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ABSTRACT
Approximate analytical results are given for non-scaling spiral
sector FFAG Accelerators. The equilibrium orbit scalloping is calcu-
lated, as well as the betatron oscillation frequencies in the smooth
approximation. The effects of derivatives of and flutter appear
to be small; and are given fairly accurately by the local value of

these parameters. The transition energy is determined essentially by

the local value of ™ .
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I. INTRODUCTION

There has been an increase of interest in non-scaling accelerators
in the recent past. * Apparently the large injection aperture desirable for
high intensities can be achieved in a non-scaling accelerator without the
increased circumference factor which is present in scaling machines. We
envisage a spiral sector accelerator with large flutter and loose spiral at
injection and small flutter and light spiral at output. It seems clear that it
is necessary to change the spiral angle as the flutter is varied in order to
keep the betatron oscillation frequencies constant. Otherwise: resonances
will be crossed and beam lost.

This report records some preliminary considerations on non-scaling
spiral sector accelerators so that they will be available for reference. A
good part of this work is application of the analytic work of Parzen”™ with
some notational changes. One may discuss betatron oscillations either in
terms of derivatives of Fourier components of the fields, as Parzen has done,
or in terms of K7 , flutter and their derivatives. The present report
uses the latter quantities in an attempt to exploit the familiarity with scaling
machines.

We remark to give a general idea of the range of parameters which is of
interest that we have in mind a flutter which varies from approximately 7 at
injection to approximately 0. 5 at output. For a 15 Bev machine with 200 Mev
injection, we might have N = 30, = 50, ~ 7, =y5. If the machine is

all similar to a scaling machine over any small radial span, that is, if the

effect of derivatives of ™ and flutter on and -i) is small, the spiral
X v
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L INTRODUCTION

There has been an increase of interest in non-scaling accelerators
in the recent past. © Apparently the large injection aperture desirable for
high intensities can be achieved in a non-scaling accelerator without the
increased circumference factor which is present in scaling machines. We
envisage a spiral sector accelerator with large flutter and loose spiral at
injection and small flutter and light spiral at output. It seems clear that it
is necessary to change the spiral angle as the flutter is varied in order to
keep the betatron oscillation frequencies constant. Otherwise,, resonances
will be crossed and beam lost.

This report records some preliminary considerations on non-scaling
spiral sector accelerators so that they will be available for reference. A
good part of this work is application of the analytic work of Parzen”, with
some notational changes. One may discuss betatron oscillations either in
terms of derivatives of Fourier components of the fields, as Parzen has done,
or in terms of A, KV , flutter and their derivatives. The present report
uses the latter quantities in an attempt to exploit the familiarity with scaling
machines.

We remark to give a general idea of the range of parameters which is of
interest that we have in mind a flutter which varies from approximately Z at
injection to approximately 0. 5 at output. For a 15 Bev machine with 200 Mev
injection, we might "J = 5. If the machine is
all similar to a scaling machine over any small radial span, that is, if the

and flutter on Z and -i) is small, the spiral
=~
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angle varies from about 75° at injection to about 87,,7 58 at output

II. MAGNETIC FIELD EXPANSIONS

The median plane magnetic field is customarily written for discussion

of scaling accelerators in the form

Br = BO =0
ft
B, = “Bo (FJf / ] gn cos n#- + sin n/\J e 1
n =20
~ = K JLr N9

where K, K = l/ur" and the gn and ~ are constants and 1r(Q is an arbitrary
reference radius. We can also write (2. 1) as

Al .
\ inN9

- -R S’ X
-~0 An(l +x) e Q.2

B "

n

where we have used the relative Vari%ble x =(F —rOV ro and have defined

)

X = Ca
v. 0
(2. 3)
. -n< 0
= &-* /c
Then” in a scaling accelerator, and are independent of radius.

A non-scaling accelerator can be described by giving X and ~ as functions
n n

of radius. The same radial variation can be described by either X or A4
J n n

'
so that the description is not unique. One can see immediately an equivalence

between 4 and variation of the X with radius, since one can write
n n '

An () = X e

and can define a new exponent / |

rrEn T - IK 0 F—— I
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This equivalence is just the flare focusing of Roberts
For an analytic treatment it is necessary to expand the median plane

field in powers of x. We shall write such a field as

cX->

= -_— N
Bz ‘ Bo z em Q xm. 2.4
mjn
n~ -cb m-=0
. ]Ah . . , _
zmn Just thie |l derivative of Parzen's evaluated at r = ro> We can
also express the in terms of the scaling quantities by comparing (Z. 4) and
(2. 2). Then
z - A
o, n n
Z = d A n + \ z
1.n ° dr T n un
1 2 d2»>yn + r .d i A 2.5
z2.n 2 r° o dr0 1| ,,

