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HEAT TRANSFER WITH LAMINAR FLOW IN CONCENTRIC
ANNULI WITH CONSTANT AND ARBITRARY VARIABLE
AXIAL WALL TEMPERATURE

by

R. Viskanta

ABSTRACT

An analysis has beenperformed to determine the heat
transfer characteristics for laminar forced-convection flow
in a concentric annulus with prescribed surface tempera-
tures. Three distinct problems were considered: (a) wall
temperature prescribed at both the inside and outside wall;
(b) inside wall temperature prescribed and the outside wall
insulated; and (c) inside wall insulated and outside wall tem-
perature prescribed. The solution for temperature distribu-
tionwas similar to that obtained by Graetz for laminar heat
convection ina pipe with uniform wall temperature. Expres-
sions are presented for heat flux, mixing cup temperature,
and Nusselt number as a function of downstream position.
Eigenvalues and eigenfunctions were computed on an analogue
computer for several values of the ratio of the inside to the
outside radii for the above boundary conditions. Mixing cup
temperatures, local and fully developed Nusselt numbers,
and thermal entry lengths are presented graphically.

The solution of Problem (a) was extended to the situ-
ation in which the temperatures of the inside and outside
walls of the annulus are not equal. By utilizing the method
of superpositionand the solutions already obtained for Prob-
lem (a), the temperature distributions were determined. By
way of illustration, heat fluxes were calculated for several
values of the temperature ratio (Tw; - To)/(TW0 - Ty)-

Results were then generalized to apply to the situa-
tion of arbitrary longitudinal variation of the wall tempera-
tures of the annulus. As an illustration of the method, an
extension is explicitly given for a linear increase of wall
temperature with axial distance.



1. INTRODUCTION

The problem of laminar forced-convection heat transfer is of con-
siderable practical interest and has been studied extensively since 1883,
The heat transfer in a concentric annulus is a natural generalization of the
Graetz problem, since flow between two parallel plates and in a pipe are
special cases for values « and 0, respectively, of the parameter ri/(ro- ri).
Most of the existing analyses for laminar flow and heat transfer in passages
have been confined to circular tubes or parallel plates. These passages
have been analyzed extensively because their simplicity makes them ame-
nable to analysis. In recent years the problems associated with the use of
odd-shaped coolant passages in heat exchangers, in heterogeneous nuclear
reactors, and in other applications have made the process of heat transfer
in an annulus of engineering importance.

It is assumed here that the fluid with constant physical properties
enters the annulus with a uniform temperature and a fully developed laminar .
velocity profile, and up to some point (x = 0) the fluid is isothermal. Three
distinct problems are considered:

(a) for x > 0 the wall temperatures are prescribed at both the
inner and the outer walls;

(b) for x > O the inner wall temperature is prescribed and the
outer wall is insulated; and

(c) for x > 0 the inner wall is insulated and a temperature is
prescribed at the outer wall.

In Section 2 of this report, consideration is given to problems with
constant prescribed wall temperatures. In addition, for Problem (a) the
assumption is made that the wall temperatures are the same. In Section 3,
Problem (a) of Section 2 is generalized, and solutions are obtained with
different, but constant wall temperatures prescribed along each of the
two walls. In Section 4 of this report the problems are generalized to the
situation of an arbitrary axial variation of the surface temperatures.

To the author's knowledge, laminar flow heat transfer in an annulus
with prescribed wall temperatures has been studied only by Murakawa.(1-4)*
In these references, Murakawa has presented integral equation formulation
as well as some experimental results for water heated from the inside wall
with the outside wall of the annulus being insulated. However, Murakawa(3)
has carried his solutions to the point of numerical calculation only for

*A general and complete study on laminar flow heat transfer in an
annulus by Lundbergitgl,(zo) came to the author's attention when
this report was in press. .



Problem (b) and for one value of the ratio of the inside to the outside radius
of the annulus. A more extensive bibliography of similar problems for
pipes and parallel plates can be found in Refs. 5-8.

The analysis which is made here is similar in mathematical ap-
proach to that presented by Graetz(9) for laminar forced convection in a
round pipe with isothermal wall. The classical treatment of this problem
by Graetz utilizes separation of variables which reduces the energy equa-
tion to a Sturm-Liouville equation. After the eigenfunctions and eigenvalues
of the Bessel-type equation have been determined, the heat transfer param-
eters of interest can be readily determined. The first eigenfunction gives
the solution far from the entrance of the annulus and an increasing number
of eigenfunctions are required to obtain accurate temperature distribution
as the distance from the entrance is decreased.

2. HEAT TRANSFER IN AN ANNULUS WITH PRESCRIBED
CONSTANT WALL TEMPERATURE
2.1 Analysis

2.1.1 Mathematical Statement of the Problem

The coordinates and geometry of the system are shown in
Figure 1. Fluid flows in steady laminar motion in an annulus with an es-
tablished velocity profile. For x < 0, both the fluid and the walls have a
uniform temperature Ty3. For x > 0, there is prescribed a surface tem-
perature at the walls of the annulus. The problem is to find the tempera-
ture distribution and the variation of the heat transfer coefficient along the
length of the annulus.

Subject to the limitations noted below, the energy equation
describing the problem is

oT _k O oT
e N

In writing Eq. (1) the following assumptions are made:

(a) The physical properties of the fluid are constant.
(b) The viscous energy dissipation is negligible.
(c) The axial diffusion of heat is negligible compared to

the radial diffusion.

In the immediate region downstream from a step change in
wall temperature, the axial temperature gradients could be large and of
the same order of magnitude as the radial temperature gradients. The



effect of axial temperature gradients on temperature distribution and heat

transfer has been studied, for example, by Schneider(7) and Singh.(s) They

found that the effect of axial heat conduction on heat transfer is negligible

for Pe = 10.

