a o . . . }' . ., N ':n,
.« . LEGAL NOTICE . - -)
mmmmuumdb««mmﬂ-ﬂ.w‘-w N - '
Biutes, ot 'lhe Couvmiselon, nor any POrses acing ea behalf of & » Commissien: : T Co '

! rey A mqmnmmwwlwuumuum.
u-mm-ﬂ-mumummh;:::

petvaiily ewned righis; or

e Ty e e e ey e _.L"-“"\"--' <. suac-1o :
-*’:.-.-uuh:m “puraen ncting ou. bohall of the Commiselon’ lnsinios tay sim- uc-32 .
- A prpoy L2 oy d.&‘.-* enbent that - (mx) ¢
A ° e -—m'mmu,m e - his smj ‘or contrast N E
. N3 »c his " with such - " . .- i - .) N
BT i S N
COMPILER IMPLEMENTATION.LANGUAGE "’
/ | / ' l .
S |
) ' " * .
' - o DAVID(:RLES S
i i . ! L.
, STANFORD LINEAB ACCELERATOR 'CENTER
) ‘STANFORD UNIV'ERSITY
Stanford, California R . ' - /
: o ‘ ‘
. PREPARED FOR THE U.S. A'romc EN"ERGY'
. COMMISSION UNDER COQITRACT NO AT(O4 3)- 5i5 . L
=y R R
L} i.. - \J' e

March1969

' Reproduced m—the USA. Avalla.ble from the Clearmghouse for Federal Scientlflc
and Technical Information, Springfield, Virginja 22151. .

* " Pprice: Full size copy $3.00; microﬁche copy $.65.

. -] X . -, : P or T,.-|<‘DO~”U"‘Em [} ﬂ‘.““‘ l-

. . _
_ » . SLAC-102
Do ‘ Uc-32
oy S -
. ' CIL . . .z . -
'COMPILER IMPLEMENTATION LANGUAGE .
DAVID.GRIES ; \
: | N
TANEORD LINEAR ACCELERATOR CENTER o
" STANFORD UNIVERSITY » Co \'i
Stanford ('falifom& . 4’\'.‘_
R o0
L PREPARED FOR THE U. s ATOMIC ENERGY
SOV COMMESSION URDER CONTRACT NO. AT(04- 3)A—.)1.J

March 1969 . - -

Reproduced in the USA. Avallahle from the Clearmghouse for Federal Scxennflc
and Technical Information, Sprmg-fxeld Virginia 22151, - ,
Prlce Full size copy.§3. 00 mlcrofxche copy $..65.

8 . 2 Loor

Z . l"./ \ (’f ‘v - L

e gmmueua.g.u.ms
, 3 '."” 3 4- / .\ . t
1. . INTEODUC{ION Revised 3/10/69 } o 1
1-1.- Ba¥ic features of CIL 1
1.2. How to _pead this geport f . -3
1.3. A.hﬂ_VLs_s_!snti S 7. R 4
‘2. TERMINOLOGY AND NOTATION Revxsed}11/20/68 ' B 5
Z.1. Dpefinjtions - . 5.
2.2. Syntax _potation , ! . 5
3. BASIC ELEMENTS.OF THE LANGUAGE Ravised 11/20/68 9
3.1." Basic_symsbols. comsents_and sraces oo 9
-3,;, identifiers: apd jintejers - . 9
Begerved vords - S .n
) 3~4- Soyrce_langyage ssmpols L e 11
4. STRUCTURE OF A PROGRAM Ravised 11/20/68 ' ‘12
4.1. Coreload descriptions / - A2
4.2. Glgbal declagatjons - o 12
4.13. gasseg i & E 13
6. " VALUES, TYPES AND COKSIANTS kevised 3/10/69. = T
e 5-1. DBagic_ types o N SRR , L
: 3.2 §tsu..yxgg__alu.e_iaﬂ_sxzss - : 15
5.3._ &_ng&gggs ‘ / //5 . L 17
6. DECLABATIONS Revised 11/20/b8 . - o R 19
. 6.1.. Bagic_and_structured t,pe declarations 19
-6.2. Iable, stack apd dicr_ .gslsnssigni o 19
¢ 6a3a ELQC959£!_§_§l££$LLOEb | T e 21
6.4. Int declaratjons o y .22
7. , VARIABLES AND INDIRECT usrauzuuas Revised 11/20/68 ;»7~ 23
7.1. Sipple variables - 23
7.2. cComponen _!grxableg-ggg_ggleg_ors T 24
7.3. Ipdjrect_ ;_;etenceh . . - 25
e 7-4. Examples : L 26
'8." -EXPRESSIONS Bevised’ 089 - S T
' 8.1. ‘Eypceion desidmatops - C T 27
8.2. ,EQSLE_S¥£££§§iQ_§ -
, B.2.1 primarcies : . ' - . 28
. 8.2.2 precedence of operators A 28
- 8.2.3 conversion ot operands. IR 28 .
842.4 arithaetic. operators s . - 30
8.2.5 'bits operators . - . - ‘ 30
8.2.6 —relational Oyerators o : 30
8.2.7 logical operators . 31
8. 2.8 catenatzon e ' N

8.3. sStructure egpressions - . 31

L »
—

http://priiar4.es

‘9. _STATEMENTS Revised .11,20/68 .','» R o 34

9.1. Coppouynd _statemenats | - : L - 3
9.2. Assiypgent _statepepts’ . N R - 34
9.3. cCopditional statemsats o : 36
9.4. “Iterative statepepts - o - - 36
9.5. Case statements ‘ ; ST S X
"9.6. Coptrol statements o ;o " 38
9.7. BIQSQGQIQ_QLQQSESBE& o S Y
* 9.8. Scapner statesepts o » Lo 40
9.9... Input-oytpyt ‘ . : L
N 9. 10- Beleaging storage A o . 43
10. CPERATIO!S ON TABLES, DICTS AND’ STACKS Revisei/ﬁ1/20/68 g
, 10.1. gperatjons on tables.) o , un -
10. 2« _p_;athggg_ djcts - " : SR 3
10.3. Operatjons_on stag;s C . w9
10.4. The table.BIMIDIC ~ -, - . 5
1. STOhAGE ALLOCATIOR AND ILIGNHBIT OP VALUES o .
' -) Revised 11/20/68 L. o . 5
12. SCANNER DEFINITIONS Revised. 11/20/68 - : 53"
Teo e EQQBQ;QQ_.ag.zhg_x552;-_L_Q;s.igns£1 - 34
12.2. Defining "syponyss 55
©, 12.3. set_ defipitions ! . . 56
12.4. Beserved wvords - | o o . 57 -
12.5. String_and coulent_ig_g.g ot 57
1Z.6. Processing be;oge g_;gg;ng -) . _ - 58

13;*.pnonUCTIou LANGUAGE (PL) Rov;sod 11/20/68
,-13. 1.. Comments_and blanks .
13.2. PL_reserved words
13. 3. Source_ lgnguage sglngLs
13.4. Metasymbols
13.5. Identifiers -
- 13.6. Comaynjcation_ between §1n§_;_gnd selgnt;cs
.13.7. Declarations in n_PL
“ 13.8. Productions '
13.9. Act;ons , oo T I ,
- p \\\J(. v o, L /ﬂ g N
L 1“.J'CGDE GENEHATION SYSTEH (ChS) Revised 3/10/69s ' LT
L :‘10 1. CODEAREAS - . . ' ’
-A4.1.71 introduction S T”f?
14.1.2 register’ descrlptlons :

&

14.1. 3 ‘systenm variables connected with CODEAREAS © 69
14.1.4 creating and switching CODEABEAS < - ’ 69.
~. 14.1.5 entering data into a CODEAREA . : 69
© 14.1.6 initial conditioas . . .70
14.2. DATAAREAS ~ , © . S) 70
- 14.2.1 introduction - 4 70
14,2.2 systea varidples connected Ilth DATAAREAS A |
14.2.3 creating and switching DATAAREAS - 71
14.2.4 allocating and initializing DATAAREA storage ‘72
. 14.2.5 1n1t1a1 conditions 75

http://table-.SINT.DIC

14.2.6 addressiny DYNAMIC DATAAREAS

" -14.3. The DESCRIPTOR o :
' 14.3.1 structure of the DESCRIPTOR
" 14+ 3.2 generatind DESCHIYTORS
14.3.3 defining thae basic address (Bi)

14.3. 4 defining the eifective address (EA)

14.3.5 the lengtn ot &BYTES variables

T

I

14.3.6 runtise eatry points and exterpal reforonces 85

: 10.3.7 generatimy DESCRLPTORS for constants

.) :
ALY lnn!i:s.::gin&::&.ssi.tne;:....sx.z&...&
. _ 14. 4, 1 register nuabers and names , .

14.4.2 general runtime register usaqe
14.4. 3 register descriptions
14. l.i testiag register status

8.5 gemeratiny code tp dunmf registers

1%
1446 generating code to load and use registers

18. 8.7 altotllg r-;x:tet descriptions

14.4.8 saving an¢ r-stonxng register descriptions _'92

14.5. 'Cole expressions

1‘-'60 sa . .
~ 14.6.1 compound runtime statements
184,64 2 asnignlont runtimne statements
14.6.3 conditional runtime ‘Statements

14.6.4 runtine label definitions
14.6.5 runtine control statements -
1u.6.6 runtine procednte calls

N

. 14.627 runtilo procedure entries and returns

4. Te I..eg;erx.xjasinggsgssas |
Wl4.8. Hhen CGS ;elegg_g-QQEQZLgIORS‘
4.9, 52_01f!ﬁ.ﬂ.!ﬂi.iﬂlﬁ.SQI!lQiﬂEY

Appe.nd.lx A. TABLES OF PERMISSABLE OPERIIDS POE OPERATCRS

7 Revised 11/20/08
,Appendlx B. SYSTEH IDENTI!IERS Havisad 11,20/68

. gppend1x c- PBOGR;H EXAH2LE>_Bev;sod 3/10/69 -

a,

ya

Vv)
m—

14. 3.

——

. 1443. 1 structure of the DKSLRIPTO}

N

: , . X
14.2.6 address‘ing DYNAMIC DIT-IIBEIS)
E N V ' - N -‘ i

. 14. 3.2 generating DESCRIPTORS) \

T4, da

‘14.3.3 defining thae basic address {(BA) -

14.3. 4 defining the. effective address (BX)
14.3.5 the lengtn ot SBYTES variables

14.3.6 runtime eatry pointssrand external references 85 a

H4. 3.7 generatiny ozscnxprons for constants

an.u.e ;.nﬁ_.ﬁ_nd num.gﬂm

1. 4. 1 register numbers and hames o
T4.4.2 gen%ral runtime’ rogistor usage ,
14.4.3 register descriptions)

14.4. 4 testing register status . -
14.4.5 genetating code to dump :ogiltorl ’ .
14.4.6 generating code to load and -uss. rogistcrs

14,47 altering rejister descriptions ’

14.5."

T4abe

4.7,
© 14.8." #h
149,

Appendlx A.

[3 i .’

Appendlx B.-

- Appendix C.

§g§§_§tateients.

