

MASTER

NUMEC P-37

MAR

NUCLEAR MATERIALS AND EQUIPMENT CORPORATION
APOLLO, PENNSYLVANIA

February 5, 1962

—**LEGAL NOTICE**—

This report has been released to the United States Atomic Energy Commission by the United Kingdom Atomic Energy Authority under an Agreement for Cooperation with the understanding that the position of the United Kingdom regarding legal responsibility is identical to that of the United States which is stated as follows: Neither the United States nor the Commission nor any person acting on behalf of the Commission

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights, or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor

Mr. Morris Goldberg, Director
Contracts Division
New York Operations Office
U. S. Atomic Energy Commission
376 Hudson Street
New York 14, New York

Attention: Mr. Seymour Zirin, Contracts Administrator

Subject: CONTRACT AT(30-1)-2389
"DEVELOPMENT OF PLUTONIUM-BEARING FUEL MATERIALS"
MONTHLY PROGRESS LETTER FOR MONTH OF JANUARY 1962

Gentlemen:

NUMEC herewith transmits the Monthly Progress Letter for January 1962 covering work performed under Contract AT(30-1)-2389.

PROJECT AND FACILITY ADMINISTRATION

Since one of the objects of the initial in-pile tests is to determine the relative behavior of co-precipitated UO_2 - PuO_2 and that prepared by mechanical blending of the individual oxide powders, during this period particular emphasis has been placed on powder blending trials, pellet sintering studies, and subsequent evaluation of pellets made with the blended material. Homogeneity studies on pellets indicate that the blending procedure currently utilized is unsatisfactory since particle build-up occurs during blending and these individual particles are not homogenized during subsequent sintering.

Powder preparation via the oxalate route and associated characterization has been continued in order to allow assessment of reproducibility prior to irradiation testing. Moisture pickup studies on PuO_2 powders have been continued using the thermobalance with different atmospheres. Results indicate that the moisture pickup rate and equilibrium content is essentially independent of gas atmosphere at 76% relative humidity.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The Sharples Micromerograph has been placed in operation to allow rapid determination of PuO_2 powder particle size distribution. Operation, including reproducibility of results and powder recovery, has been satisfactory.

Homogeneous precipitation studies on UO_2 have been continued to determine the feasibility of direct preparation of dense UO_2 - PuO_2 feed material for swaging, plasma torch fusing, and mechanical packing. A glove box is being outfitted to allow extension of these studies to PuO_2 and UO_2 - PuO_2 mixtures.

Various methods for the production of spherical PuO_2 particles are being tried in order to assess relative particle shapes, density, surface texture, and reproducibility. Plasma torch production of these particles has been successful using a number of different feed materials. These products are now being evaluated. Further coating effort has been deferred pending completion of these spheroidization studies.

Continuing effort is being placed on preparing the hot cell alpha boxes to allow post-irradiation examination as soon as possible. Form AEC-21, "Preliminary Request for Irradiation Services" covering the initial series of contemplated radiations has been submitted.

A fuel cycle economics program is being written for the RPC-4000 computer to allow ready assessment of the physics results obtained with the NUSURP program. The results will be used to provide guidelines for the materials development program.

PREPARATION AND CHARACTERIZATION OF FUEL MATERIALS

To allow pellet fabrication and evaluation, four continuous co-precipitation runs yielding 1.6 kilograms of UO_2 -5 w/o PuO_2 were completed. The preparation data are summarized in Table I.

In preparation for UO_2 - PuO_2 homogeneous precipitation work, the following auxiliary studies have been made with UO_2 :

- a) Standard absorption spectra have been recorded for a number of pure uranium compounds in solution, including UNH , UO_2SO_4 , $\text{UNH-6MH}_2\text{SO}_4$, and UNH-citrate .
- b) The pH and absorption spectra changes occurring during a homogeneous ADU precipitation ($\text{Urea} + \text{UNH}$) run were recorded, and similar measurements were repeated when NH_4OH was used as the precipitant in order to gain understanding of the terminal stage prior to precipitation.
- c) Peroxide precipitation of uranium compounds has been initiated as a preliminary step to examining U^{4+} - Pu^{4+} and UO_2^{2+} - Pu^{4+} peroxide co-precipitation alternates to the ADU-Pu(OH)_4 process.