The statement of the problem is completed by specifying the

boundary conditions for the function T(x,r). The following boundary condi-

tions are considered:

Problem (a)

T(0,r) To, T ]—[ T; ;—Z ro; T(x,r;) = T(x,ry) = Ty for x =0
Problem (b)
T
T(O,r) Ty, T /,{ ry ]-[ To; T(x,ri = Ty 2— = 0for x=0 ¢ (2)
T
r=To

Problem (c)

oT
T(O,r) = Tg, T ;! Ty /2{ Tg; Cgr

=0, T(x,ry) = T, for x =0

4

2.1.2 Fully Developed Velocity Profile in Laminar Flow

The velocity distribution for fully developed laminar flow in

a concentric annulus with constant physical properties is given by Lamb.(10)

Since the definition of the dimensionless radius used in this report is dif-

ferent from that of Lamb, the derivation of the velocity distribution is
presented. The differential equation of motion for fully developed laminar

flow is

u o ( du >_ dp
At ———— r —— = e—
or dx

Introducing a dimensionless radius defined as £
s i g@ _ .z dp
E O ot |~ T0ax

The boundary conditions are:

ot
It

0 at &

t
JEr
[
—
2]
1
[
-
S~

and

jus
1
11l
—
—
=
1
[ai
(=]
~

0 at g

(3)
= r/ro, Eq. (3) becomes

(4)

(5)




Since for fully developed flow the pressure gradient is con-
stant, the solution of Eq. (4) with the boundary conditions Eq. (5) becomes

r} 1-¢
Tt (%Ml S8 - '('fan""e_i) ’“‘E] | ©)

The average velocity, defined as

"ut at
ue d
 fae
U= —
d
Jo e

o]
1

becomes
2
PR
2
= rg <dp> 4 1 44n € _ ___r_o<dp>|: N 62 . (1-m €1):, (8)
4u \ dx 1 (1 _52) 8u \dx 1 fné;
2 1
The ratio of the local velocity to the average velocity is
given by
(1-¢9) ]
1-¢*- ——— in
. [ C T mE e
— 2
a

P : (9)
Rt

It can be noted that the velocity profile is not symmetrical about the mid-
point of the gap between the inside and outside radii. The point where
maximum velocity occurs is shifted towards the inside wall of the annulus.
When £; — 1, the flow in an annulus approaches the flow between two
parallel plates.

2.1.3 Solution of the Problem

Introducing dimensionless variables, Eq. (1) and the boundary
conditions Eq. (2) become

06 _ 1 9 o6
(5o (65 )

and
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Problem (a)

00,6) = 1; € £ € £1; 0(8.6)= 6(6,1) =0for £ =0
Problem (b)
00,6) = 1; A8 A1 0L =0, 30| zosrgzo |
£ =1 ’
Problem (c)
6(0,6) =1; £ ¢ £ 1; -%Z— =0, 6(£,1) =0 for £ =0
£ =€; o

respectively.
The method of separation of variables yields the solution
xR
= ) cnRalf) exp(-230) (12)
n=o

in which R, (£) satisfies the equation

(ERp)'+ A4 fER, = O (13)

with the boundary conditions:

Problem (a) 3\

Rn(gi)

i
=
B
—
I
)

Problem (b)
Ra(6;) = 0, RY(1) = 0

Problem (c)
Rh(ﬁl) = 0, Ru(l) =0 J

Equation (13) with its boundary conditions Eq. (14) belongs to
the well-known class of differential equations of the Sturm-Liouville type.
Solutions are possible only for a discrete, though infinite, set of A values.
The set of constants ¢, are now to be determined so that the condition

0(0,6) =1, (¢ £ € A1)




is satisfied. From the orthogonality property of the solutions, it can be
shown(11) that the coefficients cp are given by

Ji, tmaat
en =25 . (15)

n 1 2
fg | ERAaE

Integrating Eq. (13) with respect to § from £ to 1, we obtain

1
EfR,dE = - K—l [RL(1) - &;RA(E1)] . (16)

€i n

It can be further shown (details omitted here) that for boundary conditions
Eq. (11a)

lngng ) [aRn BRn] . [aRn éRn] 0
nde = S, 9 S T ,
N 22X A, Of - o), Of e=t,

and the coefficients ¢, can be expressed as

The X%l, Rp, and c, were found with the aid of an electronic
analogue computer. The details of the numerical solution are given in Ap-
pendix A. It should be noted that the solution of Eq. (13) with the boundary
conditions Eq. (14) can also be obtained by another method. For example,
the solution of Eq. (13) with the boundary conditions Eq. (14c) can be ex-
pressed as

R(£) = Y An [Jo(Bnf)Yo(Bnti) - To(Bnéi)Yo(Bnt)] . (19)

n=o

where ,8%1 = Xlzlf. The eigenfunctions R(£) are therefore an infinite
series of Bessel functions of order zero. These vanish when € = £i, and
vanish also when € = 1, provided Bp is a root of the equation

Jo(Pn)Yo(Pnki) - Jo(Pnki)Yo(By) = 0 . (20)

11
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However, the determination of the eigenvalues B and the coefficients Ap
is very involved.(8) For this reason, the solution of Eqgs. (13) and (14) was
obtained on an analogue computer.

2.1.4 Expressions for Some Heat Transfer Parameters

From the temperature distribution, Eq. (12), various quantities
of engineering interest can be determined. For example, the local heat flux,
heat transfer coefficient, and Nusselt number may be determined from the

definitions
n oT oT
qj(x) = -k 5 s qo(x) = k S ;
r=rj r=rq
q" hDe
h = = R 21
To - T ¢ TR (21)

where the mixing cup temperature is given by

To
ruT dr
ry

Ty, = : (22)

m
To
ru dr
ri

The local heat flux at the inner wall is given by

" AT k(T -T ) - 1
() = -k 5 =——7 > caRn(ty) exp (-2AL) , (23)
r=rj 0 n=o
and at the outer wall by
3T K(Ty - To) \
Q@t) = k5= = -———= " cuRy(l) exp (-AhE) - (24)
r'=Tryg 0 n=o0

The Nusselt number can be expressed as

Nu _ qIIDe _/ qIIDe (25)
(Tw - Tm)k em(TW - TO) ’

where the dimensionless mixing cup temperature G, is defined analogously
with Eq. (22):




“°

<1

-

13

1 = 1
f. Efode Z Cn eXP(-K%C)‘/ EfRp(€)dE

Gm = 611 = n=e (26)
1
¢rae f at
f&i Ei :
It can be shown that
: EfdE = gl-; (1-¢%) . (27)
€i
Introducing Eqgs. (16) and (27) in Eq. (26), we get
) % [Ra() - £iRQ(ED] exp(-250)
n=o0 n
Oy = - : 28
(1-¢3) 28
Thus, the Nusselt numbers can be expressed as
(1-€5)(1-€%) > cpRn(E;) exp (-140)
Nui == o o= 3 (29)
23 {; en[Rh(1) - £iRQ(E1)] exp (-A5L)
and
(1-£)(1-£D) ) cnRp(l) exp (-140)
Nup == n=o (30)
2 ) = cnlRn(1) - EiRp(ED] exp (-230)
n=p "1 -

at the inner and the outer surfaces, respectively.

