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GAMMA 1
A GENERAL THEOREM-PROVING PROGRAM
FOR THE IBM 704

by

John Alan Robinson

INTRODUCTION

GAMMA I is a FORTRAN-compiled program for the IBM 704
Electronic Data-Processing Machine. It embodies a certain general, uni-
form procedure H of mathematical logic for seeking out a proof of any
theorem within any mathematical theory which is given in formal axiomatic
form.

The procedure H is theoretically complete. Using it, one will
always discover a proof for a theorem if there is one to be discovered.
However, as a practical instrument, the procedure H has severe limita-
tions; in most cases of strong mathematical interest it calls for the execu-
tion of more steps than can be carried out in any reasonable time by the
fastest miachines ever likely to be available. The actual capability of
GAMMA 1is therefore no greater than these practical limitations inherent
in the procedure H will allow. Nevertheless, GAMMA I is remarkably
effective in a wide class of cases, including, for example, the modern
algebraic theory of lattice structures.

Plans are afoot for GAMMA II, a program which will embody other
theoretical procedures over and above the procedure H, and which will
possess a capability much greater than that of GAMMA I. These plans
are discussed in the sequel.

Prior to a detailed description of GAMMA 1 itself, an extended
discussion is provided of the underlying method, and of the necessary
background of mathematical logic. No knowledge of this field is presup-
posed. In the subsequent discussion of the computer program, however,
it is assumed that the reader is reasonably well acquainted with IBM 704
programming, and in particular with the FORTRAN symbolic program-
ming system.

GAMMA I was written at the Argonne National Laboratory for the
Applied Mathematics Division in the summer of 1961. The work was much
facilitated by the active and helpful cooperation of George A. Robinson, Jr.,
and Herbert L. Gray, both of the Applied Mathematics Division.



CHAPTER I. MATHEMATICAL LOGIC

1. Introduction. The General Role of Modern Logic.

The discourse of mathematicians, when they are giving proofs and
stating results, is carried on in one of the natural languages, such as
English, liberally supplemented by a terse shorthand notation involving the
letters of various alphabets printed in various types of formats, and by
many special symbols, such as the equality or identity sign, the summa-
tion and product signs, and the sign for an integral.

Within such an enriched natural language the mathematician makes

assertions, embodied syntactically in sentences, and furthermore he claims

that some of the assertions follow from, or are consequences of, or are
deducible from, one or more other assertions. In any particular case, to
show that this is indeed so, the mathematician seeks to provide a proof of
an assertion T from a set of premises, P, P;, ..., P. The burden of the
proof is to establish the fact that if the premises P;, P,, ..., Pp are true,
then so must the conclusion, the assertion T, also be true. The question
whether the premises P;, P,,... P, are indeed true is a separate matter

from the question whether, 1_f. they are, then the conclusion must be.

The apparatus of modern logical theory provides an exact analysis
of the notions lurking behind the words and phrases underlined in the
previous paragraph. A major contribution of modern logic has been the
construction of a family of artificial (as opposed to natural) languages in-
corporating the fruits of this exact analysis. These languages are intended
as precise counterparts of the enriched natural languages traditionally
used by mathematicians, having at least the same expressive power as
(and, in some cases, far more expressive power than) their natural cous-
ins. The creation of these artificial languages is a twofold boon: first, a
more finely tuned instrument is thereby provided for talking, thinking, and
writing mathematically; but second, the language of mathematics is now
exhibited as itself a precisely defined structure, capable of being mathe-
matically studied in just the same way as groups, rings, fields, topologies,

vector spaces, and other structures are studied in traditional mathematics.

Profound and beautiful results of far-reaching importance have

already been obtained in the first few decades of work made possible by the

second of these two boons. Several of these results are of importance for

our present discussion. The first boon has not yet, however, been exploited

systematically. We are just beginning to realize its power, with the rel-
atively recent advent of large, fast, automatic, symbol-manipulation
machines.

-
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2. Predicate Calculi of First QOrder

One subfamily of artificial languages constructed in modern logic
consists of the so-called predicate calculi of first order. There are many
members of this family, some being but slight variants of others, some
being very different indeed from others, but all having in common certain
fundamental features which determine the family relationship. As the title
given to the family suggests, the central notion underlying the whole family
is that of a predicate.

We are used to the idea, in traditional mathematical usage, of
formulating such inscriptions as:

2-x+4 =10 (1)
and
12 -y =29 (2)

in which "x" and "y" are variables, thought of as ranging over some set
(say, the set N of positive integers), "2," "4," "10," "12," and "29" as

constants, "+" ":" as operations, and "=" "=" as relations. If we sys-

tematically replace "x" in (1) by constants denoting particular members
of N:

2-1+4 =10 , (1.1)
2-2+4 =10 (1.2)
2.3+4 =10 (1.3)
2-4+4 =10 (1.4)

etc., we obtain a set of specific assertions, some of which are false, others
true, about members of N. In our example, (1.3) is true and all the rest
false. Similarly, systematically replacing "y" in (2) gives

12.1=29 (2.1)
12 -2 =29 , (2.2)
12.3 =29 (2.3)
12 -4 =29 (2.4)

etc., a set of assertions in which (2.1) and (2.2) are false and the rest are
true.



If we call the inscriptions (1.1), (1.2), ..., and (2.1), (2.2), ..., .

sentences, then the inscriptions (1) and (2) are revealed as things which

give rise to sentences whenever one replaces the variables which occur

within them by constants, or, in other words, by names of individual enti-

ties from the set which is the range of the variables. These syntactical

things are called predicates. They may have many variables, not simply

one, as our examples have, and each variable may occur many times, not

just once, as in our examples. Thus, e.g.,

3x2 +4x + 2y +yP +z = w + 3w® - 2° (3)
contains the four variables "x," "y," "z," and "w," each with two
occurrences.

So far our examples of predicates have involved just one type of
variable (i.e., all ranging over the same set). But we can generaﬁz_e this .
feature by introducing other variables of different types, with different sets
to range over. Consider, for example:

R(p(a(2,x), 4), 10) , (4)
which was obtained from (1) first by writing (1) in the form
:(+('(2:X): 4): 10) ¥ (5)

that is, by writing operators (or function signs) prior to their parenthesized
arguments, and relation signs prior to their parenthesized arguments; and
second by replacing "=," ".", and "+" by variables "R," "o," and "B."

We now may think of (4) as being a predicate containing variables of different
types: "R" has for its range the set G of all relations on N (a set of which
the identity relation is just one member); "a" and "B" have as their ranges
the set F of all binary functions over the set N (sum and product being

just two particular members of this set); while 'x' as before has as its

range simply the set N itself.

The predicate (4) becomes a sentence, embodying a specific asser-
tion, whenever "R" is replaced at each of its occurrences by the name of
something in G, 'a' and 'B' are replaced at each of their occurrences by
the names of things in F, and 'x' is replaced at each of its occurrences by
the name of something in N. Indeed, we may envisage theoretically the
results of doing this replacement in all possible ways (of which there are
denumerably infinitely many!) to obtain the set I of all the (denumerably
many) sentences which are instances of the predicate (4). Then each
member of I is either true or false, depending on which specific replace-

ments were used to obtain it from (4).




A further generalization from these illustrations is required. In
our example, we have used binary relations and binary functions only: but
in general we may work with any (finite, positive) number of arguments
for both relations and functions, and not just two as in our example.

These considerations underlie the specifications of that one of the
predicate calculi of first order which we shall first consider.

We provide, for this language, an unlimited supply of each of the
following categories of symbols:

A. Relational variables.

P; Qy R., Pl: Ql, R.l, PZ, .

B. Functional variables.

a‘r 18, ’y; a’l: B]: 'Y],: a’Z: .

C. Individual variables.

u, v, w, X, y: z, u]_t V]y Wl: Xl: YI; Zl; uz, LR

D. Relational constants.

=, =z, 5 >, <, (a.d llbltum)

E. Functional constants.

+, %, -, %, (ad libitum)

F. Individual constants.

0,1,2,3, ..., T, e, ... (ad libitum)

and the three '"grouping" symbols "(", ")", and ",". We then define two
different classes of strings of these symbols, terms and predicates:

Terms

(a) An individual constant is a term.

(b) An individual variable is a term.

(c) If A4 is a functional variable or a functional constant, and 171,
Tor eens 7k are terms (with k = 1) then

\A(i], csey 7k)



is also a term (i.e., the string consisting of 4, followed by a
left parenthesis, followed by 7, followed by a comma, followed
by 7,, etc.).

Predicates

(d) If ® is a relational variable or a relational constant, and
T Tzs -oor Tx (with k = 1) are terms, then

R(Ty, e Tio)
is a predicate.

It will be noted that the exact definition of predicates given
above includes, as special cases of predicates, those which contain no
variables, and hence are sentences:

Sentences
Any predicate which contains no variables is a sentence.
We now introduce some further ideas, based upon the fact that it is

possible and indeed customary and indispensible to make new predicates
out of old. There are two ways in which this is done, truth-functional com-

bination and quantification, both of which have intuitive counterparts in the
natural language.

Thus we introduce, as a further supply of symbols, the following
five:

~
;& Ve e

and state formally the following addition to the definition of predicate:

(e) If £ is a predicate, then so is~/# ; if £ and @ are both predicates,

then (P& @), (Pyv® ), (P> Q), and (P++Q@ ) are each also
predicates.

Informally, the symbol "~" is intended to correspond to "it is not
the case that," and is called the negation sign: "&" is intended to corres-
pond to "and," "v'" to the legalistic barbarism "and/or, " and they are
called, respectively, the conjunction sign and the disjunction sign; finally
"-»"is intended to correspond to "if ... then," and "e" to "if and only

—»

if," and they are called, respectively, the implication sign and the
equivalence sign.




Our original supply of predicates (those given by part (d) of the
definition of predicate) are now called atomic predicates, while those con-
structed via part (e) of the definition are called compound predicates.

So much, for now, for the first method of constructing further
predicates from given ones, by truth-functional combination.

The second method, quantification, 1s intended as an exact counter-
part of the natural language phrases "for all" and "there exists." For
instance, harking back to example (1), we may say (falsely):

"For all x, 2x +4 = 10" (6)
or we may say (truthfully):

"There exists an x such that 2x +4 = 10" . (7)

Two facts are noteworthy about (6) and (7). First, even though
they contain variables, they are sentences, that 1s, they make specific
assertions and are hence either true or false. The variables which they
contain are not, as in our earlier examples, capable of being replaced by
constants to produce sentences; on the contrary, 1f we replace them by
constants we get gibberish, e.g.,

"For all 3,23 +4 = 10" (8)
"There exists a 17 such that 2 - 17 +4 = 10" . (9)

We therefore say that the variables are dummy variables, or that they
have been "killed" or "bound" by the phrases "for all ..." and "there
exists ... ."

The second noteworthy fact about (6) and (7) 1s that their truth or
falsity depends on that of sentences which are instances of the predicates
from which they were obtained. Thus (6) 1s true just in case all the in-
stances of (1) are true sentences, while (7) 1s true just in case not all of
these instances are false.

We incorporate these 1deas into our artificial language by adding
the symbols "E" and "A" to our stock of symbols, and by appending a

third clause to our definition of predicate:

(f) If V 1s an individual variable, and £ 1s a predicate, then

(A )P and (E V)P

are both also predicates.
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In order to make precise the notions of dummy variables or bound
variables, we must now add the following formal characterization:

(g)(i) Each occurrence of any individual variable appearing in an
atomic predicate is a free occurrence of that variable in
that predicate.

(ii) Free occurrences of variables in # and Q remain so in

(Pe@) (Pv@), (P>@), (Pe=@Q), and ~P, ~Q.

(iii) Each occurrence of U which is free in # is bound in (AV)P
and in (EV)#, and is furthermore bound by that particular
occurrence of "A" or "E." (In addition, that occurrence of
V immediately after "A" or "E" is also bound in (AV)# or
(E V)P, and is likewise bound bX that particular occurrence
of "A" or "E.") All other free occurrences of variables
in # remain free in (AV)P and (EV)P. (AV)P is called
the scope of that occurrence of "A,"likewise for "E." The
group of symbols "(AV)" is called a universal quantifier:
"(EV)" is called an existential quantifier.

Informally, in examining a predicate to determine which occurrences
of its variables are bound and which free, and, if bound, by what occur-
rences of "A" or "E," we work from the "inside" of the predicate to the
"outside," by starting with those innermost occurrences of "A" or "E"
which have no other quantifiers in their scopes, and allotting to them any
occurrences of 'their' variables which occur in their scopes. Then we
repeat this operation for the other quantifiers, repeatedly taking the inner-
most quantifier not yet treated, allotting to them all free occurrences of
their variables inside their scopes (for now there may be some bound
occurrences, owned by quantifiers inside the scope, which have therefore
already been allotted).

