
LEGAL NOTICE >- :
TIM inprt M I fr*f*r*4 ** M m , g p * *t Q*rtmmt»A ip—aori* * M 1 L Ntttwr M I tMMi
•MM, few'lb C«wJ«lo« , MT M J M F M I acttwg — fciwlf of i » C — • I w t i t

' M f , I I M J I I I M H I ; or w h l i i n of tka ttfamaUo* COIMIBII fei IftU rvpart, «r MM MI «a.
•A Mr MlirMUlM, t > f i n k i , • i th i f . M-'PTMMM Mttto—< bi M* r*p»rt Mt *ml l ihhgi

• MJT U M U I O N wttk nwpwet I* £ • « H •£, M- f»r 4
•M M Mr MTiraWlM, I M H W , * « * • * , *r E H M H MIBIIM* la * u n u i L .

A« MM Ik Ml I k m , "ptTM »CtMI M. *Mtlf Of Ml C M M M " MfMMI Mf M -
pU^M «r n M r t t i i af M I CaMWlMi—• «r l a ^ l i y i af MM eaMiacfrt. l»Sa* MMrt M

SLAC-102
UC-32
(MISC)

y *Mh ft* r»«wl lr iw, «r Us iwplijBl'm «Mk Mtoh <—liaim. '

i- .

: ; • . ; CIL

COMPILER. IMPLEMENTATION LANGUAGE

^ DAVID GRI.ES r

STANFORD LINEAR ACCELERATOR CENTER,

STANFORD UNIVERSITY

Stanford, California

PREPARED FOR THE U.S. ATOMIC ENERGY'

, "COMMISSION UNDER CQNfRAC.T NO. AT(04-3)-5i5

March 4969

Reproduced in-the USA. Available from the Clearinghouse for Federal Scientific
and Technical Information, Springfield, Virginia 22151. !

Price: Full size copy .$3.00; microfiche copy $..65. * -

. : . a • SIAC-102
• '••-. * UC-32

: •"• (Misc>

GIL

COMPILER IMPLEMENTATION LANGUAGE

• . i ;

DAVID GRIES

STANFORD LINEAR ACCELERATOR CENTER
. • ' ; " • -

STANFORD UNIVERSITY

PREPARED FOR TRE U.S. ATOMie ENERGY

COMMISSION UNDER CONTRACT NO. AT(04~3)-515

March 1969 ' '.

•T\
Stanford, California •"' \ i j •

Reproduced in the USA; Available from.the Clearinghouse for Federal Scientific
and Technical Information, Springfield, Virginia 22151.
Price: Full size copyA$3.00; microfiche copy $, .65.

s

I . \ ' \'v
gpHTEWT§-^ey.ts^ 3 / 1 0 / 6 9

INTRODUCTION HeTised 3 /10 /69 " j . 1
1 - 1 . - gafrjc tgatures_ol:_CIL ' . ' : . ' . 1
1 - 2 - Jt9y\$q E a *4 . t h i s repor t
1 . 3 . Acknowledgements

3
V

11/26/68 5 TEBMIMOLOGY ADD NOTATION lie vised
2.1. £sfifiiiiaas t- „ 5

2-2. gjtBtai nouti<?s 5
2 - 3 . ^ a t a c t i c g g t j t i e s 7

BASIC ELEHEMIS OF THE .LANtiUAGE l a v i M d 11 /20 /68 9
3 - 1 . 9*5*9 gy*bo lg . c o » » e a t s 4f ld .»j*c*» > 9

3 . 3 . a»served wqrds 1*i
3 . 4 . 1 £2flrce_ language s/ftOgjg • 11

STRUCTURE OF A PHOGRAH Revised 1 1 / 2 0 / 6 8 12
« . 1 . Coreload d e s c r i p t i o n * / ,12
4 . 2 . Global, . d e c l a r a t i o n s ,12
4 . 3 . Passes 13

VALUES, TYPES AND CONSTANTS Revised 3/10/69. '-^ 14
5 . 1 . fiasis-iifiss , >, •/ •• • >'r*
5 . 2 . S tructured v a l u e s and t y p e s (15
5 . 3 . cj>nsta.a£§ - / y . ' . - , • . 1 7
DECLARATIONS Revised 11/20/&8 / . ^ 19
6 . 1 . a a a t g - a o a - g £ ^ c t u c e d _ t 1 p e d e . g l * i « U 9 B l 1 9

- 6 . 2 . I i S i e x _ ^ t l £ t _ a i ! i i _ i i £ £ _ i e c l d £ a i i 2 f l S 19
6 . 3 . Procedure d e c l a r a t i o n s 21
6-<*. I l l£_d££la£aiA2£5 , 22
VARIABLES AND INDIRECT REFEKENCfcS Revised 11 /20 /68 .23
7 . 1 . ' 5 A l £ l S _ U £ A a i l S § 23"
7 . 2 . Copponent v a r i a b l e s and s e l e c t o r s 24
7 . 3 . I n d i r e c t r e f e r e n c e s 25
7 -4 - £ i i l £ l £ s " " 26

EXPRESSIONS Revised 3/10/O9 27.
8 . 1 . ftfBStJ9n d e s i g n a t o r s ' : . . 27

8 . 2 . , Bagic_fijti;jifissi iong 27
B. 2.1 priiar4.es 28
8.2.2 precedence of operators •"'••;'.. / 28
8.2.3 . conversion ot operands _. 28
8.2.4 arithmetic operators 30
8.2.5 'bits operators' - * 30
8.2.6 relational operators 30
8.'2.7 logical operators, 31
8.2.8 catenation • • ' , ' • • 31

8.3. Structure expressions 31

http://priiar4.es

STATEMENTS Bevised 11/20/6tf 34
9- 1. C,9FB°nnd g f f »«ttt< | 34
9-2. A f i y M f B t »tat+ffnt$ 30
9 . 3 . £2fl<ii i i i2fl i l -«i i i«mita 36 9.4. iifcatiTf tm*M«ia 3«
9.5- g«ff ft*tfPtff 37
9.6. 5^!BlI2l_fl4iSl£MS ' , 38
9-7. ?ggsedjlCg.gfeitggsat¥ 39

' 9.8. 5£4£n«£_2la±«!£ilis *0
9-9. Ipout-ontpjit . 4 1
9.10. Beleagjng storage , 43
CFEBATIONS ON TABLES, DICTS AND STACKS Bevised/l 1/20/68 44
16. 1. Operations. on_jai>les •*',.'/' »*
10.2- OPgEfltjons On djets 45
10.3- Operations on stacks 49
10.4. The table-.SINT.DIC " .
STOBAGE ALLOCATION AND ALIGNMENT OF VALUES x

Revised 11/20/68 .
SCANNER DEFINITIONS; Revised.11/20/68 53v

12. 1. Scanning and the internal dictionary 54
,12-2. Defining svconvis : 55
12-3. Set definitions / 56
•12.4. Beserved words \ 57
12-5. String and c o m en t Quotes 57
12.6. Processing before scanning 58

-PBOD0CTION LANGUAGE (PL) tfevis«d 11/20/68 60
, 13. t. CoBBents and blanks 60
1312- PL~res^r\red words ' . 6 1
13.3. Source language s/Bbois 61
13.4. Betas/• bo Is ~. , , \61
1.3; 5. Identifiers - \ . . . ' 6.1
13.6. CoBBunjcation between syntay and semantics 6i

^j13.7. Declarations in PL ~ 63 x

13.8, Productions . 64,
13-9. Actions ~ V.. " " • 65
CODE GENEBATION SYSTEM1 (CGSJ Revised 3/10/69'" " C^"' 67
' 14. 1. CODEAREAS ' V 67

14. 1. "introduction ',.-. ;'=, ' - V-^6'7
14-1.2 register descriptions T 68
14.1.3 system variables connected with CODEABEAS 69
14. 1.4 ,creating and switching CODEABEAS 69

• -• 14'. 1.5 entering- data into a CODEABEA . t - 6 9
14'. 1.6 initial conditions .70

14.2. DATAABEAS ' » ' • ' • • - 70
14.2.1 introduction * 7 0
14.2.2 systes variables connected with DATAABEAS 71
14.2.3 creating and switching DATAABEAS 71
14.2.4 allocating and initializing DATAAfiEA storage 72

. 14.2.5 initial conditions 75

http://table-.SINT.DIC

14.2.6 addressing DIfKABIC DATAABEAS 75

* 14.3. m. ptasMieise 76
14.3.1 structure of the DESCBIPTOB 77
14.3.2 generating DKSC&IPTOES ,, 82
.14.3.3 defining the basic address (BA) 82
14.3.4 defining the effective address (EA) • . ' 82
14.3.5 the leagtn ot SBXTES Tariables , 85
14.3.6 mntiae entry points and external references 85

/ 14.3.7 generating DESCBIPTOJJS for constants 86

14.4. 1 register nuabers'and naaes .-'• 87
14.4.2 general runtime register usage 88
14.4.3 register descriptions .* . 8 9
14.4.4 testiig register status 90

y14.4. 5 generating code tj» dune registers 90
l4-;4.6 generating code to load and use registers 91
14.4.7 altering register descriptions 91
14.4.8 saving and restoring register descriptions 92

14.5. '£gg« fXPE«fffl?flf ' "

14.6.1 conpound runtiae statenents 95
14.6.2 assignaent runtine statenents - 9 5
14.6.3 conditional runtiae statenents 95
14.6.4 runtiae label definitions 96
14.6.5 runtine control stateaents 96
14.6.6 runtine procedure calls 97

. 14.6.7 runtiae procedure entries and returns 98
,14.7. Tenporary rui^ine,s^ora^e ' '*.. '.. 99
y!4.8. When CGS releases BSgCglgTQBS ^ 99

14.9. Specifying aultlpje coreloads .99
Appendix A. TABLES OF PERHISSAdLfi OPEfiaHDS FOR 0PEB1T0BS

fieyised il/20/o8 A1
Appendix B. SYSTEM ID ENTIPIEBS Be vised 11/20/68 -j. A4.
Appendix C- PHOGHAH EXAMPLES Bevised 3/10/69 A6

• 14.2.6 addressing DYNAMIC DATA1BE1S 75
14.3. Tfre PESCBlPTOg' \ ' 76

. --. 14.3. 1 structure of the DESCRIPTOR, . 7 7
,14.3.2 generating DESCaiploas r \ fe 82
14.3-3 defining the basic address (BA) < 82
14.3.4 defining the-effective address (EA) • 82
14.3.5 the length or SBXTBS variables 85
14.3.6 runtiae entry points*and external references 85

:; T4. 3. 7 generating DESCKIPTOMS for constants 86
14.4. auntiae registers and thej.r descriptions 87

14.4i 1 register nuabers and.naaes T 87
14.4.2 general runtiae register usage \ , 8 8
14.4.3 register descriptions \ 89
14,.4.4 testing register status 90
14.4.5 generating code to dusc registers 90
14.4.6 generating code to load sad use registers 91
14.4.7 altering register descriptions 91
14.4.8 saving and restoring register descriptions 92

14.5. Code expressions I 93
14.6. Code stateaents . ' • 94
,. 14.6.1 coapound runtiae stateaents. . - ' . .95
/ 14.6.2 assignment riintine stateaeats 95
' . 14.6.3. conditional runtiae stateaents 95

1 4 . 6 . 4 runt iae l abe l d e f i n i t i o n s 96
1 4 . 6 . 5 runt iae c o n t r o l s t a t e n e n t s 96

y , ; -14.6,6 runt iae procedure c a l l s » 97
1U.6.7 r m i t i a e procedure e n t r i e s and re turns 98

14.7. ieaporarv runtiae storage 99
14.6. Hhen CGS_releases_DgSCgIPIOBS 99
14.9. Specifying multiple coreloads 99

Appendix,A. TABLES OF PERHISSAiJLE OPERANDS FOB OPEHATOHS
.••-, .< ^ Revised 11/20/o8 .. ,; At

Appendix B.-SYSTEM IDENTIFIERS Revised J 1/20/68 A4
Appendix C- PROGRAM EXAMPLES Revised 3/10/69 A6

1- INTRODUCTION TO CIL

1. IflTBODUCTION TO CIL
This report is a manual for the proposed cqmpiler Implementation
Language, CIL. It is not an expos
coapiler writing or compiler-cromyiiers..

Ltory paper on the subject of
The language definition may

change as work progresses on the iirojectv ., i
1. 1. Basic £eatures_of_,CIL

The Compiler Implementation Language is "designed for writing
compilers tor the. IBM 360 Computers. The heart of the system is a
"procedure oriented ALGOI-like: language with expressions, assignment
statements, iterative statements, etc. Howeyer the basic data types
.of the language are those of the IBS 360 - byte, half word integer,
sequence of 1 to 256 bytes, etcV.- while the-basic operations on^
these types ̂ of data are also those ot the 360. This should allow the
compiler writer to have more feeling for the code gamerated by the
metacompiler and thus make it ^ossiole to write tort efficient
compilers. * -

• In addition, the following features ace provided to facilitate
compiler writing: ' *. ' /I '••

\ . ' , . • ' ri .
1. Scanner definitions. A compiler writer declares' the source

language symbols (reserved words, operators, format of
identifiers,' etc.) in a scantier definition. From this the
metacompiler builds an efficient scanner which, at compile-
time, will read a source program, break it up into these
symbols and pass them one at a time to the compiler itself.
The^scanner definition has been designed to handle most of the
existing languages. It Has however been restricted so that
efficient scanners can be built, should it be necessary., the
coapiler writer can inspect tae string vof characters making up

j iany symbol and/or switch to a character-by-character scan, in
which case he may form his own symbols. i

2- iisis-: A hash-coded internal dictionary of all source language
symbols is kept current as a source program is read "by the

\ scanner. This dictionary is used to replace each symbol by a, 16
bit representation called an atom. It is this atom that is
passed, tq the . compiler by the scanner.^. The compiler

• automatically uses these fixed lenath^. atoms instead of the
variable-length source language symbols. In this report,
"source language symbol" and "atom" are used synonymously.

3- Production language (PLU m i s is a sublanguage for performing
the syntax analysis of source programs. It consists'of "Floyd
productions", each of which attempts to match certain symbols .

. with tie top symbols of a last-in-first-out (LIFO) stack. Hhen
a match occurs, "actions11 in the production change .the. stack
and cause •'semantic routines" to be called in order to process.

. the symbols matched. •• . . '

U. Structured types. A programmer can define his own structured

1. INTBODUCTION TO CIL

u types; these are sequences of components,' analogous to'the
HIR1H and HOAitE records. In. order to save space, several
alternates can be declared for each component^ Once defined,
variables of a.structured type can be declared in the same nay
as usual variables are declared.

Tables, diets and stacks. Tnese are â .1 sequences of records; the
difference is in the way the records are accessed. No upper
bound on the nuaber of records need be given..;The records
"themselves nay have a structured type (see (4) above).
Becords of a diet are chained to records . of the internal
dictionary (see (2) aoove) to provide fast searches of records
based on source language identifiers. * •'.'*•

Multiple! coreloads. A compiler tcan consist of any number -of
coreloads, which are executed . in. a fixed prder. Thus, both
single-pass compilers and compilers which perform sophisticated
transformations and code optimization can be written. . , ^ .

Code generation. This is the most important addition to the
language. Our code generation system (CGSj is based on
Feldman*s "code bracket" scheme [Comm. Of the ACM, Vol. 9, Jan.
1966] . The purpose is to give the compiler writer a high-level
language for generating IBM 360 machine language* The compiler
writer should be(familiar with ,tne IBM 360 data types and- the
instruction set. . However he can leave register allocation,
storage allocation, generation of instructions., conversion of
runtime operands, etc. To the system. ' " • ' » -

' • • • £ ' • ' • ' • • • • • ' • • : • • ' ' • ' . ' • - •

The basic JEeatures of this system are v. .,„,'-''
A.CODEABEAS and AATAA2EAS. A compiler writer may generate

. code into any. number of CODEAREAS (read-only storage at
runtime) and nay use any number of DATAAREAS (read-writ*
storage) .* This ability to use different CODEAHEAS (on* for
each subroutine, say) and DAIAABEAS (one for the variables
associated" with each subroutine,say-) simplifies th'e
compiler• ,writer's, -task. Most problems connected, with
addressing/code or data in these AREAs^are handled by CGS. ,
B. Hegister desqriptions. CGS maintains register

. descriptions describing the runtime state of the IBM 360
v, s registers after tne last-generated instruction has-v been

executed." CGS performs some local code optimization with
the help of the register descriptions.' The descriptions
may also be fcestled and changed by compiler writer.
C. DESCRIPTORS. DE3CBIPT0BS are used to describe runtime
variables in terms of the basic data types of the IBM 360,
such as byte, halfword integer and fullwort integer. The

, runtime address ̂ ot a variable is described ffy a" CODE' or
DATAABEA number and an offset into the AHEAV" The

'. DESCRIPTOfl can also indicate up:to two levels of - indirect
• addressing and/or subscripting. The DESCBIPTOB also

1- INTBODUCTION TO CIL

> . • • • . . • . • * '

contains information such as whether'the val.ue * is. in a
•*• "register, whether it is a constant,, etc. .

D. Storage allocation and initialization. Primitives exist
for allocating storage in COPE or : DATAA.REAS for runtime
variables. Problems ox correct alignment and the like are .
handled by CGS. In certain cases the allocated storage .can
be initialized^ •' " '.
E. Code brackets. In general, any statement or expression
nay appear between tne code brackets "CODE•'•",.{" and.,")".'

" . " This indicates' that the statement or expression is to be
executed at runtime. The operands of the- statement or
expression: must be ipDESOBIPTOHS (of runtime variables),

j, constants, or yariaDles-^declared to be valid, at runtime.:
For .example, suppose 01 /and D2 are DESCRIPTORS of an

«• integer variable and an array element* respectively. - Then
•. . execution of ..••>•
,- • • CODE (Fpit D,1 = 1 [HJTI-L.10 DO D2(D.1) = 5) ' ' '

' would- generate code to set, the first 10 elements*rpf the
i. array to 5.' , \ ": • .'"'"•' ' -«•
Hhen a. code-bracket statement is. 'executed, cijde is"
generated into^^-the. current CODEAREA as ̂ specified, in the
statements or expressions' within the code brackets, and
the register descriptions for that CODEAREA are changed to
describe the new runtime state, of the registers. CGS also

" autoraatically,.-genera,tes code for any necessary conversions .
" ' • between data' types. ' '. *' ..*".. '

All the additional features or CIL need not" be us.ed. For,example, .
1- An interpreter could ce written--without'the use of the code
generation system; a first pass 'could put the program in an
intermediate form and a second pass could then interpret it. •.

- . ' , ' - • • •' ' . ' , / » ' . • " • • / . . 2.' Production ̂ language*heed not be used; any type .of • syntax'
analyzer, can be programmed • using- the- normal ALGOI-likq

-v, .' ̂ .constructs of the language. . " " \
'"' ''. • v • « ' • • '

• . ' " t - .
.3. The language can be ..̂ tu £OJL *riti*iy "Ucnaal - programs.

w Throw out -the scanner definition, PL, and "CGS and an ALGOL-'
- like language remains. The basic data types of 'the language
and the operatibns~6a them are those of the IBM 360 computer;

s this high-level language just provides a. convenient tool for
• "' ' using them. ' " : -,, • • .

1.2.. How tio read this report.
The viiest "«ay to get acquainted with the-language'is to read the .

. - . ' • . - ' . - : r 1 • . ' " - ' . . ' • . ; " . : " v - . " • : . . . • / .

1. IHTBODUCTION TO CI1 . " fc • I ^

prdgraa examples in Appendix £. ifou'will find that CIL is basically
an ALGOL - like procedural language. Then read Sections 2 through 10"
which describe this procedural language'.and its normal use. Skip
over references to the scanner detiuiticn, PL or CGS. Finally, read
the three additional sections M (on the scannerdefinition), 13(on
PI) and ia (on CGS). , • •

Sheldon Becker, Lee Eraafn, Gar/ Goodaan, Lockwood Horris, Jia Cook
and Christiana aiedl have all prograaaed or are programming parts of
the systen. All of.. thei have contributed to. the language and- this
xanual. Thanks also go to Jerry Feldaan for'his useful thoughts on
the subject. *' '5 > ...

2. TEHHJMOLOGY AND NOTATION

. 2. lEBfllNOLOGy ANP NOTATION - . .
2..1- Definitions '" ,^

Betacotpj^e time is,, the tiie during" which a compiler - or' any
program, written iri'GJL̂ -- is jaeing compiled.

£25£fis_iiil£; : i s when a source program is being compiled, by a
• compiler written in CIL. - •
'"TWEutime is when a compiled source tro^ra» is being executed.
A source program is a (.cogran written in a source language.

" ~ "'•' & ' • i / . •

Source lan.jua.je reters to the lan^ua^e for which a compiler has been
written in CIL.

2.2. Syntax notation ,-"..*,
. V

Backus Normal Fori (BNF) witn soae modifications will be used to
describe the syntax of this ^co^ramming language. Syntactic class
names (nonterminal symbols) are enclosed in angular- brackets "< M and
">», while the symbols of - the language (terminal symools) are
represented by themselves. A ££2<&££ion consists of a left part,
which is always a syntactic class name, -followed by the netasymbol

* ii..iM'f followed by a right part - one or more syntactic class names
or terminal,symbols. It indicates txiat the syntactic class given by
the left.part consists of ;tuo*'e strings of symbols described by the
right part. Thus the productions

<identifier> ::» <letter>
<identirier> ::* <identirier> <l«tter>
(identifier> ::* <identifier> <digit>

indicate that ah identifier consists of a letter or. another
identifier followed by a letter or digit. In other words, an
identifier is a letter followed By zero or tore letters or digits/
As an a»_treviation, the^aetesyabol "I" is used to write the above
three productions *s< -

<id«ntiiier> ::« <letter> | <fdentifier> <letter>
| <identitier> <digit>

Thus *|" is used to separate rijht ^acts of productions whose left,
parts ace the same.

The following modifications to 'BNF have been introduced to
provide a clearer syntactic description.
1. • Th«. right- part of .a. •prbductiam may be partly described by a
comment enclosed in' quotes. Thus we write . •

<string> ::» ' "sequence of 1 to 256 EBCDIC characters." •

http://lan.jua.je

2. TEBHlMOLOUr AND NOfATIUH

*2. In order to prevent misinterpretation, the source symbols "<" and
">".will always be enclosed in quotes. Thus we write

• ' • , ' - . 'i - ' . - ' - • '

_<r«lation> ::• <expr«saion> «<» <*&pression> /

3. WSguare brackets are used to enclose optional entities." For
example, . >
? . • . - . . : • ^

<factor>- .J!*'L lunacy o^> j <pciaary> \

i s equivalent to

<iactor> .. := <primary> | <unary op> <primary>

i . • •

4. The nonterminal symbol <emt>ty> represents the empty s tr ing .
' • ' ' . • . - ; • ' " ' - ^

.5. 1 sequence of one or more symbols, all belonging to the syntactic
class <x>, can be written as <<x> list>. If they are to be separated
by a terminal symbol, then this terminal- symbol directly precedes
the word "list". Thus ; / .

<fcasic decl> :;» <basic ty*e> <<id«ntifier> ,list>
is exactly equivalent to

'•"*•' ' • • <tasic decl> ::* <basic type> <id li»t> '
<id list> ;:^<identixier> | <xd list> , .<identif ier>

and
<integer> ::= <<digit> list>

is equivalent to
<integer>. : := <d^.git> J <integer> <digit>

6. If a nonterminal appears more tnan once in a production, the
occurrences may be. numbered so tuat they can be identified in the
semantic discussion. Thus we write

<for list> ::= <expressioo>> UNTIL <expression*> r

7. The syntactic classes <speciunc> and <specproc> denote special
function designators and special procedure calls respectively. 4Che
syntax of' these <specfunc>s and <specprodts is always given in
boxes. For example, ^

| PUSH { <stacJt identitier> [,<expYj) I

2 . TEHHINOLOGY AND HOIITION . 7

.2.3. Syntactic entities
(with corresponding Section
nuabers)
<action> v 13.9
<actual jaraaeter> 9.7
<add op> 8.2
<altered raltie> 8.3 .
<alternate selector> 8.3
<arith- type> 5.1
<assignaent runstate> 14.0.2
<asssignient stateaent> 9.2
<tasic syabol> 3.1
<fcasic type> 5.V
<tasic .type dec> 6.1
<begin cjuote> 12.5
<bit> ,3.1
<bit integer) 5.3
<bit op>-:. 8.2
<bits type> 5.1
<case stateient> 9.5
<char sequence) 12.2
<char set> 12.3
<character> 12.3
<Cclass deĉ > 13.7
<class na»e> 13.5
<classlafc dec> - 13.7
<closcd cond runstate^ 14.6.3
<closed cond state> 9.3
<clos«d iter state> 9.4
<closed cunstate> 14.6
<closed statement) 9.
<code statement) 14.6
<coaponent> 5.2
Ccoaponent id> 3.2
(component selector) 7.1
Ccoipoaent specifier) 8*3
<coafcnent variable) 7.; r
<coapound runstate) 14.6.1 .
<coipound statement) 9.1
<cooitant> 5.3
<constituent> 5.2
<ccntrol runstate) 14.0.5
<controP statement) 9.6
<coreload> 4.1
<coreload description)1* 4. 1
<dec* integer)
declaration)

5.3 <dec* integer)
declaration) 6. '
<deli«iter> ' 3.1
<DESCB destination) 7.
destination) 7;
<dict declaration) 6.2
<dict designator) 7.1
edict identified 3.2
<digit) 3.1
<EBCDIC char) 3. 1

<EBCDIC or hex) 12.2
<e«pty> 2.2

-<end quote> 12.5
< e x P > 8.
<expr> 8.
<expression> 8.2
<factor) 8.2
<forsal parameter seg> 6.3
<function designator) 8.1
<global declaration) 4.2
<go to op> ^ 9.6
<hex char> 12. 2
<hex integer) 5; 3
<hexit) 3 . 1 V <identifier) . 3.2
<indirect reference) 7. 1
<int dec> 13.7
<int declaration> 6.4
<int identifier) 3.2
<integer> 3*2
<iabel> 3.2
<iabel definition) 9.
<ieft part> 13.8
<lefcter) <long real>

3.1 <lefcter) <long real> 5.3
<keyword component) 8.3
<aain stack dec> ' 6.2
<aetasyshpl>
<ault o p *

13.4 <aetasyshpl>
<ault o p * 8.2
<oev value) '., :• 8.3
<nuabec selector) 7.1
<old value) 8.3
<o:p«n cond runstate) 14.6. 3
<open cond state) « 9.3
<open iter state) : 9.4
<opea runstate) 14.6
<op*a statement) 9.
<pass> 1.3
<p«ss nuab«r> 3.2
<PL declaratioa> 13,7
<?L identifier) ^ 13.5
<PL iat> 13.5
<?L label> 13s 5
<lfL subprogram) (13.,
<|>Oilt«t CM1> 5.3"
<poiater type) 5.1
<poiato type) 5.1 *
^positional coapoaeat) 8.3
<preprocessoc> 12.6
<priearv> ':\. • 8.2 Cprocedure body)
<t>roce4«re call)

6.3 Cprocedure body)
<t>roce4«re call) 9.1
<procedere control) 14.6.8
<proc«dere declaratioa> 6.3
<proce4«re heading) 6.3

2. TERMINOLOGY AND NOTATION

<proc«da£« runcall> 14.6.7
<pxodnctioa> 13.8
<progra«> It.
<<juotc d«£> 12.5
<quot€ pair> 12. S
<r«al> 5.3
<rcgist«r naie) - 1U.it.-1
<£«gist«c AO> v1*.<t. 1
Relational oy> 8.2 '
<reserv«d def> 12.4
<reser»«d word) 12.4 .
<xight part) 13.8
<runlabel definition^ 14.6.4
<runexp> 14.5.1
<runxactor> 14.5.1
<ru&pri«ary> 14.5.1

•14N.6 <runstate>
14.5.1
•14N.6

<scale £actor> 5.3
<scanner def> 12. .
<scanner id> 3.2
<set definitign> 12.3
<sign> 5.3
<si«fle*varia'i)le) 7.1
<source id> 12.4
<source language syabol>3.4
<source symbol? y 13.3
<stack identifier) 3.2
<stack declaration> 6.2
Cstack designator) 7.1 ;

<stateaent> 9.
<storage alloc) 6.2
<strii;,g cons) 5.3
Xstxing type) 5.1
<stfuct exp> 8.3
<structur« definition) 5.2
<structured type> 3i2
<structured type dec) 6.1
<sutbyte designator) t,* 7.1
<substring designator) 7.1
<sy«b> 13.8
<syibol> 13.7
<syibol-label> 13.7
<synonyi) 3.2
<synony« def) -\ 12.2
<synony* pair> ^S 12.2
<typc dec) ^-^ 6. 1
<tdble declaration) 6.2
<table designator). 7.1
<table identifier) 3.2
<ter»in) 12.4
<type> 5.
ctype specifier) 6.3
<unary op> • 8.2
<unscaled real) „,, 5.3
Variable) 7.1

http://1U.it.-1

'„ .' 3 . THE BASIC EL EMEU r a OF THE LAMGUAGE

3 . THE BASIC .fLEHEKTS OF THE LANGUAGE

3 . 1 . B a g j c . l y i l a g l ^ . g p a a g p t s , dafl-§£agg§

Syntax
<taeic syabol>
<letter>

<bit>
<digit>
<hexit>
<deliaiter>.

<EBCDIC char> V

:::« <ietter> J <digit> | <deliaiter>
::* A | b | C | D | E | F | G | H | I | J | K
J L | ft J U I 0 I P I Q I H J S f T
| U | V | « | I | Y | Z 1 6

::- 0 | 1
::- 0 | 1 |.2 | 3 | « | 5 | 6 | 7 | 8 | 9
::= <dijit> i A J B | C J D J E | T

::=>?• | - J * |••••/ J - | = | a
I - J , I ; I ' I (I) I : I "<" J »>" J "<=« I ">x»

I _•! < I /• I V I // I.•'**
::« "any EBCDIC character except space**

Semantics: Letters are use for Homing identifiers and reserved
words. Digits are used is Horning nuabers and identifiers. Bits and
hexits are used in forsing constants. The seaning of. delimiters will

. be given at the appropriate i>lace in the sequel.
Except in a PL subprograa and a scanner definition, a consent

of the forn .
/* "any sequence of characters not including •*/• " */

nay appear anywhere. It is the equivalent of a single space.
• • * • . i i •• . -

Changing to a new card or line b*.* no significance. Oatside of
strings* spaces have no neaninj except for the following rules:
1. At least one space nust separate two adjacent identifiers,
<source language syabol>s (ex Section 3.1), integers, or reserved
words.
2. A space say not separate two characters of a delimiter,
identifier, integer, reserved word* or source language sjabol.

