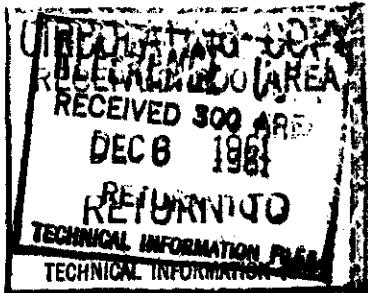


~~AEC RESEARCH AND DEVELOPMENT REPORT~~

HW-69415 *RD*

COPY

~~DECLASSIFIED~~


~~BEST AVAILABLE COPY~~

**CONTINUOUS DISSOLUTION
OF PLUTONIUM-BEARING SLAG
AND CRUCIBLE RESIDUES**

H. W. CROCKER

JUNE, 1961

THIS DOCUMENT IS
PUBLICLY AVAILABLE

CHEMICAL PROCESSING

HANFORD ATOMIC PRODUCTS OPERATION
RICHLAND, WASHINGTON

GENERAL ELECTRIC

THIS DOCUMENT CONTAINS INFORMATION AS DEFINED
IN THE ATOMIC ENERGY ACT OF 1954, THE INFORMATION
RELATES TO THE DEVELOPMENT OF NUCLEAR ENERGY
AND TRANSMISSION OF INFORMATION RELATING TO NUCLEAR
ENERGY. THE TRANSMISSION OF THIS INFORMATION
IN ANY MANNER THAN IS AUTHORIZED BY LAW IS
PROHIBITED.

~~DECLASSIFIED~~

DECLASSIFIED

BEST AVAILABLE COPY

HW-69415 RO

Distribution

Redistribution
1-2 Declassification Branch, ORE
3 Chicago Patent Group
4 Patent Branch, Wash
5 300 File

C-44b, Nuclear
Technology - Chemistry
and Chemical Engineering
(M-3679, 25th Ed.)

This document consists
of 16 pages.

CONTINUOUS DISSOLUTION OF PLUTONIUM-BEARING SLAG AND CRUCIBLE RESIDUES

By

H. W. Crocker
1
234-5 Development Operation
Research and Engineering Operation
Chemical Processing Department

June, 1961

HANFORD ATOMIC PRODUCTS OPERATIONS
RICHLAND, WASHINGTON

CLASSIFICATION CANCELLED

Per Doc, May 1973

SPECIAL RE-REVIEW

FINAL DETERMINATION

DECLASSIFICATION CONFIRMED

BY JW Jordan DATE 8-28-81

TION ✓
10/21/2023 - DATE ✓

BY Pleasant DATE 9-21-81

WHITE 9-21-81
DE Saenger

92 Savely 10-19-08

Work performed under Contract No. AT(45-1)-1350 between the *J. Schue*
Atomic Energy Commission and General Electric Company *10/3/100*

This document contains Restricted Data as defined in the Atomic Energy Act of 1954. Its transmission, the disclosure of its contents in any manner to an unauthorized person is prohibited.

Route To:	P. R. No.	Location	Route Date	Signature and Date
300 FILE in Factor New Reg. New (P. Dernin)	53003	703	10/12/66	

~~Printed in USA. Charge 35 cents. Available from the U. S. Atomic Energy Commission, Office of Technical Information Extension, P. O. Box 1001, Oak Ridge, Tennessee. Please direct to the same address inquiries covering the procurement of other classified AEC reports.~~

Reviewed and Approved for
Public Release by the NSAT
2023-01-01 PNNL ADD
2023-01-30-2009 Date

DECLASSIFIED

DECLASSIFIED

-2-

HW-69415 RD

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	3
SUMMARY AND CONCLUSIONS	3
RECOMMENDATIONS	1
DISCUSSION	5
Equipment	5
Experimental Dissolution Runs	7
Dissolution of Residual Dissolver Heel	9
Solubility of Plutonium Iodate	11
Extraction of Plutonium from Slag and Crucible Solutions	11
REFERENCES	12