Table I

Summary of Preparation Data
Continuous Coprecipitation

Product Identification	871-A3A and A3B	297-Pu-1 ⁴ A	297-Pu-1 ⁴ B
<u>Feed Composition</u>			
gm U/liter	100	95.06	95.06
gm Pu/liter	5.3	4.94	4.94
H ⁺ , molarity	1.0	1.0	1.0
Feed Flow Rate, liters/hr	1.2	1.25	1.25
Ammonia Concentration, molar	14.3	14.3	14.3
Ammonia Flow Rate, liters/hr	0.26	0.25	0.25
Holdup Time, minutes	31	30	30
Total Number Throughputs	4.25	4.6	4.6
Drying Temperature, °C	200	100	100
Reduction Temperature, °C	740	740	740
Reduction Time, minutes	80	80	80
Surface Area, M ² /gm	-	7.7	6.3

C.L.

C.O.3

A glove box is now being outfitted to allow extension of these studies to PuO_2 and $\text{UO}_2\text{-PuO}_2$. Heat exchange and fume scrubbing equipment is being installed to allow a wide variety of small-scale chemical operations. Other associated equipment includes a 40 milliliter batch centrifuge and a 1000°C furnace suitable for calcination and reduction.

To supplement the long-term static moisture pickup studies carried out on PuO_2 powder, dynamic measurements, using different carrier gases, are being made using the Aminco Recording Thermobalance. These data provide information during the early stages of moisture pickup as equilibrium is approached. Investigations during this month were carried out at room temperature using material Sample 297-Pu-4-1 (surface area of $60 \text{ m}^2/\text{gm}$) exposed to 76% relative humidity atmospheres of air, nitrogen and carbon dioxide. The PuO_2 powder sample was dried to constant weight in the thermobalance at 115 to 120°C in a stream of dry nitrogen prior to and following each experiment. The rate of weight gain was found to be essentially independent of carrier gas composition; this suggests that carbon dioxide and oxygen play a relatively minor role in absorption effects on PuO_2 . Under these conditions, 90% of the moisture pickup occurred during the first 6-7 hours of exposure. Similar measurements will be made at lower humidities and on samples with lower surface areas to provide information applicable to the full range of PuO_2 powders and ambient atmospheric conditions of interest. Also, to cover a broad range of powder surface areas, long-term static moisture pickup measurements are continuing on PuO_2 Samples 297-5-1 thru 5.

Installation of the Micromerograph glove box was completed during this month and several trial runs were made with PuO_2 . Excellent reproducibility was obtained with duplicate samples and better than 95% recovery of dispersed solids was obtained despite the 2-3 micron average PuO_2 particle size. Initially, this measurement technique will be used to compare size distribution of the precursor oxalates and the final PuO_2 product. Further, because of the speed and simplicity of operation, it will ultimately be used for routine size control.

As a preliminary to the fabrication of irradiation specimens to allow comparison of performance between co-precipitated and mechanically-mixed materials, two lots of $\text{UO}_2\text{-PuO}_2$ were prepared by dry-mixing of the individual component powders in a pilot-scale twin-shell rotary blender. The component uranium dioxide and plutonium dioxide powders were hammer-milled and properties re-measured prior to being weighed and blended. These powders were closely matched as regards surface area ($4.1\text{-}4.4 \text{ m}^2/\text{gm}$). (Previous work had shown that macro-uniformity was obtainable within $\pm 3\%$ when $\frac{1}{3}$ PuO_2 having a surface area of $5.4 \text{ m}^2/\text{gm}$ was blended with UO_2 having a surface area of $3.2 \text{ m}^2/\text{gm}$.) In both blending lots, the minor component (PuO_2) was first mixed with an equal amount of the major component (UO_2),

then mechanically blended for two hours; subsequently, the remainder of the major component was added and the full charge was blended for an additional twelve hours. No intermediate attrition or deagglomeration was attempted even though some agglomeration was observed during blending. Process conditions and powder characteristics are summarized in Table II. The final product in both cases appeared to be composed of soft spherical particles. The effect of this type of agglomeration on final sintered pellet structure is discussed below. Other blending techniques, including the use of intermediate hammer-milling and wet ball-milling, are now being investigated as means for obtaining more uniform particle-to-particle mixing of the component powders.

