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COMPARISON OF SEVERAL ADAPTIVE NEWTON-COTES
QUADRATURE ROUTINES IN EVALUATING DEFINITE
INTEGRALS WITH PEAKED INTEGRANDS

by

- K. E. Hillstrom

ABSTRACT

This report compares the performahce of five dif-
ferent adaptive quadrature schemes, based on Newton-Cotes
(2N +1)-point rules (N =1, 2, 3, 4, 5), in approx1mat1ng the

- sets, of definite integrals '

fl (4x2+p'7‘)-l dx,\/‘1 x/(lql -x)p-Adx, andf_3 xP(x - 2)(x-3) dx
-1 0 , Jo
with relative accdracy €. -

. I. INTRODUCTION

High-degree Newton-Cotes quadrature rules have seldom been used
in practice because they occasionally fail to converge or they contain
weights of different.signs. This report shows, by numerical experiment
only, that there are certain quadratures for which,moderate degree Newton-
Cotes rules, used adaptwely, may be superior to other: rules based on
equally spaced abscissas.

McK.eem:;u.nl_3 a,nd Dav‘is‘ and Rabi'nowitz'4 'd'esg:.ribe the use -of
quadrature rules in an adaptive ndanner’by means of algorithms. Lyness
gives a.thorough description-of the Adaptive S1mpson Rule, together with.
suggested modifications. , : :

5

II. QUADRATURE SCHEMES USED

The schemes used.in these investigations are azdaptive,Néwton-CoteS'
rules of degree 3, 5, 7, 9, and 11, incorporating the modifications of .
types 1, 2, and 3 described in Ref. 5, adjusted for use with the particular
rule. The results are, therefore, of polynomial degree 5, 7, 9, 11, and 13,
respectively. . '
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In particular, if € is the total absolute error allowed and

: S 2N+1
onla,a+h] £(x) = ) a;f(x)
J=1

is the (2N +1) Newton-Cotes Rule, convergence is achieved over the
interval [a, a +h] if for

A = Qn[a, a+h] {(x) - (QN [a,a.+ -}i] f(x) + QN [a+—1§—, a+h] f(x)).

2
2N+1 _ )
A = (2 - €
Y :
where h = (B- A) 2"?. If this convergence criterion is not satisfied and

if r < 30, the interval is bisected, r is replaced by r + 1, and, after
function evaluations at the new mesh points, the above test is repeated.
If the convergence criterion is satisfied or if r = 30, .

an[a a+2] ) + Qfa+t 2, a+h] fx) + A/(zZN“ - 1):

is accepted as an approximation for the integral over [a, a +h], this
approximation being of degree 2N + 3. Finally, these component ap-
proximations and error estimates are summed to obtain a final or
total approximation ovetr [A, B].

III. INVESTIGATIONS CONDUCTED

Numerical integratibns were carried out using the five different -
adaptive Newton-Cotes rules in approximating three sets of definite
integrals. In each case, an input parameter € prescribes the error. A
routine is termed the most efficient if its result satisfies the error cri-
terion € while requiring the fewest function evaluations. The actual error
in each result is usually much smaller than €.

- IV. COMPUTATIONS

All the computations conducted were perfor»med on an IBM 360/50—75

.in double-precision floating point.




The sets of definite integrals

and

I = /03 xP(x-2)(x-3) dx

. have been evaluated with p ranges (1,107%), (1/9), and (1,16), respectively,
and € ranging from 1 to 1078,

For small p, the I, integra‘nd'has apeak of height p % at the originand
is approximately 1 at the end points, and I, is approximately equal to mwp~!

For large p, the I, integrand has a maximum of 10P at the upper
- limit and is zero at the origin, and I, is approx1mate1y equal to 10P 1/ 1).

For large p, the I; integrand has a maximum near 2, has a minimum
near 3, and is zero at the origin and at x =-2 and x = 3, and I; is approxi-
mately equal to 3p+2/p

The appendix presents FORTRAN listings of the comparison routine,
the integrand and integral evaluation subroutines, and the five adapt1ve
‘quadrature subroutines.

V. RESULTS

Results using the adaptive Newton-Cotes rules for the quadratures I,
I, and I;are displayedin Figs. 1, 2, and 3, respectively, and are to the required
accuracy €l. If the point (p,e) lies in the zone numbered N, the adaptive
Newton-Cotes (2N +1)-point rule is the most efficient of those tested.

The actual demarcation lines between zones are not regular in
.Figs. 1 and. 2. These irregularities are partly due to the fact that the
number of points used by the adaptive Newton-Cotes rule of degree
ZN +1 in approx1mat1ng an 1ntegra1 over (a,a+h) is restricted to numbers
of the form 8kN + 1 (k.= 1, 2,3, ...). If the integrand function is altered
slightly, the demarcation line.is d1fferent in detail, but has the same general
configuration. In Figs. l and 2, the "buffer zones" between distinct zones
indicate the general width of these irregularitiés. ‘ '
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These results are of interest because they indicate that if the
integrand has a high, éhaip peak, or if great accuracy is required, an
adaptive high-degree rule is most efficient. This is in contradistinction
to the more familiar state of affairs in which sharp peaks are associated
with inefficient polynom_iai apprqximétions and the use of low-degree rules.

In addition, error curves of the adaptive Newton-Cotes rules for the
quadratures I}, I,, and I; and a particular value of p are displayed in
Figs. 4, 5, and 6, respectively. The error curves of . the adaptive Newton-
Cotes (2N +1)-point rules are labeled EN; the projections of the pairs of
intersection points (PN-erN) onto the € axis define, for fixed p, the




log € interval over which the (2N +1)-point rule is most efficient, in terms
of points M required; and the lines S1, S2, S3, S4, and S5 with slopes 6, 8,
10, 12, and 14, respectively, indicate the rate of convergence of these rules.

LOG €

LOG M

Fig. 4. Error Curves of the Adaptive Newton-Cotes (2N + 1) -point Rules in
1
Approximating Iy = f (x2+ 10-8) -1 dx. A point (M,e) located
=1 !
on line Ey between intersection points (pN-1,PN) indicates that the
2N +1 adaptive Newton-Cotes routine with input error €I required
the least number M of function evaluations of the routines tested.

LOG €

sS4 s3 s2 | S1
| . 2 3
LOG M : :

Fig.. 5,- Error Curves of the Adaptive Newton-Cotes (2N + 1) -point Rules in

1

Approximating Ip = f x/(1.1 -x)9 dx. A point (M,€) located
0 :

on line Ey between intersection points (py.1,PyN) indicates that the

2N + 1 adaptive Newton-Cotes routine with input error €Iy required

the least number M of function evaluations of the routines tested.




