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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.

Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, express or implied, with
respect to the accuracy, completeness, or usefulness of the infor-
mation contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, apparatus,
method, or process disclosed in thils report.

As used in the above, 'person acting on behalf of the Commission"
includes any employee or contractor of the Commission to the extent
that such employee or contractor prepares, handles or distributes, or

provides access to, any information pursuant to his employment or con-
tract with the Commission.
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FOREWORD

This report has been prepared in compliance with Contract AT(30-1)-
217. It summarizes the study conducted on aerodynamic re-entry analysis
of the Task 2 thermoelectric generator.
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SUMMARY

An analytical trajectory and aerothermodynamic analysis of a satel-
lite containing a Task 2 thermoelectric generator has been completed. A
300-statute mile circular polar orbit was used for this analysis and the
launch was assumed to be from Vandenberg Air Force Base,

Results of this study show that upon natural decay from a successful
mission, the radio-cerium fuel will burn up in space at high altitude,
thus only & very minor amount of radio cerium will be released to the
stratosphere.

A complete analyses of the fate of the radio-cerium fuel following
various aborted launching attempts also has been carried out. Charts
summarizing the various assumed failures and locations of the fuel fol-
lowing failure are shown.

A technical discussion of the methods used in performing the analy-
sis is included in the report.

MND-P-2291




I. INTRODUCTION

To establish that a radioisotope fueled thermoelectric generator
can be safely used 1in an orbital vehicle, all phases of the vehicle op-
eration must be analyzed. One extremely critical phase occurs when a
vehicle, near orbital velocity, re-enters the atmosphere. This could
occur upon natural decay of the satellite from orbit or during an aborted
final stage operation. One of the important aspects of this problem is
the severe aerodynamic heating that the generator will undergo and its
ultimate effect on the fate of the radio-cerium fuel. In addition, the
location of the re-entering body is of importance when the possibility
of release of even minute amounts of fuel is being considered.

The object of the present report is to analyze all possible re-entry

conditions that might be imposed upon the Task 2 thermoelectric generator
when used as a power supply for a typical satellite mission.
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IT. TECHNICAL DISCUSSION *

The following technical discussion involves calculating case his-
tories of the radiocisotope fueled unit during re-entry following a final
stage failure while attempting to achieve a circular orbit. The problems
of trajectory analysis, determination of aerodynamic heating and subse-
quent heat transfer including generator melting and/or oxidation are in-
volved.

A. FINAL STAGE SATELLITE

A typical satellite installed in a launching vehicle is shown in
Fig. 1. For the purpose of this study, the satellite is assumed to be
entering a circular orbit at an altitude of 300 statute miles. The
launch is from Vandenburg Air Force Base (VAFB) and is to establish a
southerly polar orbit. At the end of the boost, and immediately before
firing the injection stage, the characteristics of the satellite are:

Flight Altitude

7, Flight path angle--degrees 2

h, Altitude--feet 1,524,000

V, Velocity--feet/second 17,781 SRR

A, Longitude--degrees West 121.67 :L.i
(p, Iatitude-~-degrees North 16.37 B

Physical Characteristics ¢ Tt
W1, Initial weight--pounds 11,600
Wos Fuel weight--pounds 6,640 ;;:;
Isps Specific impulse~--seconds 266.43 et
t,, Burning time--seconds 106.40

* Trajectory Analysis--W. Hagls
Aerodynamic Heating Analysis--C. Milewski

MND-P-2291
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Fig. 1. Typical Vehicle Configuration
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B. THERMOELECTRIC GENERATOR

The detailed configuration of the Task 2 generator is shown in Fig.
2. The fuel is a Cerium-lblk-loaded assembly shown as Configuration A
in Fig. 3. The heavy inner construction has been devised to withstand
terminal velocity impacts. The material for this core is a super alloy
such as Inconel Hastelloy. Lead telluride thermoelectric elements are
mounted between thin concentric outer shells as shown in Fig. 2. The
inner wall of the outer shell is stainless steel and is supported with
a stainless steel truss structure as shown in Fig. k.