This section has.defined the characters used in writing a
conpiler. in CIL. This does not preclude the use of other characters
or th> use of these characters in a different way in a source

'* language for which a conpiler is being written.
- • • * '. f ' ' • ' ' . '

3.2. Identifiers and integers
Syntax

' . • • / . ' • . ^ * •

3. THE BASIC ELIHEMTS Of THE LANGUAGE 10

<id«ntifier> ::» <letter> | <identifier> <le'tter>
J <identifier> <digit>

<integer> :«f. «diyit>' list>
<coaponent id> ;:=<identiiier>
<dict identifier> ::=<identi£ier> <
<int identifier> ::=<identiiier>
<label> ::=<identifier> f
<scanner id>* ::=<identifier>
<stack identi±ier>::=<identifier> ' ,.' >•
<s£ructured type> ::=<identifier>
<synohya>' ::=<identifier> '
<tarle ideritifier>::=<identifier> »
<pass nuaber> :: = <in.teger> "between 1 arid 25"

Seaantics: Integers have their conventional aeaning as deciaal
nuabers. Identifiers have no innerent^aeaning but serve to identify
variables/ labels, procedures, structure types, and scanner
definitions. They nay be chosen freely except that they aay not 'also
be reserved words of the language (cf Section 3.3). In addition,
several identifiers are already inplicitly declared by. the systea.
They aay be declared in a prograa, but th;is precludes their use as
systea identifiers (cf Appendix A). Note that the letter S aay be
-used in, an identifier. Hany systea identifiers begin with & and it
would be vise to refrain froa using n in this way'.

/
The . saie identifier cannot be used- to denote two different

quantities except when these guantities have disjoint scopes as
defined by the declarations of the prograa (cf Sections 6 and 4.2).

The recognition of the definition of a given identifier (but
not a coaponent identifier -cf Section 7) is *deterained by the
following rules. , , ^

Step 1. It the identifier is defined by a declaration of a
quantity or structure, type, or is standing as a label within a
procedure eabracing the occurrence of the identifier, then, it

,;, denotes that quantity, structure type, or label.
• • ' . . . : . - • / / • - ' • : -Step 2. Otherwise, if the ldentirier is a foraal parameter of a
procedure eabracing the occurrence /of the identifier, then it
stands for that foraal parameter.
Step 3- Otherwise, if the identifier is defined by a
declaration of a quantity or structure type or by its standing

* as a label within a pass eabracing the occurrence of the
identifier, then it denotes that guantitj, structure type, or
label. /

; Step •». Otherwise, it the /identifier is defined by a
declaration of a quantity or-,structure type in a 'global
declaration valid in the' pass (or global declaration) eabracing
the occurrence of the identifier, then it stands for that

\ : \ . /
3. THE. BASIC ELEMENTS OF THE LANGUAGE 11

quantity or structure t,ype. * >.-
Step 5. otherwise, ..it the identifier was' declared as a
<synony«> in a scanner ' definition, _then it stands for the
corresponding source language syabol.

If any single step could lead to lore than one definition, then the
identification is undefined.

3,3.- Reserved words ,
The following reserved words aaynot be used as identifiers. ,

AIT ANE
BACK BEGIN BITAND BITEXCjB BITOB
BYTE' BYTES BYTE2 BYTE3 BYTE4 < . . •
CASE CODE CODEAREA CONTENT COREJ.OAD
DATAABEA DEC DELETE Dicf DO DBF DYNAMIC
ELSE END ENDCASE EMDPASS ENTEB
FOB FBCH FKF FWI / '

\GO GOIF GOIFNOT GOTO Jf
JHWI
f IF IN. " ••-;•

\ \ LOOK " , 'i>
j/AIN VuoT
OF OB
PASS PASSES POINTEB
EEH BETUBN HUNTIME
SCANNE6 STACK,STATIC /STHING STEUCTUaE
SUEBYTE <SUBSTH SYNTAX
TABLE.TALLY THEN TO / •'-'.....,
UNTIL
WHILE
SC

PBOCEDUBE PBODLANG PUSH

~y?.ti. Source- language symbols t
Syntax:
<source language syaboi> ::= <synonya>

J $ «EacDIC char> list>
Semantics: A source language syabol is a segusace of,characters

defined in a scanner definition .to be a delimiter or reserred word
of the language for which a coapiler is being written. One refers to
the BYTE2 atoa tor a source language syabol either by preceding it
by a dollar sign, or by using a synonya for it (cf Section 12.2). io
space aay separate the dollar sign froa the character list or the
characters, in the list theaselves and a space aust follow the last
character. . & .= .

STBUCTUEE OF A PBOGRAM 12

4. S1HUCTURE OF A PROGEAM
Syntax:
<progran>

<program>

BEGIN i. « d e c l a r a t i o n > ; l i s t >]
L <<statement> ; l i s t >] END .

BEGIN <corelpad d e s c r i p t i o n
i « s c a n n e r def> l i s t >]
t <<g loba l d e c l a r a t i o n > l i s t >]
<<pass> l i s t >
END "

.,.. Semantics: The, first definition of % program is for the usual
ALGOL-like program consisting or declarations (cf Section 6) and
statements (cf Section 9). i'he second must be used for programs with
multiple passes or programs which use a scanner or production
language- ' ' i
U.I. Ccreload description - "

Syntax:
<coreloa
<coreloa

d description> :
d> :;

Semantic
te allocated
numbered (by
compile ' time
are in core,
of a CALIPASS
different cpr
passes in the

s: The c.orei
to the p

the <integer
, initially
and the firs
statement (
eload,' the n
previous co

= «coreload> list> .
= CORELOAD <integer>

«pass number> list>
- - .̂ r

indicates how storage is ,t'o
piler. The coreloads,must;be
order, starting with 1. At

s (associated with coreload 1
s executed. Upon execution
which refers to a pass in a
s brought into core. The
be referred to again.

oad description
asses ot a com
>) in ascending
all the passe

t pass.listed i
cf Section 94 6)
ew coreload ,i
reload may not

I.2. Global declarations '•

Syntax:
<global declara£ion>

/.

J>

j= i»ASS£:> :<integer*> <integer2>
<<declaration> ;list>
I MASSES <integerO RUNTIME
«declaration> ;list>
| HUKTIME «declaration> ;list>

Semantics: A global declaration declares identifiers (and theii
attributes) which are to be used globally in

a),passes numbered <integer>> through <integer2>;
b) passes <integeri>, <integer*> • 1,-.., and at runtime;
e) at runtime only. •-—-

The following restrictions are placed on identifiers declared in a

„r

STEUCTUHE OF A PitOGUAfl 13

global declaration
a) no identifier nay be a reserved' word (cf Section 3.3) ;
b) the sane identifier aa/ not be declared in tvo global

declarations wiiich have a pass in common. Thus
PASSES 1 4 BYTE A,B •

. ; ; PASSES Z i BYTE B,C -

is illegal;
, c) an identifier must be declared before it can be used.
Declarations themselves are discussed in Section 6.

Exaiples: , ' . . - ' •
PASSES 1 2 BYTE A,B,C; POINTER P
PASSES 5 RUNTIME STRING X
fiUNTIME BITE Y; FWI A,B

1.3. P.asses
Syntax; •",
<pass> ::= PASS <pass nuaber> [<PL subprogram]

i «aeclaration> ;list>]
, ' £ «statement> ;list>]

- ,. ' ' ENDPASS
Semantics: A pass is a logical unit - a subprogram. Section 9.6

discusses the statements which control the order of execution of
passes. When a pass begins, it no PL subprogram is present, the
first' statement in the.list is executed. If a PL subprogram is
present, execution begins with the first production in it.. .

5 - VALUES, TYPES AtfD CONSTANTS " » / ' , - *U
/ * - . " - * - . \ • . ' • ' " , . " " . • ' • " ' " "

5 . VALUES, TYPES AND CONSTANTS-1-, , * ' " . . ' , •' . _

A varijbie.^is'v-a .symbolic representation of a quantity -that may
ass.une different values . The value of a variable is always the one
most recently assigned" to it. iiach variable has a type which defines
the-class of values that "the variable may represent. •_

Types fall into two.classes: oasic types -which are the basic,
elenentary types in the laa^uaje - and structured types - w h i c h are
ordered sets • of one, or more basic types and possibl-y. other
structured -types. Structured types are defined by the programmer in
a structure definition. » .,

•The number of- bytes each different type of value uses in the
IBM 360 ajid the alignment of these pytes in memory are discussed in
Section 11. Section 5.1 describes tne basic types in the language,
Section 5.2 structured types,'and tne structure definition. Constants
are described in .section 5.3.

'-'Syntax.: ' ' . , . „ ' .
<t'y.pe> ::= <oasic t 2pe> | <structured type>f

1_ Basic, ty pes '
S y n t a x : '•• ' '-•'..
<tasic ;type> ::= <bits' type> | <arith type>
• ,-- >,... | <pointer type> | <string ty"pe>

' • . . - • . . *

<bits'type> , :: = BYTE | BYT£2 | BYTE3 | BYIE4 ;'/'
| BYTES (<iateger>) -

<arith type> ::= Utfl | THI | FWF 1 DWF | DEC
<p*ointer type> • :: = POINTED -

.J POINTEfl (<<pointo type> list>)
,<string type> ::= STRING (<integer>).
<pointo type>'•-, ::= <bits type> | <arith type> | POINTED

f <string type>'] <structufed type>

Semantics: The'types BYTE, BYTE2, BYTE3 and BYTE4,. are
essentially abbreviations .for ̂ BYTES{ 1) , BYTES (2), BYTES (3) " and
HYTES(.t), respectively. Note however the different alignment
properties (Gf Section 11). -

Jf.he following table lists the values that nay be associated
-with a. variable; of each basic type. \

\

* JJXES . . . Value

BYTESI<integer>) s e q u e n c e of u * < i n t e g e r > b i t s
, (0 < < i n t e g e r > <= 256)

5. VALUES', TYPES AND CONSTANTS' J . "^ 15'

HWI ' IBM 360 Half word Integer: 16' bits
- { between -2**15 and 2**15-%- .'"•-.-

RHI : iBa 360 Fullaord Integer: 32 bits
(between -2**31 and 2**31-1)'

~FWF IBM--s360 FullWord Floating point nttaber:
-•- , . 3 2 b i t s ,. •:, . ^ ;' "
SD.WF IBM 360. DoubleWord Floating point number:

".,•',.. 64 bits "._ 3" .; v DEC'- DECinal nuaber of 1 to 31 digits plus sign
• STBI11G (<integer>) sequence of <,integer> EBCDIC characters

• y, (0 < <integer> < 256)
POINTER reference to some value(2t bit address) 1'^

' ;: .* . . . ' •*?- ' ' - x - : v ' ; . , : : - : ' "; ; ' .
iihen. referring to the value pointed "at by a variable- declared

as FOINIEH, it' is necessary to indicate .what type that value.has.
This can be done at the,,point of referr,al (cf-Section 7.3), or in
the declaration itself through the •list of <pointo type>s. For
e x a n p l e , • V

v POINTER A A may p o i n t , a t any. v a l u e . •
PGINTEflfF^F) B B n a j only p o i n t a t . v a l u e s ^ ^

**"; ' of type FWF-. * * '-i.-.. • '• •
POINTER (FWF HHI) C C may p o i n t a t va lues -

-" -. of type FdF and HHI.' ~

Hierarchy of__ty_£esr It is sometimes necessary to perform
.automatic conversion ..of values. For example, if one adds an F8I
value to. an .FWF value, the FWI value must first be converted to
floating point form. The hierarchy of type precedences is:

D.WF " ' _ ' . - . . " . :"
FWF • '

, . DEC :

F"WI . ' / ' . • • •

HWI
BYTES ' • ' ..>

v 5.2. Structured values and types ," '
Syntax: - ' . .
^structure definition> '

.•-.-.. ::= STRUCTURE ^structured type> ,
(<<constituent> ,lis.t>)

<constituent> ::= <couponent>
/ ' '] <constituent> ALT <eonponent>

O • ' ' •' • ; • ' . ' • ' - .

<coB:fonent> : : = <ty^e> <conponent, id>
| <comi>onent i_d> (« c o n s t i t u e n t > , l i s t >)

I , "v '• 5. VALUES, TYPES AMD CUHSTAHTS ' 16

} ' • ' • ' * . / . - - . : ~ ; v ' • ',**. •'• • " • • • ; ; / " ' • • ' : . - '

Semantics: A structure definition defines a new structure naaed
<structured'type>. A structured value is a set of constituents -
which at .any instant or runtiae are values with basic types and
[ossitly ctnei structured types. Zacu'(-constituent, consists of a
single component or it consists of a set of alternative \coaponents

' separatedrfcy the reserved word ALT - This is used aainly to save
space. , Only one'of the alternative 'eoajonents aay be in use at any
time, and it is the responsibility -of the prog'raaaer to, know which
one is beifljj used. ,

\ The name of each coaponent is tne component id. This na.ae is
used to refer to that- component of the structured type. The
component id aay be any valid ideutirier which is hot -..a, .structured
t'£pe; the only' rule " to • Be followed is that, when- referring to
coapprie'nts ^nd subcomponents or a structured value, the metacompiler
oust be """"acle to uniquely determine what is aeant. See Section 7.2
tor lull details.

Note that., a component may itself contain subcomponents. If a
• structured Teype^ is used as the type of some component, this

structured type iiist have.been previously (statically) declared.
. ' " • ' • . - - • 4 ' ' • ••• •' • .

• nile not necessary, it oaj be useful for the prograaaer to
;knbv how "storage is allocated to coaponents. This is discussed in
Section 11.

" Exaaples: «„ • '-••,
1. STHUCTUHE SUkJSCh (BYTE Aa£A, BYT-£3 OFFSET, POINTED S)

A v a l u e of t y p e SUBSCH c o n s i s t s of . .

a) a B Y T E , v a l u e named ARiiA , f o l l o w e d by
i b) a BYTti" v a l u e naajed OFFSET , f o l l o w e d by

c) a\,POINTEB v a l u e n a a e d S . .

* l . STRUCTURE C1 (BYTE Kf*N'D ALT Hrfl U, C (BYTE C1-, POINTER C2) ,
. SU3SCH D, SUBSCH E) .

^ A value of type D1 consists of -'"'
a) EIIHZfi a BYTE value naaed KIND

or a halfword intejer named B, followed by
b) a value named C. C itselr consists of

1) a RYTE value named CI followed by
if •• • • 2) : a POINTEH value named G2. .» . \ ' s'

C is followed by . •'
d) a value, named D, or structured type" SUBSCR
e) a value, named E, of structured type SUBSCE :

V

file:///coaponents

5. ' VALUES, TYPES AND CONSTAMTS 17

5.3. Constants . • * ' • •
• Syntax:' "• " • . "- .
<constant> ::= <integer> | <hex integer>

I <oit integer> | <dec integer>
I <real> | <long real>
| <logical cons> * . ••*"•':
I <striny cons> J <pointericons> ,
I <syno'nym> | . <int identifier>

<hex integer^ ::= X • <<hexit> list> •
" <tit integer> ::= B ' <<bit> list> «

<dec integer> „ ::= <integer>" D ' a
<real> :;= <unscalea real> [<scale factor>]

.'klong real> ::=.<real> L '-
Xstring cbns> t:= • "sequence of 1 - 256 EBCDIC

,'•""' characters". • ' /*
<pointerrcons> '..::•= 0 f *•• ' < •

<unscaled real> ::= <integer> . <integer> | <integer> .
" " | . <integer> . • '

<scale lactor> ::= fi <si^n> <ihteger>
<sign> : : = + ! - , ^

' Seaantics; .Integers, -re-als and long reals- are interpreted
according to trie conventional- decimal, notation. A scale factor
denotes,an integral power or 10 which is aultiplied by the unsealed
real preceding it- A dec integer is an integer of 1 to 31 digits
which-will be represented in packed aecinal notation.

A string constant is a sequence of 1 to 256 characters,
enclosed by the striny guote M • ". Within the seguence, the string
gudte itself is to be represented by two adjacent string quotes, the
nuacer ot characters in the string is called: the length of the
string. \^

*
Each hexit in a hex integer, represents 4 bits in ' the usual,

aannec. Both hex integers and oit integers are right adjusted in
their field, with leading zero pits added if necessary (see below).

- Tha pointer cons 0 fails to point to a value.
• tesVi A syaonye danotas the atoa corresponding to the source language

syabol associated to the synonym in a <synonya def> of the scanner
sublanguage (cf Section 12.2).

An int id#ntifi«r is a BYTE2 constant. The actual value is
assigned by the aatacoapiler [see Section 6.1). ,. . "

Back constant has a unique type, as defined by the following
list. It .should be noted that any necessary conversion of constants
is done at actacoapile tia« when possible.

5- VALUE'S, TYPES AND COMSTAMTS

<£fijisjtanl> <tl22>

<integer> '•' Hwl it less than 65536. FWI otherwise
<hex integer* BYT2S(I), where if there

; are J hexits, 2*1 >* J > 2*1-2
<bit integer> ' JBYTES (I) , where if there

',•-" are J hits* 8*1 >» J > 8*I-8f
<dec integer> .DEC
<real> FHX
<long real> DUI
<string cons> •" sfkTMG (<integer>)
<pointer cons> P01MIEH
<synonya> . BTTE2 '" .
<int identified B1TTE2 •>-

In addition, the following systea identifiers"for coastants can
u s e d . • \ • " ' • . : .

I I - • ' - ' • * " "
TBUE BiIEl (rX'FF 1)
FALSE . BTTE1 (^X'Op')
Esau pies: -••' /. • . , ,_ ' ' • • ^
<con"stant> * exaaples x__———""~
<integer> 1 24 3!25678
<hex integer> X'OA' xVtf32A' X«FFFFFFFF* ~
<bit integer> B'0110' B»10010010000'
<dec integer> 321) 100D ' 1357312389D

, ' <real> .. 3. , * - ...5b ' 32.*031 • 3.%T 20
<long rea-l> .2,7.1828182845904523531. .3E-1L
<string cons> ^sisms' . »0* • ••• is the string

consisting ox a single apostrophe.

S

6. DECLAMATIONS 19

6. DECLARATIONS
^-Declarations serve to determine the • scope of identifiers and to
define peraanent properties ot thea (type of value that say be
associated with thea, structure). Generally, a nuaber of bytes are
allocated to each , identifier (depending on the type) to hold the
value associated with it. See Section 11 for full details.

• ; ,

Syntax:
<declacation>

• . . . / • : . - , • •

:= <structure definitions'
J <type dec>
|-<int declarations
J <table declarations '
I <dict declarations
j <stack declarations
| <aain stack dec>
I procedure declaration>

6-1- Basic and structured t>-.'e declarations
Syntax:
<type decs
<basic type dec>

:= <basic type dec> _
| <structured type dec>

::= Xbasic-types «identifierS ,list>
<structured type dec> :j=<structur§d type> «identifier> .lists

Seaantics: Basic and structured type declarations serve to
associate a type with identifiers. Only values 'of that type aay be
assigned to the identifiers. The structured type Bust have been
previously (statically) declared.

Exaaples: ~-
' MI"%,B,C
POINTER (SUBSCB) D (see Section 5.2 for the structure

definition, for SUBSCB).
. SOBSCB E,F, G .

j '

6.2. ^tsx-di£i-aa4 stag*,des^atattaaa
-Sya-tax:
<table declarations :* <storage alloc? <type> TABLE <integerS

<table identifier>
| STHIMG TABLE <table identifiers i
• «striag consS ,lists ,

<dict declarations
<stacx. declarations

:• <storage alloO <type> DICT <integer>
<dict identifiers

:'* <storage alloO <type> STACK <integer>
<stack identifiers

6. DECLARATIONS 20

<tain stack dec> :: = MAiN sfACK <stack identifier>
<storage dlloc> ,,.:.:• STATIC | DYNAMIC | <eapty>

• ' • ' . ' * ^ • ' - , - • ' . : • ' •

Seaantics: Table, diet and stucK declarations, all serve to
associate a sequence of data £gco£ds of type <type> with the table,
diet or stack identifier. Tne difference is . .only in the nay', the
records are added, deleted or accessed. See Section 10.0 for full
details:,
'. ' - • - . ^ "

A table is a linear sequence "of records. Records are
usually accessed through jjoint^rs to thea and by the operations

f iCOK and EHTE2. They aa^ nowever oe accessed exactly like a- one
, diaensional'ALGOL array.

A diet is also a sequence of records, these records are
however list-structured ror fast searches, based on source
language syabols. Records »&j oe added to or deleted frosjthe
diet. .They say also be tanen. off the chain which list-
.structures thea. The t/^e or the diet records must be a
structured type. Further, the structured type, say T, aust
be3in as follows:

STRUCTURE T (BYTE NAhkl, POINTER NAME2, ...
Here, "the component ids are not iiportantj only the fact that
the first-two components are a BYTE and a POINTER. The reason
for this will becoae clear when Section lO;2 on LOOK and ENTEH

- is read.' - - . • ' '
A stack is a LIFO (last-in-tirst-outj- stack. Records say

be added and deleted in the custoaary Banner.
<storage alloO indicates how storage is to be allocated to the
sequence. It STATIC or <enpt/>, <integer> gives the maxinua nuaber
of records in the table, diet or stack. These records will be
contiguous. If DYNAMIC, <integer> defines the number of contiguous
records in a "block". Storaje is initially allocated to one block of
records; extra .blocks-are added as the need arises while the grogra*
is being executed.

Each pass which uses production language aust have a stack to
coaauaicate between the production language and seaantic language.
This stack is specified by a <aain stack dec>. The stack identifier
in - the <aain stack dec> Bust be a previously declared STATIC stack,
la addition, the type of the stack records aust be a structured
type, say S, which'begins as follows:

STRUCTURE S (BTTE2 NAHE1, BYTE/ NAME2, BYTE2 NAME3, ...
Here, the coaponent ids are.not iaportant; only.the fact that the
first three coaponents are BYTS2 quantities. See Section 13.6.

6. DECLAHATIOMS ^ • - 21

Examples:
SDBSCI TABLE 200 A
ETIAHIC 01 DICT 50 B
S1AIIC 01 STACK 100 C
BAK STACK C

6.3 nocture d«cl*r,iUoBf \
Syntax:
<proc«dur* declaration^ ::« PBOC80UBE

<pcoc«dure h«adi»g> ; <procedure body>
j <type> PROCEDURE
{procedure heading> ; <procedure body>

<proctdur« heading> ::« <identitier>
••--* i («fornal .parameter seg> ;list>) 1

(formal parameter seg>
::= <type specifier> <<idehtifier> ,list>

<*yp« specifier> :: = <type> 1 BYTES | STBIHG
J <type> TABLE f <type> DICT
J <type> STACK)

{procedure body> ::= <statement> v

I UBGIN l <<type dec> ;list> J
L «stateaent> ;list>] END

Semantics: A procedure declaration associated a procedure body
with the identifier immediately Hollowing the symbol ^PROCEDURE. A
proper procedure (case 1 above} is invoked,by a procedure statement
(cf section 9.7) and a function { typed procedure - case 2 above} by
a function designator (cf Section 8.1) or ^procedure statement.

The procedure heading also describes tjhe formal parameters and
their types. All formal parameter identifiers in a formal parameter
segment are of the same indicated type. The' type specifiers BITES
and STRING specify formal parameters °~i*ose corresponding actual
paraaeters at a call point are BYT£S(I) and STRUG (I) for some
integer I. It is aore efficient to indicate the number of bytes if
it is constant for all calls of the procedure or function.

• • • • . ; ' : • • ' ' • -The value to be returned by a, 'function is indicated by
assigning it to the function identifier^.

Examples:
PBOCEDUBE L00JOAB (BYTE;! ATOM; POINTER P) ;
/ • 1C0K IN SYMBOL TABLE SSYflB FOB. THE SODBCE SIHBOL "ATOI1" 1HCR

IS A LABEL. RETURN THE ADDRESS OP THE BECOBD IN P . * /
BEGIN P = LOOK(SSYHB,ATOa);

WHILE P -.= 0 DO BEGIN IP P.TYPE » LABEL

b. DECLARATIONS ' 22 /

THEN BETUBM;
P = IOOK(SSYaB',P)

. BKD

6-«- Isi_is£iaiAti2fl§
Syntax ''
<int declaration> ,'•:: = H I «identifier> ,list>' ^
Semantics: In production language an INT is a nonterainal or

JMTernal syibol-used to help parse the.progran. In order, to allow
the semantic portion of a compiler to test the lain stack and to.
.provide lore conaunication oetween syntax and semantics, the- int
declaration .has been provided. Each identifier declared as INT is a
BYTE2 constant - the actual value , being assigned by the
•etaconpiler. It nay be usea anywhere a constant nay be used (cf
Section 13).

\

i-

• I , •• • •

7. VAitl-ABlES AND IJJDIHiSCT BEfEBENCES 23

7. YAHIAELES AND. INDIH'ECf BEPERENCES ,
In Section. 5 we described tne different types of values possible. In
Section, 6 we indicated now these types could be associated with
.identifiers, de now describe how one references the value associated
with an identifier - either to use it or to. change it...

'Syntax:
<destination> ::
<D.ESCH destination> ::
<variable>
<si'nple var.iable>

<variable> | <indirect reference>
<destination> "of type DESCHIPTOH"v

:= <aiaj'la variable>
1 <coaponent variable>
:= <identitier> (1 <table designator>
I <dict designatpr>
I <stacK designator>

j, I <suDstring\ designator>
J <subbyte designator^ ;

<conponent variable>::= <siaple variable>.<conponent selector>

<indirect referenced:= CONTENT (<POINTEB expr> '
L <pointo type>])

| <variable> . ^component selector>
<table designator>
<dict designator>
<stack designator>
^'substring designator>
<sufcbyte designator>: :•

V" .

::= <table identifier> (<expression>)'
::= <dict i4entifier> (<expression>)
::= <stack identifier> (<expression>) (
J LO | LI | L2 | L3 | 1,4 | SO | R1 | H2
::= SUBSIB (<destination>
, <expression>'[, <expression>])

= SUBBYTE (<destination>
, <expression> [, <expression>]) **

<component selector>::= <<component id> ,list>
v . I <<nu«ber selector> .list>

<number selector> ••-y ::= <in'tec;er> [-• <integer>]

7.1. Simple^ variables
A table designator denotes a record of a tablei The expression is
evaluated, assigned to an internal integer variable I (say), and the
Ith record is chosen. The value I aust be greater than 0 and, if the
table- is STATIC, less than or e^ual . to the number of records
declared. /^^

The. tine necessary to ^calculate the address of a record T(I)- is
directly proportional to the auaber of the block in which the record,
resides.

• %
The usual way of accessing table records is through the LOOK

. ' . \ . - ' • • • ' •

7. VARIABLES AJID INDIRECT HEFEBENCES 24
I ' -'

and 'ESTEH commands and through POIMTEH variables which point at the
records. If,these commands are used, tae following restriction is
placed on the used of table designators: the value of I Bust always
select an already-existing record; if not, an error nay result. This
is not checked at runtime. -

, If ENTER, LOOK and DELETE are not used, then the table is
actually a one dimensional array. It it vis declared DYNAMIC, then it
may have any number of records. Thus, if a value I is used but there
are not as yet I records in the table,, enough blocks of records are.
added to yield I of then. • " • '

A diet designator denotes a record of a diet. This works
exactly like a table designator.

A stack designator references a stack record. The expression is ,
evaluated,, assigned to an internal integer variable I, and the Ith
record, from the. top of the stack is chosen. Thus, if S is a stack,
S(0) refers to the top record, S(1) the first from the top, etc. If
a pass has a main stack, then the system identifiers L0,...,L4 refer
to the top main stack record,...,^4th record from the top of the
main stack, before matching or the last production began, while
B0,B1, AND R2 refer to the current top, -1st and 2nd records of the
main stack, respectively.

A substring designator denotes a seguence of characters of the
string <destination> the first expression is evaluated and assigned
to an internal integer variable I. I then selects the position in
the <variable> of the starting cnaracter of the sequence. The first
character has position 0. Tnus we have 0 <= I < declared length of
the string variable. The second expression is evaluated and assigned
to an internal integer vaxia'ble J. J is then used as- the length of
the selected seguence. I+J must De less than or equal to the
declared length of the string variable. The"default value for the
second expression is (lengtn or string variable -I).

A subbyte de'signator^ denbtes a seguence of bytes of a BYTES
variable or indirect reference. The semantics are the sane as those
of substring designators. "'

' - ' - ' ' k
7.2. Component variables and selectors

A component variable references a component of some structured
variable. The first syntactic entity in a component variable" is a
simple variable, which chooses tne particular structure from which
the component is to be taken. Tais* is followed by a period and a
component selector, which , picks out the desired component. There are
two • methods • for this - naming the component, or indicating its
position by a sequence of numbers.

A. gaming the component. The component selector is a seguence
of component identifiers, separated by periods. The first is
the name of a,component of the structure. If there is only one

/ • 1
. ; . . " v . . . ••':. • (»

7. VAEIABLE.S AHD INDIHECT HEFEBENCES\ 2\5

component identifier, then the desired component has been
found. If there are more, then, the first must name a component
which itself has subcomponents. The second name '.picks out the
desired subcomponent, etc. As-.an example, consider the
declarations

V;

ST30CTUBE SUBSCH [BYTE AJtEA,, BYTE3. OFFSET, POINT EH S) ;
SIBUCTURE D1 (BYTE KIND ALT Hill B*

C (BYTE CI, POINTER C2) , V.
SUBSCH D, SUBSCB E); ••-.,'

D1 A; «t

To pick out component B ot A use A.B .
To pick out component C1, use A.C.C1 « \ ..-
To pick out component s ot component D of A, use A.DAS •

It is , not., always necessary to give the complete list of
component' ids! Thus£ in tne above examples, A.CI is equivalent
to A.C.Cl. The only rule is that the. component variable must
unambiguously define a component. A.S Would not be valid, since
it could be either A.D.S Or A.E.S.