Fig, 6. Error Curves of the Adaptive Newton-Cotes (2N + 1) -point Rules in

3

Approximating I3 =f x18(x -2)(x - 3) dx. A point (M,€) located
o

on line EN between intersection point (py.1,PN) indicates that the

2N + 1 adaptive Newton-Cotes routine with input error €13 required

the least number M of function evaluations of the routines tested.

These results define (for a particular p) the € interval of greatest
efficiency of the (2N + 1)-point rules and demonstrate that the modified
Newton-Cotes rules, being of polynomial degree 5, 7, 9, 11, and 13 have
error curves with slopes approximately equal to 6, 8, 10, 12, and 14,
respectively.



APPENDIX

FORTRAN Listings of the Comparison Routine, the Integrand

and Integral Evaluation Subroutines, and the Five
Adaptive Quadrature Subroutines

1. Routine for Comparing Adaptive Newton-Cotes Quadrature Routines

FORTRAN IV G LEVEL 1, MOD 1

0001
GGG2
¢oo3
G004
0GG5
ca06
GOCT

Goos8
COG9o
G010
GOl1
0012
G013
0C14
0015
Gole
0C17
ools
GO19
0020
G021
co022
0023
GG24
0025
0026
go27
G028
G029
0G36
0031
6032
G033
G034
‘0035
G036
G037
EY:]
G039
Go40
Go4l
G042
0043
0044
0045
0C46

Goa7
G048

¢cose

0051

c
C

MAIN DATE = 68288 16756753
QUADRATURE ROUTINE COMPARISON DRIVER

DOUBLE PRECISION AyBoE1+FE+PIsDPFPyPyEPS,QIyRIZREJRESyQUAD, ToEVAL
DUUBLE PRECISION DE ' .
COMMON P,LIFI,IFC,ICC
DIMENSION IVCU(5),QDR(6),TITLE(18)
DATA QDR/'2', 140,060 ,98¢% 10 X/
PRINT 15
15 FORMAT('ITEST OF ADAPTIVE NEWTON COTES 2,4,698,10 HAVIE AND RUMBER
XG*//1)
1 READ 1000, TITLE
PRINT 100D, TITLE
READ 1001,IFI.INC
PRINT 100L,IFI,INC.
DO 11 N=1,INC :
READ 1002 ,A4BELl,DE,PI DP
PRINT 1006+,4,4B4EIl,DE,PI,DP
READ 1004 +FELFP,IE,IP,ICVC
PRINT 1007.FEFP,IE,IP,ICVC
DO 10 M=1,ICVC
READ (5,1003) (IVC(I),I=1,5)
READ 10054K,ICC
IFCALL=L Cor : =
XMA X=F P ) -
XPINCH=(FP-PI1)/1G,0D0
YMAX=+E
YMIN=EI
XMIN=PI v
XP=P]
GO TO (243),4K
2 P=PI1 )
GO 1O 4
3 P=10,0DD*%(-P1)
4 DO 9 L=l.IP
YP=El
EPS=1C,DO*%(~El)
PRINT 22 .A 48 4EPS,P
20 FORMAT(® A=',D12a54"' B='4D1205y" EPS='4012e5¢"' P=',012.54/7/)
RI=EVAL(A,B)
DO 8 J=1,IE
IFCS=2147483647
‘RES=1.00+74
SYM=QDR{ &)
DO 7 I=1,5
IF(IVC(I).EQ.0)GO TO 7
OI=QUAD(A+B,EPS.T)
RE=DABS(RI-QI)/RI -
PRINT 30,QI+RISRELIFC ' ’
30 FORMAT(® QI=',D22515+' RI=',D22015y* RERR=',022,15.* FCOUNT=*,18,/
X/ ’ o
IF(RE.GT-.EPSIGO TO 7
IF{IFCSoLToIFCIGO TO 7°
IFUIFCS.GTLIFCIGO TO 6
IF(RESo.LEL,REIGO TO 7 - -
6 IFCS=IFC

11



FORTRAN IV G LEVEL 1, MOD 1 MAIN DATE = 68288 16/56/53
0052 RES=RE .
6053 SYM=QDR( 1)
0054 7 CONTINUE
GC55 ~ PRINT 50 ) : o
G056 5G FORMAT(' ****#*#*****#**#**#*#***#***v######*#**##t####***#t#'//l)
00657 . GO TO (16417),4K
0058 16 CALL YOLYPL{XP,YP XMAX ¢yXPINCHoYMAX 3O+ 1lsKsBHPARAMETR, 8H- LUb(tP)oIFC
XALLylelo XMIN,YMIN,SYMoTITLE,1)
6059 GO TO 18
. 00540 17 CALL YOLYPL{XP,YP XMAX yXPINCH,YMAX 041, K,BH-LOG(P) ¢ BH-LOGLEP )V, IFC
. XALL 91 o1 s XMINsYMINySYM,TITLE,1)
G061 18 IF(IFCALL.EQs21G0 TO 12
G062 IFCALL=2
0063 12 EPS=EPS*10,0DG*%*({-DE)
G064 8 YP=YP+DE
0C65. XP=XP+NP
CC66 GO TO (19421),K
0067 19 P=P+DP
0368 G0 TO 9
0069 21 P=P%10,0D0%*{-DP)
Ga70 9 CONTINUE
COT1L .10 CONTINUE
cC72 11 CONTINUE
cO73 CALL PLOT(15¢+04+-3)
G074, CALL YOLYPL(XP,YPyXMAX XPINCHyYMAXy—1s1yKyBHPARAMETR,y BH-LOG(EP ), IF
XCALL 91 91 9y XMENyYMINoSYMHTITLE,1)
¢G5 STOP
Co76, 10GO. FORMAT(18A4)
6077 16G1l FORMAT(212)
co78 1002 FORMAT(6D1265)
0C79 16G3 FORMAT (511)
0680 16G4 FORMAT(2D12,5,13,13,12)
0081 1605 FORMAT(I3,12) .
0082 1006 FORMAT(' A=',D12c54" B='4D1265¢' IEP=',012454+" DEP=*,D12455* IP=",,
XD12.54' DP=?,D12.5) .
0083 1607 FORMAT(' FE=',D1205," FP="',D12.5+" EC= ",13,' PC= *,13,' VC=.',12,
X/ /) : ‘ .
6084 . END
FORTRAN 1V G LEVEL 1, MOD 1 MAIN DATE = 68270 12716741
(o QUAURATURE ROUTINE SELECTOR
c
0001 FUNCTION QUAD{A,B,EPS,I)
0002 DOUBLE PRECISION A,B,EPS,EP, FCN,QUAD,ANC24ANC4, ANC6H4ANCB,ANC10,4P
0003 COMMON PLIFIZIFC,ICC
0004 EXTERNAL FCN
0005 IFC=0
0006 EP=EPS
0007 M=15
0008 ~ N=ICC
0009 GO T0(10420,3044045C),I
0010 10 QUAD=ANC2(A,B,EPyM,N, FCND
0011 RETURN
0012 20 QUAD=ANC4(A,B4EPyMyNyFCN)
0013 RETURN
0014 30 QUAD=ANC6{A,BsEPyMyNyFCNI
0015 RETURN
0016 40 QUAD=ANCB{A,B+EP4MyN,FCN)
0017 RETURN .
0018 50 QUAD= ANClO(A.B EPyM,N,FCN)
0C19 RE TURN
0020 END