C. CAILCULATION PROCEDURE

The scheme for the analytical procedure carried out in this report
is presented in Fig. 5. Essentially, the final stage is ignited at such
an altitude and flight condition that if the stage fires successfully,
the satellite would enter a 300-mile circular polar orbit. If the thrust
is prematurely cut off or misaligned during this stage of injection, an
undesirable flight altitude will be obtained. Depending upon the degree
of error, the satellite will enter into an elliptical orbit or jmmediately
re-enter the atmosphere. The case history of the thermoelectric generator
then becomes of concern. In particular, the location and condition of
the isotopic fuel and its containment must be determined. Figure 5 il-
lustrates a case where the satellite does not go into orbit, but re-enters
the atmosphere due to a premature thrust cutoff. Aerodynamic forces be-
come significant at an altitude near 375,000 feet and the thin outer shell
of the satellite vehicle will fail. As the isotope unit with some struc-

tural aluminum attached is released, the aluminum outer wall and steel cevees
inner wall of the generator shell are subsequently melted and the core :
is exposed to the atmosphere. The fuel core then finally melts and burns ':fx
up at altitude. A change in ballistic coefficient between the less dense JLI
complete unit and heavier core is noted. For purposes of determining final L
terminal velocities, these ballistic coefficlent values are increased when Ceet

the velocity becomes subsonic.
1l. Program

The burning time for the final powered stage of the satellite injec-
tion is given as 106.4 seconds. Thrust cutoffs were assumed to occur at
times of 21.5, 58.8, 85.6, 100.8 and 103.4 seconds. These values corre-
spond to velocity increments (AV) of 6000, 4000, 2000, 600 and 400 feet
per second less than the velocity required to achieve a circular orbit at
300 statute miles.

In addition, at each of these times the engine axis of thrust was
assumed to tilt 5, 45 and 90 degrees in pitch and yaw with no thrust cut-
off. The history of the unit was calculated for each of these cases.

seerer
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Fig. 3. Fuel Capsule Configurations
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Fig. 5. Steps of Analytical Procedure
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Further, re-entries for thrust cutoffs during various portions of
the booster stage were also investigated.

Methods used for this analysis are described.

2. Trajectory Analysis

For the thrust cutoff and pitch program, a general N stage two-di-
mensional powered trajectory was used. In this case, zero 1lift powered
phases were used. Where power or aerodynamic effects were predominate,
the trajectory was integrated; when these conditions did not exist an
elliptic path was used. Details of this method are presented in Ref. 1.
The basic equations for integration are shown in Fig. 6.

The three~-dimenpional equations used to determine re-entry trajectories

caused by thrust misalignments in yaw become somewhat more complicated and
are not presented here. (These are reported in Refs. 2 and 3.) Typical
trajectories obtained from these calculations are shown in Figs. 7, 8 and

9.

3. Aerodynamic Heating

On a blunt nose the aerodynamic heating becomes a function of nose
shape, Mach number, atmospheric pressure and nose radius. The relations
used are shown in Fig. 10.

For the present shell analysis, the laminar hemispherical values were
used. An integration of the value around the entire nose indicates that
an average value of 0.35 of the stagnation value would be applicable for
the tumbling outer sphere. This method is somewhat conservative since no
turblent flow heating was used. (Figure 10 shows that a considerable
amount of heating could be derived from this source.) In general, on a
roughened spherical nose, turbulent flow will be obtained back of the L0~
degree total central arc.

For the round cylindrical core analysis, the two-dimensional equiva-
lent of Kl and K. must be used. These are shown on Fig. 10.

3
Figure 11 shows a typical re-entry heating rate.

4, Heat Transfer

With the trajectory and aerodynamic heating methods established it
becomes necessary to calculate the heat transfer through the unit.

~SFCRET
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R
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K3, Ratio of Local to Stagnation Heating Rate
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q, Stagnation Heating Rate (Btu/sq ft-sec)
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1
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-
100 ]//
/
/
D4 \
L \\
-50 0 50 100

Time from 375,000 feet (sec)

Fig. 11. -Shell Stagnation Heating Rate
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16

First, an equivalent heat transfer configuration for the basic thermo-
electric generator was established and is shown here.

(1) Aluminum 0.062 Actual

Free Floating 0.125 Used
Min X Insulation 0.047 Actual
(2) Steel 5”568 Ysea

Stainless Steel
Steel Supports Core See Fig. 3

Fig. U

Dimensions given
in inches.