1u.u_3 saving and restoriny register dalcriptlon-
Code sypressiops | oy

14.6.1 compound runtime statements -
14.6.2 assignment runtine statesents

_10.6;3,condlt10nal ruatime statelents

14.6.4 runtise label definitions
14.6.5 runtime control statements
A4.6,6 runtime procedure calls 7
14. 6;_~runtiue procedure entrxes and returns

I__E____x runt;le stgggge . B

sQec1fylgg multiple coreloads

TABLES OF PERMISSASBLE UPERANDS FOR OPERATORS
Revxsed 11/20/08 Ly

SYSTEH IDENTIPILRS BeVLsed 11/20/68

PROGRAH EXAHPI.E:_- Revised 3/19/69

E)

" 99

.99

Al
Can

"A6

N \“\\')
1. INTRODUCTION TO CIL ' O

‘1. INTRODUCTION TO CIL ' L

t
1

This report is a manual for tné PIOQOéed Cqompiler . Implementation |
Language, CIL. It is” not an expository paper on the subject of
compiler urltlng or compller-cumgllers- The language deflnltlon may
change as werk prOgresses on the projec ot V

l.}. Ea51c featureg of CIL

The Cospiler Implementation Lanyuage is ~desighed for writing
compilers for the. IBM 360 computers. The heart of the system is a
‘procedure oriented ALGOL-llke lan*uage with exprcsald/i. assignment
Statements, iterative st tesents, etc. Houevcg/tﬁi basic data types
of the languaje are those of the IBM 360 - byte, halfword integer,
seyuence of 1 to 256 b}tea,‘etc\f’vhile the-basic operations on_

~ these types of data are also thuse of the 360. This should allow the
compiler writer to havé-more teeliny for the code generated by the
metacosriler and thus make it possiole to Irth sore efficient
) cpagilers. " ’ . S
- In addxtxon, the follouxng tuaturul are provided to facilitate
compiler writing: . o . 4 RO
a L
1.. Scdnpef. deflnltIOﬂS. A compiler vwriter declares the source
. language synbols "~ (reserved words, operators, format of
identifiers,' etc.) " in a scanher definition. 'From this the
. metacompiler builds an efficient scanner vwhich, at coapile-
' time, will read a source program, break :it up into these
: sylbols and ‘pass them one at a time to the compiler itself.

uThemscanner def1n1t10n has been de$1gned to handle most of the
exlstlng languages. It -has however ‘been restrlcted so that
. efficient scanfiers can be buxlt. Should it be necessary, the
1 compiler writer cam inspect the string 9f characters making up
;Lany syabol-and/or switch to a chdracter-by-character scam, in -

' ’uhxch case he may- forl his own sylbcls. . o

.

Zs Atoms. A hash—coded internal dlctlonary of all ‘source 1anguage

~ Symbols is kept current as a source prograk is -cTread by - the

\ 'scanmer. This dictionary is used to replace each symbol by a\16

kit representatlon called an atom. It is this atom that is

passed; the . compiler hx the scanner.., The coapiler

. autonaixcally uses these fixed lengtgf.atons instead of the

A va:1able—length ‘source -language symbols. Im this report,
“source language sleol" and “atoa"“ are used syhonymously.

3. onduct;on language jPLLz This is a sublanguage -for perforllng
the syntax analysis of source programs. It consists’ of “Floyd
productions", each of uhlch attempts to match certajn symbols

. with the top symbols of a last-in-first-out (LIFO) stack. When
. a match occurs, -"actions" in the production 'change _the. stack’
and cause “semantic routines" to be called in order to p;ocess.

."the symbols matched. . ‘.

4-’Stru§tured tvpe§= A programmaer canl . defime his own structured

B

S g armms § e b i e o ot 2o o st et

[

-’

. 1. INTRODUCTION TO CIL o . T .2

- " » .
~ s L S . @

* types; *these,faref sejuences of cgiponentslaanalogous to."the
NIRTH and HOARE records. In. order to save space, several
alternates can 'be declared for each couponent. ‘Once defined,
variables of a structured type can be declared in the same way
as usual varlahles are declared. . -

dlfference is in the way tne records .are accessed.' No upper'

bound on the number of’ records need be given.: The tecords
' thelselves may have a structured type (see (H) above).»

Becords of a dict are chained to records ‘of the internal

dzctlonary (see (2) apove) to provide fast searches of records
- based on source language ldentltlers., i .) .

{ .
6. Hultlgle\coreloads; A COlpllet Lcan cons;st of any ' aumber .-of
‘coreloads, which are executed . a fixed order. Thus, both

* single=pass coempilers and conpllers vhlch perforn sophisticated

transformations and code optxlxzatxon can be wrltten. R

7.',gode generation. This. is the nost 1mporta t addxtlon to the

! .language. - Our code . gjeneration systed (CG i5 based on

>~ Feldman's “code bracket" .scheme (Coma. Of the ACM, Vol. 9, Jan.

1966] . The purpose is to give the compiler writer a high-level "

» language for generating IBM 360 machine language. The compiler

writer should be, familiar with the IBM 36D data types and- the"

instruction set., However he can leave register allocation,

‘storage allocation, géneration of instructions, conversion of ..
‘runtine operands, etc. To the system. ; S e

)
-

Ihe hasxc eatures of this systen are-' e
%. A.- CODEAREAS and DATAAREAS. A compller vriter may gencratc

. code into any- number of CODEAREAS (read-only storage at

/A- ‘- runtime) and may use any number of DATAAREAS (read-write
storage). This ability to use- dlfferent CODEAREAS (one for

"each subroutine, say) and DATAAREAS (one for the variables
associated , with eéach _subroutine, say) simplifies the
CQmpiler-/fﬁiter's_'task. Most probl LEN connected with

addressing/code or data in-thesé AREAs re handled by CGS._

w -

B. Hegister descriptions. CGS maintains reglster'~

e - . descriptions describing tae runtime state.of the IBM 360°

o *J 'registers after tne last-generated imstruction has’ been
executed. CGS .performs some local ¢ode optimization with
- the help of the reglster descrlptlons. The descrlptxons
may dlso be test'ed and changed by compiler writer.

C. 'DESCRIPTOKS.- DthBIPTORS are used to describe runtzlef
variables in terms of the basic data types of: the IBNM 360,

<« .. such as byte, haltword integer and fulluos‘.intcgirJ*The
. Tuntime address .of. a variable is described Dy
" DATAAREA number and an offset into the AREA,” The

¢ DESCRIPTOER can also indicate .up:to twvo levels of - indirect:
addressing and/or suoscrlptrqg- The DBSCRIPIOR also’

.o

a _ CODE or .

i b A < b Bl

1. INTRODUCTION TO CIL
L , [:

, E . . .
e ; . L.
’ . . &

. ‘u - . : w LR P
. " .

.) R .) . + ‘.‘ ‘ Lo : .) s . _i;_.
- . . - . : - B .
. con®tains information such as whether the valpe, is.-jn a.-
‘register, whetner it is a constant;_etc;U ST

'

. D. étorage'allocation and initialization, Prxnltlves ex1st
for allocating storage in COPE or’ DATAAREAS for runtine

variables. Probleas or. correct allgnnent and the like are
handlied by CGS. In- certaln cases the allocated storage can

" be xnltlallzed,

. Ex -Code brackets.” I general any étatenent or erreSSLOn '
- may appear etween tne code brackets "“CODE -~ .{" and. e
* This lndlc tes: that the statement or expressxon is. to be

ll’ LI

executed at runtise. ‘The opérands of the. statemenmt or
expression : must be (~DESCRIPTORS (of runtime va;xables),

FPor example, suppose D1 , and - ‘D2 are DESCRIPTORS -of ‘an

“integer variable and an array element, reébectlvely. ~Then

-

execution of =~ . _ . G e

20

. conmstants, or varianl s-declared to be’ va11d> runtime. -

% "% CODE({ Fpg D1 =1 UHTIL 10 DO D2(D1] =5 -
would generate code to het the first ' 10 élenentsqof the
;:array to 5.° T . , _ o

' N - . RN ‘ h . “.’I(f

When a code-bracket statenent is. «executed, code is’

generated into -the. quprent CODEAREA as spec1f1e¢ in the
statements or -expressioas ¥ithin the 'code. brackets, and
the reyjister descriptions for that’ .CODEAREA are changed to
describé the new runtime statg of the registers. CBS also

-between data’ types._i I - ’

AL B
.

All the addltlonal features or CIL need not be used For exanple, .

i- An 1nterpreter could be wrltten vlthout the use of the Cade
generation sSystem; a' first pass . could put the program im an
1nterned1ate form and a second pass could then 1nterpret it.

24 Productlun language;need not be used any type of - syntax

. analyzer. can -.be proyrammed:- ‘using- thej‘norgal ALGOL-1like
) *constructs of -the language. T - g s

fa
=i

-~ . . ’
N ~

. 3. The languaqe can bc used fou writiuy “ioxwmali- programs.
® Throw out +«he. scanner detinition, PL, and fGS and an ALGOL-

- like language remains. The basic data types of "the " language ..

and

the operatlons on them are those of the IBM 360 computer;

. - this high-level langudge Just prov1des a convenlent tool £dr

1.2. How to'fegd.tﬂis report .

'us;ng theu.' * . .

“ ' - ' .
.) .

u. . . B . -
- R ‘

The \bestfi

3

P

*

:

way to . get acgdaiﬁted with theAlanguage‘is to Feaðe,'
- . PR ‘ - %

.automatlcally,generates code for any necessary conversions RRT

-

'

N o
"1, INTRODUCTION .TO CIL. - O
.. . ~ B - - . . ! . . N <
S ' .) v |
I

- . . S Ul

Froyram exalples ih lppend;x C. You 1111 £ind that CIL is basically,f
an ALGOL - like procedural language. Then read Sections 2 through -10°

vhich describe this procedural lanyuaje . and its normal ause. Skzp
over references to the scanner derinition, PL or C€GS. " Pinally, read .
the three additional. ;ect1ons 12 (on the scanner detxnltion), 13 (on

B PL) and 14 (on CGS).

P

. - - - - . . -

1,3. ; xn ouledgen nt

Sheldcn Becker, lLee Erham, Gar, Goodlan. Lockvood Morris, Jim COOk

. and .Christiana Riedl have all programmed or are progmhl-ing parts of

' the subject. o . o i

the system. All of 'them have contributed ‘to. the language ~and:> this
zaaual. Thanks _also go to Jerrx Paldman for ‘his useful thoughts on

R

R S

m‘f; s ! : o ’ N - Ay -t"', . .

F

v |
s 7, ‘2. TERMINOLOGY AND NOTATION . < . 5 /]

. 2a rznuruoxocx AND NOTATION - /)'
' 2.0 st;.;.;..s ".\f6;'
Hetaconﬂlle t;ne
Frograp uritten in

A

IL.~.ds beinj compiled.’

? conp1lef written 1n CIL. - .

/
A soyrce_ 2;03; is a ptogran written in a, source language.