B- Numbering.the component. Constituents are numbered from the
left, starting, with 1. Within a constituent, the alternate
components are similarly numbered. A number selector I selects
the first component of the Ith constituent. Thus we have:

A.1 equivalent to A.KIND v A.2 eguivalent to A.C
A.2.1 equivalent to AiC.CI . '•,

How would we reference component B? By A-1-«i. Here, the "-i2"
specifies the particular alternate (the second). In general,
"I-»J" means, the Jth alternate for the Ith (sub) constituent. As
illustrated above, A. 1 is equivalent to A1.'-«1.

7-3. Indirect references
*1 . S ^

J> • . • ,

A simple reference
CONTENT (<POINTE« expr«£sion>)

references the variable "pointed^ at* by the POINTER expression.
Thus, using the examples of tne preceding section, if PP̂ is : «-, pointer variable, then executing ..

PP- = 3 A. KIND; CONTENT(PP) = 3
sets the component A.KIND to 3 (cf section 8.2.1). The reserved .word
"6C" can be used as an abbreviation for "CONTENT".

It is necessary to indicate what type of value is.being pointed

7„. VARIABLES. AND INDIHEpT'.MFEgENCES 26

a t , by i n c l u d i n g a < p o i n t o tlt>e>^This Bay of c o u r s e be done i n t h e
d e c l a r a t i o n o f a EOINTEB v a r i a b l e (cf S e c t i o n 5 . 1) , i n which c a s e i t
c a n be" l e f t o u t h e r e . The a b o v e , e x a m p l e cou ld , be w r i t t e n a s

. "• . PP = 3 A.KIND; CONTEJi: (PP B Y T E V = 3

li. a rPOINTER e x p r e s s i o n • p o i n t s a t some s t r u c t u r e d t y p e v a l u e ,
t h e n one can d e s i g n a t e a componen t o r s u b c o m p o n e n t <of t h a t ' v a l u e
e x a c t l y a s was e x p l a i n e d i n S e c t i o n 7 3 .

. • / - . " '

AgaTin, t h e < p o i n t o t y p e > may b e o m i t t e d h e r e i f i t i s ' p o s s i b l e
t o d e t e r m i n e £roi; t h e componen t s e l e c t o r ' which s t r u c t u r e d t y p e i s
b e i n ^ r e f e r r e d t o . T h u s , u s i n g t h e ext n p l e s of S e c t i o n 7 . 2 , i f t h e r e
i s r no o t h e r s t r u c t u r e w i t h a c o a p o n e r . t named C, CONTENT(PP) . C c o u l d .
be u s e d i n s t e a d of CONTENT (PP D l j . C . , ' -

„ As a f u r t h e r s i m p l i f i c a t i o n ; • ' — p r e which s h o u l d be u s e d o f t e n -
i f the.-^OINTE'E e x p r e s s i o n i s j u s t a v a r i a b l e , and . i f t h e * < p o i n t o
t y p e > c a n b e - o m i t t e d , t h e n t h e c o n t e n t s b r a c k e t s c a n a l s o b e
o m i t t e d . \ « e c o u l d t h u s w r i t e PP.C. f o e CONTENT (PP D1).G ; and P P . C . C 2 .
f o r CONTEN,T(PP D 1) . C . C 2 . • "'•' . « ••-

7-U- , E 3 t ' a a p l e s \

s y n t a c t i c e n t i t y gi£am£le

< i d e n t i f i e r > \ • . A . " V.-.
< t a b l e d e s i g n a t o r ^ - T (. + J)
< d i c t d e s i g n a t o r > \ . D (1) •

; < s t a c k J e s i g n a ^ o O \ ; s.(0) .
< s u b s t r i n g d e s i g n a t o r s SUBSTB(ST,5) - '-',
< s u b b y t e d e s i g n a t o r > \ SUBBYTE (S Y , 5 , I) - ... , ' ..
<companen t v a r i a b l e > \ D(NJ .C .C2 -

* ... • A.S . ' • , ' -
< i n d i r e c t r e f e r e n c e > '-• GOMXENT (P SUBSCil) '••

' CONTENT (P)
^ ' CONTENT (P. SOBSCR) .AREA'

CONTENT (P)-AREA.
&C (~ 6C (P SUBSCR).S BYTE)
P . AREA . '

, • P . S . S (P p o i n t s t o a SUBSCR)

8. EXPRESSIONS 27.-

8. EXPHESSIONS
Expressions are rules'whi
existing ones. These" n
operations indicated by. t
Expressions fall into t
values are of some-ba.sic
whose values have some
simply by the syntactic c
<struct exp>..

ch specity hov new values are computed fro*
ew values are obtained by-.performing the
he operators on the values of the operands;
wo classes: basic expressions - those whose
type.'-•"• and structured expressions - those--

structured type. !rhe former we abbreviate
lass, <expression)>; or <ex'pr>, the latter" by

Syntax
<ex.p> .
<ex.pr>
< POINTER. expr>
<5TEING" expr> :'
<EY1E expr> 'v.
<DESCH exp>
XSDEfiESS exp> -

V:
<expression> | instruct exp> t;
<exp'ression>
<expr> "with type POINTER" .
<expr>-"with ty,pe STRING" '̂
<expr> "with type BYTE" \ • <••
<struct exp> "with type DESCRIPTOR"

1 <P0IHTER expr> "to a DESCRIPTOR"
<exp> "with type l&DDRESS'' .*

• 8.1.:Function designators

Syntax:
<function designator^:; <identitier>. „

J, { <<act,ual parameter^ ,l-ist>)]

Semantics; A function designator defines a value which can be.
'obtained as follows; the identifier must identify a function. The
haSy of this function is copied, modified by the actual parameters,
and executed exactly.as specified <a.a Section .9i7. The value is the
last value assigned, to the functioiTNidehtifier during this execution
(undefined if none);, its type is the^type of the function.-

Examples:. ilftX (X**2,. Y) ' ' I
: - . • ' •: '' C ^ - '• .' • , -

Y.CUNGESTUNCLE(JAMES)

8 . 2 . Basi£_ixcres£ii2 (n§

"Syntax . '
<primary>

<factor>

<expression>.

A
:= <constant>) <variable> | 2 <variable>
| <indireq»€ ref erenc'e>
I <f.unc*ti:on designator>
| <specfunc> , _ -
I I <expression>) • l J _

:= <priaary>.
j <priaar-y> ** <factor>
1 <unary op> <factor>. • •',
:= <factor> ' "" •-:"-
J <expr> <au,lt opX <expr> * '. ,*.

"#- EXPKESSIONi ' -. 28

• _ ; . '. * | <expr> <add op> <expr>
.' I <ex,jr> <flits op> <expr> ;

| <ex,/r> <relati'ona*l op> "<expr>
- . . | <ext/C> AND <expr> •

J <expr> On <expr>. ' *'-
<unary op>̂ , r ::= +'| - J tfOT
<iult op> ::= * |. / i //=„| BEN ;: ^
<aid op> ' ::= +.j -
. <tit op> ::= uiroa- j BITANE r BITEXOR • •-' '
^relational op> :: =; = | -.= | 5,<" I "-»<" I ">" I ""•>"

Note that the abdve syntax is aiuijUous. Expressions are. evaluated
in .a lett to riyht aannec,. using the precedence of operators given
in Section 8.2.2.; -• ' ? . " ,-'"•'

8.2.1 primaries. Tne ^riaaries <constant>, <variable>,i-
"Cindirect reterence> and <iunction designator./ have already -been
discussed." The 'primary a <variai>le> yields a POIKTBH value which is';
the address of {a pointer to) the. variable. <specfunc> stands for
"special function .designator";, See Section 2.2.

• '

8.2.2. precedence of operators. Expressions are evaluated in. a
left to .right .nlanner, according to* the f:£>Howing hierarchy of operator precedences (parentheses may be used to ove'ride then) :

V ' unary + unary - NOT \ ^
\ • ' . • - " ' . , * * ' - . • • , . ' ' . , - '

t , .* / • / / fiiitt, . B

b i n a r y * D i n a r y . -
BITOK BITAHD BITEXOB , v

= - !=•<-«<>-•>
. : ; ; AND " " ' . v "

•* OB.

8.2.3 conversion of-bperands. Tie following table indicates how
values arejconverted from one basic type to another when necessary.
Each row 1 represents tne oasie type of a value to be converged,
while each column J represents tne type . ±o tbe converted to. The
table element (I,J) is tiien a letter of a footnote below which
indicates how the conversion is made. A blank 'element signifies that
ho automatic conversion is pertormed.

RESULT: . . B H F ' f. D • F D .. P S
'J Y W W E W w 0 T

---£-__. I I C F F I R
. ' •E

, ' S

~ N
T

I
. N

CPEEAND " ' • E" - " G

fli IXFBESSIOMS ' V 29

BYTtS A B C c C C
Bar
Fai

0 - : E J£ • z E Bar
Fai D a - - E e' E
CEc- t .. ' i E - : £ E
par r • T . r • F - E
oar r t F F F -
FOIMTEB "•"

SIBIHG j

Ac It the operand type has tewer oytes than the resulting type,
leading zero bytes are added; if the operand ha's more, leading
'' (lettnost) bytes arc discarded until : the they have the sane
length.

B. If the operand, is BYTJi, it is considered to be an unsigned
integer. Otherwise the ri^ntnost two bytes of the operand are
considered to be a halfword integer without any other conversion-
(the leitnost bit is the signj. '- . ,

C. If the operand/has 1,2 or 3 oytes, it is considered to be an
unsigned integer and is caanjed to FBI foraat. Conversion then
proceeds with this new operand. It the operand has 4 or nore
bytes, the rigtttaost U D/.tes are considered to be a fullvord
integer without any real conversion being performed. Conversion
-then proceeds With this new operand.

D. The H«I (FWI) operand is considered to be a sequence of 16 (32)
b i t s — that is, -a BYTE2 (Bxl'E4) value. The sign bit -is just

• another bit in the se.uence. Conversion proceeds with this new
• operand.

E- Normal conversion. Some significance can be lost in the case FHI
to.KWF and when the operand is D£C.

F. Normal conversion with truncation. If the result is to be BYTES,
the operand is first converted to FWI and then to BYTES.

G. The rightmost 2 bytes are considered to be a halfword. If the
operand is between -2**15 and 2**15-1, the result has the sane
arithmetic value as the operand;'-otherwise not.

H. it the result has fewer characters, . use only the leftmost
characters.-,- of the. operand. If the result has sore, add blanks to
the right of the.operand characters.

I. The operand is assii'ied to o'e a string- value - each byte is a
character. Conversion H above is then perfoned. / '

J~ The operand characters are considered to be BYTES and the whole'
operand to be. a BYTES value; conversion proceeds fron there.

8.2.t arithmetic operators. The rpllowing table defines the

~r-

,8- EXPBESSIONS 30

arithmetic operators:
MEANING 0 FEBJTOH

• A
- A
A ** B
A * B
A / B
A / / B

A [identity)
sign inversion .„•'.'-
exponentiation of A to the power of B"
multiplication
division '. • |
integer division. Defined by

" ? . , SGii,(A*B) * D (ABS (A) , ABS(B))
• "• tfhere sGU is defined by

HWI PROCEDUHE SGN (FHT X) ;
.- IF X < 0 THEH SGH=-1 ELSE SGN=1 •

and D is defined by
FHI PaoCEDUBE D.(FWI X,Y);
IF X < Y THEM D=0 ELSE D=D(X-Y,Y)»t '

A fiElt B A - (A//B) * B .
A *• B . , addition \ \ • •
A - B subtraction ' '._,
With the arithmetic'operations^ operands of type BYTE, BYTE1,

BYTE2 are considered as positive integers, while^a BYTEtt operand is
a signed integer (the -leftmost oit is the sign). Not all basic type
values are valid operands ot arithmetic operators. Appendix A
contains tables which indicate tae Valid operands, the automatic
conversions performed,, and the type of the result of each
combination of operator and opera'nds. • ' ' . ' „

8.2.5 bits operators. Tne nits operators are BITOH, BITAHD and'
BITEXOB. They perform bitwise operations on the two operands as
follows: ; '

A BITEXOB B .
0
1 ,
r . : •'• o ' ""*

See" Appendix A for a list of valid operands, automatic conversions
performed, and for the type of tiie resulting operand^,

8.2.6 relational operators. The relational operators yield the
result TRUE (X'FF) or FALSE (X'QO*), depending on whether the
relation is true or not.1*

If the two operands are arithaetic'but have different types, v

A B A BIT08 B A BITAND B

0. • \ > o • 0
0 l\ r

1 0
1 0 1 0
1 1 1 1

V ^ > 8- EXPBESSIONS ' \ • ' . 3 1

the value with the lowest type precedence (cf Section 5.1.2) will
first 'bje converted to the other type.

If the two operands are of type BYTES but have different
•--" ;• lengths,'leading 2ero bytes will be added to the shorter .one. The

values are considered to be positive integers for the comparison.
If one operand is BYTES and the other arithmetic. The BYTES

value will first be converted to type FWI and an arithmetic
comparison w.ili' be jaerforned.

I± the two operands have type POINTER the relation must be * or
-•=.. Ihe pointers are eyual only if they are both zero or if thej
point at the sane; record.

• ; • * • v , • •

If the two operands are string-valued, the coaparison is
according to the EBCDIC collating se'guence. If the lengths of the
operands are different, blank characters are appended on the right
of the shorter until the lengths are the sane.

" •̂ •'•~ Only those eombinatibn of operands suggested above are allowed.
'. .'"£>: . • . . ' / • • ,. • ' ••

• '..--".8-2.7 logical operators. Tae operators NOT, OR and ABB have the
following meaning: • $

.5, NOT A- IF A = 0 THEN THUE ELSE FALSE '
'< A'"SR ,B- '•' IF A '-.=-.0 THEN TSOE ELSE B ->= 0

' A AND B IF A =,.p THEM FALSE ELSE B •" 0'-

Note that not only the BYTE values X'FF« and X'OO', but all btsic
: values except strings may be operands of the logical operators. Zero,
means FALSE, anything else means THUE. Note also that the second

. operand, B, is not always evaluated. Thus, constructions like
IF POINTEHVABIABLE AND POINfEHVAaiABLE-COflPONEHT * 3 THE*...

Are possible, since if-POINTEHVAiilABLE is zero, the reference to
COMPONENT will, not be made.

8.2-8 catenation. The CAT operator produces a string whose
value is the characters or the first string operand followed by
those of the second string-operand.

8-3. Structure expressions • • •

Syntax:
<struct exp> ::= <old value> J <altered value>

I. <new value>) <DESCR exp>
<old value> iz= <destination>
<altere'av-value> . ::= <destination> (<component specifier> }
<new value> ::- <structured type> { <component

8. EXPHE3SI0HS ' ' o 32

specifier>)
<component specifier> ::= *<<k.ejWord component> ,li.st>

(•Oppositional component> rlist>
<keyword component> ::= <coaponent selector> = _ .

| <conponent selector> = <exp>
positional components ::= <empty>

I <alteraate selector> _ ' -. .
| <alternate selector> <exp>
| <«lternate selectorV
(ckposltional components ,list>)

<aiternate selectors::= <empti> | •-» <integer>
_ , • / ' • • ' •

Semantics: A structure expression yields a value having some
structured type. There are -tnree- ways of writing a structure
expression:

1- The value of an <old 'value> structure expression is just the
current value of the destination. The type must . of course be
structured. No space is allocated for the value.
2. The value of an <altered value> is found as' follows. Space
is allocated for the new value. The current value of the
destination is moved, into this space. The components are then

- altered as indicated by the component specifier (see below) to
yield the resulting valu'e. The destination must of course be
structured.- v. _—..-.-..
3. The value of a <nev* value> is found as follows. Space is
allocated for a value of tne structured type, ill components
are undefined. The components are then altered/ as indicated by
the component, specifier to yield the resulting value.

There are two- ways of specifying which components are to be altered
- through keyword components and positional components.

•1. A keyword component consists of a component selector (cf
Section 7; 2) which selects •• the conponent to be altered,
followed by an equal si3n, rollowed by an entity to which the
component is to be chanyed. Tnis entity is either

A. The character."_"- This indicates^that the component is
MeBpty,t'. The meaning of this will become, clear when
Section 9.2 on assignment statements is read."
B. An <exp>. The <exp> must be assignment compatible with
the component selected. Xt is evaluated and assigi«d to
the component, exactly as in an assignment statement.

The components__>re altered in the order in which th« keyword
components,appear (left to riefnt).

^ 8. EXPHE3SI0NS '33

2. when positional components are used, the order and auaber of
positional components must correspond to the order mad number
of constituents of the structured type; the Ith positional
component indicates what to do with the Ith constituent. The
alternate selector indicates which alternate component of the
consituent to use; an enpty alternate selector indicates the
first alternate.
The entities "_" and <exp> appearing in a positional conpoaent
have the sane Meaning as in keyword components (see abov*V. la
addition to these there are two more ways of specifying what is

\ to be done with the component: • °
A. If the positional component is empty {not there), the
component is, not changed. >

B. If the positional component has the form V
<alternate selector> (<<positional components ,list>)

then the corresponding component of the structured type
must have subconstitnents. This new list of positional.
components is handled exactly in' the same way.

. ; The reader may have noticed that with <altered value> and <nev
value> structure expressions s.torag'e must, be allocated, section 9.2
on assignment statements specifies in which cases it is the
progranmer's responsibility to release this space. ' .

. . . ." . • * '• \ _ " - . .

Examples: We use the structured types
. STRUCTURE SUBSCE (BYTE AREA, BYTE3 OPFSET, POINTER 5) ;
S1H0CTUBE D1 (BYTE KIND AIT HWI fl,.

. C (BYTE C\, POINIBH C2) , . *
... < . ' . SUBSCR D) ;. ' . . - '•

SUBSC.fi V1,V2;
Dl V3,V4; ., - .

the following is an <old value>: VI
The following are equivalent examples of <altered value>s:

V3(B * , C.Cl *= 5, C.C2 = 0)
»3(-2 _, (5,0),) " .

The tollowing are equivalent examples of <nev valuesX,
CV|D- SOaSCB (0,0,0))
Dt(,,s«»SCHO,0/0)}

http://SUBSC.fi

. L v : ,
9. STATEMENTS y 34

9. STJUBBEUTS

A statement denotes a unit of action, lo execute a statea«at leans
to pecfoxa this action, statements ace usually executed ia seguence,
except when' a control or pass coaaunication state sent causes a.
change. " '

Syntax: .^
<stateaent> ::= <open stateaent> | <closed sta^eaent>

(•

<open statements :: = <label de£inition> <ppen stateaent>
J <open iter state>
.| <open cond state> -f, '

i<closed statement>::= <enpty>
1 <lanel definition> <closed stateaent>
| <coapound stateaent>
I <assignaent stateaent> .
J <closed cond state>
J <closed iter state>;
| <case stateaent>
| <control stateaenO .
I procedure call> r
1 <code stateaent> v.
| <specrunc> J <sfecproc> .

<label definition^ :: = <raflel> :
. - , - _ . ' . , r . » -

9.1. Compound statements
;••-••••— syntax:

^compound statement> :: = BBGIH <<statement> .; list> 4 END

Semantics: As in ALGOL, the compound statement is used to
bracket a sequence of statements.

9-2. Assignment statements. " ~

Syntax:
<assi9"ment statements ::= <destination> = <exp>

Semantics: This statement is executed as follows:

1. The. address of the <destination> is calculated, if
9necessafy.

,-. 2. The <exp> is evaluated.

3. The result of (2) is converted and stored - according-to the
rules given in the table below - at the address calculated in
(1). Only those combinations of types of the <destination> and,

9. STATEMENTS * ..«

v -
<exp> are vall'd which are indicated in the table below. Those
pairs of destinations and 'exps which are valid, are called
aasiqnaent compatible. ' •» "

' • ~ • ' " ~ . ; . / r The following table indicates how values are converted and
assigned to a destination. Each row represents a possible type of
the ^destination; each column a possible type, of the <exp>. in
element is either blank - which aeans the coabinatioa is not legal -
ax is a letter identifying a footnote which explains how the
conversion and assignment takes place.

Type of
destination type

bits
of exp

ari(
bits A A
arith A -•A
pointer
string A .'
structured C

V

A. The conversion is as explained in Section 8.2.3.
B. No conversion necessary. -
C. The value of the <exp> as it is in ieiory is stored in the

<destination> without anyvconversion (zero bytes are added to the
right of the <exp> if it is too short, or the rightmost bytes are
discarded if it. is too long). - '

D. The <exp> and <destination> aust have the same structured type.
Th/e~*̂ <exp> is evaluated and assigned to the destination. That is,
qoaponents of the destination corresponding to "empty" components
in the ̂ structure expression (cf Section 7.2) remain unchanged,
all others \are assigned the value of the corresponding structure
expression component.. Any space allocated in evaluating the
structure expression is automatically released. -.
"empty" coaponents become undefined, and the address of the
resulting value is stored into the destinations If space was
allocated for the evaluated structure expression, it is* now the
programmers responsibility to release this space when no longer
needed (cf Sections 7̂ 3 and 9.10).
Examples: • * '

A = B
P.= SUBSCR(A.KIND=5)
CONTENT(P) = SUBSCH(A.KIND=5)
P = CONTENT (P) (A.KIND=3,A.ABEA=2,A.OFFSET=_)

9-' STATEMENTS - .1 36

9.3. Conditional statements
Syntax:
<open cond state> ::= IF <e*pressi,on> THEN

<closea statement> ELSE <open stateaent>
I IF <expression> THEN"<statement> f • . .

<closed cond state> '
"•s^ ;, ' ::= IF <expre,ssion> THEN <closed fetateaent>

ELSE <closed statements

•• , r • , ' •• .. . - . • '

. 5eaantj.cs: These have the same semantics as rn ALGOL.
Examples: •]

. • IF I = J THEN GO TO L - •• ' \
IF X THEN U=0 ELSE IF,Y=0 THEN U=Y -

9. 14. Iterative statements . . ' , " '
Syntax: In the following productions, the letter "J".is to be

systematically replaced by the word J'open" or the word* "closed".
<J iter state> ::= FOfl <destination> = <exprl>

_ I STEP <expr2>]
. • UNTIL <expr.^> D.O. <J statement>

J WHILE <expression> DO <J statenent>
:"/:: \ J FOR <P0INTEB destination>
.;:;"; IN <tord. identifier>
• ';''«''• , . J.FR011 <POINTEB expr l> TO <POINTER expr 2>]

DO <J stateaent>
- <tord identifier> ::= <table identified

I <dict identifier> ^

. • . , Seaantic-s: The default option for <expr*> is. 1. The default
.option fpE 1 <Eoi-NTEE expr»> and <P0INTEH expr*> .is 3<t6rd. identifier>
1} and a<tord identifier> (M) respectively, if the table or diet
as -presently N records.

The statement -7
FOB I = J STEP K UNTIL L DO <stateaent>

where I is a destination and J, K -and 1 are expressions is
equivalent to the following sequence of statements;

' DEST = 31; SC(DEST) = J; ' "*
STEPV = K;

http://5eaantj.cs

'9. STATEHENTS : • \ ' -v 37

ENDV =' L * SGN (STEPV) ;
AGAIN: IF GC(DEST) * SGN(STEPV) <= ENDV
T H \ N „ BEGIN <statenent>; GC (DE5!£) =SC (DEST) + STEPV;, GO TO AGAIM
END

where DEST is an internal POINTEK variable and STEPV and ENDV are
internal variables having the sane types as K and L respectively.
The statement

>t . WHILE <expression> DO <statenent>
< : • " .

is equivalent to J •
'1 :' \

AGAIN: IF <expression> THEN BEGIN <statenent>; GO TO AGAIN END
The statement . •-•-

FOK P IN TAB -FKOM P1 TO PN DO <state»ent>
where P,P1, and PN are pointers and TAB is a table, is 'executed as
•follows: s ' \ ' '

\ . • : ' " . . • • ' ! . ' DEST - 3 P; ENDV = PN; CONTENT (DEST) = P1; \
AGAIN: IP CONTENT (DEST) -.= 0 - \- \

THEN BEGIN <STATEHENT>; ' <~J\
\\ IF CONTENT (DEST) -.= ENDV '
• . ' ; .THEN BE.GIN TALLX (TAB, CONTENT (DEST));

GO TO AGAIN ' I i
' • • " , . ' " v E N D

END;

' V ' • : / ; ' • .•••"• 4 ' - • ' \
"where DEST and ENDV a r e - p o i n t e r v a r i a b l e s .

\
Examples :

FOB 1 = 1 UNTIL 8*3 DO A(I) = I
70S P.X •= 10 STEPV 1 UNTIL 1 DO I (P . Z) = 5
HHILE PA Tip BEGIN PA*D=0; PA = PA. P END
FOB P IN SSIMB DO P.KINO = 0;

9.5- Case statements
S y n t a x :
< c a s e s t a t e s e n t > : : = CASE < 'expres s ion> OF < < s t a t e a « n t > ; l i » t >

ENDCASE

Senanti.es: The expression is evaluated, and- assigned to an
internal variable I of type FIJI. If I <= 0 or I > (the niinber of
statements in the list), no action is taken. Otherwise, the Ith

http://Senanti.es

STATEMENTS '38

statement in the list is executed. If this stateMent does not causae
control t< leave it, control then passes to the point beyond the
ENCHASE symbol.

. Example: ' _
CASE B OF
C — 5 * ''
FOB I = 1 UNTIL N DO A{I}=0;
GO TC LAB.;
BEGI! 0. - 5; FOB I = "V UNTIL S DO A.<I)=0 END -
ENDC\SE

9.6. Control statements
Sy itax:

^ <(3Btrol stateient> ::= <^oto op> <label> ,
I BETURN J SYNTAX] COMPLETE
I HALT i i <integer>) j ./
I CALLPASS (<pass number*) '
J.• SEGfWPASS (<pass nuaber> •) .

*, • * • • -

<gotoop> ::= GO J GO TO 1 GOTO ,

Semantics.: Execution or a yoto statement transfers control to
the statement labeled <label>. One cannot jump into or out of a
procedure or- into the statement of an iterative statement.

The. RETUBN statement is used only in procedures; it causes the
procedure to return to the foint ffom'Trhich it was called.

The SYNTAX statement is used only if the pass has a syntax
subprogram. It may riot be used in" procedures. Execution of the
statement causes control to return to the 'syntax subprogram
following the last EXEC action executed. - •

Execution of COMPLETE tells CIL that the progran is done. If
CGS tf;as used, the object module for the- generated program is
completed and written out. Execution then stops.

Execution of HALT (<iote<jer> J causes the .message " HALT
<integer> " to be printed and execution to halt.

Execution of flEGINPASS^ causes control to transfer to the
beginning of pass <pass numb.er>, while, execution of CALLPASS
transfers control to (jass <pass numbec> at the place where it last-
executed a BEGINPASS or CALLPASS (if* it had.never been executed,
control goes to the beginning of it). The CALEPASS is thus^, like a .
coroutine call. • • • ' • . _ \

9- STATEMENTS " • .. "' ,39
. " " ; " . " ' ' ' v . . - ' • ' . ' . . ' \ ' • : • . ; •(

• • • - * • ' • \ ' ' V •- • ' , ' • • ' • ' . ' • . ' [• " ! •

I t the .pass being called is^. in' another :coreload^, tha t coreload
i s brought i n to - - co re . . Passesl in the previous .ibpreload »ay not be
cal led again. •

- \ - -

9.7 procedure s t a t e a e n t s

/ Syntax:
' <procedure cal l> : := <identi!f\ier> I («aqi :ual parame.t^r> , l i s t >) J

J | <specfiinc> | <specproc>
(% ,

<actual. parameter^; : = <expression>4| <table identifier>
^ I <dict identifier>] <stack identifierV

Semantics: Execution-of a £toced*re statement is equivalent - to
the following process: v

A copy is made of the procedure^or function body identified by
the identifier in. . the procedure statement.,, The actual
parameters'of the- procedure statement, which' aust agree in
number.and order with the formal parameters of the procedure or
function-, systematically replace;, those formal paraaeters a's
follows: _ ' < \ ' •/• •'>•'•"• ~" .

'1. If. the actual paraaeter is a destination?- whose type
is the same as- the type of the formal paraaeter, the
address of.the <destination> is calculated and assigned to
an internal variable, say I, which is different froa any
other variable. The indirect reference "SC (I)^ then
replaces every occurrence of 'the • foraal paraaie-ter
identifier in the copy of the procedure, body.
2. If the actual paraneter is a constant, the constant •- is *
converted to the [type of the corresponding foraal
parameter (this.must be possible) if necessary and 4the :. result replaces every occurrence of the foraai. paraaeter.
3. If the. actual pakaoTeter is any basic expression not.

^'covered in 1 or ""2, it is evaluated, assigned t'o an
internal variable, say J, whose type is the saae as the

* type of the corresponding foraal paraaeter'. The' variable J
then replaces every occurence of the foraal paraaeter.. -
4. If the actual pacaaeter ^s^-a table, diet or st.acK
identifier, the corresponding fornal paraaeter aust be a
table, diet or .stack, respectively, with the saae type.
The actual paraaeter replaces every occurrence of the
formal paraaeter identifier in the copy of the procedure
body. ."; - ' " . . •„ ;

The re.placeaent of paraaeters aust yield valid expressions and
statements. The modified copy of the procedure body is then

9. STATEMENTS 40

executed.
. • it a function is executed in tnis manner, 'the value it produces

is lest-/ > • . '
<specfunc>s and <specproc>s are calls'dn special functions and

special 'procedures- See Section -2. 2- ,
K : : • • ' : - • • ' . ' ; " ; • , v ' • • • •) ' • '

Examples:,. . • . . - - '
EdOINBEGS (P) ,
1IME"- V ,,
l.C0KLAB(A, PP) :.? ."V
YCUNGESTUNCLE(JOHN) , ''

9.8 scanner statements

''.A
I-he following <specproc>s are used to communicate with the

scanner: ." •'••'.

SCAN
GHAKffODji
NOiiHODK

SCANNEB (<scan'ner id>) |

Execution of SCAN causes the next symbol to be read from the
' source language program, being compiled. It is put in location

SCANSYB and on the main stack or the pass in which the SCAN appears
(if applicable). See Section 12.1 tor an exact description.

