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ABSTRACT

Approximate analytical results are given for non-scaling spiral 

sector FFAG Accelerators. The equilibrium orbit scalloping is calcu­

lated, as well as the betatron oscillation frequencies in the smooth 

approximation. The effects of derivatives of and flutter appear

to be small; and are given fairly accurately by the local value of 

these parameters. The transition energy is determined essentially by 
the local value of ^ .
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I. INTRODUCTION

There has been an increase of interest in non-scaling accelerators 

in the recent past. ^ Apparently the large injection aperture desirable for 

high intensities can be achieved in a non-scaling accelerator without the 

increased circumference factor which is present in scaling machines. We 

envisage a spiral sector accelerator with large flutter and loose spiral at 

injection and small flutter and light spiral at output. It seems clear that it 

is necessary to change the spiral angle as the flutter is varied in order to 

keep the betatron oscillation frequencies constant. Otherwisea resonances 

will be crossed and beam lost.

This report records some preliminary considerations on non-scaling 

spiral sector accelerators so that they will be available for reference. A 

good part of this work is application of the analytic work of Parzen^ with 

some notational changes. One may discuss betatron oscillations either in 

terms of derivatives of Fourier components of the fields, as Parzen has done, 

or in terms of Kr , flutter and their derivatives. The present report

uses the latter quantities in an attempt to exploit the familiarity with scaling 

machines.

We remark to give a general idea of the range of parameters which is of

interest that we have in mind a flutter which varies from approximately Z at

injection to approximately 0. 5 at output. For a 15 Bev machine with 200 Mev

injection, we might have N = 30, = 50, ^ 7, =y5. If the machine is

all similar to a scaling machine over any small radial span, that is, if the

effect of derivatives of ^ and flutter on and -i) is small, the spiral
x v
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angle varies from about 75° at injection to about 87„7 5u at outputo

II. MAGNETIC FIELD EXPANSIONS

The median plane magnetic field is customarily written for discussion 

of scaling accelerators in the form

Br = B0 = 0

B„
'ft

= “Bo (fJ / j gn cos n#- + sin n^

^ = K JLr\
o

n = 0

N9

J (2. 1)

where K , K = l/ur" and the gn and ^ are constants and rQ is an arbitrary

reference radius. We can also write (2. 1) as

•^1
B - --R S ' X /I , \ inN9

" -^o A n (1 + x) e (2. 2)

n

where we have used the relative variable x =(F-r V r_ and have defined, . . p , ^ o' o
X = ^

v. 0 

‘0-- • -n<
= & - * /c

Then^ in a scaling accelerator, and are independent of radius.

A non-scaling accelerator can be described by giving X and ^ as functions
n n

of radius. The same radial variation can be described by either X or A ,
J n n'

so that the description is not unique. One can see immediately an equivalence

between A and variation of the X with radius, since one can write 
n n ’

A n (r) = X e

and can define a new exponent / \

"in"-K+ -z r~ ■

(2. 3)



This equivalence is just the flare focusing of Roberts .

For an analytic treatment it is necessary to expand the median plane 

field in powers of x. We shall write such a field as

MURA-495
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B =: -B z o

Ah

cx->

n ~ - cb m = 0

mNQ m z e x .
m5 n

(2.4)

zmn 3ust t^ie 111 derivative of Parzen's evaluated at r = ro> We can 

also express the in terms of the scaling quantities by comparing (Z. 4) and

(2. 2). Then

z - A
o, n n

z.
d A= r n + \ i.

l,n ° dr T n u n

z2,n
1 2
2 r°

d2>v n + r . d i A
o dr0 1 „

(2. 5)

III. EQUILIBRIUM ORBITS

The equation of motion of a particle in the median plane is 

1 + xx /-i , \ m inNQ^ (1 + x) «=<. z x e 
m. nm, n

X/ X

where primes denote total derivatives with respect to 0 and

X

c*

(1 + X) + Xs

eroBo

Y

(3. 1)

(3. 2)

We expand (3. 1) in powers of x and x' by expanding the Lagrangian, 

so that the approximate equation of motion is still Hamiltonian. Through 

second order, the equation of motion is

lTzo,xx" = 1 + - X 2 - ^ ,
2 x / o, n

sY]
2 ^

inN0 , ^e + ^ ^<2i.
'V

inN0

+ z ) e n o, n7
inNQ

+ x ^ (z2,n + zl,n.) e "" + * (3. 3)
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The equilibrium orbit has the period of the magnet so that it can 

be expanded in a Fourier series

inN0x = x ee n■T)=J.OO
We substitute (3. 4) into (3. 3) and equate terms of the same frequency (a 

method known more elegantly as "harmonic balance"). Then

(3.4)

-n2N2Xn = %G " cx. ^(zl.
m + z0, m ** xn-m

^ + z, ) x xZ, m 1, m7 m n-m-p

1 2 ^
“ w N er / m (n + m) x x +2 -..../ ' ' rn n-m'"yyi ' 11

(3.5)

where the last term combines xx" and x1 .