;oy;_e_lang_age rerers to the languaje for uhxch a cﬁlpiler has been
urztten in CIL. : .

s

z-:-_;xasgs_aésssige

- ‘'nases (nonterainal symbols) are enclosed in angulag brackets %<% :and
) w>n, while the symbols of “thé languaye {terminal sylﬁBls) are

represented by themselves. A pgouyction comsists of .a -left__part,
which is always-a syntactxc class naae, followed by the letasylbol

* weyxW, fclloved by a. pight part - one or more syntactic class. names

.- OF te:lxnal /fymbols. It indicatés tuat the syntactic class given by
fhe left - part consists of tnose strinys of sylhols described by the
right part. Thus the groductxon

<identifier>» ::= <letter>
. <ideatitier> '::x (identitier> <letter>
<identifier> ::= <id¢ntif;er> <d191t> (
indicate that. an 1dentxtxc: ‘consists of .a latter’ or another
‘identifier folloved by a letter -or digit.(In other .words, an
identifief is a letter followed Dy zero or sope letters or digitsJ
P As an lhb:ev;atxon, tht/letasjnbol ol is used to write the above

three ;toductions {}z: : - ’

<1dent1:1¢r> S <1.ttot) | <Iu.nt1t10:> <1ettet>
| <idcnt1:1¢t> <digit>

' Thus "|* is: ‘used to scparltc rxgnt parts of. productlons Ihose‘ left .

faIte are the sale. '

o The tolloulng'loditicatxois to ‘BNF Dhave beeu intrqduced to

frovide a cleareg_syntlctic description.

1. - The., right- part of .a ptoductzal may be partly descrxbed by a
comment enclosed in quot.s. Thus ve write

<string> . :;x_' 'so,u.nce of - 1 to 256 !BCDIC charactors“ L

+

s, the time .during which a compiler = or’ any

L!e .is when . a source ,piogral is -being compiled .by a -

ot It A Pt

: . . iy : . SN
Backus Norsal Form (BNF) vitn some modifications will be pnsed to
descrite the 'syntax ‘of -this projramming language. Syntactic class

http://lan.jua.je

' 2. TERMINOLUGY.AMD MOTATION ~ - . . . - - g~

‘2. In order to prevent lzslntargtetatxon. the source sylbols #<® and
")" vill alvays -be enclosod zn 4uotes. Thus ve write

. 7
%srelation>~ s= <expressxon> g <¢xpression> d

-

‘3. ¥Square bracke s are :uied;.to enclose pptiolal entities. Por.
?xalple,. ; R S S ’ S

4factor$:A " 3:=-{ <unary og)i; <primary> = -
is equivalent to '
, "f<tactpr? ',_:='<prinar1?_|.<unary'bp>'<prilary>
s ! '/‘) e

. [. . .
4. The nonterminal synbol <e;yty? rigrelgnts the empty string.
. | g , s . -
S« A seguence of one or mote- s,luols, ‘all belonging to the syntact1c
_class <x>, can be written as <<x> list>. 'If they are to be soparnted
by a te¢rminal symbol, thenm this terainal- sylbol dircctly precedes
the word “list“. Thus ke .

<hasic decl> ::= <basic t¥y0> <<1dcnti£10r> ,11-t>

is exactly equivaient to 7

. <lasic decl> ::= <bas1c tjpﬂ) <id list> . . 4
<id list> g3=f <Ldent1t10r>) <id list> ,’<1d.nt1f1u->
and - ' : .
<integer> _::=A<<di§it>llist>f g:
is equivalent to ' o
- <integer>. $:= <digit> | <inteyer> <digit>

6. If a nonternlnal appears more tnan once .in a productiol, ‘the
occurrences may be numbered so that- they can be identified ia the -
senantlc,dzscussion. Thus we vwrite

- v

<for list> 1:= <gxp:essionl> UNTIL <expre§lion’>

7. The syntactic classes <spectunc> and <specproc> donotc lpocial
function designators and special procedure calls respectively. {he
syntax ‘of these <specfuncds and <specpro"s 13 alvays given in-
‘boxes. Por example,

'y

., e g - 1
.) | PUSH (<stack identifier> [<exp>]) |,
- e .

B

B

2. TERMINOLOGY AND NOTATION . T

/

-

Lo

J 243 §jgtag;;c_g_ it;és o <EBCDIC ‘or hex> o 32.2

(with co::espondxng Section <emfty> . 2.2
numbers) . o 1 <end: quote> . . . 125
factiof> ' : 13.9 - <exp> ST : B,
<actual paraneter) 9.7 . <expr> ' : 8.
;<add op> : : 8.2 <expression> _ R : Y
<altered value> - 8.3. " <factor> . ‘ -8.2
"<altérnate selector> . 8.3 . <formal parameter seg> 6.3
‘<arith- type> g 5.1 " <tunction designator> 8.1
.<assignment runstate> 14,0.2 - ""<global declaration> S 4.2
<assigoment statement> 9.2 . -<go to op> : { 9.6
* . <tasic. symbol> . 3.1 " <hex char> R R 2
<tasic type>- R T <hex integer> . 5.3
<Eagi¢ xype dec> . 6a1 <herxitd> N W RN

. <begin guote> . 2.5 » <identifier> 3.2
<hit> . * R R . . <indirect reference> .7.1
<bit integer> . 5.3) <int dec>. 13.7

" <bit op>-. o T 8.2 . <int declaration> 6. 4
<tits tyre> 5.1 <int identifier> - - 3.2

. <case statement 9.5 -<integer> .) 3u2
"<char .seguence> 12.2 <label> o 3.2
<char set> - 12.3: <label definition> 9.

- <character> . 12.3 <ieft part>, . 13.8
‘Kclass dec) - 13,7 <ledter> 0 3e1
<class named> 13.5 <loty real> , . 5«3
<classlat dec>. . - 13.7 7 . <keyvord component> 8.3
<closed cond Tunstated - 16.6.73) " <main stack dec> . " 6.2
<closed cond state> 9.3 <metasys 1>_ B 13.4
'¢clcsed iter state> 9.4 ' ‘<mult op?) . .Be2
<closed runstate> 14.06 " Xpew.value> - L.t | 8.3
‘<closed statement> . 9. .] <pusber selector> - .. 7.1
<code statesent> 14.6° <old value> . = 8.3
<comfonent> - -~ 5.2 ’ <open cond runstate> = 18,6.3 -
<comgcnent id> + 3.2 - .<open cond state> ' © 9.3

' <component selector>. 7.1 <open iter state> 9.4
<compocnent specifier> 843 " <opew runstate>) 18.6.
<compcment variable> = 7.1 - . <opea statemeat> 9. *
<compound ruanstate> ° T4.0.1 <passd 8.3
<cosgound statement> 9.1 °~ 7+ ' <pass number> ’ U362
<copstant> ' 5.3 , <PL declaratioa> 13,7
<comstituent> 5.2 <PL ideatifier> _, 13.5
<ccntrol runstate> . l.8.5 <PL iat> : o 13.5.
<control statement> 9.6 . <PL_ label> . 13:8
<coreload> @1 <L subprogram> {13
<coreload description>’ #.1 - <yointer coas> . T T
" <dec¢ integer> . 5.3 © <poiater type> 5.1
<de®laration> N T <polato -type> - 70 I
<delimiter> ~ - 349 <positiosal comspoaent> 8.3
<DESCH destination> 7. . <preprocessor> ' 12.6
<destination> ' 4 <primary> T ' 8.2
<dict declaration> 6.2 .. <procedure > . 6.3
<dict designator>’ o Te 1 <yrocedure cnl[) s.7
<dict identifier> : ° 3.2 - <procedure coatrol> - . 14.6.8
<digit> L P <procedure declaratioa> 6.3

<EBCTIC char> S ‘ <procedure heading> ° 6.3

fa

T 2. TEBEIIOLOG![IID‘]OTITIOH:

<procedure runca11>
<production> :
<program> '

* <guote def>.
- <quote pair)

<real>
<register name>

<register no> . . Y-

<relational op>

.. <reserved def>
. KXreserved word>

<right part) i
<runlabel detxnltxon)
<runexg> .
{runrag¢tor>
<runprisary>
{runstate>

¢scalée factor>
<scanner def>:

v

¢ <scanner id>
- {set defxn;txon)

<sign>
<51npleqva:1ah1e>

+ <source id>

14647

13.8

: “-‘ .
T 12.5

12.5
5.3

PRI
18,41
8.2

12.4
12.4
13.8

“T4.6e 4

14.5.1

14.5. 1

142541
e

5.3
12,
3.2
12.3
5.3
7.1
12.4

<source language sylbol>3 4

. <source symbol> s
<stack identifier>

<stack declaration>
<stack designator>
{(statement>
<{storage alloc>
<stripg coans>

“<string tyre>
. {struct exp>
{structure definition>

<structured type>
<structured type dec>

. <sulbyte -designator> =

<substriny designator>
<symb> o
<symkbol>
<symbol-labél>
<synonym> '

<synonym def> - :
<synonym pair>
<type dec>

{table declaratifon>
<table designator).
<table identifier>-
<tersin>

<type>

ftype specifier>
<unary og> - ° .
<unscaled real>
<variatle> .

WA @W WL O
[B]

13. 3
3,2
6.2

[]
Y

~N~wa

Wihiwe o L]
NSV NN waWw N

Wead = a3 On

) LERCIE SR I R S)
- N W N N aas &
) £ NN

7

T

http://1U.it.-1

EEVIN :,\ ot . .
L -
, P

* B ", s .7 - 3. THE BASIC ELEMENTS OF THE LANGUAGE
.) ' v s R !\
; 3. “THE BASIC LELEMEKTS OF THE LAluUAGB)
. }’ - 3 mhlm.u.gasé.sad_aimss
't" _ Syntax - K
,‘ : ':<hasxc sylbol> = <letter> } <diqit>] <delimiter>
" Cletter> . iz A8 |'CIDIEIE|GIETI
: 4 L-] 8 jo| PIQILRBR]STT
S lo) v)]) e X1 Y12¢168
. <bit> ! o Tiz= o0 41 T
- <digit> » 32=0. 4 1. 1.21 31 41516)|1-7} 8
. <hexit> = <digit? bAyBICyD|EGF
<Qelili£erz '- ::4/0 V-1 *Fr/1-~1=123
L ; <10 510 C1) N
l II<H ‘ I)H l -<:. l .>.’—'
| #aK® | WaD® | o=
{

NS I A VL BN B AN RV L

L. Kh . o
. '<EBCDIC char> . 22= "any EHCDIC character except space®

. Selanti&g:nLgttot; are ﬁsd for torming idontlti‘t: and reserved
vords. Digits are used ia forming numbers and identifiers. Bits and
hexits are .used in foraing coastaats. The meaning of. dolilitets vill

. be qiven at the approptiato place. in the scqnel

!xgept in' a PL subptog:cl and a scanaer dcfinition, a conlent]

oflthc form

/% “any sequence of characters not ilcluding ne n &y

Ray appoat anyvhere. It is thf/p*uivalolt of a singlo space.

Chanqing to 4 new card or lime has no slgnlticance. Outside of"'

itrinqs. spaces have L meaniny except for the follovinq rules:

1. At 1oast one sSpace aust - s.patato tvo adjacent: identifters,

. <source languaqo ‘syabol>s (ct s.etion 3.4), integers or
vords. :) . :

»
.

reserved

‘24 j space Bmay not separnto two charscters of a dolihltet, .

identifier, integer, reserved 'ord or source language sylbol.

This section has.defined the characters used in weciting a
cospiler in CIL. This does not yrocludo the us//of other characters

or the use of these characters in a differea vay ‘in

? language for which a co-pile: is being u:itton.
o 3.2, Igeggijieis and_.
syntax

N
~ -

- a

source

.. L
S Rt E et ST L e— . .

T Y .