PREPARATION AND COATING OF SPHERICAL OXIDE PARTICLES

Alternate methods for agglomerating and shaping spherical particles are being investigated, and the end products are being evaluated. The resulting particles will be used directly for coating studies and also will be evaluated as possible feed for the plasma torch.

The plasma torch feed mechanism has now been modified to allow feeding material as large as 20 mesh. Successful torch runs using three different types of PuO_2 feed (crushed high-fired pellets, agglomerated and fired spheres, and high-fired granules) have yielded approximately 50% spherical particles. Microscopic examination of particle cross sections shows that a large central void is present in the majority of particles. Complete evaluation of the products from the three different feed materials is now under way.

FABRICATION AND EVALUATION OF FUEL SHAPES

Sintering trials on coprecipitated and mechanically mixed UO_2 -20 w/o PuO_2 , UO_2 -5 w/o PuO_2 , and UO_2 -0.5 w/o PuO_2 have been undertaken in preparation for the fabrication of irradiation test specimens. In general, the mechanically mixed powders press to a higher green density and sinter to a lower density than do the coprecipitated powders. A compacting pressure of 8-10 TSI appears optimum for all of these powders; compacting pressures of 12 TSI result in overpressing. Sintering at 1600°C for four hours is sufficient to achieve high densities with all coprecipitated material while significant density increase is realized for the mechanically mixed compositions by extending the sintering time ($\sim 93.5\%$ T.D. after 4 hours and $\sim 96\%$ T.D. after 16 hours). These pellets are being evaluated for degree of homogeneity by (1) x-ray diffraction, (2) optical microscopy, and (3) autoradiography. The latter method is accomplished by transferring a polished metallographic section, after decontamination, out of the glove box into a special container having a double window of 0.00025" thick Mylar sheet. Exposure of the x-ray film by direct contact with the Mylar film for a suitable time (approximately 45 seconds) results in satisfactory radiographs.

Table II

Process Conditions and Characterization Data
Dry-Blending of PuO₂ and UO₂

Sample Identification	297-MB-R5	297-MB-R20
PuO ₂ , w/o	5	20
UO ₂ , w/o	95	80
Powder Pretreatment	hammer-milling	hammer-milling
PuO ₂ Surface Area, M ² /gm	4.4	4.4
UO ₂ Surface Area, M ² /gm	4.1	4.1
Ambient Relative Humidity, %	45-50	45-50
Blender Type	P-K twin shell	P-K twin shell
Shell Size	2 quart	2 quart
Powder Charge, gm	562	624
First-Stage Blending Time, hr	2	2
Second Stage Blending Time, hr	12	12
Analytical Sampling	Composite +4 individual	Composite +4 individual
Physical Appearance after Blending	75% soft 60-100 mesh spherical agglomerates remainder fines	50% soft 10-100 mesh spherical agglomerates remainder fines

All three analytical tools indicated a high degree of homogeneity of solid solution in the coprecipitated compositions; however, autoradiography showed the presence of a few small random regions of low or non-alpha emitting material in an otherwise almost fully homogeneous matrix in the coprecipitated UO_2 -20 w/o PuO_2 composition. This is under further investigation to determine the extent and character of this material.

For the mechanically mixed compositions sintered 16 hours at $1600^{\circ}C$, x-ray diffraction showed complete solution of the PuO_2 and UO_2 but indicated that there was a range of composition of the solid solution in the pellet. Autoradiography showed a pronounced balling effect with multi-layered spheres of alternating UO_2 -rich and PuO_2 -rich layers. Optical microscopy confirmed these observations and showed regions of greater porosity between the spherical shaped agglomerates. It is believed that the balling effect occurs during the initial stages of blending of the very fine UO_2 and PuO_2 powders. It is to be noted that these spheres remain intact through both the pre-sludging at 6 TSI, the manual granulation, and the cold compaction at 8-10 TSI. As previously mentioned, work is under way to determine procedures for eliminating this balling effect.