Execution of the. statement CHAHMODE causes the scanner to
change its method of scanning ^'source program to a character by.

' character-scan. See Section 12.1. ** •
• '• ; V • ' * • • ; . K . • • '

Execution of the statement NOHMODE causes the scanner to scan
• . '. ' the source program in normal fasnion. See" Section 12.1.

Execution of SCANNER ((scanner id>) causes the scanner to begin '
•j^. j. using the scanner definition- named (scanner id> for forming, source

•mfci- l̂anguage, symbols. . " ' . . • /

9-9. Inp_ut-outEUt

9. StAIEHENTS h1

The I'/" provided is quite primitive. More pouerfu^_I/« lay be
added at a later date if necessary.

9.9.1. Input. Section 12.6 explains input procedures; when the
normal scanning . is performed (cf Section 9.8). In addition, the
<specproc> r •. . - '[

r— i. | 6IN j
< :--J ' . - '

reads the next card into the systea string variable 6INLINE.

9-9.2- Output. Execution o£> the <specproc> \

r ~ ' ~ — ~ r~~~i 1 EOUT (<<expr> ,list>) J
i j

- \ ' , • • ' • " ' • ' - " . • • -

causes the expressions to be added to the current output line.
Strings are added without conversion. Pointer and bits type
expressions are first converted using the function' &HEXT (see
below), H8I, FWI and DEC expressions are first converted using the
function SDECT, while FHF and DMJ? expressions are first conyerted
using the function SFLPT. When the current output line is filled up
a new one is started, execution ot the <specproc>

' i" '. r 1
J BOUT 1
j •• • ' ' - 1 ' ' - f

causes the current line to be'written out (if not :eipty),sw
Execution of the <speqproc>

| fiOUTQESCR\(<DESCK exp>)]
/ .' ') • . , ::

causes the current output line to be written out and the DESCRIPTOR
to fce written'out in a readable fori.

' 9.9.3. Conversion functions.! The following <specfunc>S'return a
binary representation of the STKI'liS parameter S:
" ' . '• S can contain only

<specfunc> S is the characters result is
. f . . . r ._ - ,—__1 .

•-> J STBIR(S) J binary 0,1 BTTES | ,-_ - — ~ _-_ ,
| 6TOCT(S) J octal 0, ,7 «»YTES |

i; r . , ________T______ ._ _ „ , ^ __„ T ,
| STDEC(S) | decimal 0,...,9 '" . . FWI |

9. STATEMENTS > 1*2

J STHEX (S) | hexadec.
i • i—

1 .__ i i « ^ |
0,.-.,9,A,.*-,r ' BTTI 3J

The result is right-adjusted with leading zeroes if necessary. The
number of bytes is the number necessary to represent the string in
binary. An error message is printed if s contains illegal
characters.

The foil-owing <specfunc>s perfoci the saie function except that
the parameter A is an atom (BITE2 representation) of the string S:

\ • . .- '• " • • '

r i

J STtllN (A) J
J STOCT (A) 1
J &TDEC(A) J \
\—<-- I .
J &THEX (A) |
i - — j The following <specfunc>s are used to convert an internal number to

character fori. The result is thus a STBING expression. Below, A
represents an atoa { BYTE2. expression). _ -

<spec.func> the -STKING result is
I £EINT(<expr>) | <expr> expressed in binary characters
I &DECT(<expr>) J <expr>. expressed in decinal char.
j
J &FLPT(. <expr>) I <expr> expressed in floating pt. Char.
|-— —
J 6HEXT(
1 — - » —
,.| SOCTT (

<expr>)
<expr>f.)

I <expr>
I <expr>

expre'ssed
expressed

in hex characters..
in octal characters.

-| &1EXT (A) | string corresponding to atoa A

No. conversion is. performed on <expr>; it. is changed as it stands in
memory. *. '. ' '

Examples: -V

6 EI NT (B' 11010') is equal to * 11010"'
EDECTC B; 11010') is equal to '.26 •

is, equal to ^2.»» E+01«
is. .equal to , • 1A'
is equal to '32*

6Pi.PT(.B' 11010')
&HEXT(B"11010')
6CCTT(B' 11010")
£EECT(-3645001) is equal to j'-364500 1 •

9. STATEMENTS 43

f

9.10. Releasing storage
If an assignment statement

<P0INTER destination;* = <struct exp>
(where the <stract exp> is not an <old value>) is executed, CIL
allocates storage for the <stcuct exp> and puts its address in the
<E0INTER destinations It is then the prograiners responsibility to
release this storage when no longer'needed "(see Section 14.9 for the
special case of DESCRIPTORS).' The <specproc>

t~ ':—' ~ " T "" 1
I 6RELEASE (-<POI»TEB destination:* [,<pointo type>]) J

releases the storage pointed at by the POINTER and sets it to zero..
The <pointo type> is needed it the declaration of the POINTER did
not unaibigously indicate the data being pointed at.

\ '

4"

• i

<J

10. OPERATIONS OH TABLES, DICTS AND STACKS • »

10. OPERATIONS ON TABLES, DlCTS AND STACKS
This section describes how one adds, deletes and .searches for
records in tables, diets and staexs. Each <Cspecfunc> described here
yields a POINTER value - either 0 or the address of a table, diCt or.
stack record. Thus they may be used anywhere a function designator
is used. Ihey nay also appear separately like procedure statements,
in which case their value is'lost. /

' % ' • ' / " • • • . • • • ' • . - • -

10.1. Operations on tables . \
" " • " \ r • '
Syntax: The syntax of toe. HNTEB, LOOK, TALLY and ' DELETE

<spec'£unc>s is . . '

ENTEH '(<table identified L , <exp> J) — — 1
LOOK (<table identirier> [. <componeht selector>])

,'<expression> |.
I EBOfl <POINTEii expressions] • (
[-TO <POINTEB expression*)] I
[,. BACK. I) . - " ' . I

_ : < . > •. . ,

TALLY (<tab2e identifier) , <POIHTER expression).) |
- I , BACK •]') * :. • . .,- |

DELCETE (<table identified , <POINTEH expression)) I

Semantics:
SNT.EJL. A new record is added to the table identified. If the '

<exp> is. present <exp> (which must oe assignment compatible with the
type Qt the table records) is assigned to this new record; otherwise
its value is undefined. The value or ENTEH is the address of the new
record.

LOOK. If thevtype ,o4 the records, of *he table is a basic .type,
the' component selector \ may not appear. A-subset of the records is
searched for one which is e^ual to <expression>. If the type of the
records is a structured type, a subset of the records is searched
for one whose, component selected oy the component selector , (default
'option . is ' •*. 1 -t 1 *•) is equal to <expression>. The comparison is done
according £o the rules of Section 8*€.6;

. ,• * . • • v

<P0INTEB expression') must point at a record of the table,.say
• the Ith (default option is tne address of the first record).
<E0IN.TEB expression2) must, jjoint at a' record of the table, say the
Jth (default option is the address, of the last, record). •'r . ̂ '•

If BACK is missing, the . records tested -are records,. I,

\ > •'A.

Y

10. OPERATIONS ON TABLES, DICTS AND STACKS. "* l»5

-V 1 _ '
1+1,...,J, in that order (nonê Lf j-< I). If BACK appears, records
J,J-1,...,I are tested, in that order (none if J < I). \

If a record is found, the value ot LOOK is the address of the
. record. Otherwise"the value is 0. . ' •

TALLY.. The POINTER expression aust be 0. or the address of a
record of~the table identified. The value of TALLY has type POXVTIl
'and is given by the following table, assuaing the table has 1
records. • /

Value it BACK . Value if BACK
.' POINTEB expression is not present is preset*,
0 addr. Of record 1 addr. Of record â
addr. OX record 1 addr. Of record 2 0
addr* Of record N ' . 0 addr. Of record 1-1
addr. Of record J addr.'Of record J+1 addr.' Of record J-1.

* f 1 •"< J < N) . . . -

DELETE.' The POINTER expression aust be "the address of a record
in the table, say record I. If there are currently » records in the
table, records I, 1+1, ... , N are deleted "froa the tables The value
,of DELETE is the value of the new last record - record 1-1 (0 if
•table is now empty) . "*£. •

• ^ • ' :• V •
' * , v • • • '•

10.̂ .'" Operations on diets '•" , ~
Syntax: The syntax of these <specfunc>s ENTER, LOOK, TALLY and

DELETE" is
,„__—._.__.:_i-u__._._i__L_. .__—___,]

1 ENTE* (<dict identified , <BYTE2 expression> |
, -,l . £ > <e*P>]) x - ' I- ,v : . 1 - ,__^_ .__ _ - ,

I ENTER (<dict identifier^ , <POINTEH expression> |
^ - . [, <exp>])- ' . j

- i : • — • < : - •* I
J LOOK- (<dict&identifier> , <BYTE2 expression> } J
, _ — — 1.1 :-—-— ; ~ r - I
I LOOK (<dict identifier> , <POINTEB expression>))
, __ __J_„_ _ _ j . , •.
i TALLY t <dict identifier* , <POIHTEH expression* |

^ ' I • I '. BACK])' «• _ _^_ I
| DELETE { <dict identifier^ , <POlNTEB expression* \) : |

itics Seaa-ntics: As discussed in Section 12 on . the scanner

10. OPEHATIONS ON TABLES,/ DICTS AND STACKS 46

definition, each compiler automatically uses a hash-coded internal
dictionary SlNTDrc to aid in changing from source language symbols
to their internal representations called ATOHs. There is one record
in the internal dictionary for each source language symbol
recognized. By using diets the compiler writer can use the internal
.dictionary to search his own symbol tables efficiently.

I - ' • ' * * /
In the discussion of diet declarations it was stated that the

structured type of the records must begin with a BYTE component
followed by a POINTEB component. The first component automatically
contains an internal number identifying the diet. The second
component is used to chain diet records which."refer to the same ATOM
to the internal dictionary record for that ATOM. Thus, in order to
find the record in a diet for an identifier, one only has to search
the chain based on the internal dictionary record for that
identifier.

rig. 1, part A shows the record for an ATOM, I, before any diet
records have been chained'to it; the second component of the record •
points to the record. In the same part A it is assumed that the
diets 0ICT.1 and DICT2 are ern̂ ty; the other parts of figure 1 will be
used to illustrate the operations on diets.

X

r

10. OPERATIONS OH TABLES, DICTS AND STACKS 47

PIGUBE 1

INTEBNAL DICTI*0NA8I

L>i
i

— j - J

A T C B - i ~ ~

DICT1' DICT2

I :_
1>1 . — j -

1 I
ATOM.I

->l
I

— | - J

RECORD 1

1
- - - - - - - - - . - ,

1
• • > ! l_ ?\ — i — — >\ ~]~J

1
ATOH I

J J 1 . 1 J
KECORD 1 , BECOBD 1

r n

L>, J%
1 1
ATOH I

—>j - - i - i
' i ,.-. i i

HEC0 8D 1 |

\r
J l
1
1
1

1
1

r n

L>, J%
1 1
ATOH I

—>j - - i - i
' i ,.-. i i

HEC0 8D 1 |

\r
J l
1
1
1

- > |
1 - ,
HECOHD 1

- J

1 ' -»

r _ _ j

«->J " * ~ |
I 1
BECOBD 2

\r
J l
1
1
1

- > |
1 - ,
HECOHD 1

<->|
I
ATOH I

I

\ i

' .1 ' I I
r — > | — | : -J
I I _. , 1

KECOKD 1 -J | /^BECOHD 1"

1 _ _ _ _ _ _ ^
L i — _ - . j

«->| — |
1 _ _I
BECOBD 2

> , _ _ , _ J

I :i
BECOHD 2

\

10. OPERATIONS ON TABLES; DICTS AND STACKS as

ENTEiU A new ..record is'added to the diet identified, If <exp>
is present, it is assigned to th,e record (it aust of course be
assignaent coapatihle with the recora); otherwise the record value
is. .undefined. The record is. then chaine4.__tp the internal dictionary,
as follows: - --..=ia—,^ .-~̂ _£.___;___

1. If the second parameter is a BYTE2 . expression, its
value aust be an ATOM - that is, the internal representation of
s.qae source language symbol. Tne new" record is -inserted in the

• chain directly after the internal dictionary record for the
atom- As an example, consider fig. 1, part A. Executing

£UX£ti(DIC,T2,I) ">
would-yield fig. 1, part a. Further execution of

; ENTEB(DICT1/I)
\ •

would yield fig. 1, part C.

• A

- 2. If the second parameter is a POINTEB expression, its.
value Bust be the address of soae chained diet record^ (not
necessarily the diet identified .in the EJKTEB operation^)- the
new tecord is inserted in- the "chain,rafter the chained, diet
record- For example, consider tig. 1, part C. If P is a .POINTEH
variable, executing

\
• \ P = ENTE3(DICT1, DICT1(1))

would yield part p. Further(execution of

would yield part E.
ENTER (DICT2, P)

LOOK. There are two variations:
1. If the second paraaeter is a BYTE2 expression, its

value aust be -an ATOH. The chain based on that 'ATOM is searched
for a record in the diet. The value of LOOK is the- address of
the first one found (0 if none found) . Por example, consider
fig. 1 part'D. Execution of >

L0OK(DICT2,I) .• . • ' . „ • .

yields the the address of the record D I C T 2 (1) , while execution
of the°saae statmeirt.but with the configuration of fig. 1 part
E' would yield the address of.DICT2(2).

- • \ ' • * -2. If the second paraaeter. is a POINTER expression, its
value must be the address of soae chained diet record. The
records after tite" one addressed and up to the internal
dictionary record are searched for-one in. the . diet specified.
The value of LOOK- is tne address of the first one found *(0 if

I

10- OPESATIONS ON TABLES, DICTS AND STACKS "~ 4V9
. ' V . :"•• • ' . : ' ' ' : ' " • ' • ^ • •• •

none found) - f o r ' exa ip le , -~cbi t s ider f i g . 1 ,part E. Execut ing

LOOK(DICT1, DICT1{1))

y i e l d s the addr.ess of UICT1 (2) , w h i l e e x e c u t i n g

'"•—• <\ LOOK(DIGT1, DICT1(2)) or LOOK (DICT1/, DICT2(2)) ,

s* • y i e l d s the valute 0. l l u l e

TAL-LJfi Th i s works Exact ly a s the TA1LY o p e r a t i o n with , t a b l e s .

" " " , ' U - • . '. , • •' - ' . , - . - •
DELETE. ThisVorks exactly as the DELETE ojieration wi ch tables, with the addition that the records are taken off the chain before

being deleted. For example, consider fig- 1 part £•- Execution of-=
P = DELETE(DICT2, DICT2 (2))

yields the address of record DICT2(1) in P and the configuration in
fig. 1,part D.

10.3. Operations on stacks' '
Syntax; The forn of the ̂ JSH and POP.<specfunc>s is

r c : — ' ' : i I PUSH (<stack identified [, <exp>]) I
j _ _ ^ _ — _ _ _ -_ ^__,
POP (<st'ack identifier> i , <destination>]) |

" — — P — " ; •• / S
Seaanticsj > . ,->••

'" £SSUv Executing PUSH; adds a new record to the stack identified.
The value of the record'is,, the value of. <exp> (which . Bust be
assignment compatible with tne record),if present; otherwise it is
undefined. The value of PUSH is the address of the new record.

12£i Executing POP deletes tne top record froa the stack
identified. If the destination is present, the top recJord (which
must -be assignaent compatible with ttie destination) is first
Assigned to the destination- Tne value .of POP is the address of the
new top stack record (0 if the, stack- is now eapty).

'Care aust betaken when PUSHing and POPing the main stack of- a
pass;, a semantic routine should not PUSH and POP if it later refers
to the aai-n stack via 10, i'1, L2, L3, .L,4, L5, B;1,;H2, or H3.,

. ' \ '• . ' ' " - , w . * . • ' ' '••'•'• . • " .

10. OPEHATIONS. OH TABLES, DICTS AND STACKS ', 50

10.4. Ih€,table_SINTDIC.
6IHTDIC is the hash-coded INTernal Dictionary used -to transform

source language, symbols into atoms. The following <specfunc>s^ce
provided to allow a compiler writer some access to it.

| LOOK (silNTDIC, <STHIHti expr>) I '
| ENTEH{SINTDIC, <STRING expr> [,<BYTE expr>]) j ,. T — - - - ^ _ ,

H 1 ATOI! (<P0INTER expr>*) . t .
, _ _ _ ^ _ _ „ . _ - _ _ _ . : ; — ~ - |
J" ATOH (<STBING expr>) ' • | *
, _ _ ^ „ _ , _ — _ _ . , - _ . _ _ _ _ _ _ ,
| 6TYPE(<POINTER expr>) \

| £TYPE(<STRING expr>) .: ' |
i i : ; _ - T i 1 — . . - . - • - . + • •

LOOK returns the address of Jthe 6INTDIC record for the STRING
expression (or 0 if no record for.it).

ENTER is executed as follows:
STRING, one is added to SIN.l'DlC. Thei
expression becomes the type'of the sti
definition (cf Section 12.1)'. The defe
expression is 0. The value of this <specfunc> is the address of the
SINTDIC record- \ •]• - ,„

ATOM . returns a BIT-E2 value. 'In'
expression musj. yield the address of an,
record. The/value returned- is the at
with the record. In the .,sjeedad'case,, the
assigned to the BYTE2.variable B when
executed: ,:.

if no record exists for the
jn the value of' the' BYTE
:ring for the current scanner
fault"' option- f or \ the BTTE

the first jjfe.se, the POINTER
SINTDIC record or a diet
on for the symbol associated
value returned is the value
the following statements are

P = LOOK (SINTDIC, <STfiIHG expr>) ;
IF P \ ' "
THEN B = ATOM (P))
ELSE B = ATOM(ENTER(6INTDIC,. <STRING expr>))

^SII^E returns a BYTE value - the type of the symbol (cf Section
12.1)" associated with the &INTDIC. or diet record pointed at by the
POINTER "expression (case 1) or with the STRING expression (case 2) -
which must already be in SlSTDIC.

http://jjfe.se

11..ST0HAGE ALLOCATION AMD ALIGNMENT OF:VALUES #* ' v51

11. ST08AGE ALLOCATION AND ALIGNMENT OF VALUES -, /, -, 5 .-
While not necessary, it is often helpful to know how storage is
allocated.- In the IBM 360, data nust often begin on a half word;
fullword or doubleword boundary.' He detine.-the aliqriaent factor as
follows: ' . . • • ' ,. . ' •. '' x

data aust1 begin on. alignment factor is
'doutleword 8: , • '••-•» '- '
' -f ullword . 4 " , ' - " . . ' ' • ' .
half word- .,.'.'-•'• 2 . t;

/ ' • • b y t e " • •-./ ' 1

In other words, if the alignment factor is i then tlve'addTcess of the
leftmost byte of the data must be a multiple of. i . The following
table gives .the alignment factor and storage reguireaent. ;ifqE. basic
•type'values. >.. ', - • ' ; ' ./'"'•

• • • • ' , . . . ' • . - . ' ' , ' ' • ' . . _ • • ' " • • • . • . - * •

•. '. . Type " "

• ' ^ ~ - / ' - -BYTE -//•••
EYTE2\
BYM3

• BJTE4.
•;EYT£S (I)
'HWI
F»I'
DEC
'FWF
DHF
EOINTEfi
SIBING(I)

• • • • ' " '. / '•';' • •

A. BYTE3 and POINTEB values are contained in the last 3 bytes
of an IBM 360 fullw'ord. The first £>yte nay .or may not be used for
another value. -

. . • : • / , . . • • • • • • A ' . • • • • ? ' - •

B- In certain cases, a 'BYIES oc STRING variable aay be given.
four .fcytes - one for /the (length minus 1 and the other three'for the.
address wh'ere the acfcyal value really is. » ,•*•. •-.'';*"

alignaent: 'number of
factor •_.""'.) bytes 'used
1 • - . " ~ ' ! .

• . . : " 1 • ' -

2 ., • • ; " •^ r • 4 isee A below), (see A below)
4 ' - ' 4 .
1 isee B below). J- 'i 1 isee B below).

2 .
4. * • ' . ' .

• * * ' • • - . • ' ,to be deterained> later ; .
4 . 4 ' ," •
8 • ' : . ' • ' .•9 4, {see A below)
1 (see B below)

• {me ft below)
' I «~

The following rules are used to allocate storage, for structured
type values. . . . " "* , : •
1. The alignment factor for a structured, type value is the^ aa'kiaum
of the alignment factors of.all its components and subcomponents.

2. The alignment factorfor any component with subcoaponents is the
aaximua of the alignaent factors of those .subcoaponents. -;

11. STORAGE ALLOCATION AND ALIGNMENT OF VALUES :- 52

3- All coaponentsof-a constituent use the saie space. The nuaber ot
bytes allocated to a constituent is. the aaxiaua of the nuaber of

. fcytes needed for each coaponent or the constituent. . ~ /
t. Bytes are ' allocated .to constituents in'a leftrto-right vaanner. , The constituents -dre packed together as close as passible, i/taking
into account their alignment factors. •/
5. The nunber of bytes ,used is a multiple' of the alignment factor. .

"\-. Examples ' ' • ; / • • J /"
•. STRUCTURE S i (BYTE B , HH1 C, BYTE-D1 ALT- HW- J>2) ; / • /

STRUCTURE 52 (BYTE' 2," FBI if, G (BYTEZ~^r ALT BITE' G2) • ,/ S 1 H) ;.

' S I J 1 - ; S2 A 2 f , •. ' . ;•• , . . [- -
/ . . ." . .

A1 uill bejin on a halrword, h'l on a fullword. They looK as
follows (bytes are nuabersadr starting at 0; the underlining after

" each identifier indicates' whicn bytes that coaponent uses) .̂ '
BYTE o i

A.1
2 3 U

B_,_ • C- ,D.1
. D2

BYTE 0 1 2 3 i* 5 6 7 d 9 10 11 12 13 1« 15 \ i 17
A 2 _ ' J ;_ _ ' . •_, '• ^ ; _ „ . .
E__ . . .{ ;_j ;__G H_; 7 s , . „

- ' ' G 1 _ _ _B_ C - D1 V \
G2 • "• • ~ • ~~T>2~ f

12. SCANNER DEFINITION* 53
\

12t SC'ANNEB DEFINITIONS)
The scarinef- is that jjarWjvra compiler which reads in the original
source •' jĵ ogran characters and composes them into atois -
identifiers, integer, single and douoi* character delimiters, and
reserved words. The.scanner definition indicates how these atoms are.
to be formed.

As indicated in Section 4, several scanner definitions may be
given. Initially,' the first one is in effect until changed at
.conpile tine.

in' nind:
The scanner definition was defined with two conflicting goals

-*x
1. The scanner should be etticient. To accomplish this, the IBM
360 "translate and test" instructions are used, along with
three or four 256-byte taoles per scanner definition. With
£his, for example, sequences of 1 to 256 blanks ' in the input
source program can be skipped with one instruction.
2-. The scanner definition 'should be flexible enough tc
accoaodate^ajl existing languages. This of course was not

.''"^possible- rn order to accomodate more languages, the compiler
writer, c^uutest, insert .and delete characters from each card,,

/ before it is actually , scanned. He can also switch back and
forth from normal scanning to' character - by - character

: • scanning (in which case he builds atoms himself).
•At this point,, an example will help to make the next sections

e'asier f to understand. Suppose our source language' consists of octal
expressions using the operators *,-,*,/ and»**. Parentheses (and }
are also (used. Nuabers- are octal integers. Identifiers must begin
with 4 or one\of the letters A through J-; the succeeding.,, characters
must .. be one N?f. the letters A through J. IDBEG is a^jreserved word
.used to identify the beginning and end of expressions. Comments
begin with /* and_ end with •*/. Spaces are ignored. The scanner
definition is

SCANNEH ONE
SYN IDBEGSYN IDBEG
DIGIT 0 12 3 4 5 6 7
IDBEG '* A B C D
E F G H I ' J
IDCHAB A B C D E F G- H
TEBHIN • - *'/_ () / v

IGNOBE X'401'
INVIEBBIN NONE
BES IDBEGSYN **
COM1JENTQ. / * */•

ENDSCAN

' " (ONE i d e n t i f i e s the scanner def)
(IDBEGSYN i s a synonym f o r IDBEG)
(d e f i n e s d i g i t s) -

(d e f i n e s beg inning i d c h a r s .) '
I J (d e f i n e s o t h e r id c h a r s .) '

(d e f i n e s s i n g l e
c h a r a c t e r d e l i m i t e r s) ^
(s p a c e s are c o m p l e t e l y ignored)
(t h i s c l a s s of symbols i s empty)
(d e f i n e s re served words and
2 - c h a r a c t e r d e l i m i t e r s)
(comments beg in with / *
and end with * /)
(end of scanner d e f i n i t i o n)

12. 5CANNEB DEFINITIONS
/ '

54

Syntax:
(scanner def > SCANNEH <scanner id>

[«synonyn def>. list>]
<<set^ derinition> list>
I «res.erv,ed der> list>]
[«g,uote def > list>]
[BEGIH preprocessor]
ENDSCAN . \ \

12.1. Scanfojng and the internal diction
•hen scanning a source projraa, the
right through the prograa. The end
significance. (the coapiler .writer
internal character inserted it/tie end
significance - cf Section 12.6).
alternatives for the next source langua
picks the longest one. Thus it •BEGIN1

words and the characters ", B, E> U, I,
•BEGIN1 will be foraed. . ,' "'

scanner proceeds \froi left/to
of a\ line o(card»>Jias / no
aay, however, hivi» his/own
of each line to gite it /soae
In case there are, several
ge syabol, the scanner always
and •BEGIU are both reserved
N and • \ are scaanedjf then

A

\ • •

Scanning in .ng$nal aode (Mt^HODE) (cf Section 9.8)./ when /a
source language syabol is foraed, it is replaced by a 16-bit nuaber.
The coapiler^works exclusively With this nuaber. The word/ atoa /is
used both for a source I language syabol^ and its 16-bit
representation. \

• . "\ • . .

In order to replace a syabol by its 16-bit representation,' the systea uses a hash-coded internal dictionary, naaed &IITDIC. SIMTDIC
contains s&T\record for eacn source language syaboll scanned. Besides
the syabol itself and its' internal representation, this record
indicates (for each scanner definition) how the syabol', has b^en
used. The possibilities are: • \ j '

ii£§

6
7
8
9
10
1 1

leaning I
sea '). The syabol is undefined (has not been scanned using

this scanner definition). I /
The syabol is an identifier (I). - ' /
The syabol is a nuaber (H). I /
The syabol is a string (S). /
The syabol is a reserved word or teraiaator (like •. -
BEGIH END) (H) .'.,.",•.. . []

The syabol begins a coaaent (CQ).
The syabol begins a string. (SQ). - „

When an - atoa is scanned,
location SCANSYH. SCANSYH contains
the atoa is put in SCAMSYH
word or terninator (E), the a

it is passed to the coapiler in
two BYTE2 components. 'Just how

depends onMits use. If it is a reserved,
ton for it is

coaponent), while SCANSYfl.2 beco
identifier (nuaber or string), the ae

s put in SCAKSYM.1 (first
undefined. If it is an

is put in
•esj undefined. If
tasVabol I (H or S)

v -I

file:///froi

v \ • • \- •- •/
1 2 . SCANNER DEFINITIONS , (, \ 5 5

\ : - l
I

• I ' ' i
X " ' • • \ / • ,

SCANSTH. 1 and the ,atom for the' identifier\(number or strimg) itself is pub in SCA~NSYM.2i /

Scanning in character node (CHARMODB) \(cf Section 9.8). when in,
character node, the source program characters are pat ia SCAHSTH.1
as they are scanned.'SCAHSYfl.2 becomes undefined.

12.2. Defining_s/nonyis • • • - • • ' »
Syntax: ;
<synonyn def> :: = SYM «s/nonya pair> li*t>
<synonym pair> ::= <synonyn> «EBCDIC char> list> |

;."• . J <synonyn> <char seguence> ' / '"'(
'• \ ' I ""A') •
<char sequence> ::= <EBCDIC or hex> \ "/ -"~\

J , •) <char sequence> C M <BBCDIC or' hex>
<EBCDIC jar hex> ::= <Et)CDlC char> | <hex cmar>

. <hex chair> ::= X • <haxit> <he,xit> •
• I ' [• " v . •• . ' / -r' ' '

Semantics: A <hex char> nay not be XT'70,1. Tne <hex ch*r> allows
one to use othler 8-bit combinations as characters, besides the
EBCDIC bit combinations. Bote that a space must be represented by
its hex representation, t'HO'.l /

• ' " k • • , i ' \ ' f' '""-•• The synonym definition associates a CIL identifier (the
synonym) with a sequence of characters which forn a source language
symbol (the <EBCDIC char> list or the <BBCDIC or hex>s in the <char
seguence>). The synonym nust be used later in a set definition (cf
Section 12.3) or in a reserved word definition (cf Section 12.*), to
indicate how the source .language symbol is used.

Any source language synbol can be given a synonyn; th«
following nust have a synonyn;

' 1. Those source language synbols which are scanner definition
reserved words: . ^

BZGIM
CAT COailEKTQ
DIGIT
IIDSCAH

' IDBEGi IDCHAB IGXOBE mVTsBBlH
DOME I
US
STBINQ ST»
TEinla "J
2. Those' source .language synbols which contain (or are) a space
or a character which is not an EBCDIC character. v

A synonyn nay not be a-r*served word of a sublanguage in which it is

^

• v 12. SCAMMB* DEFI»IIIO»S 56

?1 used {production language;, or seaaatic sublanguage or scanner definition.) i • . ' >y

12.3. Set definiyiota
' • - ' r \ Syntax: ——<set definition> ::

<char" set>
<character>

•> DIGIT <cnac «et>
I IDBBG <cnar set>
| IDCaAB <char set>
| TEB4IN <char set>
I IHVTEBHIil <cbar set> ,
| IGBOBE <char set>
• MONB l «character> list>
> (EBCDIC or hex> | <syaonya>

Seaaatica: Set definitions serve to describe! the use' oi
character in the source language. Each character eust appeal
least one set definition. These definitions are used by the icanner
to build the actual source laa^uage syabols. A set definitioh-^vith
the <cbar eet> /aoil defines an empty set. The sets have the
following neaning: | ^- I j,

1. Tit set of DIGITS are used to loin nuabefs according t'o the
syntax $ '. ^-' ~

(source nuaber> ::= <(digit> list>.
Hhen a source auaber is foraed, the netasyebol H i s returned in
SCAHTSH. 1, while the aton tor the source nuaber itself is put
in SCANSTH.2. lote that no actual conversion of the nuaber is
perforaed. , \ ' J • •"
2. The sets IDBEG and IDCHAB are used to fori source (language)
identifiers according to the syntax - v \

(source id> ::• <cnar in set IDBBO
[«char in set IDCHAB> list> J.