S s

- would be vise to refrain from usxng € in thxs wvay.

s S e

. 3. THE BASIC ELEMENTS OF THE LANGUAGE -~ : (' 10
<identifier>- 1= <1ettef> | <1dent1£ier> <letter> -
‘ ‘ oo] <identifier> <digit> L
<integer> . '~ 2= <<d191t> list> :
" <component id> s:=<identirier>’ . - ’
" <dict identifier> ::=<Kidentifier> i '
<int identifier> gs:=<identirier>)
<labdrel> ' s:=<identifier> i
<scanner id>" f:=<identitier> , .
<stack identitier>::=<identifier> ’ : e ”
<s;ructured type) z:=<identifier> : T
<synonym> :=<identifier> ‘o .
(<tat1e Ldentltxer)::=<1den;ifier> s ' ‘.

.

(pqss number> = ::= iin;eggr§ “bgtueen,1-aﬂd 25"

Semantics: Integers hdve thelr conventloual neanxng as dec1la1
numbers. Identifiers have no ;nnerenbﬂneanxng but. serve ‘to identify
variables, labels, . procedures, structure types, and scamher
definitions. They may be chosen freely except that they may not ‘also
be reserved words of the lanjuage (cf Section 3.3). In addltxon,

. several 1dent1t1e:s are already-implicitly declared by . the systea.

They 'may beé- declared in .a’ prograam, but thlS precludes their use as
systenm 1dentit19rs (cf Appendix B). Note’ tHat the letter € -may - be
‘used 1in, an identifier. Nany s;stem, Ldentlflers begin with & and it

‘

The same Ldentlfxer cannot be used~to denote two dxiferent
quantities except when these guant1t1es have d15j01nt scopes’ as’
“defined by the declarations of the progtan {cf Sectxons 6 and 4.2).

"The recognition of the d3tln1tlén of a glven ldentxfler (but
not a component identifier -cf Sectlon 7) is “deternlned by the
tolloving rules., ‘ . . : ; "‘ . N
Step 1. It the Ldentxfxer is detined by a declaration of a
guantity or structure type, or is standlng as a label within a
procedure embracing the occurreace of the identifier, then it
denotes that quantity, structure ﬁﬁpe, or label, :

Step 2. Otherwlsa, ir the 1dent1t1e: is a formal parameter of a

frocedure embraciny the octurrence /of the‘identifiet, then -it
., 8tands tor that fo:lal paranoter. ; T ’ . :

Step 3. Othervise, if tna 1dont1f1er is deflned by -

: declaration of "a- quantity or struqturc type or by its standing
. a3 a label within a pass eabracing - the occurrence of the .
" ~identifier, then it denotes that quantity, structure type, or
lahel. . S :

§ Stcp He Othérvise, it the)dentifxer. is detined by a -
" declaration of a quantity or- ,structure .type in “global
declaration valid in the pass Lo: global declaration) e-bracxng
the occurrence of the identifier, then it stands for that

,

 3.3. Beserved words ,

R i:”

SN . oo : o
3. THE, BASIC £LBHFNTS_0F THE'L‘HGUAGE L kS 11
e R
) guantity or structure type. -y -

Step 5. Otherwise, . if the jdéntifier, was declared as a

<synonym>.in a scanner ' detinition, _then ' it stands .for the"

cottespondiﬁg'sourCe“language sylbol.

If any 51ngle step could 1ead to lore ‘than one deflnitxon, then the’
Ldent;tlcatlon is undefln d

ALT AND

. e <
BACK BEGIN BITAND BITExq BITOR - :) oo o ‘ .
EYTE‘B!TBS BYTE2 BYTE3 BYTE4 ~« . . 5 o ' N

CASE CODE CODEAREA CONTENT LORELOAD .
DATAAREA DEC DELETE DICT DO DWF DYNAMIC N
ELSE END ENDCASE ENDPAS EHTER . , ’
FOR FRCM FWF FWI S

G0 GOIF GOIFNQT GOTO - : SN . - R .
‘HWI : | o T R
{IF IN, ‘ : i [\ ‘ “ -
LOOK - o CLo T = ,
AIN . ' - .
/NoT el
. QF OB T
PASS PASSES POINTER "POP PROCEDURE PBODLIHG PUSB T,)
KEM RETUEN BUNTINE * - - :) .
SCANNEE STACK.STATIC %TRIHG STRUCTURE ' i
SUEBYTE :SUBSTR SYNTAX B .
TABLE IALLY THEN TO !/ i
UNTIL) R , SN : o
'WHILE - T , T : 1\
&C R) - . CLon . R
. . AR) [N .
. . XL _ :rg . L. ¢ .o
~3?#; Source language symbols - s
Syntax: - ' R
. <source language symbol> 3:= <synonyl>
ke : /, .1 ¥ <<EBCDIC char) list> - . 4 ‘

' Selqntlcs' A source language sylbol is a segnelce ;E>Eharactets
defined in a scanner definition.to be a delimiter 'or reserved word

. of the 1anguage ‘for which a coampiler is being vritten. One refers to

‘the BYTE2 atom for a source language symbol either by preceding it
by a dolldr sign, or by using a _synonga for it (c¢f Section 12.2). No
space may separate the dollar siyn from the chatacter list - or the
"characters - in ‘the 115t themselves and- a space lust ‘follov the last
character. . . -

-

PR

N 4. STRUCTURE OF .A PROGKAM S 12

~

u..SIRUCTUREma?'AVPROGRAH | . - o
Syntax. : ‘ e ’ ' _
<program> . 13= BEGIN | <<declaratiom> ;list>]

* - » .| <<statement> ;list>] END
(prdgréu) ::= BEGIN <coreload description>

{. <<scanner def> list>] .
. , : . . . <<jlobal declaration> list>]
AR } "<Kpass> list>

’ : : END

: . . -

Selantlcx. The, first derinition ot % progranm is for the - usual
ALGOL-llke proyram consistin; of ' declarations (cf Section 6) and
" statements (cf Section 9). The second must be used for programs with
nultiple passes or programs which "use a scanner or production

languagea’ . » 3
U.J.chrelbad description . ™
Syntax: T
<coreload descrlpt10n> ::= <<coreload> list>
:1:= CORELOAD <integer>. -

o <coreload>
- <<{pass number> list>

h . Semantics: The coreload descrlptlon 1nd1cate§_pv storage is’ to
ke allocated to the passes or a comgiler. The CToreloads must 'be
nuabered (by the <inteyer>) in ascending order, startxng vith 1. At
conpile' time, initially all the gabses;associated with coreload 1
are "in core, and the first pass.listed is executed. Upon execution
of a CALLPASS statement (cf Sectibm 946) which refers to a pass in a
different coreload, the new coreload . is -brought into core. The
passes in the previous coreload Bay not be referred to again. '

—
.

‘ﬁﬁgu - 2. Global declaratlons { .

Syntax: R
<global declarat10n> :i= PASSE3” <1nteger!> <1nteger2>
‘. <<declarat10n> ilist> .

/. ' | PASSES <integer1> RUNTIME .
3 - .. <<declaration> ;list>

] RURTIHE <<declaration> -;list>

Semantics: A global declaratlon declares 1dent1f1ers (and thei
attrlbutes) which are to be used globally inm -

a) . passes numbered <inteyeri!> tarough <integer2>;
'b) passes <integer!>, <1ntegerl> + 14..., and at runt1le-
‘¢) -at runtime only. — .

, The folloving restrictions are placed on identifiers declared in a

o

Ry

N

4. -STRUCTURE OF A PROGRAM

global dhclaratlon

"a) no Ldentxfle: nay be a reserved uord (cf Section- 3.3);
b) the.same identifier may not be declared in two glohal
dec€larations which have 4 -pass in common. Thus .

T PASSES 1 4 BYTE A,B -
' 'PASSES 2.3 BYTE B,C~

is lllegal-'
i c) an identifier uust he declared before it can be used.

Declarations thenselves are dls;ussedvln Section 6,,
Examples: . [.
PASSES 1 2 BYTE A,B, C POINTER P '
‘PASSES 5 RUNTIME STRING X ’
RUNTIME BYTE {; EﬂI A,B

T

,{rassi ' ' .. 1:= PASS <pass number> ['<PL subprogramn>]

[<<aeclaration> ;list>
{ <<statement> ;list>]
ENDPASS

‘- . C . : v :
o " Semantics: A pass is a logical umit --a subprograi. Section
:discusses the statenents which control the order "of - execution
passes. When a pass begins, if no PL subprogram is.present,
first statement -in the: list is executed. If a PL subprogram
present, executzon begins uxth the tlrst productxon init. .

a0

Rk

9.6

the
is

~

N

¥i

”qyntax. . o T R
<type> o 3% <pasic tjpe> | <structured type>{
; -
.5.1. Basic.tipes LT,
» ~=LB22 . . ! L e :
Syntax: Cfe . S .
<tasic:type> - ::= (DLtS type) ! <arith type) .
R _— . i <pointer ty9e> | <str1ng type)
: . . o
' <ktits: type) , 1= BYTE | BYTEZ | BYTEJ | BYTEH
o] BYTEs (<1nteger>)
<ar1th type) Tr= HWI | FHI v FHF 1 DWP | DEC
<polnter type> .- z:= POINTER.
.l POINTEER (<<p01nto type) llst>)
<string type> i1= STRING (<integer>).
 <pointo ‘type> - ::= <bits type> | <acith, typé> 1 Poxumé
o . ¥ <string type> | <structured type>
’ : o . - . ,;' | Z‘-f«. ',\' it' . N
: Semantics: The ‘types BYTE, BYTE2, BYTE3 and - BYTE4.. are
- essentially -abbreviations .for', BYIES(1), BITES(2), BYTES(3) = and
BYTES (4), “respectively. - Note -however the different alignment
propertles (cf Sectlon 11). . ' ' o o Co.
'jhe following table lists the vaiues “that may - be associated
.~Wwith a variable:of each basic type. ,\
: - N | \
LR N : 3/. - - . \ -
“txge e c Value . S N
EYTES((Lnteger>) _ sejuence ot .*<integer> bits .
(.0 € <integer)> <= 256) .
o , ‘ L
TR o RN : -

5. VALUES, TYPES AND CONSTANTS ~ .. - .- = - "4
N . g N ST

/

. . / Sy
S. VALUES, TYPES AND CONSTANT‘

5

A varlable*as a. SymellC reprebentatlon of a quantlty ‘that - may
assume different values . The value ot a.variable is always the one.

most recently assiyned to it. hach variable has a type vhlch deflnes

the class of values- that the varlable may represent._

) Types fall into tuo clabses. pasic_types —-whlch are the baSLC;
_elementary types in tte-lanyuaje ~ and structured types - which are

ordered sets . of one or mwmore -basic types and possibly other

structured - types. Structured types are defined by the programmer in

~.a structure definition. '3 . . -

o -

The humber’ of bytes each dltferent type of value uses in the
IBM 360 and the allgnment of tliese pytes in memory are discussed in
Section 11. Section 5.1 describes the basic types:in the language,
Section 5.2 ‘structured typesg'and tane structure definition. Constants
are descriked in Section 5. 3. :

A

e~

‘\ . 2 -
N ' 5. VALUES, TYPES AND CONSTANTS - L e 715
,) R o ‘ . . :
Hwxr - - *- - IBM 360 H<idrd Integet' 16 bits
oo - { between —2¢#%15 and 2¢+15-1y-
T RWIT : " - " IB# 360 .Fulldord Integer: 32 bits
: R ' (petween —2%¢+31 and 2¢%31-1)"
TFNF .) . IBM-:360 FullWord Flcating p01nt nﬂlber-
o, [32 bits .. : ’
. “DiF ' -IBH 360. DoubleHord Floatlnq poant nulber.
e o - 64 bits .
DEC " . DECimal nunher of 1 to 31 dlglts pius sign

STBIMG(<1nteger>) seguence of <integer> EBCDIC characters A
- 4{ { 0 < <integer> <-256) .

