 

345 

360 

375 

-̂ av 

217.5 

232.5 

247.5 

262.5 

277.5 

292.5 

307.5 

322.5 

337.5 

352.5 

367.5 

Aq^ 

-8.0 

-10.5 

-15.0 

-20.0 

-32.0 

-35.0 

-35.0 

-35.0 

-35.0 

-35.0 

-35.0 

Aq, 

209.5 

222.0 

232.5 

242.5 

245.5 

257.5 

272.5 

287.5 

302.5 

317.0 

332.5 

AT 

174 

185 

193 

202 

204 

2l4 

227 

24o 

252 

264 

278 

T 

2060 

2234 

2419 

2612 

28l4 

3018 

3232 

3^59 

3699 

3951 

4215 

• '. steel is consumed at 52 seconds. 
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After the steel shell melted, the core heat transfer analysis was 
carried out by the method shown in Fig. 12. Final results of this analy­
sis are shown in Fig. 13 and l4. 

D. RESULTS 

1. Solid Steel Core 

A complete summary of results is presented in Table 1. A polar 
projection showing the final abort areas and orbital traces is shown in 
Fig. 15. This figure shows that it is possible to obtain open core im­
pacts in a remote area of the Pacific Ocean south of the equator. An 
even wider area is shown where the unit will bum up at altitude. 

Point 5A, Fig. 15> represents the largest range that the core will 
achieve upon abort. In this case the unit burned at 234,700 feet. This 
point could be considered as being equivalent to a natural decay for 
either a circular or elliptical orbit. 

To illustrate the results more completely, an elevation view of the 
thrust cutoff results is presented in Fig. I6. This plot shows that the 
earlier the thrust is cutoff, the shorter the range and lower the aero­
dynamic heating. This is as expected. This results in a lesser degree 
of unit burnup. Figure 16 also shows the elevation view for the 45-degree 
thrust tilts. In this case, a partially consumed core Impacts the earth's 
surface along the Intended course. This condition describes the maximum 
range for partial burnup. 

From the results of Fig. 15 and I6, it can be concluded that the im­
pact area, although large, can be maintained over water in a relatively 
•unhablted region. On the northerly path of the first orbit, where the 
first inhabited regions are reached, burnup will occur safely at high al­
titude. 

Figures 15 and 16 are concerned with failure during final stage op­
eration. Analyses were also completed for thrust cutoff during booster 
operation. It was found that no core melting occurred before impact for 
any failure during the boost phase. 

2. Cluster Core 

To increase the possibility of burnup, a cluster arrangement of the 
core as shown by Sketch c. Fig. 3 has been investigated. By arranging 
the cluster so that heating will be applied to four small rather than one 
large unit, an increase in heating can be obtained. 

The gain that can be obtained is shown in Fig. 17. 