Thus, every occurrence of every individual variable in every
predicate is either free or bound, and, if bound, bound by one and only
one quantifier: and we can always determine the unique way in which
this must be the case.

This completes the morphology of our language. We comment
here that the restriction of quantification to individual variables is what
determines our language to be a predicate calculus "of first order";
languages in which quantification over relational variables and functional

variables are also studied are designated as being of higher order than

the first.

3. Interpretations. Validity, Satisfiability, Consequence.

We have already, in our informal preliminary discussion, touched
upon the interpretation of this artificial language. Let us now go into the
matter more precisely.




No specific interpretation is provided for the language defined above.
Indeed, it is a "general-purpose" language, and there comes with it a set
of instructions as to how to make your own interpretation suitable to the
job you have in mind in using the language. The instructions are these:

A. Choose a specific set S as the range of each individual
variable, and to each member of S allot a unique distinct one
of the individual constants to be its name. (You may have a
lot of individual constants left over, with nothing in S to
name; if so, forget about them.)

B. Now consider successively the set of all singulary functions
from S to S, all binary functions from SxS to S, and so on;
these sets are to be, respectively, the ranges of any functional

11

variable which occurs in a predicate with one, two, ..., arguments.

C. Allot to each member of each of these sets of functions over S,
exactly one of the functional constants to be its name.

D. Do the same as in B and C, for all the singulary, binary, ...,
relations over S, assigning thereby ranges to all occurrences
of relational variables, and assigning distinct unique relational
constants as names for the distinct relations over S.

Notice that the only choice you have in making an interpretation is of the
initial set S, and of the names of the various entities thus determined
from the stock of general-purpose names provided for you by the language.
Once you have done this, the status of all predicates of the language is
uniquely determined except those containing unused names, which we
ignore in what follows. In particular, the truth or falsity of each sentence
is completely fixed by your choice of S and your assignment of names.
Two other labels are provided in order to assign a status to predicates
which are not sentences. We say that a predicate is satisfiable in an
interpretation if not all of the sentences which are its instances are false
in the interpretation; a predicate is valid in an interpretation if none of
the sentences which are its instances are false in the interpretation.

Now it makes at least as much sense here as anywhere else in
mathematics to pass to the notion of all possible sets S which might be
chosen as the initial set for an interpretation of our general-purpose
language, and thence to the class of all possible interpretations which the
language can be given. In terms of this idea, we can assign absolute
statuses to the predicates as follows: a predicate is valid (period) just in
case it is valid in all interpretations; a predicate is satisfiable (period)
just in case there is at least one interpretation, among all the possible
interpretations, in which it is satisfiable.
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We are now at a point where we can define exactly what is meant

by saying that in our language a sentence T "follows from" or " is a
consequence of" one or more other sentences Py, ..., P,. The definition
is this: T is a consequence of Py, ..., P, just in case that T is true in

every interpretation in which Py, ..., P, are each true. (It might also

be true in other interpretations besides, but it must at least be true in
the ones stated.)

The reader may be thinking that these definitions of "validity,"
"satisfiability," and "consequence" are highly impractical to use as a
down-to-earth means of assigning a status to a predicate, or of deter-
mining whether one sentence is a consequence of one or more others.
He is right. They are. But they are not intended as practical criteria
for determining these properties of predicates, but rather only as anal-
yses of the actual content of these notions in general mathematical (i.e.,
set-theoretic) terms. For practical purposes, we pass now to another
set of concepts and definitions which are intended, in a down-to-earth
sense, to be usable by people and machines.

4, Deduction; Proof; Theorems; The Decision Problem.

The criterion for determining whether a sentence T is a consequence

of one or more other sentences P;, P,, ..., Pn given in the previous section
is not, in general, practically applicable, since it involves the totality of
possible interpretations. A different kind of criterion, whose application
depends only on the immediate syntactical structure of the sentences in
question, is therefore provided. In outline, the criterion consists of a small
set of structural relationships which one sentence T can have with respect

to a set of other sentences, P;, P,, ..., Pp. In any particular case, where
a sentence T does in fact bear one of these relationships to a set P;, Py,
.., P, we say that T is irnmediately deducible from P;, P;, ..., P, by

virtue of the relationship in question. Each of the relationships is care-
fully defined so that the question as to whether it does or does not obtain
between a sentence T and a set of sentences P;, P,, ..., Pn is always
effectively decidable by a mechanical procedure which is uniform and
which is a part of the specification of the relationship.

If we have a sequence T;, T;, ..., Ty of sentences with the property
that each T;, 1 = i = m, in the sequence either (a) is itself one of a given
set of sentences Py, ..., Py, or (b) is immediately deducible from a set of

sentences each of which occurs earlier in the sequence, then we say that
the sequence is a deduction of its last member, Ty, from the set Py, ...,
P, as premises.

The question whether a given sequence of sentences, alleged to be
a deduction of its last member from a given set of sentences, is or is not
indeed such a deduction, is again mechanically decidable in a uniform way.




What is not, alas, a mechanically decidable question is whether or not for
a given sentence T and a given set P;, P,, ..., Pn of sentences, there exists
a deduction of T from P;, P, ..., Py as premises. The proof that this
question is not mechanically answerable by "Yes" or "No" through applica-
tion of an algorithm is one of the great results of modern logic. It was first
given in 1936 by Alonzo Church of Princeton University. This is not the
place to discuss this matter at any more length. Suffice it to say that, as
will appear in the sequel, there are mechanical methods which will uni-
formly determine a deduction of a sentence T from a set P, P;, ..., P, of
sentences, provided that such a deduction exists; but if no deduction exists,
these methods will, in general, never terminate in a discovery of this non-
existence. They are, therefore, only "semi-algorithms," capable only of
answering "Yes," not capable, in general, of answering "No."

A second great result of importance here was first given by
Kurt Godel in 1931. It is that any sentence T which is valid in the sense
of the previous section can be obtained as the last member of a deduction
from the empty set of premises. (This property is known as the com-
pleteness of the deductive apparatus of the language.) It is also the case

that only valid sentences can be so obtained. Thus, although the character-

izations are utterly different, the concepts of validity and deducibility from
the empty set of premises in fact determine precisely the same class of

sentences.

It would require too much space to discuss the details of the rela-
tionships governing immediate deducibility. Excellent accounts are
available in the literature [see especially W. V. Quine's Methods of Logic,
Revised Edition, Holt-Dryden (1959) and P. Suppes' Introduction to Logic,
Van Nostrand (1957)], but each differs from the other in various ways
which do not affect the completeness and consistency properties. For our
purposes, we note just one of the deducibility principles, namely, that if
a sentence S is deducible from premises Py, ..., Py, then the sentence
(Py—= (P, —...(Pp—+S)...)) is deducible from no premises at all, and is
therefore valid (or "logically true") by virtue of Gédel's completeness
theorem. Hence, to every deduction there corresponds a valid sentence,
and the question whether a sentence T can be deduced from premises
P, ..., P, is equivalent to the question whether the sentence
(Py— (P —=...(P,— S)...)) is valid. Since the first question admits of no
algorithmic method for its settlement, neither can the second.

Now the question whether a sentence S is valid is equivalent to the
question whether its negation, ~S, is satisfiable (to be precise, S is valid
just in case ~S is not satisfiable). And the negation of (P, — (P, — ...(Pn=S)
...)) is (P1&Py&... &P & ~S), where inner parentheses have been omitted for
the sake of revealing the pattern. If, therefore, we could show
(P;&Py&%... &Pn&~S) to be unsatisfiable, we would have shown that S is
deducible from P;, ..., Pp as premises.
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But this is just the general problem of theorem proving in axioma-
tized mathematical theories. Let the axioms of a theory be written as

sentences Py, ..., P of the first-order predicate calculus given here, and
let the theorem to be proved be written as a sentence T. To prove that
T is a theorem of the theory embodied in the axioms Py, ..., P, is then

essentially the same task as that of showing the single sentence
(P &P2&... &P, & ~T) to be unsatisfiable.
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CHAPTER II. THE PROCEDURE H.

1. Prenex Conjunctive Normal Form. The Procedure H.

There is a straightforward technique [described in Quine, op. cit.,
or in Hilbert and Ackermann's Mathematical Logic, Chelsea il950)]whereby
any sentence of the predicate calculus can be put into a certain standard form
called the prenex conjunctive normal form. In this form, all the quantifiers
(if any) of the sentence occur at the beginning, and jointly comprise the pre-
_f_i_}i of the sentence. Furthermore, the predicate part of the sentence (often

called the matrix) has the form of a conjunction of disjunctions, each member
of which is either an atomic predicate or the negation of an atomic predicate.

In preparing to carry out the procedure H in order to show a sentence
(P, &P, &... &P,&~ S) inconsistent, we first reduce P;, P,,...,P,, and ~S to
prenex conjunctive normal form, each separately from the other. This step
results in a finite list of sentences each beginning with a finite sequence of
quantifiers.

The second step is to drop, from the front of the first sentence which
begins with an existential quantifier, that existential quantifier, and to re-
place each occurrence of the variable thus freed by an individual constant
(the same one at each occurrence) which does not occur elsewhere anywhere
in the list of sentences. This operation is repeated until each sentence begins
either with a universal quantifier or with no quantifiers at all.

(These two steps must be performed prior to inputting the sentences
to the program GAMMA 1.)

Now we proceed to append successively to the list of sentences further
sentences obtained by systematically dropping initial quantifiers from earlier
sentences in the list and replacing the variables, thus freed, by systematically
chosen individual constants. (In what follows, we employ numerals as the
individual constants.) The systematic method is given as follows:

Suppose the list at the nth step of this process consists of the sentences
S1, Sz,...,5,, and that the largest numeral to have been used so far as an
individual constant is ¢. Then:

(i) If S, begins with an existential quantifier, let Sp+1 be the sentence
obtained from Sp by dropping that existential quantifier, and re-
placing each of the occurrences of the variable thus freed by the
numeral ¢+1.
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(i1) 1If Sp does not begin with an existential quantifier, let ¥ be the .
earliest numeral with which some universally quantified sentence )
on the list has not yet been instantiated; if ¥ > ¢, the process
terminates. Otherwise, let Sj be the first universally quantified
sentence on the list which has not yet been instantiated with ¥,
and let S be the result of instantiating Sj with ¥.

pt1

Successive sentences added in this way are all consequences of the original
starting list. There is a great theorem, first proved by Jacques Herbrand

in 1930, that the conjunction of the sentences in the starting list is unsatisfi-
able just in case, for some integer x, the conjunction of the first x sentences
on the generated list is truth functionally unsatisfiable. Furthermore, we
can drop from this conjunction any sentences that begin with quantifiers, and
consider only the conjunction of the quantifier-free sentences (i.e., those

containing no variables).

But we can always test the quantifier-free conjunction of sentences
at any point in the generating process and arrive at a decision algorithmically
whether or not it is truth-functionally unsatisfiable, and thus, if there is an
x at which the conjunction of all the quantifier-free sentences up to and in-
cluding Sy is unsatisfiable, we shall certainly find it, and thereby have proved
that the original list of sentences is inconsistent, and that therefore the as-
sociated deduction can be made.

Earlier attempts to mechanize this method were handicapped by a
lack of an efficient method for testing for truth-functional unsatisfiability.
But recently, Martin Davis and Hilary Putnam (A Computing Procedure for
Quantification Theory, Journal of the Association for Computing Machinery,

Vol. 7, No. 3, July 1960) gave a remarkably efficient method which is now
described here, slightly modified. An elegant and useful additional feature
(due to Herbert L. Gray) has been added.

2. The Truth Functional Method of Davis and Putnam

The conjunction of a finite number of sentences, each of which is in
conjunctive normal form (i.e., is a conjunction of disjunctions of atomic
sentences), is itself a sentence in conjunctive normal form. Let A;,..., A}
be the distinct atomic sentences occurring anywhere in the conjunction.
Each disjunction contains one or more members of the set [A,, ..., Ax],
either negated or unnegated (but not both Aj; and ~Aj, for any i). The
question whether the entire conjunction is satisfiable or not is the question
whether or not truth values can be assigned to each of the Aj in such a way
that each disjunction in the conjunction is made true. In order to make a
disjunction true, one need only make at least one of its members true. If .
none of the Zk possible assignments of truth values to the set [Al, e, Ak] .
makes the whole conjunction true, then it is unsatisfiable; otherwise it is
satisfiable.