EOINTER o : reierence to'some'value(Zu,bit add;ess)"‘\
- . S !

e, o

When. referrzng to the valug go;nted at by a "variable - dectared :ﬂ&z .

as FOINTER, it. is necessary to indicate what. type that value. has.

This cam be done at the,point of retferral (cf- Sectiom 7.3), or. in.

the declaratlon ltse;: through the ' list of <pointo type>s, For

vexanple,._”’ i PR
POINTER 3 S A .may point _,at any value.
PCINTER(FJF)B .- B'may only p01nt at values /{

. of type FWP. & 2
POINTER(FﬂF HWI)C 'C-may poinmnt at vaEhes
T of type PWF and HWI.

. - ETN oy

Hierarchy _of txges. It is somet;mes necessary to perfora

automatlc conversion of values. For- example, if one- adds -an PV¥I
‘valae ta. an . FWF . value, -the FWI value must ‘first be converted to
floatlng point torm. .The- h1etarcn1 ot type prece@ences is:

< . . <

:7')
FWF - o » . :
DEC : N :) . N
fux- . ¥ o :
HWI Y :
BYTES
a o 4
. k}
5 2. §s£ussgzgi_1§lg§§_an..&xees
Syntaxs : ‘ - ’
- <structure det1n1t10n> o ‘
R © 3:= STRUCTURE <structured type)
’ N (<<constituent> ,list>)
<constituen£} ¢ f:= <component>
S0 | <con5t1tuent> ALT <conponent>
<componeat> oz type> <component id>

= <
| <comgonent id> (<<const1tuent> llsf>)

N e
- '
+

o

N

- - S S
. ¢

a . [P J

- A.<structured type>. ;A structured .value is a set of constityents -
" ‘which 4t jafily instant “of ‘runtime are values With basic_ _types and
[ossikly ctner strictured tjipes, Eacu'- -constituent, ‘consists of a
singlg conponent or it consis€s of a set of alternatlveYCOIponents

Spacea. Only one' of the alternative- uon;onents may be in use at any

one is belng used. O . P P

ks \‘ B ! The name of each conponent is tne conponent 1d ‘This - naje is

uséd to ‘refer to that. codponent of the " structured - type. The
component id may be. any valid ideutirier which is not -.a structured
type; -the only' rule to- pe ifollowed is that, vhen: referrlng to
conpbnents ~nd subcomponents ot a structuréd value, the netaconpller
must be ™aple to unzguely deternzne what is aeant. See Section 7.2
tor tull details. :

Note that, a ‘component mdy itself contain sibcomponents. If &

: stcuctured'bype, is used as the -type of some component, this

stzuctured type must have. been pre71ously (statlcally) declared.

- v

* know how ‘storage is allocated to components. This is discussed_in
sectiocn 11. . . ‘ . - AN .

e
¥,

"Exanpleéf %, . o N

R P STRUCTURE SUBSCh (BYTE AnEA, BYT£3 OFFSET, POINTER S5) - o
L R e :
: ’ A valuo of type SUBSCd congxsts ot . . -

. - "ﬂa)_a BYTEﬁvalue named ARCA , folloved by . . *
S } k) a BYTE3I"value nan@§ OFF>ET , followed by
. .c) a\POINTER‘value naned 5. .

& .2, STRUCTURE L1 (BYTE KfN_D ALT H#I B, C (BYTE C1, POINTER C2)- .
] SUBSC# D, SUBSCH E) _ RS

~ - .: L

~ A value ot type D1 consists of . 7 . L] W

a) EIIH;R a BYTE value n;ned KIND
or a halfword intejer named B, followed by
"B) .a-value named C. C itselr consists of
- 1) a BYTE value ,named C1 tolloved by
P 2)a POINTER value named C2. e .
- S C is followed by) 3
' d) a value, named D, or structured type SUBSCR
e) a value, named E, 'of structured type SUBSCR |

. 5. VALUES, TYPES AND CONSTANIS - L T

o) ‘ Semantics: A structute detxnltlon defxnes a neh structure naled'

ZSeparated Ly the teserved word ALT . This is used lalnly to save. .

tlme, and it 'is the responsxblllt, Ot .the progrdnler to, knou which

wnile not necessary, lt ma, be useful for 'tbe p;oqra-ler “to -

s mm s e e

file:///coaponents

LS

© 5. YALUES, TYPES AND CONSTANTS =~ . S 17

5..3. Comstants v
"Syntax:’ T . =
3= <inteyer> | <hex integer)

<constant>

) : : -<pit integer> | <dec 1nteqer>
‘<real> | <long real> N
<logxcal cons> . .
- <striny coms> | <poinmter: cons) ‘ PR
<synonym> | . <1nt identifier> '

' {<Khexit> list> *

real> 'L

"sejuence of 1 - 256 EBCDIC

tqrs" ' o
¢ ‘ -

<hex integerp 1=

<tit integer>- t3= ' <<pit> list>
<dec -integer> . 33= <Lintegyer>' D c
<real> . . =

“<¢long real>
.£striny cons>

Q.4 ‘u. as

‘u:r-

X

B

<

<unscaled real) [<sca1e factor>]
<

]

rac

0

<fointer’cons>

N . L e = X -
<unscaled real’> := <integer> . <1nteger> | <integer> .

g

o 1 « <inteyger> .
{scale factor> ::= B <sxgn> <1nteger>)
<sign) N -

a
oy

Selantlcs. .Integers, feals. amd long reals. are interpreted
accordlng to the ‘conventlonaL decimal. notathn. ‘A-scale factor
denotes.an-integral power of 10 which is multiplied by the umscaled
real precediny it. A dec intejer is am integer of 1 to 31 digits
which.will be represented in packed decimal notation.

i A strlng constant is a sejuence of 1 to 256 characters,

enclosed by the string gquote ¥ * ", Within the sequence, the string

- Juote itself is to be represented b1 tvo adjacent string quotes. The
dusber ot characters in the strlng is called the 1lenyth of . the
strxng. - .

N
*

Each hexit in a hex 1nteger represents 4 bits in the usual.
.manner.’ Both hex integers and pit integers are right adjusted in
their txeld, with leading Zero pits added if necessary\(see below). .

Ihc po;ntor cons 0 falls to yoxnt to a value.

A sylonyl denoé:;\the atom correspondlng to the source language
syabol associated to the symonym in a <synonya def> of the scanner
sutlanguag! {cf Sectlon 12.2) . - :

"AD int 1dentif10r is a BYTE2 constant. The actual- value is
‘assigned b; the metacompiler (see Section 6.4). > -

3 - .
Each constaat has a unijue.type, as defined by the following
list. It should he noted that any necessary conversion of constants
is done at setacoapile time vinen possible. . .

. +° 5. VALUES,

-<copstanty

. Khit-inie;e;>'

<integer>
<hex- integer>

<dec iﬁtgget)
<real> :

. <long real>
- <striag cons>

T

In add1t1on, the follou1ng aystel xdentitiors "for coastlnts can
‘used. L - :

<pointer- cons>
(synonyl>‘A
<int 1dent1f1er>

. i.
TRUE '

- EALSE

Exalples.‘h*

.'v

<constant>

<integer>

<hex integer>

<bit integer>

'<dec integer> _

" <real>

<long real>:

<string cons>

TYPES

[N

AND COISTLIIS : a 18
. . . .
\
Stype> o L e
Wl if less tham 65536. FWI othervise
BYT2S (L), vhere if there o .
are J hexits, 2%l >= J > 2¢I- 2
BYTES (1), vhere if there
are o hlts, 8¢l)- J > B‘I-&.
".DEC - - . :
- FWL
DRI
STRING (<inteyer>)
POINTER : :
BYTE2 . e
© BYTE2 - : i

2. 7182818284590“52353L

be
BYTE1 (=X'PF')
BYTE1 (=X'00°)

exaaples’ _ \,;;;>¥H.'

1 i- 23 Y2se18
X oa' X'BBZA' x'rrrrrirrff“
3-0110- 3010010010000-
32 1000 - i357312389D

3.0 - .56 327031 3.5-20

fsra:ﬂs'_ roe 1914 ig the stripg

consisting ot a single apostrophe.

6. DECLAKATIONS ER R . RIE

6. DECLARATIONS
{-Declarations serve to determine the; scope of identifiers and to
> define permanent properties ‘them (type of value that may be
associated vith thenm, structure). Generally, a number of bytes -are .
" allocated to "each , identirier (depending on the type) to hold the -
value associated with zg. ‘See Sectlon 11 for full details.

Syntax: .
<declacation> I £ <structure definitxon>
- -] <type dec>
s <int declaration> ‘
.| <table declaration> '
N .o , | <dict declaration> .
wE .) <stack declaration> &
Coe) S)} <main stack dec>
| <procedure declaration> -

. oo - - -~
6-1?'n!gis-a!g.iggussnzsé;&xgg.ésg;esasigaé :
Syntax: _ .
<type dec> - ... $3= <basic t]pe dec> .
] <structured type dec>
:= <basic-type> <<identifier> ,list>

<tlsic type dec>
=<structurgd type> <<identxfier> g}ist)

4<st:uctuted type dec>-

Selantics. Basic and ' structured type declathtxons serve to
associate a. type with identifiers. Only values of that type may be
assignéd to the identitiers. The -structured type must have . been

.previously (statically) declared. . L

&

Examples: - s

- PHNI™A,B,C : - o . -
POINTER (SUBSCR) D (see Section 5.2 for the structure
. S definitionAfor,SUQ§CR). : "
.SUBSCR B,P,G - o ' ’

6.2 i;hlg;.i;.&.a.g.§&§§k deElQEitLOBE

*S}atax" -1
<tab1e declaratxon) ::= <storage alloc’} <type> TABLE <integor>

<table identifier> .
| STRING TABLE <table identifier> ;.
= <<8tr1lg cons> ,list> B .

<dict declaration> ::= <storage alloc> <type> DICT <integer>
o o Co <dict identifier>
<stack declaration> ::= (storage alloc> <type> SIACK <1nteger>
’ ‘ . © - <stack identifier>- .

6. DECLAR§TION§ : o S - 20 -

¢

<rain stack dec> ::= HALN STACK <stack identifier>
‘<l£o:age alioq? e B3T STATLC | DYNAHIC | <empty>

Semdntics:: Table,'d1ct and stuck declatafions all .sorQe “to

“associate a4 gej uence of data gecogds of type <type> vith the table,

dict or stack identifier. Tne dirterence is . only ‘in’ the 'way. the

records - are added, deleted or accessed. See Sectiom 10.0 ‘for full)

 details:

’

.o B : . ht
- A table‘'is a linear, se,uence of records. Records are
. usually accessed throu;h pointers to thee and by the operations
iCOK and ENTER. They ma; . novever pe -accesséd exactly like a one

. dimensional ALGOL array. . .