Additional work has been performed on the decomposition of PuO_2 during sintering. PuO_2 green pellets having a carbon content of 0.277% were sintered at $1600^{\circ}C$ in various atmospheres, namely, (1) 94% N_2 -6% H_2 , (2) 94% Ar-6% H_2 , (3) Argon, and (4) vacua. In all cases, almost the entire amount of carbon was removed as a result of the firing. The results are being evaluated. It has been further shown by experiment that the surface area of the pellet available to the sintering atmosphere has an effect on the formation of Pu_2O_3 ; i.e., the densification rate on sintering is a factor in determining the amount of oxygen deficient PuO_2 that can be formed.

IRRADIATION TESTING AND EVALUATION

Mock-up assembly of the irradiation capsules will be performed shortly. Remote disassembly will also be tried in order to check design details. Work is continuing on the assembly and outfitting of the alpha boxes required for post-irradiation, hot cell examination.

REACTOR PHYSICS AND ENGINEERING PARAMETRIC STUDIES

A fuel cycle economics program is being written for the RPC-4000 computer, and this is being integrated with the NUSURP physics program. Physics results have indicated that long core life is an inherent feature of high $Pu-240$ content plutonium; the results being relatively insensitive to

cross section assumptions. Economic evaluation is, therefore, necessary to offer guidance to the materials development program; i.e., for closer specification of fuel composition and enrichments of interest in near-thermal plutonium fueled reactors.

Very truly yours,

Karl H. Puechl
Acting Director
Advanced Materials Center

KHP/lkp

EXTERNAL DISTRIBUTION

U. S. Atomic Energy Commission, New York Operations Office

M. Goldberg, Contracts Division
S. Zirin, Contracts Division
M. Balicki, Research and Development Division
V. Siuta, Research and Development Division
L. Topper, Research and Development Division
H. S. Potter, Patent Group

U. S. Atomic Energy Commission, Chicago Operations Office

B. Anderson

U. S. Atomic Energy Commission, National Laboratories

F. C. Moesel, Office of Technical Information - Washington (2)
J. M. Simmons, Division of Reactor Development - Washington (5)
M. Whitman, Division of Reactor Development - Washington
T. O. Ziebold, Division of Reactor Development - Washington
Reports and Statistics Branch - Washington
F. Foote, Argonne National Laboratory
H. Young, Argonne National Laboratory (4)
A. Squire, Bettis Atomic Power Laboratory
E. A. Eschbach, Hanford
E. A. Evans, Hanford
J. Musser, Hanford
I. D. Thomas, Hanford
O. J. Wick, Hanford
W. K. Woods, Hanford
W. Cashin, KAPL
H. Rizzo, Lawrence Radiation Laboratory (3)
R. D. Baker, Los Alamos Scientific Laboratory
L. B. Jones, Mound Laboratory
Office of Technical Information Extension, ORNL

U. S. Atomic Energy Commission, Contractors

W. O'Leary, Allis Chalmers Manufacturing Company
R. W. Dayton, Battelle
W. Duckworth, Battelle
R. H. Gale, Combustion Engineering
L. H. Matheson, Dow Chemical Company
G. Spaulding, Electric Autolite Company
A. Strasser, Nuclear Development Corporation of America
Olin Mathieson Chemical Corporation
R. W. Hartwell, Power Reactor Development Company
C. W. Kuhlman, United Nuclear Corporation

Do not neglect 4

NUMEC DISTRIBUTION

R. J. Atkins	A. L. Maharam
A. Biancheria	J. Marley
F. M. Cain	O. Menis
C. S. Caldwell	J. Miles
J. Eck	L. P. Pepkowitz
G. Ehrlich	K. H. Puechl
F. Forscher	P. Rey
R. Frumermann	J. E. Ross
H. J. Garber	W. G. Ross
E. E. Garcia	J. Ruzbacki
J. Goodman	J. Scott
O. S. Gray	Z. M. Shapiro
E. K. Halteman	F. Shipko
R. M. Horgos	J. Stoner
R. A. Jaroszeski	M. M. Turkanis
L. J. Jones	B. Vondra
W. Judd	S. Weber
A. Kasberg	A. M. Weis
H. Krake	Library (5)

D. 0. ~~200~~
~~200~~