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HEAT TRANSFER WITH LAMINAR FLOW IN CONCENTRIC 
ANNULI WITH CONSTANT AND ARBITRARY VARIABLE 

AXIAL WALL TEMPERATURE 

by 

R. Viskanta 

ABSTRACT 

An analysis has beenpe r fo rmed to determine the heat 
t ransfe r c h a r a c t e r i s t i c s for l aminar forced-convection flow 
in a concentr ic annulus with p r e s c r i b e d surface t e m p e r a ­
t u r e s . Three dist inct p rob lems were considered: (a) wall 
t empe ra tu r e p r e s c r i b e d at both the inside and outside wall; 
(b) inside wall t e m p e r a t u r e p r e s c r i b e d and the outside wall 
insulated; and (c) inside wall insulated and outside wall t em­
pe ra tu r e p re sc r ibed . The solution for t empera tu re dis t r ibu­
tion was s imi la r to that obtained by Graetz for laminar heat 
convection in a pipe with uniformi wall t empera tu re . E x p r e s ­
sions a re p resen ted for heat flux, mixing cup t empera tu re , 
and Nussel t number as a function of downstream position. 
Eigenvalues and eigenfunctions were computed on an analogue 
computer for severa l values of the rat io of the inside to the 
outside radi i for the above boundary conditions. Mixing cup 
t e m p e r a t u r e s , local and fully developed Nusselt numbers , 
and the rmal entry lengths a re p resen ted graphically. 

The solution of P r o b l e m (a) was extended to the situ­
ation in which the t e m p e r a t u r e s of the inside and outside 
walls of the annulus a re not equal. By util izing the method 
of superposi t ion and the solutions a l ready obtained for P r o b ­
lem (a), the t e m p e r a t u r e dis tr ibut ions were determined. By 
way of i l lus t ra t ion, heat fluxes were calculated for several 
values of the t e m p e r a t u r e ra t io (Twi - To)/(Two " TQ). 

Resul ts were then general ized to apply to the si tua­
tion of a r b i t r a r y longitudinal var ia t ion of the wall t empe ra ­
tu re s of the annulus. As an i l lus t ra t ion of the method, an 
extension is explicitly given for a l inear inc rease of wall 
t empera tu re with axial dis tance. 



1. INTRODUCTION 

The p r o b l e m of l a m i n a r f o r c e d - c o n v e c t i o n h e a t t r a n s f e r i s of c o n ­
s i d e r a b l e p r a c t i c a l i n t e r e s t and h a s b e e n s tud i ed e x t e n s i v e l y s i n c e 1883. 
The h e a t t r a n s f e r in a c o n c e n t r i c annu lu s i s a n a t u r a l g e n e r a l i z a t i o n of the 
G r a e t z p r o b l e m , s i n c e flow b e t w e e n two p a r a l l e l p l a t e s and in a p ipe a r e 
s p e c i a l c a s e s for v a l u e s oo and 0, r e s p e c t i v e l y , of the p a r a m e t e r r i / ( r o - r i ) . 
Mos t of the e x i s t i n g a n a l y s e s for l a m i n a r flow and h e a t t r a n s f e r in p a s s a g e s 
have b e e n conf ined to c i r c u l a r t u b e s o r p a r a l l e l p l a t e s . T h e s e p a s s a g e s 
have b e e n a n a l y z e d e x t e n s i v e l y b e c a u s e t h e i r s innpl ic i ty m a k e s t h e m a m e ­
nab le to a n a l y s i s . In r e c e n t y e a r s t h e p r o b l e m s a s s o c i a t e d wi th the u s e of 
o d d - s h a p e d coo lan t p a s s a g e s in h e a t e x c h a n g e r s , in h e t e r o g e n e o u s n u c l e a r 
r e a c t o r s , and in o t h e r a p p l i c a t i o n s have m a d e the p r o c e s s of h e a t t r a n s f e r 
in an annu lu s of e n g i n e e r i n g imipo r t ance . 

It i s a s s u m e d h e r e t ha t the f luid wi th c o n s t a n t p h y s i c a l p r o p e r t i e s 
e n t e r s the annu lu s wi th a u n i f o r m t e m p e r a t u r e and a fully d e v e l o p e d l a m i n a r 
v e l o c i t y p r o f i l e , ajid up to s o m e poin t (x = 0) the f luid i s i s o t h e r m a l . T h r e e 
d i s t i n c t p r o b l e m s a r e c o n s i d e r e d : 

(a) for X > 0 the ^vall t e m p e r a t u r e s a r e p r e s c r i b e d at both the 
i n n e r and the o u t e r w a l l s ; 

(b) for X > 0 the i n n e r wa l l t e m p e r a t u r e i s p r e s c r i b e d and the 
o u t e r wa l l i s i n s u l a t e d ; and 

(c) for X > 0 t h e i n n e r wa l l i s i n s u l a t e d and a t e m p e r a t u r e i s 
p r e s c r i b e d at the o u t e r w a l l . 

In Sec t i on 2 of t h i s r e p o r t , c o n s i d e r a t i o n i s g iven to p r o b l e m s wi th 
c o n s t a n t p r e s c r i b e d wal l t e m p e r a t u r e s . In add i t ion , for P r o b l e m (a) the 
a s s u m p t i o n i s m a d e t h a t the wal l t e m p e r a t u r e s a r e the saime. In Sec t ion 3, 
P r o b l e m (a) of Sec t ion 2 i s g e n e r a l i z e d , and s o l u t i o n s a r e o b t a i n e d wi th 
d i f f e ren t , but c o n s t a n t wa l l t e m p e r a t u r e s p r e s c r i b e d a long e a c h of the 
two w a l l s . In Sec t i on 4 of t h i s r e p o r t the p r o b l e m s a r e g e n e r a l i z e d to the 
s i t u a t i o n of an a r b i t r a r y a x i a l v a r i a t i o n of the s u r f a c e t e m p e r a t u r e s . 

To the a u t h o r ' s k n o w l e d g e , l a m i n a r flow h e a t t r a n s f e r in an annu lus 
wi th p r e s c r i b e d wa l l t e m p e r a t u r e s h a s b e e n s t u d i e d only by M u r a k a w a . \ ^ ~ 4 j * 
In t h e s e r e f e r e n c e s , M u r a k a w a h a s p r e s e n t e d i n t e g r a l e q u a t i o n f o r m u l a t i o n 
a s we l l a s s o m e e x p e r i m e n t a l r e s u l t s for w a t e r h e a t e d f r o m the i n s i d e wa l l 
wi th the o u t s i d e wal l of the annu lus b e i n g i n s u l a t e d . H o w e v e r , M u r a k a w a ( ^ ) 
h a s c a r r i e d h i s s o l u t i o n s to the po in t of n u m e r i c a l c a l c u l a t i o n only for 

*A g e n e r a l and c o m p l e t e s tudy on l a m i n a r flow h e a t t r a n s f e r in an 
annu lu s by L u n d b e r g et al.^ / c a m e to the a u t h o r ' s a t t e n t i o n when 
t h i s r e p o r t w^as in p r e s s . 



P r o b l e m (b) a n d for one v a l u e of the r a t i o of the i n s i d e to the o u t s i d e r a d i u s 
of the a n n u l u s . A m o r e e x t e n s i v e b i b l i o g r a p h y of s i m i l a r p r o b l e m s for 
p i p e s and p a r a l l e l p l a t e s can be found in R e f s . 5 - 8 . 

The a n a l y s i s wh ich i s m a d e h e r e is s i m i l a r in m a t h e m a t i c a l a p ­
p r o a c h to t ha t p r e s e n t e d by G r a e t z ( 9 ) for l a m i n a r f o r c e d convec t ion in a 
r o u n d p ipe wi th i s o t h e r m a l w a l l . The c l a s s i c a l t r e a t m e n t of t h i s p r o b l e m 
by G r a e t z u t i l i z e s s e p a r a t i o n of v a r i a b l e s which r e d u c e s the e n e r g y e q u a ­
t ion to a S t u r m - L i o u v i l l e equa t ion . Af ter the e igenfunc t ions and e i g e n v a l u e s 
of the B e s s e l - t y p e equa t i on h a v e b e e n d e t e r m i n e d , the h e a t t r a n s f e r p a r a m ­
e t e r s of i n t e r e s t can be r e a d i l y d e t e r m i n e d . The f i r s t e igenfunc t ion g ives 
the so lu t ion fa r f r o m the e n t r a n c e of the annu lus and an i n c r e a s i n g n u m b e r 
of e igen func t ions a r e r e q u i r e d to o b t a i n a c c u r a t e t e m p e r a t u r e d i s t r i b u t i o n 
a s the d i s t a n c e f r o m the e n t r a n c e is d e c r e a s e d . 

2. H E A T T R A N S F E R IN AN ANNULUS WITH P R E S C R I B E D 
CONSTANT WALL T E M P E R A T U R E 

2.1 A n a l y s i s 

2 .1 .1 M a t h e m a t i c a l S t a t e m e n t of the P r o b l e m 

The c o o r d i n a t e s and g e o m e t r y of the s y s t e m a r e shown in 
F i g u r e 1. F l u i d f lows in s t e a d y lami inar m o t i o n in an annu lus wi th an e s ­
t a b l i s h e d v e l o c i t y p r o f i l e . F o r x < 0, bo th the fluid and the w a l l s have a 
uniformi t e m i p e r a t u r e TQ. F o r x > 0, t h e r e is p r e s c r i b e d a s u r f a c e t e m ­
p e r a t u r e at t h e w a l l s of the a n n u l u s . The p r o b l e m is to find the t e m p e r a ­
t u r e d i s t r i b u t i o n and the v a r i a t i o n of the h e a t t r a n s f e r coef f ic ien t a long the 
l eng th of the a n n u l u s . 