III. EQUILIBRIUM ORBITS

The equation of motion of a particle in the median plane is

X 1 + x - inN
~/ X ~ /('1 + xs «==<. zm.nxm e Q 3.1

m, n

where primes denote total derivatives with respect to 0 and

X a1+ x + X
3.2
c* eroBo
Y
We expand (3. 1) in powers of x and X' by expanding the Lagrangian,
so that the approximate equation of motion is still Hamiltonian. Through
second order, the equation of motion is
xx" =1 +—-X2 -~ !Tzo’ elnNO + ;\\ A<2i. + z ? einNQ
2 X / o, n , n o, n
sY] v
2 = inNO (3. 3)

+ x ™ (ZZ2n+zln)e "7 + ¢
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The equilibrium orbit has the period of the magnet so that it can

be expanded in a Fourier series

x_ = etmNO (3.4)
© a7)=J.00
We substitute (3. 4) into (3. 3) and equate terms of the same frequency (a
method known more elegantly as "harmonic balance"). Then
-n2N2Xn = 266 " ™ (2l
. m + z0,m" xn-m
%, m * Z’l, m% Xran—In—p
1 2 T
«“ N er m (M + m), X_X + (3.5
E] myyi./ rﬂ n-m

where the last term combines xx" and xI

(3. 5) can be solved by an approximation method which assumes that
the terms involving x on the right hand side are small compared to those
independent of x. This amounts to assuming that the change of field across
the equilibrium orbit is small compared to the field. We calculate x ™ ,
the p th approximation, by substituting x,,, on the right hand side of
(3. 5). There is a difficulty with xo , whose size depends on the reference
radius rQ chosen. 71(Q is fixed (for a given field strength and momentum) by oC
We can circumvent the xo difficulty by choosing £< such that r” is the average
radius of the equilibrium orbit; then XQ = 0 and the n = 0 equation gives a
N

value for

Our assumption is then

0)

n
()
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Then, by substituting this in the r. h. s of (3. 5),

for n £ Cb */ satisfies the n = 0 equation with substituted from (3. 6).

Correct through terms quadratic in , this equation is

(3. 7)

. ) . .
In practice ™ agrees with computer experiments to a few percent,

while xn-™ differs from x~" by 10-20%. The method of solution seems a

posteriori to be justified. For discussion of motion about the equilibrium
orbit, xn-™ seems adequately accurate.

From its definition (3. 2), is a relation between field strength, radius
and momentum. Given the field as a function of radius, the value of
calculated from (3.7) gives the average radius of the equilibrium orbit as
a function of momentum. The term of (3.7) linear in describes the
bending of the equilibrium orbit due to the average field. The term quadratic
in describes the additional bending due to the fact that the scalloping of the
equilibrium orbit carries the particle into regions of different field. In radial
sector accelerators, this term is important; in fact, it is responsible for all of
the orbit bending in a two-way accelerator where zQ0 ~ 0. In a spiral sector

6
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accelerator with a flutter of about unity, this term decreases by about
/e

b%o, since — —0.05 and spiraling effects can be shown to cancel. Since

this term is so small, an accurate solution of (3. 7) is

= vV (3. 8)
%))
IV. LINEAR MOTION ABOUT THE EQUILIBRIUM ORBIT
We use a coordinate system based on the equilibrium orbit. All
lengths are measured in units of RQ , the equilibrium orbit length devided by
2 ~ and RQ ~ are the displacements perpendicular to the
equilibrium orbit in the median plane and perpendicular to it, respectively.

We use as independent Variablse

- ds
s (4. 1)

where ds is the element of arc length along the equilibrium orbit.

For most purposes we can neglect the difference between ™ and O.

From (4. 1), ¢
= X do © 1 + X + 11 ¥2 do
R, R 2
0
N |
0 | + m2 xmx-m + eee
Ro jty
j t'nNb
ME) ~4

The periodic terms are of order 1I/N compared to unity and are thus
very small for N 10. The term linear in 0 differs from unity by terms

which are of order I/N . These terms just give Ro in terms of ry'
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since Ny = when O-2 Then

I 30/\

Ro - 1o I+ S | 4. 2)
Vi 40 122 TA/i~

The difference between RO and r0 is then small for N 20.

The linear equations of motion about the equilibrium orbit are

xS AT ] v 0

4.3)
. 0
A 7' ;
where
ef 60
| 4.4
A Bl -
and are equal whenever we make the approximation that RO = rO. The
field derivatives are to be evaluated on the equilibrium orbit and are with
respect to , which differs from the radial direction 7 because of the
scalloping. Then
= 7> Ir 9¢
dy Zy at? ay
Define the angle by y
J-su* (b — i
I+ J
’ “.5)
so that is the angle between the and P directions. Then a little

geometrical exercise gives

7

V-
77 = Ro cos

RO sin
| + XC

8
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and
7' ! (1 ) 5
+ X ) - e
Be 1/uTxIT2 3~ T+ %o (4-6)
where we have neglected the difference between and ror We now neglect in

(4. 6) xe and x/ * compared to unity,since they are of order I/N”. When we

A eq . . .
substitute x. from (3. 6) and evaluate on the equilibrium orbit, we find

7 n -~ i K £ NN N0 K-y
“4.7)