;• Uhea a" source identifier is foraed, the
'; returned ia SCAHTSM. 1, while the atoa for th«
/ itself is put ia SCAnSIn. 2.

aetasyabol I is
source identifier

/ 3. The set TBIHII contains the single character syabols of the
soarce language. Exaaples froa ALGOL and FOBTBAK are • - (and
) . These characters are called ^eraiaetors. siace they
teraiaate identifiers or aiiabers. ffhen scanned, the atoa for a
teraiaator is pat in SCANSTH.1 while SCAVSTM.2 becoaes
undefined.
4. The characters in the set IHTTEBHIM signal the end of an
atoa beiag foraed. For sxaaple, in soae languages a space

\

12. SCANNEfi DEFINITIONS J 57

following an identifier ends that identifier; A D is two
identifiers - A and B. However, these characters are - IIVisible
- they are" not passed on to the compiler (except in strings).
5. The characters, in the set IGNOBE are completely ignored
(except in strings) if they appear in the source progran. For
exaaple, in son ALGOL implementations blanks' are ignored; A BG
is the identifier ABC- .. _

The default option, in case a set definition for one of the sets
•issing,. is taken froe the following sett definitions:

is

The

.DIGIT 0 1 2
IDBEG A B C
IDCHAB A B
.2 3 4 "5 6 7
TEHHIN NONE
INVTEHniN X'«0'
IGNOBE NONE
x
following restrictions

3 « 5 6 7 a 9 r

D E T G H I J K L f l N O P Q B S T U T W I T Z
C D E F G H I J K L M N O P Q B S T O V B X T
9 9

Z 0 1

The -sets IDBEG are placed on the sets.
and IDCHAB nay have a nonenpt^^iatersection. The sets IDCHAB and
DIGIT nay have a noneapty intersection. The intersection of any
other two sets must be empty.

12.i». Beserved words
Syntax
<reserved de£>
<res word>

<ternin>
<source id>

s » -
HES <<res word> list>
<source id>
J <termin> <source id> "[<ternin>]
| <termin> <ternin>
j <synonyn>
"a character in the set TERMIS"
"a source language identifier (cf sets
IDBEG, IDCUAB)"

Semantics: The reserved derinition declares the reserved words
of the source language. Note that we include double character
syabols like // and /* here. If a synonym appears here, the' source
language syabol it represents nust have one of the other forns given
above.

12.5. string and coif nt quotes
Syntax
<guo.te def>

<guot«.pair>
<begin guote>
<end guote>

:» STBINGy «<juote pair> l i s t >
| COHBENTJ « g u o t e pair> l l » t >

:« <begin guote> <end guote>
:« <terain> J <res word> | <synomyn>
:» <terain> £ <terain> J j <synonym>

« * SCANNEf DEFINITIONS ' ' '•'•'•'...' .*•"' 5 8

Seaaatics: The set COHHKNTy contains pairs of beginning and end,
Quotes for consents. The beginning, quote can be any terainatof ox
reserved word; the end quote nust consist of one or two terainators.
Consents are deleted fros the.source prograa. iA coaaeht is thus an
invisibleterminator (set MVTBHHIH). \ .

The set STHINGQ contains pairs of beginning and, end quotes for
strings. The beginning quote can be any terainator or reserved word,
while the end quote Bust consist of one or two terminators. Bhen a
string is detected, the aetasynbol S is put in SClM'iSH. 1 And the
atom for the string (without the quotes) is placed in SCANSIH-2.

12.6. Processing before scanning
Syntax: <preprocessor> ::z <procedure call> "of .a procedure

without parameters"
Sesantics: The procedure Bust be in core during the *^s« the

scanner definition is used. Vhen reading in a new source program
line, the scanner puts it in the system string variable 6INLINE ', and
executes the procedure call. This procedure can then do any
preprocessing necessary before the scanner actually scans the line.
The result of this preprocessing must be put inj the systea string
variable &SCLniE. The original line' should also be written outi using
G O U T . '• • • • • • « ' • ,

- - . * < * . • . • • » •

For example, suppose we wish to preprocess a FOBTHAN prograa.
The end of a line means the end o£ a stateaent except when coluan 6
of the next card is nonblaniu In addition, columns 1-5,7-72 are
fixed fields. Suppose in. the scanner definition we declared the
terminals .EOS (end of statement) and E01 to be two byte
representations which-cannot appear on the input card. The following.
procedure then will accomplish what we want:
BHOCEDUHE PBEPROC;
* BEGIN fiOUT{6IHiINE) ; SOU!; /* write out the line */ ',

IF SUEBYTE{6INLINE,5,1) = ' •
THEM BEGIN /* this is not a continuation card*/

6SCLINE. = „EOS /* put in end of,stateaent,*/ .
CAT SUBBrtE(£I«I.INE,0,5) /* label field,*/
CAT EOL \ .'.'./* end of label,*/
CAT SUBBYTE(eiNLINE,6,.6&) /* r£st of - card */

ELSE BEGIN * /* continuation card. */
6SCLINE = SUBBYTE(6INLINE,6,66). A •'
END

END

If the <preprocessors is aissiny , fron a scanner definition, a
procedure with the following procedure body is autoaatically invoked
before each new line is scanned:

x v - - • • • • : ' . • /

J2. SCkHUESi D$TIHITIQHS(59

BEGIM SO0T(eCLIMEl,' • *, - ' / /* line" nunber */
6INLIHE); • ./' /* input line -.-*/•

60U1; / '•'•*.:•.
fiSCIIME = SUBBYTE(6IHI.IJlE,0,/72) ; /* only cols 1 to 72 .*/

The following systen indentitiers are used in connection vith
the scanner. • / • ' . - ' • (. "
STBING(aO) SINLIHE. Always contains the last source program line.
STBIMG (256) SSCLINE. Current source progrin line being worked on.
SIBIHGf 5) &CLINE. Contains the nunber of the current line (with
leading blanks). , .' • . • \

• • - ' ' • {

HWI 6NLINE. The number of the current line.

J

13. PRODUCTION J-AtflJUAGt! (PL) . ; ' • ' . ' - 60

./•v13.. EBODUCUON LANGUAGE (PL) > .
'• - , ' " i '"..'".• '. ' /' - • '•.

production language (PL), is a sublanguage of' CIL- ""designed for
writing "parsers" or "syntax analyzers" of programs. It consists
primarily ot so-called •productions which work with a LIFO stack.
Briefly, as a source program is scanned, the source symbols are
placed on the stack and an attempt is made to match the top stack
symbols with those designated DJ tne current production. If no match-
occurs the following production becomes the 'current, one,and a Batch
is attempted again; -this continues until a match occurs. When it -
does, the top of the stack is rearranged and' several actions *re
perfbr»edr> as :.indicate^*^the'current production. These actions' may
cause tore symbols to" be stacked, may cause' a portion of the
semantic subprogram to be executed and lay also indicate which
.production is to. become the current production. J"

.At this point an example might help to make this whole section
clearer. Consider' the. following production-:..

• • • " . ' • • ' v . ' - '
IF E THEN >ICL EXEC SIFCLAUSE GOpTHENPART

• ' , . ' ' ' " " *

TJRIS . production has. the following meaning;-If the top three stack
' tfecords contain the' symbols IF, *£ and THEN, then replace these three'
records' by a single record containing the symbol ICL, execute that
portion of the semantic- subprogram labeled SIFCLA.8SE', make the
production labeled THENPAKT the current production•: and begin
matching, again.

Production language need not' oe used,** in which case- the^. -
semantics portion of a pass is executed as a program in the -usual/
manner; statements are executed in the order in which they appear.

If production language is used in a 'pass, then it is the
production language subprogram wnich is 'in-command - which drives
the compiler,...,. It causes source language symbols to be scanned an<r-\
invokes parts of the semantic sublanguage.

Syntax: • ., • ' . • > ' • * .
<PL subprograa> ::= PHODLANG r

. ' • ' L « P L declaration> list> .]'
PKODUcriONS <<production> list>
JSNDSYNTAX

' • " *

13.1 comments and blanks
A comment in PL is any sequence of characters, not including - the
subsequence ":.:", enclosed in the comment quotes "::" and "::" . A
comment may appear between declarations aad/or productions. k

• " . ' \ • ' " • • ' Blanks may appear anywhere except-between characters of a <PL
identifier>, <source symboL>* <identitier>, or reserved word. At
least one blank must separate them if they are adjacent. *

13. PHODUCTION LANGUAGE (PL) 61

13 .' 2 PI reserved words
•-• Ihe reserved words of production .Language' at)

ANY ' .•••-.' V
CALL CLASS CLASSLAB
ENDSYNTAX EEROH EiXEC
GO f .
HALT ' •;•'-•
'I IF INT '. •!•
N l' . './ '
. PRODLANG PHODUCTIONS .-
HETUBN , ,-•". ,
S SCAN SCANNEB SCANSYM SIGNAL /STAK
UnflK

They lay not. be used as identifiers in a PL subprogram.

13«3. Source language svabols • "••A.'-'- . .'/ . .'•. *
.,•' Syntax • ' " > - . ' ' • ' . ' •',.'".'.', '"T .'*-,,.:•;

<source s^mbol> ::= "any sequence of 1 to. 250 EBCDIC'
characters' except *•*",', .":"/,. H>" and

/ space (blank). It lajnotbe a PL reserved
' -' word." ., , ',.-. \ • •"

i <source language symbol> <-.
< • . " r

Semantics: A source syabol. is a seguence of, characters which
"'. sas^declared in a manner definition to be a syabol of the language

to be compiled (cf Section 12.2). Note that in this subprograi' only,
the source syibol nay appear without the "J" in front'of it, as long
as it follows the rules given abovew " • • • • • •

* ' ' • • ' . ' . " :

Exaapl.es:
EEGIN
-+ . / - :" •.-.•''
SS is the source language symbol n$v
CLASS is not a source symbol since it is a reserved word.

- JCLASS represents the source language syabol CLASS.
/• AND and JAND are Equivalent.

13.1. Metasyabols
• . / - . ~ . * • • ' ' c ' " ' • • Syntax: <aetasyabol> ::=. I J & J S | ANY ~. /
• • ' .- . . • ' '. * ; ' ' • ' ' • ' / •

The aetasyabols I, N, and S represent an identifier., a number
^ (sequence of digits) and a string of the source language being
coapiled, respectively. ANY represents any source language, syabol..
Their use will be,explained later. /

13.5 Ufc_4dsa4ififiE§

'\

http://Exaapl.es

13. PRODUCTION LANGUAGE (PL)" 62

fe.

Syntax
<PL identifier*.

<PL label>
<PL int>
<class-name>

"any sequence q£ 1 to-.250 EBCDIC
characters' except "$", ":*V r ">", and
space. It nay not be a PL reserved word
or oe used as a <source syabol>.»
<PL Identifier>
<PL identifier>
<PL identified , v •

Semantics: By the syabol <iaentifier> we lean the usual
identifier" (cf Section 1.3) - a sequence of letters and digits, the .
first of wji'ich "list be a .'letter. .<identifier>s used in ,av PL
subprograa are (declared . elsewnere - as a synonya for a source
language*syabol, as a label in tne seaantic .prograa, etc. ,

' * • • ' • • ' - • • > ' • ' ' ' • ^ ; ; . \ •

PL identifiers - those declared and used ' only in a „PL
subprpgc^a - are less restricted, .a,"s indicated by the above syntax.
A PL identifier aay be declared only once in a PL prograa and must~
be different froa any identifier'or symbol used in a PL subprogram. .

1-3.6. Communication between syntax- and semantics
"13.6.1 the main stack .:'

as
. subp
this
s'u b 1
the
BYYE
stru
call
(a to

•put
stac

P ro d u
the

rogra
piirp

ang'uag
first

2. A.pa
ctar'e
ed -the
is for
As so
in 1

k as 1

cf.ion
major
and t

ose i
e (cf

thre
i?t fro
of;the
the) :
urce-. 1
ocatio
ollows

language, uses a LIF4.0 .stack. This stack serves also
communication, between the production language.

he seaantic subprogram. Th,e-stack to be used for.
s defined by a <raain stack dec> in the semantic
Section- 6.2). It must be STATIC (cf Section. 6.2) and
e components of' the stack records Bust be of type
m this„^the compiler writer is free to define the
stack 'record as ne chooses. The second component is.-
x_coj|£onen^ of the stack; it is used- to' store ,"the
symbols of th,e language. ' • '-..-••
anguage symbols are scan
n SCANSYM <cf Section 12

ned~at compiletime, they are
.1) and then pushed onto the

1. • If the symb
'• _ -nietasymbo'l I (N or S
. and the .atom for th

- - the third BYTE2 comp
'system use.

2. If the symb
its atom is put in
component is reser-v
becomes'undefined

-For- example, suppose th
and B are identifiers, PL
the source language being

ol is an identifier (number or string), the
is put iajto the second BYTE2 coaponent,

e>- identifier (number or string) is put. into
onent. The^-rir-st component is reserved t-'for.

ol is not d,n identifier {num"ber or string) ,
the second BYTE2 component.. The first

edfor system" use while the third component

e string "A = B PLUS 1" is scanned, where,A
US is a. reserved, word and l i s a number-- in
compiled. Then the stack would be: •• •'* • •_

1 3 . PfiODCJCTION -LANGUAGE '(PL) : i : l : 63

•stick_rec=; Ist.coap.
reserved
reserved
reserved
reserved
reserved

13.6..2 location SIGNAL'

^£^_'£21£i 3rd coip.
N
PLUS
I

undefined
B
undefined
'A

BYTE identifier SIGNAL^is a"system 'identifier local to a ,pass
whose value can ,ie . chaifjed in. the usual aamner ii tk« semantic
s'utlanguage and tested in production ' language. Its value is
initially undefined', (cf Sectiou- 13.9.> act'ion 7)./

.13.7. Declarations in PL
J

Syntax \ »*.
<PL declaration>

<in* 'dec>
<class dec>
<classlab dec).

<-sy«bol label>
<symbol>.

:= <int dec> J <class dec> -
J <classlai) dec> • •

:= INT «PL int> list>
== CLASS <class naiej> <<symbol> list>
:= CLASSLAfl^<class name> ••.

3~la «syo Label>1list>
<syabol> <label>"
<source symbol> 1 <PL int> | I) N.| S
J <int identifier>

Semantics: The' identifiers declared, in an INTernal declaration
can be thought of as "nonterminal", symbols used to help define the
syntax of the source language. They can . be' placed in. the. syntax
"portion (second component) of the stack. Each INT identifier is
represented internally by a» 16 bit_(BITE2). integer assigned by C|i. ;

CLASS. and CLASSLAB declarations serve to associate the
<synbol>s with . the class name. This .is simply a motational
convenience;. a production containing a .class name is. equivalent to a
sequence of productions, each with one of1' the <syabol>s substituted
for the class name.

Additionally, a CLASSLAB declaratioa associates ' one semantic
label 'of the semantic sublanguage with each; symbol, providing
another convenience mentioned later in discussing actions.

INT identifiers"and class names must be declared ' before they
are used. ' • ' - ' * -

Example's; " . _/- .
INT PEIBAKI FACTOR TEHH EXPBESSION ' '

J , '

13.-PRODUCTION LAdGUAG£ (PL) 6.l»

CLASS UNARYOPEBATOR • -
CIASSLAB OPERAND I RpUTINEI N 1tOUT,r\CEN PRIMARY ROUTIN#P

13.8. Productions
• ,; Syntax '

.< production^

<lert part>
.<right part>
<ac'tion> '
<syab>

= iPL iabel> : <p'roduction>
| <left pact> £ <right part>]
<<action> list>

=«syaB> list>
= .*>- L « s y a b > list>] • '
= "see Section 13.9"
= <source symbol>. | <aeta syabol>
| <-i-nt identifier^ | <PL int>
| <ciass naae>

k/ <l«ft part> iay contain at. aost 5 <synb>s in the list.
«'• <right part> lay contain at aost 3 <syab>s in the list.

fe ' - '
Semantics:- The first production to be executed is '.* the first

on*. Productions' are' executed in order of occurrence except when
this is caanged by an action. A aejuence of productions Bay act as a'
subroutine. See Section 13i9, actions 1 "and 8. -
A production ^is executed as follows:-

1. The <symb>s in the left part are coapared with . th« syntax
coaponents' (second component) ot the top records of the .stack.
A ,aatch -occurs if one ot the roiiowin§ .holds for each <syab> in
the left, part:- '••''• •'« ; • •'

' ' "• •' ? • - ' • • ' ' - / . • - -••y.

A) .the <sym.b> is a Csynbol> and t'hesaae <syabol> appears
on the syntax component of the corresponding record.
B) the • <sym,b> is. ANY (it Batches any syabol on the s t a c k) .

<* "C) the <synb> is a class name and the syntax coaponent of
the. corresponding .stack record is a syabol in the class

I <elass name> (cf Section 13.7)'. ' '
If a match /occurs, jo- on to step : 2; if no Batch occurs,
execution is finished.

2.; If the right-part occurs, in tae production, then the records
matched in (1) are deleted froa the stack. Any <syab>s
appearing in-the. right part'are'then s,tacked, in left-to-right
order, as follows: .

A) if the <syab> is AMY, I, S, H or a class naae, it Bust
also have appeared in the left-part. The coaplete stack
record, whose .position corresponded to the. rightaost

65

occurrence of the <symb> in the left part, is stacked.
B) if the <symb> is a source symbol,. PL int or int
identifier, a record is added] to' the stack and its second

. component/becomes that syabol.
/ • " • . ' . . ' • " ' '

3_ The actions are executed.

13i9. Action's
He now present the possible actions which can occur in a

production. •
1. CALL.: <PL label> Execute the productions' starting at the one

labeled by the~<PL label>, ant5 continue until the action BETOHM
- is executed. This is thus just a subroutine call. It may be,

recursive. Bestrictiom the action EXEC <class naae> may not
appear after a CALL action in a production.

2- EBBOB <inteqer> Print " EBHOtt <inteyer>".
3. EXEC.<label> Begin executing the seaantic subprogram of the pass

at the statement labeled <label>* When the semantic statement
SYNTAX , is executed, return" to the action following this one.
The <.label> lay "not be in a procedure or iterative statement of
the pass. -

H. *EXEC <class na»e> The class naae, which must have been declared
in a CLASSLAB declaration,, must also appear in the left part of
any production in which this action appears. Consider the
symbol in the.stack corresponding ta the topmost occurrence of
the class name in the left part ot the production. The semantic
subprogram is executed beginning at the semantic' label
associated with this S/BDO1. in the declaration of the class
naae. Upon execution ot the semantic statement SYNTAX, control
returns to the production suDprogran at the point following
this action. Please note the restriction in action 1.
Example. Suppose we have the declaration ; "-
CLASSLAB SIdN • SPLUS - SMIHUS ' .
and that the stack contains

, E + I - E (top of stac'ii)
and'finally that a match has just occurred using the production.
E SIGN E SIGN E-- EXEC SIGN.
Then the semantic subprogram will be execmted b»?l*ai*f at
label SKINUS. '•'" < . . " '

5- GO.<PL,label>. The production labeled <PL label> becoeea the

13. Pi EDUCTION LANGUAGE (PL)

I

13. PRODUCTION LANGUAGE {PL) . ' ,,/ \ 66

current production and aatcning begins. Any actions following
the GO action will never be executed. ' ' v

6. HALT <jnteqer> print the message "HALT <integer>"i and stop the V
program.' -ft"', -
,. ' ' .- , ' •' V

7. If SIGHAL GO <PL label> If SIGNAL is T1UZ (not.zero), execute the
GO <PL label> action (cf Section 13.6.2). ' /

8- BETUBM fieturn to the point after the last CAEL executed ,(cf
action 1). - ..̂ " ' »* .

" v * • - / • » •

9- ££43 If this pass is not in parallel with others, build the next
atoa of the source progca'a, ptft it in SCANSYM (cf Section

- 12.1), and push it onto the stack (cf ̂ section 13.6.1).
10. S£ii lial«i*£> This is equivalent to SCAN SCAN ... SCAN

<integer> tiaes. I
• i 11. 5£li!l!Ji <14ffliltil£2 *••'- identifier Bust nate a scann4r

definition (cf Sectioa 12.). Until another SCANNER action is
executed, the source projras will be scanned according to ' the
scanner definition identified.

12. 5H£ <SXlt2li The sysbol is pushed onto the stack (component 2
of the new record.- cf Section 13.6.1).

13. STA* SCAX3YB Push the , s / i f i o i i i SCANSKM onto ' t h e s t a c k . (cf
S e c t i o n 12. 1) . "<*'' "

•1

1

%: CODE GENERATION SYSTEM (CGS) 67 \ \

1 4 . CCDE GENEflATION SYSTEM (CGS)

1 4 . 1 . COJEAHJAS) ___.--'

14*1.1 introduction
* £0.£IAJLIA is a table tor storing code (machine language) as it

is being' generated at COBpile tine. Code gets stored in a' CODEABEA
automatically as code bracket statements (cf Section 14.6) and
expressions (cf Section 14.5) are executed. The compiler writer may
also enter his own information into a CODEABEA with an ENTER
statement (cf section 14.1.5). At runtime, the contents of the
CODEABEA becomes the program beinvj run.

Any number of CODEAREAs may be used at compile time. The; may
contain code, tables of constants, or a mixture of both. Each
CODEABEA becomes a named section, or -esECT, of the generated object
module. _

We make the following restriction om the use of CODEABEAs: the
bytes of code for a subroutine saouid be contiguous. Br a subroutine
we 'mean a section or a program which may be "called" from many
places, and which returns to tne calliig point when finished. To
illustrate this, suppose a one-pass ALGOL compiler is compiling a
program with the following structure: - ^'^ : •

BEGIB PBOCEDUBE B; \̂
BEGIM PBOCEDUBE C; •••'.* ' ̂ ~

BEGIM ... sND;

I » D ;
PBOCEDUBE D;

; B«GIB . . . EBD;

IBD

Code for the main program and tor procedures B and C . must be
generated into different CODEABEAS, while the cod* for procedure D
may not be in the same area as the main program cod*. On* possible
configuration would be:

CCDEABEA
1 ' •. 2 \ 3

I MAIN |
1PB0GHAHJ
r i
1 .,. . 1

IPBOC Bi.
|PH0C DJ
1 1

] 1
IPBOC C|
J' 1
I L " _• . 1

rictior The main reason' for the above restriction is to k**p th* code for

14. CODE GENERATION aiSTEfl (CSS) 68

each logical \part of the source program in contiguous bytes. This
facilitates base register allocation and branching, which on the IBM
360 are complicated tasks.V
the important points to remember aoout CODEAREAS are:

1. A CODEABEA at compile tine is read-only storage at runtime.
2. The information is to be tilled into the CODEABEA at coapile
ti»e- \ \ "~
•3. Each CODEAHEA is a separate physical entity (a named section'
in OS 360 terminology),
it. l,t compile time, there is always one current CODEAEEA into
which code is being generated.

. • \ ' ' . ,

5. All CODEAEEAS are in core during runtime (cf Section 14.9
for multiple coreloads). \

\ the offset of a byte in a COUEABEA is the address of that byte
in the C0DEA-8EA. The first byte has offset 0, the second has offset
1, etc. Within CGS the-address or an/ byte in a codestea is gives by
the pair (CODEABEA number, offset). CGS takes care of addressability
problems when/generating code. \ *•

14.1.2 register descriptions " \
CGS maintains a set of re-j^ster descriptions for each C0DEAB.E1.

These register descriptions describe (at compile time) the ' runtime
contents of the IBM 360 rejisters after the currently last
instruction in the CODEABEA has been executed (at runtime). For
example, suppose the statement

C0DE(6G«tEG (1) '* D)
• - ' v

has just been executed.' Tnis statement aeans "generate code to put,
the value of the runtime variable described by the DESCRIPTOR D into
general register'1." The code toe this is generated and put into the
current CODEABEA. Then the register 1 description is changed to
indicate that thi3 value is now in register 1.

Execution of the- above statement eight also cause other
descriptions to chaage. For example, if the runtime variable is not'
directly addressable, code suet tirst be generated to load a
register with the correct address ; (this is done by CGS
automatically). When this happens, the description of that register
•is also changed.

! ' ' - . • . . ' ' ' •

A compiler writer say change and/or,test register descriptions
himself. All operations on taea are explaiied in Section 14.4.

'->

file:///part

-14. COOK GENERATION iYSlEH (CGS) 69

14. Llsystea variables connected with CODEABEAS

contains the auaber identifying the current
CODEABEA.
c o n t a i n s , t h e o f f s e t of the n e x t f r e e ' b y t e
in t n e c u r r e n t CODEABEA, and thus t h e
nuibar of Dytes i n t h e CODEABEA so f a r .

SCODEBO BriE

GCODELOC BYTE3

. 1 4 . 1 . 4 c r e a t i n g and s w i t c h i n g CODEABEAS.

Eva luat ion of the <spectunc>

I £CBkATECOD£ABEA |
L 1

causes a new CODEABEA to be created. The register descriptions of
this new. COCEABEA all initially indicate that the registers are
eipty. the value, of the function designator is a BYTE value - the
nuiber assigned to the new CODEABEA. This nuiber identifies the
COCEAIEA and is used to cossunicate with CGS.

The <specfusc> I

I CUSECODEABEA (<expres^ ion>)

V

is evaluated as follows: tne <expression> is evaluated, assigned to
an.internal BYTE variable I (sayV, and CODEABEA I (whifch aust have
already been created) becoaes the £u.££3gt. CODEABEA. This leans that
any code generated before tae next USfiCODEABEA • function designator
executed, will be added to this COOfiAHEA. The value of the function
designator is the BYTE value assigned- to the previous" current
COBEABEA. • ~

14.1.5 entering data into a CODEABEA
Code is entered into the current CODEABEA as code-bracketed

statements ""are executed and code is produced. In addition,
<specproc>s of the following fori can be used: •• •-_,-

r
I j ENTEE (CODEAHEA, [<expression>>,] <expression*>) j

This statement, .is executed as follows^.

J>-
1». CODS GENERATION SYSTEM (CGS) 70

1. If\<aipcassion*> is aisaj.ag, than <expression*> is evaluated
and added to the currant CODEAREA at, the next free byte with
the proper aligaaeat (cr Sectioa 11 for alignaeat factors for
different basic types). Variable CCODELOC is changed to the
offset of the first free byte alter the added bytes.

' • ' • , . . , . . • _ . & ' "

2. If <expressioa»> is present, it is evaluated and assigned to
an iateraal BTTI3 variable .I (say). Next <expression*> is.
evaluated aad the result is put in the CODEAREA at the offset
I . . " ' ' - • ' i

If. the ENTER instruction is used and the entered data is actually
code, it is the coapiler writer's responsibility for updating the
register descriptions.

Exaaple. ENTER(CODEAREA, B)

14.1.6 initial conditions

,.;
"JW.

Initially, CODEABEA 1 is the current CODEABEA and is the only
one in existence. It "nay alread/ contain soae inforaation; CODELOC
nay not initially be zero.^

14.2 illilSEiS ,

14.2.1 introduction [
A - DAIAABEA is a runtiae tacle for storing data - values,

corresponding to source language variables, temporary resalts, etc.
In contrast to a CODEVHEA whicb at runtiae is read-only storage, a
DATAABEA is read-write storage. Under, certain circuastaaces, a
DATAAREA can be initialized at coapile tine.

Storage is allocated in a DATAAREA to runtiae variables through
the allocate stateaents (ct Section 14.2.4). The allocated storage
can be initialized at coapile tiae bj the 6INIT or ENTER stateaents
-*(ct Section 14.2. 4). \

The offset of a byte in a DAXAAUEA is the address of that byte
within the DATAABEA.- The first byte has offset 0, the second has
offset 1, etc. within CGS the address.of any byte in a DATAAREA is
given by the pair (DATAABEA nuabeXj otfset withinOATAAREA).

Actually, the BYTE nunbers 'Hhiich identifyDATAABEAS rare
different froa those identifying COD^AHEAS. Therefore a pair

(area nunber, otfset)
uniquely addresses a byte o£ an AREA { CODEAREA or DATAABEA).

14. CODE GEUEBATIOM.SJSTEH (UGS) 71

14.2.2 systea variables connected with DATAAREAS

&DATAJIO BYTE
GDA1ALOC .BYTE 3

contains tae nuabex identifying the current
DACkk&BA.
contains tne offset of the next free byte
in the current DATAAREA, and thus the
nuaber ot Dytes in the DATAARBA so far.

14.2.3 creating an
The <snecfunc>

d switcnin 1 DATAABEAS

| SCHEAIEDATAAKEA {. (DYNAMIC) J |

creates a new, eapty DATAAREA. The value of the function designator
is a. BYTE ifalue which identifies the DATAABEA and which is used to
coaaunicate with CGS.about the DATAABEA.
There arĵ two types of DATAAEEAS - (STATIC an^Dr»AMIC.

1. J* (DYKANIC) is aissiny in the above function designator,
/ the DA-TAABEA is STATIC. This aeans that it it i naaed section

(control section), of tae object aodule being generated; it
exists throughout runtime (cr Section 14.9 for aultiple
coreloads.) it nay be initialized at coapile tiae. CGS handles
all problems of addressing STATIC DATAAREAS. -

2.,If (DYHAHIC) is present, the DAJAABEA is DTHANIC. Ho naaed
sect.ion for it exists in the onject nodule being created and it
cannot be initialized. Its function is to describe t̂%e foraat
of a section of storage, which aay or aay not exist at different
stages of runtiae. It thus is like a "DSECT" in an OS 360
asseably language prograa.
On* use of a DYHAHIC' DATAA*EA is for . the variables and
tenporary locations associated with a procedure. At coapile
tiae storage can be allocated within the DATAAREA and code

, generated which uses -the DATAABEA (even though no storage
actually exists). At runtime, when the procedure is called, the*

. necessary storage corresponding to the DATAABEA aust ^be taken
from free storage and used. Just before the procedure returns
to the calling pointf the storage is released again."^
Since DYNAMIC DATAABEAS are ,aot always in core and aay also
appear in different locations, CGS seeds sons help in
addressing variables in then. Briefly, the conpiler writer anst
indicate a variable or register which contains the address of
the DATAAREA. See Section U.2.6 tor full details.