The definition of heat transfer coefficient, and therefore of
the Nusselt number, for example, as given by Eqs. (29) and (30) is not
unique in the situation when heat is transferred from both surfaces. This
has already been encountered by Jakob 9) and Seban.(12) This is because
the mixing cup temperature, for a given velocity distribution [see Eq. (28)],
depends not only on the heat flux at the surface in consideration, but also
on the heat flux at the other surface.
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When { — 0, Nu — «. For values above a certain { = {,,
Nu will not differ by more than a few per cent from the final asymptotic
value Nuy. The region between 0 and e is called the thermal entrance
region. In this region Nu decreases from an infinitely large value at
£ =0 to a value Nuy for £ > €. For large values of { only the first term
of the series for Nu is of importance, so that

(1-65)(1-£%) A2Ro(E1)
2 [R(1) - £iRp(E;)]

Nua,i

and

(1-£5)(1 -3 23RH()
2 [R(1) - E;RH(¢5)]

1
—_—
w
™~
~—

Nua’0 =

are the asymptotic or fully developed Nusselt numbers at the inner and the
outer walls, respectively.

Often in analysis an average heat flux and an average Nusselt
number with respect to tube length is of more utility than the local heat
flux and Nusselt number. If the average heat flux over the (reduced) length
€ is defined as

_ 1 [t
¢V=E- q"(£)d¢ ; (33)
V]

it can be shown that

—, k(Tw-Ty < ,

q; =——7-\—2n—5;;g— nz:; cnRh(1) [1 - exp (-15 §)] (34)
and

- k(T - =

g = Iw ) S RE) [ - exp (-230)] (35)

2
)\.n CI‘O n=o
as average heat fluxes at the inner and outer surfaces, respectively.

If the average Nusselt number is defined as

g
Nu d¢ (36)

2|
o

1}
J\elv—-‘




for the case of an insulated outside wall, it can be shown by substituting
Eq. (29) into Eq. (36) that

¢ o
C ulegueen D cnRnli) exp (-150)
Ny = —S——— — at (37)
2€€ = cnRn(i)
5 xp (-240)
n=o0 n

Recognizing the integrand as of the form -d(4ny) and integrating, we find

g
— 1-65)(1-€} > cnRp(€;
Nu; = ( ié(ié U > —---z-(——) exp (- 23 €) . (38)

Substituting the limits of integration and noting [from Eq. (28)] that

i cnRh(£:)  (1-£9)
ZoaE T 4g ’
we get '
1-6.}(1 -¢2 1-¢2
SQRUEUTIEL D S P -
a8y 2 exp(-2h D)

2
n=o0 An

2.2 Discussion of Results

The first six eigenfunctions for several values of the ratio of the
inner to the outer radius of the annulus are presented graphically in
Figures B-a, B-b, and B-c¢ for Problems (a), (b), and (c), respectively.
The corresponding eigenvalues A%, coefficients cp, and products cp Rp(£4)
and cpn Rp(l) obtained in the investigation are given in Tables B-a, B-b,
and B-c (see Appendix B) for Problems (a), (b), and (c), respectively.

To the author's knowledge, no analytical solutions have been ob-
tained for the problems considered in this report, and therefore the ac-

curacy of the results obtained on the analogue computer cannot be checked.

Additional eigenfunctions are, however, needed to improve the accuracy of
the results for (l/Pe)(x/ro) < 0.01. Near the step change in the wall

15
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temperature (x = 0), the infinite series Eq. (12) converges slowly, and thus
a large number of terms are needed. The evaluation of the higher modes
of the eigenfunctions and eigenvalues of Eq. (13) becomes exceedingly more
difficult, and the accuracy of the expansion coefficients decreases. There-
fore, to obtain the solution of Eq. (11) as x == 0 it would be advantageous to
use the method of Leveque.

It is not practicable to give temperature distributions as functions
of radial and axial coordinates for all the problems solved. However, with
the aid of eigenfunctions and quantities given in the Appendix B, it is now
possible to calculate the temperature distributions and heat transfer param-
eters of interest. For practical purposes the mixing cup temperature, as
defined by Eq. (26), is of greater interest than the transverse temperature
distributions. Likewise, the values of heat transfer coefficient or Nusselt
number and heat flux as a function of (l/Pe) [(x/ro)] are of practical importance.

In Figure 2 is a comparison of the longitudinal change of 6y for
various values of £; for Problem (a). All curves have the vertical axis as
a tangent at 8, = 1 and the horizontal axis as an asymptote which is ap-
proached practically exponentially from about (1/Pe) [(x/r¢)] = 0.1 onwards.
As (l/Pe) [(x/ro)] increases, the temperature of the fluid approaches the
surface temperature. From Figures 3 and 4, similar behavior can be noted
for Problems (b) and (c). It is seen from the figures that values of 6, for
a given value of parameter £; and (1/Pe) [(x/r,)] are smallest in Problem (a);
then follows those of Problems (c) and (b). These trends in 6, are expected
and can readily be explained from the consideration of the energy balance
on the coolant in the annulus.

Comparison of the ratio Nu/Nua obtained in this study for various
values of the parameter £€; for the cases of insulated outside wall and for
the insulated inside wall of the annulus is shown in Figures 5 and 6, respec-
tively. The curves do not extend all the way to x = 0 because the series
appearing in Eqgs. (29) and (30) have been truncated by using only the first
six terms. The boundary conditions for the problems considered require
a uniform temperature distribution at the annulus entrance. This produces
an infinite radial temperature gradient at the wall at x = 0, and thus
Nu —*>® as x—* 0. It is seen from Figures 5 and 6 that, as x becomes
very large, Nu becomes constant, corresponding to a constant coefficient
of heat transfer.