- 21 -

rﬂgg' 2k =

(1) To represent the effect of light aluminum satellite structure,
the outer shell of the generator was increased to 0.125 from
the actual value of 0.0625.

(2) An additional five pounds of steel were distributed both to
the outer steel shell and the stainless core. The five pounds
represent 1/6 of the support structure weight. This increased
the stainless steel shell from the actual value of 0.O47 to
0.068 and the core diameter from 3.75 to 4.0 inches.

The following material properties were used.

Outer Shell Aluminum Steel

C_» Specific heat--Btu/1b °F 0.226 0.150

T > Melting temperature——oR 1670 3000

L., Heat of fission~~Btu/1b 167 117

p, Density--1b/cu ft 169 496
STTRS

MND-P-2291

sesee
.
escse
. .
LI .
* oo
. .
L) .
s ee
ssssee
ssssee
.

.
ssosse
ssense
¢« o e
. .
XXX Y]
. .



Core

Since the heating elements are already molten, it 1s assumed that
this liquid has no effect on the heat balance and serves only to main-
tain shape.

C, = 0.105 at 100° F
0.120 at 1000° F

¥K == 3.3 at 100° F
6.35 at 1000° F

Q
T, = 3000" R
L, = 17 Btu/1b
*¥P = 0.126 1b/cu in.

Using this information and heat input data from curves similar to
Fig. 11, the heat balance equation for a number of elements may be cal-
culated as shown in Fig. 12. The method illustrated in Fig. 12 is re-
ported in Ref. k,

To further illustrate the use of the method, consider the outer shell
with its thin walls.

For the outer aluminum shell,

Heat In - Heat Radiated = Heat Stored 4 Phase Change

. L
(qin - 0eT YAt =W CPAT + I, W

=¥J(§) (éT +-é§->

For a time increment, At, the temperature increases an amount AT.
The heat of fusion is equivalent to a temperature increase IF/Cp. The

material of a thin element can therefore be considered to be removed at
T= T + LF/C . For aluminum, T is 1670° R and the radiation is
melt P melt

small.

* Forty-four percent of the core volume is steel, hence K = 0.4k4 K steel
and P = 0.4h psteel.
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I

Aerodynamic  Heat Radiated 4_Heat Conducted = Heat Stored + Phase Change

Element Heat In Out In -Out
. I 4 K DCEAX o X
@ Upn = % <Tl ’Too) “m (T Te T A Y R
p C_ Ax LF
S L
= TTAT <AT1+C >
Y
C_Ax
K k _P %
® + e (T - T) - i (T - Ty)m g (ATy)
C_Ax
k k P~y
©) t i (o - Tg) - g (T3 - Tp)=—g— (A7)
T Un etc.
o0
_{_ ‘ ‘ ‘ Tl AI1== Increment of temperature Tl for a time increment At
Ax () T For initial values of Tl’ T2 etc. a step by step solution
l'T‘ 2 of a serles of set of simultaneous equation is performed. Tl
f:2 T3 increases until Tl== Tmelt at this time the heat balance (Tg,
T3 etc.) is held until Tl increases an amount LF/Cp' At this
——J:)—————— Th time the outer element is melted and the old element C]
now becomes new element and the process is repeated. For
{:2 T5 a sphere or cylinder, the heating rate 1s increased for a de-

crease in radius.

Fig. 12. Heat Transfer Scheme (Per Unit Area)
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a, A=—%ﬁ’5 AT
q.
AT = —pi?{—cp At
AX, Shell thickness--feet 0.0104
At, Time increment--seconds 10
éin’ 0.35 stagnation heating rate Fig. 11
T - T + i = 1670 + 281 _ouol° &
final = "m C 0.226
AT = 8.85 éi for 10-second interval
stagnation
b 4 Sy oT r
-20 0 1.0 8.9 %00.0
-10 2 3.0 26.5 408.9
0 I 7.0 62.0 k35.k4
10 10 18.0 159.0 L4o7. 4
20 26 48.0 425.0 656.4
30 70 110.0 975.0 1081.4
40 150 225.0 1990.0 2056.4
50 300 Lok6.0
Aluminum is considered melted at t = 44 seconds and 240k° R N

For the steel inner wall of the outer shell, radiation is no longer
negligible.