Subjec t to the l i m i t a t i o n s no ted be low, the e n e r g y equa t ion 
d e s c r i b i n g the p r o b l e m i s 

dT k a / a T \ ,̂ , 

In w r i t i n g Eq . (1) the fol lowing a s s u m p t i o n s a r e m a d e : 

(a) The p h y s i c a l p r o p e r t i e s of the fluid a r e c o n s t a n t . 

(b) T h e v i s c o u s e n e r g y d i s s i p a t i o n is n e g l i g i b l e . 

(c) The a x i a l diffusion of h e a t is neg l ig ib le c o m p a r e d to 
the r a d i a l diffusion. 

In the i m m e d i a t e r e g i o n d o w n s t r e a m f r o m a s tep change in 
wa l l t e m p e r a t u r e , t h e a x i a l t e m p e r a t u r e g r a d i e n t s cou ld be l a r g e and of 
the samie o r d e r of m a g n i t u d e as the r a d i a l t e m p e r a t u r e g r a d i e n t s . The 



effect of a x i a l t e m p e r a t u r e g r a d i e n t s on t e m p e r a t u r e d i s t r i b u t i o n and hea t 
t r a n s f e r h a s b e e n s tud ied , for e x a m p l e , by S c h n e i d e r W / and Singh.(8) They 
found tha t the effect of a x i a l hea t conduc t ion on hea t t r a n s f e r i s neg l i g ib l e 
for P e > 10. 

The s t a t e m e n t of the p r o b l e m i s c o m p l e t e d by spec i fy ing the 
b o u n d a r y cond i t i ons for the funct ion T ( x , r ) . The fol lowing b o u n d a r y c o n d i ­
t ions a r e c o n s i d e r e d : 

P r o b l e m (a) 

T ( 0 , r ) = To, r / r^ / TQ; T ( x , r i ) = T(x,ro) = T ^ for x > 0 

P r o b l e m (b) 
bT 

T ( 0 , r ) = To, r / r^ / ro; T ( x , r i ) = T ^ , - — = 0 for X :-- 0 >• (2) 

r = r o 

P r o b l e m (c) 

T ( 0 , r ) = To, r / r i / ro; oT 
br 

= 0, T(x,ro) = T ^ for X 5:0 

2 .1 .2 F u l l y Deve loped V e l o c i t y P r o f i l e in L a m i n a r F l o w 

The v e l o c i t y d i s t r i b u t i o n for fully d e v e l o p e d l a m i n a r flow in 
a c o n c e n t r i c annu lu s wi th c o n s t a n t p h y s i c a l p r o p e r t i e s i s g iven by Lamb.v^^ / 
Since the def in i t ion of the d i m e n s i o n l e s s r a d i u s u s e d in t h i s r e p o r t i s dif­
f e r e n t fromi tha t of L a m b , the d e r i v a t i o n of the v e l o c i t y d i s t r i b u t i o n is 
p r e s e n t e d . The d i f f e r e n t i a l equa t ion of m o t i o n for fully d e v e l o p e d l a m i n a r 
flow i s 

jd d I ba \ _ d p 

r c)r \ bv I dx 
(3) 

In t roduc ing a d imiens ion l e s s r a d i u s def ined a s ^ = T/TQ, Eq . (3) b e c o m e s 

(4) M JiL ( t: ^ \ - 2 dp 

The b o u n d a r y c o n d i t i o n s a r e : 

u = 0 a t f- = ^ i ( r = r^) 

and 

u = 0 a t ^ = l ( r = ro) (5) 



Since for fully developed flow the p r e s s u r e gradient is con­
stant, the solution of Eq. (4) with the boundary conditions Eq. (5) becomes 

(6) 

The average velocity, defined as 

u 

u | di 

?i 
idi 

(7) 

becomes 

u 
4 /dp\ 
4:fl [dxj l(l-p') 

_ ^ o / d p \ 
BjLt \dxj ^ d? l + ? i + 

( 1 - g'i)' 
(8) 

The rat io of the local velocity to the average velocity is 
given by: 

u 

u i.iN<'-^'' 
^ n ^ i J 

(9) 

It can be noted that the velocity profile is not symmet r i ca l about the mid­
point of the gap between the inside and outside radi i . The point where 
maximum velocity occurs is shifted towards the inside wall of the annulus. 
When ^i —^ 1, the flow in an annulus approaches the flow between two 
pa ra l l e l p la t e s . 

2.1.3 Solution of the P r o b l e m 

Introducing dimensionless va r iab les , Eq. (1) and the boundary 
conditions Eq. (2) become 

^ bt~ ^ bp \^ h& J 
(10) 

and 



P r o b l e m (a) 

0(0,?) = 1; e / li / 1; 0(C?i) - 0(C,1) - 0 for C ^ 0 

P r o b l e m (b) 

9(0,1) = 1; ? / l i / l ; 9{Z,i^) = 0 , | | = 0 for C ^ 0 
1=1 

^ . (11) 

P r o b l e m (c) 

e(0,?) = 1; ? / l i / l ; -§^ ae 
a? 

?=?i 

0, 0(C,i) = 0 for i; >0 

r e s p e c t i v e l y . 

The m e t h o d of s e p a r a t i o n of v a r i a b l e s y i e l d s the so lu t ion 

e - X ^nRn(l) e x p ( - X ^ a (12) 

n=o 

(13) 

in which R n ( | ) s a t i s f i e s the e q u a t i o n 

(4Rk)'+ ^n^^Rn = 0 

with the b o u n d a r y c o n d i t i o n s : 

P r o b l e m (a) 

R n ( l i ) = R n ( l ) = 0 

P r o b l e m (b) 

R n ( l i ) - 0, Ri , ( l ) = 0 

P r o b l e m (c) 

R;,(?i) = 0, R n ( l ) = 0 

E q u a t i o n (13) wi th i t s b o u n d a r y cond i t i ons E q . (14) b e l o n g s to 
the w e l l - k n o w n c l a s s of d i f f e r e n t i a l e q u a t i o n s of the S t u r m - L i o u v i l l e t y p e . 
So lu t ions a r e p o s s i b l e only for a d i s c r e t e , though in f in i t e , s e t of X v a l u e s . 
The s e t of c o n s t a n t s c^ a r e now to be de te rmi ined so t h a t the cond i t i on 

(14) 

'(0,1) = 1, (? / 4i / 1) 



is satisfied. F r o m the orthogonali ty p rope r ty of the solutions, it can be 
shown(l l ) that the coefficients c^ a r e given by 

X 
Cn = 

ii 
IfRnd? 

fi, ^̂ n̂̂ ^ 
(15) 

Integrat ing Eq. (13) with r e spec t to | from ?i to 1, we obtain 

ii 
IfR^de = - - \ [Rk(l) - ?iRk(li)] 

^n 
(16) 

It can be fur ther shown (details omit ted here) that for boundary conditions 
Eq. (11a) 

IfR^d? = 
ZX 

n 

SR^ S R ^ 

Ibx^ ae - ? i 
i=i 

^Rn ^Rn 

^^n ^? J^= .̂ 
. (17) 

and the coefficients c^ can be exp res sed as 

S R 
n 

-n 
X-n 

SR-n BR n 
bx^ bi - l i 

i=i 

5Rn BRn 

axn a? 
-?i 

(18) 

The X.ĵ , Rj-̂ , and c ,̂ were found with the aid of an electronic 
analogue computer . The detai ls of the numer ica l solution a re given in Ap­
pendix A. It should be noted that the solution of Eq. (13) with the boundary 
conditions Eq. (14) can also be obtained by another method. For example, 
the solution of Eq. (13) with the boundary conditions Eq. (14c) can be ex­
p r e s s e d as 

R( | ) = Y ^ n [Jo(/3n?)Yo(/3n?i) - Jo(/3nli)Yo(/3nl)] (19) 

n=o 

where j3^ = X^f. The eigenfunctions R( | ) a re therefore an infinite 
s e r i e s of Besse l functions of o rde r ze ro . These vanish when ? = | i , and 
vanish also when ? = 1, provided jSn is a root of the equation 

Jo(^n)Yo(/3nei) - JoWnii)^oi^n) = 0 (20) 



H o w e v e r , the d e t e r m i n a t i o n of the e i g e n v a l u e s P n and the coe f f i c i en t s An 
i s v e r y i n v o l v e d . ' " ) F o r t h i s r e a s o n , the so lu t ion of E q s . (13) and (14) w a s 
o b t a i n e d on an ana logue c o m p u t e r . 

2 .1 .4 E x p r e s s i o n s for S o m e Hea t T r a i i s f e r P a r a m e t e r s 

F r o m the t e m p e r a t u r e d i s t r i b u t i o n , Eq . (12), v a r i o u s q u a n t i t i e s 
of e n g i n e e r i n g i n t e r e s t c a n be d e t e r m i n e d . F o r e x a m p l e , the l o c a l h e a t f lux, 
h e a t t r a n s f e r coef f ic ien t , amd N u s s e l t n u m b e r m a y be d e t e r m i n e d f r o m the 
de f in i t ions 

qi(x) 

h = 

0 - -k ^^ 
^' ~ ^ Sr 

q" 

T-vv ~ T]-n 

; qo(x) = 
r = r i 

hDg 
; Nu = ^ > 

r = rr 

(21) 

w h e r e the m i x i n g cup t e m p e r a t u r e i s g iven by 

I r u T dr 

• m 

r u dr 

The l o c a l h e a t f lux at t h e i n n e r wa l l i s g iven by 

(22) 

l̂'(̂ ) = -̂  f 
k ( T w - T o ) 

X ^nRk(? i ) exp(-X^nC) . (23) 

r = ri n=o 

and at the o u t e r wa l l by 

ST k ( T v , - T o ) 
Y CnRri(l) exp(-X^C) -(24) 

r=rf n=o 

N u 

The N u s s e l t n u m b e r c a n be e x p r e s s e d a s 

q"De , q"De 

( T w - T m ) k 0 m ( T w - T o ) 
(25) 

w h e r e the d i m e n s i o n l e s s m i x i n g cup t e m p e r a t u r e 0^^ i s def ined a n a l o g o u s l y 
wi th Eq . (22): 



00 

f f̂Sd^ ^ Cnexp(-X^C) f ?fRn(?)d? 

e m - - T I = TT^ • (26) 

j?i Jii 

It can be shown that 

P ^fd4 = i (1-?^) . (27) 

Introducing Eqs . (16) and (27) in Eq. (26), we get 

00 
C 

4 Y - 4 tRk(l) - 4 i R n ( C i ) ] e x p ( - X ^ 0 
n=o Xn 

"^ " " ( 1 - l i ) 

Thus, the Nusselt numbers can be expressed as 

n=o 
X 

and 

n=o 
X 

(28) 

( l - | i ) ( l - | f ) Y CnRk(?i)exp (-X^C) 

Nui = - — ^ ^ , (29) 

2 Z 7 1 Cn[Rk(l) - l iRk( l i ) ] exp(-X'nC) 

( l - e i ) ( l - ? f ) Z CnRn(l)exp(-X^nC) 

Nuo = (30) 

2 £ - L C ^ [ R ; , ( 1 ) - CiR^di)] exp(-X^C) 

at the inner and the outer surfaces , respect ively. 