The Nusselt numbers have not been calculated for the case when
equal wall temperatures are prescribed at both the inside and the outside
walls of the annulus since the Nusselt numbers are not uniquely defined in
this case. Figures 7 and 8 show the variation of the local heat flux at the
inside and outside wall, respectively.



The ratio of the Nusselt number obtained with one adiabatic wall to
that of the Nusselt number with heat transfer at both walls of the annulus
as considered here is shown in Figure 9 for €; = 0.5. It is seen that the
variation of this ratio with x/(Pero) is insignificant.

Let us now consider the asymptotic, or fully developed, Nusselt
numbers. In Figure 10 the calculated values are plotted against £; for
both insulated inner and outer walls. Note that the case of heat transfer
from the inside surface only when £; —= 0, because of the finite amount
of heat transferred by an infinitely small surface, must give rise to an
infinitely great Nusselt number. Because the first eigenvalue at £; = 0.95
could not be obtained very accurately on the analog computer, the Nusselt
numbers from £; = 0.8 to £; = 0.95 are shown by dashed lines. As £; —1,
the annulus approaches a parallel-plate system, and the asymptotic Nusselt
numbers for the heat transfer at the inside wall only approach those for the
heat transfer at the outside wall only.

Of comnsiderable practical importance is the knowledge of the condi-
tions under which the entrance effects must be accounted for in heat transfer
calculations. In particular, it is of interest to know the value of (1/Pe)[(x/ro)]e
for Problems (b) and (c). [For Problem (a) the entrance lengths obtained
depend on the particular definition of the Nusselt number used and therefore
have not been determined.] Therefore, Figure 11 was prepared so that the
thermal entrance lengths can be calculated for given values of Pe and r,.
The thermal entrance length is defined here as that value of (1/Pe)[(x/r)]
at which the Nusselt number approaches to within 5% of its asymptotic
(fully developed) value. Other authors have used a 1 or 2% criterion for
this entry length, but experimental heat transfer data are rarely of suffi-
cient accuracy to warrant use of the 1% definition for comparison.

The thermal entrance length decreases almost linearly with the
parameter £j. Note also that, as £; gets nearer to unity, the thermal en-
trance lengths predicted for the heat transfer from the inside wall of the
annulus only approach those for the heat transfer from the outside wall of
the annulus only. This same conclusion can also be reached, as discussed
previously, from physical arguments. It is expected that the thermal en-
trance lengths will be higher in problems with greater asymmetry of heat
transfer at the walls of the annulus.

The thermal entrance lengths calculated by Murakawa(4) for water
heated from the inside surface of the annulus are somewhat higher than the
predictions of this study. However, the criterion on which the thermal
entrance lengths were based is not stated, and the temperature of the coolant
(or the Prandtl number) is not given in his paper.
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3. HEAT TRANSFER IN AN ANNULUS WITH DIFFERENT BUT
CONSTANT WALL TEMPERATURES AT THE INNER AND OUTER WALLS

3.1 Analysis

3.1.1 Introduction

The solutions for Problem (a), which are described in Sec-
tion 2 of this report, apply when the two walls of the annulus are at the
same constant temperature. In this section the problem is generalized to
the situation in which the inner and outer walls of the annulus are at dif-
ferent but constant wall temperatures. The method used is that of super-
position. The results obtained are general in that one wall of the annulus
can be heated and the other can be cooled. The boundary conditions for
Eq. (1) are

T(0,r) = Ty, T ;! Ty % To; T(x,ri) = Twi’ T(x,ro) =Tw forx =0 .
° (40)
The approach in solving the heat transfer problem for a fluid
flowing in an annulus with asymmetric wall temperatures is similar to that
of Seban,(lz) Yih and Cermak,(13) and Schenk and Beckers.(é) However,
since both fully developed and thermal entrance regions are studied, the
splitting of the general problem into two simpler problems with different
boundary conditions is similar to that of Ref. 13.

3.1.2" Method of Superposition

To solve the energy Eq. (1) with the boundary conditions (40)
it is convenient to split the problem into two simpler ones. Since the energy
equation is linear, the general solution can be obtained by superposition of
the two simpler solutions.

Let U denote the general solution of Eq. (1) with the boundary
conditions

U(O,r) = Ty, T ,1/ r; % ro; Ulx,ri) = Tw; U(x,ry) = Ty for x = 0 ,
(41)
and let V denote the general solution at Eq. (1) with the boundary conditions
V(0,r) = Ty, r ,7-[ ri = ro; Vix,ri) = Ty, V(x,r,) = TW0 for x = 0 .
(42)

Because of the linearity of Eq. (1), any sum of solutions is also a solution,
and a proper addition of solutions U and V will yield a temperature distribu-
tion satisfying the boundary conditions of the general problem. Combining
solutions U and V we get

T=U+V -T, . (43)
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This equation can be written in the form

E-€.
T :(¢ +T§><T° - TWi> + Ty + (¢+1]—_'——§—i><To - Tw0> *Tw, - To

(44)
where
U —TW1 g' gl
Cb(c’g):To‘TW'—]'gi (45)
and
A% - Ty _
w(c,a):To_TfJ-ll_g? . (46)
Wo 1

The functions ¢ and ¥ were defined in this manner so that the eigenfunctions
and eigenvalues obtained in Section 2, Problem (a), could be utilized for the
present problem, as will become apparent later.

The solution ¢ satisfies the energy equation

d¢ 1 9 < a¢> 1
f —f= —= _— 47
R \" e/ T E0 -en) )
with the boundary conditions
1 - £
Similarly, the solution ¥ satisfies the energy equation
>y 1 9 ( aw) ]
o e . S 49
>t & 3¢\ Of e(1 - €;) 49)

with the boundary conditions

p(0,8) =55 ¥ (L8 =y (L) =0 (50)

1

The temperature distribution given by Eq. (44) satisfies the
energy equation because ¢ and 7 satisfy that equation. The agreement with
the boundary condifions of the general problem is demonstrated below:
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T = (0 + 0) (To-Twi) +TWi+(O+1)<To-TWO> * Ty, = To
T = Ty,

At £ =0, £=1,T =T,
T=(O+1)<T0-Tw1> + T, +(O+O)<T0—TWO>+TWO—TO
T =Ty

We, thus, see that the boundary conditions are satisfied.