L T R
A8 qiation= €T, ©OF A%p= <1230>

T
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. For Steel

Ax, Shell thickness--feet

t
Ll
L5
L6
b7
48
L9
50
51
52
53
54
25

Ot, Time increment--seconds

LF’ Heat of fusion--Btu/1b

Toinay = 3010 + Gbs = 3790° R
T = 0.835 q.
stagnation

Yo G A% A%
210 217.5 -8.0 209.5
225 232.5 -10.5 222.0
2Lo 2h7.5 -15.0 232.5
255 262.5 -20.0 2k2,5
270 277.5 -32.0 245.5
285 292.5 -35.0 257.5
300 307.5 ~35.0 272.5
315 322.5 -35.0 287.5
330 3375 -35.0 302.5
345 352.5 -35.0 317.0
360 367.5 -35.0 332.5
375

.. Steel is consumed at 52 seconds.

STTRES
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17k
185
193
202
204
21k
227
2ko
252
26k
278

0.00566

i

|13

2060
223k
2419
2612
281k
3018
3232
3459
3699
3951
k215

20
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After the steel shell melted, the core heat transfer analysis was
carried out by the method shown in Fig. 12. Final results of this analy-
sis are shown in Fig. 13 and 1k.

D. RESULTS

1. Solid Steel Core

A complete summary of results is presented in Table 1. A polar
projection showing the final abort areas and orbital traces is shown in
Fig. 15. This figure shows that it is possible to obtain open core im-
pacts in a remote area of the Pacific Ocean south of the equator. An
even wider area is shown where the unit will burn up at altitude.

Point H5A, Fig. 15, represents the largest range that the core will
achieve upon abort. In this case the unit burned at 23h,7OO feet. This
point could be considered as being equivalent to a natural decay for
elther a circular or elliptical orbit.

To illustrate the results more completely, an elevation view of the
thrust cutoff results is presented in Fig. 16. This plot shows that the
earlier the thrust is cutoff, the shorter the range and lower the aero-
dynamic heating. This is as expected. This results in a lesser degree
of unit burnup. Figure 16 also shows the elevation view for the 45-degree
thrust tilts. In this case, a partially consumed core impacts the earth's
surface along the intended course. This condition describes the maximum
range for partial burnup.

From the results of Fig. 15 and 16, it can be concluded that the im-
pact area, although large, can be maintained over water in a relatively
unhabited region. On the northerly path of the first orbit, where the
first inhabited regions are reached, burnup will occur safely at high al-
titude.

Figures 15 and 16 are concerned with failure during final stage op-
eration. Analyses were also completed for thrust cutoff during booster

operation. It was found that no core melting occurred before impact for
any failure during the boost phase,

2. Cluster Core

To increase the possibility of burnup, a cluster arrangement of the
core as shown by Sketch c, Fig. 3 has been investigated. By arranging
the cluster so that heating will be applied to four small rather than one
large unit, an increase in heating can be obtained.

The gain that can be obtained is shown in Fig. 17.
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P
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SBERET
TABLE 1
End Points

? A
76.98 50.5E
53.08 48.7E
63.98 128.8w
77.08 49.8E
46.68 127.4w
88.7s 49.3E
35.48 127.5W
k7.98 49,.0F
80.08 127.9W
36.08 125.3W
20.08 125.1W
64.58 150.3W
64.58 104.1wW
70.48 140.3w
70.48 104 .7TW
36.28 135.2W
36.29 11k ,1w
56.58 k17w
56.58 110.0W
20.58 135.6W
20.58 1134w
k4. 38 1%3.3W
Lh .38 106.2W
11.38 135.7W
11.38 112.5W
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Into
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2

orbit
orbit
burns out at 172,000 ft

orbit
burns out at 163,000 ft
intact at impact

orbit
burns out at 118,200 ft
intact at impact

orbit
core at impact 90% consumed
intact at impact

burns out at 234,700 ft
burns out at 179,837 ft
burns out at 121,250 ft
core at impact TO% consumed
core at impact 28% consumed

orbit
orbit
orbit
orbit
burns out at 185,000 ft
burns out at 185,000 ft

orbit
orbit
burns out at 178,400 ft
burns out at 178,400 ft
burns out at 105,000 ft
burns out at 105,000 ft

orbit

orbit

burns out at 169,200 ft
burns out at 169,200 ft
core at impact 80% consumed
core at impact 80% consumed

orbit

orbit

burns out at 134,960 ft
burns out at 134,960 ft
core at impact 4% consumed
core at impact 44% consumed
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Altitude (feet)