5
-
"

A dict is also a sejuence of records, ghesé records are
hovever list-structured ror tast searches. based on - source

lanyuagye symbols. Records may pe added to or deleted fromythe. -

dict. .They may also pe taxen off the chain -which Tist-
.structures them. The tygue or +the dict records. nust be a
.strictured type. Further, the sEructured type, .say T, must
be;xn as follows: .

STRUCTURE T (BYTL NAﬂk1 POINTER NAME2, ...

u

Here, “the cbnponent‘ids are not ilpontant{ only’the fact that.

the first-two collponents are a BYTE and a POINTER., .The . reason

_for tnls will becone clédr. when Section 1042 on LOOK and ENTER

-~ is rcad.) . .

ke added and deleted:in the customary manner.

<stor$ge alloc> indicates how storaye is to be allocated -.to the

‘sequence. It STATIC or <eapty>, <integer> gives the maximum number

of records in the table, dict or stack. These records 'will be
contiguous. If DYNAMIC, <integer> detines the number of contiguous

A stack is a LIFO (1ast~in-tirst-out}?stack. Records iay '

records in .a "block™. Storaje is initidlly allocated to one block of_

rccords. extra .blocks' are added as the need arises while the grogran’

is heing executed.

Bach pass wvhich uses production ldnguage must have a - stack to
coamunjicate between the production language and semantic language.

* This stack is specified by a <main stack dec>. The stack identifier
¢ in - the <main stack dec)> must be a previously declared STATIC ‘stack.
In addition, the type of the stack records amust be .a structured

tyre, say s, vh;ch begins as follows:
',srnhcrunz S (BYTE2 NAME1, BYTE< NAME2, BYTE2 NAME3, ...

HJE.,' the _component ids -are.not important; only. the fact that ‘the
first three components are BYTEZ guantities. See Section 13.6.

6. DECLARATIONS

-

!lalplos.

SUBSCR TABSLE 200 A) . N -

CYNANIC D1 DICT SO0 B .) ' W
~ STATIC D1 STACK 100 C. . o

"BAIN STACK C :

6.3 mssﬂmmhrum; B S | N\

Syntax:
<;rocoduro dcclnration) t:= PROCEDURE" -)

. <procedure headimg> ; <procedure body>.
| <type> PROCEDURE

<grocedure heading> ; <procedure body>

Pa

<proccdur¢ headxng> $:= Cidentirier> . :
t . { <<formal paraleter seg> ilist>)]

(fotlll ;ara-eter sy ’

= <type specifier> <<identifier> ,list>
= <type> | BYTES | STRING .

| <type> TABLE | <type> DICT

1 <type) STACK - . ,

o e
LU TRV

<kype specxfxer)_

s

<procedure body> ‘si= (btdtﬁléﬂt) '
. : { BEGIN | <<type dec> ;listd>]
L <<statenent) '115t>] END

Semantics: A procedure declaration assocxates a procedure body
with the identifier 1lled1ately tolloulng the 'symbol .PROCEDURE. A
Eroper procedure (case 1 above) is invoked, by a procedure statement
{cf section 9.7) and a functiomn { typed procedure - case 2 above) by
a tunctzon designator (cf Section B.1) or &\procedure statement.

The procedure heading also deacrlbe; the formal Farameters and
-their types. All formal parameter identifiers in a formal parameter
" segment are of the same indicated type.: The type specifiers BITES
and SIRING specify formal paraaeters : whose corresponding actual
Faraseters at a call point are BYrBS(I)« -and STRING({I) for some
Lnteger I. It is more afficient to indicate the nuaber of bytes if
it is constant tor all calls of ‘the procedure .or function.

The value to be returned ny a function 1s -indicated by
assxgning it to the function Ldentzzleer'

Exalplés:

PHOCBDURB LOOKLAB (BYTEL ATUH POINTER B}
/% LCOK 1IN SYMBOL TABLE SS5YAB FOR THE SOUBCB SYABOL. 'ITOH' UHCI

IS A LABEL. RETURN THE ADDRBSS OF THE BECORD IN P.s/
BEGIN P = LOOK (SSYMB,ATOH) ;
WHILE P ~= 0 DO BEGIN IP P.TYPE = LABEL

e e i s e n A s e TR

'DECLARATIONS

END

6. "- IELQ_EIMQ.E:‘E

Syntax) .
:<1nt declarat10n> }:

'.Selantxcs.
}ITetnal synbol*used ‘to help parse the, proegram. In order .
a' compiler to test the main stack and to.

the sesantic
frovide more communication Detween Syntax

declaration:
BYTEZ2 cthtang
It

. metaconmpiler.

Section 13).

"d

In

productxon

portion . of

THER BETUR!'

. END

VT

P = LOOK(SSY&B P)

IIT <<Ldent1f1er> 11st>

and

semantics,

s

22 ;.

language an -INT is a nontermlnal or .

to ".allow

the

int

.has been provided. Each identifier dcclared as INT is a

r

the actudl value .

may ‘be .

v

‘being .

assxgned

by’

the

usea gquhere a4 constant may be used (cf

5

3

b}

S Al - . 23

1

.71 VARIAELES AND INDIHECI BLPERLNCES

In Section 5 we descrlbed tne uxtzerent types ot valués p0551hle. In-
Section 6 we indicated now these types could be associated with
Jddentifiers. de ‘now descrlbe how one references the value assoc1ated
with an 1dent1f1er - either to use lt or to. change ite:

%

;‘S)ntax: : ‘ . A .
<destination> - - 132= <variable> | <indirect reference>
<DESCR destinpation> ::= <destination> "of type DESCRIPTOR"™,

<simple variable>’ ®
<component variable>
<identirier> .
<table designator> . K
- €dict designator>

<stack designator>
<sunstr1ng designator>
<subhyte des;gnator)

. <variable> HH

<simple variable> 1=

L

. ';'——‘—-—,’II-—]

i

<component variable>::= <siaple varlab1e> <conponent selector)

<ig&ire¢ﬁ~;eference)é:é”CONTENT(<POINTER expr>
o . ‘L. <pointo type> 1)
<variable> . <component selector>

-—

<table identifier> { <expression>)

<dict identifier> { <expression>)

<stack identifier> (<expression>)<

LO | LY L2 | L3 | L4 § RO | RT | R2

'<substr1ng de51gnator> ::= SUBSTR (<destination>

' , <expression> [, <expression> })
<subbyte des1gnator}::, SUBBYTE (<destination>

) . <expression> [, <expr9551on>])

<takle. designator> ::
~Kdict designator> ::
<stack designator)

— "

.
Kcomponent selector>::

= <<component id> .list> -
. i | <<number selector> .list>
_<number seléctor> ::= <in'teger> [-~ <integer>]

#”

‘7.1. Simple/var able;‘

A table " designator denotes a record of a table. The expression-is
evaluated, a551gned to an internal integer variable I (say), and the
Ith record is chosen. The value I must be greater thanm 0 .and, if the
taktle is STKT;C, less tham or egjual to the number of records

declared. .
The. time necessary ‘;;\\tg}cnlate the aﬁdresé of a rtecord T(I) is
directly proportional to the nuaber of the block in vhxch the recoc&

zesxdes.

N

through the'wLOOK .

N

The usual way of accessing table reco¥ds is

of suhstrlng desxguators.

7. VARIABLES AND-INDIRECT REFERENCES =~ - 1

l\) L "v » »A(

~

and fEQTER commands and’through POINTER variables which point at the

records. If these connands are used, tae following restriction ' is-

placed on ‘the used of table ‘designators: the value of I must always

jselect an already-existing record; if not, an error may result. This
is not checked at runtime. - K .

., If ENTER, LOOK and DELETE are not used, then the ‘table is
actually a one dimensional array. It it .is declared DYNAMIC, then it

‘may have any number of records. .-Thus, if a vdlue I is used but there
are. not as yet I records in the table, enough blocks of records are.
added to yield I of them. . T ' -

A dict.designator denotes’ a record of 'a dict. - This works

’Vexactly like a table designator.

A stack desigrator references a stack record. The expression is
evalyated, _assxgned to an imtermal Lnteger variable I, and the Ith
record. from " the. top of the stack is chosen. Thus, if § is a stack,

5(0) refers to the top record, S(1) the first from the top, etc. If

a pass has a main stack, then the system identifiers LO,...,LY4 refer
to the top main stack record,...,:4th record from the top of the

".mpain stack, before matchiny ot the last production began, while

RO,R1, AND R2 refer to the current top, ‘1st and 2nd records of the

pain stack, respectlvely,“ : , .) ;J“

- A sunstrxng des;gnahor denotes a sequence of characters of the
string Ldestination> the first expression is evaluated and a551gned

to an_ internal integer variable I. 1 then selects the position in:

the <variable> of the .startiny. cnaracter of the sequence. The first

charadter 'has position 0. Thus we have 0 <= I < declared length of
the string variable. The second expre551on is evaluated and assigned .

to an internal lnteger variable J. J is then used as the length of

"the selected segquence. I+J aust bpe less than or equal to the

decldred length of +the string variable. The“default value for the
second expression is (lengta orL string variable -I).

A subbyte dSsignatory denbtés a sequehce of bytes of a BYTES

variable or indirect reference. The semantics are the same as those

O . "
. . , .
P - .

7.2-‘Component variables and selectors :

o,

B . s . :
A component variable references a comronent of some structured .
variakle. The first syntactic entlty in a-component variablé is a

simple variable, which chooses tae gartxcular structure from which
the component is to be taken. Tais is followed by a period ard a
component selector, which picks out the desired component. There are
two - methods - for “this - naainy the conponent, or indicating its
9051t10n by a seguence of npumbers. .

A. Naming__the component. The conponent selector ‘is a sequence
of component identifiers, separated by periods. The first is
the npame of a component of the structure. If there is only one

anv S - /
7. VARIABLES AND INDIRECT KEFERENCES & - - - 2§

o7 . By

‘component identifier, ‘then 'the ‘desired ‘coiponent "has been -

fcund. If there are more, then the first must name a component

which itself has subcomponentsa The- second name” plcks out the
desired subcomponent, = etc. As example,~ consxder “the

declarations v
STAUCTURE SUBSCR (BYTL AHEAh srrxa orrszr,.roiuren S);
STRUCTURE D1 (BYTE KIND ALT HWI B, o S
C (BYTE C1, POINTER CZ),;
SUBSCk D, SUBSCR E);. o, s
D1 A; o Bl SR

To plck out component B ot A use A.B o
. . - To pick out component €1, use A.C.C1 .y -)

St To pick out congonent S ot conpponent D of A, use A.D\S ..
"It is, not. always necessary to give the couplete 115t of
componenrﬁxds. Thus{, in tne above examples, A.C1 is equivalent
to A.C.Cl.’ The 'only rule is that the€ component variable must
unamhxguously define a coaponent. A.S Would not be valld, since

it could be either A.D.S Or A«E«S. -

"B. Numberingj the component. Constituents are‘nqnbered from the
left, starting. with 1. ‘Within - a constituent, the alternate

* components are similarly numbered. A mumber selector I selects .}

the first component of the Ith constituent. Thus we have:

A.1 egquivalent to A.KIND . . o
A.2 equivalent to A.C : B . .
A. 2.1 egulvalent to A Cw C1 - - .