3.1.3 Solutions of the Problem

Although in Section 2 we obtained solutions for a homogeneous
partial differential equation, Eqs. (47) and (49) are nonhomogeneous. The
method of solution of nonhomogeneous partial differential equations used
here is the same as that suggested by Miller.(14)

To obtain the solution of Eq. (47) with the boundary conditions
Eq. (48), we introduce a new function defined by

o(L, &) =y(C, €) +2(8) (51)
where z(£) is a function of £ only and is to be determined. Therefore, wetry
to determine z( £) so that y(¢, £) satisfies the homogeneous equation. Sub-
stituting Eq. (51) into Eq. (47) we obtain

oy (1 o (.o}, 1 o (,02 1
- 5&(556;>+€ Of (gae>+g(1-gi) : (52)

2

f

|

Q/




Hence, if z( g) is such that

1

SR

1
: (53)

y(&, &) will satisfy the homogeneous equation

oy _1 3 < ay>
22 = = - . 54
3¢ 7E D \*3E B4
Equation (53) is readily integrated and gives

€

z(g):-l_—gi+c1 In € +c, , (55)

where c; and c; are arbitrary constants. Any value may be chosen for c;
and c,, and y(¢, €) will still satisfy the homogeneous equation; however, c;
and ¢, will be so determined that the boundary conditions assume the de-
sirable form. From the second boundary condition of Eq. (48) and Eq. (51),
we see that

o(C, &) = y(L,€5) +2(€5) =0

or
y(E,€1) = -z(€ ;)

Similarly, from the third boundary condition, we obtain
p(€.1)=y(t,1) +2(1)=0

or

Thus, from Eq. (55) we obtain

1
= = e———
z(1) =0 T E cy

or

21
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and

or

Cl:_

The solution for z(£) then becomes

_1—5 In €
Z(g)—l‘éi_“ €

With these values of c; and éz, the function y(¢, £) satisfies the
homogeneous equation

.1 9 (.3
o & Tﬁ(%e) 7
and the boundary conditions
y(0, £) = ¢(0,¢) -z(¢) = Zﬁng
y(e. 1) =y(£,1) =0 . (58)

The method of solution of Eqs. (57) and (58) is identical with
that given in Section 2.1.3 and, therefore, will not be repeated here. Note
that the last two boundary conditions given by Eq. (58) are identical with
those of Eq. (l1la). Therefore, the eigenfunctions and eigenvalues for the
present problem will be identical with those already found in Section 2 for
Problem (a). The solution of Eq. (57) with boundary conditions Eq. (58) is

&)

y = Z ChR(g)exp (-0 2¢) . (59)

n=o

From the orthogonality property of the solutions, the coefficients are given

by
1
in 5)
jéi <'-——zn 3 EfR, dE

C, = : (60)

1
f EfRE dE
£ .

1
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To solve Egs. (49) and (50), we introduce a new function de-

fined as

plg.e) =Y(g, e) + z(¢)

Using a procedure similar to that already discussed, we find that

1-6 . Ing

Z(e):-]~g. In €

The function Y(¢, £) satisfies the equation

oY

f<—=

12 <€ @.}f_)
oL £ 0o¢ of

with the boundary conditions

Y(0,¢) = ¢(0,8) -Z(&) =1 ﬁé— :

Y(C’ gl) = Y(C,]) =0

The solution of Eqs. (63) and (64) is

0

Y = Z D R (€)exp (-A2 L)

n=o0

where the coefficient D is given by the relation

D - 1 1
n 1
fR? d
\,/g‘- g n g

1

Substituting Eqs. (56) and (59) into Eq. (51), we get

- In
§EE) =, CnRyle) exp (2R D)+ -2

n=o 1

and inserting Eqs. (62) and (65) into Eq. (61) we obtain

B = 1 -¢ In &
Y. €)= ), DaRy(E) exp (-A4E) -= i

n=o0

(61)

(67)



Substituting Egs. (67) and (68) into Eq. (44) we find the temperature distri- .
bution in an annulus with an unsymmetrically prescribed wall temperature:

T :< Z.oo CoRp(€) exp(-22 £) +1 - ﬁ,ﬁné> <To - TWi) + Ty,

N £
+( = Dan(g) exp (-\§ €) + ﬁl?é) (To - Tw ) + TwO - Ty
(69)
Note that D), = ¢, - C,, and, in the special case that T, = TW0 = Ty, we get
> fn €
T = Z CoR,(&) exp(-12 ) +1 Srer
n=o
+ i (cp - Cp) R(E) exp(-24 &) + In & (Ty-Ty) +2 Ty, - T
£ n n P n In € 0 W w 0
=0
or
T = (Ty - Tyw) z cpRp(€) exp (<23 0) | + T, (70)
n=o

This is identical with Eq. (12).
The expressions for some heat transfer parameters follow
readily from the definitions given in Section 2.1.4 [Eqgs. (21) and (22)] and

the temperature given by Eq. (69) and are, therefore, not repeated here.

3.2 Discussion of Results

For practical purposes the mixing cup temperature is frequently of
greater use than the transverse temperature distribution. In addition, the
1 /x
value of Nusseltnumber as a function of the parameter F(?) is of practical
€\lg
interest. However, it is not practicable to present all results of interest in
this report for the range of parameters investigated. In view of the fact that
the Nusselt number is not unique when heat is added at both surfaces, only
heat fluxes are calculated. . .



By way of illustration, heat fluxes were computed for several
values of the temperature ratio x = (Twi - TO)/( TWO - TO) and the case

when the ratio of the inside to the outside radius of the annulus is 0.5. The
heat flux distributions at the outside wall of the annulus as obtained by sub-
stituting Eq. (69) into Eq. (21 ), which defines the heat fluxes, are shown in
Figure 12 for various values of the parameter x.

The results could be more readily understood if we note that,
for either heating or cooling at both surfaces, we have the condition that
X > 0. When one surface is heated and the other is cooled, we have that
x < 0. The special case x =1 corresponds to the situation when the tem-
peratures at the inner and outer walls are the same, and the case x = 0 is
for the problem when the inner wall is kept at the temperature T, and finally
when y = T o, the outside wall is kept at the temperature T,.