FORTRAN IV G LEVEL

0ocl
0002
0003
00C4
0005
0006
‘00G67
0008
0069
o010
outl
0012

10
20

30

FORTRAN IV G LEVEL

co01
0002
0003
0004
0005
¢006

Coo7T

0008
000s
0010
0011
0012
0013
0014
0015
0016
ocl7
0018
0618
€020
0021
€022
0023
0024
0025
0026
0027
0028

0029
0030

10

20

1, MOD 1 MAIN . . DATE = 68270 12/16/41
'EVALUATES INTEGRAND FUNCTION

FUNCTION FCN(X)

DOUBLE PRECISION X.PoFCN-
COMNON PvlF[vIFCvlCC
IFC=1FC+1 ]

GO TG(10,20.+30),IF1
FCN=100DO/ (X*X+P%P)
RETURN

FCN=X/(1e 1D0~ X)**P
RETURN

FCN=X*%px{ X~ 20000)*(X 30000)
RCTUNN

END :

1, MOD 1 MAIN. . . DATE = 68270 12/16/41
EVALUATES DEFINITE INTEGRAL

FUN(TXON EVAL(A,B)

DOUBLE PRECISION A,B, PvEVALle'TZ T3oT4leyQ2
COMMON PLIFI,IFC,ICC .

GO T0(10420+30),IFT
EVAL‘(DATAN(B/P)-DATAN(A/P))/P

RETURN

[F{PcEQe1.0D0) GO TO 24

IF{P.EQ. 2,000} GO TGO 28 .-

. Q1=P-1,0D0

24

28

30

Q2=P<2,0D0

T1=(1,1D0-B) **Q2

T2=(1,100-B) **Q1 -

T3=(10 100-A) #%Q2

T4={101D0-A) *#Ql
EVAL=-1,0D0/(Q2%T1)+1,1D0/(Q1%T2) 41000/ (Q2%T3)-1,1D0/(QL*T4&)
RE TURN

T1=NABS(101D0-B)

T2=DABS(1,1D0-A) :

EVAL=A-8-1,1D0%(DLOG(TL) - -DLOG(T2) ) -

RETURN

T1=DABS{1,1DC~8)

T2=DABS(1¢1D0=-A)
EVAL=DLOG(T1)=-DLOG(T2)+101D0/(15100-B)~1s 100/ (14 1D0-A)
RETURN : -

T1=B#R

T2=A%A

T3=P+1,000
EVAL=B%#T3%(T1/(P+3,0D0)-5,0D0%B/(P+2,0D0)+6,000/(P+1.,0D0))~A%*T3%
X(TZ/(P&B.ODOI-SQODO*A/(P+ZoODOl+6oODO/(P+1 0DO0))
RETURN

END




2. Adaptive Quadrature Routine Based on Newton-Cotes 3-point Rule

FORTRAN IV 6 LEVEL 1, MOD 1 " MAIN DATE = 68270

0001
0002

0003
0004
0005

0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
o018
0019
0020
vu2l
0022
0023
0024
0025
0026
0027
0028
0029

0030
0031
0032
0033
0034
0035
0036
0037
o038
0039
cc40
0041
0042
0043
0044
0045
0046
c047
0048
004S

12716741

c ANC2 INTEGRATION
C ADAPTIVE GUADRATURE ROUTINE BASED ON NEWTON-COTES 3 POINT RULE
C

100

FUNCTION ANC2(Al,B1,EPyMyNyFUN)

DOUBLE PRECISION ANC24Al4Bl,EPsFUNsAyBEPSyABSARJESTFAJFMyFByXBy

1F14F2,FBPEST24,DIFF,EST1+SUM,DAFT,ESUM, TSUM,DA,SX,5A
DOUBLE PRECISICON AEST2,FTST,FMAX,AEST1,DELTA,AEST

DIMENSION F2(30) ,FBP(30),EST2(30)yNRTR(30)
DIMENSION AEST2(30)4FTST(3),XB(30)
THE PARAMETER SETUP FOR THE INITIAL CALL
IF(NoLESO)GD TO 210

IF(N.GTo3)G0 7O 211

A=Al

B=B1

EPS=EP%*15,000

ESUM=060DO

TSUM=C,e 0DO

LvL=1

DA=B-A

FA=FUN(A)

FM= FUN((A+B)*0.500)

FB=FUN(B)

M=3

FMAX=DABS(FA)

FTST(1)=FMAX

FTIST(2)=DABS(FM)}

FTST(3)=DABS{FB)

DO 100 1=2,3

IF(FMAXeGE.FTST(I))IGO TG 100
FMAX=FTSTI(I)

CONTINUE
EST=(FA+4,0DO*FM+FB)*DA/ 64000
ABSAR= (FTST(1)44.0DO*FTST(2)+FTST(3))*DA/6¢ODO
AEST=ABSAR

1=RECUR

SX=(DA/(2.000%%*LVL)) /64,000
F1=FUN{(3,0D0*A+B)/%.0D0)
F2(LVL)=FUN({A+3,0D0%8) /4,0D0)
EST1=SX%*{FA+4,0DO%F1+FM)
FBP(LVL)=FB8

XB(LVL)=B

. EST2LLVL)=SX*(FM+4,0D0%F2 (LVLI+FB)

200

210

SUM=EST14EST2(LVL)

FTST(1)=DABS(F1)

FTST(2)=DABS{F2(LVL))

FTST(3)=DABS(FM)

AEST1= SX*(DABS(FA)+4=ODO*FTST(IDOFTST(3))
AEST2(LVL) =SX*(FTST(3) +4,000%FTST(2)+DABS(FB))
ABSAR=ABSAR-AEST+AESTLI+AEST2(LVL)

M=M+2

GO TO (201,2004+202) 4N

DELTA=ABSAR

GO 70 205

PRINT 39

39 FORMAT(®' ERROR RETURN-NeLE.O*}




FORTRAN IV G LEVEL

0050
0C51
0052
0053
0054
0055
0056
0Cs7
0058
005¢
0060
0061
0062
0063
0064
0065
0066