The definition of heat t ransfer coefficient, and therefore of 
the Nusselt number, for example, as given by Eqs . (29) and (30) is not 
unique in the situation when heat is t r a n s f e r r e d from both surfaces . This 
has a l ready been encountered by Jakob(°/ and Seban.(12) This is because 
the mixing cup t empera tu re , for a given velocity distr ibution [see Eq. (28)], 
depends not only on the heat flux at the surface in considerat ion, but also 
on the heat flux at the other surface. 
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When ^ —^ 0, Nu —*• oo, F o r values above a ce r ta in C, = ^g, 
Nu will not differ by more than a few per cent from the final asymptotic 
value Nua- The region between 0 and ^e Is called the the rmal ent rance 
region. In this region Nu d e c r e a s e s from an infinitely large value at 
C = 0 to a value Nu^ for ^ > ^e- Fo r l a rge values of ^ only the f i r s t t e r m 
of the s e r i e s for Nu is of impor tance , so that 

(i-ei)(i-ei) xlRoi^i) .,,. 
^ ^ ^ ' i = " 2 [ R U l ) - ^ i R i ( ^ , i ) ] ^^'^ 

and 

ii-ii){i-il)xiRm 
^""^'^ - 2 [R{,(1) - ^iR!,(|i)] ^^^' 

a re the asymptotic or fully developed Nussel t numbers at the inner auid the 
outer wal ls , respec t ive ly . 

Often in analys is an average heat flux and an average Nussel t 
number with r e spec t to tube length is of m o r e utili ty than the local heat 
flux and Nussel t number . If the average heat flux over the (reduced) length 
^ is defined as 

(33) 

it can be shown that 

k(Tw-To) 
^i X?, C 0 

X CnRk(l) [1 - e x p ( - X ? , 0 ] (34) 
n=o 

and 

I I k(T T ) 
"̂  Z ^nRk(l) [1 - e^pi-XJ^C,)] (35) 

-^n s^o n=o 

as average heat fluxes at the inner and outer sur faces , respect ive ly . 

If the average Nussel t number is defined as 

(36) 



for the c a s e of an i n s u l a t e d o u t s i d e w a l l , it c an be shown by s u b s t i t u t i n g 
Eq . (29) into Eq . (36) t ha t 

_ (i-ii)(i-ei) 
Nui = - 2?i^ 

Z CnRkdi) exp(-X2,C) 
n=o 

I 
n=o 

CnRk(ti) 
XI, 

;xp(-X2,a 

d^ (37) 

R e c o g n i z i n g the i n t e g r a n d a s of the f o r m - d ( ^ n y ) and i n t e g r a t i n g , we find 

— (i-ii)(i-ri) 
Nui - - 24iC 

-in £ CnRii(?i) 

n=o 
X^ 

exp(-X^a (38) 

Subs t i t u t ing the l i m i t s of i n t e g r a t i o n and not ing [ f rom Eq . (28)] t h a t 

1 
n=o 

CnRladi) ( l - g j ) 

X^ ~ 4 ^ i 

we get 

_ ( l - ? i ) ( l - e i ) 
Nui = 

2 ? i ^ 
£n 

( l - ? i ) 

î z 
n=o 

CnRk(ei) 
X?, 

exp (-Xn 0 

(39) 

2.2 D i s c u s s i o n of R e s u l t s 

The f i r s t s ix e igenfunc t ions for s e v e r a l v a l u e s of the r a t i o of the 
i n n e r to the o u t e r r a d i u s of the annu lu s a r e p r e s e n t e d g r a p h i c a l l y in 
F i g u r e s B - a , B - b , and B - c for P r o b l e m s (a) , (b), and (c), r e s p e c t i v e l y . 
The c o r r e s p o n d i n g e i g e n v a l u e s X^, coe f f i c i en t s c^ , and p r o d u c t s c ^ R n ( l i ) 
and C n R n ( l ) ob t a ined in the i n v e s t i g a t i o n a r e g iven in T a b l e s B - a , B - b , 
and B - c ( see Appendix B) for P r o b l e m s (a), (b), and (c), r e s p e c t i v e l y . 

To the a u t h o r ' s k n o w l e d g e , no a n a l y t i c a l s o l u t i o n s have b e e n o b ­
t a i n e d for the p r o b l e m s c o n s i d e r e d in t h i s r e p o r t , and t h e r e f o r e the a c ­
c u r a c y of the r e s u l t s o b t a i n e d on the ana logue c o m p u t e r canno t be c h e c k e d . 
Add i t i ona l e igenfunc t ions a r e , h o w e v e r , n e e d e d to i m p r o v e the a c c u r a c y of 
the r e s u l t s for ( l / P e ) ( x / r o ) < 0 . 0 1 . N e a r the s t ep change in the wa l l 



t empera tu re (x = 0), the infinite s e r i e s Eq. (12) converges slowly, auid thus 
a la rge number of t e r m s a re needed. The evaluation of the higher modes 
of the eigenfunctions and eigenvalues of Eq. (13) b e c o m e s exceedingly m o r e 
difficult, and the accuracy of the expansion coefficients d e c r e a s e s . T h e r e ­
fore , to obtain the solution of Eq. ( I I ) as x —^0 it would be advantageous to 
use the method of Leveque.(9) 

It is not p rac t i cab le to give t e m p e r a t u r e d is t r ibut ions as functions 
of radial and axial coordinates for all the p rob lems solved. However, with 
the aid of eigenfunctions and quantit ies given in the Appendix B, it is now 
poss ible to calculate the t e m p e r a t u r e dis t r ibut ions and heat t ransfer p a r a m ­
e te r s of in te res t . For p rac t i ca l purposes the mixing cup t e m p e r a t u r e , as 
defined by Eq. (26), is of g rea te r in te res t than the t r a n s v e r s e t empera tu re 
d is t r ibut ions . Likewise , the values of heat t r ans fe r coefficient or Nusselt 
number and heat flux as a function of ( l /Pe) [(x/ro)] a r e of p rac t i ca l importance. 

In F igure 2 is a compar i son of the longitudinal change of Om ^o^ 
var ious values of ? ^ for P r o b l e m (a). All curves have the ver t i ca l axis as 
a tangent at 0j-n = 1 and the horizontal axis as an asymptote which is ap­
proached prac t ica l ly exponentially from about (l/Pe) [(x/rg)] = 0.1 onwards. 
As ( l / P e ) [(x/rg)] i n c r e a s e s , the t e m p e r a t u r e of the fluid approaches the 
surface t e m p e r a t u r e . F r o m F igu re s 3 and 4, s imi la r behavior can be noted 
for P r o b l e m s (b) and (c). It is seen from the f igures that values of 0J-Q for 
a given value of p a r a m e t e r ^^ and ( l / P e ) [(x/rg)] a r e sma l l e s t in P rob lem (a); 
then follows those of P r o b l e m s (c) and (b). These t r e n d s in G-^-^^ a re expected 
and can readi ly be explained from the considerat ion of the energy balance 
on the coolant in the annulus. 

Compar i son of the ra t io Nu/Nu^ obtained in this study for var ious 
values of the p a r a m e t e r | i for the cases of insulated outside wall and for 
the insulated inside wall of the annulus is shown in F i g u r e s 5 and 6, r e s p e c ­
tively. The curves do not extend all the way to x = 0 because the se r i e s 
appearing in Eqs . (29) and (30) have been t runcated by using only the f i rs t 
six t e r m s . The boundary conditions for the p rob lems cons idered requ i re 
a uniform t e m p e r a t u r e dis tr ibut ion at the annulus en t r ance . This produces 
an infinite rad ia l t e m p e r a t u r e gradient at the wall at x = 0, and thus 
Nu —^ 00 as X —^ 0. It is seen from F i g u r e s 5 and 6 that , as x becomes 
very l a rge , Nu becomes constant, corresponding to a constant coefficient 
of heat t r ans fe r . 

The Nussel t number s have not been calculated for the case when 
equal wall t e m p e r a t u r e s a re p r e s c r i b e d at both the inside and the outside 
walls of the annulus since the Nussel t number s a r e not uniquely defined in 
this case . F igu re s 7 and 8 show the var ia t ion of the local heat flux at the 
inside and outside wall , respec t ive ly . 



The r a t i o of the N u s s e l t n u m b e r ob ta ined with one ad i aba t i c wal l to 
t ha t of the N u s s e l t n u m b e r wi th h e a t t r a n s f e r at both w a l l s of the annulus 
a s c o n s i d e r e d h e r e is shown in F i g u r e 9 for l^ = 0 .5 . It i s s een tha t the 
v a r i a t i o n of t h i s r a t i o wi th x / ( P e r o ) i s i n s ign i f i can t . 