Note that for certain negative values of X the heat flux param-

eter changes sign. From Figure 12, we see that for X = -4, heat is added to
1
the fluid up to ﬁé(rﬁ-) = 0.03, and for larger values of the abscissa heat is
0

extracted from the coolant. One may also note that the length required to
approach fully developed conditions is greater for unsymmetrically than for
symmetrically prescribed wall temperatures of the annulus.

25



26

4, HEAT TRANSFER IN AN ANNULUS WITH ARBITRARY
AXIAL WALL TEMPERATURE VARIATIONS

4.1 Analysis

4.1.1 Introduction

In engineering practice problems are frequently encountered
in which the heating surface temperature is not constant, yet it is still re-
quired to be able to calculate heat transfer rate. Because of the linearity
of the energy equation (1), a sum of solutions is again a solution. The meth-
od of superposition of solutions provides a powerful analytical tool for this
purpose. It is thus possible to construct a solution for any kind of arbitrary
variation of wall temperature with length by merely breaking the wall tem-
perature up into a number of constant-temperature steps and using the
solutions obtained in previous sections as a solution for each step.

The preceding results may be extended to include the cases
for which the temperature of the inner and/or the outer walls of the annulus
are arbitrary functions of the axial distance, Tw(x), for x =x; =0, through
the use of Duhamel's formulae. This is identical with the superposition
techniques employed in Refs. 5 and 13.

4.1.2 Generalization of Results of Section 2 - Arbitrary Wall
Temperature Distribution

If the wall temperature has the distribution as shown in Fig-
ure 13, the temperature distribution in the annulus can be obtained from
the solutions presented in Section 2 by superposition. The wall temperature
distribution can be written mathematically as

T = Toforx=20
T = Ty for 0 =x =x; (71)
T = TW(X) for x =Xy

with T(0) = Ty,. The dimensionless temperature can be expressed as

T -T
T - T, W
- T t0 o -— T =1 -6(,) , (72)

where 6(¢, £) is given by Eq. (12). The solution for the present problem is
obtained by means of Duhamel's formula(15) as

= d Ty (n)

T - Ty = [1-06(8 &) NTw-To) + f [1-6(C-n,€)]
n

—dn  .(73)
-t, dn




The first term on the right hand side of Eq. (73) represents
the temperature distribution in the fluid due to the step increase in the wall
temperature at §= 0. If, however, Ty, has discontinuities at njs the integral
is represented(5 by the summation of the discontinuities

J
2 [1- 00815 ) Twini) - Tw(n)]l . (74)
j=1

The combination of the Riemann integral of Eq. (73) and the summation
given by Eq. (74) may be represented by what is known as Stieltjes inte-
gral, 1 The derivative d Tw(n)/dT) is presumably a known function of 7),
and 4§ is a known solution of the problem with a step jump in the wall
temperature.

The evaluation of the heat transfer rate at { for either the in-
ner or the outer wall of the annulus follows readily from the definitions
given in Eq. (21). The heat transfer coefficient and the Nusselt number can
also be calculated. From Eqgs. (31), (73), and (74) the local heat flux at the
inner wall is given by

n=¢ d Ty, (n)
qi (&) = -rli (8, ;) (Tw - To) +f 61 (¢ -m, gl)”ﬁ?l an
° n=L,
<
+ 2,010, )[Tw(nf) - Tw(ny)] ¢ (75)

il
—

J

Differentiation of Eqs. (73) and (74) with respect to £ at £ = 1
and substitution in Eq. (21) yield the heat flux at the outer wall:

. k n=0 d Ty(n)
qo () = " 6' (L, 1)(Ty - To) +f 9'(1;’-77,1)—57—7———(17)
° n=0
J +
D@L, DITG(]) - Tyl ¢ (76)

J:l

In general, for any given problem, the integral and summation
of Egs. (73) and (74) must be evaluated. In case Ty(7) cannot be represented
by a simple function, the integrals can be evaluated numerically.

4.1.3 Linear Wall Temperature Variation

For certain elementary types of wall-temperature variation,
an analytical expression for q"(£) may be easily evaluated. As an example

27
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of an application of the method, the solutions will be obtained for Prob-
lems (b) and (c) for the wall-temperature variation illustrated in Figure 14.
This includes a step in the wall temperature at 7) = 0 ({=0) and a linear
variation of wall temperature thereafter. This type of wall temperature
variation is of interest because it corresponds to the case giving rise to a
fully established temperature profile (far away from the entrance) and a
constant Nusselt number for the case of constant heat flux at the wall.

The wall temperature variation is expressed as
Tw = To+a+bn . (77)
Substituting Eq. (77) into Eq. (76), including one step at M = 0, and substitut-

ing b for dT,,/d7, we obtain

a(6) = - £{a S cn R'(1) exp(-220)
n=o

» € oo
f 2 cn RY(1) exp[-24(¢ - ﬂ)]dﬂ} - (78)
0 n=o

Performing the integration, substituting limits, and noting that

o0
-(1-¢3)
Z cnRL(1)/A2 =—
n=o
Eq. (78) reduces to

k oQ
0 1% .2, CnRn(l) exp(-240)

o]
(1-¢) cnRn(1)
. b[ T2 2 I p(adl) . (79)
If desired, the local mixing cup temperature can be calculated by
substituting Eq. (73) into Eq. (22). However, the mixing cup temperature
can be obtained in a simpler fashion from the following consideration. In-
tegrating Eq. (76) up to { to determine the total heat transfer rate up to thie

point, and then applying the energy balance to evaluate the mixing cup tem-
perature at £, we get

:
() = zwroi‘lif’r—?"fqg(c)dc (80)
0
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and

a(C) = m(xf-r}) Gpep (Tm - To) . (81)

Combining these two equations, evaluating the integral, and substituting
limits, we obtain for the mixing cup temperature