MND-P-2291 
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TABLE 1 

End P o i n t s 

AV 6P bY 9 

la 
lb 
Ic 

2a 
2b 
2c 

3a 
3b 
3c 

4a 
4b 
4c 

5a 
5b 
5c 
5d 
5e 

6a 

6b 

6c 

7a 

7b 

7c 

8a 

8b 

8c 

9a 

9b 

9c 

? 
A 
TOO 

600 
600 
6oo 

2000 
2000 
2000 

4000 
4000 
4ooo 

6000 
6ooo 
6ooo 

400TC0 
600TC0 

2000TC0 
4000TC0 
6000TC0 

6oo 
600 
6oo 
6oo 
6oo 
600 

2000 
2000 
2000 
2000 
2000 
2000 

4000 
4000 
4000 
4000 
4000 
4000 

6000 
6ooo 
6000 
6000 
6000 
6000 

Latitude 
Longitude 
Thrust Cut 

5 
45 
90 

5 
45 
90 

5 
45 
90 

5 
45 
90 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

Off 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 
0 
0 

+ 5 
-5 

+ 45 
-45 
+ 90 
-90 

+ 5 
-5 

+ 45 
-45 
+ 90 
-90 

4-5 
-5 

+ 45 
-45 
+ 90 
-90 

+ 5 
-5 

+ 45 
-45 
+ 90 
-90 

.. 
• -

76.9s 

_̂ 
53.0s 
63.9s 

— _ 
77.0s 
46.6s 

_ ̂_ 

88.7s 
35.4s 

47.9s 
80.0s 
36.0s 
20.0s 

__ 
--
--
--

64.5S 
64.5S 

--
70.4s 
70.4s 
36.2s 
36.2s 

__ 
--

56.5s 
56.5s 
20.5s 
20.5s 

--
44.3s 
44.3s 
11.3s 
11.3s 

— •. 
-.-
50.5E 

_̂ 
48.7E 
128.8w 

__ 
49. 8 E 
127.4w 

__ 
49.3E 
127.5W 

49. OE 
127.9w 
125.3W 
125. iw 

_ „ 

--
--
--

150.3W 
104.iw 

--
l4o.3w 
104.7W 
135.2W 
114.1W 

^̂  
--

l4i.7w 
110.ow 
135.6w 
113.4w 

_. 
--

143.3W 
106.2W 
135.7W 
112.5W 

Into orbit 
Into orbit 
Core burns out at 172,000 ft 

Into orbit 
Core burns out at 163,000 ft 
Core intact at impact 

Into orbit 
Core burns out at ll8,200 ft 
Core intact at impact 

Into orbit 
Open core at impact 90^ consumed 
Core Intact at impact 

Core burns out at 234,700 ft 
Core bums out at 179,837 ft 
Core burns out at 121,250 ft 
Open core at Impact 70^ consumed 
Open core at Impact 28^ consumed 

Into orbit 
Into orbit 
Into orbit 
Into orbit 
Core burns out at 185,000 ft 
Core burns out at l85,000 ft 

Into orbit 
Into orbit 
Core burns out at 178,400 ft 
Core bums out at 178,400 ft 
Core bums out at 105,000 ft 
Core bums out at 105,000 ft 

Into orbit 
Into orbit 
Core burns out at l69,200 ft 
Core burns out at l69,200 ft 
Open core at impact 80^ consumed 
Open core at impact 80^ consumed 

Into orbit 
Into orbit 
Core burns out at 134,960 ft 
Core bums out at 134,960 ft 
Open core at Impact 44^ consumed 
Open core at impact 44^ consumed 
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Fig. I'j. polar Projections Showing Abort Areas and Orbital Traces 
(zone of 75^ fallout shown) 
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3. Solid Molybdenum Core 

To Increase Inpact resistance at lower temperature, molybdenum as 
a material for the solid core was investigated. Although molybdenum has 
a high melting point, it oxidizes rapidly. The Martin Company has re­
cently conducted an extensive program on the oxidation of molybdenum 
loading edges for space vehicles, (Ref. 5)-

This report gives the surface regression rate of molybdenum as 

R = c (MFR)^ 

where: 

R =s surface regression rate, In./hr 

c and K constants depending upon surface temperature and pressure 

MFR = mass flow rate over the surface—lb/ft -hr 

An analysis was completed of a third-stage Abort Condition 5A using 
molybdenxmi in place of steel as a core material. Results of this study 
are shown in Fig. I8. This figure indicates that the molybdenum core will 
not completely melt before impact. Thus, radioactive diffusion can occur 
at low altitudes or at the earth's surface. Since Condition 5A approxi­
mately represents the natural decay condition, it becomes apparent that a 
molybden-um core in this configuration is not desirable from an aerodynamic 
burnup consideration. Other configurations which will burnup more rapidly 
are under study. 

4. Conclusions 

From the results of this study it can be concluded that: 

(1) A solid steel or superalloy core configuration for a Task 2 
thermoelectric generator, when launched in a southerly polar 
orbit from Vandenburg Air Force Base, will burn up at altitudes 
above 100,000 feet in a natural decay from orbit. 

(2) Core Impact in remote areas of the South Pacific with despersion 
of radioactive material at low altitudes can occur when vehicle 
launch faults occur during powered operation of the final stage. 

(3) Improvements in burnup characteristics can be obtained by mod­
ifying the core configuration to a frangible cluster arrange­
ment. 

MND-P-2291 
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(4) Use of molybdenum as a core material is detrimental to aero­
dynamic burnup. 

(5) Assumption concerning the heat transfer model, including a 
correction for the satellite structure, could modify the re­
sults somewhat. However, it is not believed these are of 
sufficient size to change the general conclusion of the re­
port. 
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