7z - m'i
AT7 /e AAM pn-vnJA/
The secondterms of .and %j/a.re of order “"F/IN" or c<KF/N*

relative to the first terms”™where F is the flutter. These quantities are

usually smaller than about 0. 2 in either radial or spiral sector accelerators.
We shall estimate the betatron oscillation frequencies with the smooth

approximation which we take in the following form. When applied to a Hill

equation
in h/O
M =z «,, € / « = 0O,

the smooth approximation gives for the frequency

| Nl
V H 0 w3 /Vz (4. 8)
When we evaluate the sum in (4. 8), we need to take only the leading terms
of (4. 7), since these terms when summed give terms of order ot “"F/N"or
£
N~ AMCF/N . Then we find
<7Af f ~owl7 SQ->M * Si,ve 3%32
vi= + + |
Tv tc
(4.9)
-d h — K rrRr-—————- "
0 WA " 7V
m to
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I is interesting for the interpretation of non- scaling terms to

rewrite (4. 9) in terms of & . K, the Fourier coefficients g and £ and

their derivatives. We resolve the ambiguity in the description of the
field variation by choosing gG = 1. We also use the value of given by (3. 8).

Then, neglecting unity compared to "<4 y
AGO / 3r 4G
t2r & Gyt 2T 40 NV G2 + G

GO + §2 g%+% 1 2ro”,Ge

_ g Yot 4. 10)
N

where primes now denote derivatives with respect to rQ and

se: X A

()
n

~NAA
cl=J4 N & All Ah

vn ! wk A
G2 = 4. 11)
VA Vy > A/
b hA A
G3 = AVA "
AW -1 u
H = ~ A
W -t Wi V

The results for a scaling machine are just a special case of (4. 10) with all

derivative terms zero, i.e. £ - 0 and only GQ and F are different from zero.

It is interesting to note that all terms depending on K| have cancelled. The

terms in © are corrections to the average field which arise from the

10
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scalloping of the equilibrium orbit. The terms in Gp G2 and Gg are
corrections to the alternating gradient focusing which come from the change
of flutter with radius.

We can estimate the size of these terms by considering a field with
only a single harmonic, say g =2 - 20x, which gives the variation described

in the introduction. Then 0 G* =20 GQ and D % G§ ~ Z GO. Similarly,
0
r0i'e%*= 400 GO and TQ"G™ ™ k/GO. But ™~ GO ~  , so that all of these

terms are small. Since they are small, Vi will be constant if j7# is approximately
o™~G1 . . JG0 .
constant and the term r will be small. Since -~ is negative, we would
- 4
expect that %) must be positive to compensate for the decrease of the £ G,
term. To keep V © constant, K should vary so that FK is constant.
One may regard these results as encouraging. Evidently the effects

of all derivatives are small and a non-scaling machine may be thought of

roughly as a succession of scaling machines.

V. TRANSITION ENERGY

We would expect the transition energy to be raised for two reasons.
First, increases as a function of radius, so that the local value of 4 1is
higher at the transition radius than at the injection radius and second, the orbit
scalloping (and therefore the orbit length) decreases as a function of radius. Of
these, the first effect would seem to be much more important because the
effect of orbit scalloping on orbit length is small (as we can see from (4. 2) ).
The transition energy is given approximately byVXZ, whose dominant term
is just 4

A detailed calculation bears out this guess. We begin with the well-known

11
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relation for the change of revolution frequency ] with momentum;

2F J- - fe dE’
_Fdf  CY* At ol (5-D

where = E/EQ and 2 RO is the orbit length. From (4. 2),

RO ~ ro ™ + 2 Go "

and from (3. 8) with z0 0 - |,

=1- ("Go + roG* )

Differentiation gives

dR. dr.
1 7+2 "G°+ roGl) " 2ro?2 Gi2 1G22
+ 10 GO (Gz + Gq) - TgGEG| - ry -4 G2 (5. 2)
dr
We calculate from (3. 2), the relation defining
dP

b - £ -roB° (ro)
r ¢ (ro)

and note that for a given field, the constant B wvaries with the reference radius

£ (ro)

roasr, Then some calculation gives

| (5.3)

%) ?} = + 1 + 2ro™ Gl + ro <g2 + G3) + ro £'Go
r 1 — (™Go+ --o0Gd

Then finally,
I +1 (GO0 + roGl) - 2r02GI12 - TGo2+1'02Go(G2 + G3)roGoGl ro™/Gol

217Gy +r02(G2+G3) + 10 ~’GO

Ro dk=
| +2G0- GO2 * roGoci 4 + 1. I - (72G0 f 10 Gj)
(5.4)

12
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The estimates of Section IV can be applied to (5. 4). When terms less than

1% of the leading terms are neglected,, the transition energy is given by

=%+ [ + 2ro™"Gj + rQ2 (G2 + Gg) (5.5

The correction terms given in (5.5) are of order 2%, so that essentially the

local value of ™~ determines the transition energy; that is§ it is as difficult

to avoid the transition energy in a non-scaling as in a scaling accelerator.

13
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