0067
0068
006%
0070
0071
0072

0073
0074
0075
C076
0077
0078
0079
0080
0081
0082
ooe3
0084
coss
0086
co87
0088
0089
00sSo
0091
0092
0093

0094

11

211
40

201

202

203

205

12

1, ¥CD 1~ ANC2 -
RETURN

PRINT 40

FORMAT(' ERROR RETURN=NoGTo3')

RETURN

DELTA=1,0D0"

GQ T0 205

DO 203 I=1,2

IF{FMAX, GE.FTST(I)PGO T0 203

FMAX=FTST(I)

CONTINUE .
DELTA=FMAX
DAFT=EST~SUM
DIFF-DABS(DAFT)
DAFT=DAFT/15,000
IF(DIFF-~EPS*DELTA)64643
IF(LVL=-30)4,2,2
IF{LVL-1)244,2
2=Up

A=B
ESUM=ESUM+DAFT
TSUM=TSUM+SUM
LviL=LVL~-1
L=NRTR{LVL)

GO TC (11412),L

11=R1,12=R2
NRTR({LVL)=1

EST=EST1

AEST=AEST1
FB=FM

"FM=F1

B=(A+B)}/2.0D0

"EPS=EPS/2,000

LVL=LVL+1

GO Ta 1
NRTR(LVL)=2
FA=FB
FM=F2(LVL)
FB8=FBP(LVL)
B=xs(LvL)
EST=EST2(LVL) -
AEST=AEST2(LVL)
GO T0 7
EPS=2,0DO*EPS
IF(LVL-1) 5+5,49
ANC2=TSUM-ESUM
RETURN :
END

15

DATE = 68270 12/16/41




3. Adaptive Quadrature Routine Based on Newton-Cotes 5-point Rule

FORTRAN‘IV G LEVEL 1, MOD 1 MAIN DATE = 68270 12/16/41

ANC4 INTEGRATION
ADAPTIVE GUADRATURE ROUTINE BASED ON NEWTON-COTES 5 POINT RULE

000C1 FUNCTION ANC4(A1,B1,EPyMyNyFUN)

0002 DOUBLE PRECISION ANC4,Al4BLlsEP,FUNyA4B,EPS,ESUMyTSUM,DA,XBySX,FA
1yF1yFSyF3FMsF2,FT,F4yFByFTP,FBPyFMAX,FTST,EST, AESTvESTlvESTZvAEST
214AEST2,ABSAR,DELTA,DIFF,DAFT4SUM,SA

€003 DIMENSION F2(30)+F4(30),FTP(30),FBP(30),FTST(5),EST2(30),NRTR(30)
0004 DIMENSION AEST2(30),XB(30)
c THE PARAMETER SETUP FOR THE INITIAL CALL

6005 IF(NsLE,0)GO TG 210
0006 IF(NsGTo3)G0 TQ 211
0007 A=Al
0008 B=81
0609 EPS=EP%63,0D0
001¢ ESUM=Ce 0DO
0011 TSUM=0e 0DO
0012 LvL=1
0013 DA=B-A
COl4 FA=FUN(A)
0015 FS= FUN((3QODO*A0B)/4.ODO)
0016 FM=FUN((A+B)%0,500)
0017 FT=FUN((A+3.000%B) /40 0D0)
0018 FB=FUN(B)
0019 M=5
0020 FMAX=DABS(FA)
0021 FTST(1)=FMAX
6022 FTST(2)=DABS(FS)
0023 FTST(3)=DABS(FM)
0024 FTST(4)=DABS(FT)
0025 FTST(5)=DABS(FB)
0026 DO 100 I=2,5
0027 IF(FMAXoGELFTST(I)IGO TO 10C
0028 FMAX=FTST(I) .
0025 100 CONTINUE
0030 EST= (7oODO*(FA#FB)*BZGODO*(FS+FT)+12oODO*FMD*DA/90°ODO
0031 ABSAR= (7oODO*(FTST(1)*FTST(S))+32.0DO*(FTST(Z)*FTST(4))*12;ODO*FTS

17(3))%DA/90,0D0
0c32 AEST=ABSAR

c 1=RECUR

0033 1 SX=(DA/(2.0D0%*LVL)) /90,000
C034 F1=FUN((7,0D0%A+B)/8,000)
6035 F3=FUN({5,0D0%A+3,0D0%B) /8,CD0)
0036 F2(LVL)=FUN((3,0D0%A+5,0D0%8)/8,0D0)
6037 F4(LVL)=FUN( (A+7.0D0%B) /8,000)
0038 EST1= SX*(7.0DO*(FA*FM’+32.0DO*(F10F3)*IZ.ODO*FS)
0039 FBP{LVL)=FB
0040 FTP(LVL) =FT
0041 XB(LVL)=8
0042 EST2(LVL)=SX*(7.0D0%{FM+FB)+32,0D0% (F2(LVL)+F4(LVL))+12,0D0*FT)
0043 SUM=ESTL+EST2(LVL)
0044 FTST(1)=DABS(F1)
0045 FTST(2)=DABS({F2(LVL))
0046 FTST(3)=DABS(F3)

0047 FTST{4)=DABS(F4{LVL))
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AEST]= SX*(7.0DO*(DABS(FA)+FTST(5)’+32.000*(FTST(1)+FTST(3))+12°ODO

AEST2(LVL) SX*(?«ODO*(FTST(S)fDABS(FBl)+32o000*(FTST(ZD*FTST(4D)*1

FORTRAN IV G LEVEL 1, MCD 1 ANC4
0048 FTST(5)=DABS (FM)
0046
X*DABS(FS))
0050
X2+ 0DO*DABS (FT))
0051 ABSAR=ABSAR- AEST+AEST1+AEST2(LVL)
6052 . M=M+4
0053 GO TG (201,2004202) 4N
0054 200 DELTA=ABSAR
0055 GO TO 205
0056 210 PRINT 39 A R
0057 39 FORMAT{' ERROR RETURN-NoLEs0"')
[SALY RFTHRN -
0059 211 PRINT 40 ,
0060 40 FORMAT(' ERROR RETURN~NoGT43°)
0061 RETURN :
0062 201 DELTA=1,000
c063 6010 205
0064 202 DO 203 I=1,4 :
C065 IF(FMAXoGEoFTST(I))GO TO 203
0066 FMAX=FTST(I)
0067 203 CONTINUE
0068 DELTA=FMAX
0069 205 DAFT=EST-SUM
007¢ - DIFF=DABS(DAFT)
0071 DAFT=DAFT/63,000
0072 IF(DIFF~EPSH*DELTAI6 643
0073 3 IF(LVL=3004+2+2
0C74 6 TF(LVL=11244,2
©2=up
0075 2 A=B A
0076 ESUM=ESUM+DAFT
0077 TSUM=TSUM+ SUM
0078 9 LvL=LVL-1
007% L=NRTR{LVL)
0086 GO TG (11,12),L
11=R1,12=R2
0081 4 NRTR(LVL)=1
0082 EST=EST1
0083 AEST=AEST1
0C84 FB=FM
0c85 FT=F3
086 FM=FS .
0087 FS=F1
0088 B=(A+B) /20000
0689 "EPS=EPS/2.,000
6C9C 7 LVL=LVL+1
0051 G0 10 1.
0092 11 NRTR(LVL)=2
0CS3 FA=FB
c054 FS=F2(LVL)
00655 FM=FTPILVL)
0CS6 FT=F4(LVL)
0CS7 FB=FBP(LVL)
c098 B=XB(LVL)
095 EST=EST2(LVL)
o10¢ AEST=AEST2(LVL)
0101 GO TG 17
0102 12 EPS=2.CDO*EPS
0103 - IF(LVL-11545,9
C104 5 ANC4=TSUM-ESUNM
G105 RETURN
0106 END .