(3. 5) can be solved by an approximation method which assumes that

the terms involving x on the right hand side are small compared to those

independent of x. This amounts to assuming that the change of field across

the equilibrium orbit is small compared to the field. We calculate x ^ ,

ththe p approximation, by substituting x,„ on the right hand side of

(3. 5). There is a difficulty with xo , whose size depends on the reference 

radius rQ chosen. rQ is fixed (for a given field strength and momentum) by oC 

We can circumvent the xq difficulty by choosing £< such that r^ is the average 

radius of the equilibrium orbit; then xq = 0 and the n = 0 equation gives a 

value for ^ .

Our assumption is then

(0) = 0

5
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Then, by substituting this in the r. h. s of (3. 5),

for n £ Cb */ satisfies the n = 0 equation with substituted from (3. 6).

Correct through terms quadratic in , this equation is

(3. 7)

(2)
In practice ^ agrees with computer experiments to a few percent, 

while xn^ differs from x^^ by 10-20%. The method of solution seems a

posteriori to be justified. For discussion of motion about the equilibrium

orbit, xn^ seems adequately accurate.

From its definition (3. 2), is a relation between field strength, radius 

and momentum. Given the field as a function of radius, the value of 

calculated from (3.7) gives the average radius of the equilibrium orbit as 

a function of momentum. The term of (3.7) linear in describes the 

bending of the equilibrium orbit due to the average field. The term quadratic 

in describes the additional bending due to the fact that the scalloping of the 

equilibrium orbit carries the particle into regions of different field. In radial 

sector accelerators, this term is important; in fact, it is responsible for all of 

the orbit bending in a two-way accelerator where zQO ~ 0. In a spiral sector

6



accelerator with a flutter of about unity, this term decreases by about

■k/ ^
b°Jo, since ^0.05 and spiraling effects can be shown to cancel. Since 

this term is so small, an accurate solution of (3. 7) is
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= V
^°)0

(3. 8)

IV. LINEAR MOTION ABOUT THE EQUILIBRIUM ORBIT

We use a coordinate system based on the equilibrium orbit. All 

lengths are measured in units of Rq , the equilibrium orbit length devided by 

2 ^ and Rq ^ are the displacements perpendicular to the

equilibrium orbit in the median plane and perpendicular to it, respectively. 

We use as independent variable

=

s
ds
r7 (4. 1)

where ds is the element of arc length along the equilibrium orbit.

For most purposes we can neglect the difference between ^ and 0. 

From (4. 1),

= Ro

Ro

e

X d0

0

o
R

1 +

o

N

1 v>21 + X + H X 
2

d0

m2 xmx-m + ••• J
jty

j t'nNb

'Tr'l zf=.Q l ^4 OjYj

The periodic terms are of order l/N compared to unity and are thus 

very small for N 10. The term linear in 0 differs from unity by terms

which are of order l/N . These terms just give Ro in terms of ro'

7
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Ro - ro 1 + <x '^ 3°^ )
V,t 40 mTA/i~
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The difference between R0 and r0 is then small for N 20.

The linear equations of motion about the equilibrium orbit are

(4. 2)

+ x[7> + ^7:] v

where

' O
(4.3)

A 7'; «=. 0

e f, 60

/ (4.4)

^ B0 =
and are equal whenever we make the approximation that R0 = r0. The 

field derivatives are to be evaluated on the equilibrium orbit and are with 

respect to , which differs from the radial direction T because of the 

scalloping. Then

= ^ ir 9e
dy if at? ay

/
Define the angle by

-J-su* (b —
!+

j
(4. 5)

so that is the angle between the and P directions. Then a little 

geometrical exercise gives
r dr-
Tf = Ro cos

_ R0 sin
1 + xc

8
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and

7'
i
B° 1/uTxIT2

(1 + X ) - 5_e_
3^ i + xc

(4.6)

where we have neglected the difference between and ro« We now neglect in 

(4. 6) xe and x/ ^ compared to unity,since they are of order l/N^. When we

substitute x.

7

^ from (3. 6) and evaluate on the equilibrium orbit, we find

- "
1) ^ ■f- <?< £^7 ^ 6 ^ ^ O; -K - yy<

(4.7)

l - ■'i
AT7 / c"" ^,^-m pn-vnJA/

The second terms of .and 'yj/a.re of order ^F/N^ or c<KF/N^

relative to the first terms^where F is the flutter. These quantities are 

usually smaller than about 0. 2 in either radial or spiral sector accelerators.