How would we reference conponent B? By A.1 ﬂé Here, the. W-2¢.
specifies the particular alternate (the -second). 1In general,'

"I-~J" peans, thd Jth alternate for the Ith {sub) constituent. AS
1llustrated above, K.1 is e“uxvalent to A1.51.

¢ R . s

7;3. Indirecr references . ‘ .) iii .,' .

A simple reference ‘ . . o _

CONTEHT (<PDIHTER exprng1on>)

references the variable “pointed- at®™ by the POINTER. expression.

Thus, using the examples of tne .preceding section, if PP. is. a,

rointer variable, then. executiny , "
- — .

.

PP = @ A.KIND; CONTENT (PP} = 3

sets the component A.KIND to 3 (cf Section 8. 2.1). The reserved word 3

-

MECM can be used as an abbre71at10n for NCONTENT™.

- . .
L

It is necessarx to lpq;cate lhat type of value is .being pointed

ke £ s vn 8 et A £t A S i -

“

il

—
i
§
1
1
i
i
i
{
i
5
{
i
i
—

!

LY

-at, by including a <901nto t,ge>".Thla may qf course be done in the
declaration of a FOINTER variable (ct Section 5.1), in which’ case 1t

7. VARIMBLES. AND INDIRECT

‘BLP EBENCES . 26

]

C+ el s e e S

can ke left out here.lThe above. examp'e could be wrltten as

. Pp = & A . KIND; COhTEN’(PP B!Tﬁ) =3

N

T\ :

"

« - Tee L R »g_}j’ . A
. If - a v POINTER expression points at some structured type value, .
then one can designate a component or subconponent of that' "value . -
exactly as ‘was explaxned in Section 7 3. LT v‘"'-
Agaﬁn, the <poznto type> may be omztted here if- it is’ p0551ble

to determine from;

bein

the component se. 'ector’ which structured type is
referred to. Thus, using the ex:mples of Sectiom 7.2, if there

is rno other structure with a componert named C,- GONTENT(PP) c could
be usbd instead of CONTENT(PP D). C. .

a5 a futther ‘sinplification’—-ore thch 'should . be used often -

if the\QOINTER exfrression ‘is Just a veriable, and: if
‘then
~qnitted. We could this write PP.C. for CONTENT (PP D1).C :and

type> can be - onitted,

for CONTENT (PP D1).C.C2.

\

. \'. v
7:4l Exasples\
AN

\
N

syntactic entity

. . ; e .
<identifier>. ©
<table designatory
<dict designator>
~*¢stack Jesignator>

. '<substring designatogr>.

<sukbyte designator>\

<CORpQLEeRt varidble) L

-

<indirect reference>

-

s

'gzéﬂels

-~ CONIENT (P SUBSCR): ST

the * <pointo .
brackets can also be ~
PP.C.CZ. .

contents

T

a

T(+J)
D(L) -
5(0) - .) -
SUBSTR (ST, 5) e, -
SUBBYTE(SY,5,I) - :
b (Nj.C.C2 N . . i
A.S T A

~

Pl

CONTENT (P)

CONTENT (P. SUBSCR) . AREA

CONTENT (P) .AREA . - :

6C (- 6C (P SUBSCR).S BYTE) B
P.AREA = R
P.5.S (P poxnts to a SUBSCR)

.

R

o
H

;e

iy .

P R
8. EXPRESSIONS

1‘.’ . L - . .
PR R - e

8. EXPRESSIONS S N

Expressions arfe ruies which

existing ones. These® newv .values are obtained’ by performing the
operations indicated by the operators on the yalues of the operands:
Expressicns ~fall " into two classes: pasic_expressions - those whose’

values -are of sone. basic type‘-«and structured expressions -

_whose values have somé “structured type. The former we abbreviate
simply by the syntactlc class, <expre551on> or, <expr> the latter by
<struct exp>. , o
’ e LN ! B

SyntaX' - B SR
<exp>. -, 3:= <expression> | Xstruct exp> Cow
.. <expr> 5 <expression> O o :)
. <EOINTER. expr)' e <expr> "with type POINTER"™ : .
" <STRING expr> = <expr>-"with type STRING" oo
<BYIE expr> <exyr> "with ‘type BYTEW . R .
<DESCR exp> <struct exp> "with type DESCRIPTOR" &

"} <POINTER expr> "to a DESCRIPTOR"’

specity hou new values are conputed from~-

those‘>

'<funct1on designator> 112 Cidentitier>.’

Semantics: 'A

 (<<actwal parameter>

A ~
3 wEs
W kS

‘ctﬁlned as follows; the identitier must jdentify’' a

| <EDLRESS exp> "~ i3= <eXp> “with type EDDRESS! . .
| S ' _
-8.1., Function_designators e

‘7Synta2° o .) oo }

"function.

;list>)]

.

functlon de51;nator deflnes a value which can be_
The

of this. fmnctlon is copied, ‘moditied by the actual péraneters,

b
aGd executed exactly as specified An Section 957,
~last valuye asslgnﬁd to the zunctloﬁ\&dentlfler during this execution

" The

value 1is

(undef;ned 1f none); its tyye is theytype of the function..

s

‘Examples:fﬁ&X(Xe*2, 1) {

YCUNGESTUNCLE(JAMES)

8. 2.

. . ’~

Syntax ’
{primary>

<factor>

<expression>
.

Basi&_exrressions
- . +

/ e Ee TN

/\ N /‘ '

e

<constant> { <variabled> |
<indiregf referente>.
<tunctidn designator>
<spectunc)>

(<expression>) .
{primary>. .
‘<primacy> ** <factor>
<unary op> (factor)
<factor> k

(expr) <mult op) <expr> w

LR

1}
~ LLE
—_— e o ——— i

2@ <variable>

@

1

o)

the

LS

. J' "7, . 8- EXPRESSIONS R I . 28

;
2

<add op> <expr>
<pit. op> <expr> |
<relationasl op> <expr>

i ~ AND <expr> . - S
! . On <expr>. ™ : .
"1 - . Y *
. . <unary op>_ 2 NOT S .
<Eult op> : //1 BEM - ° E
<add op> - : :) ’ . coL ,
. _<Ekit-oep> s ‘BATAND | BITEXOR o
-<reldtional op> : | By | "~<" | w>n g "5

Note thdt the db0ve syntax is aunl,uous. E{presslons are eyaluated
in7.a left to right manne:, us;ng the precedence of operators’given
~in Section 8.2. 2.—'> . . P L

B.2.1 primaries. Tne . rimaries -<comstant>, " <variable>,”
® Kindirect reterence> and <iunction designator> have already _been.
discussed. The primary @ <variaple> sields a POINTER value vhich is:

"the address of (a pointer to) the.variabnle. <specfunc> stands for,

"o “syec1al functLon des1gnator“ " See Section 2.2.°

. L 3 o .
8.2.2 precedence of operators. Expressions are evaluatéd in_ a

left to _rigat @anmer, dccordiny to» the fdlYowiny hi€rarchy of -

" cpegfatcr ‘precédences (paremtheses may be used to_overlde then) :

K .. . unary + undry - wor ., ®)
S e) L P . Cy o . - !
" * 7 // "REM; oo
t -
blnacx + pinarcy ‘e

\ BITOR BITAND BITEXOB .
i - : C = ~= < A > > , .
L Lo : AND) , . v

:f - o N 'y OR L . K . I

t

S S U

8. 2 3 convers1on ot operands. I1e following table indicates how ’

‘values are:converted from one basic type to another when ' necessary.
Each row I represents thne pasic type of a value to be converted,

R vhile each column J represents tne type o the converted to. ‘The

table element (I,J) is then a letter of a footnote below . vhich
indicates hav the conversion is: nade. & hlank‘elelent s1gn1f1es that
ho autcmatlc conversion is pet:o:med. :

RESULT: , . B [Flo. ¢ b 2 s ’
Y ¥ W E W W 0 T-
7.1 1 ¢ F F I R
i g E . - N I
, s . T N
¢ CPERAND & E™ g
f . R

g . " eeeeawms - - -y - R . .- A: -

! » < b .

i

[l

BYTIS
Hal'

24 P
CEC
Far

Dar
POINTER
STRING

A. It thae operand ‘type bas tever pytes than

qNNNOO»

8. EXPRESSIONS

LT TN
MM MO

o

“w

NN w0

-
[~ c -
E, B
g’ E
E E
- . B
r -

“the

resulting'

type,

leadiny ‘zero bytes are added; if the operand has more,” leading’
‘(lertmost) bytes are discarded until . the

lengyth.

B If the operand is BYTE

they bhave the

same

« it is considered to be an unsigned
of the

Lnteget. Othervise the [jyntmost two bytes
-to be a halfword integer without any other conrersxonr

(the lettlost bit is the sxgn).

considered

operand

_ Ce If the operdnd;nas 1,2 or 3'oytes, it is considered to b

are

e an

unsigned -integer and .is caanjed to FWI format. Conversion -them-

Eroceeds witKk this new operand. If the

nytes, the

integer .without any real conversién being
-then proqeeds Hlth this new operand.

rigntaost 4.

operand ‘has
pjtes are considered to be a fullword T
perforned. Conve

4 or

more

tsion

D. &he HRI (FHI) operand is considered to be a sequence of 16 (32)
pits .~ that is, a BYTE2 (BYTE“) value. The 1
+in -the Sejuences Conversion proceeds with this new

another bit

‘ogerand.}

E-. Normpal conversxon.

*to FHF and when the operand ls DEC.

¥ I

Fa Normal convérsxon with truncation.

sign

bit .dis

Some blgnltxcance can be lost in the case

. the ope:and is first converted to FWI and then to BYTES.

G. The rlghtmost 2 bytes are conbldered to be
5 and 2%#%15-1, the result has the same

arithmetic value as the ope:dnd‘”othe:uxse not.'

~ operand -is

characters:

between -—2%%1

He It tne result has tewer
.- of the. operand.

characters, .. use

a

halfuord. If

If the result has more,
the Tight of the. operand characters. :

1. The &perand is assuhed to be a string value

character- Conversion H above is then perforled.

only the lef
add blan
each byte

"okerand to be a BYTES value. conversion proceeds from there.

s

S

" 8.2.4 arithmetic operators. The tollowing

o ot e st £ S

table

defines

Just

FNl

IE the result is to be BYTES,

the

tmost
ks to

is a
i .

- J= The operand characters are considered to be BYTES and the whole

the

-8. EXPRESSIONS

arithsetic operators:

EEBATOR

o D Bt |+ O

REM B
+

3 b B
& wx

‘With the arithmetic operations, operands of type

" BYTEZ2
values are

conversions

valid

>,

30

MEANING T
¥

A (idemtity)

sign inversion - ' Lot
exponentxatxon of A to the pover‘of"B".
multiplication ’
division 1
integjer dlv1510n. Defined by
. SGN(A*B) =* D(ABS(A),ABS(B))
* where SGN is defined by
"HWI PROCEDURE SGN(PNI X); .
f’IF X < 0 THEH SGN=-1 ELSE SGN=1

and D is deflned by -
FWL PROCEDURE D(. FHI X,Y) 3
IF X < Y THEN D=0 ELSE D=D (X-Y Y)91

AN

‘A - (A//B) £« B o _ .
addition o Tee - :
subtraction : .