DECLASSIFIED

DECLASSIFIED

- 3 -

HW-69415 RD

CONTINUOUS DISSOLUTION OF PLUTONIUM-BEARING SLAG
AND CRUCIBLE RESIDUES

INTRODUCTION

a proposed plutonium recovery facility
~~The new Plutonium Reclamation Facility (PRF), Project CAC 880,~~⁽¹⁾
will process slag and crucible reduction residues on a continuous basis.
In support of this work, a full-scale continuous dissolver has been successfully operated with a simulated plant feed consisting of new crucibles and solid technical-grade reagents.⁽²⁾ The simulated feed tests were conducted in a "cold" pilot plant, therefore plutonium could not be used. Actual demonstration of plutonium-bearing slag and crucible residue dissolution was desired to confirm the proposed continuous flow sheet.

The purpose of this report is to present the experimental work on continuous dissolution of plutonium-bearing slag and crucible residues generated from actual plant operation.

A prototype continuous dissolver is to be installed in the present Recuplex Facility to demonstrate the operability and capacity factors for plutonium-bearing slag and crucible dissolution.

SUMMARY AND CONCLUSIONS

Laboratory runs have demonstrated successful dissolution of plutonium-bearing slag and crucible residues. The plutonium recovery was quantitative.

Vigorous reaction during initial dissolution of each solids charge caused formation of large quantities of reaction foam. While the foam subsides in a few moments, the foam volume easily could result in a boilover from the dissolver. Charging of smaller batches more frequently ~~could~~ *will* ~~minimize~~ eliminate the problem.

All the experimental runs exhibited the formation of a residual solids heel in the dissolver. Since heel dissolution is slow, periodic dissolver clean-out runs will be required to maintain a low heel volume. Any excessive

DECLASSIFIED

DECLASSIFIED

-4-

HW-69415 RO

solids heel buildup can be removed and dissolved in a lengthy batch treatment using 4M HNO_3 or 6M HCl . The residue in a 32-hour continuous run was eight per cent by weight of the solids charged.

It was determined that a 27.5 g/l ~~iodate~~ concentration was required in the dissolver overflow solution to precipitate plutonium iodate. The iodate concentration in the continuous dissolver is much less ~~than~~ this value (< 5 g/l); therefore, formation of this inextractable precipitate should not be encountered.

Dissolver overflow solution adjusted to solvent extraction feed ~~spec~~ ^{composition} was contacted with 20 per cent TBP - 80 per cent CCl_4 (volume basis). Four stages of extraction reduced the plutonium concentration in the aqueous feed to 0.003 g/l. Storage of feed material for five days did not effect the plutonium extraction. The presence of up to 0.08M titanium or 0.3M sulfate did not decrease the extractability of the plutonium.

RECOMMENDATIONS

The following modifications to the ~~PRF process flow diagram~~ (SK-2-18400) are recommended:

1. Substitute 72 per cent ANN for the indicated 62 per cent ANN in the chemical addition stream No. 8.
2. Add the excess water (now available by using the 72 per cent ANN in stream No. 8) to the dissolver feed stream No. 2. This eliminates the gelatinous suspension in the dissolver overflow stream.
3. Substitution of 1M HF as the stripping agent in the CO column in lieu of the $\text{Fe}(\text{NH}_4)_2\text{SO}_4$ - NH_4OH - $1/2\text{H}_2\text{SO}_4$ - NH_4SO_3 strip, and subsequent blending of the plutonium bearing solution into the GAF stream. The HF should, of course, be complexed with ANN prior to blending. The change to an HF strip has previously been approved for use in Project SAC-800.