The Davis-Putnam procedure consists of eliminating successively
each atomic sentence from the conjunction until either all of them are
eliminated (in which case the original conjunction was satisfiable) or a stage
is reached at which two different disjunctions are obtained, both containing
only one member, such that the member of one disjunction is the negation
of the member of the other. Specifically, we perform the following process:

1. If the conjunction is now empty, then the original conjunction
was satisfiable. The process terminates.

2. Otherwise, if, in the current conjunction, each disjunction con-
tains at least one unnegated atomic sentence, then the original
conjunction is satisfiable; likewise if each disjunction contains
at least one negated atomic sentence. The process terminates.
(This step is due to Herbert L. Gray.)

3. Otherwise, if the current conjunction contains a pair of disjunc-
tions whose only members are, respectively, an atomic sentence
and the negation of the same atomic sentence, the original con-
junction is unsatisfiable, and the process terminates.

4. Otherwise, if there is at least one disjunction which contains
only one sentence (either an atomic sentence or the negation of
an atomic sentence), we delete from the conjunction all disjunc-
tions containing that sentence, and delete all individual occur-
rences of its negation (~S is the negation of S, and S the negation
of ~S) wherever they occur. Then return to step 1.

5. Otherwise, if any atomic sentence occurs only unnegated through-
out the entire conjunction, or occurs only negated, eliminate all
disjunctions which contain it. Then return to step l.

6. Otherwise, we have the situation that every atomic sentence
occurs both negated and unnegated in the conjunction, and no
disjunction contains less than two members. Write there-~
fore, the conjunction in the form

(AVDy)&... &(AV D) &(~AVE;) &...&(~AVE,) &G, &... &G+
and then write
(D,VE;) &...&(D;V Ep) &(D;VE;) &...& (D,VEy) &... &(DVE ) &... &

(D V En)&Gl&...&Gr,
a conjunction of disjunctions in which the atomic sentence A does
not occur. The Di, E;:, and Gh are disjunctions involving atomic
sentences other than A. Then return to step 1.

17
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In the above process, each step where a new conjunction is obtained .
with at least one less atomic sentence occurring in it than in the conjunction
from which it was obtained carries with it the assurance that the new sentence
is truth-functionally satisfiable if and only if the old one is. Proofs may be
found in the paper by Davis and Putnam cited previously.

Each time an iteration of the process is carried out, at least one
atomic sentence is removed, and hence the entire process terminates in a
decision, as to satisfiability or unsatisfiability of the starting conjunction,
in at most k iterations. In practice, far fewer iterations than k are found to
be required for most cases that are actually encountered.




CHAPTER III. THE PROGRAM GAMMA I

1. The language used by GAMMA 1

The actual artificial language employed by GAMMA I is but a sub-
language of that described in Chapter I. GAMMA I's language contains no
functional variables and no functional constants. Hence, all of its terms
are either individual variables or individual constants. Despite this
apparent loss of expressive power, we still in fact have just as expressive
an instrument as before; now, however, in order to state certain things,
we must resort to a slightly less convenient and familiar technique of
formulation. Instead of saying, e.g.,

2-x+4 =y ) (1)
we must introduce a relational constant, say E, and write
E(x,y) (2)

defining E to be such a relation that (2) is true for just those ordered
pairs of constants for which (1) is true.

By this subterfuge we can reformulate any assertion, or predicate,
which involves functional variables or functional constants, by introducing
relational variables or relational constants.

A further restriction on GAMMA I's language is that we may use no
more than three arguments in any predicate. This still leaves us with
plenty of room to operate; most of the interesting examples require no more
than three-term relations. The reason for this restriction is that it ren-
dered the programming problem immeasurably easier. It is planned that in
GAMMA 1II no such restriction will be imposed, and the full apparatus of the
language introduced in Chapter I will be the language employed.

In addition to these quite major restrictions, several minor ones
should be pointed out. By confining ourselves to fixed-format data fields
in GAMMA I's design, we createdthe restriction that no more than 255 dif-
ferent relational variables could be employed, no more than 255 different
individual variables, and no more than 255 different individual constants.
These are minor simply because problems which would not fit within them
would be already absurdly infeasible problems for GAMMA I, on other
grounds entirely. We shall be discussing these other grounds later.

2. Atomic sentences and predicates and negations thereof: literals

Let us for convenience use the word "literal" to denote indifferently
an atomic sentence, an atomic predicate, or a negation of either. The term
is due to Davis and Putnam.
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The basic 36-bit 704 word provides the frame for the structure of
atomic sentences and predicates in GAMMA I's language. The word is
divided into four fields of 9 bits each (see diagram). Each field is sub-
divided into two subfields, the first being the leftmost bit, the second being
the other eight bits.

Relational Variable

Field Argument Fields

A A
- Y ™
HENEEEEEE SEEEEEEEE IEEEERENE BEEEEEEER
\ v \
} Y —— _____ Relatonal v ’

Individual variable

Negation Sign Field: variable or
*0* for unnegated, Individual constant

'1' fornegated literals
*'0* for constant,
'1* for variable

In each of the four eight-bit fields, we may put any one of the 255
eight-bit patterns, 00000001 through 11111111, to indicate which symbol
(relational variable, individual variable, or individual constant, depending
on which field and, in the second two cases, on which of '0' or 'l' occupies
the leftmost bit-position in the field) we have selected to put there. Sin-
gulary and binary predicates use only one (the first) and only two (the
first and second), respectively, of the three argument fields, the unused
ones being left with binary zeros in each bit-position. Negation of the
whole atomic sentence is indicated by a 'l' in the first bit position; lack of
negation by a '0' there.

Which eight-bit patterns are used to represent which relational
variables or which individual variables has been left to the discretion of
the user of the program: but the individual constants are considered by
the program to be ordered in their natural order from 00000001 to
11111111, for the purposes of carrying out the instantiation process with-
in the procedure H. If the program is allowed to run for so long a time
that the instantiation process calls for the substitution of an individual
constant beyond 11111111 in this ordering, it terminates at that point
with a printed explanation of its reason for having stopped. Its capacity
has been reached in this direction. (There are other ways in which its
capacity can become exhausted also: these will be explained in the
appropriate place.)

3. Disjunctions of literals

Since the sentences manipulated by GAMMA I are at all times in
prenex conjunctive normal form, we are able to represent them without
explicitly employing symbols for either disjunction or conjunction.




To represent a disjunction of N literals we simply construct a se-
quence containing the N words encoding the literals, and prefix at the front
of the sequence a further word containing the integer N in the FORTRAN
integer word format, viz., with low-order bit in the 18th bit position (a posi-
tion helpfully designated as the seventeenth, under IBM's conventions, which
involve denoting the first position as 'S' (for 'sign'), the second as first,
the third as second, and so on).

A conjunction of M disjunctions is then represented by a sequence
of M such sequences as were defined in the previous paragraph, the whole
sequence being prefixed by a word containing an integer, in FORTRAN in-
teger word form, giving the total number of words which are contained in
the M disjunctions. (It would have been nicer if the integer to be specified
were M; but life is not like that, always.) Included in this count must be the
words prefixing each disjunction. As a schematic illustration, consider

17

(14) (1)(A) (3)(A)(B)(D) (2)(C)(D) (4)(A)(G)(H)(K)

The letters represent literals: there are four disjunctions, containing,
respectively, one, three, two, and four literals, as indeed their respective
"counters" (as we shall henceforward often refer to them) indicate. The
total number of words, including the four counters as well as the literals,
is fourteen, and the leading word so indicates.

By this means we avoid the necessity of employing special symbols
for conjunction and disjunction, at the expense of having to use the counters;
these, however, facilitate the internal computer processing of the sentences
enormously.

4. The Quantifier Prefix

The remaining portion of a sentence in prenex conjunctive normal
form, over and above the conjunction of disjunctions of literals which com-
prises its matrix, consists of the initial sequence of zero, one or more
quantifiers which bind the individual variables within the matrix.

It turned out to be far more efficient for GAMMA I to put its quanti-
fier prefixes. not at the beginning, and in the natural order, but rather at
the end, and in the reverse order. In constructing sentences for input to
GAMMA 1, therefore, that is where we put, and that is the order in which
we put, the "prefix" (a designation no longer very appropriate).

If the total number of quantifiers in the prefix is K (including the
case K = 0), we first put K, as a FORTRAN integer-word, immediately
after the last word of the matrix. We then put successively a FORTRAN
integer-word for each quantifier, with positive sign indicating universal,
negative sign existential, quantifiers. The integer used in each quantifier
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is that corresponding to the bit pattern representing the individual variable
belonging to the quantifier, i.e., we simply place the bit pattern itself with
its rightmost bit in the 18th bit position of the quantifier word. Of course,
if K = 0, we do not put any quantifier words after the prefix counter. But
the zero word is mandatory, for the counter itself. GAMMA I takes the pre-
fix counters quite seriously.

5. The Input to GAMMA I

Thus we construct the sequence of 704 words which is a representa-
tion of a sentence in prenex conjunctive normal form for GAMMA 1. A set
of such sentences, comprising the initial list for the procedure H, is repre-
sented by sticking the respective word sequences end-to-end to form one
single sequence containing, let us say, W words in all (including all of the
various counters). The number W is supplied to GAMMA 1 as the value of a
FORTRAN integer variable MATEND. The number of sentences in the list
(i.e., the number of the prenex conjunctive normal form sentences) is like-
wise supplied, as the value of a variable JLINE. The highest individual

constant which occurs anywhere in the input list of sentences is considered

as an integer in the obvious way and supplied as the value of a variable
LPHI.

The sequence of words comprising the list of sentences after the
above fashion is given to GAMMA I as a one-dimensional FORTRAN array
MATRIX. MATRIX (1) is thus the first word of this array, and MATRIX
(MATEND) the last word of this array.

The final major piece of input information required by GAMMA 1 is
a list of numbers stating respectively in which word of the array MATRIX
the successive prenex conjunctive normal form sentences begin. (The first
such number clearly is always 1.) This list of numbers, in ascending
order, is given as a one-dimensional FORTRAN array LINE. LINE (1) is
thus the first word of this array; LINE(JLINE) is the last.

We have also provided, as a convenience, for up to 120 words of
BCD comment data, which is read in along with all the other information at
input time and used essentially as a label for the problem. Any material
capable of being printed may be put in the comment array, which is formally
a FORTRAN one-dimensional array LEAD. The number of words actually
used is supplied as the value of a variable LEADMX, and thus the array
will begin with LEAD(1) and end with LEAD(LEADMX).
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Physically, an input deck of cards is prepared as follows:

lst card:

In four successive 6-column fields, beginning with column 1, the
values of MATEND, JLINE, LPHI, and LEADMX are punched, hard
over to the right of each field, with leading zeros either left blank
or not, as one pleases.

2nd through kth cards:

(Where k is no greater than it must be in relation to the value
assigned to LEADMX.) The comment is punched, 6 characters to a
word, 12 words to a card. It is not mandatory that LEADMX be a
multiple of 12.

(k+1)st card onwards:

Each card has five successive fields of 14 columns, starting with
column 1; in the rightmost 12 columns of each field are punched, in
octal form, the words of the array LINE followed by the words of
the array MATRIX. There will therefore be (JLINE + MATEND)
octal words in all.

Such a deck is the entire input information required for a problem.
GAMMA 1 will handle one problem after another, and we simply stack the
respective decks on top of each other, in the desired order, in the card
reader. After having processed the last deck in such a batch of problems,
GAMMA 1 selects the card reader in quest of another; finding none, it stops,
and this is the normal manner for a run to terminate. This is indeed the
only stop not deemed worthy of a printed comment at the on-line printer.

After having processed a problem, GAMMA I prints the entire com-
ment array LEAD at the on-line printer, followed by its verdict (INCON-
SISTENT or CONSISTENT), followed by the number of minutes which were
required to complete the procedure H and find the proof. If a problem were
submitted which was not in fact inconsistent (a synonym for unsatisfiable),
and which was not in the category for which the instantiation process
terminates, then, whereas the theoretical procedure H for such a problem
goes on for all eternity, GAMMA I goes on until its capacity is exhausted
in one or other of the several ways in which this can occur. Since this
could be quite a long time, a way has been provided to terminate a problem
arbitrarily and peremptorily from the console: sense switch 2 is pushed
down, and GAMMA I prints out an appropriate comment at the on-line
printer and moves on to the next problem, if any. When this "get-off"
facility is used, sense switch 2 should be placed UP again before the next
problem deck has been entirely read in - otherwise it too will be summarily
terminated.
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In addition to the information supplied to the on-line printer at the
end of each problem, fuller information is written on TAPE 2 pertaining to
the problem just completed. In particular, a copy is provided of the
gquantifier-free conjunction of sentences which was found to be inconsistent
(or found to be consistent, in the case of a problem for which the instantia-
tion process happens to terminate, and which, in addition, happens to be
consistent). The remaining information consists of the number of times
the Davis-Putnam truth-functional analysis was performed, and the number
of iterations of it which were required in the performance of its final,

decisive application.