L e t u s now c o n s i d e r the a s y m p t o t i c , o r fully deve loped , N u s s e l t 
n u m b e r s . In F i g u r e 10 the c a l c u l a t e d v a l u e s a r e p lo t t ed a g a i n s t ^j for 
bo th i n s u l a t e d i n n e r and o u t e r w a l l s . Note t ha t t he c a s e of h e a t t r a n s f e r 
f r o m the i n s i d e s u r f a c e only when ?i —*• 0, b e c a u s e of the f ini te amoun t 
of h e a t t r a n s f e r r e d by an in f in i te ly s m a l l s u r f a c e , m u s t give r i s e to an 
in f in i te ly g r e a t N u s s e l t n u m b e r . B e c a u s e the f i r s t e i genva lue at ?i - 0.95 
cou ld not be ob ta ined v e r y a c c u r a t e l y on the ana log c o m p u t e r , the N u s s e l t 
n u m b e r s f r o m ?i = 0.8 to ? i = 0.95 a r e shown by d a s h e d l i n e s . As ?i —" 1, 
the annu lus a p p r o a c h e s a p a r a l l e l - p l a t e s y s t e m , and the a s y m p t o t i c N u s s e l t 
n u m b e r s for the h e a t t r a n s f e r at t he i n s i d e wal l only a p p r o a c h t h o s e for the 
h e a t t r a n s f e r at the o u t s i d e wa l l only. 

Of c o n s i d e r a b l e p r a c t i c a l i m p o r t a n c e i s the knowledge of the cond i ­
t i ons u n d e r wh ich the e n t r a n c e effects m u s t be accoun ted for in hea t t r a n s f e r 
c a l c u l a t i o n s . In p a r t i c u l a r , it i s of i n t e r e s t to know the va lue of ( l / P e ) [ ( x / r o ) ] e 
for P r o b l e m s (b) and (c). [ F o r P r o b l e m (a) the e n t r a n c e l e n g t h s ob ta ined 
depend on the p a r t i c u l a r def in i t ion of the N u s s e l t n u m b e r u s e d and t h e r e f o r e 
have not b e e n d e t e r m i n e d . ] T h e r e f o r e , F i g u r e 11 w a s p r e p a r e d so tha t the 
t h e r m a l e n t r a n c e l e n g t h s can be c a l c u l a t e d for g iven v a l u e s of P e and TQ. 
The the rmia l e n t r a n c e l eng th is def ined h e r e as tha t va lue of ( l / P e ) [ ( x / r o ) ] 
at wh ich the N u s s e l t n u m b e r a p p r o a c h e s to wi th in 5% of i t s a s y m p t o t i c 
(fully deve loped) v a l u e . O t h e r a u t h o r s have u s e d a 1 o r 2% c r i t e r i o n for 
t h i s e n t r y l eng th , but e x p e r i m e n t a l h e a t t r a n s f e r da ta a r e r a r e l y of suffi­
c i e n t a c c u r a c y to w a r r a n t u s e of the 1% def ini t ion for c o m p a r i s o n . 

The t h e r m a l e n t r a n c e l eng th d e c r e a s e s a l m o s t l i n e a r l y wi th the 
p a r a m e t e r | i . Note a l s o t h a t , a s ? i ge t s n e a r e r to uni ty , t he t h e r m a l e n ­
t r a n c e l e n g t h s p r e d i c t e d for the h e a t t r a n s f e r f r o m the in s ide wal l of the 
annu lus only a p p r o a c h t h o s e for the h e a t t r a n s f e r fromi the ou t s ide wal l of 
the annu lus only . T h i s s a m e c o n c l u s i o n can a l s o be r e a c h e d , as d i s c u s s e d 
p r e v i o u s l y , f r o m p h y s i c a l a r g u m e n t s . It i s e x p e c t e d tha t the t h e r m a l en ­
t r a n c e l e n g t h s wi l l be h i g h e r in p rob l enns wi th g r e a t e r a s y m m e t r y of hea t 
t r a n s f e r at the w a l l s of the a n n u l u s . 

The t h e r m a l e n t r a n c e l e n g t h s c a l c u l a t e d by M u r a k a w a l 4 ) for w a t e r 
h e a t e d f r o m t h e i n s i d e s u r f a c e of the annu lus a r e s o m e w h a t h i g h e r than the 
p r e d i c t i o n s of t h i s s tudy . H o w e v e r , t he c r i t e r i o n on which the t h e r m a l 
e n t r a n c e l e n g t h s w e r e b a s e d is not s t a t e d , and the t e m p e r a t u r e of the coolan t 
(or the P r a n d t l n u m b e r ) i s not g iven in h i s p a p e r . 



3 . H E A T T R A N S F E R IN AN ANNULUS WITH D I F F E R E N T BUT 
CONSTANT W A L L T E M P E R A T U R E S AT THE INNER AND O U T E R WALLS 

3.1 A n a l y s i s 

3.1.1 I n t r o d u c t i o n 

The s o l u t i o n s for P r o b l e m (a) , which a r e d e s c r i b e d in S e c ­
t ion 2 of t h i s r e p o r t , app ly when the two w a l l s of the annu lu s a r e a t the 
s a m e c o n s t a n t t e m p e r a t u r e . In t h i s s e c t i o n the p r o b l e m i s g e n e r a l i z e d to 
the s i t u a t i o n in which the i n n e r and o u t e r w a l l s of the annu lu s a r e a t dif­
f e r e n t but c o n s t a n t wa l l t e m p e r a t u r e s . The m e t h o d u s e d i s tha t of s u p e r ­
p o s i t i o n . The r e s u l t s ob t a ined a r e g e n e r a l in tha t one wa l l of the a n n u l u s 
can be h e a t e d and the o t h e r c a n be c o o l e d . The b o u n d a r y cond i t i ons for 
E q . (1) a r e 

T ( 0 , r ) = To, r / r i / TQ; T ( x , r i ) = T ^ - , T(x, ro) = T ^ ^ for x > 0 
(40) 

The a p p r o a c h in so lv ing the h e a t t r a n s f e r p r o b l e m for a fluid 
flowing in an annu lu s with a s y m m e t r i c wa l l t e m p e r a t u r e s i s s i m i l a r to t ha t 
of Seban ,v l2 ) y i h and C e r m a k , ^ 1 3 / and Schenk and B e c k e r s . ( 6 ) H o w e v e r , 
s i nce both fully d e v e l o p e d and t h e r m a l e n t r a n c e r e g i o n s a r e s t ud i ed , the 
sp l i t t i ng of the g e n e r a l p r o b l e m into two s i m p l e r p r o b l e m s with d i f fe ren t 
b o u n d a r y cond i t i ons i s s i m i l a r to t ha t of Ref. 13 . 

3.1 .2'. Method of S u p e r p o s i t i o n 

To so lve the e n e r g y E q . (l ) wi th the b o u n d a r y cond i t i ons (40) 
it i s conven i en t to sp l i t the p r o b l e m into two s i m p l e r o n e s . Since the e n e r g y 
equa t i on i s l i n e a r , the g e n e r a l so lu t ion can be ob ta ined by s u p e r p o s i t i o n of 
the two s i m p l e r s o l u t i o n s . 

Le t U deno te the g e n e r a l so lu t ion of Eq . (l ) wi th the b o u n d a r y 
cond i t i ons 

U(0 , r ) = To, r / r i / Vol U(x , r i ) = T ^ - , U(x,ro) = TQ for x > 0 
(41) 

and l e t V deno te the g e n e r a l so lu t ion at E q . (l ) wi th the b o u n d a r y cond i t i ons 

V(0 , r ) = To, r / r i = rg; V(x , r i ) = TQ, V(x,ro) = T ^ for x > 0 
(42) 

B e c a u s e of the l i n e a r i t y of E q . ( l ) , any s u m of s o l u t i o n s i s a l s o a so lu t i on , 
and a p r o p e r add i t ion of s o l u t i o n s U and V v/ill y i e ld a t e m p e r a t u r e d i s t r i b u ­
t ion sa t i s fy ing the b o u n d a r y c o n d i t i o n s of the g e n e r a l p r o b l e m . Com bi n ing 
so lu t i ons U and V we ge t 

T = U + V - TO (43) 



This e q u a t i o n c a n be w r i t t e n in the f o r m 

w h e r e 

a n d 

0 / 0 

(44) 

{C^,V=- ^ — - 1 f- (45) 

V - T 
w „ 1 - iS 

J- n - 1 M , . -1 ~ c, •; " W 0 

The func t ions 0 and if/ w e r e def ined in t h i s m a n n e r so tha t the e igenfunc t ions 
and e i g e n v a l u e s o b t a i n e d in Sec t ion 2, P r o b l e m (a), could be u t i l i z e d for the 
p r e s e n t p r o b l e m , a s wi l l b e c o m e a p p a r e n t l a t e r . 

The so lu t ion 0 s a t i s f i e s the e n e r g y equa t ion 

f^-l±(p^] + I (47) 

with the b o u n d a r y c o n d i t i o n s 

0(0,1) = 4 ^ ' 0 (^? i ) = *(^ ' l ) =0 • (48) 

S i m i l a r l y , the so lu t ion ijy s a t i s f i e s the e n e r g y equa t ion 

bf ^ J_ _^ 4 _^\ 1 
ac I a? V a i / ?(i - ^0 

(49) 

with the b o u n d a r y c o n d i t i o n s 

6 jS 

^ ( 0 , g ) = . _ t^ ' f (C> l i ) - ^ (^,1) = 0 • (50) 
~ ^ i 

The t e m p e r a t u r e d i s t r i b u t i o n g iven by Eq . (44) s a t i s f i e s the 
e n e r g y equa t i on b e c a u s e 0 and ip s a t i s f y tha t equa t ion . The a g r e e m e n t v/ith 
the b o u n d a r y cond i l i ons of the g e n e r a l p r o b l e m is d e m o n s t r a t e d be low: 



T = 

At C = 0, ? / ? i / l , T = To 

+ T - To 
W Q 

T = ( To - T^. j + T^. + T̂o - T ^ J + T^„ " To 

T = To 

At ^ > 0 , 1= ?i, T = T^ . 