4. Adaptive Quadrature Routine Based on Newton-Cotes 7-point Rule

FORTRAN IV G LEVEL ls MCD 1 MATN DATE = 68272 12716741
C ANCE& INTEGRATIGN :
c ACAPTIVE CUADRATURE ROUTINE BASED UN NEWTON-COTES 7 POINT RULE
c

COC1
cco2

oce3
0004
Cco5
0CGe

cCcov
nocs
caoes
gelc
0011
0012
GC13
0014
GC15
CCl6
ccl7
0018
CO1¢
0C20
0021
0022
0023
0024
0025
0026
0027
coes
0029
0030
0031
0032
c033
0034
0035
0036

0037
0038

cec3s
¢G40
0041
C042
0043
0044
0045
004¢
Co47
0048
0046
c050
CG51

0052
0053
0054
c055
0056

1C0

FUNCTIGN ANC6(AL4BL4EPy My NysFUN} ‘
-DOUBLE PRECISTON ANCOG+ALyBLlyEPyFUNyAsByEPSySUMyESUM,TSUM, DA, XBySX

143Fl+FSyF3,FMyF2FT,F4,FB,FTP,FBP,FMAX,FTST,EST,AEST,ESTL4EST2,AEST
214AEST2 ABSARCELTA,CIFF,CAFT,FA,SA’

DOUBLE PRECISICN FRyF5,FU,F6yXRy X5y XUy X6,y FUP

DIMENSTON F2(30) +F4(30)4FTP{30)4FBP (30} +FTST(T),EST2(30),NRTR(30}
DIMENSION AEST2(32),XB{30)

CIMENSICN FUF(3D),F6(30)

THE PARAMETER SETUP FOR THE INITIAL CALL

IF(N-LE.C)GC TC 210 )

IF(NoGTo31GC TC 211

A=Al

B=R1
EPS=FP%255,CDC
ESUM=CGDO
TSUM=CHODO
Lvi=1

DA=B-A
FA=FUN(A)
FR=FUN( {5, 00G*A+R)/6,C0D0)

FS=FUN((2,0D0%A+8)/3,0D00)

FM=FUN((A+B)*Co500)

FT=FUN({A+2,0C0%B)/3,0D0)

FUSFUN({A+5,CGDO%¥R)/65,000)

FB=FUN(B)

M=7

FMAX=DABS(FA)

FTST(1}=FMAX

FTST{2)=DABS{FR)

FTST(3)=DABS(FS)

FTST(4)=DABS{FM)

FTST(5)=DABS(FT)

FTST(6)=DABS(FU)

FTST(7)=DABS(FB)

DO 100 [=2,7

IF(FMAXSGEL,FTST(INIGO TO 100

FMAX=FTST(I}

CONTINUE

EST=(41.0D0O%(FA+FB)+216,0DO% (FR+FU)+27,0D0%(FS+FT)+272.0D0*FM)=NA/
184C, 000 :
ABSAR=(41.0DG*(FTST(L)4+FTST(T))1+216.0DO%(FTST(2)+FTST{6)1+427,0D0%(
1FTST(3)+FTST(5))4272.,000%FTSTI4) }%DA/84D. 0DC

AEST=ABSAR '

1=RECUR .
SX=(DA/(6,0D0%2,0D0%*LVL) /140,000

FL=FUN((11.CEC*A+8)/12,0D0}

F3=FUN((9.0DCG*A+3,0D0%B)/12.00D0)

F5=FUN((7,0D0%A+5,000%B) /12,000
F2(LVLI=FUN{(5,0D0%A+7,C00%B)/12,000)
F&{LVL).=FUN({3,000%A+9,000%B)/12.,0D0)
FO(LVL)=FUN({A+11.0D0%B)/12,0D0)

EST1=SX*(41,0D0% (FA+FM) 4216, 0D0% (F1+F5)+27.,0D0%(FR+FS}+272,0D0*F3)
FBP{LVL)=FB

XB(LVL) =8B

FTP{LVL)=FT

FUP(LVL)=FU . . ' ,
EST2(LVL)I=SX*(41,0D0%(FM+FR) 4216, 0D0%(F2{LVL)+F6{LVL))+27.0DO*(FT+
1FU) +272.0D0%F4(LVL)}

SUM=ESTL+EST2(LVL)

FTST(1)=DABS(F1)

FTST(2)=DABS(F3)

FTST(3)=DABS(FS)

FTST(4)=DABS(F2(LVL))

»