After these notes about the observable behavior of GAMMA I, and
the discussion of its input requirements, we now pass to an examination of
the program itself.

6. GAMMA 1 itself

It seems reasonable to discuss GAMMA I's organization and struc-
ture entirely on the FORTRAN symbolic statement level, the precise details
of the compiled object program in SAP machine language not being necessary
for a knowledge of the program's logical properties.

The flow of events takes place essentially just as is specified in the
theoretical algorithm which we have been calling procedure H. The original
input array MATRIX grows longer, for we add to it further sentences ob-
tained by instantiation, provided they have one or more quantifiers surviving
in their prefixes. Those that do not, which are therefore quantifier-free
sentences, we segregate, and stack them end to end in a new array called
MODEL. In doing so, we omit both the initial counter (which, one recalls,
gives the total number of words in the matrix part of the sentence) and the
terminal (zero) prefix counter. We can do without the former because we
no longer need to preserve the separate identity of each sentence making
up the quantifier-free conjunction, for we are building up but a single, long,
sentence; and we can do without the latter because in the present context it
tells us only something we already know - that there are no quantifiers in
the prefix. The array MODEL therefore grows longer as the procedure con-
tinues. Its length is at all times stored as the value of a variable, MODEND.
As the array MATRIX grows, so does the array LINE, whose successive
entries tell where, in MATRIX, the successive sentences begin. The values
of MATEND and JLINE, respectively, at all times tell how long each of these
arrays is.,

Eight thousand words of memory are available for the array MATRIX,
18000 for the array MODEL, and 2000 for the array LINE. If at any point
these storage areas are about to be exceeded, GAMMA I interrupts its
orderly processes, prints out a comment appropriate to the occasion, and
proceeds to the next problem, if any, in the input deck.
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There are two modes in which GAMMA I operates as far as con-
cerns the matter of when to test MODEL by the Davis-Putnam process for
satisfiability or unsatisfiability. The first mode is automatic, in which
GAMMA I chooses for itself when to test, by a criterion to be explained in
a moment. The second is manual, whereby the decision when to test is
made at the console. Which mode is operative is determined by the setting
of sense switch 4: UP for automatic mode, DOWN for manual mode. In the
manual mode, the decision to test is effected by depressing sense switch 5
and raising it again when the READ-WRITE SELECT light is lit up. This
phenomenon will occur after a second or two, and indicates that the Davis-
Putnam test procedure has gotten under way.

The points at which testing is done when in the automatic mode are
determined as follows: whenever, in the instantiation process, the sentence
in MATRIX which is about to be instantiated is the first, the instantiation
process is interrupted and a Davis-Putnam test of the current MODEL is
performed. Whenever this point is found to have been reached, a test is
also made to see whether the individual constant, which is about to be used
to instantiate the first sentence with, is greater than the largest one intro-
duced so far. If it is, then the instantiation algorithm calls for termination.
Therefore this fact is noted whenever it comes about, and GAMMA 1 does
not proceed with the instantiation process after the Davis-Putnam test has
been performed. Otherwise (unless the Davis-Putnam test turns up an
inconsistency) the instantiation process is then resumed right where it was

interrupted.

Since the Davis-Putnam test is "destructive” in the sense that
MODEL is successively reduced, perhaps to nothing, during the test, and
since, should the instantiation process have to be resumed, MODEL must
at that point be what it was before Davis-Putnam havoc was wrought upon
it, we write it out on TAPE 3 prior to testing, along with the entire array
MATRIX. The latter array must also be "saved" because the Davis-Putnam
test requires its storage area as an extensive "'scratch pad" on which to
make notes. Specifically, the Davis-Putnam process involves the construc-
tion of an array LIST during each iteration, the entries whereof are literals
which are either the lone occupants of a disjunction, or are such as occur
only unnegated, or only negated, throughout the entire MODEL. LIST is
assigned the same 8000-word storage area as is MATRIX.

Certain advantages are obtained in carrying out the Davis-Putnam
test procedure if at all times the literals within each disjunction can be
assumed to be in a fixed, known order. The handiest ordering to employ
was found to be that obtained by pretending that each literal is really a
35-bit binary number with a plus or minus sign attached, and then ordering
the literals within each disjunction in ascending absolute magnitude. The
necessary sorting is done immediately prior to appending a new quantifier-
free sentence to the end of MODEL. At this point is also performed the task
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of deleting, within any one disjunction, all but one copy of any literal which
happens to have one or more duplicates of itself as colleagues in the dis-
junction; and if a disjunction is found to have mutually contradictory literals
within it (i.e., literals exactly alike except that one has a negation sign while
the other does not), then the entire disjunction is deleted. (For such disjunc-
tions are true no matter what truth values are assigned to their atomic con-
stituents; hence a conjunction containing such a disjunction is inconsistent

if and only if the remainder is.)

The flow of events within the Davis-Putnam test procedure is, again,
essentially given by the statement of the theoretical process described
earlier, which process the program carries out as there stated. The precise
details of the actual steps which are executed are best ascertained from the
symbolic FORTRAN program listed in the Appendix, where the liberal com-
ments there provided tell the story plainly enough. The present overall
remarks are intended as no more than a helpful guide and companion during
a scrutiny of the FORTRAN program.

A word of running commentary on the way in which the instantiation
process is done by GAMMA I. An array LSTUPE is constructed during the
process; its kth entry tells which sentence of MATRIX was last instantiated
by the kth individual constant. In assessing the question "Which sentence of
MATRIX should next be instantiated, and with what individual constant?",
GAMMA 1 exploits LSTUPE as follows: one selects the first entry in LSTUPE
which does not "point to" the final sentence in MATRIX. This entry is then
increased by 1, and the sentence then indicated is selected for instantiation.
If the entry is the ith in the array LSTUPE, then the ith individual constant
is used to do the instantiation of the selected sentence. However, if all the
entries in the array LSTUPE point to the final sentence in MATRIX, then
a new entry numerically equal to zero is added. This indicates that none of
the sentences of MATRIX have yet been instantiated by the corresponding
individual constant, but that the first sentence of MATRIX is just about to be.

Finally, a useful feature has been incorporated into GAMMA I to en-
able the user to have a picture of what is going on during internal processing.
The register MQ is not required during the processing, either in the instan-
tiation section of the program or in the Davis-Putnam section of the program.
Two numbers are therefore displayed on the console MQ neons, and their
behavior indicates how far GAMMA I has progressed with the problem at
the time.

During the instantiation process, we display in the left half of MQ
the number of sentences currently in MATRIX, and in the right half of MQ
the number of quantifier-free sentences which have so far been added to
MODEL.




During the Davis-Putnam process we display in the left half of MQ
the current length (total number of words) of MODEL, and in the right half
of MQ the number of iterations so far carried out of the Davis-Putnam
procedure.

Depressing sense switch 3 at any time causes GAMMA I to report
at the on-line printer the sentences which it is getting via the instantiation
process.

Depressing sense switch 1 causes GAMMA 1 to report, during the
Davis~-Putnam tests, the successive appearances of MODEL as it is reduced
at each iteration.
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CHAPTER IV. SHORTCOMINGS OF GAMMA 1. GAMMA II.

In the Introduction the remark was made that, owing to theoretical
properties of the procedure H, the program GAMMA I has marked limita-
tions as to what kinds of problem it is capable of handling in a reasonable
span of time. Specifically, this is due to the fact that, for most "interesting'
(and therefore sufficiently complex-structured) axiom sets, and, for a
given interesting axiom set, for most interesting theorems deducible from
it, the value of x guaranteed to exist (where x, it will be recalled, is the
earliest step of the instantiation process at which a truth-functionally un-
satisfiable sentence is obtained) by the theory is a sickeningly large
number.

An example of this situation was met early in the testing of GAMMA L.
The axiom system which was formalized was that for elementary abstract

group theory. The axioms are three in number, and simple-looking ("o" is
a binary functional variable):
(Ax)(Ay)(Ez)(x = zoy) (1)
(Ax)(Ay)(Ez)(x = yoz) (2)
(Ax)(Ay)(Az)(xo(yoz) = (xoy)oz) . (3)

From these axioms we sought to prove the theorem that an identity
element exists; indeed, we contented ourselves with the weaker theorem
that there exists a left identity element:

(Ex)(Az)(z = xo0z) . (4)

Algebraically humble though this example be, it is not without some
interest; the proof of it, while not difficult, is not trivial either. All in all,
it was felt that it was a reasonable example of a nontrivial theorem which
might be within the range of GAMMA 1.

It is not. If appears, by an argument which will not be given here,
that the earliest value of x to which GAMMA I would have to go in order to
get a proof of (4) from [(1), (2), (3)] is at least 57% or about 2.10%2,

The irony of the situation is that, in the couple of trillion or so
quantifier-free sentences which GAMMA I would have to generate by in-
stantiation, only four are actually required to produce the requisite con-
tradiction. It is these four, together with a mere handful of others, which
any good student of modern algebra would select as a proof of (4) from

[(1), (2), (3)].

Procedure H is in fact what one might call an exhaustion algorithm:
the desired entity is, ifit exists atall, certainly a member of an effectively



enumerable set; very well then, says an exhaustive algorithm, let us list
the set, member by member, and see if the entity turns up. [Actually, the
term 'algorithm' is a misnomer, since the process described will not ter-
minate if (a) the enumeration does not terminate (i.e., the set is not finite)
and (b) the desired entity is not in the set,]

The contrast is between methods calling for the examination of
"all" possibilities, on the one hand, and methods which somehow select
from the totality of possibilities a subset thereof which contains only the
likelier possibilities. Clearly, the second category of methods embraces
those distinguished by their employment of so-called strategies. At the
very least, such methods are less uniform, more flexible, than exhaustive
methods, and in some sense the flow of events ensuing when such a method
is applied to a particular problem is very much a function of the specific
properties of the particular problem.

Apart from its being a uniform, exhaustive method, procedure H
also is formulated within a fairly spartan syntactical structure. It is in
fact less easy to "spot" proofs, within the structure operated on by pro-
cedure H, than it is to spot them in the richer (though not more powerful)
languages in which intuitive deductions are made, and then to transcribe
them, or otherwise use them, to discover corresponding proofs within the
more austere system.

The next program which is planned, GAMMA 1II, will embody some
ideas, still somewhat in the formative stage, for selecting paths of in-
stantiation on the basis of the particular structure of each problem, which
should contain the desired contradiction if indeed there is one contained
in the single, uniform path of instantiation followed by procedure H. This
problem is much easier to handle within a system which explicitly contains
functional signs (variables and constants) and which also contains the
identity relation as part of the underlying logical machinery, with associ-
ated rules of deduction. It already is clear that, for instance, the group
theory problem can be solved by a fairly simple generalization of the in-
stantiation procedure, carried out within a language possessing function
signs and the identity relation as a part of its deductive machinery. But
it is not yet clear to what level of difficulty of theorems such a generalized
and richer procedure will be able to penetrate.
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APPENDIX. THE SYMBOLIC FORTRAN PROGRAM GAMMA I.

1. Annotated glossary of FORTRAN symbols occurring in GAMMA 1.

The following complete alphabetically ordered list of FORTRAN
symbols which occur in GAMMA I, together with the definitions and ex-
planations attached to each, should facilitate the task of understanding the
program listing. In the cases where synonyms occur, they were introduced
into the program because the information they carried had sometimes to be
treated as a FORTRAN integer (and as such had to be named by a symbol

beginning with I,J,K, L, M, or N) and other times as a word of "Boolean" infor -

mation, for which a symbol not beginning with I,J,K, L, M, or N is required.

ALIST
ATRIX
FIRST

GEORGE

IMAX

INSTA

INSTB

INSTC

INSTD

ITERAT

JLINE
JUNK

Synonym for LIST.
Synonym for MATRIX.

Used to store the variable which is going to be instantiated;
bit pattern is adjusted so as to be in alignment with first
argument field of the literal.

Used during the construction of LIST in connection with the
tagging of literals which are to be deleted from LIST before
LIST is actually used.