DECLASSIFIED

DECLASSIFIED

- 5 -

HW-69415 RD

DISCUSSION

Equipment

A schematic diagram of the slag and crucible dissolution equipment is shown in Figure 1. A two-liter boiling flask equipped with CO_2 sparge, solution removal dip tube, overhead reflux condenser, acid feed inlet, and solids charging port was used in all the experiments. Dissolver overflow solution was removed via the dip tube and sampled in the overflow solution receiver. Sampled overflow solution was then transferred to a six-liter storage vessel. Acid feed was supplied from a heated vessel. Any liquid that carried past the reflux column was collected in a distillate receiver. Normal solution volume in the dissolver is one liter, contrasted to the 27.5 liter volume in the proposed plant units. ~~A processing base of 250 grams of solid residue per hour. Therefore, a scale-down factor of 3.04×10^{-3} (1/27.5)~~ was used in the experimental runs. The proposed solid feed to the continuous dissolver has the following chemical composition:

Chemical	Weight Per Cent
MgO	42.8
CaF_2	30.9
CaI_2	1.3
Ca	3.8
Fe	8.9
Pu+PuO_2	< 12.3

Normal operation of the plant units will be to charge a can of slag and crucible to the dissolver. The can ~~submerges~~ ^{Charg'd reacts vigorously} into the solution, causing part of the solution to overflow out of the dissolver. When the ~~reaction subsides~~ ^{reaction subsides} crucible can dissolves, the solution level in the dissolver drops below the overflow point. Continual addition of feed acid to the dissolver builds up the solution level. Solution level reaches the overflow point just prior to charging of the next can of solids. To simulate the plant-type operation, the following procedure was used in the continuous runs:

DECLASSIFIED

DECLASSIFIED

- 6 -

HW-69415 RO

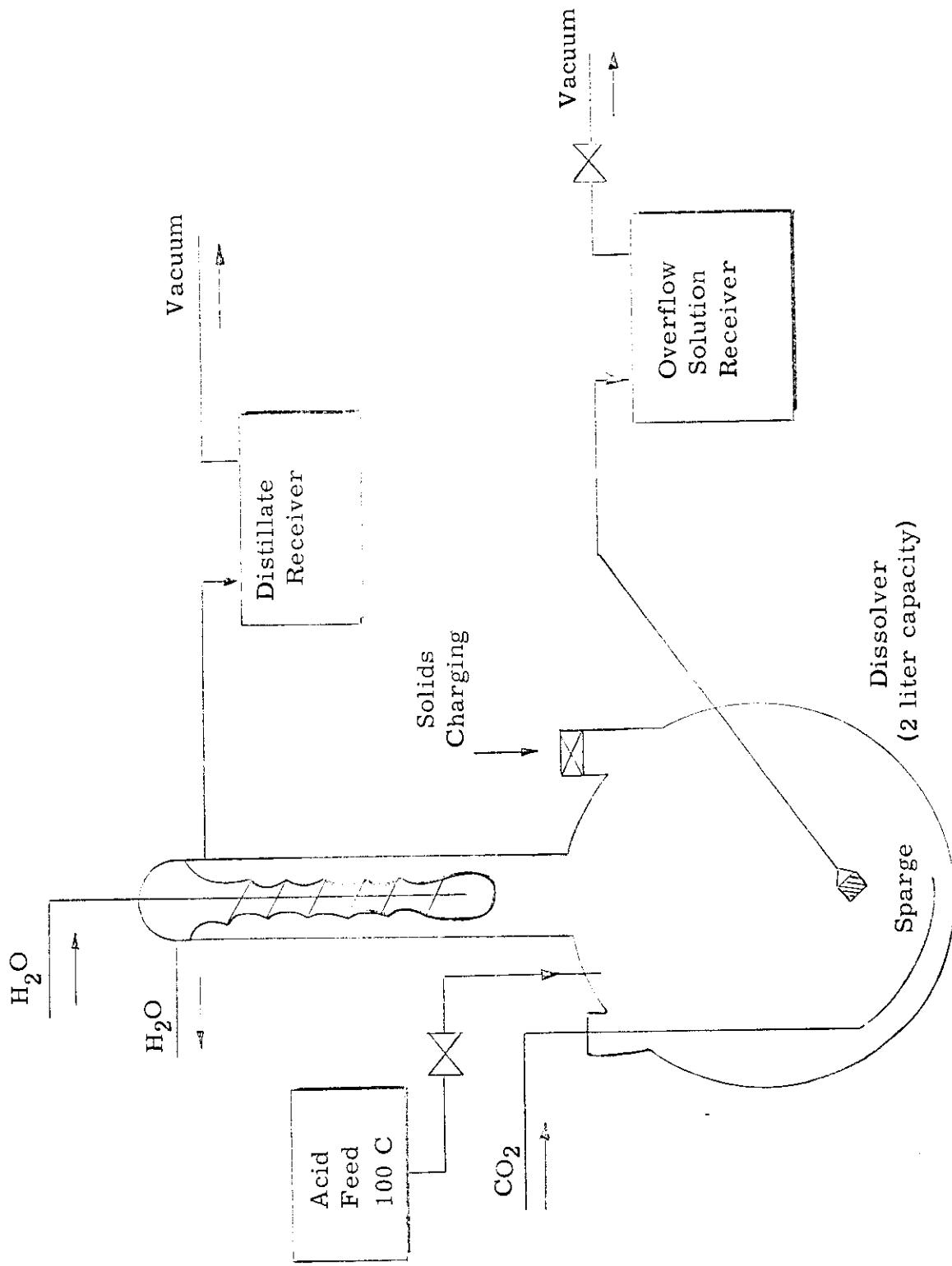


FIGURE 1

DECLASSIFIED

DECLASSIFIED

- 7 -

HW-69415 RD

- a. Charge solids.
- b. Add feed acid.
- c. Dissolve curcible material for specified time.
- d. Remove specified volume of solution via the dip.tube.
- e. Repeat steps (a) through (d).

Experimental Dissolution Runs

Two 60- to 180-gram batch scouting runs were made to confirm that the crucible residue and plutonium would dissolve readily at the continuous flow sheet conditions^(1, 3) which utilize a lower acid concentration than conventional batch dissolution. Plutonium and residue dissolution was quantitative in one hour. Dissolver overflow solution was used for the dissolution.

Three continuous dissolution runs of 8, 27, and 32 hours duration were completed. The dissolution run data are presented in Table I. The facility⁽¹⁾ first two runs were at the ~~tentative~~ ~~for the proposed recovery~~ ~~for the~~ ~~flow sheet~~ conditions ~~specified in SK-2-18400.~~ In each case the plutonium was quantitatively dissolved. The dissolver overflow product from the first two continuous runs was a viscous solution which contained approximately 25 volume per cent of suspended gelatinous solids. The material appeared to be a silica-gel and contained large amounts of ~~aluminum, magnesium, calcium, silica, and iron.~~ ^{al} ^{mg} ^{Ca} ^{Si} ^{Fe} On the final continuous run, additional dilution water was added to the acid feed to minimize the amount of gelatinous material in the dissolver overflow. The addition of dilution water successfully eliminated the formation of gelatinous suspensions without affecting the plutonium and residue dissolution. The dilution water can be incorporated into the ~~flow sheet~~ ^{dissolution step} without affecting the resulting solvent extraction feed composition. This is done by using 75 per cent ANN in lieu of 62 per cent ANN in the chemical adjustment step ~~(stream 8, SK-2-18400).~~ The resulting available water can then be added to the ~~dissolver~~ ~~feed solution (stream 2, SK-2-18400).~~

DECLASSIFIED

~~DECLASSIFIED~~

HW-69415 RD

-8-

TABLE I
CONTINUOUS DISSOLUTION OF SLAG AND CURCIBLE RESIDUE

Run No.	Run Duration (Hours)	Total Solids Charged (Grams)	Average Dissolver Overflow Composition			Solids Residue Heel (Grams)	Pu Charged (Grams)	Pu Recovered (Grams)
			HNO ₃ (M)	I ₂ as I ⁻ (g/l)	I ₂ as IO ₃ (g/l)			
CD-3	8	1197	3.5	0.6	2.5	130	12	13
CD-4	27	4851	4.0	0.7	2.0	300	20	31
CD-5	32	6135	3.6	2.0	0.5	500	104	100

Note: 1. Solids feed addition was 63 grams of residue at 15-minute intervals.
2. Acid feed and dissolver overflow volumes were 0.47 liters at 15-minute intervals.