The <specfunc> -, '

.14. CODE GENERATION SYSTEM (CGS) ' 7 2

V ,

r— " "i^
I &«SEDATAAbiiiA (< e x p r e s s i o n >) (
I ———' 2. 1

is evaluated as follows: tne <express'ion> is evaluated, assigned to
an,internal BYTE variable I. (say), and DATAAHEA I (irhich aust have
already been created) becomes tne current DATAAREA. This ,aeans that
any storage Allocated or entered uy an allocate or ENTER stateaent
(ct Section 14.2.4) is entered into this DATAAREA until the next
USEDATAAREA function designator is executed. Also, all storage
needed for temporary results by CGS is allocated in the current
DATAABEA. The v,alue of the^USEDATAAREA function designator is the
BYTE number of the jjreviojjs current DATAAREA. /

' ' \ , • ' • ' • . • ' * 4 ' ' -J -

14.2.4 allocating and initialising DATAAREA storage
Before reading this section glance over Section 14.3.
14.2^4.1 The <specpyoc> &ALLOCP allocates storage to one or

•ore runtiae variables of tne saae type.
^ - • ' • ' " • - . - . ' • i ' " • ' • " ' • ,

Exaanles. To biiild a DESCRIPTOR foe a halfword integer and allocate
runtiae Itcrage for it, use

v -• •

D '* DESCRIPTOR (KlMD=t>Hia) ; 6ALL0CP (D).
To build a OESCHIPTOS for a POIKTEk. and allocate runtiae storage in
EAIAABEA 3 for six POINTERS, use

C = DESCRIPTOR (KIND=6P0INTER) ; 6ALL0CP (D,6,DATAAREA 3) .

The syntax of the BALLOCP <specproc> is >
r • : — • < • . T

1 SALLOCP (̂ DESCRIPTOR destinations |
1 \ ' • i' ,' <expressibni>] i
| . [, DATAAREA <expression*>]) |

The default option for <expression*> -is .1. The default option for
.DATAAHEA <expression,2> is DATAAHEA 6DATAHQ (the. current DATAAREA).
The statement accomplishes the following:

.1. . The DESCRIPTOR' ,<destination> is checked. It -̂ aus"t " not
describe a label, procedure or be undefined. The address of the
variable must be. coapletely, undefined.' \
2. DATAAREA <expressionz> becomes the current DATA^AHEA.

" ' '' ' \ - y - . ' '

• ' • . • • ' . ; • • . • • • . ' . " - • • • •

11. CODE GEMEBATION SYSTEM (CGS), , 73
• ' . ' .** • - • • - ' *

3. 5DATALOC is increased, it necessary, to provide the proper
alignment for the runtiae variaDie described by the yDESCBIPTOH
<destination>.'. ', - '. ' ' . -*
it. The address (SDATANO,6DATALOC) becoaes the basic address of
the DESCRIPTOR <destination>. " '
5. <expression1> is evaluated and assigned to an internal HHI
variable \ (say); the result Bust be nonnegative. 6DATALOC is"
then increased-to provide rooa for I runtiae variables of the
type specified by the DESCalMOB <destination> \(Xf I ^J,
nothing happens).. '* - '-.**. . -
6. The.DATAABEA which was current before this, .statement .was
executed becomes the -cutrent UA1AABEA. _ • '

"\t**2^H.2 The 6ALI.6CF <sp«cfuric> builds a DESCRIPTOR and then
allocates runtiae storage for it. Tne value of the function is the
DESCBIPTOR. • ' , ;= :. '.' '•' ""- -*
Exaap-les. Xo build and allocate storage for a halfword integer, 'use

7 ' * , . - • ' • • • " \ ^ ' . , . • : * • ' . •

' D * f«i,tucr (Sdtfi)'. ..»
To build a DESCBIPTOB for a POIMTEM and allocatestorage for 6 of
then in DATAAREA 3, use', >- . ^

D = iiALLOCr (6P0.IKT£B,6, DATA1REA 3} .
To Just align fiDATALOC (currant DATAAMEA offset) on a. doubleword '.
boundary,. use . . X ' " " .. . ,'•'•'
. CAiiocr i6Dj*r,o) ... ~
The syntax of the SAILOCF <specfunc> is, A '

r ' ~ — : • — _ - ' • - " 1

1 fiALLOCF { <eipression<>> • ' • • ' . - J
I v- . [•# <express ion>>] | .: •) • •
I • ̂- • • • (_ , DATAABEA <«xpr«ssion«>]) | . '.' \

•S

It is evaluated as follows.
1. ,<expre'ssion"> is evaluated and assigned to an internal BYTE
variable J (say)'. A new DESCBIPTOB D (say) is then generated
with.: KIND = J. . ' . • ' ' ., y , .'•'-"
2. The statement

6ALL0CPID [, , <ex :&te$sion>> J [,DAT«ABEA <express ion*>]j " »

1ft. CODE GEBER&TIOH SYSTBH (CGS)
v ' ' • . ..

7H V
is then executed- ' ,;
3... -The. value of the function' is the DESCRIPTOR -D. If its
address . is .assigned to a POINTER variable, it is the
programmers responsibility to release the storage for D when' no
longer needed;- Otherwise the s/sten takes care o.f it.

.>*

v,.

' 1f t .2.f t -3 The SINIT <Sjjecproc> i n i t i a l i z e s r u n t i m e , v a r i a b l e s i n
. a STATIC -BATft-ABEAr , ~ ~ '- • , . ? - • .

T : " '•: . . " - - .--' - 7 ' • • •
ExaiElfeSv Let D .be a DESCRIPTOR of a UWI v a l u e . To i n i t i a l i z e t h e

' variable it describes with 0, use
• . . ' • ' HL&lT\Dt0) . " . - . _ ' .- , ...

To . . i n i t i a l i z e i t and . . t h r e e f o l l o w i n g h a l f word i n t e g e r s w i th t h e
. c u r r e n t v a l u e of a c o m p i l e t i n e 1 v a r i ^ d e I , u s e

, .. . ' . tilNIT (-D, 4 , 1) -

Let-I'D be a DESCRIETOR of a POINTER. To initialize the variable to
.point to itself, use . •'

' " * • . • - • ' - • • -

&IN.IT(PD, 6ADD(PD}J (ct Section 1ft.3.ft.5). '' •
- v -

To i n i t i a l i z e i t t o c o n t a i n - t h e a d d r e s s of C0DEAREA. 1 , o f f s e t ft, u s e ;
: . * • » . ' ' " : - " • ' *

6IXIT,(PD, SDnRES3C1,4j) (cf S e c t i o n - 1 4 . 3 . 1. 1).. ^ •
• \ • i - - ' . f <r

The s y n t a x of t h e &INIT <specproc> . i s ' '

&INIT (<DESCUIPTOB. d e s t i n a t i o n >
t , < e x p r e s s i q n l > ']
, < e x p r e s s i o n ? > ' *)

.SINIT (<DESCHIPTOfi d e s t i n a t i o n >
\ ;• < e x p r e s s i o n 1 >]
,<t>'i>UHfc;ss exp>) *r • X

The default option for <expxessioni> is .1. The'second form is used
it the runtime ..variable has type POINTER; the" value to which it is
'initialized is the value ot <t,DDRESS exp> - c'ff Section 1 ft. 3. 1. 1) .
- The first form is used if the runtime variable is not' a pointer.
-The statement is executed as follows:

V. The address of the 'runtime variable defined by the
DESCRIPTOR <destination> is evaluated (at fcompiletime) . It a.ust

« r14. CODE FENERATION SXSTEfl (CGS) . ..''*'. 75
; : - ' . " * • - ' - - . . ' . '

• ' . ; \ . - ' • • ' • ' • ' ' • ' ' • • ' ' ' • " ' • ' ^ ^ - , < • '

yield an address of-the form (area number, offset), (this leans'
for example that no indirect addressing lay be specified.)
2. <expressionr> is'evaluated and assigned to an internal HWI
variable I .'(say) ; -the result must be nonnegative.
3.. <expression^> (or <6DDfiESS exp> in the second case) is
evaluated and" assigned to an internal variable J (say) whose
type is* the same as that given • by component JfctND of the,
^ESCEIPTOH <destination>. -• x

<*.- The value of J is stored in the DATAAREA at the offset
specified by the result or step 1, and in the following I. - 1
runtime variables of the same KIND. • -

~ ' . > r ' ' ,

1 U . 2 - H . 4 The EM-T&R .MlMSIJk <specproc> can be used t o e n t e r
da ta into.STATIC DATAAREA.Si I t s syt t tax i s : ' '";

\ .
| ENTEfi (DATAAHEA, [<expression > >,.] <ejpression2>) | ,
i . .—.!_: : . _j ' - V

It- is executed exactly like the ENTEtt CODEABEA statement (ef Section
14. 1.5) ,_': except th.at'a DATAAKEA; (wnijCh. aust be STATIC) ' is used,
-instead.of 'a CODE'A-BEA. - . - ' , . * '

a •' • ' . " - . •

Example. ENTE.B.(DATAAKEA,C)

.14.2.5 initial conditions
Initially, DATAAEEA 2 is the current DATAAREA and is the only

one.in .'existence. It is STATIC and may already contain some
information. ' -'' '

14.2.6 addressing DYHAHIC DATAAREAS ' ,
since" DYNAMIC DATAAHEAS are V. not always in core - aid since

several copies may exist' at any -.one time - CGS needs help in
addressing them.: There are two kinds of statements dealing with this
problem'; the first kind tells CSS that a DYNAMIC. DATAAHEA has been
created (at runtime) and aives its location, the second kind tells CGS that a DATAABEA is no longer-available.

* • . ' . ' '
1U.2.6- 1 'Addressing' .new -DATAABEAS. The following three

<specfunc>s give. CGS the adfljreis of a "DATAAHEA that' can be
referenced in the current CODEAflEA only.

14. CODE GENERATION iKSTEfl (CGS) • \ ^ 76,

., f _ _ r——,
i 6DYNADD (<DliSCk HX,J>) I ,

• « - . i-.--:--<-: , — — — --r — - — I . '
j 6DYNADD { <D£SCR e x , ^ , <&DDHES£ exp>) |

v , ^ — - - . - - T_. ,
. -I SDTfNADD [< r e . g i s t e r no.> , <&DDBESS exp>) I

L . — J — ' : . . - . - j

• • In. the. first- ca,§e, the DESCRIPTOR aust describe a,SPOINTEB constant;
.the value of the pointer auut ue the address (in (area nunber,
offset) tora) of the DATAAREA ..whica can now be referenced. In the
second" and third cases, tne <6DDR£SS exp> gives the. address of the
CATAAREA, wnile the actual t)lace where this value resides is either
at the address specified by tne <DESCRIPTQR exp> or in register
<register no>.

In all three cases the vaiue of the' <specfunc>. is a pointer to
a DESCRIPTOR of a SPOINTER constant .whose value is the adjfcess

\ given. ,

14.2.6.2 releasin^the^ATAAREAi The CspecproO
r r . . __: - _,

•] &RELDY.NADD (<P0IJ1TER expr>) 1
;' L :• ; — ' • — — ' • — • ? — • J

tells CGS that the SPOINTER constant described by the DESCRIPTOR
pointed at by the <SPOINTER expr> can no longer be used to reference
data while executing the current CODEAKEA. ' _ • = > '

• • <i

... . . , • • • •' n - • , ; r . •

1U.3. The. DESCRIPTOR • '•
DESCBIPTOR is a structured type wnich is declared implicitly by the

•" sy-steffl- A variable of type. DfiSCBIPTOH describes a runtiae variable
or value in terms' of the IBM 360 basic data types. ̂ CGS provides,
several functions which alter, test and use (DESCRIPTORS; the compiler writer should use these rather than try to perform these
operations himself. . *

We use the v.ord DESCRIPTOR for the structured typ̂ e and also for
a quantity of that structured type. When writing prograas, the
identifier ".6 D". pari be used in place of "DESCRIPTOR".

, During the code generation process, CGS maintains pointers to
DESCRIPTORS which are being used to generate code. For exaiple, if a"
DESCRIPTOR of a* label has neen used to generate, a branch but the
address,of that label is still undefined, CGS r^prds 'this fact and
fixes the branch address later. Also, if a vaBe is in a register,
the register; description points to a DESCRIPTOR of that value. For

"..14. CODE GENERATION SXSTEH (CGS) * ' 77.

this ;reason CGS places the following- restriction oh the use of
: DESCRIPTORS:.

A DESCRIPTOR beincf used by CGS should not be -
changed, or moved to an.other location,

In order to be safe, a compiler writer, should work with pointers to
DESCBIPTORS, instead of the DESCRIPTOflS themselves.

14.3.1 structure of the DESCRIPTOR •'.

This section discusses the toraat of DESCRIPTORS and three
related structured, types.

14^3.1. 1 STRUCTURE 6DDRESS (BlfTE ABEA, BYTE3 OFFSET) ;

.6DDHESS defines the basic address (BA) of a runtiae , variable- In
'terms or a CODE or DATAAREA auiDer (ABEA) and" an offset of the
variable in the AREA (OFFSET). This is not the whole story on
addressing;' the'DESCRIPTOR also allows for subscript!*? and indirect
addressing. _,,

•S • :V
14.3.1.2 STRUCTURE DESCHIPTOB (

' BYTE.:.KIND, , • -
BYTE ADDRCONT, , > '
BYTE CONTROLS, - . '
BYTE REG ALT BYTE BYTfcLENG, - . >
6DDBESS ADDR ALT POINTER (SCONST) PC

' ALT POINTER (tSUBSCB) PS,
BYTE4 THEIRS);

Component KIND, describes the'- basic kind of the runtiae 'variable.'
or quantity. The list below gives system identifiers of constants,
their* hex value (which.may change; use the identifiers only) and the
type of variable they describe:

v- . • •
identifier v.alue meaning' - tne variable js.

undefined
one (8 bit) byte
.two contiguous (8 bit) bytes
three contiguous (8 bit) bytes •
four contiguous (8 b^t) bytes
Half Word ,'lnteger
FullWord Integer
.Fi^llKord floating point number
DoubleWord Floating point number '. "
DECiaal integer..; v„
address ot something or 0
1 to 25b contiguous bytes(components
BYTELENG, PS, CONTROLS help, describe how aany
bytes) '

6FH0C 10 procedure

6UNDEF . 00
66YIE 01
CEYIE2 02
6BYTEJ 03
fitlYTE-4 04
6HWI «
EFNI

05 6HWI «
EFNI 06
SFHF, 07
5DNF 08
6 L £ C 'j& 09
tPOINTEK 0A
6BYTES 0B

14. CODE GENEBATION SYSTBtl (CGS) 78

6-LABEL 20 : label
Mote that it you delete the tirst letter "E" froa aost of the systea
identifiers above, a CIL basic type is left (exaaple - 6HVII becoaes
HWI). In these cases, ail Attributes (ie. Length,- alignment
properties) for the runtiae Variaole are the saae as those for a
value of the basic type.

Coaponent ADDRCONT gives aore information about addressing the
runtiae variable. It indicates whether the basic address (BA).is
undefined, whether it is given by coaponent ADDB, or whether it is a
register. Subscripting and indirect addressing are also indicated.
See 14.3.1.5.

CoB£onent CONT_BgL.S contains aiscellaneous bits used for
- 'different purposes. The following table gives systea identifiers for.
constants, their hex values, and tne aeaning vhcn an identifier is
"anded" with coaponent CONTROLS.

Systea hex aeanin^ wnan identifier is
v

6EL 01 for UESCdiexokS of 6BYTES only. If 0, nuaber
of bytes ainus 1 is given in coaponent
BXTRLBUti otnerwise the nuaber of bytes is
described ht what PS points to.

SNEG 02 if not 0, negative of runtiae value is
desired.

SNQSAV 04 if not 0, save DESCBIPTOB, if 0, can be'
released after one use in code generation.

50ED 06 if not 0, a saved register description points
to D2SCHIPTOB, •

5CUBS 10 if not 0, CGo created DESCBIPTOB
SLZ .20 (only wnea KIND is BITES (1,2 or 3) or

SPOINTE* and the value is in a register). If
not 0, leading bytes of the register are 0.

Coaponent REG indicates whetner' the value is in a .register or
not (cf Section 1474.1):

0 = not in a register'*
1, through F aean general register. 1 through 15 ,
10 denotes general register 0 •
11 denotes floating register 0
12 denotes floating register 2
13 denotes., floating register 4 . '
14 denotes floating register 6'.' \ J

Coaponent WETELEHG is used only it the KIND is 6BYTES. It can
contain the nuaber of bytes ainus 1 (it constant and less than 257).
See coaponent CONTROLS .

Coaponent ADDB usually defines toe basic address of the runtiie
variable. In certaijn cases, however, the basic address is defined by
•coapohent ADDR of the quantity pointed at by coaponent PC or PS (see

/

*

1<J. CODE GEWEHATIOK Si STEM (CGS) 79

also coaponent COMTBOL.
££U;.2nent_£C is used if the value is a constant. It polats at a

quantity of structured type iSVBSGi which gives the coastaat Itself
and its address.

' '*
£SI£25Sfil_£5 has two uses.
1. If the runtiae variable is subscripted (cf coapoaent
ADDBCOHT), PS points at a quantity of structured type SSDBSCI
which.contains the.basic address and a pointer to the subscript
DESCBIPTQB. _
2. If the runtiae variable is of type BYTES aad. if component
control landed" with GBL is not 0, then PS points at a quantity
of structured type SSUflSCfi which contain^ the basic address and

• a pointer.to a DESCRIPTOR pi the nuaber of bytes ainus 1. Such
DESCBIPTOBS aay not indicate subscripting.

14.3.1.3 STRUCTURE CCONSI ('
BiTEU-VALUE ALT SDDfiBSS ADDfiVAL, , -'
6DDRESS ADDH);

A quantity of type SCONST is used to help describe constants. The
constant is held in coaponent VALUE or ADDBVAI (if the constant is a
relocateable address). The, address of the constant is contained , in
ADDB. If ADDS.ABE A and ADDE.OFFSET are both zero, the address is
undefined.

.• " . ' f •

14.3.1.4 STBUCTUHE 6SUBSCU(
POINTEB (BESCHIPTOflJ gUBDCR, 6DDHESS ADDR).;

a quantity of type 6SUBSCB is used to help describe runtiae
variables 'which are subscripted' or of -.type KBYTES (see below).
Coaponent ADDS contains . the base address of the variable. If
subscripting,. SSUBSCK points to a DESCRIPTOR of the subscript. If
not subscripting and the runtiae variable is of type GBYTES, SSOBSCB
joints to a DESCRIPTOR of the number*of bytes Binus 1.

/ • • • • . . 1U.3.1.5 address description and ioraat of DESCRIPTORS. This
section describes'- just how the effective address is to be obtained
froa tne basic address. Coifonent ADD4C0NT plays the key role here.

^ ' • -

In the tables below, BA" specifies that the basic address is
given.by coaponent ADDR, .while H indicates that the basic address is
the register•given by the nuaoer in ADDB.AREA. X specifies a
subscript - its value is jiven by the DESCRIPTOR pointed at by the
pointer PS.SUBDCR. "*" indicates indirect addressing. The format

14. CODE GENERATION SYSTEM (CGS) 80

number refers to the foraat ot the DBSC8IPTOB when ADDBCONT has the
given value. The possible formats ace given after the tables.

VALUE OF ADDRCONT AND MEANING -IF KINO IS NOT SBTTES
i§la§ • f_oraat effective address is
0. '1 . _ (undefined}
i 3 BA (and the value is a constant)
2 BA
3 *BA
4 <***BA •
5 R
6 *B
7 **R
8 BA*X
9 *(BA*X)
A (*BA)+X
E 2 ' *((*BA)+X) •
G; 2 '•• • , ' (*R) +X
D 2 * ((* H) * X) • • »

VALUE OF ADDRCONT AND MEANING IF KIND IS CBYTES
value fo.iiai'.S
0 '; '5
V. 1
2 4 Ofl 5
3 4 OB 5
4 4 OB 5
5 ' 4 Ofi 5
6 4 OB 5
7 4 OB 5"

effective address is•
_ ^undefined)
BA (value is a constant)
BA
*BA
**BA
R
*B ' '
**R:

\

foriat 1 is used if the number of bytes ainus 1 is contained in
coBfonent BiTELENG.; otherwise foraat -5. is used.

.14. CODE GENERATION SYSTEM (CGS)

fotiats of-a DESCRIPTOR

•r ' r ' * * — \ i

|KINC lADDBCOHT (CONrflOLS |K£G |
JADDR - \) -v

IIHEIBS l"
i_ < _ j

| KIND JADDBCONT |COMIi(OLS| BEG
j • _ _

IPS .
IT^ElHS
4 i«

type- 6S0BSCB
r>r T
| ISUBDCH -| >

-j , . _ . ,

| ADDH |
L.—' ._j

describes subscript
-«Av-

r " : i
I KIND jADDBCOMT I CONTROLSJ'HEG
IPC
JTHEIBS

type SCOHST
r > r ,..
I IADDEVAL |

-j j 1
IADDB |

IKINE |ADDBCONT |CONTROLS | BITELENG J ,__ :_. ,. . |
jADDB]
JIHEIBS -,'••'. |

r_ T __
iKIND IADDECOWT (CONTROLS |
IPS
(THEIRS
L ,

type 6SUBSCR
r > r — T
| ISUBDCR -| >

-_j , _ 1
|ADDB |
i. j .

-J describes nuaber of bytes

1 4 . CODE GEHEBATIOJf ST5TEH , (CGS) 82

\ 14.3.2 geaeiating^pE§CKipyoa§
DESCBIPTOB is a structured type, and a new quantity of that

type can be generated and initialized in the usualt manner. However
it is easier and safer to initialize only component* KIND and use the
CGS operations to Manipulate the rest. To aid in this, - the . system
sets all components to 0 before initializing a new DESCBIPTOB, since
zero is the natural initial state for its components
if T is a table*of DESCBIPTOBS, then

T(2) DBSCKIPXOH (KIHD^S LABEL)
puts in the second eleaent a DESCBIPTOB of a label w
address. If P is a POIHTEB variable, then

^ * 6D(KI)tD w &HHI)-

Lth an undefined

allocates space for a new DESCBIPTO* or kind SHHI,
components to zero, and puts tao address of the DESCb

sets all other
IPTOB in P.

DESCBIPTOBS nay also be generated using the <sp^cfunc> SALLOCF
(cf Section 14.2.4.2).

14.3.3 defining, the basic, address (BA)
Once component KIND is defined, there are several ways 'of£

filling in the basic address. Below, we assiiaf that D is a"',v
DESCBIPTOB. : . " - . . '

1. If the DESCHIPTOH defines a label or^procedure, use it in
code brackets (cf Sections 14.6.4
CODE(D:) . -

and 14

For example.

6.7). Example:

2. If the' runtime variable is to be in a DATjAAREAy use the
<specproc> 6ALL0CP or the. <specfunc> CALLOCF. Example:
fiALlOCP(D).

, • ^ ' '

3. If the runtime variable is external to the program/ being
compiled, use the SEXTEBH <specproc> (cf /section 14.3.6).
Example: 6EXTERN(D). .

. - • • • ' ' • / . • / . . - . •

4. If the address to be -used is already/ known,, us* the
<specproc> SASSIGNAD (cr (section 14.3.4.3). Example:
6ASSIGNAD(D,6DDfiESS(1,0)).(address Of CODEABBA 1).

14. 3.4 defiiiia_g_the_ef£ectiVe_addr.e§s__lEAj_
Besides the basic address, the DESCHIPTOB can indicate indirect

addressing and subscripting. The fiiial address is called the
effective address (EA). This section describes ways of indicating

\
14. CODE GENERATION^SYSTEH {CGS) -83

effective addresses.
, It is^iaportant to realize that the operations described here

•ay generate code. For exanple, if an operation asks for
subscripting for a DESCRIPTOR ot a bBIXES variable, code mist be
generated to calculate the effective address because OESCBIPTOBS of
SBYTES variables do not allow subscripting. In general, CGS tries to
postpone code generation as much as possible,>since this usually
produces better code. ' _v

Section 14.3. 1.6 indicates, for each type of runtiae variable,
what kind of addressing the i>ESCBlPT0fl can describe.

I ' ' ' r • . "
14.3(. 4. 1 specifying subscripting. Syntax:
<DESCR exp> ; ::= <DESCtt exp»> (<DESCR exp*>)

. | <DESCB exp»> (<expression>)
Seaantics: A' ne*w DESCRIPTOR is generated. All of its components

except those which help define tne effective address are identical
to those of <DESCB exp*>. If EA is ttte effective address, of <DESCR
exp»>, then the effective address of the new DESCBIPTOB is found as
follows: i

Case 1: <DESCB exp«> is present. The effective address is
EA * (runtime value described by <DESCR exp2>)

Case 2: <expr> is'present. <expr> is evaluated and assigned to
an internal Fill variable I (say).. Then the effective address is

EA. • I . •
This aay cause code to be jene^-ated..This depends on whether or not
the new effective address can be described . in a DBSCKIPTOB. If
<DESCB exp*> is a CGS DESCBIPTOB, it will be released if possible
(cf Section 14.8). , ^
Exaaples. D1 (D2) . 1)1(1)-. D1 (2) (t>*I) is equivalent to D1(2*6»I).

11.3.4.2 specjfyjnq iadicect addressing, IB* following
<specfunc> is used to specify indirect addressing.

r— .--—-• • T
• I &INDIR (<DESCB exp> L , <expr«ssion>]) I

The value of this function designator is a structured value of tjpe
DESCBIPTOB, All components, except those which have to do with
addressing, are the saae as those of <DESCI exp>. If EA is the
effective address of <descr exp>, the affective address of the new
DESCBIEt'OB is ',

COHTEUT(EA) .

/

1 4 . CODE GENERATION SlfSrSB (CGS) . • •" •' . / . , -84
' % ' . , " ' ' • ' • ' ' .

If </expression> is present, it is assigned to component ..KIND of the ^\
new BESCBIPTOfl. '? . ' ' • . • ' .

This «ay cause code to oe generated. This.depends on whether or
not the new effective address can be described in a' DESCBIPTOB., - «'

If <descr exp*. is a CG3 DE5G&IPT0B, it will be releifeed if
possible (cf Section 14.8).
Exaiples. SINDIH(D).
SIHEIB (D) (5) (indirect addressing rollowed by subscripting).
6IHDI2 (D (5)j (subscripting followed by indirect addressing).

14.3..4.3 usj.ng an existing jiddccbs- The <specproc> . r ____ . ~--W--, .
i SASSIGNAD (<destiuation> , <DESCB «xp>) I
1 : " ;' r ^ - J . "•• •.

. • • * • ' , . " . . . ' , ' /

puts the effective address of tae DEScaiPTOB <DESCB exp> into the,
DESCEIFTQ-B <destination>. Only the address-describing coaponents of
<destination> /are changed. Exaapl'es: 6ASSIGMAD (D1,D2j
6ASSIGNAD(D1//6IHDIB (D2) (1)) . *.'

14.3/4.4 forcing code to oe jenerated. The'functions described
in Sections 14.3.4.1 - 14.3.4."aay cause code to be generated. The
following <specfunc> indicates tuat code aust be generated (if
possible) to calculate the errective address.

r • — : . — T
' • I 6EACALC { <i)£5Cri e x p >) |

L — s ; - J
* i • " ' • • . . • • • • • • . • . . ' *

The resulting value is a UESCIIPTOB which has all the
characteristics of <D£SCB ex̂ >> wxcept that the EA specifies no
subscripting and at aost b"ne level of indirect addressing (the
address is in a register or ia aeaory). - s'

' ' • . . : / ' . " • / • . - - • • .

. - < • ' . ' ' -

N 1 4 . 3 - 4 - 5 u j i i j n , . e t t t s u i i t - i i a m i - i f f * T4l»>i. Execution of
the <specf«ac>

I CEATAL (<0*SCB expr>) |

y i e l d s a DESCBIFTOB witn *Isl> KPOINTia. The value i t d e s c r i b e s i s
the e f f e c t i v e address of the <i»tid ex(<>. This nay cause code , to be
generated^'

• • • • • - • . , - - v . : • > • • •

' : ' • • " • " . ' • • r ' ' , ' ' '

1.4- CODE GENEBATION SYSTEM (CGS)'l ' 85

The <specfunc> :5 ' • - ' , ' *

. . " ' ' - • ' " . I SADD (<l)ESCtt,exp>) j , ' " ' '" ;

yields an SDDHE55 value, which is tne ' address contained in the
BESCfllPTOB <DESCR exp>. ' " ' .'„.''.' "*

14. 3-5 the length of 6BYTES variables ' . . • ' v

; The <sp.ecfunc> 6LENGTH is used to indicate the nuaber of bytes
(•inus 1) in a KBYTES rtffftiae variable. Its syntax is '••

>U„_...
! J 6LENGTH (<DESCK exp»>, <DESCR exp>>) | H .
!. • ,- " J---V : — r~~- I

| SLENGTH (<DESCR expl>, <expression>') |
S 'l ' ^ — -r~< ^ - - - >-*

I t produces a uESCBIPTOB with KI'SD = &BYTES. The nuaber of b y t e s
• i n u s 1 • i s g iven by the runt iae v a r i a b l e described by <DESCB exp 2 >
or by the current , va lue of <express ion>. A l l other cofiponents are
the s a t e as those .of <DESCB exj>»>.- . -
\ . • " " ' " " ' . ' ••• . ' " - . • . . ' • ' " " •

Exaaples: 6LEKGTH(D1,5) . j
6 l e n g t b (6 ind lr (d1) , ~d2) .

1 4 . 3 . 6 r u n t i a e entry po ints and e x t e r n a l r e f e r e n c e s
• • . i . ' ' . - • ' " • • . * ' -

j Hhen an OS 360 o b j e c t aodule i s be ing genera ted , one can
s p e c i f y en^ry p o i n t s - bytes n i t n i n t h i s ^ o b j e c t aodule which aay be
referenced by o ther o b j e c t aodules - and e x t e r n a l r e f e r e n c e s - -
r e f e r e n c e s t o naaes which are not in t h i s o b j e c t aodule but which
w i l l te reso lved by the OS linkage" e d i t o r j u s t before rirntiae.