We shall estimate the betatron oscillation frequencies with the smooth 

approximation which we take in the following form. When applied to a Hill 

equation
n

M t
in h/O

«„ e / « = 0,

the smooth approximation gives for the frequency

'V ^ ~ yv\

'H) to ■m 3 /Vz

When we evaluate the sum in (4. 8), we need to take only the leading terms 

of (4. 7), since these terms when summed give terms of order ot ^F/N^or

£
^ ^Cf/N . Then we find

<7^ f f ^‘jvvl7 5Q|->m * 5i,v« 3*;-’
vf= + + I

- cA. ho — iK

Tv tc

m to
rrnr---------  "

(4. 8)

(4.9)

WA /V:

9
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II is interesting for the interpretation of non- scaling terms to 

rewrite (4. 9) in terms of & . K, the Fourier coefficients g and £ and 

their derivatives. We resolve the ambiguity in the description of the 

field variation by choosing gG = 1. We also use the value of given by (3. 8). 

Then, neglecting unity compared to ''<4 ,
Ago + 2r &

/
G + 3r ~A Go o o i

G0 + F2 K2 .
F N* +

1
2 4 2ro^,Gc

V (G2 + G3 >

- 2 rOKH.

N
(4. 10)

where primes now denote derivatives with respect to rQ and

i ^ Af Go = I ^

^ ^ A ..2 =

g1 = j ^ & hll A h
^ — I ^ A/

g2 =

G3 =

H =

vn wF W

'V\A

1

A(Vl -I

Vy > A/

/ "A A ^
uA/V^ "

~~ ‘j** A
'Vh - t wi V

(4. 11)

The results for a scaling machine are just a special case of (4. 10) with all 

derivative terms zero, i.e. £ - 0 and only Gq and F are different from zero. 

It is interesting to note that all terms depending on K[ have cancelled. The 

terms in ^ are corrections to the average field which arise from the

10
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scalloping of the equilibrium orbit. The terms in Gp G2 and Gg are 

corrections to the alternating gradient focusing which come from the change 

of flutter with radius.

We can estimate the size of these terms by considering a field with 

only a single harmonic, say g^ = 2 - 20x, which gives the variation described

in the introduction. Then r0 G^ = 20 GQ and rD % G-j -v-
%

i G0. Similarly,

r0i 2 * *'G2 = 400 G0 and Tq^G^ ^ k G0. But ^ G0 ~ ^ , so that all of these 

terms are small. Since they are small, V5 will be constant if jt is approximately

constant and the term r

i'

o^Gl JG-o
will be small. Since -r~ is negative, we would

expect that 72 must be positive to compensate for the decrease of the 

term. To keep V ^ constant, K should vary so that FK is constant.

£ G.o

One may regard these results as encouraging. Evidently the effects 

of all derivatives are small and a non-scaling machine may be thought of 

roughly as a succession of scaling machines.

V. TRANSITION ENERGY

We would expect the transition energy to be raised for two reasons.

First, increases as a function of radius, so that the local value of A is

higher at the transition radius than at the injection radius and second, the orbit

scalloping (and therefore the orbit length) decreases as a function of radius. Of

these, the first effect would seem to be much more important because the

effect of orbit scalloping on orbit length is small (as we can see from (4. 2) ).

2The transition energy is given approximately by V , whose dominant term
X

is just 4

A detailed calculation bears out this guess. We begin with the well-known

11
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relation for the change of revolution frequency j with momentum;

4f J- - -fe ‘dE”
f df, ‘ Y* At c//. (5-D

where = E/Eq and 2 R0 is the orbit length. From (4. 2),

R0 ~ ro ^ + 2^ Go ^ 

and from (3. 8) with z0 0 - 1,

= 1 - (^G0 + r0G^ )

Differentiation gives

dR. dr.
j? 1 ^ + 2 ^G° + roGl) " 2ro Gi2 ^ 2 1e G 2

+ r0 G0 (G2 + Gq) - r(_iG/^G1 - ro o 1 o -4 G 2 (5. 2)

We calculate
dr

from (3. 2), the relation defining
dP

b - £ -roB° (ro)
r c (ro)

and note that for a given field, the constant B varies with the reference radius 
4 (ro)

r as r . Then some calculation giveso o

£ 5o
r0 d

1 (5.3)
jT = + 1 + 2ro^ G1 + ro <g2 + g3) + ro £'go

r 1 - (^Go+ --oGd

Then finally,

Ro d/=

1 + i (G0 + roGl) - 2ro2Gl2 - TGo2 + i'02Go(G2 + G3)roGoGl ro^/Gol

1 + 2 G0- Go2 ' roG0G1 4 + 1

2rjGy + r02(G2 + G3) + r0 ^'go

+ 1 - (7?G0 f r0 Gj)
(5.4)

12
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The estimates of Section IV can be applied to (5. 4). When terms less than 

1% of the leading terms are neglected,, the transition energy is given by

=$,+ l + 2ro^Gj + rQ2 (G2 + Gg) (5.5)

The correction terms given in (5.5) are of order 2%, so that essentially the 

local value of ^ determines the transition energy; that is5 it is as difficult 

to avoid the transition energy in a non-scaling as in a scaling accelerator.
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