T = (0 + 0) (TO - T _ ) + T + (0 + 1 ) ( To - T ^ J + T _̂_ - To 

T = T^. 

At C ^ O , 1 = 1, T = T 
Wo 

T =̂  (0 + 1 ) (TO - T^ . j + T^ . + (0 + 0) (TO - T^^ j + T^^ - Tg 

T = T^^ 

We, thus, see that the boundary conditions a r e sat isf ied. 

3.1.3 Solutions of the Proble in 

Although in Section 2 we obtained solutions for a homogeneous 
par t ia l differential equation, Eqs . (47) and (49) a r e nonhomogeneous. The 
method of solution of nonhomogeneous par t ia l differential equations used 
here is the same as that suggested by Miller.^14) 

To obtain the solution of Eq. (47) with the boundary conditions 
Eq. (48), we introduce a new function defined by 

0 ( C , 4 ) = y ( C > ? ) + z ( ? ) , ( 5 1 ) 

where z(4) is a function of ? only and is to be de te rmined . Therefore , ŵ e t ry 
to de termine z( ?) so that y( ^, ?) sat isf ies the homogeneous equation. Sub­
stituting Eq. (51) into Eq. (47) we obtain 
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Hence, if z (? ) is such that 

y(^ , ?) will satisfy the homogeneous equation 

Equation (53) is readi ly integrated and gives 

z ( | ) = - , . + c i i n g + C2 , (55) 
•* " i^i 

where c^ and C2 a r e a r b i t r a r y cons tants . Any value miay be chosen for Cj 
and Cg, and y (^ , ?) will still satisfy the homogeneous equation; however, Cj 
and C2 will be so de te rmined that the boundary conditions assume the de ­
s i rable formi. F r o m the second boundary condition of Eq. (48) and Eq. (51), 
we see that 

0 ( C . l i ) = y ( C > l i ) + z ( l i ) = 0 

o r 

y(C,4i) = - z ( l i ) • 

Similar ly, f rom the thi rd boundary condition, we obtain 

0 ( C , l ) = y ( C , l ) + z ( l ) = 0 , 

o r 

y(C, l ) = -z ( l ) . 

The constants Cj and C2 will be so chosen that 

z(4i) = z( l ) = 0 

Thus, from Eq. (55) we obtain 

1 
1 - - | i 

z ( l ) = 0 =- —+ C2 

or 

1 
C2 ~ 

1 - ^ i ' 



a n d 

4. n 
z( l i ) = 0 = 3 - 7 ^ + ci i n li + 7 - 7 - | -

o r 

in ?. 

The so lu t ion for z ( ? ) t h e n b e c o m e s 

1 - ^ i i n ^. 

With t h e s e v a l u e s of Cj and C2, the funct ion y ( ^ , 4) s a t i s f i e s the 
h o m o g e n e o u s equa t i on 

f | ? 4 ^ f e ^ l (57) 1 ^ / . ^ 

and the b o u n d a r y c o n d i t i o n s 

in i 
y(0, e) = 0(0, I) -z( | ) 

i n l i 

y ( M i ) = y ( C , i ) = 0 . (58) 

The m e t h o d of so lu t ion of E q s . (5 7) and (58) i s i d e n t i c a l with 
tha t g iven in Sec t ion 2 .1 .3 and , t h e r e f o r e , wi l l not be r e p e a t e d h e r e . Note 
tha t the l a s t two b o u n d a r y cond i t i ons g iven by E q . (5 8) a r e i d e n t i c a l wi th 
t hose of Eq . ( l l a ) . T h e r e f o r e , the e igenfunc t ions and e i g e n v a l u e s for the 
p r e s e n t p r o b l e m wi l l be i d e n t i c a l wi th t h o s e a l r e a d y found in Sec t ion 2 for 
P rob lemi (a) . The so lu t i on of E q . (57) with b o u n d a r y c o n d i t i o n s E q . (58) i s 

00 

-1 y = l^ C n R ( | ) e x p ( -XnC) • (59) 
n=o 

F r o m the o r t h o g o n a l i t y p r o p e r t y of the s o l u t i o n s , the coe f f i c i en t s a r e g iven 
by 

51 i-tr) «-n ̂  
C^ = - ^ ^ . (60) 
' n 

'?i 
| fRn d? 



To solve Eqs . (49) and (50), we introduce a new functi 
fined as 

^(^,4) = Y ( ^ , | ) + Z ( | ) . 

Using a procedure s imi l a r to that a l ready discussed, we find that 

1 - 4 £n p 
Z( p) = + ^ 

^^' 1 - l i i n l i 
The function Y ( ^ , ^) sat isf ies the equation 

.aY 1 a / . aY' 

a c i b^ \^ bi 

with the boundary conditions 

Y(0, 0 =fiO,^) - Z ( | ) = 1 
in^ 

Mi. 

Y(C, ?i) = Y(C1) = 0 . 

The solution of Eqs . (63) and (64) is 

00 

Y = Z D ^ R ^ ( ? ) e x p ( - X j g , 
n = o 

where the coefficient D is given by the relat ion 

\ i n ?. / 
D„ 

^i -

'U 
| fRn d^ 

Substituting Eqs . (56) and (59) into Eq. (51), we get 

'(cn Z CnRn 
n = 0 

ii) exp ( -X^ C) + Y T ~ | ~ ~ in^. 

and inser t ing Eqs . (62) and (65) into Eq. (61) we obtain 

00 

^ ( d ) = Z DnR^(|)exp(-X^C) - 7 - 4 - + : ^ 
n=o 

4i in ^i 



Subs t i tu t ing E q s . (67) and (68) in to Eq . (44) we find the t e m p e r a t u r e d i s t r i ­
but ion in an annu lu s wi th an u n s y m m e t r i c a l l y p r e s c r i b e d wal l t e m p e r a t u r e : 

T = ( Z C^Rnd) exp(-X^ a + 1 - - g ^ ) (TO - T .̂̂  + T W ; 

+ ( I D,R,(e)exp(-X^ )̂+ i ^ ) 
^ n=o i ' 

To 
^ o ; • ^ ' ^ % • ^ ' 

(69) 

N o t e tha t D^ = c_̂  - C^, and, in the s p e c i a l c a s e tha t T„,. = T„^ = T-̂ r̂ , we get 
II 11 n ^ w i ^^n 

Y CnRnd) exp(-A^ C) + 1 

n=:o 

i n g 
i n l i 

+ Z ('̂ n - Cn) R( | ) exp(-X^ C) + 
in i 

n = o 
-n 

( T o - T ^ ) + 2 T, Tr 

o r 

(To - T^ ) Z c ^ R n d ) e x p ( - X ^ C) 

n = o 

+ T 
w 

(70) 

This i s i d e n t i c a l wi th Eq . (12). 

The e x p r e s s i o n s for s o m e h e a t t r a n s f e r p a r a m e t e r s follow 
r e a d i l y f r o m the def in i t ions g iven in Sec t ion 2.1.4 [ E q s . (21) and (22)] and 
the t e m p e r a t u r e g iven by E q . (69) and a r e , t h e r e f o r e , not r e p e a t e d h e r e . 

3.2 D i s c u s s i o n of R e s u l t s 

F o r p r a c t i c a l p u r p o s e s the m i x i n g cup t e m p e r a t u r e i s f r e q u e n t l y of 
g r e a t e r u s e than the t r a n s v e r s e t e m p e r a t u r e d i s t r i b u t i o n . In add i t i on , the 

va lue of N u s s e l t n u m b e r a s a funct ion of the p a r a m e t e r ——(—) i s of p r a c t i c a l 
^ P e V r o / ^ 

i n t e r e s t . H o w e v e r , i t i s not p r a c t i c a b l e to p r e s e n t a l l r e s u l t s of i n t e r e s t in 
th i s r e p o r t for the r a n g e of p a r a m e t e r s i n v e s t i g a t e d . In v i e w of the fact t ha t 
the N u s s e l t n u m b e r i s not un ique when h e a t i s added at both s u r f a c e s , only 
h e a t f luxes a r e c a l c u l a t e d . 



By way of i l lus t ra t ion, heat fluxes were computed for severa l 
values of the t empera tu re ra t io x ~ ( T-w- " T g j / f T . ^ - To) and the case 

when the ra t io of the inside to the outside radius of the annulus is 0.5. The 
heat flux dis tr ibut ions at the outside wall of the annulus as obtained by sub­
stituting Eq. (69) into Eq. (21 ), which defines the heat fluxes, a r e shown in 
Figure 12 for var ious values of the pa r ame te r x • 

The r e su l t s could be more readi ly understood if we note that, 
for e i ther heating or cooling at both sur faces , we have the condition that 
^ > 0. When one surface is heated and the other is cooled, we have that 
y <^ 0. The special case X ~ 1 cor responds to the situation when the t e m ­
p e r a t u r e s at the inner and outer walls a r e the same, and the case )( = 0 is 
for the problem when the inner wall is kept at the t empera tu re Tg, and finally 
when x = t 00 , the outside wall is kept at the t empera tu re Tg. 

Note that for cer ta in negative values of X the heat flux p a r a m ­
e te r changes sign. F r o m Figure 12, we see that for X = "4, heat is added to 

the fluid up to —-(—) = 0.03, and for l a rge r values of the absc i s sa heat is 
P e \ r o / 

ex t rac ted from the coolant. One may also note that the length requi red to 
approach fully developed conditions is g rea te r for unsymmetr ica l ly than for 
symmet r i ca l ly p r e sc r ibed wall t e m p e r a t u r e s of the annulus. 