FORTRAN IV 6 LEVEL 1, MCD 1 ‘ANC6
0057 FTIST(S)=DABS{F4(LVL})
0058 FTST(6)=DABS{F6(LVL))
0059 FTIST(7)=DAYS(FM)
0060
1DO*(DABS(FR)+CABS(FS))+272,0D0%FTST(2))
- 0061
1427, 0D0% (CABS(FT) +DABS(FU))4272,0D0%FTST(5))
c062 ABSAR=ABSAR- AESTfAESTloAESTZ(LVL)
0063 M=M+6 :
0064 60 T0. (201 700.202».N
0G¢&5 200 DELTA=ABSAR
6C66 GO TO 205
0067 © 210 PRINT 39 ) S
0068 36 FORMAT(* ERRQOR RETURN-NaLE.O")
CC69 : RETURN '
0G70 211 PRINT 40 S
0071 40 FORMAT(' ERROR RETURN-NeGTo3?)"
0072 RETURN : .
0073 201 DELTA=1,0D0
0074 GO TC 205
Cc075 202 DO 203 [=1,6
0076 IF(FMAX;GEoFTST(I))GO 10 203
0077 , FMAX=FTST(I)
0Cc78 203 CONTINUE
0C7s . DELTASFMAX
0080. 205 DAFT=EST-SUM
008l : NIFF=DABS(CAFT)
co82 . DAFT=0AFT/255,0D0
0083 IF(CIFF~EPS*DELTA) 6,633 .
0C84 . 3 IF(LVL-30)4,242 :
GCB5 6 IF(LVL=1)244,2
2=UP
0Cc86 2 A=B
cnev ESUM= FSUM#DAFT
c088 TSUM=TSUM+ SUM
C089 9 LVL=LVL-1 -
GC90 L=NRTR(LVL)
0651 GO TC (11,12),L
11=R1,12=R2
0062 4 NRTR{LVL)=1"
0C93 EST=ESTL
¢G94 AEST=AEST1
CCSS FB=FM
€CsS6 FU=F5
0CS7 "FT=FS
ccos FM=zF3
CC99 FS=FR
ol0¢ FR=F1
oicl B=(A+81/2,0D0
clcz2 EPS=EPS/2,0C0O’
0103 7 LVL=LVL+1
ClC4 GC TC 1
, ¢105 11 NRTR{LVL)=2
C1Cé6 FA=FB
c1c7 FR=F2(LVL) .
c1c8 FS=FTP(LVL)
0109 FM=F4(LVL)
ol10 FT=FGP(LVL)
cl1l FU=FA(LVL)
o112 FB=FBP(LVL)
Cl13 B=XB(LVL)
0ll4 EST=FST2{LVL)
cl15 AEST=AEST2(LVL)
Clle GO 10 7
G117 12 EPS=EPS%2,CD0
cl1e . IF(LVL-115,5,9
C116 5 ANC6=TSUM-F SUM
cl2ac RETURN
" END

ci2l
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AEST1=SX*{41, ODO*(DABS(FA)+FTST(7J)42160000*(FTST(1D+FTST(3"427 0

AEST2{LVL ) =SX* (41, 0DO*(FTST(T)+DABS{FB))+216,0D0%(FTST(4)+FTST(6)}




5. Adaptive Quadrature Routine Based on Newton-Cotes 9-point Rule

FORTRAN IV G LEVEL 1, MOD 1 MAIN. DATE = 68270 21/22/06
C ANCS INTEGRATION
C ACAPTIVE GQUACRATURE RGUTINE BASED ON NENTON COTES 9 POINT RULE
[

Ccol FUNCTIGN ANCB(AI-EI:EP;M;N.FUN)

0002 DOUBLE PRECISION ANCE,Al,Bl1,EP,FUNysA,B,EPSyESUM,TSUM,DA,XB+sSXsFA
1+FLyFSyF3,FM,F2,FT4F44FB,FTPyFBP FMAX,FTST ESTyAEST,EST1,EST2,AEST
21,AEST2,ABSAR,DELTA,DIFF+DAFT,SUM,SA

0003 DOUBLE PRECISION FRyFS5,FUyFE9XRy X549 XUy X6,y FUP

CCo4 DOUBLE PRECISIGN FQeFT+FV,FByXQyXTyXVyX8yFVP

0005 DIMENSION F2(30),F4(30),FTP(30),FBP(30),EST2(30),NRTRI{30)},FTST(9)

00Qe DIMENSION AEST2(30),XB{30)

cocv CIMENSION FUP(30),F6(30)

0c¢cs DIMENSION FB8(30),FVP(30) .

C THE PARAMETER SETUP FOR THE INLTIAL CALL

0CGs IF(NsLE-O)GO TO 210

COl¢ IF{NeGYo3)G0 TU 211

0011 A=Al

cCl2Z B=B1

ceC13 EPS=EP*1023,0C0

0014 ESUM=0, 000

cC15 TSUM=0,CDO

CCleé Lvi=1

ccl17 DA=B-A

ccls FA=FUN(A)

0C1l¢S FQ=FUN{(7,0D0*A+8)/8+000)

coz2¢ FR=FUN((3,0D0%*A+B}/4.000)

0021 FS=FUN({5,000%A+3.0D0%*B)/8.000)

0022 FM=FUN((A+B)*0,5D0) .

‘c023 FT=FUN{(3,0D0*A+5,0D0%B) /8,0D0}

0024 FU=FUN((A+35000%8)/4,000)

cc25 FV=FUN((A+7,000%B)/8,0D0)

coz26 FB=FUN(B)

0027 M=9

coze FMAX=DABS(FA)

0c2s FIST(1)=FMAX

€030 FTST(2)=DABS(FQ)

0031 FTST(3)=DABS(FR)

0c32 FTIST(4)=DABS(FS)

0033 FTST{5)=DABS(FM)

0034 FTYST(6)=DABS(FT)

0035 FTIST(7)=DABS(FU)

0036 FTST(8)=DABS(FV)

ce37 FTST(S)=DABS(FB)

0038 DO 100 I=2,9

€039 IF{FMAXcGE.FTST(I}IGO TO 100

0040 FMAX=FTST(I)

0041 100 CONTINUE

0042 EST=(S89,0D00%(FA+FB)+5888,0D0* (FQ+FV )~ 928 COO%{ FR+FU)+10496,0D00%*(F
XS¢FT1-4540,0D0%FM) *DA/28350,000

0043 ABSAR={989,0D0% (FTST{1)+FTST(9))+5888,0D0*%(FTST{2})+FTST(8))-928,0D
XO*(FTST(3l*FTST(7))+104960000*(FTST(4)0FTST(6)) ~4540, 0D0*FTST(5) ) *
XDA/283500,0DC