~~DECLASSIFIED~~

DECLASSIFIED

-9-

HW-69415 RD

In all the continuous runs, the vigorous reaction immediately after slag and crucible charging generated large amounts of unstable foam. The foam and reaction subsided in a few minutes, but this presents a significant foam-over problem in the operation of a continuous dissolver. Reducing the amount of solids in a given charge and increasing the frequency of charging should alleviate the foam-over problem.

A solids heel remained at the end of each continuous run. The buildup of an equilibrium heel also was evidenced in the "cold" pilot plant runs on plant-size equipment.⁽²⁾ The undissolved residue heel encountered in our work was approximately 8 per cent by weight, which is considerably larger than encountered in "cold" pilot plant studies. An improved sparge in our dissolver might ^{have} _n minimize the solids heel buildup.

The developed flow sheet for continuous dissolution of canned slag and crucible is presented in Figure 2.

Dissolution of Residual Dissolver Heel

Attempts were made to dissolve the residual dissolver heel. A 4M HNO_3 or 6M HCl solution were the most successful reagents. Approximately 28 grams of a 50-gram solids batch were dissolved in one liter of 4M HNO_3 in three hours, while 31 grams of a 50-gram batch were dissolved in two hours using one liter of 6M HCl . Other reagents used included 16M HNO_3 , 8M HNO_3 , 2M HNO_3 , 7.5M HNO_3 - 1M HF - 0.3M ANN, and 2M HF . Emission spectrograph analyses of the heel material showed that the main constituents are Al, Mg, Ca, Fe, Zn, and Si. The residual heel did not contain any plutonium. Periodic dissolver cleanout runs using 4M HNO_3 can be used to minimize the amount of residue heel. Any excessive undissolved heel buildup in a dissolver will have to be removed as a solid, checked by neutron count for plutonium, and, according to plutonium content, be discarded or subjected to a lengthy batch dissolution in 4M HNO_3 or 6M HCl .

DECLASSIFIED

DECLASSIFIED

REF ID: A65018

CONFIDENTIAL

-10-

HW-69415 R0

FIGURE 2

CONTINUOUS DISSOLUTION OF PLUTONIUM-BEARING SLAG

AND CRUCIBLE RESIDUES (LABORATORY SCALE)

DECLASSIFIED

DECLASSIFIED

-11-

HW-69415 RD

Solubility of Plutonium Iodate

The solubility of plutonium iodate in the dissolver overflow solution was unknown. Insoluble plutonium iodate will not extract, but will go out in the solvent extraction waste stream. Dissolver overflow solution was, therefore, spiked with HIO_3 to determine the minimum concentration of iodate required to precipitate plutonium iodate. A concentration of 27.5 g/l iodate was required to precipitate plutonium iodate from solution. The iodate concentrations in all the continuous dissolver runs were much lower than this value (< 5 g/l iodate). At these concentrations, ^{insoluble} ~~soluble~~ plutonium iodate formation should not be a problem.