4. HEAT T R A N S F E R IN AN ANNULUS WITH A R B I T R A R Y 
AXIAL WALL T E M P E R A T U R E VARIATIONS 

4.1 A n a l y s i s 

4 .1 .1 I n t r o d u c t i o n 

In e n g i n e e r i n g p r a c t i c e p r o b l e m s a r e f r e q u e n t l y e n c o u n t e r e d 
in wh ich the h e a t i n g s u r f a c e t e m p e r a t u r e i s not c o n s t a n t , ye t i t i s s t i l l r e ­
q u i r e d to be ab le to c a l c u l a t e h e a t t r a n s f e r r a t e . B e c a u s e of the l i n e a r i t y 
of the e n e r g y equa t i on ( l ) , a s u m of s o l u t i o n s i s a g a i n a so lu t ion . The m e t h ­
od of s u p e r p o s i t i o n of s o l u t i o n s p r o v i d e s a power fu l a n a l y t i c a l too l for t h i s 
p u r p o s e . It i s thus p o s s i b l e to c o n s t r u c t a so lu t ion for any kind of a r b i t r a r y 
v a r i a t i o n of w a l l t e i n p e r a t u r e wi th l e n g t h by m e r e l y b r e a k i n g the w a l l t e m ­
p e r a t u r e up in to a n u m b e r of c o n s t a n t - t e m p e r a t u r e s t e p s and us ing the 
so lu t i ons o b t a i n e d in p r e v i o u s s e c t i o n s a s a so lu t ion for e a c h s t e p . 

The p r e c e d i n g r e s u l t s m a y be e x t e n d e d to inc lude the c a s e s 
for w h i c h the t e m p e r a t u r e of the i n n e r a n d / o r the ou t e r w a l l s of the annu lus 
a r e a r b i t r a r y func t ions of the a x i a l d i s t a n c e , Tw(x) , for x >;xi > 0 , t h r o u g h 
the u s e of Duhamie l ' s f o r m u l a e . T h i s i s i d e n t i c a l wi th the s u p e r p o s i t i o n 
t e c h n i q u e s e m p l o y e d in R e f s . 5 and 13. 

4 .1 .2 G e n e r a l i z a t i o n of R e s u l t s of Sec t ion 2 - A r b i t r a r y Wall 
T e m p e r a t u r e D i s t r i b u t i o n 

If the w a l l t e m p e r a t u r e h a s the d i s t r i b u t i o n a s shown in F i g ­
u r e 13, the t e m p e r a t u r e d i s t r i b u t i o n in the annu lus can be ob ta ined f r o m 
the s o l u t i o n s p r e s e n t e d in Sec t ion 2 by s u p e r p o s i t i o n . The w a l l t e m p e r a t u r e 
d i s t r i b u t i o n can be w r i t t e n m a t h e m a t i c a l l y a s 

T = Tg for X < 0 

T = Tw for 0 < X < xi (71) 

T = Tw(x) for X > x i 

wi th Tv/(0) = Tg. The d i m e n s i o n l e s s t e m p e r a t u r e can be e x p r e s s e d a s 

'̂  ~ '̂ " 1 - I " ^ J - = 1 - 0 ( C . I ) , (72) 
T-V7 " Tg Tg - T w 

w h e r e 0(^5 ^) i s g iven by Eq . (12). The so lu t ion for the p r e s e n t p r o b l e m is 
ob ta ined by m e a n s of D u h a m e l ' s f o r m u l a ( 1 5 ) a s 

r 'n< d T^i-q) 
T - Tg = [1 - 0 ( C 4 ) ] ( T w - T g ) + / [1 - 0 ( C - T ] . e ) ] . dr] .(73) 



The f i rs t t e r m on the right hand side of Eq. (73) r ep resen t s 
the temiperature dis tr ibut ion in the fluid due to the step increase in the wall 
texnperature at C= 0. If, however, T ^ has discontinuities atT)j, the integral 
is represented^Sj by the summation of the discontinuit ies jpresented' '^/ by 

J 
Z [1 - e( Z- r]y 4)][Tw(rij ) • T^(T]-)] . (74) 

j=i 

The combination of the Riemann in tegra l of Eq. (73) and the summation 
given by Eq. (74) may be r ep resen ted by what is known as Stieltjes in te­
gral, ' "-' The derivat ive d T^(r|)/dT) is presumably a known function of 7], 
and 0 is a known solution of the problem with a s tep jump in the wall 
t empe ra tu r e . 

The evaluation of the heat t ransfer ra te at C, for either the in­
ner or the outer wall of the annulus follows readily from the definitions 
given in Eq. (21). The heat t r ans fe r coefficient and the Nusselt number can 
also be calculated. F r o m Eqs. (31), (73), and (74) the local heat flux at the 
inner wall is given by 

k r r'^"^ d T^(r]) 
qi(C) = ^ J0 ' (C,? i ) (Tw"Tg)+J 0'(C-r], g j ^;^ dr] 

+ 2 ^ ' ( ^ - ^ ' ^ i ) [ T w ( n p - TW(T]J)] I . (75) 
j = i " J 

Differentiation of Eqs . (73) and (74) with r e spec t to ^ at | = 1 
and substitution in Eq. (21) yield the heat flux at the outer wall: 

qo(C) = "^<;0'(C. l ) (Tw"To) + j 0 ' ( ^ - ^ , l ) - ^ ^ d T ] 
^^^ , .. dT^(r]) 

+ ^ 0'(C"r], l)[T^ivl) - T^(r]J)] I . (76) 
j=i J 

In genera l , for any given problem, the integral and summation 
of Eqs. (73) and (74) must be evaluated. In case T^(T)) cannot be represented 
by a simple function, the in tegrals can be evaluated numerical ly . 

4.1.3 Linear Wall T e m p e r a t u r e Variation 

For cer ta in e lementary types of wa l l - t empera tu re variation, 
an analytical express ion for q"(C) miay be easily evaluated. As an example 



of an a p p l i c a t i o n of the m e t h o d , the so lu t i ons wi l l be ob ta ined for P r o b ­
l e m s (b) and (c) for the w a l l - t e m p e r a t u r e v a r i a t i o n i l l u s t r a t e d in F i g u r e 14. 
Th i s i nc ludes a s t e p in the wa l l t e m p e r a t u r e at T) = 0 (^ = 0) and a l i n e a r 
v a r i a t i o n of w a l l t e m p e r a t u r e t h e r e a f t e r . T h i s type of w a l l t e m p e r a t u r e 
v a r i a t i o n i s of i n t e r e s t b e c a u s e i t c o r r e s p o n d s to the c a s e giving r i s e to a 
fully e s t a b l i s h e d t e m p e r a t u r e p ro f i l e (far away f r o m the e n t r a n c e ) and a 
c o n s t a n t N u s s e l t n u m b e r for the c a s e of c o n s t a n t h e a t flux at the w a l l . 

The w a l l t e m p e r a t u r e v a r i a t i o n is e x p r e s s e d a s 

Tw = Tg + a + bT] . (77) 

Subs t i tu t ing Eq . (77) in to Eq. (76), inc lud ing one s t e p a t T) = 0, and s u b s t i t u t ­
ing b for dT^/dT) , we obta in 

qo(C) - - ^ U 1 CnR'(l) exp(-X^a 
^0 l̂  n=o 

+ b j Z cn R ' ( l ) exp[-X^(C-r])]d7] i . (78) 
Jg n=o J 

P e r f o r m i n g the i n t e g r a t i o n , s u b s t i t u t i n g l i m i t s , and not ing tha t 

2 , CnR;^(l)A^ = 5 , 
n=o 

Eq. (78) r e d u c e s to 

k 00 
qo(C) - -—U I c^R'M) exp{-X^O 

^0 n=o 

- b 

. 2 , 
( i - g j ) I y ^nRk(l) . 2 ^ , 

4 + Z^ 72 exp(-X^^) 
n=o '^n (79) 

If d e s i r e d , t he l o c a l m ix ing cup t e m p e r a t u r e can be c a l c u l a t e d by 
subs t i t u t i ng Eq . (73) in to Eq . (22). H o w e v e r , the mix ing cup t e m p e r a t u r e 
can be ob ta ined in a s i m p l e r f a sh ion f r o m the fol lowing c o n s i d e r a t i o n . In ­
t e g r a t i n g Eq. (76) up to C to d e t e r m i n e the to t a l h e a t t r a n s f e r r a t e up to this 
point , and then apply ing the e n e r g y b a l a n c e to e v a l u a t e the mix ing cup t e m ­
p e r a t u r e at ^, we ge t 

qo(C) = 2 7 r r o ^ f ^ ^ ^ | q;'(C)dC (80) 



a n d 

q o ( C ) = 7 r ( r g - r i ) u p c ( T m - T o ) (81) 

Combin ing t h e s e two e q u a t i o n s , eva lua t ing the i n t e g r a l , and subs t i t u t ing 
l i m i t s , we obta in for the m i x i n g cup t e m p e r a t u r e 

( T m - TQ) " n _ Z^—71 exp(-Xng + 7 
n=o ^n 

oo 

I 
n=o 

: n R ' ( l ) 

Xn 
exp(-X' 

CO 

n=o 

^ n R p d ) 

Xn 
(82) 

o r 

r 00 

T m ~ To 
^ ^1-^ I n=o n 

+ b 

( 1 - 1 ? ) I 
^ ^ 1 ' l̂  n=o 

00 

CnRn(l) V CnRlid) y cnRn(i) _ y 
n=o n=o ^n 

exp(-XnC) (83) 

If d e s i r e d , the l o c a l hea t t r a n s f e r coeff ic ient and N u s s e l t num­
b e r can now be c a l c u l a t e d . Subs t i tu t ing E q s . (78) and (83) into Eq. (25) and 
not ing tha t T-w = Tg + a + b ^ we get 

Nu„ 
• ^ , ) ( i - f ; 

c R' (1) exp(-X^C) • 

n=0 

l-C) \~^t: R'(l) , , , ^ ' ' \ n n / \2i.\ 
-exp 

n=0 
X 

^ c R' (1) , , , 

n=0 ' " 

+ b 
c R'U) V°^c R'd) , „ , 
^ 1 - - ) -^^^"P-XC 
X L X '̂  "^' 

Ln=0 n=0 

(84) 

Note tha t if b = 0, t h i s equa t ion r e d u c e s to Eq. (30), an equat ion for cons t an t 
wa l l t e m p e r a t u r e . F o r l a r g e v a l u e s of C a-H of the s u m m a t i o n s conta in ing 
the e x p o n e n t i a l s go to z e r o and the a s y m p t o t i c N u s s e l t n u m b e r b e c o m e s 

,2 

N u 
( l - ? i ) ( l -U) 

a,o 
V " c R' > n n 

Z- ).! 
n=o 

C . R ; ( I ) 

xt 

(85) 

This s e r i e s c o n v e r g e s e x t r e m e l y r a p i d l y . F o r e x a m p l e , for a va lue of 
p a r a m e t e r ^i = 0.8, the f i r s t t e r m g ives a va lue a f r ac t ion of a p e r cent 
s m a l l e r than the a c t u a l v a l u e . 