0Q44 AEST=ABSAR

C 1=RECUR
0045 1 SX=DA/(2835G,CDC*2,0D0**LVL)
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FORTRAN IV G LEVEL 1, MOD 1 ANCS DATE = 68270 21/22/06
0046 F1=FUN((15,0D0%A+B)/16,0D0)
0047 ] F3=FUN((13,000%A+3,0D0%8)/16.,0D0)
0048 : FS=FUN((11o0D0%A+5,0D0%B)/16+000)
0049 - F7=FUN( (950D0%A+7,000%8)/1645000)
0050 F2(LVL)=FUN( (70D0%A+9,0D0%8) /164000 )
0051 F4(LVL)=FUN( (5.0D0%A+11,0D0%8)/16,0D0)
0052 F6(LVL)=FUN((3,000%A+13,0D0%B)/16,000)
0053 FB(LVL)=FUN((A+15,0D0%B)/164000)
0054 ESTL=SX#(989, 0D0%(FA+FM)+588840D0*(F1+F7)~928,000%(FQ+FS)+10496, 0D
XO*(F3+F5)-45400 0DO*FR)
- 0055 FBP(LVL)=FB
0056 XB(LVL)=8B
0057 FTPALVLI=FT
0058 : FUP(LVL)=FU
0059 FVP(LVL)=FV
0060 ‘ EST2(LVL)=SX*(989.0D0%(FM+FB)+5888,0D0% (F2(LVL) +F8(LVL))-928, 0DO*(
XET+FV)+104960 000% (F4 (LVL)+F6 (LVL))=4540. 0DO%FU)
ccel SUM=ESTL+EST2{LVL)
0C62 FTST(1)=DABS(F1)
0063 _ FTST(2)=DABS(F3)
0064 FTST(3)=DABS(FS5)
0065 FTST(4)=DABS(FT)
0066 FTST(5)=DABS(F2(LVL))
0067 FTST(6)=DABS (F4(LVL))
0C68 ' FTST(7)=DABS(F6(LVL})
0065 FTST(8)=DABS(F8(LVL))
0070 ' FTST(9)=DABS(FM)
0071 AEST1=SX*{989,0D0%(DABS(FA)+FTST(9))+5888,000#(FTST(1)+FTST(4))-92
: X8, 0DO*(DABS(FQ)+DABS(FS ) J410496,0D0% (FTST(2)+FTST(3)1-4540,0D0%DAB
' _ XS(FR))
0072 AEST2(LVL)=SX*(989,0D0%* (FTST(9)+DABS(FB))+5888,0D0%(FTST(5)+FTST(8

X)}-928,000% (DABS(FT)+DABS (FV))1+410496,0D0*(FTST{6)+FTST(T))~4540, 0D
XO0*DABS(FU))

co73 ABSAR=ABSAR-AEST+AEST1+AEST2(LVL)
) 0C74 M=M+8

0075 GO 10 (201.200.202)'

0076 200 DELTA=ABSAR

cc77 GO T0 205

6078 210 PRINT 39 .

0079 39 FORMAT{' ERROR RETURN-NeLE<O'}

008C RETURN

ocsl 211 .PRINT 40

0ce2 40 FORMAT{® ERROR RETURN-NeGTe3')

0083 RETURN

0084 201 DELTA=1.000

oces GO TO 205

oces 202 DO 203 I=1,8

cos87 IF(FMAXoGEoFTST(I))GO TO 203

o08s FMAX=FTST(I)

cG89 | 203 CONTINUE

0C9¢ DELTA=FMAX

C091 2C5 DAFT=EST-SUM

0Cs2 DIFF=DABS(DAFT)

cQ0s3 : DAFT=DAFT/1023.0D00

C094 _ IF(DIFF-EPS*DELTA)64643
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0095 3 [F(LVL-301442,2 X

ccsé 6 IF(LVL=1)2,4,2
c 2=Up

0097 2 A=8B

0098 ESUM=ESUM+DAFT

0059 TSUM=TSUM+SUM

0100 © 9 LvL=LvL-1

0101 L=NRTR(LVL) .

clc2 ~ GO TC (11,12),L
c 11=R1,12=R2

€103 4 NRTR(LVL)=1

0104 EST=EST1

01C5 AEST=AEST1

0106 FB=FM

c1c7 FV=F7

clce FU=FS

0109 FT=FS

o1l1c¢ FM=FR

0111 FS=F3

0112 FR=FQ

0113 FQ=F1

0114 B=(A+8)/2,0D0

0115 EPS=EPS/20 000

Clie - 7 LVL=LVL+1

0117 Ga TC 1

0118 11 NRTR(LVL)=2 )

c1l1s FA=FB

G120 - - . FQ=F2(LVL)

0121 FR=FTP(LVL)

0122 FS=F4(LVL)

0123 FM=FUP(LVL)

c124 . FT=F6(LVL)

0125 FU=FVP(LVL)

c126 FV=F8(LVL)

0127 FB=FBP(LVL)

c128 " B=XB(LVL)

012% EST=EST2(LVL)

0130 AEST=AEST2(LVL)

0131 GO TO 7

€132 12 EPS=2,0DO*EPS

0133 IF(LVL=1)5,5,9

0134 5 ANC8=TSUM-ESUM

0135 RETURN

Cl36 FNN
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6. Adaptive Quadrature Routine Based on Newton-Cotes 11-point Rule

0043

0cat’

C
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c

FORTRAN IV G LEVEL 1, MGD 1

‘MAIN

ANC10 INTEGRATION

. 'DATE = 68270

21/22/06

ADAPTIVE QUADRATURE ROUTINE BASED ON NENTON -COTES 11 POINT RULE

FUNCTION ANCINEAL,Bl.EP-M.NsFUN)
DOUBLE PRECISION

ANC10,AL,B1,EP,FUN, A B, EPS'SUHvESUM TSUM, DAv XB ¢S

1XeF1yFSeF34FMyF24FTyF4FB, FTPFBP FMAX,FTST,EST, AEST,EST1,EST2,AES

2T1,AEST2,ABSAR,DELTA,OIFF,DAFT,FA,SA

DOUBLE PRECISICN FRyF53FU,F6¢yXRy X5y XUy X6y FUP

DOUBLE PRECISION FQyF7,FV,F8,XQsXTeXV¢X8¢FVP

DOUBLE PRECISICN FPyFO3FWoFLOyXPy X9y XWeX10,FWP

DIMENSTGN F2(3C)F4(30),FTP{30),FBP(30),EST2(30)4NRTR(30),FTST(11)

DIMENSION AEST2(30),XB(30)
DIMENSIGN FUP(30)4+F6(30)
DIMENSION F8(30),FVP(30)
DIMENSIGON F10(30),FWP(30)

THE PARAMETER SETUP FOR THE INITIAL CALL

IF(NaLE-0)GO TO 210
IF(NeGTo3)60 TC 211

A=Al

B=B1

EPS=EP*4095. 000
ESUN=00000 -

TSUM=C, 0DO

LvL=1

DA=B-A

FA=FUN(A)
FP=FUN( (9, 0DO*A+B)/10,0D0)
FQ=FUN({4e 0DO*A+B) /5,000)

FR=FUN((7.0D0%A+3,000%8}/10,0D0} -

FS=FUN((3,0D0%*A+2,000%B)/5.000)
FM=FUN((A+B)*0,5D0)
FT=FUN((2,0D0%A+3,000%8)/5,000)

FU=FUN((3,000%A+7,000%8B)/10.000)

FV=FUN{(A+4,0D0%B}/5,0D0).
FW=FUN({(A+9,000%8) /10,0001
FB=FUN{(B}

" M=11

FMAX= DABS(FA)
FTST(1)=FMAX .

" FTST(2)=DABS(FP) .