General-purpose indexing variable used frequently in array-
manipulation.

The counter whose value is the highest individual constant
which is used next to instantiate a universally quantified
variable.

Indicates the location of the matrix counter of the sentence
being processed, during instantiation procedure.

Indicates the location of the prefix counter of the sentence
being processed, during instantiation procedure.

Indicates the location of the last quantifier of the sentence
being processed, during the instantiation procedure.

Indicates the location of the first literal in the sentence being
processed, during the instantiation procedure.

Contains the count of the number of iterations so far, in the
current Davis-Putnam test.

General-purpose index variable, used frequently in array
manipulation.

Contains the number of sentences in MATRIX.

A scratch-pad variable used in assembling word to be dis-
played in MQ.
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K General-purpose index variable, used frequently in array

manipulation.
L General-purpose index variable.
LA Used as counter in the test to see how many universal

quantifiers are in prefix of sentence about to be instantiated.
LAPSED The number of minutes taken by a completed problem.

LAST Indicates the last literal in a disjunction, during Davis-
Putnam test.

LASTM Indicates last literal in a disjunction, during the sorting
operation on the disjunctions of a sentence about to be added
to MODEL.

LATER Time, in minutes elapsed since previous midnight, .at which

a problem was finished. .

LEAD The 120-word-maximum array containing BCD material of
the comment accompanying the problem.

LEADMX The number of BCD words in the comment.

LEAST Indicates the first literal of a disjunction, during Davis-
Putnam test.

LEASTM Indicates first literal in a disjunction, during sorting
procedure.

LENGTH The number of words in the matrix of the current sentence;

in instantiation procedure.
LFIRST Synonym of FIRST.
LGEORGE Synonym of GEORGE .

LINE 2000-word-maximum array whose entries give the locations
of the beginnings of successive sentences in MATRIX.

LINES Counter: number of quantifier-free sentences obtained so far.

LIST 8000-word-maximum array whose entries are literals which
are to be eliminated from MODEL; in Davis-Putnam test.

LITS Counter: number of literals in a disjunction; in Davis-Putnam
test.

LN Indicates which sentence of MATRIX is about to be instantiated
next.

LNEG Is equal to zero if all disjunctions in MODEL contain a negated

literal; equals one otherwise.

LOST Indicates last literal in a disjunction; in Davis-Putnam test.



(e

LLPHI

LPIVOT

LPOS

LSCOND
LSTUPE

LTEST

LTHIRD
LUNGTH

LUST

LVALUE
LVBLE

LWORDI
LWORD2
LWORD3
M
MATEND

MATRIX

MAXK

MODEL

MODEND

N
NAXT

33

Highest individual constant used so far to instantiate an
existentially quantified variable.

The literal to be eliminated by step (6) of Davis-Putnam
procedure.

Is equal to zero if all disjunctions in MODEL contain an
unnegated literal; equals one otherwise.

Synonym of SECOND.

100-word-maximum array whose ith entry gives which
sentence was last instantiated by ith individual constant.

Counter: the number of times the Davis-Putnam test has
been performed so far in the current problem.

Synonym for THIRD.

Indicates location of last literal in the matrix part of a
sentence; during instantiation process.

Indicates the last literal of a disjunction; in Davis-Putnam
testing process.

Synonym for VALUE.

Indicates the individual variable with respect to which
instantiation will be done; during instantiation process.

Synonym for WORDI.
Synonym for WORDZ2.
Synonym for WORD3.
General purpose indexing variable.

Gives the length of the array MATRIX, viz., the total number
of words in the array.

The 8000-word-maximum array containing all the sentences
which still have quantifiers left in their prefixes.

Gives the length of the array LIST.

The 18000-word-maximum array containing all the quantifier-
free sentences.

Gives the length of the array MODEL.

General-purpose indexing variable.

Indicates the location of the counter immediately in front of
a disjunction; in Davis-Putnam test process.
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NEXT

NEXTM

NOW

NOXT

ODEL

SECOND

THIRD

VALUE

VALUE2

VALUE3

WORDI

WORD2

WORD3

[X,Y,2]

Indicates the location of the counter immediately in front of
a disjunction; in Davis~Putnam test-process.

Indicates the location of the counter immediately in front of
a disjunction in the sorting process.

The time, in minutes elapsed since previous midnight, at
which a problem is begun.

Indicates the location of the counter immediately in front of
a disjunction; in Davis-Putnam process.

Synonym for MODEL.

Used to store the variable which is going to be instantiated
upon; bit pattern is adjusted so as to be in alignment with the
second argument field of the literal.

Used to store the variable which is going to be instantiated
upon; bit pattern is adjusted so as to be in alignment with the
argument field of the literal.

The individual constant which is going to be used for instanti-
ation, with bit pattern adjusted so as to be in alignment with

first argument field of literal.

The individual constant which is going to be used for instantia-
tion, with bit pattern adjusted so as to be in alignment with
second argument field of literal.

The individual constant which is going to be used for instantia-
tion, with bit pattern adjusted so as to be in alignment with
third argument field of literal.

The contents of the first argument field of a literal, context
stripped away.

The contents of the second argument field of a literal, context
stripped away.

The contents of the third argument field of a literal, context
stripped away.

Three BCD words which state the date and time, whenever
the subroutine MINUTE is called in. No use is actually made
of these three variables beyond their function as the dummy
variables in the calling line of the subroutine.




2. Listing of GAMMA I FORTRAN Symbolic program, with explanatory comments.

(N e N I T NI I T T R Ty s ST Y E YN T
C= GAMMA 1. A GENERAL THEOREM-PROVING PROGRAM, *
R I T I TN RN Ry TT T IIIIYYII I YL
CIMENSION MODEL{ 18000),00EL{18000),MATRIX(8000),ATRIX{8000),
TLINE(2000),LSTUPE(100),LIST(8000),ALIST(8000),LEAD{120)
EQUIVALENCE (VALUE,LVALUE), (WORD1,LWORD1),(WORD2,LWORD2),
1{WORD3,LWORD3), (MATRIX,ATRIX,LIST,ALIST), (MCDEL,0DEL),
2{FIRST,LFIRST )y { SECOND,LSCOND), (THIRD,LTHIRD) , (GEORGEy LGORGE)
R Iy I s Ty I YT YT L PR
C* OBTAIN INPUT FOR NEXT PROBLEM FROM CARD READER. =
Y I Yy Y N I TR LY
1 READ 1200, MATEND,JLINE,LPHI,LEADMX
READ 1201, (LEAD{I),I=1,LEADMX)
READ 10071, {LINE{I),I=1,JLINE), {MATRIX{(TI),I=1,MATEND)
(T T Y N I T I T I T
C#= FIND OUT WHAT TIME IT IS. *
T s L Y R T e T e s I Ty
NOW = MINUTE(X,Y,Z)
N I i T I I I T r T I T I R T I RN P T Ty
C# INITIALIZE THE COUNTERS WHICH WILL GROW, AND BE SURE ALL THE *
C# SENSE LIGHTS ARE TURNED OFF. #
kR S R R R NS R R RN R R E RN R R R R R R RN AR R RN AR R A R AR R R R R RN RN R F R RN RRERR
SENSE LIGHT ¢
4 LSTUPE(Y1) = O

LINES = O

LTEST = O

MCDEND = C

IMAX = )
o I Yy Iy R T RS Y
Cx TRY INSTANTIATING A SENTENCE WITH 1. *
T N T 22T R T T Y ™

5 INS = 1

R R Ty T T T F N T T R T E Y
C# SET UP THE LATEST PROGRESS REPORT IN THE MQ CONSCLE NECNS. *
Ry R T Ry N Ty T ]
S CLA LINES
S ARS 18
S ADD JLINE
S STC ¥
S Leg M
Y I R T T I e R Ty T T Yy
C+ QUIT IF FORCEC YO DC 50. *

C*ililii%*!*li**i&}l***i*I**}***l*****ii}**&*}l**i*i**i**l*l*l**}ﬁ*l**}i

IF {SENSE SWITCH 2) 1900,6

C*i*ll!i*lill*i**ﬁ**l*l**i{!li**l*‘*l****§**l§**il*******l*ilil*il’I****

C= CAN ANY SENTENCE BE INSTANTIATED WITH INS, WE ASK. *

Cll*****i*l*{***l**li*#*ll*&l*ll***ii‘**ii**{***l**l**i*i*l!iiiil!*!**i*

6 IF (LSTUPE(INS) - JLINE) 9,7,9

C*il*!**i}*l!**i***}}*i*il****iﬁ***ll*l*****l***ll**i‘l****i*i*lil*'*i**

C+ IF NOT, STEP UP INS, AND THEN UNLESS INS IS NOW UP TO TESTING *
C# SIZE, GO SEE WHETHER WE CAN INSTANTIATE A SENTENCE WITH THIS *
C#+ HIGHER VALUE. IF INS IS UP TO TESTING SIZE, GO REPORT TO STATEMENT =
C# 8000, WHERE THE MATTER WILL BE MORE CLOSELY PURSUED. *

R R R R R R R R R R R R S LR R R AR AN IR E R R AR AR A B R E RS R R A AR AR SRR ER BRI RABRRFRRRBRRRR
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7 INS = INS + 1
IF {INS = INMAX) 6,6,8000
B e AR R N R TN R R R R RN RS R A SRR RN RN RN N R A N R B AR E R R RN RN U RN R E RN R
C# WE “AY PRCCEED, EVIDENTLY. ThE TESTING CRISIS MUSY BE OVER, ®
R i I I T T T T Y s r sy

8 LSTUPE{INS) = C

IMAX = INS

GC TO &
s R N AR R R RN R N RN H R R R RS RS R E R R R R RN RN R R AR R AN R TR AR RN R B RN ERRERD
Cs WE CAN INSTANTIATE WITH INS. SET UP THE SENTENCE DUE FCR ®
Cs INSTANTIATICN WITH INS. »

I R e Iy N T T T YY)
9 LSTUPE{INS) = LSTUPE{INS) + 1
LN = LSTUPE!{INS)

INSTA = LINE{LN)

INSTB = MATRIX{INSTA) + INSTA + !
INSTC = MATRIXUINSTR) 4 INSTE
LVBLE = XABSF{MATRIX!INSTC))
INSTD = INST8 + 1}

CAN R E R AR R BB B RRTRRERBURTEREERA LR AR X FEEERERSIRBREREEERRRFEREREEREREREER
C* WAIT. IF WE INSTANTIATE THIS SENTENCE, WE WANT TC KNOW WHETHER *
C* WE WILL WIND UP WITH A QUANTIFIER-FREE SENTENCE OR NOT. IF THIS #
Ce# SENTENCE HAS LESS THAN TWO UNIVERSAL CUANTIFIERS IN ITS PREFIX, =
C+ THE RESULT CF INSTANTIATION WILL BE A QUANTIFIER-FREE SENTENCE. *
Cx# SO WE CCOUNT THE NUMBER CF UNIVERSAL QUANTIFIERS IN THE PREFIXeeae *
C***“}*lﬁ*******'****I’.‘***I‘**II""‘**.‘******I‘*I’I‘I*'*****‘*‘**i**‘*******
LA =0
DC 11 K = INSTD, INSTC
IF {MATRIXIK)) 11, 10, 10
10 LA = LA + )
11 CONTINUE
R R R R R R R E R R R R R RS R S A B AR R FR RN R R R AR AR AR R AR AR EERBANFARRERIRERTRRES
C* ....AND IF THERE ARE LESS THAN TWO wWE PREPARE TO ADD THE RESULT *
C" TO "ODEL.‘.. *
CReE R B R RN R R RS R RN DR AR F RS IR R R AT R R R LR R E DRSS R AR AR RS RRERER RS R RARARRREE N
IF (LA - 2) 14, 12, 12
12 ™ = MATEND
[F S 2SS L S22 2ES S SRS SIS RSN S S 2SS SRS SR RIS RIS SIS RN R R Y 2R 2N
C* ...BUT IF THERE ARE TWO OR MORE WE PREPARE TO ADD THE RESULT TC *
C* VATRIXeew ®
R R R R R IR R ARG R R RS R AR R RER SRR R R AR BRI ERRTERAB BRI R ERARRBARAFERRRBRRRE
CO 13 N = INSTA, INSTC
M =M+ ]
13 MATRIX{M) = MATRIX(N)
A R AR R RN R R R AR AR AR R R SR FRFRERRRRER R AR RERRRRRBRERRERRRERRRERRER LRSS
C#  +...AND DEPART FOR STATEMENT 38 WHERE THIS WILL BE DONE. *
CH AR R I R R F R R R ERE R R RN R AR R SRR R ER SRR IR AR FRSERERRERRERERERRRBRRRRERRR L TR
INSTB = MATENC + MATRIX{INSTA) + 2
INSTA = MATEND + 1
LVALUE = INS

GO TO 38
o O Ry e E T T Ry R Y I YR
Cs SET UP ON TO THE END OF MODEL THE SENTENCE TO BE INSTANTIATED. *

Cll**!li**l«llli**lili‘l********l***}l}i*li*ll*l!*l*ii‘lﬂl}iilil*i*}!ll*lI-!