^ j - -11-3 .6-1 The SESTET <syecjjroc> i s used to i n d i c a t e . an entry
V / p o i n t . I t s syntax i s :

i \ . . • - •• - • •• • * ' .
. - - * - - ' •

I i 6ENTBY (<DESCB destination> / <STBING expr>), |
L '• : • — • : • , , 1

It is executed as follows: rue DESCRIPTOR destination a-ust have an
/effective address of the fora (AREA ntiabef, offset). The STHING
expression is evaluated and assigned to an internal variable S (say)
'of type STRING (8). The value oi S^then becoies the naae of the,entry
point. '" ;
Exaaple: ENTRY (D1:,'SIN')

tf

/
/

1<*. CODE GENERATION SYSTEM- (CGS) 86

T4- 3v6. 2,-The SEXTERN- <specproc> is used to indicate an external
reference. The syntax is: '
-. ;-_v_ f_^__ __"__ „ — • _ _: i - . — — ^

I CEXTErfN (<DESCR d e s ' f c i n a t i ' o n > ., <STRING e x p r >) | ...--,'
: ' . , . >—-r r - - — - „ — - — — - — (— — j

- , i ' " • • - ' • " " - ' * • " • • " - r " • , ' • ' •

It is executed as follows:'The address in the DESCRIPTOR destination
itdst . be undefined. Space is allocated for.a POINTER variable in the
;eu-EEentr DATA-AREA, if 'STATIC, or DATAAREA 2 if DYN.AHIC. At runtime
this.PCTNTEa will contain tne address of- the external"reference, the
-•addre.ss of this POINTED becomes the. BA of. the? DESCRIPTOR and
• indirect, addressing is also indicated.- The STR^IG expression is
evaluated and assigned t,o -a variable S (say) with "^rype STRING (8) .
The value of S is tKen-the name of tne extremal address.

1U.3.7 yemerating DESCRIPTORS for constants \:\ <x..
... CGS keeps a table of DESCRIPTORS Jjor constants.. All constants

are stored i# DATAAREA 2 - an,d-_only 'if they are actually* ' needed at"
runtime'. -The following <specrunc>s all yield a value which is a
.EQINTER to a'DESCRIPTOR fo,r a constant: ' • * •

SCON ([<expr3->, j <expfi?~p

CCONJ (£ <ex,pro>, J <expr > >, <expr*> , <expr3> •)
SCON (. <6DDHESS exp> .}

The derault option for <excir°> in the first two cases is S.UNDEF. In
• these two cases, <epxr°> is evaluated and assigned to an internal
BYTE variable I (say). The value of I then'becomes the KIND of the
DESCRIPTOR being created. The constant- itself is then evaluated. In
thef-tirst case ' i_t is <exprl>; in the: second case, <exprl> is. the
integer p'att, ' <exprz> the fraction, and <expr3> the '.exponent. ̂ (all
tnree must ce integer-valued and the signs of <expr'> and <exprz>
must -be ̂ he sa'ie] . The constant- is then converted to the KIND'^of the
new. DESCRIPTOR and inserted in it,(if KIND = 6UNDEF, the KIND is
changed to tte KIND of the constant.")".

In the third case, A PGINTEn to a. DESCRIPTOR of a SPOINTER constant
is generated; the value of the constant is the value of the <SDDRESS
exp>. • ,

Ex.amp^es: to create a DESCRIPTOR oi tne constant 1.23x10-6 use
"SCON (1.23*.000001) or !>C0N (1, 23,-6.) . '.-

^

To .create a doubleword constant tor it, use

1ft. CODE GENEBiTION SYSTEH (CGS) 87

' .. SCON (SiMiF, 1,23,-6) .
To create a constant whose value is the address of the next free
byte in the current CODEAREA,. use » ' / • ' • .

' ' SCON(&DDRESS.(SCOI>ENO, 6C0DELOC)') . ;>

1ft. it. Runtime registers and their, descriptions ,..*v,
/CGS maintains descriptions of the contents of the runtime registers
'as code is being generated. The description of a register consists
mainly, of- a pointer to the DESCtUPTOB of the value in the register~
and some status_bits which indicate how the register is being used.

", • For example, if the statement P = CODE (D + 5) is executed, code
(is ^generated to add 5 to the' value described by the DESCRIPTOR D, a
new DESCRIPTOR D1 (say) is jenerated to describe' the resulting
value, and the address of 01 is stored in P. Suppose'the resulting
runtime value is in in general register 5. Then the description for
register 5 will be changed to point to D1.

• •' • ' • - f

The compiler writer can leave most of the register handling, to
CGSj - or he can- make full use of the facilities described in this
section to do his own register allocation. ,

' - 1ft_ft.1 register numbers and names. '
Syntax: r •

- " ^register no> ::= <BYTE expression>
'<register name>.::= 5GE2G, i &FUEG | &HEG (<expression>)
Semantics: The registers are numbered as follows:
1 - general register 1 •

*. 2 - general register 2

F - general register 15
10— general register 0 " ~ -\

' 11- floating register 0
\2- floating register 2 -
13- floating register ft
-1ft- floating reyister 6
In certain contexts, the system names 6GHEG and SFHEG denote a

general register and a floatiny register, respectively. The precise
register to use is picked by CGS. Also, the construct SREG(I), where
I is' a BXTE expression, is used to denote register I in certain
contexts. — \

V ' - i
• * ' • • ' ' . " 1ft.ft.2 general-runtime register usage

~-\

14. CODE .GENERATIONSYSTEM (CGS) • •-. 83

' CGS uses the usual OS 3t>0 suoroutine linkage conventions.. .A
compiler writer need not tollow them, 'but it is better if
conventions' are followed. Hnen not actually linking, , these linkage
registers, can De used for other purposes'- The table below gives a
brief explanation;,a more complete description may be found in the
••IBM S^stem//J60_^_0£era_tinci System , - Supervisor and Data Management
Services (Form C2.8-6646) , .pages 9 - To..

In'.'addition'* CGS rehires tvb to three additional registers to
be used as base registers at runtime. These'contain the address of
DATAABEA -, 2, the addres-s of! tue current DATAAREA. (if not 2 and if
register 13 does not hold it), and' the .address' of the current
subroutine (or main program).

£§;ii§£§E use - - . '• '
0 temporary ot linkage: ^araineter. Not restored.
1 temporary or "linjcaje: paraaeter or address of a

parameter list. Not restored.
2-7 temporary. Restored. • •• • ^N,
8 temporary or used to pr'ovide addressability for

'-"• instructions (see Below). Restored. .
.• 9 '• address of a sunpi/oaran being Executed (usually) the

address of a CODEArtEA) . Restored.
.10- temporary. Restored.• . ,
11 temporary, .'jif current DATAABEA is ,2 or its address is

in register 13; otherwise address of current DATAAREA.
Restored'.

12 address of DAXAAriEA 2. Restored-.
1-3 linkage: address or a SAVE AHEA. This may also be tvhe

address of a DATAAHEA if .the SAVE ABEA is part of it.
Restored.

' 14 temporary or linkage; return address. Restored,
15 temporary or linkage: entry point when calling a

program... Not restored.
floating registers are not restored.

Those registers' marked temjjorarj; may be used for any purpose. Upon
return from a subprogram, those registers marked restored (reg 2-14)
contain the same values they contained just.before the subprograa
was called. /

." - • The proljllm of. addressing more than 4096 bytes of instructions
is solved as follows. Register 9'always containsthe base address of
the subprogram being executed. It tlie code being executed does not
lie within 4096 bytes of this address, register 8 contains the base •
address of the subprogram plus the multiple of 4096 bytes which
gives the executed instructions addressability. Each branch is a
single instruction.. If the instruction being-branched to is not
addressable,—then an indirect branch-will occur. For example,- the
"diagram below shows, a branch ..to laoel C; '' .

• . . ' . i •

i
'-' J>

1 4 - CODE GENERATION SYSTEM (OGS)- 89

CODEAREA
1 U
1 ~ ° • 1 — ~"i
1 J
j 4096 BYTES j

• 1 J 1 1

- 1

1 I
r->C;| J
J | 4096 BYTES |
I I I
• ' 1 . '
1

an a lways -addressab le AREA .

l ~ ' " ~~J
• -I I
>| LA 8,CODEAREA«-4096. |

i B - C — T . ; i
I I I
i _ _ _ ^ •; : i i

i
i . 1

It is best to use registers 0 and 1 on a short-tern temporary basis,
since these registers are'used orten"for paraaeters, to subprograms.

14-4.3 register descriptions
At any time during code generation there is a set of current

register descriptions which describe the runtime state of the
registers-after the last"instruction'entered in the"current CODEAREA
has been executed. As new instructions are generated,,, these register
•descriptions are changed to -rerlect the- change in the runtiae
machine. There nay be several sets-cot register descriptions at any
ti»e; when talking about register descriptions in general, we mean
the current register descriptions unless otherwise stated,

A register description, consists essentially of a pointer to a
DESCRIPTOR of the value "in th'e. register and soae "status" bits.
These .status bits are explained in the following table.

' '' f ^t^iiiS meaning . . , • .
0 The register is 6EH.PT.Y (nothing in it) . <-, .
. 1 ' The register is SUSEBv This Beans that' it was

formerly SNE»l (see celow) and the" value in the
register was used at least once since being put in
the register. A USED value may be . discarded (not
saved) if a register is 'needed. ' ' J.,

2 . &SAVE'the value in the register until further
- notice. If the register is needed for something

x •> ' else, the value must be^saved; if its" DES.CKIPTOR
contains an address, this location will be used,
otherwise CGS assigns it a temporary location.

3 The value is SNEW.. Once it is used to generate code
it. will be switched to 6USED. When CGS generates-"a
new . value ' and .its DESCRIPTOR, the register
containing the value is set to 6HEW.

4 The register is being used as a &£AST location for
a variable or just c'ontai.n's* a value which is' not to
be disturbed until further- notice. For example,

• • - • ' - . . . • . • . , , . + .

14. CODE GENERATION SYST2I1 (CGS) '. - 9 0 '

registers • 12 and 13 are SFAST registers (cf Section
14.4.2).,

14.4.it testing register status
Five functions, each with a single BYTE parameter which' is' a

register nuaber, test the status or the register specified:
J <specf unc>. value is FALSE '

• \ unless status is
r - : :~~\ | S15EMPTY (<register no> J ..6EMPTY | : ,__—.— J— _ — , , '
6ISUSED (<register no>) SUSED ^

I-
| 6ISSAVE (<register no>), SSAVE
| SISNEtf (<register no>) \ 6NEW

]r^. __ : _ _-.
| &ISFAST (<register no>) &PAST

14.4.S generating code to dump registers
' When CGS needs a new rejistet to hold a runtiae value, it looks

at the, current register tiescriptions and uses one with the lowest
status. (This is conplicated sonewhat by the fact that at tiaes an
even-odd register pair is needed, out we won't go into that here).
The following table indicates wnat Happens,
register chosen. to the value in the

register chosen
has_status
0 (6EHPTY) -
1. (SUSED)
2 '(SSAVE)

3 (6USED.)
4 (SFAST)

dis^os'ition ot the old
value irr the register
the old value is lost
if the DESCRIPTOR associated with the.
register value has an undefined address,
assijd it an address. Then if the value is
not a' constant, generate instructions to
store tne value.
same as for 6SAVE.
never dua^ed in this Banner. A &FAST - •
rejister can be .used for a different
purpose only if its status is changed.

>ihen a register is dumped,, tae register description status is set to
SEHP'IY. ' . . .

The compiler writer may explicitly "ask that code be generated

1 4 . CODE GENEHATION jjYSIEIl' (CGS) . • 91

to store a register- The <spectJroc>. ,r '
r „_.....-l^_.._„.__^. • v-
I SDUMPREG (<rejister no>) I , ,
1 _ _ j

} ' ' • « i •
does this for the register specified., The statement is -executed as
given iir the atfbve table. Note that SFAST register's nay not be
d u m p e d - . « . ' • • . . ' . . - '

1U.'**. 6 generating code to load and use. registers
The register name's SF4EG, 6GREG and 6KEG (<expression>) may

appear an the lefthand side ot an assignment statement within code
brackets. For example,

CJDE (tttEG = D) ' ,
is valid. The purpose of this stateaent is to generate code to load
,d value into a register. The execution of this statement is
xplained in detail in Section 14.6.2. }

A register name 6EEG(<rejister tno>) may also appear in a
runtime-expression within code brackets, to indicate that the
contents of that register is to be used. See Section 14.5. y

' 1t. 4.7 altering register descriptions
It is fsometimes necessary to alter a register description

without generating code. For example, after generating code for a
function call/Wt. may be necessary to tell CGS that the value of the
functicn is in register 1.

11.'<t.7.1 changing the status to &EHETY.' "Tn'e <specfunc>
r . __-̂ -
I SEMFTY (<register no)),]:

• (' • — - * :J°

changes the descriction of the register specified to SEHPTY. The
DES.CHJETOB of thex value in the register is changed to reflect the
fact that it is no longer there and is then released if possible.
The valuê ' of the / function is a POINTEB.;to .the DESCRIPTOR of the
value (0 if destroyed or there was none.) -; ; •'!,

14-4- 1.2 changing the status to other Ĵ han SEHPTY. Execution of
The <specproc>s , V

I 6USED(<register no>) j
I 6SAVE(<register no>) 1 ,_, _ y_,

•s • ' - • • • ' . .

1 . . ' . . ' , • . • • • • • • ' • ' • ' ' • • ' • ' • ' •

14".' CODE GENE3ATIUri aK'Si'Ji.a' (CGS) /"' • 92

^ | SHEW (<reg is te r no>) •). ~

| SFAST.(Xrag i s te r no>) |

change, the. status of the register to the desired .status. The
previous status must not have been tiEMPTY. ' : "''*

14.4.7.3 indicating that a value is.in a register. Execution of
the <s{.ec£ioc>s . T ^ ••»•

r • " — « - : " 1 ;
| 6USED(<register no>, <DE5CH exp>) |
I r~ " :-l | CSAVE{ <reJister, no>, <DESCR'exp>) | I . ^_____ ,_: |
| SNEH (<register ao>, <DESp8 exp>)|

-^ , -̂. , I O
| SFAST{ <register no>, <DESCH exp>)I

/ •

performs the followingj The statement SEMPTY (<register no>) .is
exectued, emptying register '<register no>. The status of the
register is then cnanged to the desired status (procedure name) ,
with <DESCBexp> being the'OESChlPTOK of the value in the register.

Notice that ausolutely no code is generated- by • any of the
"procedures or functions descriDea in this Section; 14.4.7. The only
'•-purpose is to change a register descriptions

14.4.8 saving and restoring register descriptions
'. It is often^advantageous^to save a set of register descriptions
for later- use. For example, fewer instructions >aay be generated for
a conditional statement if one indicates that £ne contents of the
registers are *he saae at tne beginning' of the' THEN stateaent and
the ELSE stateaent. The following <specproc>s are used to aanipulate
the set of register descriptions. In all cases, the paraaeters P;i and
P1 are <destinatioh>s of type PuINTEK. ' '

1. 6SAVE2EGS (P). Storage is allocated for a set of register
j , , descriptions. Tne current register descriptions are

copied1'into the allocated storage. The address of the
.allocated storage is put in P.

2. 6USEHEGS(P). The set of register descriptions pointed at by
P are ' copied into the current register description

> / . area.
•3. 6HESTHEq-S (P) . Saae as 6USEBEGS, but in addition, 'the storage.

i . . pointed at by P is released and P is *et to zero.
4. GJOINftEGS (P). The set. oi register descriptions pointed at by

14. CODE GENERATION SYSTEM (CGS) , , ' 9 3

' »• P are joined with tne current register, descriptions -
for each register, it both descriptions are. the sue,

. ' the description retains; if the two descriptions are
different tne current register description is set to
SEHPTY. The storage pointed at by p is released and P
is set to zero. ,

S. 6J0INBEGS (P',P1) . Join tne register descriptions pointed at
by P to those or V\ (as in 4.). 8«lease the storage
pointed at by P aad set P to zero. Vote: this does
not change the current register descriptions.

' 6 . SEXCHREGS(P). The register descriptions poiated at by P
beeone the current register descriptions, vaile P is
changed to point to the previous curreat oaes.

,Wben the current register1 descriptions ace changed, CSS alaavs
checks to make sure that all register values are coasisteat aita
noraal usage (cf Section 14.4.2). For exaaple, register • and ' ace
.continually updated by CGS^it necessary.

14.5. Code expressions
14.5.1 syntax- .

" - ' ' • ' • • . • ' • ' / . ; <runpxiaary> ::= <constant> | <DESC« exp>
I <run variaole>
I £REG (<r«gistec no> j
I (<runexp>) '

<run£actor> ::= <runpriaary> > *•-
| <runpriaary> ** <runfactor>
| "<undrj op> <runfactor>

-<runexp> ,. ::= <runractor> *
| <runeif> <ault op> <cunexp>
I <runexp> <add op> <runexp>

' I <runexp> <Dit op> <runexp>
| <runexp> <relational op> <run«xp>
i <runexp> AND <runexp>
I <runexp> Ok <ruaexp>

14.5.2 seaantics ' ' ' . " • .

•14.5.2.1 runtiae priaariea. A runtiae priaary yields a
pESCHIPTOR of a runtime value."mere are several types of runtiae
frioaries: "

^constant^ The. DESCKIPTOa ,is. a DESCHIPTOH for the constant.
, This does not necessarily Bean that the constant occupies a

place in storage at runtiae. It will only appear in the object
program if actually necessary..
<EESCK exp>. These have been jliscussed in Sections 14.3 and

14. CODE GENERATION"SYSTEM (CGS) 94

T<». 3.4-1.
<run" variables. A <run variai>le> is a variable declared to be
valid at runtiae. If. a priaar/ is both a <run variable> and a
<DESCB exp>, its use as a <DESCB exp> takes precedence.
SREG (<register no>). The register specified contains the
value; its KIND is the KIND:or the DESCRIPTOR, associated with
the register. If no DESCaiPTOH is associated vith it currently,
the KIND is assuaed to be &FWI.

-11.5.2.2 the operators. Tne operators available to operate on
runtiae values are exactly the saae as those available to operate on
coapil* tiie values. The precedence of the operators (cf Section
8.2.2) and the conversion ot operands (cf Section 8.2.3) are. also
the saae. The only difference is that evaluation of a <runexp>
caases code to be generated for it. This code, when executed at
runtiaeV will perforn the desired - evaluation. After the code is
geacrated, a DESCRIPTOR is built to describe the runtiae result.

14-5.3.J using code brackets around expressions.
Syntax:
<EESCR exp>v ;:= COOE" (<runexp>)
Seaantics?- Execution of tnis. expression causes code- to be

generated to -,evaluate the <runexp> (if necessary). The result is the
DESCRIPTOR for the runtiae result of the <runexp>.

14.6. Code statements
Execution of a code statenent causes code to be generated for the
runtiae - stateients appearing between the code brackets "CODE (" and
") " . In the nonterminals defined below, the term "runstate" stands
tor \"runtine statement". In general, "a •'statement > within code
brackets has the sane' meaning as a similar stateaent outside, except
that it indicates a runtiae statenent. J

Syntax: ' '
<code s t a t emenO : := C01JE (L « r u n s t a t e > ; l i s t >])

<runsta te> :•:•= <open runs t a t e> | <closed n in s t a t e>

<open runs ta te> : := <runlabel d e f i n i t i o n > <open runs ta te>
] <open cond runs ta t e>

<closed runs ta te> : := i Xrun labe l d e f i n i t i o n s]
[<closed runstat .e>] . ,
| <compound runs ta te>

V

14. CODE GENEBATION SYSTEM (CGS) • '* 95

| <assi^naent runstate>
.I <closed cond runstate>
J procedure run call> .-—'
j <control runstate>
-j <proceduce control>

.14.6.1 compound runtime stateaents ;,
Syntax: • • t • . „ . . ' •
<coapound runstate> ::=-BEGIN «runstate> ;list> KID

' , -:v
Seaantics: 1 coipouml runtime stateaant is used to group

several runtiae stateaents into a single uait, just as a coapouad
stateaent is used (cf Section 9.1). .

, - • -. ? ' • ^

14.6.2 assignaent runtiae statements
Syntax:
<assign«ent runstate> :: = <D£~SCB exp>•» <ruaaxp>

[<run-variaole> = <ruaexp>
I <rejister aaae>_» <run«xp>

Semantics: code is generated' to evaluate the <rnaaxp> and a
DESCRIPTOR fjOr- the result *ls Duilt. Code, is then, generated to store
the result,'idepending on yiich ot the above foras are used:

1. <DESCE exp> =' <runexp>. Code is generated- to convert the.
<runexp> to the KIND ot the <DESCH exp> and to store the result
in the location described oy it (the address aust be defined).
•2. <run variable> = <runexp>- Code is generated to convert^tad
store the <runexp> in the <run variable>.
3. <register naae> (SGREG or 6JFHEG) = <runexp>. An eapty
register is. found; • it necessary one is duaped. Code*is then
generated to store the <runexp> in this register. Its status is
changed to SNEU. Code Day be generated to convert the <runexp>
to floating point (integer) it necessary, depending on which '
register nane is used.

f
4. <register name> (6JSEG (<register no>) = <runexp>. If the
register status is SEMPTY, we proceed as in (3) above. If not,
code is generated to convert the <runexp> to the KI»D of the
DESCBIPTOH associated with the register and to store the value
in it. The register status is not changed.

14.6.3 conditional runtime statements
Syntax:
<open cond runstate> '::= IF <runexp> THEN <closed runstat«>

ELSE <open runstate> "
T IF <runexp> THEN <runstate>

-««*

14. CODE GEMMATIUN SYiTEfl (CCS) . 96

<clo*«d cond rua«tate>::« IF .<run«xp> THEM <closed runstate>
ELSfc Cclosed runstate>

Seaantics: Execution or a conditional runtiae stateaent- causes ,
code'to te generated for it. Execution of this code at runtiae will
peitora the operations in tow usual aann^r (cf Section 8.2).

Eiaajple: IF 01 <» D2 THEM 01 - 1)2 ELSE GOIF D1

14.<6.4 runtiae label detinitions '
'• Syntax:
. <runlabel definition> ::* <DESCH ei)> :

« I . <DESCB e n > (0): • , '\
\ <DESCh ex?> (<POINTEB destination. :

Seaantics: The <DESCB exy> aust yiild a DESCHIPTOB with Kl'ND =
<,LABEL and with a coapletely under ined lddress.' It is given Jthe
address (CC0Dmo,6C0DEL0C) "7 tnat is, he address of the next cree
byte in the current CODEAHEA.*An/ alreaViy^=generated references to ,
this label will be fixed up - the address will be inserted îi the
branch instruction. (cf Section 14.6,5). The current register. •
descriptions are changed as follows. " '" . *
. ' ' 1. If the fora <DESCB exp> : is used, the current . register,
v _ descriptions are'changed as follows-

SUSEr registers are set to 6EM TY.
6SAV£ and SFAST registers romain unchanged. It is up-to .

the^coapiler writer to aake sure that these registers • are
correctly loaded at ail Branches to this label.--CGS takes care
of registers 9 and 8.

If a register is &NEW an error message is printed". This is
because the -value has not Been * u.'snd and it is • probably^, a

'r . mistake, iranslation continues.
2. If the form <DESCR exp>. (<POINTEB destination^ : is used,
the POINTER must .point at a set ot register.descriptions. These
become tha current register descriptions and the <desti'nation>
is set to J. The "previously current register • descriptions are
released.- . ' - "_ S ' •
3.. If the form <D1SCB axt>> (0)/ is used, the register
descriptions reaaiji unchanged. It is the compiler writer's
responsibility to make sure that the descriptions are correct.

''14.6.5 runciae control^statements ^ •. ,
. S y n t a x : * •'-"
<contrql rinstate> ::= <go*to op> <DESCB' exp>

'• 1 GOIF <runexp> TO <DEsCB exp> .

14. CODE GENERATION .SISTEfl (CGS) 97

, " '• J GOIFNOT <runexp> TO <DESCR exp>
Seiantj.es: Execution or a runtime control statement cause's an;

unconditional or conditional brancn to be generated* The <DESCR exp>
indicates where to branch to. II it has KIND ' SLABEt, its address
need not yet'be defined - CGS will automatically fix up the address-
when it becomes defined (cf Section 14.6.6). The ' <DESC8 exp> «ay
have KIND SPOINTER/ in which case its value is, the address to branch
to. In any case the address being branched to must lie in th«
CCDEABEA where the -branch, occurs.

, v " * • . ' . ' " . I 1

With the conditional branches GOIP and GOIFNOT, at ruatia* th«
branch will occur if the value of the <runexp> is not zero (TIDE) or
zero (FALSE), respectively. % . '. ,

See- Section 14.4.? for -a discussion . of the instrncti
actually generated. CGS 'recognizes and produces better cod* ia c*»
.the <runexp> has ther form <runrelation> (cf Section 1.4.5).

14.6.6 runtime -procedure calls -' •'.-
Syntax: ' _ - *

.__".,; ' <procedure run cali)::= <DESCE exp>
Semantics: The <DESCii ex,J>. must yield a DESCRIPTOR with KIND

SPBOC, Execution proceeds as follows:- '; ''••-,

1..Code is generated to dump registers 14 and 15 if necessary.
2. Code is" generated to load-register 15 with the address defined by
th||<DESCB exp> (see below), it jaecessary. A PESCBIPTOR for- it is
buJJ't and associated with register 15.,s/and',l the regis.tejp" status is changed to SUS-ED. '" ' " 'J - ' t

• - . • • ' • . . • • • • • • . . . • • ' . r 4 . • • • •

3. A EALH 14,15 or a BAL ;i4,i'(15) -V instruction is generated (see
b e l o w) . ; - •

If the address in the <DESCH exp> is not yet defined, the BALR
instruction will . be generated." When it becomes defined, the
effective address can only be.the basic address itself (no indirect
addressing or subscripting). ' ~*. ' '

If thesaddress is already defined, and has the form A+I, (*A)+X
or (**A) +)f i'cf Section 14.3,1) where X is a constant, the address A
(%A or **A) .will be loaded into register 15 and the instruction

''•':•:•'*•' BAL 14,value of. X (15)
will be generated. Otherwise code is BAIiB 14,15 is generated

14^6.7 runtime procedure entries and exits

http://Seiantj.es

V

14'. •CODE GENERATION a'lST.EM (CGS) ,. 9B'
I • *•

- • . ' • ' • . '"'" > • " " •

-Syntax:-. .-.
<procedure controls ::= procedure entry>

1 procedure exit> ' •',
"procedure entry> ::= <DE3Cii exp> •: . 4\
<crocedure exit> ::'=KETUiiN '•' ~ . i .

• . t I
\ semantics: A - ̂ procedure :entry> defines the address of a

profc'ed'ure entry point. The XDESCR exp> KIND must be.SPROC. SCODELOC
is increased .until it is a .multiple or 8 (on a doublev'ord- boundary) .
I hen the address (SCODENO, &CODELOC) is assigned to the DESCHfPTOB.,
In addition,, the register descriptions are set as'follovs: <;

registers • 0-\VI &EMPTY ' ":. • . '. ' -V
register 12 CFAST - coatain.s *ddress of- D'ATAAREA 2 * \ •

; register 14-5EHPTY .."'-"
•. register 15 SFAST contains address of the entry point.

Before executing a <procedure entry>, the compiler writer must do
the following. , , " -- •' • - . . ' , .

1. ir^this is not a multiple entry, point -in' a procedure, switch
to a CODEARE.A which at ttis .point is not heing used. „ '
2. If. this is 'a. multiple antry point, in ? • procedure, generate
-the correct branch around this entry point. .•> ,

• - • ' . - ' • ' . . . • " ' • * • . . , : • • • / ' ; . : r \ . -.

After executing.-a <procedure ehtry>,. the compiler writer •must- do the
fallowing. ' ' ,, '. '

1. Generate instructions-toTSTore the . registers in ' the old
< SAVE AREA.'and to get a hew.SAVEABEA. .,-• / •

• • . • ! • ' . . , • • • J f. • •

. . 2. Generate'instructions to move register 15 to register 9. .
' ' • - t - ' t .,;. .

3. Chanje the register descriptions to reflect the proper
register contents (especially registers 0,1,9,13, and 15.)
4. Generate .^instructions to • take care of the procedure

-•• „ parame'ters. ' . •
• •5i Indicate the new current'DATAAREA, if applicable.

Execution of a <procedure exit> causes the following code to ' be
generated: ^conventional OS subprogram return). ...,._.
; L 13,4 (13) restore save area address ,, ...-•"'

L 14/12(13) ' .. return address in register 14
LM 2,12,28(13) - .'re-load registers 2-42
ER 14 \ • return ' ' ' - ' '
If this is vthe -last, instruction to - be - generated in this

procedure the compiler writer Should switch, to another CODEAflEA and
perhaps DA^AHEA. This CODEAEEA can now be used' for another

>

t

procedure.

14. CODE GENERATION' SYSTEM (CGS) "99

14.7. Temporary runtime storage ' .
At times CGS must temporarily store values (for example, ' if a

.register must be dumped). When̂ thi.s occurs, CGS allocates storage in
the current DA5AAHEA, with the" aid ol the SALLOCP stateaent. (cf
Section '14.2.4)., This storage remains in existence for this purpose
as long as the DESCRIPTOR of the value does. When the DESCHIPTOR is
released, CGS will "use the storage assigned to it for other
temporary values.

1'.8. lhen_CGS_£eleases_DESCRIPT0B3
CGS is continually jeneratinj DESCRIPTORS. If 'these are

allocated new space, bit &OURS is set to 1, as soon as such a
DESCRIPTQE is used in . the ; code tjeneration process, it can be
released- Should the compiler writer wish to save it, he'should set'
bit 6N0SAV to I. it is then tiis responsibility to>release'it.

A more detailed explanation will appear in a later version.

14.9. Specifying multiple coreloads •'
v This Section will be completed at a later date.

APPENDIX A. TABLES OF PEBMISSIBLI OPERANDS > . A1

This appendix giyes the'type&\ot permissable operands for the binary
and unary operators. In the taDles below, B1, 82, B3, BU and BS
stand for BYTE, BYT.E2, BYTE3, BYTE4 and BYTES(I) (for. some I),
respectively. P stands for POINTER.