- cnRp(1 (1—6)
(Ty - To) :Tij}Ti) a[ Z'———Lexp( nC) J

nmo M
(1 -£2) = ¢ R'(1) O CpRY(1
+b|:—-4——‘—c- ZT exp(—)\;{;)-k 2—4( )} (82)
n=o n n=o An
or
> enRp(l
Tm - To = a + bl +ﬁg’27{a ZC—XZ‘(—')‘ eXP(-X;C)
1 n=o n
> cpRp(l N cnRp
+ bl: ZT(——) - Z—X;—(l)- eXP(-XfaC)] : (83)
n=o n=o0 n

If desired, the local heat transfer coefficient and Nusselt num-
ber can now be calculated. Substituting Eqs. (78) and (83) into Eq. (25) and
noting that Tw = Ty + 2 + b{, we get

aZc R(l)exp()x2 ZCR(Dexp )\g}
(-¢,)(-¢5)

| n=0 n=0

Nu_ =
Y 2 ¢ R ) canfl) can(D
) I g ) S W e
n=0 ~n Ln=0 n 0 n

n=

(84)

Note that if b = 0, this equation reduces to Eq. (30), an equation for constant
wall temperature. For large values of { all of the summations containing
the exponentials go to zero and the asymptotic Nusselt number becomes

(1-¢)(1-£3)°
= (85)

NUa’O = =

This series converges extremely rapidly. For example, for a value of
parameter €; = 0.8, the first term gives a value a fraction of a per cent
smaller than the actual value.
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Using a similar procedure, an equivalent expression is ob-
tained for the local Nusselt number when the outer wall is insulated:

¢ R' ¢ R
a n n n exp )
(1-¢)(1-¢) { ; h [ ; ”
Nu, = 2€, e R 0D . ¢ R (86)
{a; )\i exp )\ C +DLZO: )\ ) )\?] exp >\ g)]}

and the asymptotic Nusselt number reduces to

(1-¢)(1-¢%)°

Nu, : = . (87)
a,i 00
8¢2 z cnRp(€ )
1 >\4
n=o n

Heat fluxes, heat transfer coefficients, and Nusselt numbers
can also be calculated for the case that heat is transferred at both surfaces
of the annulus. Now, the temperature distributions obtained in Section 3
have to be used. Since in this problem the wall temperatures Ty; and Tw,
have to be specified, no general results valid for all values of TWi and Tw,
can be calculated, and it is necessary to solve the problem for specific
values of these parameters. For this reason, no calculations for the case
are made. However, the heat transfer parameters of interest can be
readily calculated from the results given in Tables B-a through B-d by
means of a procedure identical with that employed in this section.

4.2 Discussion of Results

Figure 15 shows the variation of the asymptotic Nusselt numbers
with parameter £; for two cases: (1) insulated outside wall of the annulus;
and (2) insulated inside wall of the annulus. Note that as g€i—1, the
asymptotic Nusselt number for the situation when the outside surface is
insulated approaches the Nusselt number for the case when the inside sur-
face is insulated. This fact is also readily apparent from physical consid-
erations. When rj—r, it does not make any difference which surface is
heated and which is insulated, and the Nusselt numbers are therefore
identical.

The results given in Figure 10 and Figure 15 are consistent in
trend with those of Ref. 17 for laminar heat transfer in a pipe. Sellars
et al. show that the asymptotic Nusselt numbers are higher when the wall
temperature varies linearly with the axial distance than when it is constant.
As was already mentioned, the case of linear variation of wall temperature
corresponds to the case giving rise to fully established temperature profile
and constant Nusselt numbers far away from the entrance for constant heat
flux applied at the wall. Thus, the results given in Figure 15 are also valid
for this latter boundary condition.




31

Appendix A
THE ANALOGUE COMPUTER SOLUTION OF EQUATION (13)
by
Louis C. Just

The analogue computer used in this study was an Electronics Asso-
ciation, Inc., Model 131 R. For specific information about the installation
at Argonne, the reader is referred to Refs. 18 and 19.

Analogue computers of this type are limited to accuracies of 0.01%,
an accuracy that can only be attained in the solution of simple linear equa-
tions. The complexity of this problem rules out accuracies this high. The
formulation of R} (£) used two dividers and two multipliers. These units
have an accuracy within £0.025% so that we can only be sure of £0.1% in
our answers. To further check the equipment and circuit, the problems
were rechecked on another computer with a complete change in equipment.

Iné was generated directly by the machine, by means of the
equation

e 1
Bn& = f E dg + ﬁn&i
€

i

Function generating equipment was considered, but this method was used
because of its accuracy and convenience. Checks were performed and show
that /n€ was generated to within the accuracy of the equipment used (0.025%
due to the formation of 1/@ )

The evaluation of the expansion coefficients cp is subject to still
more inaccuracy because of additional multiplications and divisiors. Over-
all, ¢, should be accurate within ¥0.15%.

The method of solving Eq. (13) consists of assuming a value of Ry
or R, at £ = £, whichever is not prescribed by the boundary conditions
Eq. (14), and then integrating Eq. (13). The determination of the eigen-
values A% was by a trial-and-error method of iteration. A value of A%
was assumed, and the integration of Eq. (13) was performed. If the appro-
priate boundary condition at £ = 1 was not satisfied, an improved value of
Xi’l was chosen. The process was repeated until the boundary condition at
€ = 1 was satisfied. This procedure has a source of error built in: it is
up to the operator to decide how well the boundary condition is satisfied.
A circuit for automatically holding the solution at £ = 1 was used, thereby
eliminating any inaccuracies due to reading R, and Ry, at £ = 1 ¥ ¢.
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In the course of this study, five values of £;(0.05, 0.2, 0.5, 0.8, and .
0.95) were investigated, with boundary conditions Eq. (14). The results
for £€; = 0.95 are not given because the computer would not repeat the re-
sults. This nonrepeatability was probably due to the fact that high gains
were involved.