Extraction of Plutonium from Slag and Crucible Solutions

Dissolver overflow solution was adjusted to extraction column feed specifications ~~CAF~~ and contacted with 20 per cent TBP - 80 per cent CCl_4 . Four stages of extraction reduced the plutonium concentration in the aqueous phase from 2 g/l to 0.003 g/l in one CAF sample, and from 0.2 g/l to 0.0005 g/l in another sample. Storage of the solvent extraction feed solution for five days prior to extraction did not inhibit the extractability of the plutonium.

extraction feed
Samples of ~~CAF~~ were spiked with 0.1 to 0.3M H_2SO_4 and contacted with 20 per cent TBP - 80 per cent CCl_4 . The presence of the sulfate did not affect the extraction of plutonium.

extraction feed
A sample of ~~CAF~~ was spiked with 0.08M titanium to determine the effect of that element on plutonium extraction. The presence of titanium did not affect the extractability of plutonium in 20 per cent TBP - 80 per cent CCl_4 . The titanium remained in the aqueous phase waste stream.

$(2\text{M } \text{HNO}_3, 1\text{M } \text{Al}^{+3}, 0.6\text{M } \text{Mg}^{+2}, 0.3\text{M } \text{Ca}^{+2}, 6.1\text{M } \text{NO}_3^-)$

DECLASSIFIED

DECLASSIFIED

-12-

HW-69415 R0

REFERENCES

1. Braden, D. E., UNpublished Data Design Scope of the Z Plant Plutonium Reclamation Facility - Project CAC-880, HW-66916. October, 1960. (SECRET).
2. Blaine, H. T., Continuous Slag and Crucible Dissolver, HW-68630. February, 1961.
3. Stedwell, M. J., UNpublished Data Continuous Dissolver Flowsheet, New Plutonium Recovery Facility, HW-64705. April 13, 1960. (SECRET).

DECLASSIFIED

UNCLASSIFIED

- 13 -

HW-69415 RD

~~INTERNAL DISTRIBUTION~~

~~Copy Number~~

1	L. J. Battey
2	L. E. Bruns
3	L. P. Bupp
4	L. L. Burger
5	J. J. Courtney
6 - 8	H. W. Crocker
9	J. B. Fecht
10	J. W. Fillmore
11	W. J. Gartin
12	K. M. Harmon
13	Q. F. Hill
14	H. H. Hopkins, Jr.
15	R. S. Kingsley
16	L. M. Knights
17	W. P. McCue
18	L. M. Meeker
19	R. E. Olson
20	A. M. Platt
21	W. H. Reas
22	P. H. Reinker
23	H. P. Shaw
24	E. O. Swain
25	W. H. Swift
26	M. J. Szulinski
27	R. E. Tomlinson
28	M. T. Walling, Jr.
29	J. H. Warren
30 - 39	Extra
40	Records Center
41	300 Area File

O. F. BEAULIEU

UNCLASSIFIED

EXTERNAL DISTRIBUTIONCopy Number

42 Aerojet-General, Azusa (BUWEPS)
43 Aerojet-General Corporation
44 - 45 Aerojet-General Nucleonics
46 Aeroprojects, Inc.
47 - 48 AiResearch Manufacturing Company of Arizona
49 Air Force Ballistic Missile Division
50 Air Force Cambridge Research Laboratories
51 - 52 Air Force Special Weapons Center
53 Air Technical Intelligence Center
54 Albuquerque Operations Office
55 Alco Products, Inc.
56 Allied Chemical Corporation
57 Allis-Chalmers Manufacturing Company
58 Allis-Chalmers Manufacturing Company, Washington
59 Allison Division - GMC
60 - 61 Argonne National Laboratory
62 Armour Research Foundation
63 Army Air Defense School
64 Army Chemical Center
65 Army Engineer Research and Development Laboratories
66 Army Medical Research Laboratory
67 - 70 Atomic Energy Commission, Washington
71 Atomic Power Development Associates, Inc.
72 - 73 Atomics International
74 Avco Corporation
75 - 76 Babcock and Wilcox Company
77 Battelle Memorial Institute
78 Bridgeport Brass Company
79 Bridgeport Brass Company, Adrian
80 Brookhaven National Laboratory
81 Bureau of Medicine and Surgery
82 Bureau of Mines, Salt Lake City
83 - 84 Bureau of Naval Weapons
85 Bureau of Naval Weapons (SPO)
86 Bureau of Ships
87 Chicago Operations Office
88 Chicago Patent Group
89 Columbia University (NYOO-187)
90 Combustion Engineering, Inc.
91 - 92 Combustion Engineering, Inc. (NRD)
93 Convair Division, Fort Worth