Using a s i m i l a r p r o c e d u r e , an equ iva l en t e x p r e s s i o n i s o b ­
t a i n e d for the l o c a l N u s s e l t n u m b e r w h e n t h e o u t e r w a l l i s i n s u l a t e d : 

Nu = 
(-0(1-0 

r^c_R' n n ( f i ) 

^ X 
exp I <C) + b 

n=0 

(-^f) r=n«n(M 
ê, 

n=0 " 

2f, \ ~ ^ c R' R' / f 
n n '̂»i 

^ X 
n=0 '̂  

-P(-\'C) + b 

•n=0 

(fi) V " j l ! n ( ^ 

n=0 

exp Kc) 
(86) 

and the a s y m p t o t i c N u s s e l t n u m b e r r e d u c e s to 

(i-iOH-ilf 
N u 

a , i 

'ill 
^nRn(^ i) 

n=o 
X n 

(87) 

H e a t f l uxes , h e a t t r a n s f e r coe f f i c i en t s , and N u s s e l t n u m b e r s 
can a l s o be c a l c u l a t e d for the c a s e tha t h e a t i s t r a n s f e r r e d at bo th s u r f a c e s 
of the a n n u l u s . Now, the t e m p e r a t u r e d i s t r i b u t i o n s ob ta ined in Sec t ion 3 
have to be u s e d . Since in t h i s p r o b l e m the wa l l t e m p e r a t u r e s Twi a-nd Twg 
have to be spec i f i ed , no g e n e r a l r e s u l t s va l i d for a l l v a l u e s of Tw- and TWQ 
can be c a l c u l a t e d , and i t i s n e c e s s a r y to so lve the p r o b l e m for spec i f i c 
v a l u e s of t h e s e p a r a m e t e r s . F o r t h i s r e a s o n , no c a l c u l a t i o n s for the c a s e 
a r e m a d e . H o w e v e r , the h e a t t r a n s f e r p a r a m e t e r s of i n t e r e s t can be 
r e a d i l y c a l c u l a t e d f r o m the r e s u l t s g iven in T a b l e s B - a t h r o u g h B - d by 
m e a n s of a p r o c e d u r e i d e n t i c a l wi th t ha t e m p l o y e d in t h i s s e c t i o n . 

4.2 D i s c u s s i o n of R e s u l t s 

F i g u r e 15 shows the v a r i a t i o n of the a s y m p t o t i c N u s s e l t n u m b e r s 
wi th p a r a m e t e r | i for two c a s e s : ( l ) i n s u l a t e d ou t s i de wa l l of the annu lus ; 
and (2) i n s u l a t e d i n s i d e w a l l of the a n n u l u s . Note t h a t a s | i — • I , the 
a s y m p t o t i c N u s s e l t n u m b e r for the s i t ua t ion when the ou t s ide s u r f a c e i s 
i n s u l a t e d a p p r o a c h e s the N u s s e l t n u m b e r for the c a s e when the i n s i d e s u r ­
face is i n s u l a t e d . T h i s fac t i s a l s o r e a d i l y a p p a r e n t f r o m p h y s i c a l c o n s i d ­
e r a t i o n s . When ri—^XQ i t does not m a k e any d i f f e r ence wh ich s u r f a c e i s 
h e a t e d and which is i n s u l a t e d , and the N u s s e l t n u m b e r s a r e t h e r e f o r e 
i d e n t i c a l . 

The r e s u l t s g iven in F i g u r e 10 and F i g u r e 15 a r e c o n s i s t e n t in 
t r e n d wi th t h o s e of Ref. 17 for l a m i n a r h e a t t r a n s f e r in a p ipe . S e l l a r s 
et a l . show tha t the a s y m p t o t i c N u s s e l t n u m b e r s a r e h i g h e r when the wal l 
t e m p e r a t u r e v a r i e s l i n e a r l y wi th the a x i a l d i s t a n c e than when i t i s cons t an t . 
As w a s a l r e a d y m e n t i o n e d , the c a s e of l i n e a r v a r i a t i o n of wa l l t e m p e r a t u r e 
c o r r e s p o n d s to the c a s e giving r i s e to fully e s t a b l i s h e d t e m p e r a t u r e p rof i l e 
and c o n s t a n t N u s s e l t n u m b e r s far away f r o m the e n t r a n c e for c o n s t a n t hea t 
flux app l i ed a t the w a l l . T h u s , the r e s u l t s g iven in F i g u r e 15 a r e a l s o va l id 
for t h i s l a t t e r b o u n d a r y cond i t ion . 



Appendix A 

THE ANALOGUE COMPUTER SOLUTION OF EQUATION (13) 

by 

Louis C. Just 

The analogue computer used in this study was an Elec t ronics Asso­
ciation, Inc., Model 131 R. For specific information about the installation 
at Argonne, the reader is r e f e r r e d to Refs. 18 and 19-

Analogue computers of th is type a r e l imited to accurac ies of 0.01%, 
an accuracy that can only be attained in the solution of simple l inear equa­
t ions. The complexity of this p rob lem ru les out accurac ies this high. The 
formulation of Rn(4) u-sed two dividers and two mul t ip l ie rs . These units 
have an accuracy within ±0.025% so that we can only be sure of ±0.1% in 
our answers . To further check the equipment and c i rcui t , the problems 
were rechecked on another computer with a complete change in equipment. 

^ n | was generated di rect ly by the machine, by means of the 
equation 

r^ 1 
i n | = 1 -f d | + in^i 

^ l i ^ 
Function generating equipment was considered, but this method was used 
because of its accuracy and convenience. Checks were per formed and show 
that In^ was generated to within the accuracy of the equipment used (0.025% 
due to the formation of 1/4 ). 

The evaluation of the expansion coefficients c^ is subject to still 
more inaccuracy because of additional mult ipl icat ions and divisions. Over­
all, Cj-̂  should be accura te within ±0.15%. 

The method of solving Eq. (13) consis ts of assuming a value of R^ 
or R^ at I = 4i, whichever is not p r e s c r i b e d by the boundary conditions 
Eq. (14), and then integrat ing Eq. (13). The determinat ion of the eigen­
values Xn was by a t r i a l - a n d - e r r o r method of i terat ion. A value of X^ 
was assumed, and the integrat ion of Eq. (13) was performed. If the appro­
pr ia te boundary condition at ^ = 1 was not satisfied, an improved value of 
X^ was chosen. The p r o c e s s was repeated until the boundary condition at 
4 = 1 was satisfied. This p rocedure has a source of e r r o r built in: it is 
up to the operator to decide how well the boundary condition is satisfied. 
A ci rcui t for automatical ly holding the solution at 4 ~ 1 was used, thereby 
eliminating any inaccurac ies due to reading R̂ ^ and R^ at | = 1 ± e. 



In the course of this study, five values of 4 i (0 '05 , 0.2, 0.5, 0.8, and 
0.95) were invest igated, with boundary conditions Eq. (14). The re su l t s 
for ^i = 0.95 a re not given because the computer would not repeat the r e ­
sul ts . This nonrepeatabi l i ty was probably due to the fact that high gains 
were involved. 

It is believed that the r e su l t s for boundary conditions Eq. (14b) a r e 
the leas t accura te . For these boundary conditions, Rn(l) was found to be 
"ze ro" for a range of eigenvalues Xn- This insensi t ivi ty of X^ on Rn(l) 
can be par t i a l ly el iminated by observing 100 Rn(4) instead of Rn( | ) . How­
ever , this does not completely el iminate all e r r o r s . 
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Append ix B 

T a b l e B - a 

CONSTANTS F O R P R O B L E M (a) 

^i 

0.05 

0.2 

0.5 

0.8 

n 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

^ ^ 

13.17 

69 .33 

167.1 

309.0 

492 .1 

718.9 

21.71 

107.1 

256.6 

470 .6 

750.2 

1095 

59 .37 

286.1 

681.7 

1246 

1983 

2889 

370.9 

1757 

4171 

7670 

12160 

17590 

Cn 

- 2 . 8 7 6 

1.120 

- 1 . 6 0 9 

0.8709 

- 1 . 3 1 9 

0.7489 

- 1 . 5 5 7 

0.3917 

- 0 . 9 9 2 6 

0.3037 

- 0 . 8 2 0 2 

0 .2836 

- 1 . 7 1 2 

0 .2054 

- 1 . 1 1 1 

0.1922 

- 0 . 8 9 8 0 

0 .1748 

- 3 . 6 3 8 

0.2079 

- 2 . 3 8 6 

0 .2253 

2.217 

0.1532 

c n R k ( l i ) 

14.38 

-5 .600 

8.047 

- 4 . 3 5 4 

6.594 

- 3 . 7 4 4 

7.887 

- 1 . 9 5 8 

4 .963 

- 1 . 5 1 8 

4 .108 

- 1 . 4 1 8 

8.585 

- 1 . 0 2 7 

5.855 

-0 .9610 

4.490 

- 0 . 8 7 4 1 

18.19 

- 1 . 0 3 9 

11.93 

- 1 . 1 2 6 

11.09 

-0 .7659 

CnRii(l) 