100

FYST(3)=DABS(FQ)
FTST(4)=DABS(FR)
FTST(5)=DABS(FS)
FTST(6)=DABS{FM)
FTST(T7)=DABS{FT)
FTST(8)=DABS(FU)
FTST(S)=DAB>M(tV)
FTST(10)=DABS(FW)
FYST(11)=DABS(FB)
DO 1001=2,11
IF{FMAXoGELFTST(I))GO TO 100
FMAX=FTST(I)
CONTINUE

EST=(16067. 0DO% (FA+FB)+10630000D0%( FP+FH)~48525,000+(FQ+FV)+272400

Xs ODOX(FR+FU)=26055000D0%{FS+FT)+427368,0D0*FM)*DA/598752,0D0



FORTRAN

0049

0050

0051
0052
0053
0054
0055
0056
0057
0058
0056
0060
coe6l
0062

0C63
0064
0065
0066
0067
0068
0069

cQ70
0071
0072
0073
0074
C075

0076

oc77
0g78
0079
c080
gcsl
0082

0083

0084

0085
0086
0087
0088
6089
€090
acsl
6092
€093

Iv G LEVEL

200

210
39

211
40

1, MCD 1 ANC10 DATE = 68270 21/22/06

ABSAR=(16067,000%{FTST(L)I+FTST(11))+106300,0D0%(FTST{2)+FTST(10})-
X4852500D0*(FTST(3)1+FTST{(9))4272400,0D0%(FTST(4)+FTST(8))-260550,00
XO*%(FTIST(S5)4FTST(T7))+427368,0D0%FM)*DA/598752,000

AEST=ABSAR

1=RECUR

SX=DA/{59875240D0%2, 0D0O*%L VL)

F1=FUN((19,0D0%A+B)/2040D0)

F3=FUN{(17,000%A+3,0D0%B)/20,0D0)

FS=FUN((15.0D0%A+5,000%8) /20,000

FT7T=FUN((13,0DC*A+7,0D00%B)/20,00D0)

FO9=FUN((11,0DC*A+3,0D0%B)}/2C0D0)

F2{LVL)=FUN((9.0D0%A+11.0D0%8) 720,000}

F4(LVL)=FUN{(7,0D00%A+13,000%B)/200D00)

FOULLVLI=FUN((5.0D0%A+15,0D0%B)/20.0D0)

F8(LVL)I=FUN{{3.0D0%A+17,000%B)/20,000)

FLO(LVL)=FUN( (A+19,0D0%B)/20,0D0)

EST1=SX*(16067,0D0*(FA+FM)+106300.000*%{F1+F9)~48525, ODO#(FPfFS)#27
X2400,0D0*({F3+F7)-260550,0D0%(FQ+FR)+427368,0D0*F5)

FBP{LVL)=FB

XB{LvL)=8B

FTP(LVL)=FT

FUP(LVL)=FU

FVP{LVL)=FV

FWP(LVL)=FW .

EST2{LVL)I=SX*{(1606T.0D0*(FM+FB)+106300,000*({ F2(LVLI+F10(LVL))-4852
X50 0DO*(FT+4FK) 4272400 0DO* (F4(LVL)+FB8(LVL))1-260550,0D0%(FU+FV)+4273
X680 COO%F6(LVL))

SUM=EST14EST2(LVL)

FTST(1)=DABS(F1)

FTST(2)=DABS(F3)

FTST(3)=DABS(FS)

FTST(4)=DABS(F7)

FTST(5)=DABS(F9)

FYST(6)=DABS(F2(LVL)}

FTST{7)=DABS(F4(LVL))

FTST(8)=DABS(F6{(LVL))

FTST(9)=DABS(F8({LVL))

FTST(10)=DABS(F10(LVL))

FTST(11)=DABS(FM)

AEST1=SX*(16067,0D0%(DABS(FA)+FTST(11))+106300,0D0%(FTST(1)+FTST(5
X))-48525,0D00%(DABS(FP)I+DABS(FS) ) +272400o0D0* (FTST(2)+FTST(4))-2605
XS0.0DO*(DABS(FQ)+DABS(FR))*427368.000*FTST(3))

AEST2{LVL)I=SX*(16067, 0D0O*{FTST(11)+DABS(FB))+106300,0D0*%(FTST(6)+F
XTST{10))1-48525.000%( DABS(FT)+DABS(FW))+272400,0D0*(FTST(T)+FTST(9)
X)=2605500 0D0*(DABSIFU)+DABS(FV))+427368B,0D0%FTST{(8))

ABSAR=ABSAR-AEST+AEST1+AEST2(LVL)

M=M+10

GO 70 (201,200,202) N

DELTA=ABSAR

GO 10 205

PRINT 39

FORMAT(* ERROR RETURN=NeLEeO")

RETURN

PRINT 40

FORMAT(' ERRCOR RETURN=-NeGTo3?)
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0094
0055
0096
0097
€0s8
0099
0100
0101
0102
0103
0104
0105
0106
o107

01C8 .
0109

0110
0111
0112
0113

0114
0115
0116
0117
o118
0119
0120
0121
0122
0123
0124
0125
G126
0127
0128
€129
0130
c131
Ccl132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
C1&7
Cl48
C1l49
0150
c151

201
202

203

205

‘11

12

i, MCD 1 _ ANC10

RETURN

DELTA=1,0D0

GO T0 205

DO 2C3 1=1,10 .
lF(FMAXoGEcFTST(l))GO ro 203
FMAX=FTSTI(I)

CONTINUE

DELTA=FMAX

DAF T=EST-SUM
DIFF=DABS(DAFT),
DAFT=DAFT/4095.,0D0 -
IF(DIFF-EPS*DELTA)646,3
IF(LVL-30)4,2,2
IFLLVL=1)244,2

2=UpP

A=8 o
ESUM=ESUM+DAFT
TSUM=TSUM+SUM

TLvL=LvL-1

L=NRTR(LVL)
GO TO (11,121,

11=R1,12=R2

NRTR(LVL)=1
EST=EST1

AEST=AEST1

FR=FM
FN=F9

FV=FS

FU=F7

FT=FR

FM=F5

FS=FQ

FR=F3

FO=FP

FP=F1

B=(A+B) /2,000
EPS=EPS/240DO
LVL=LVL+1

GO T0 1
NRTRILVL) =2

FA=FB

FP=F2(LVL)
FQ=FTP(LVL)
FR=F4(LVL)
FS=FUP(LVL)
FM=F6(LVL)
FT=FVPILVL)
FU=FB(LVL)
FV=FWP(LVL)
FW=F10(LVL)
FB=FBP(LVL)
B=XB(LVL)

“ESTaEST2(LVL)

AEST=AEST2(LVL)
G0 10 7 ‘
EPS=EPS*2,0D0
IF(LVL=1)5+5,9°
ANC10=TSUM-ESUM
RETURN

END
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