Each row represents- a let"t-nand operandi each column a right- .'
harid' operand of the. operator. Tne corresponding'table element is
"either-...blank - which aeans that .that particular left-right pair is
not' valTd-...- or" is some, type. In. the latter case, before the^
operation is\perfor'«i«<i • the two operands are converted to this type
{as • explained, in Section 8.2.3). In addition, the result of. the"
operation has that type. ". -'• : y ;•

"*' • B1 B2 B3 . B4 BS HWI FWI FWF DWF DEC P ..

B1 |HWI FWI.FWI FWI FWI HWI FWI FHF DWF DEC P
B2 | FWI FWI FWI. FWI FWI FWI FWI FWF DWF" DEC P
B3 JFWI FWI FWI FWI FWI FWI FWI FWF DWF DEC P
B4 1 FWI FWI FWI FWI'/WI FWI F.WI FWF-DWF DEC P
BS] FWI FWI FWI FWIi-FWI FWI. FWI FWF' DWF DEC P
HWI, |HWI FWI FWl'.FWI FWIHWt FWI .FWF DWF DEC P
FWI | FWI FWI FWI FWI FWI FWI FWI FWF 'DWF D;EC- P
FWF | FWF FWF FWF FWF FWF F.WF FWI FWF DWF DEC
DWF |DWF DWF DWF DWF DWF DWF DWF FWF DWF DEC
DEC |DEC DEC DEC DEC'DEC DEC DEC DEC DEC DEC
p ' j.p • p'. p- p p • e p

UNABY + El B2 B3. , B4 BS HWI FWI FWF DWF DEC P
1 El B2- B3. B^ BS, HWI FWI FWF DWF DEC P

/
B1 B2.''B3 B4 BS .'HWI FWI FWF. DWF DEC P

B1 IHWI FWI PWI FWI FWI HWI FWI FWF DWF DEC
B2 |FWI FWI FWI FWI' FWI FWI FWI FWF DWF DEC
'B3 I FWI FWI FWI FWI FWI FWI FWI FWF DWF DE'C
B4] FWI FWI 'FWI FWI" FWI FWI' FWI FWF DWF DiEC
BS |FWI FWI FWI FWI.FWI FWI FWI FWF .DWF DEC
HWI (HWT FWI FWI FWI FWl HWI FWI FWF DWF DEC
FWI J FWI FWI FWI FWI FWI.-FWI FWI FWF DWF DEC
F'WF-I'FWF FWF FWF FWF- FWF EWF FWI FWF. DWF DEC
DWF JDWF DWF DWF DWF DWF DWF DWF FWF .DWF -DEC
DEC J DEC DEC -DEC DEC DEC DEC DE'fr DEC DEC- DEC
P |P P P P P P

UNARY -' B1 B2 B3 BH BS HWI FWI F.WF DWF. DEC P
| H"wI~Fwi-F*WI~FWI Fwi_HWl~FWI-FHF DWF'"DEC A

APPENDIX. A. TABiES OF PiiKnlS,SI BLI OPEBANDS

* B1 B2 fl3 •B4 BS; HWI .FWI FfcF D'WF DEC P
V

| HWI FWI FWI^FWl F*I HWI 'FWI' B1 | HWI FWI FWI^FWl F*I HWI 'FWI' FWF' DWF ,D.EC
B2 | FWI FWI FWI FWI •FWI FWI FWI FWF CWF DEC
E3 J'FWI FWI FWI FW.I FWI •FWI FWI FWF BWF DEC
E4 fTHX FWI FWI FWI FWI FWI F.WI FHF DWF •DEC
BS j FWI FWI FWI JMi FWI FWI- FWI FWF DWF DEC
HWI | HWI F »"l FWI F«l' HWI FWI FWF' •DWF DEC
>WI J FWI FWI FWJ. FWI FWI FWI FWF DWF DEC
FWF | FJJF/ 4WF FWF FWF FWF FWF Fwr .FWF. -DW'F DEC
•DWF l DWF D»F DWF^DWF' DWF DWF DWF FWF DWF' DEC
DEC l-.DEC

I
DEC DEC DEC DEC D£C ̂ UEC DEC DEC DEC

/
Bf
B2
E3
B4
BS
HWI

lil- E2 B3 B4 B'S flWI FWI FWF DWP.DEC F

|FWF FWF FWF FWF FWF
|FWF FWF FWF FWF FWF
J FWF FWF FWF FWF .FWF
| FWF EWF' FWF FWF FWF
| FWF FWF FWF FWF 'FWF
| FWF F.WF FWF F.WF FW.F-.

FWI |FWF FWF FWF FWF FWF
FWF]FWF' FWF FWF FWF'FWF
DWF |DWF DWF DWF DWF DWF
'DEC i DEC .DEC, DEC DEC DEC

FWF FwF FWF DW.F DEC
FWF FWF FWF. DWF DEC
FWF FWF FWF DWF DEC
FWF" FW.7 FW-F DWF DEC
FWF FWF FWF DWF DEC
FWF F.WF FWF UWF DEC
FWF FWF FWF DWF DEC
FWF FWF FWF DWF DEC
DWF DWF DWF DWF; DEC
DJSC DEC DEC DEC" DEC

b i t s o p e r a t o r s BITAND, BITOK, VITEXOK.
B1 • ,B2 B,3 ..B4. BS • HWI FWI FWF DRF.DEC P

B1 1 El •sB2 B3 ' B4 B'S B2 B4 B4 BS BS
B2 |E2 -B2 B3 B4 BS B2. B4 B4 ES BS
B3 IB3 >3- B3 -B» BS B3 B4

BIT
, BS BS:

B4 J E4 B4 , B4 B4 B4 , ;B3 B4 BIT BS BS
BS IBS . BS BS BS BS ;BS BS BS BS BS
HWI)B2 . B2. •B3 B4 tiS- ' B2 B4 B4 BS BS -
FWI | E4 B4 B4 B4 .as B4 B4* • B4 BS • BS
F'WF| E4 _ B4 B4 B4 as B4; B4 B4 BS BS,
DWF- J ES BS BS BS BS BS BS • -BS ^BS BS
DEC
P •'•

-1 BS
1

• B S .
BS BS BS BS :BS BS ES BS . .

APPENDIX A. TABIES OF PEHMISSI-BLE OPEHARDS A3

Exponentiation A**B.. If A is Htfl, FWIi or a bits type. AnU B is • a
positive integer constant, the result is FHI. Otherwise the result
is D.HF. A and B can have any type except POINTIEB and STRING.

BEH and // are explained.in section-8.2.4. — I ^

CAT 32 .""' STiiING / - -/-' ' "N, . .
B2 • ' | STBING. STBING ' ' •. \
STBING JSTKING STRING .' j

' • • • - • ! -With the CAT operator, a BYTE2 operand is assune'd to be an dtoi, and
the. string of characters it represents is used.j*,.

J-
%

v/

\

APPENUIX B. SYSTEM. IDENTIFIERS • ' : A4

) . &FLPI 9.9.3
GO &FHEG 14. 4. 1
ATOM 10.4 &FHF 14.3.1.2

'BEGIHBASS 9.6 0 nrvi 14; 3. 1.2
CALLPASS 9.6 • &GRBG 14.4.1
CHABMODE 9.8 ' &HEXT 9.9.3
COMPLETE 9.6 SHWI .14.3. 1.2
DESCBIFTOE 14.3. 1.2 • ilN V

SINDIR ,'.
9.9.1

PALSE 5.3
• ilN V

SINDIR ,'. 14.3.4.2
LO 7.1 •tlMIT 14.2.4.3
L1 7.1 &INLINE - 12.6
L2 7.1 6INTDIC 10.4
L3. 7.1 6ISEMPTY 14.4.4
L4 7.1 6ISFAST '14.4.4
EO . V) 7. 1 SISHEW 14. 4. 4
B1 V) 7.1 &ISSAVE 14.4.4
B2. 7.1 MISUSED x 14.4.4
NOEMODE t 9. a <\ SJOINBEGS 14. 4. 8
SCAN 9.8 SLAB EL. . 14. 3.'1.2
SCANSYM 12. 1 SLUHGTH 14.3.5
TRUE 5.3 SLZ 14.3.1.2
SADD 14.3.4.5 6HEG 14..3. 1.2
6ALLOCF / 14.2.4.2 "SNEW „ 14.4.7.2
CA1LOCP 14.2.4.1 ttNLINE 12.6
6A5SIGNAD 14.3.4.3 &NOSAV 14. 3. 1.2
6BINT ' 9.9.3 tiOCTT 9.9.3
6BI- 14.3. ^.2 &0&D • ^ 14.3. 1.2
SBYTE

. < / •

14.3. 1-2 SOUBS 14.3.1.2
6BYTE2 14.3.1-2 60DT 9 .9 . ; 2 ;
SBYTE3 14.3.1.2 SOOTDESCB . 9.9.2
BBYIE4 14.3. 1.2 6P0INTEF 14.3. 1.2
6BYTES 14.3. 1-2, 6PK0C 14.3. 1.2
SCLISE 12.6 &BEG 14.4.1
5CODELOC 14.1.3 , SRELDYNADD. 14.2.6.2
SCO&ENC 14.1.3 ' • tKELEASE - 9 . 1 0
6CON 14.3.7 &BESTHEGS . 14.4.8-
6C0NST 14. 3.. 1.3 SSAVEBEGS 14.4.8
6CBEATECODEABEA \ 14.1.4

14.2.3
6SAVE ^ 14.4,7.2

SCBEATEDATAABEA
\ 14.1.4
14.2.3 ./ 6SCLINE ' 12.6

6D 14.3 (&SU.BSGH ' 14.3.1.4
S0DBESS 14.3. 1.1 &TBIN 9.9.3
6DATAL0C 14.2.2 6TDEC 9.9.3
SDATANC 14.2.2 fiTEJCT 9.9.3
&OYMAOD 14.2.; 6.1 STHEX 9*9.3
6DEC , 14.3. 1.2 fiTOCT 9.9.3
6 DECT 9.9-3 6TYPB 10.4
SDUMPBEG 14.4.5 . &UHDEF 14.3. 1.2
SDiF 14.3.1.2 6USECOBEABEA 14.1.4
6EACALC 14.3.4.4 COSED 14. 4.7.3
&EAVAI - > 14.3.4.5 KUSEDATAABEA 14.2.3 V
SEIPTY ~>14.4.7. 1 • SUSEBEGS 14.4.8
KENTHY 14. 3.6.1 ' ' •
&EXCHBEGS 14.4.8
&EXTEBN 14.3.6.2 The follovir ig identifiers
SFAST^ 14.4.7.2 are used to ijaae components of

V

M~.

APPENDIX B- SYSTEH IDENTIFIERS A5

systea structured types.

ADDS
ADDfi
ADDB '
ADEBCONT
ADDBVAI
ABBA
BTTEIEJIG
COVTBQLS
KIND
CFPSET
PC
PS
BEG
SDBDCB
THEIBS
VALUE

14.3.1*2
14.3. 1.3
14.3. 1.<*
14.3.1.2
14. 3. 1.3
14!, 3. 1. 1
14.3. 1.2
14.3. 1.2 '
14.3.1.2
14.3. 1-1
14.3.1.2
14.3. 1.2
14.3.1.2
14.3. 1.4
14.3.1.2
14.3. 1.3

-\

^ • • • - • . •

APPENDIX C. PBOGHAH EXAMPLES A6

APPENDIX C. PHOGHAM EXAMPLES
Exanple 1.. This example illustrates basic declarations, assignment
stateaents and. iterative stateaents. it coapntes and prints
factorial N.for H=1,„.. ,10..^ . . ' . ' • "«..-.

BEGIN fwi I,N; /* I and H are Fullwbrd Integers */
••• i ' = 1 ; . ' ' • - ; .

• JOB N = 1 UNTIL 10 DO
BEGIN I = H*N; .

60UT(«EACT0HIA1.•, N, I)
END;' '

END; .

0
\

• • * »

*

.7 , . •' • \ • " ' ' . "

APPENDIX C PBOGBAB E3UNPI.ES ' ' A 7

E i a a p l e 2 . Tt i s e x a m p l e i s a d i r e c t t r a n s l a t i o n f r o a ALGOL ihtob- CIL
o± K n q t h ' s a l g o r i t h n f o r c a l c u l a t i n g t u e d a y j),nd » o n t h of- E a s t e r - ,
g i u e n t h e y e a r (c f C o a a V A G H 5 (A p r i l 6 2) , 2 0 9) . /

PBOCEDUBE'EASTEB(Httl YEAH, / * i n j j u t * /
BOHTH, / * o u t p u t V
DAY); / * o u t p u t * /

BEGIN HVI GOLDENNDHBEB. CENTURY, GttEGOBIANCOBBECTION,
CLAVIAN COBBECTION, EXTBADAYS, EPACT;

GOLDENNUHBEB = YEAB BED 1 9 + 1;
I F V E A a > 1 5 8 2
THEM BEGIN CENTUBY .=3 YEAB / / 100 •. 1;

• / GBEGOBIANCORHECTIQN = (3 * CENTOBY) / / 4 - 1 2 ;
CLAVIANCOBBECTIOH = tCENTUBY-16- (C E N T U B Y - 1 8) / / 2 5) / / 3 ;
EfTBADAYS = (5*YEAB) / / 4 - GBEGOBIANCOBBECTION - 1 0 ;
EPACT = (11*GOLDENNUNBEB • 2 0 + CLAVIANCOBBECTION \

"•-. - GfiEGOfilAN COKHECTION) BEH 3 0 ;)
I f EPACT\<=. 0 THEN EEfl'cT = EPACT + 3 0 ; J

• ^ I F (EPACT .= 25 AND GOLDENNUHBIB > 11) OB EPACT = '24
"HEN EPACT\ = EPACT + . 1 ;

END \ •
ELSE BEGIN EXTRADAYS = 15*YEAK) / 4 ;

EPACT - \ (11»GOLDE.NNUaBEfi - 4) BEH 30 * 1 ;
. 2ND; I ' " ' ' ' . ' • ' • ' '

CAY - H - EPACT/
I F Cut < 21 THEN' DAY = DAY + 3 0 ; •'•-• .• j
DAY. = DAY + 7 / (EXTBADAYS+DAY) HEH 7 ; " , .
I F FAY > 31^THEN BEGIN MONTH = 4 ; DAY = DAY - 31 END

END;

\ f

V S

\

http://E3UNPI.ES

C. - L

APPEHaiX .C. PBOGBAH EXAMPLES - ' A8 -
• • - . - . " ^ : •• \ w / " • : • • • •

v ' s ' ' . ' , ' " •

Example 3. This example illustrates one use of tables, BYTEJji
variables and SUBBYTE designators. In JACH January 1962, Stephan
Barshall J gave the following algorithm ' tdi computing H* =,B*B*...*H
,if B is a n by n Boolean matrix: r '.:. ."'..'.

1. Set i = T. . '.' '.'•'"*,',
2- For all j such that M(j,i) = 1 «
set « (j,k)' *vfl (jyk)JJsB tt(i,k) for all k. ^ ' , ^
|3. increment i by 1. -•.-.'.
H. If i <= h, go to step 2; otherwise stop. ?

He give to ways of implementing this in CI1.
' • • -' , v ' . - ^ i - : • ' • • ' ' : •• • ' . - ;. % • '
EBOCEEUBE MSTAfi< BYTES TABIE H; ' ? (! ' N) ;.

' / * M i s a t a b l e of r e c o r d s , each of t y p e BYTES (N) (a • y
s equence o f N 8 - b i t b y t e s) . S i s - b e t w e e n 1 : and 2 5 6 . '.
For I , J = 1 , . . . , N , SUBBYTE (H (J) , 1 ^ 1 , 1)
i s ' the matr ix e l e m e n t fl (J , I j a u d * w i l i t a k e on • ; '

-S on ly t h e v a l u e s -0 or 1. */ . ' " . ' ' " . ' . I

BEGIN V-'-
FHI I , J ; V'*IrJ a r e FullWord I n t e g e r s . * /
FOB 1 = 0 UNTIL N-1, DO / * l o o p on I * / •'.'•' r ' »

FOB J =. -IJuilTIL N i>0 / * l o o p on J V .,. •
IF S0BBYXE(B (J) , 1 , 1 } = 1
THEN H (J) = M(J) BITOR H (I * 1) ; "

EN.D . . '- . - . . ' . • • r- •',:' . T

EBOCEDUB'E HSTAB1 (• BYTES TABLE «; FWI N)J; ". .
/ * t h i s i s as i n t h e a b o v e , c a s e . However t h i s t ime each of t h e

8 b i t s i n a byte of a record B (I) r e p r e s e n t s a matrix
e l e m e n t . Thus the matrix r e p r e s e n t e d can be 256*8 by 256*8 .
For I,J. = 1, ,N, if K = (J-1) BEH 8 + 1 ."• •
then bifc.K of the byte S0BBYTE(B (I) , (J-lj // 8,1)

-. represents the matrix element M (I, J) . */

BEGIN ,/ '• z. • ' '^ • ' ' / • ' • • . • '
F « I ' I , J ^ K , L ; . f" '. -
BYIES (8J tfASK; " • ' / * BASK i s a sequence .of 8 b y t e s * /

-BASK .= X; ,80U02010080<I0201»; / * which i s used t o i s o l a t e a %̂
s i n g l e b i t of an 8 - b i t b y t e j rt
SUBBYTE.J$ASK,K, 1) BITAND B

' ' yieldSs 'the va lue (0 or not zero)
of t h e K+1th b i t of t h e BYTE

* •. ' - « • . . - ' , .'. v a r i a b l e B f o r K = 0 , . . . ; 7 . * /

FOB I = 1. UNTIL HDO - .

y .

-APPEND IX C. PBOGHAM EXAMPLES A9

BEGIN K = (1-1) KEH 8;
L = (1-1) // 8; .
FOi J = 1 DNT-IL-Ji DO . *

, . , IF SUBeiTE (M'{J) ,L,1) BIIAHD SUBBVTE (M"ASK, K/1)
THEN M(J) = « (J) t i lTOS H (j ;) ;

E N D , - • * • ' • ' •

END

V

r

; • *

«£ «
7

APPENDIX C. PROGRAM KXAAPLES A10

Example . U. This exaiiple illustrates tne use of tables, structures
and pointer variables. .He wish to describe the symbol tables
necessary to implement ALGOL block structure. BJwjtks Hill be
numbered, starting with 1, in the order of. their|jJH&.IMS. When a
hlock is open, î ts identifiers will be stored "in table SYBOP- When a
block is closed, the records tor identifiers in it will be noved
from SlflOP to table SYMCL. A.ll records for a block are contiguous. A
table BLOCK helps to indicate where the records for each block are.
lot exaaple, if we,have so far parsed

BEGIN COMMENT block.1; ,f
BEGIN COMMENT block.2;
END;
BEGIN COMMENT Block 3;

the tables will look like
\
S'iflCL

I idents^-for |
] block 2-| .

BLOCK • ,. SYMOP .
1 r = ^r: ;T

block (J' - lidents fqr|
1 |-.-, | block 1 | , L — > , j

-block | | --7 1
- 2- | r ->|idents for/

]) | . b l o c k 3 |
b l o c k | — ' ;• r — > l I
' 3 . r — — — J , . <•- J

The d e c l a r a t i o n s n e c e s s a r y a r e : "p_J •

•STRUCTURE SYHSTB (/ * s t r i i c t u r e Of SYMOLD, SYMNEB r e c o r d * /
BYTE2 AT, ' / * a t c m f o r i d e n t i f i e r * /
BYTE TYPE, / * t y p e of i d e n t i f i e r * / ' .
BYTE BLOCKNO) ;> y * b l g c k n u m b e r i n w h i c h d e c l a r e d * /

DYNAMIC SYMS.TB TABLE 50 STfMOP;' / * t a b l e f o r i d e n t i f i e r s i n o p e n
b l o c k s * / '•''

DYNAMIC SYMSTR TABLE 99 SYMCL; /*taole for Ids in-filosed blocks*/
3TBUCIURE BLKSTEf /*structure of, BLOCK table record;.*/ '.

BYTE BLOCKNO, /*block number*/
BYTE BLOCKSU, /*surroundinj block number*/

'(POINTER PP, ,/*to.first record for block*/
l POINTER PL, 1 V*to' last record for block. (0 if none)*/

BYTE TAB); ' /*0= block'da SYMOP, 1 = SYMCL.*/
'DYNAMIC BLKS.TR-50 BLOCK; /*tanle to control bloc£ structure*/

APPENDIX C. PEOGEAM-EXAHPJ.ES ' All

BITE BLKCUR, BLKLAST; /*current block nuiber and last block
number assigned. Both are initially 0*/

POINTER" (BLKSTH) ..B; /*pointer to records of type BLKSTH. */
POINTEB (SYHSTRj P1,P; /*pointer to records of type SYBSTH*/
BYTE AI, TYPE; I ' /*jlobal variables.*/

The following shouldl perhaps be explained. If p 'is_ a pointer
variable pointing to some structured type record, a.ai\At X is the
name of soae component of tnat structured type, then . i

' /' • .

' / • • ' • ' ^ _ P - X

is a reference to the component X of the record pointed at by P. In
addition, we assuae there is a stack operating in the usual Banner.
i,Qj and L1 refer to the top and second stack records before the last
Hatching of the/ stack vith a production began. BO and H1 refer tov

the current top and second stack records. .
•i

Two semantic routines are used to open new *blocks and close
blocks when entirely parsed: V- . ^

* -SOPEN: /*this routine is.called when a new BEGIN for a block
is scanned, lt*adds a new record.for the new . block in
table BLOCK and fixes current block number. */

BLKLAST= BLKLAST+1; /*fix up the last block "number -" */
ENTER (BLOCK, BLKSTR(BLKCUR,HO.BLKNO,.0;0,0);

/*add the record for the new block*/ , s

BLKCUR = BLKLAST; . /*fiit up current block number. */'
SYNTAX; //return to productions.*/

'v
SCLOSE: /*this semantic routine is called when j|E,GIN END is

on the stack. It moves the records for this block from
table SYMOP to SYHCL and fixes everything up. */

B =. S, BLOCK (BLKCUR) ; /*save the address of BLOCK record .
for current block in B.*/

', IF B.PF ./*if this pointer is* non-zero, we have some
THEN BEGIN /*record to move to-SYHCL. */

PI = TALLY [SYHCL,0,BACK) ; /*save address of current last*/
/•record-of SYHCL.*/

FOR P IN SYHOP FRO.l B.PF TO^.PL DO /*aove the necessary*/
ENTER (SYMCL,SC(p)); / /^records from

/ SYHOP to SYHCL*/
DELETE (SYH0P„B..EF.) ; . /*delet;e the moved records*/ , ..
B.PL,,= TALLY (SYHCL,PI) ; /*now fix up the block record'*/

I B.PF =-TALLY(SYHCL,0,BACK) ; to point to the new records
! • IK symcl.^/ v

f . end; •" - '
B. TA-B = 1; ,/*the records-,are now in SYMCL.*/
^LKCUB = ELOCK (BLKCUR).BLOCKSU; /*new current block is the */
SYNTAX; ' /*previous. surrounding one. */

• \ .

APPENDIX C. PHOGfiA'fl EXAMPLES A12

Two procedures are used to.enter records into the syabol tables and
to_look tor records for identifiers:

PBOCEDUHE EEC; /*this procedure enters a reebrd for identifier.
AT1" with type TYPE tor block number
BLKCUB.*/

begin pointer p; '.
P = ENTEB(SYSOP, SYMSTR (AT.TYPE,BLKCua)); /*enter the record,

put its address in P.*/
IF P=0 THEN. BLOCK (BLKCUfi).PF=P; /*tix up the block structure*/'
BLOCK (BLKCB~R)..PL=P; • /*taole record for this block.*/
END;.' ', "

PBOCEDUBE FIND; /*this routine looks in block BLKCUB and
surrounding blocksj lor an identifier naned AT.
If found, P = address of its record; otherwise

" t- " . P=0. BLKCUB, AT and P are global.*/
BEGIN ' BYTE K;'

POINTER{BLKST8) B; . '.
* P i'P; K = BLKCUB; /*assuae. we can't find AT {P=0) and\

initialize K to current block nuaber*/
WHIl£ K DO /*we try current block and each

surrounding block, in succession*/ .'.
BEGIN B = d BLOCK (K); /*save address of block record*/ ,

/*we look tor "the identifier in the records
records for the block - in SYBCl if- block

. is closed,, or SYMOP if open.*/ " •'•
LOOK(SYMCL.AT, AT FfiOfl B.-PF TO B. PL) •. ~''
LOOK [SYHOP..AT, AT FBOH B. PF TO-B.PL); -

/•if P=0, AT >asn*t in block, so*/
0 ~ /*set k utd surrounding block nuaber*/
B.BLOCKSU /*otherwise we ;are done ^ set K to*'/

-END; -" /*0 to end the BHILE stateint*/

IF B. . TAB

/''
T(HEN P =
E^SE P =
'IF P
THEN K =
ELSE K =

X w>
r~

• . / ,'.' /

1-

APPENDIX C. PROGRAM EXAHPLES tj 3

Example 5. -This example illustrates the, use of code brackets to
generate code. for. conditional statements of the usual form. We
assume that IF» THEN and ELSE are reserved words, that BE and S are
INTS for Boolean expression and statement respectively, and "that
ENDIF is a class name for symbols which can end a conditional
statement. The productions used here. (we only list the ones
necessary for illustration) are

IF BE THEN > THEN EXEC sua SCAN GO BEGINSTATEHENT
THEN' S ELSE, > ELSE EXEC STHELSE SCAN GO BEGINSTATEHENT
THEN S ENDTF > S ENDIF * EXEC SIFEND - "~BtT-E£I!STATEMEtlT
ILSE.-S ENDIF > S ENDIF EXEC SIFEND JIO ENDSTATEMENT JiO

The following' semantic routines generate code for conditional,
statements, without carinv, about the contents of the runtime
registers. Sle assume the main stack has a component D which can be a
pointer to a DESCRIPTOR. .

> ;

"K

SBE: /•stack contained IF BE THKN and L1.D contains
pointer to a DESCRIPTOR for BE. •/

&

EO.D =
DESCRIPTOR'[KIND=SLABEL) ;

tOEI (GOIFNOT 1 1 . D TO flO.D)

SYN.1AX:

/•aeaerate a new label to jump to*/
/•if BE is false and stack it.*/
/•generate a branch-on-BE-false*/
/•to the label.*/
/•return to productions.*/

STHEISE: /*stack contained THEN S ELSE- and we assume that the
code for statement s has already been generated. */

RO.D =
^DESCRIPTOR (KIND=S'LABEL)
CODE.(GO RCD) ; v";' ,; ,̂ CODE (L2.D:) ;

•RELE-ASE (12. D)
SYNTAX;

l/*jenerate a new label to. jump to*/
/•after S. is executed,IjjStack it.*/
/•generate the branch to-it.*/
'/•derine the address of the..label*/
/•to branch tC if BE is- false.*/
/•CGS sets register descrptigns*/ ^
/••'to. &EHPT? and fixes any*/
/•previous branches to the, label. •/
/•label is no longer needed-relese*/.
/•it,, return to productions.*/

SIFEND: /* stack Icon.taihed THEN S ENl>IB»or ELSE S ENDIF
and we assume code (for statement S has' been generated.

- L2.D contains aipoiRter to a DESCRIPTOR for an
internal label for.statement following ENDIF. */

CODE (12. D:) r - /•define the address of the label Ho

RELEASE (L2..D) ;

^branch to i f BE i s f a l s e (or a f t e r
the.Jt-HEN s t a t e m e n t has been
exeotitedj . Reg d e s c . r i p t i o n s ^ s e t t o
BEMPTX .and p r e v i o u s -b ranches ' t o
l a o e l a r e f ixed up. * / '
/ • r e l e a s e the DESCRIPTOR.*/ '

T

V -

••z.v

APPENDIX G. PKOGRMI EXAMPLES Alt

S Y N T A X ; / • r e t u r n t o p r o d u c t i o n s . * /

The roll-owing s e m a n t i c r o u t i n e s can oe used in p l ace of, t h o s e above .
They i l l u s t r a t e t he use or ttie r e g i s t e r d e s c r i p t i o n s t o g e n e r a t e
. t e t t e r code . J n a d d i t i o n t o component D, we assume t h a t t h e '.. a a i n

tt a ck c o n t a i n s ' 1 a p o i n t e r component which w i l l p o i n t to'- r e g i s t e r
e s c r i p t i o h s . - ^ -

SBE: /*s t ac t f i s as p r e v i o u s c a s e * / "
E0..D = DES</BIPTOR (KI8D=&LABEL) ; / * a s i n p r e v i o u s c a s e * /
CODE (GorFNCT L1.D TO EO. D) ; / *a s . in p r e v i o u s c a s e * /
6SAVEEEGS (HO.P) •; / * s a v e the ' c u r r e n t r e g i s t e r _ d e s c r i p

' t i ons f o r l a t e r u s e . * /
SYNTAX: / ' • . ' . - . v

\ ;

STHELSE: /*as-in previous .case, , but. JiS:. P contains a. pointer
-. to register descriptions as they were at the beginning, of

"" - the THEN statement.*/
EO.i) = DESCtiIPTOB,{KIND=SLABEL) ; /*as in previous case*/
CGDE(GO RO. D)^.
6EXCHEEGS(L2.P);

' vJ
HO.P=L2J*;
CODE [12.D (0) :) fELEASE(L2.D) ; .
Y-NTAX;

/*as in previous case*/
/•save the current register descrip
.tions' lot" later use and make the-.
current .ones the same as they were
tor the „THEN statement.*/ "'
i'/*make sure its stacked right.*/
/•define label -•'but leave register
/•descriptions alone.*/

<̂ . • SIFEND:. /*as in previous case, .but li. p contains pointer to descrip.
tions of- registers as.-tney were upon the branch-dn-false
or the branch after the THEN statement.*/

SJOISKEGS (L2.P)-;

CODE (L2.D (0» :) ;
6EE1EASE (L2.D) ;
SYNTAX;

/•join the register descriptions >
with current ones, since tjiese
describe the only places that'brnch
to here..*/ \ '
/*.as; before, but leave register descriptions • alone. */ /

r
r

• • • • »

' • ' > '

A" ••