605y
0055
0058
0057
0058
0059
0060
Co61
0062
G063
Coo6y
0065
0066
0067
00¢8
0069
0070
0071
6072
06073
COoTy
0C7s
0076
o077
0078
0079
0080
ocoen
pce2
cos3
608y
£08s
c0gé6
pcer
ooes
oceg
0090
0091
0092
0093
ooou
0095
096
0097
0098
0099
0100
0101
0102
oie3
0104
G105
0106
0107




14 » = MCDEND
LENGTH = MATRIX(INSTA)

INSTD = INSTA + 1
DO 15 N = INSTD,INSTC
M= M4+
15 MODEL(M) = MATRIXI(N)
INSTR = MCDEND + MATRIX{INSTA) + 1
INSTA = MCDEND +

16 LVALUE = INS
cill**l}!li*i**li*'}lﬂl!l*'}’*lili}**li{i**{ll***!*!***ll***i‘*lﬂll**l&l&i**
Cx GET RID OF ALL THE EXISTENTIAL QUANTIFIERS AS WELL AS THE *
C* UNIVERSAL QUANTIFIER. %

R Rt N R R R BN R R B R E R R R R R R R R AR FRR AR R ERREL SRR ERRR SRR SRR RT R RRRBERREERSR TS

S 17 CLA LVBLE

S STC FIRST

S ARS 9

S STQ SECONC

S ARS 9

S STC THIRC

S CLA LVALUE

S ARS 9

S STO VALUEZ2

S ARS 9

S STC VALUE3

B FIRSY = FIRST + Q00u400C0COCO

B SECOND = SECCND + 0000CQu000200

B THIRD = THIRD + (0QCOOCO0LCOC
CC 23 L = INSTA, INSTB

B8 WORDY = CDELIL) = CO0T777000000

B WCRD2 = (ODEL{L) = 00COCOT77000

B WORD3 = CCEL{L) # 000000C0O0T777

IF {LWORDY! - LFIRST) 19, 18, 19
B 18 ODEL{L) = ODELI(L) #« 777000777777 + VALUE
19 IF [LWORD2 - LSCOND) 21, 20, 21
B 20 CCEL(L)Y = CDELIL) = 777777000777 + VALUE2
21 IF {LWORD3 - LTHIRD) 23, 22, 23
B 22 OCDEL{L) = ODEL(L) = 777777777000 + VALUEZ
23 CONTINUE
MODEL{INSTB) = MCDEL{INSTB) - 1}
LASTM = MODELI{INSTB) + INSTB
IF (MCDEL{INSTB)) 25, 25, 24
24 LVALUE = LPHI + 1
LPHI = LVALUE
LVBLE = XABSF{MODEL{LASTM))
GO TC 17
25 LASTM = INSTA - 1
LUNGTH = MODEND + LENGTH
T st I T T T T I I T T N s I s Ty
C# PRINT CUT THE RESULT IF REQUESTED. *®
Gl E Rt R T R R RN B R R R E R RN RN NN RN R R RN BN R R R R RN A R RN R R RN RSN B R R RAE S
IF {SENSE SWITCH 3) 252, 251
252 PRINT 1004, LVALUE, {MODELIN),N=INSTA,INSTB)
o F TR E R B RN R R T R R RN R RN NN R R R RN R R R R R RN R E RN AR R R R RN AR AE N AR RN RN E RS

C# SORY EACH DISJUNCTICON WITHIN THE NEW QUANTIFIER-FREE SENTENCE. *
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clo8
0109
o110
criy
12
omnz
Clty
011s
c116
cuy
0118
0119
€120
c121
0122
ci123
C124
0125
126
0127
c128
129
130
0131
0132
0132
013y
0135
0136
0137
0138
139
0140
o1
ci1u2
01u3
0luu
0145
olué
01u7
ciug
Clu9
0150
0151
€152
G153
0154
0155
0156
0157
0158
0159
0160
0161
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R Y Ty Y e Y I I T I R Y ST T Y Y Y T
251 NEXTM = LASTM + ]
IF (NEXTV¥ -~ {MODEND + LENGTH + 1)) 26, 35, 35
26 LEASTM™ = NEXT* + 1
LASTM = MODEL(NEXTM) + NEXTV
K = LASTM -~ 1
IF (MODEL(INEXTYY) - 1) 251, 251, 27
27 DO 31 L = LEAST¥, K
IF{XABSF{MOCEL(L)) ~ XARSF{MODELI(L + 1})) 31, 29, 28

28 ¥ = MODELI(L + 1)

MODLCL (L + 1) = MODEL(L)

MODEL(L) = ¥

SENSE LIGHT 1

GO 10 31}
29 IF (MODEL{L) + MODEL{L + 1)) 30, 32, 30
20 MCDELILY = O

MODEL{NEXTM) = MOCEL[NEXTM) - 1
31 CCNTIMUE
IF (SENSE LIGHT }) 27, 251
22 TF{MDCELI{L)) 33, 31, 33
o L T Ty Ny I NI ey Y Y T IR T T
C# IF A DISJUMCTICON IS LOGICALLY YRUE, DFLLCTE IT. *
R sy Iy Ny I TR YRR T T T TN Y TS
33 DO 34 L = NEXTM, LASTM™
3y MODELIL)Y = ¢

GO TC 251
R T T I T Ty Yy Y N Y TS
C» PACK COWN THE POSSIBLY DEPLETED SENTENCE. *

Cr s RN R RN R R R R SRR R R AR R E R RN RN RN RN A NN R RN RN R R AR R AR RN SRR A N RN RN A RN
35 CC 37 N = INSTA,LUNGTH
IF {(MCDELIN)) 36, 37, 3¢
36 YODENC = MCREND + 1
MCDFL(MODEND) = MODELI(N)
37 CONTINUE

T T I TR T L R r N R e N N Y T s T
C# PRINT IT CUT IF REQUESTED. *
I L s I T I T T I Ty Ty I Y Y Y T T Y Y

IF {SENSE SWITCH 3) 371, 372

371 PRINT 1006, MCDEND
PRINT 100C, (MCDEL(N), N=INSTA,MOCEND)
372 CONTINUE

NI e e T I I LI IR e Ty T Ty T Ty P T T T Yy
C+» QUIT, IF WE ARE OUT OF CAPACITY FOR MODPEL. OTHERWISE, GO *
Cx INSTANTIATE THE NEXT SENTENCE. *
R I Rl T R T Ny Y T T T F Ty Sy Py ¥ Y 12 1L

LINES = LINES + 1

IF {MODENC - 17950) 5, 1900, 1900
R L I T T Ty T Y YT T T T T Y T Y TPy
C» INSTANTIAYE THE LEADING UNIVERSALLY QUANTIFIED VARIABLE, AND ANY *
C= EXISTENTIAL QUANTIFIERS WHICH ARE THERERY EXPOSED. *
Il I e T T I I T I I T T N N I I Y I I I I Y
S 38 CLA LVRLE
S STO FIRST
S ARS 9

C1¢62
€163
Cley
0165
C166
G167
0168
G169
0170
IR NG
6172
0173
017y
C175
0176
0177
oi7a
0179
0180
ci181
182
cies
018y
cies
0186
grer
cigs
0189
0190
0191
c192
0193
C194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
o206
0207
0208
02097
0210
o211
0212
0213
021y
0215




S STC SECCND
S ARS 9
S STC THIRD
S CLA LVALLUE
) ARS 9
S STO VALUE2
S ARS 9
S STC VALUE3
8 FIRST = FIRST + 0004C000C000
B SECOND = SECCANC + 000000400000
B THIRD = THIRC + 00C0OCO000LCO
CO u4 L = INSTA,INSTB
8 WORD! = ATRIXI{L) = 000777000000
B WORDZ2 = ATRIX{L) = 000000777000
B WCORE3 = ATRIX{L) = 000CCCO0Q7T77?
IF {LWORD] - LFIRST) 40, 29, 40
B 39 ATRIX{L) = ATRIX{L) = 777000777777 + VALUE
40 IF {LWCRC2 - LSCCND) 42, 41, 42
B 41 ATRIXI{L) = ATRIX{L) = 777777000777 + VALUE2

42 If (LWCRD3 - LTHIRD) 4k, 43, Ly
43 ATRIX(L) = ATRIX{L) * 77777777700C + VALUE3
L4y CONTINUE
MATRIX{INSTR) = MATRIX({INSTR) - 1
MATEND = MATRIX({INSTB)} + INSTB
IF {(MATRIX{MATEND)) 45,446,446
U5 LVALUE = LPRI + ]
LPHI = LVALUE
LVBLE=XABSF{MATRIX{MATEND))
IF {MATEND -~ 7750) 328, 190C,1900
L6 JLINE = JLINE +
LINETJLINE) = INSTA
Crn st R AN R B R R R RN R AR RN R B R R R R R B R RN AR RERRERRERERRRRTRRRRE R R RN SRR
C=# PRINT QUT THE RESULT, IF REQUESTED. *
AR R R AR R E R R R AR R AR R R R B R R R R R RN R R R R AR R AR AR AR R R RN AR RN B RR AR B RN RS
IF {SENSE SWITCH 3) Lé6l, 462
L61 PRIMNT 1005, JLINELLINE(JLINE),LVEBLE,LVALUE
PRINT 100C, {(MATRIX{N} yN=INSTA,MATEND)
462 CONTINUE
[y T I Y Y I YT Y2 "
C+ QUIT IF CAPACITY 1S EXCEELEDP. CTHERWISE GC INSTANTIATE THE NEXY #*
Ce#= SENTENCC. *
R A R R R R RN R R R RN E R R AR T R R RN RN R AR R R TR RN AR R RRR RN SR RN DRRRRB LS RERER
IF (JLINE - 2000) 5, 190C, 1900
CRER R B R R R AR R F R LR B ERER SRR RS RS R R R RRRE R R AR RN RRRERRRRERE RN R RRRRRRNTRRRREN
C# STATEMENTYS €0 THRU 240 + 3 COMPRISE THE DAVIS-PUTNAM TEST PROCESS. =
R rt R e n R A R R E R R TR R R ARG R AR R B R R R AR R AR R R B S R SRR R B RN R RTINS AR REERREREREL
80 LTEST = LTEST + 1
ITERAT =
R B AR R AR AR R R R R R B F R R R S R RN B AR AT RN R AR LR AN R RN AR AR R RN EFRRRDRRRRRLRERRRSL
C# WE RETURN MHERE FQR EACH NEW ITERATICN. HERE WE FIRST INITIALIZE =
C* THE NECESSARY COUNTERS AND TESTING VARIABLES. *
CEB R R B R AR R RN AR R B R R R E SRR R R R R R F R R RN R F R AR R ARERAN SR F RS RN SRR R R RERR AR RS
7115 LNEG = O
LPOS = O

o
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0216
€217
0218
0219
022¢
0221
0222
0223
022y
0225
0226
0227
0228
0229
0230
0231
0232
0233
023n
235
0236
0237
238
0239
0240
0241
ga2u?
0243
c2uy
0245
0246
o2u7
o248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
£28)
0262
0263
0264
0265
0266
c267
0268
0269



40

ITERAY = ITERAT + ]