250,000
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AV = Loo —
Complete Core \\\\
Burnup Point

"

"

AV = 600 —

200,000

150,000

100,000

50,00C

Thrust Cut-off Complete Core
ust Cut-o .
Bur Point .
at Orbital Speed P Forn _— Ap€§o§izizZlE%:2;alent -
Minus_Various AV \ ] d
N =
-—/
——
o]
AV = 2000 — Thrust Tilt 45 Upd P, ",,—”"’ AV = 2000 |
Complete Core at Orbital Speed Minus " Core Completely —
Burnup Point ////' Various AV ’//,/’ Burned Out
av —\ /
¢——— 6000 AV = k000
cafoss | odeeqs Complete Core
S B -. 000 Burnup Point
av = 5000 P T el e 2000 \ / T
Core T0% Consumed | oo | Lofoee / ‘ o
at_Impact / N I - 600 P Flight |
et | Sl | = e k0O path
P T
// Booster : ..} :”'3 Orbital
Separating] i Speed
AV = 6000 / Speed : ] tl aV = 6000
Core 28% Consumed (Normal)i:ys:  :yooe: Core 90% Consumed
at Tmpact ) / IR at Tmpact —
!// / S SIS S r/
10 20 30 Lo 50
Range from Booster Burnout Millions of Feet
l | 4 1 | | | ] J | l ] J
10° 20° 30° 1o° 50° 60° 70° 80° 90° 80 70 60 50
Equator South ILatitude South Pole
Fig. 16. Elevation Showing End Points for Various Thrust Cut-offs or

Thrust Tilts During Third-Stage Operation--Standard Core
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Fig. 17. Elevation Showing End Points for Various Thrust Cutoffs or Thrust
Tilt During Third Stage Operation
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3. Solid Molybdenum Core

To increase inpact resistance at lower temperature, molybdenum as
a material for the solid core was investigated. Although molybdenum has
a high melting point, it oxidizes rapidly. The Martin Company has re-
cently conducted an extensive program on the oxidation of molybdenum
loading edges for space vehicles, (Ref. 5).

This report gives the surface regression rate of molybdenum as
R=c (MFR)K
where:
R = surface regression rate, in./hr
¢ and K constants depending upon surface temperature and pressure

MFR = mass flow rate over the surface-—lb/fte—hr

An analysis was completed of a third-stage Abort Condition 5A using
molybdenum in place of steel as a core material. Results of this study
are shown in Fig. 18. This figure indicates that the molybdenum core will
not completely melt before impact. Thus, radiocactive diffusion can occur
at low altitudes or at the earth's surface. Since Condition 5A approxi-
mately represents the natural decay condition, it becomes apparent that a
molybdenum core in this configuration is not desirable from an aerodynamic
burnup consideration. Other configurations which will burnup more rapidly
are under study.

k, Cconclusions

From the results of this study it can be concluded that:

(1) A solid steel or superalloy core configuration for a Task 2
thermoelectric generator, when launched in a southerly polar
orbit from Vandenburg Air Force Base, will burn up at altitudes
above 100,000 feet in a natural decay from orbit.

(2) Core impact in remote areas of the South Pacific with despersion
of radioactive material at low altitudes can occur when vehicle
launch faults occur during powered operation of the final stage.

(3) Improvements in burnup characteristics can be obtained by mod-
ifying the core configuration to a frangible cluster arrange-
ment.
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Surface Regression (in.)

29

Core Configuration A Fig. 3 d
Flight Profile Case 5A l///
/
0.k /
Ground
Tmpact
/
0.3 ///
//
0.1
/
0
0 0.02 0.0k 0.06 0.08 0.10 0.12 0.1k

Time from Outer Shell Melt (hr)

Fig. 18. Regression of Molybdenum Core Surface
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(+)

(5)

Use of molybdenum as a core material is detrimental to aero-
dynamic burnup.

Assumption concerning the heat transfer model, including a
correction for the satellite structure, could modify the re-
sults somewhat. However, it is not believed these are of

sufficient size to change the general conclusion of the re-
port.
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