EXTERNAL DISTRIBUTION (contd.)Copy Number

94 Convair Division, San Diego (BUWEPS)
95 Cornell University (Wilson)
96 Denver Research Institute
97 Department of the Army
98 Director of Defense Research and Engineering (OSD)
99 Division of International Affairs, Brussels
100 Division of International Affairs, Tokyo
101 Dow Chemical Company (Rocky Flats)
102 - 105 duPont Company, Aiken
106 duPont Company, Wilmington
107 Edgerton, Germeshausen and Grier, Inc., Goleta
108 Edgerton, Germeshausen and Grier, Inc., Las Vegas
109 Franklin Institute of Pennsylvania
110 General Atomic Division
111 - 113 General Electric Company (ANPD)
114 General Electric Company, St. Petersburg
115 General Nuclear Engineering Corporation
116 Gibbs and Cox, Inc.
117 - 118 Goodyear Atomic Corporation
119 Grand Junction Operations Office
120 Hanford Operations Office
121 Iowa State University
122 Jet Propulsion Laboratory
123 - 124 Knolls Atomic Power Laboratory
125 Lockheed Missiles and Space Division
126 - 127 Los Alamos Scientific Laboratory
128 Lowry Air Force Base
129 Mallinckrodt Chemical Works
130 Marquardt Corporation
131 Martin Company
132 Massachusetts Institute of Technology (Evans)
133 Massachusetts Institute of Technology (Thompson)
134 Mound Laboratory
135 NASA Ames Research Center
136 NASA Flight Research Center
137 NASA George C. Marshall Space Flight Center
138 NASA Langley Research Center
139 NASA Lewis Research Center
140 National Aeronautics and Space Administration, Washington
141 National Bureau of Standards
142 National Lead Company, Inc., Winchester
143 National Lead Company of Ohio
144 Naval Air Development Center

UNCLASSIFIED

EXTERNAL DISTRIBUTION (contd.)

Copy Number

145	Naval Air Material Center
146	Naval Medical Research Institute
147	Naval Postgraduate School
148	Naval Radiological Defense Laboratory
149	Naval Research Laboratory
150	Naval Training Device Center
151	Naval Weapons Laboratory
152	New Brunswick Area Office
153	New York Naval Shipyard
154	New York Operations Office
155	New York Shipbuilding Corporation
156	Nuclear Development Corporation of America
157	Nuclear Materials and Equipment Corporation
158	Nuclear Metals, Inc.
159	Oak Ridge Operations Office
160	Olin Mathieson Chemical Corporation
161	Patent Branch, Washington
162 - 165	Phillips Petroleum Company (NRTS)
166	Pinellas Area Office
167	Power Reactor Development Company
168	Pratt and Whitney Aircraft Division
169	Princeton University
170	Public Health Service
171	San Francisco Operations Office
172	Sandia Corporation
173	Sandia Corporation, Livermore
174	Sargent & Lundy
175	Savannah River Operations Office
176	Surgeon General
177	Technical Research Group
178 - 180	Union Carbide Nuclear Company (ORGDP)
181 - 185	Union Carbide Nuclear Company (ORNL)
186	Union Carbide Nuclear Company (Paducah Plant)
187	University of California at Los Angeles
188 - 189	University of California, Berkeley
190 - 191	University of California, Livermore
192	University of Washington
193	Walter Reed Army Medical Center
194 - 195	Westinghouse Bettis Atomic Power Laboratory
196	Westinghouse Electric Corporation
197	Westinghouse Electric Corporation (Biondi)
198 - 207	Wright Air Development Division
208	Yankee Atomic Electric Company (NYOO-222)
209 - 248	Office of Technical Information Extension