K =20

LAST = 0
R r st E R R R RN R R R R S R R R R AR R R R R RN E R RN RN AR E RN R R F R RN N R RN R R RN RN NERER
C+ TDISPLAY THE LATEST PROGRESS REPORT CN THE MQ CONSOLE NEONS. *
¥R R R R AR R R R R NN R R R R R R AR AR RN R R RN RS RN AR RN AR R R AR RN SRR RSN R R SRR RR R
S CLA ITERAT
) ARS 18
S ADD MODEND
) STC JUNK
S LDEC JUNK
R L T T T T Y N YT I L
C+« PRINT OUT MCDEL AS IT NOW STANDS, IF REQUESTED TO DO SOC. *

c{*i**l****l***lil****ll'*!’l*il}l*ll‘**'l'*Iﬁl*llll**l’lfli'l'll-*l-**‘il}*'i
IF (SENSE SWITCH 1) 3339, 110
3339 PRINT 3997
PRINT 3001, MODEND
PRINT 1001, (MODEL{I),I=1, MODEND)
C**l***l*li**l*i*l*ii!l*****‘**"li‘lﬂli**i*I}v&i‘lCfli*}{&.*ii*’*i’**ll*il
Ce# MAKE A LIST OF ALL THE UNIT DISJUNCTIONS, I.E., THOSE CONTAINING =
C# ONLY ONE LITERAL. *
Cl*iG***I"l'!*****fl***l***iiiG‘-'*il*‘l*’ﬁll{{*}*l'lilﬂl*‘i"**i*ﬁ**i'iiﬁil!*
110 NEXT = LAST + 1
IF (NEXT - MODEND) 120, 130, 130
120 LEAST = NEXT + 1
LAST = MODEL(NEXT) + NEXT
IF (MODEL(NEXT) - 1)100, 140,100
M0 K = K + 1
LIST(K) = MCDEL(LEAST)
C!lil**l*l*l'i*illl**l*l*I'*I*Ivl'l-l-l-*i*l’*l*ili*i‘l*l”!‘Ilﬁli‘l*lli*l’*}‘*ii*
C* AS EACH NEW UNIT DISJUNCTION IS ADDED TO THE LIST, CHECK IT AGAINST»
C» THE EARLIER ONES TO SEE IF IT CONTRADICTS ANY OF THEM. IF IT DCES,+
C* TERMINATE INCONSISTENT. *
Cl—iII-*{*ll'!'!I'i!ll*ll*&*i!*llﬂl'*i****l’lﬂl*{«lii*.’***'i'***ﬁlli!*l!***’i‘I'INI-I
DO SO N = 1, K
IF (LISTIN) + LIST(X)) 50,250,50
S0 CONTINUE
C*I-I-I-l'!'I'l{illﬂl{ii’llﬂl*l**li*«llﬂlil’*i“lI'-I"I*III'*I'I'Ql'l'l'Il‘{il!!l***l*‘l*!‘*!*
C* SINCE WE ARE SCANNING ALL OF MODEL ANYWAY, LET US CHECK TC SEE IF +
C* (A) EACH DISJUNCTION CONTAINS AN UNNEGATED LITERAL, OR (B) EACH »
C* DISJUNCTION CONTAINS A NEGATED LITERAL. »
C{I-l-l-l*****'****I‘il!Il}lil*i*}li*il!l'l-!'*"{&llii*lii.ll‘l*i!’i‘il‘**lll**
100 0O 106 J = LEAST, LAST
IF (MODEL(J)) 101, 106, 102
101 SENSE LIGHT 1
GO TO 106
102 SENSE LIGHT 2
106 CONTINUE
IF (SENSE LIGHT 1) 108, 107
107 LNEG = 1
108 IF (SENSE LIGHT 2) 110, 109
109 LPOS = 1
GO TO 110

(ot R R R AR R R R R R E R R AR R AR B R AR AR AR SRR SR AR R R AR RRERERR LR RRARER R AR RERREBR RN




C+ IF EITHER [A) OR (B} IS THE CASE, WE TERMINATE CONSISTENT. *
C# OTHERWISE, IF WE HAVE ANY UNIT DISJUNCTIONS AT ALL ON THE LIST, *
C# SET UP THE SITUATION TC DELETE YHE FIRST OF THEM, =

o E B R E R R R R R RN B R R RN R R AR R TR RN R R R RN R R R RN RN RN RN R RN R NSRS RRRRREREN
130 IF (LPOS) 131, 260, 131
131 IF {(LNEG) u997, 260, 4997
4997 IF (K)132,132,4998
4998 MAXK = 1
GO TO 1412
R I I Iy T T Y Y R Y P T YRS PR LY ¥
C+ IF WE HAVE NO UNIT DISJUNCTIONSLET US MAKE A LIST OF PURE LITERALS.=*
C+ A LITERAL IS SAID TO BE PURE IF EITHER ALL ITS OCCURRENCES IN THE =*
C+« MODEL ARE UNNEGATEDC OR ALL ARE NEGATEC. *
R I T I I I I T I N T T N T s T T T T T S T T Iy S

132 MAXK = 0

K =0

LAST = ¢C
N R R A AR I RS R R R RN RN R T R R R R RN RN R TR RS RN SRR R RN RN RRR AR NN N
C+ TURN ON THE SIGN BIT IN MQ. *
I I I I I T Iy Ty N T Ny T T T Y
S STQ JUNK
S CLA JUNK
S SSm
S STC JUNK
S LDQ JUNK

Clili***l*!**{*l*lll}il**i&}*l****lilil***ill**llliiii{*ll*ll*!*i*i**l*#
C» IF WE FIND THAT A LITERAL IS MIXED, I.E., NOT PURE, WE CMIT IT
C+ FROM THE LIST. BUT WE PUT A LITERAL ON THE LIST AS BEING PURE,
Cs UNTIL IT IS PROVED TO BE MIXED. WHEN WE FIND THAT A LITERAL IS
C+ MIXED, WE TAG ITS OCCURRENCE IN LIST (BY PUTTING A BINARY ONE IN
C+ IN THE SECOND BIT POSITION) SO AS TO KNOW IT MUST BE LATER
C+ REMOVED FROM THE LIST.
CI“I-*I'I—*l**i*i*li*l*****&i}****l*!*l**IHI'**I'*II!l*l*llii’***l**l’i*li!*ill
8300 NEXT = LAST + )
IF (NEXT - MODEND) 8301, 8320, 8320
8301 LEAST = NEXT + 1
LASY = MODEL{(NEXT) + NEXT
0O 8303 I = LEAST, LAST
DO 8302 J = 1, MAXK
B GEORGE = ALIST{(J)«STTT77777777
IF {(LGORGE — MOCEL{I)) 8305,8303,8305
8305 1IF [LGORGE + MQODEL(I)) 8302,8304,8302
BE8304 ALISTUJ) = ALIST{J4} + 200000000000
GC TO 8303
8302 CONTINUE
MAXK = MAXK + 1
LIST{MAXK) = MODEL({I)
B303 CONTINUE

L 3

LI I

GO TO 8300
CR R R TR R AR R R R R RN R R ERERERR AR R R RRRBRRERRRLEARRERRR TR RRRRRERRRERR R RES RS
C+ DELETE FROM THE LIST ALL THE LITERALS WHICH ARE TAGGED. »

I ISz YT I 2 2 YT RS R S N R R E R R R R SN F RS R YRS ES ST SIS SR SIS RS2 3
8320 D0 8325 I=1,MAXK
B GECRGE = ALIST{1)*200000000000
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0324
0325
0326
0327
0328
0329
C330
033
0332
0333
0334
0335
0336
0337
0338
0339
03u0
c3m1
0342
G343
03uy
0345
0346
0347
o3ug
039
0350
6351
G352
0353
0354
0355
0356
C3s7
0358
0359
0360
G361
0362
0363
C364
0365
G366
0367
0368
0369
0370
0371
0372
0373
037y
0375
037¢
0377
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1IF (LGORGE) 8325,8325,8324
832y LIST(I) = O
8325 CONTINUE

CHER R TR AR AR TR B R R LR RR TR RN BRI R R R R AR ERBRRRRETRRRRBAEBRBERRERRREERARRRERRERN

C#= THEN PACK COWN THE LIST YO REMOVE ANY GAPS. *
Ca R R R R R R R AR R R R R R R AR ARRE RN SRR RN AR RRR BB ERRAREATRRARRARERBERARRBEREN
J=20

DO B330 I = 1, MAXK

IF (LIST(I)) 8327, 8330, 8327
8327 4 = J + 1

LIST(J) = LIST(I)
8330 CONTINUE
Crn R B R R B IR S RS RN R R AR R R R AT R R R A RN O N R RN R R AR R R AN RN R NC R AR RN R R AR RER
C+ IF WE THEREBY WIND UP WITH AN EMPTY LIST (SO THAT ALL THE LITERALS =
C# IN MODEL ARE MIXED) WE GO TC THE BLASTING PROCEDURE. OTHERWISE WE =

Cs# GC TO THE PCELETION PROCEDURE. -
R I i T T I Ty T Yy Y Y T T YT YT Y
MAXK = J

IF (MAXK) 160, 160, 1412
S Il I I I I I I I T T I YT I eI IT IR I T I )
C= INITIALIZF, PRLPARATORY TO SCANNING EACH DISJUNCTION IN MODEL TO .
Ce# SEE WHETHFR LITERALS CCCUR IN THEM WHICH ARE ON LIST, OR WHICH ARE =+
Cs NEGATIONS CF LITERALS WHICH ARE ON LIST. *
L T T T Yy Ty Y YR TR YT Y
1412 LAST = 0
R E N B BN R R E RN S R R R R R R R R G R RN R RN R R B R E NS RN RN A E RN RN AR AR FROEANERRE
C+= TURN CFF THE SIGN BIT IN MQ »

R AR R R RN R R R SRR R E RN R RN R R R AR AR BB R ER B R R R E R AR AR AR AR B R B AR RN ERRRRARDERRA NS

S STQ JUNK

S CLA JUNK

S ssp

S STC JUNK

S LDQ JUNK

Rl Iy Ty N Yy Y R Y R YRy Y
C+ PREPARE TO SCAN THE NEXT DISJUNCTION. *

Cra Nt R AR SRR RS RN R RN RN R R R R R RN RN R E R R R RN PR LR R AR TR R RN RRBRRRN
“T41Y NEXT = LAST + )
IF (NEXT - MODEND) 142, 150, 150
142 LEAST = NEXT + 1
LAST = MODEL{NEXT) + NEXT
R T s LI I I T Y Y Y Yy Yy Y Y Y R Y RS TR Y L
C# IF THE DISJUNCTION CONTAINS THE NEGATION OF A LITERAL WHICH IS ON =
C» LIST, DELETE THAT NEGATION FROM THE DISJUNCTION. *
Il LI T I Ty T Ry Y Y Y Yy Y Y YR Y]
CO 143 J = LEAST, LAST
CO 144 K = 1, MAXK
IF (MODEL(J) - LIST{K)) 145, 147, 145
145 IF (MCDEL{J) + LIST{(K)) 144, 146, 14Y4
146 MODEL(J) = O
MODEL (NEXT) = MODEL(NEXT) -~ )
GO TC 143
R L I Y Y Yy Yy Y Y R Y Y Y Y Yy Y YT SR Y
Cs# IF THE DISJUNCTION CONTAINS A LITERAL WHICH IS ON LIST, DELETE THE =
C# ENTIRE CISJUNCTION. had

0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
039y
€395
0396
0397
c398
0399
ouno
0%01
o402
0u03
ouou
ou0SsS
006
ouoT
ouo8
0409
0410
oL
cu12
cu13
Culy
ou1s
ouls
oul7
ou18
ou19
0u20
ou21
0422
0423
ou2y
cu25
cu26
on27
ou28
ou29
0u30
ou31

B}




bk a R E e A RN E B R R R I RS E O R R R RN R RN R R RN RN R SRR R R R AR R RN R E R RN RN DR NN
147 DO 1y8 M = NEXT, LAST
148 MODEL{M) = O
GO TC 1um
T4y CONTINUE
143 CONTINUE
GO TO 141}
R Y Ly T N N Y Y Y T YR TR P T IIST S IS 2 Y )

C+# THE DELETION PROCESS BEING OVER, PACK DOWN MODEL SO AS TO CLOSE UP =

C# ANY GAPS, ®
o Yy YTz Ty T S F I R TSRS ¥ Y
150 4 = 0
0O 154 1 = MCDEND

1,
IF (MODELI(I)) 153, 154, 153
153 J = J + 1
MODEL(J) = MODEL{I)
154 CONTINUE
MCDFND = J
CiDlﬂl*l*l‘*l*#!ii&l*}l*lﬂl*i#*&}{{{l&ii*{{l!&l&}}{lll}#i*llli&li*ii’!l!il#
C# IF THE ENTIRE MODEL HAS VANISHED, TERMINATE CONSISTENT, OTHERWISE =
C# RETURN FOR ANOTHER DAVIS-PUTNAM ITERATION. "
C**II*#IG&}’!!!*!#I}&G{!il!*i*llii&'liil}llllill!!l{!Glilli&lii!!lllii}i
IF (MODEND) 260,260,7115
CG*I{Q&GIQ!*{}}'&!*§§§il&ﬁ&li*ilill&!l'I!llllill‘il!Ili'!#!liiﬁ!!ilill}l
Cs IT IS NECESSARY TO APPLY STEP {(6) OF THE DAVIS-PUTNAM PROCESS, AND +
C« BLAST CUT A LITERAL FROM MOCEL. WE CHOCSE THE FIRST LITERAL IN THE =
C# FIRST DISJUNCTION AS THE PIVOTAL LITYERAL TO BE BLASTED CuT. #