- 2.301 

- 0.8960 

- 1.481 

- 0.7838 

- 0.9750 

- 0.7489 

- 3.076 

- 0.7736 

- 1.985 

- 0.6149 

- 1.702 

- 0.6162 

- 5.881 

- 0.7036 

- 3.833 

- 0.6727 

- 3.143 

- 0.6424 

- 1 5 . 9 3 

- 0.9459 

-11 .21 

- 1.098 

-11 .25 

- 0.8234 
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T a b l e B - b 

CONSTANTS F O R P R O B L E M (b) 

l i n X 
n -n CnRii(?i) CnRk(l) 

0.05 

0.2 

0.5 

0.8 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

1.843 

42 .33 

124.7 

252.5 

419.3 

632.6 

4 .224 

66.57 

194.7 

387.6 

643.5 

966.1 

15.29 

182.8 

518.2 

1025 

1705 

2553 

127.4 

1120 

3127 

6144 

10180 

15230 

- 1 . 8 0 1 

- 0 . 5 3 8 8 

- 0 . 3 0 8 4 

-0 .2820 

- 0 . 2 4 4 4 

- 0 . 2 2 8 4 

- 0 . 9 6 9 7 

- 0 . 4 3 1 5 

- 0 . 3 4 5 6 

- 0 . 3 0 3 7 

- 0 . 2 7 7 6 

- 0 . 2 5 2 9 

- 1 . 0 5 9 

- 0 . 5 9 7 8 

- 0 . 4 9 0 3 

-0 .4135 

- 0 . 3 6 6 7 

- 0 . 3 1 8 2 

- 2 . 9 9 2 

- 1 . 3 8 3 

- 1 . 1 7 0 

- 0 . 9 8 8 5 

- 0 . 9 7 7 8 

- 0 . 8 2 2 6 

9.005 

2.694 

1.542 

1.410 

1.222 

1.142 

4 .848 

2 .158 

1.728 

1.518 

1.388 

1.265 

5.297 

2.989 

2.452 

2.067 

1.833 

1.591 

11.50 

6.917 

5.850 

4 .942 

4 .489 

4 .113 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Table B-c 

CONSTANTS FOR PROBLEM (c) 

?i 

0.05 

0.2 

0.5 

0.8 

n 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

X̂ n 

8.460 

55.21 

141.9 

270.5 

441.1 

661.4 

10.89 

77.97 

208.1 

402.9 

661.2 

984.2 

23.39 

194.5 

534.9 

1043 

1723 

2573 

127.4 

1165 

3231 

6630 

10450 

15520 

Cn 

-1.426 

0.7181 

-0.4973 

0.3841 

-0.3175 

0.2165 

=•1.371 

0.6004 

"0.3858 

0.2843 

-0.2266 

0.1867 

=1.312 

0.4806 

-0.2935 

0.2132 

-0.1634 

0.1335 

-1.266 

0.4203 

-0.2509 

0.1806 

-0.1422 

0.1163 

CnRk(4i) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

CnRk(l) 

- 1.783 

- 1.269 

- 1.119 

- 1.008 

- 0.9685 

- 0.8823 

- 2.229 

- 1.591 

- 1.379 

- 1.237 

- 1.161 

- 1.082 

- 3.869 

- 2.739 

- 2.333 

- 2.117 

- 1.944 

» 1.809 

-10.41 

- 7.292 

- 6.154 

- 5.613 

- 5.298 

- 5.001 



T a b l e B - d 

E X P A N S I O N C O E F F I C I E N T S F O R G E N E R A L I Z E D P R O B L E M (a) -
D I F F E R E N T T E M P E R A T U R E S A T T H E INSIDE AND 

O U T S I D E W A L L S O F T H E A N N U L U S 

0.05 0.2 0.5 0.8 

Cn 

- 0 . 6 9 2 4 

- 0 . 4 2 9 1 

- 0 . 3 4 0 5 

- 0 . 2 9 6 9 

- 0 . 2 4 9 0 

- 0 . 2 2 7 3 

Dn 

- 2 . 1 8 4 

1.549 

- 1 . 2 6 8 

1.168 

- 1 . 0 7 0 

0 .9762 

C n 

- 0 . 5 3 7 1 

- 0 . 3 6 8 5 

- 0 . 3 2 1 6 

- 0 . 2 8 8 9 

- 0 . 2 7 0 1 

- 0 . 2 4 8 7 

Dn 

- 1 . 0 2 0 

0 .7602 

- 0 . 6 7 1 0 

0 .5926 

- 0 . 5 5 0 1 

0 . 5 3 2 3 

Cn 

- 0 . 7 3 0 7 

- 0 . 5 4 8 6 

- 0 . 4 8 2 3 

- 0 . 4 1 6 2 

- 0 . 4 1 0 4 

- 0 . 3 3 9 4 

Dn 

- 0 . 9 8 1 3 

0 .7540 

- 0 . 6 2 8 7 

0 . 6 0 8 4 

- 0 . 4 8 7 6 

0 .5142 

C n 

- 1 . 7 1 0 

- 1 . 3 7 2 

- 1 . 1 0 4 

- 0 . 9 8 5 4 

- 0 . 8 6 9 0 

- 0 . 7 8 2 6 

Dn 

- 1 . 9 2 8 

1.651 

- 1 . 2 8 2 

1.211 

- 1 . 3 4 8 

0.935J 
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N O M E N C L A T U R E 

S y m b o l D e f i n i t i o n 

Aj^ C o e f f i c i e n t i n E q u a t i o n (19) 

a C o n s t a n t i n E q u a t i o n (77) 

b C o n s t a n t i n E q u a t i o n (77) 

C n C o e f f i c i e n t d e f i n e d b y E q u a t i o n (60) 

Cn C o e f f i c i e n t d e f i n e d b y E q u a t i o n (15) 

Cp S p e c i f i c h e a t a t c o n s t a n t p r e s s u r e 

Cj, C2 I n t e g r a t i o n c o n s t a n t s in E q u a t i o n (55) 

Dg E q u i v a l e n t d i a m e t e r d e f i n e d a s 2 ( r o - r i ) 

Dn C o e f f i c i e n t d e f i n e d b y E q u a t i o n (66) 

f F u n c t i o n d e f i n e d a s u / 2 u 

h H e a t t r a n s f e r c o e f f i c i e n t 

k T h e r m a l c o n d u c t i v i t y 

N u N u s s e l t n u m b e r d e f i n e d b y E q u a t i o n (21) 

N u a d b N u s s e l t n u m b e r w i t h o n e a d i a b a t i c w a l l of t h e a n n u l u s f o r P r o b l e m (a) 

P e P e c l e t n u m b e r d e f i n e d a s R e P r 

P r P r a n d t l n u m b e r d e f i n e d a s / i C p / k 

p P r e s s u r e 

R e R e y n o l d s n u m b e r d e f i n e d a s p u D e / f i 

R n E i g e n f u n c t i o n o b t a i n e d f r o m t h e s o l u t i o n of E q u a t i o n (13) 

r R a d i a l c o o r d i n a t e 

q H e a t t r a n s f e r r a t e 

q" H e a t f l u x 

T T e m p e r a t u r e 

Tn^ M i x i n g c u p t e m p e r a t u r e d e f i n e d b y E q u a t i o n (22) 

TQ T e m p e r a t u r e a t t h e i n l e t t o t h e a n n u l u s 

T w T e m p e r a t u r e a t t h e w a l l 

u L o c a l v e l o c i t y 

X A x i a l c o o r d i n a t e 

Y F u n c t i o n d e f i n e d b y E q u a t i o n (61) 



Symbol Def in i t ion 

y F u n c t i o n def ined by E q u a t i o n (51) 

Z F u n c t i o n def ined by E q u a t i o n (61) 

z F u n c t i o n def ined by E q u a t i o n (51) 

G r e e k S y m b o l s 

jSn E i g e n v a l u e d e t e r m i n e d f r o m E q u a t i o n (20) 

C, Dimiensionless independent variable defined as (1 -^i) x/Pe TQ 

T) Dummy independent variable 

G D i m e n s i o n l e s s t e m p e r a t u r e def ined as (T - T W ) / ( T O - T ^ ) 

©ni D i m e n s i o n l e s s m i x i n g cup t e m p e r a t u r e def ined by E q u a t i o n (26) 

Xn E i g e n v a l u e s a t i s fy ing E q u a t i o n (13) and b o u n d a r y cond i t i ons 

E q u a t i o n (14) 

jl D y n a m i c v i s c o s i t y 

I D i m e n s i o n l e s s r a d i a l v a r i a b l e def ined as r / r o 

p D e n s i t y 

0 F u n c t i o n def ined by E q u a t i o n (45) 

X Temperature ratio defined as (T^i - To)/(T-wo ~ To) 

^ Function defined by Equation (46) 

Subscripts 

a Designates the asymptotic value 

e Designates the entrance length 
i Designates a value of a variable of a function evaluated at the inside 

surface of the annulus 

n Designates the n̂ h eigenvalue or eigenfunction 

0 Designates a value of a variable or a function evaluated at the out­

side surface of the annulus 

Superscripts 

' Denotes differentiation with respect to ^ 

— Denotes an average value 
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FIG. 7 

VARIATION OF THE HEAT FLUX PARAMETER FOR 
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FOR EQUAL TEMPERATURES PRESCRIBED ON THE 
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FIG. 8 

VARIATION OF THE HEAT FLUX PARAMETER FOR 

THE OUTSIDE WALL WITH (l/Pe) (x/r^) AND C, 

FOR EQUAL TEMPERATURES PRESCRIBED AT THE 

INSIDE AND OUTSIDE WALLS OF THE ANNULUS 
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VARIATION OF THE FIRST SIX EIGENFUNCTIONS WITH f FOR BOUNDARY CONDITIONS (lla) 



FIG. B 

VARIATION OF THE FIRST SIX EIGENFUNCTION WITH ( FOR BOUNDARY CONDITIONS (lib) 
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VARIATION OF THE FIRST SIX EIGENFUNCTIONS WITH f FOR BOUNDARY CONDITIONS (lie) 