It is believed that the results for boundary conditions Eq. (14b) are
the least accurate. For these boundary conditions, R,(1) was found to be
"zero" for a range of eigenvalues A3. This insensitivity of A% on R} (1)
can be partially eliminated by observing 100 R} (¢) instead of R} (£). How-
ever, this does not completely eliminate all errors.
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Appendix B
Table B-a

CONSTANTS FOR PROBLEM (a)

E; n Xf,l Cn cnRn(éi) cnRn(l)
0.05 0 13.17 -2.876 14.38 - 2.301
1 69.33 1.120 -5.600 - 0.8960
2 167.1 -1.609 8.047 - 1.481
3 309.0 0.8709 -4.354 - 0.7838
4 492.1 -1.319 6.594 - 0.9750
5 718.9 0.7489 -3.744 - 0.7489
0.2 0 21.71 -1.557 7.887 - 3.076
1 107.1 0.3917 -1.958 - 0.7736
2 256.6 -0.9926 4.963 - 1.985
3 470.6 0.3037 -1.518 - 0.6149
4 750.2 -‘0.8202 4.108 - 1.702
5 1095 0.2836 -1.418 - 0.6162
0.5 0 59.37 -1.712 8.585 - 5,881
1 286.1 0.2054 -1.027 - 0.7036
2 681.7 -1.111 5.855 - 3.833
3 1246 0.1922 -0.9610 - 0.6727
4 1983 -0.8980 4.490 - 3.143
5 2889 0.1748 -0.8741 - 0.6424
0.8 0 370.9 -3.638 18.19 -15.93
1 1757 0.2079 -1.039 - 0.9459
2 4171 -2.386 11.93 -11.21
3 7670 0.2253 -1.126 - 1.098
4 12160 2.217 11.09 -11.25
5 17590 0.1532 -0.7659 - 0.8234
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Table

B-b

CONSTANTS FOR PROBLEM (b)

X% Cn
1.843 -1.801
42.33 -0.5388
124.7 -0.3084
252.5 -0.2820
419.3 -0.2444
632.6 -0.2284
4.224 -0.9697
66.57 -0.4315
194.7 -0.3456
387.6 -0.3037
643.5 -0.2776
966.1 -0.2529
15.29 -1.059
182.8 -0.5978
518.2 -0.4903
1025 -0.4135
1705 -0.3667
2553 -0.3182
127.4 -2.992
1120 -1.383
3127 -1.170
6144 -0.9885
10180 -0.9778
15230 -0.8226
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Table

B-c

CONSTANTS FOR PROBLEM (c)

n

8.
55.

141

270.

441

661.

10.
7.
208.
402.
661.
984,

23.
194.
534.

1043
1723
2573

127.

1165
3231
6630
10450
15520

Cn CnREn(gi)
460 -1.426 0
21 0.7181 0
.9 -0.4973 0
5 0.3841 0
1 -0.3175 0
4 0.2165 0
89 -1.371 0
97 0.6004 0
1 -0.3858 0
9 0.2843 0
2 -0.2266 0
2 0.1867 0
39 -1.312 0
5 0.4806 0
9 -0.2935 0
0.2132 0
~0.1634 0
0.1335 0
4 -1.266 0
0.4203 0
-0.2509 0
0.1806 0
-0.1422 0
0.1163 0

1.
1.

1 S S e e N

CnRh(U

783
269

119
.008
.9685
.8823

.229
.591
.379
.237
.161
.082

.869
.739
.333
117
.944
.809

.41

.292
.154
.613
.298
.001
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Table B-d

EXPANSION COEFFICIENTS FOR GENERALIZED PROBLEM (a) -

DIFFERENT TEMPERATURES AT THE INSIDE AND

OUTSIDE WALLS OF THE ANNULUS

& 0.05 0.2 0.5 0.8
\:\\ Cn Dn Cn Dn Cn Dn Cn Dn

0 -0.6924  -2.184 -0.5371  -1.020 -0.7307  -0.9813  -1.710 -1.928
1 -0.4291 1.549 -0.3685 0.7602  -0.5486 0.7540  -1.372 1.651
2 -0.3405 -1.268 -0.3216  -0.6710  -0.4823  -0.6287 -1.104 -1.282
3 -0.2969 1.168 -0.2889 0.5926  -0.4162 0.6084 -0.9854 1.211
4 -0.2490  -1.070 -0.2701  -0.5501 -0.4104 -0.4876 -0.8690 -1.348
5 -0.2273 0.9762  -0.2487 0.5323  -0.3394 0.5142  -0.7826 0.9358




NOMENCLATURE

Symbol Definition
Al Coefficient in Equation (19)
a Constant in Equation (77)

Constant in Equation (77)
Cn Coefficient defined by Equation (60)
Cn Coefficient defined by Equation (15)
Cp Specific heat at constant pressure

c;, c; Integration constants in Equation (55)
De Equivalent diameter defined as 2(ry - ri)
Dy Coefficient defined by Equation (66)
Function defined as u/ZG
Heat transfer coefficient
Thermal conductivity
Nu Nusselt number defined by Equation (21)

Nu,gp Nusselt number with one adiabatic wall of the annulus for Problem (a)

Pe Peclet number defined as RePr

Pr Prandtl number defined as pcp/k

P Pressure

Re Reynolds number defined as pUDe/u

Rn Eigenfunction obtained from the solution of Equation (13)
r Radial coordinate

q Heat transfer rate

q" Heat flux

T Temperature

Tm Mixing cup temperature defined by Equation (22)
Ty Temperature at the inlet to the annulus

Tw Temperature at the wall

u Local velocity

x Axial coordinate

Y Function defined by Equation (61)
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Symbol

y
zZ

Z

Definition
Function defined by Equation (51)

Function defined by Equation (61)
Function defined by Equation (51)

Greek Symbols

Bn Eigenvalue determined from Equation (20)

€ Dimensionless independent variable defined as (1 - £;) x/Pe T,

7 Dummy independent variable

6 Dimensionless temperature defined as (T - TW)/(TQ - Tw)

m Dimensionless mixing cup temperature defined by Equation (26)

22 Eigenvalue satisfying Equation (13) and boundary conditions
Equation (14)

% Dynamic viscosity

£ Dimensionless radial variable defined as r/ro

Jo Density

¢ Function defined by Equation (45)

X Temperature ratio defined as (Twj - TO)/(TW0 - Ty)

W Function defined by Equation (46)

Subscripts

a Designates the asymptotic value

e Designates the entrance length

i Designates a value of a variable of a function evaluated at the inside
surface of the annulus

n Designates the nth eigenvalue or eigenfunction

0 Designates a value of a variable or a function evaluated at the out-
side surface of the annulus

Superscripts

1

Denotes differentiation with respect to £

Denotes an average value




10.

11.

12.

13.

14.

15.
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