T YT 2 s 23 F R YT R Y R R X Y R R R R R Y S Y Y T S P Y Y Y RS SS AT SRSEYR IR 2]

160 LPIVOT = MOCEL(2)

K = MODENC

LAST = C
ol I L E I T T Yy Yy Y S YR YY)
C= SEARCH FCR THE NEXT DISJUNCTICN WHICH CONTAINS AN UNNEGATED #
C# OCCURRENCE OF THE PIVOTAL LITERAL. *

CF NN BB S A R BN E RN B R R AN R RN R B AR R R R B AR AN R R R RN IR RN RN R R R AR RN RN RN R RN
200 NEXT = LAST + 1
IF {NEXT - MODEND) 208, 210, 210
208 LEAST = NEXT + 1
LAST = MODEL{NEXT) + NEXT
CO 201 ™ = LEAST, LAST
IF (MODEL({M) - LPIVOT) 201, 202, 201
201 CCONTINUE

GO YO 200
R I Ll T I T R Ty Y Yy Y Y YIS YOy
C+ HAVING FOUNC SUCH A DISJUNCTION (CALL IT A), PREPARE TC FIND #
C# EACH DISJUNCTION IN MODEL WHICH CONTAINS AN OCCURRENCE OF THE *
C* NEGATION OF THE PIVOTAL LITERAL. *

CH AR AR RS R R R R R E R BB E SRR AR E AR BB AR RRERRRSRRRAA R RDHBRRRERRAEREESGRLN

202 LOST = © )

Ry Y Iy Ty Ty e Y R S RIS Y2
C= SEARCH FOR THE NEXT DISJUNCTION WHICH CONTAINS AN OCCURRENCE CF *
C+# THE PIVOTAL LITERAL. *

CH R B Rt AR AR R R R R R RN AR AR AR C R R L R R R R R RN EERBERERRRRERERAR AR ERRRRAARERRARER NN

203 NAXT = LOST + 1
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cu32
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043y
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0u39
ouuC
ouuy
cuy2
ouy3
Quuy
Ouy5
ouus
ouu7
ouug
ouu9
ouse
0451
o452
0us3
OLSu
0u55
ous¢
ous7
0u5s58
oLs9
0ué60
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0u62
Oué63
cuséy
0465
0us66
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207

204

IF (NAXT - MODEND) 207, 200, 200
LUST = NAXY +

LCST = MODEL{NAXT) + NAXT

DO 204 N = LUST, LOST

IF {MODELIN) + LPIVOT) 2C4, 205,
CONTINUE

GO TC 203

c&*{-***l**i*l*i****ﬂ-'l-'l'****liii**illiill!*{lll“**il.i*i“}lli’ll!l!*llii!

C»
Cs
Cx=
Cx
C»
C=
C®

HAVING FCUND THL NEXT SUCH DISJUNCTION,

A

SHOW UP,

191
190
169
170
173
175

174

172

1692

1691

171

17N

193

1933

1931

194

195

1953

WITH B,

K NCXT

I LEAST

J LUST

LITS = 0

IF (I - LAST) 190,
IF {J — LOST) 169,

IF {XABSF{MCCEL{I))

190, 193
169, 195

IF {(MCDEL(I) + MODEL{J)) 172,
IF (MODEL{I} - LPIVOT) 175,

K = NOXT - 1

GO TO 203

1 =1 «1

J=J + 1

GO TO 191

J = J + 1

K=K + 1

IF (K —- 180C0) 1691, 1691, 1900
LITS = LITS + 1

MODEL(K) = MODEL(I)

1 =1+

G0 TO 191

K=K + 1

IF (K - 180C0) 1711, 1711, 1900
LITS = LITS + 1

MOCEL{K) = MODEL(J)

J=Jd + 1

GC TO 191

IF {J - LOST)Y 1933, 1933, 197
bC 194 N = J, LOST

K = K + 1

IF {K — 180C0) 1931, 1931, 1900
LITS = LITS + 1

MODELIK)Y = MODEL{N)

G0 TO 177

IF {1 - LAST) 1953, 1953, 197
PC 196 ¥ = I, LAST

K =K + 1

DELETING ANY DUPLICATIONS OF LITERALS IN THE RESULT,
AND CELETING THE WHCLE DISJUNCTION IF TWO CCNTRADICTORY LITERALS
CNE FROM A AND THE OTHER FROM™
EXCEEDS CAPACITY DURING THIS PRCCESS,
STATEMENT NUMBER 1900. STATEMENTS 174 THRU 231 INVOLVE INTRICATE
HCUSEKEEPING CHORES CONNECTED WITH THIS MERGING OPERATICN.

R R R R R R R E R R R R F R B R R R AR R ER R AL R AR AR B RRRRERBRRZHBERRRARB AP RBERRRRRRRRRS

205 NOXT = K + 1}

- XABSF{MCDEL{J}))
173,
174,

{CALL IT B) WE NOW MERGE

B. IF THE LENGTH CF MODEL
TERMINATE BY FLEEING TO

* %k ® K X ¥ K K

1692, 17C, 171

172
175

ougé
o487
ousg
ouge
0490
ou91
0u92
CL93
Cuoy
ou95
0u9é
o497
ouo8
ou99
csoe
6501
cs02
0503
0504
0505
0506
0507
0508
0509
0510
G511
0512
0513
oSy
0515
0516
0517
0518
0519
0520
0521
0522
0523
G524
0525
0526
0527
¢528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539



IF (K - 180CC}Y 196, 196, 1900
196 MOCEL(K)} = MODELIM)
197 MODLLINCXTY) = LITS

M C

198 N Mo+

IF {N - MOCFND) 199, 203, 203
199 L = N + 1

v o= MODCLIN) + N

IF [MCDEL(N) - MCNDEL{NOXT)) 230, 198, 230
230 J = NCOXT + 1

CO 2317 1 = L,“
IF (MCDEL{I) - “ODEL(J)) 198, 232, 198
232 J = 4 + 1
231 CONTINUE
GO TC 175
kR E R B R R AR AR R T AR R AR AR N R R RN R R R R RN R R R R RN R R AN R R R RN RN F AN E RN R AR R AR ERE RN
Cs= SET UP THE MNEW DISJUNCTIOMS SC THAT CNE PASS THROUGH THE CELETICN =
C# PROCESS WILL ELIMINATE EACKF DISJUNCTION WHICH, IN THE CLD MCCEL, *
C» COCNTAINED EITHER THE PIVOTAL LITERAL OR ITS NEGATICN. THEN #
C» PRCCEED TC THE CELETICN PRCCESS. *
R A s F R A NS RN R R R DR R RN R R E RN AR R RN R TR R R R R RN R R EE AR RN RR B IR RRERESR
210 MCDEND = K
ne 2uC I = 1, MCDEOND
IF (MCDEL{I) + LPIVCTY) 2uC, 241, 24C
241 MCDEL(IY = LPIVOT
240 CONTINUE
LIST{1) = LPIVOT
MAXK = 1
G0 TO 1412
Crnn g RN R R AR AR RN R AR R T R R AR AN RN RN RN R R R E N BN RN R RN R RN AN SR RN B R R E RN
Ce WE HAVE COME HERE BECAULSE THE INSTANTIATICN PRCCELURE HAS REACHEL =
C* A CAVIS-PUTNA¥ TESING PCINT, IF WE ARLC IN MANUAL MCDE, WITH NC *
C# REQUEST FOR A TEST, WE RETURN TC THE INSTANTIATICN PRCCESS. ®
C+ OTHERWISE WE FIRST PETERMIAE WHETHER THE UPCOMING TEST WILL PRE *
C« THE LAST, SAVE MCDEL AND MATRIX, ANLC SEND CCNTRCL TO THE CAVIS- *
C+ PUTNAM TESTING PROCLCSS. #
Rt R AR R R B R B RN AR R TR R R AN E R R R A BN NN R AR DR R R AR R R R AR SRR BN R R RN TR AR R B
8000 IF (SENSE SWITCH 4) E80CL,2003
BO0L IF {(SENSE SwITCH 5)£003,8
8003 WRITETAPE3, (MODEND, {MOCCLI{I),I=1,Y0OCEND), (MATRIX{I)},I=1,MATENC)}
IF {INS - LPHI) 80,80,8001
8001 SENSE LIGHT U
GO 10 8¢
Tl I I I T T I T T R T TR T Y T Y F RS T 2
C= THE PRORLEM IS COAMSISTENT. OUTPUT T0 ON-LINE PRINTER AND TAPE 2, =
Cx» AND RETURN FCR THE NEXT PRCPLEM, *
ol s m st R R R R R R R R R E R AR B RN RN R AR R R RN RN E SRR RN AR R RN A NN AR NR NI R AR RN G T
260 BACKSPACE 3
READTAPEZ, {MODENC, {MODCL{I),I=1,MODEND) , {MATRIX{I),I=1,MATENLC))
IF {SENSE LIGHT L4) 8p02,8
8002 LATCR = MINUTEIX,Ys2)
LAPSEC = LATER - NOW
PRINT 12C2,{LEAD(I),I=1,LEACMX)
PRINT 121C
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PRINT 120L,LAPSED

WRITE CUTPUT TAPE 2,1202,{LEAC(I),I=1,LEADMX)

WRITE OUTPUY TAPE 2,1210

WRITE OUTPUT TAPE 2, 1204,LAPSED, ITERAT,LTEST

WRITE OUTPUT TAPE 2,100C, (MOCEL(I1},I=1,MCDEND)

G0 1O 1
R R R R R R AR RN RN R R R E R R R RN RN AR R R RN RN R RN R AR AR RN RN RN RN NN R RN NN RN
C+ THE PROBLEM™ 1S INCONSISTENT. CUTPUT TC THE ON-LINE PRINTER AMND »
C+ TAPE 2, ANC RETURN FCR NEXT PROBLEV. *

Ca it T AR R R R AU R AR R R R R R R R R R R R AR AR R AR E R AR RN R SRR B R AR R R RARER AR RN
250 LATER = NMINUTE{X,Ye2)
LAPSED = LATER - NOW
PRINT 1202, {(LEAD(I),I=1,LEAD¥X)
PRINT 12032
PRINT 1204, LAPSEDC
WRITE CUTPUT TAPE 2,1202,(LEAD{I),I=1,LEADMX)
WRITE CUTPUT TAPE 2,1203
291 WRITE OUTPUT TAPE 2,1204,LAPSEC,ITERAT,LTEST
BACKSPACE 3
READ TAPE 3, (MODEND,{(MCTEL{I},I=1,VMODENDCY))
WRITE OQUTPUT TAPE 2,100C,(MODELI(I),I=1,Y0CEND)
GO TC 1
Ca r E R R R AR R RN RN R R FE R R R R RN R RN RN R RN AR RN SR AR RN R AN RN RN ERRNRRRRRRN
C# CAPACITY HAS BEEN EXCEECEC. CUTPUYT REYARK TO ON-LINE PRINTER, ANDC =
C# RETURN FOR NEXT PROPLEM. L]
R R R R R R R RN R R E R R R AR R RN R R R R A RN F R RN R R R R A RN AR RS R N R AR R R AN B ERR RN RRN NN
1900 LATER = MINUTE(X,Y,2)
LAPSED = LATER - NOW
PRINT 1202,(LEAT(I1),I=1,LEADMX)
PRINT 12C5,LAPSED
G0 TO 1
1000 FORMAT (701})
1001 FORMAT (5C1y)
1002 FORMAT (7C14)
1003 FORMAT {7C14)
1004 FORMAT (6H025, , 8C1l4)
1005 FORMATY (&HQUbL, 4 ULIB)
1006 FORMATY {6HO037, o+ I6)
1200 FORMAT {1216)
1201 FORMAT [12A68)
1202 FORMAT ([ 1H0, 19A6)
1203 FORMAT (T4HOINCONSISTENT.)
1204 FORMAT {2BHOTIME ELAPSED, IN MINUTES = , 314)
1205 FORMAY {20HOFCRCED STOP AFTER 4 I4,31H MINUTES, WITH NO PRCCF FO
TUND.)
1210 FORMAT (12HOCOCNSISTENT.)
2001 FORMAT {(1HO,I5)
3997 FOCRMAT {8HOTF TEST)
END (04+1,0,C, 1)
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