-

"BYTE, BYTET,

ate considered as positive integers, while-a BYTEW4 operand is,
a sxgned integer (the -leftmost oit. is the sign). Not all basic
operands ot

contains tables which indicate tne
performed,. and the

arithmetic 0pe:ators.
valid operands, the

type -of the result of

comkination of operator'and operands, =~ . -

8 2.5 bltb operators. ‘The pits operators are BITOR, BITAND and’
BITEXOK. They gerform bitwise operations on the two

operands as

follcus: '
A B A BITOR B & BITAND B A BITEXOR B .)
0. N0 0 0 0
o 1 1 0 1
1 0 1 S0 T
1 1 1 1 0 .

ot

See™ Appendlx

¥

€

A ror a list of valid operands, autonatlc conver51ons

type .
Appendix A
automatic.
each

performed, and for the type of tne rebult1ng operand,,

8.2.6
Tesult TRUE (X'FF)
relaticn is true cr not.™

If the two operands are arithmetic but

N

FALSE

‘

(xr00°*),

relatlonal operatorb._Tne relational operators yield the
depending on

.have different

vhether the -

typés,{l

B e R LAV W SR L T W LT LR R e R -

4+ ‘8. EXPRESSIONS . T IR Y
B o . : N N . : T -
: . ¢ ’ L
~the ﬁalue with the lowvest txpe precedence (cf séction 5.1.2) Iill
fxrst QQ converted to the other type.

If the two operands are of type BYTES but have different
lengths,- leadzng zero bytes will be added to the shorter .one. The
- values agé con51dered to be. y051t1ve Lntegers for the conparison.

If one operand is BYTES and the other aglthlebtc. The BYTES
‘'value "will first be converted to type _FHI' and "an arithmetic
conparxson ulll be yerforned. -

It the tuo opetands have type POINTER the relatlon nust be = -or
~=.. The poxnters are egual only’ Lt they are both zero or 1if they
‘Foint at the sane recorde- . ’

. * ' ¥ - L,

1f the tud.!operands are -string-valued, the conparxson is
"according to the EBCDIC collating sequence. If the lengths of the
operands_are different, blank characters are appended orn the right

- ot the shoxter unt11 the lengths are the sane. - -

; Only those comblnatlon of oFerands suggested above are allovsd.-'

8.2.7 loglcal operators. Tne operators NOT, OR and AND have the

":fclloulng meanlng. . . o KRR "
NOT AT IF A = O THEN TRUE ELSE FALSE .
. “KGR B- IF A ~= 0 THEN TRUE ELSE B -= 0
A AND B T . " IF A =0 THEN FALSE ELSE B ~= 0:

Note that nect only the BYTE values X'FP' and X'00', but all basic
- values except strings may be aperands of the logical operators. Zero,
.means FALSE, anything else =xeans TRUE. Note also ‘that the secoad
operand, B, is not aluays evaluated. 'Thus, constructxons ‘like

1F POIHTERVARIABLB AND POIHi;RVA&IABLE.COHPOIEIT = 3 TBBI...

" Are p0551ble, since if, POINTERVA&IABLE is zero, the',roforoncc. to
COHPONENT will not be\lade. ; : L

) 8.2.8‘ca£en&tion.‘Thé CAT . operator produces a string vhose
value is the characters or the first string. operand folloved by
those of the second strzng operand. -

8.3. Structure_expressions -

Syntax:

{struct exp> - ::= <old value> | <altered value>
) C |. <new valuye> | <DESCR exp> .
<o0ld value> i f:= <destination>
<altere@~value> . s3= <destimation> (<component specifier>)
s:= <structured type> (<component

‘<nev value>

':<algernate selector>::=

8. EXPHESSIONS '~ ' e - 32

specifier>) a) ‘ s
<component specifier> ::=w<<ke1word component> ,lisr>
& 1 <<positiona1 component> ,listd

«

omponeut selector> = _ .
<coaponent selector> = <exp>
= <empty>) .
Calternate selector> -
‘<alfernate selector>. <exp>
<glternate selector>
posxtlonal component> - ,llst))
empty> | - <1nteger> :

<keyword component>

<iositional component>

/\ﬂ’.‘""."—/\

L

Semantics: A structure expression-jie;ds a . value having sonme

structured type. There are -tnree- ways of writing a structure
expression: : Lo ' : \

Thete
- through keyuord components and 9051t10nal components.

1= The value.of an <old value> sg:ucturé eipression'is just the

current value of the destination. The type must .of course be
structured. No ‘space .is allocated for the value._ ' :

2. The value of an <altered value) is found as follows. Space .

is-allocated for the mnew value. The current value of the
destipnation ‘is moved into this space. The compofients are then
altered as imdicated by the component specifier (see below) to

yield the resulting value. The destination must of course be
's;ructured.' . i :

3. The valde of a <ney value) is tound as follows. Space is

allocated . for - -value of tne structured type. All components

are undeflned. The components are then altered as indicated by

the conponent spec1fler to jxeld the .resulting value.

are tvo ways of specifyiny which components are to be altered

. S
T« A keyuord-component coansists of a conponent selector (cf

Section 7.2) which selects -the component to be altered,
_followed by an equal ‘siyn, rollowed by an entity to which the

ccugonent is to be changed. Tnis entity is either

A. ‘The character W_n, This'lndicates/that the colponent is
"empty™. The meaniny of° this will becomne . clear when
Section 9.2 on a551gnmenﬁ statements 1s read.ﬁ

B. An <exp>. The <exp> nust be aSSLgn-ent ‘compatible with
" the component Selected. It is evaludted and assigaed to
the component, exact11 45 in ap assignment statouont.

The components,,are altecea in the order in which ‘the kcyvord
conponents appear {left to rzght). .

N s, EexpmEssIoNs . : ST - |

i

2. When positional components are used, the order and aumber of
positiopal-componénts must correspond -to the order- amd anumber
of constituents pf the Structured type; -the Ith- positiolal
‘component indicates what to do with the Ith constitu.nt. The
alternate selector indicates which alternite component of the -
consituent to use;.an empty alternate selector indicates the
first alternate. ’

The entltles nn and Lexp> aypearlng 1n a posxtional\t\:pon.nt
have the same leanzng ‘as in keyvord components .(see abovy

In
.addition to these there are two ' aore ways of specifyxng i%at is
to be done with the conponent-

A. If the p051t10nal conponent is elpty (not thero), the
‘component lstnot changed. ‘

B. If the pos;tioual conyonent haé/the forl , - <

<a1ternate select0r> (<<9051t10na1 co:ponent) ,list>)

then the corre;pondlng_qonponent of the structuted type -

must have subconstitgents. 'This new list of positional,
components lS handled exactly in the s5ame way. :

The reader may have notlced that with <a1tered value) and. ‘<new

vaiﬁe) structure expressions-5torage must be allocated. "section 9.2

on

.assignuent statements specities in vhich cases it is the

proyragmef's responsibility to releasé this space. ’

\

Examples' We use the structured types ,
. STRUCTURE SUBSCR {BYTE ARLA, BYTE3 OPPSET, POINTEB 5);
STRUCTURE D1 (BYTE KIND ALT HWI B, . R . :
i .C(BYTE C1, POINTER C2),
. SUBSCR D)! .

SUBSCR vi,v2;

D1 V3,V4; - L : o
.) : o

The follouing is an <old Value>: V1

The following are equxvalent exanples of <a1tered,va1ue>s-

v3(e=_, c.cl'= 5, c.C2 = 01
'31*2 —e (5,0),) .

The tollouilg are: equivalent exanples of <nev values>,

ci(p= sunscn(o 0,0)) . -
D1(,,SUBSCR (0,0 01} : : :

http://SUBSC.fi

9.

*

&5

A

9. STAIBEMENTS

STATEMENTS

34

A stltelant denotes a un1t of action. To execute a statelclt Reans
to perform this action. Statements are usually executed ia saquence,

except when a control

change.

‘ Syntax:

-
-

<statenent$

<open statement>"

<closed statement):

<label defgn1t1on> = QEQEE;)

- 9ula COng

«

E

"’§jnfax:

. §compound statement>

s

Semantics:

9. 2. Assigﬁment statements.

statements

5yntax. . . .
<a551gnment statement> 3= <destination> = <exp>

Seman

1.
g neces

L

tics: This statement is exvecuted aé follais:

The ~ address

sary.

pass comaunication statement causes

~

~

‘<open statelent5 | <closed sta§§lent>

<label definmition> <open’ state-ent)
<open iter stated)

<open cond state> . 4,

<empty> .

<lapel definitiomn> <closed statementd>
<coampound statement>
<assiynaent sStatement> .-
<closed cond state)> .
<closed iter state>_

<case statement’> :
<control statement> o
<procedunre call> S 1
<code statement> to , ~
<specrunc> I <specp:oc> .

" r' It:
AN

As in ALGOL, the compound stateuen&,'is used-
kracket a seguence of statements. - S

re

-

S
L5

of the <destination> is ‘calculated,

p

2. The <exp> is evaluated. - " - . .

= BEGIN <<statement> ;1i§t>END ;

a,

to‘

if

. . F - : -
* 3. The result of (2) 'is coaverted apnd stored - according:-to the

rules

given

in the ‘table below -

at the address calculated in
(1. Only those comblnatlons ot types of "the <dest1nat10n> *and -,

9. STATEMENTS ' _ : , . 35

~ . T : .
<exp>’ ‘are valid which are indicated im the table belov. Those
pairs of destinations and ‘exps which are ‘valid are called
'assignnent conm p t1b1e. B Y . : S , v

The follovlnq table indicates hov values are couvcrtod and

a551gned to a.destination. Each rov represents a possible type of

‘the

dest1nat1on. -each column a possible type of the <exp>. in

element is either blank - which means the coabinatioa is mot legal -

Qx

"in- the

is a -letter- identifying a footnote uhich explains. hov tho~_
conversion and assigament takes place.

Iype of. ~ _ . _ :
' destipation type of exp - ~ .- —
bits arith pointer string structured
BT T I T S O T c
arith ¢ A . fa 7 N
E§inte:) . . B - ' E
Tstriug L A ;? Co . B
: v T ‘) T PR .
structured : c . SR N

The cbnversion is as explained im Section 8.2.3.
. < :
No conver51on necessary-

Thé value ‘of . the <exp> as it is in ielory is stored in the
<destination> without any\conver51on (zero bytes are added to the

right of the <exp> if it is. too 'short, 6r the rxghtlost bytes are
d;scarded if it is too long). :

The <exp> and <dest1nat10n> nust have Ehe same structured type.
exp> is evaluated and assigned to the destlnatxon. That is,
lorponents of the destination correspondxng ‘to "elpty' compoheats
tructure expression (cf Section 7. 2) remain unchanged,
all others\are assigned the value of the corresponding structure
expression -component. Any space allocated in evaluating the
structure expression is automatically released. -~

nappty" components become undefined, and the address of the
resulting value is stored into the destination, If space vas
allgcated for the evaluated. structure expression, it is - nov the
programmers respon51b111ty to release this space uhen no longer
needed (ct Sections 7.3 and 9.10). - :

Bxalples: .o

B .
SUBSCR {A. KIND=5)

ONTENT (P) = SUBSCR(A.KIND=5)

CONTENT (P) (A.KIND=3,A.AREA=2, A.OPPSBT=)

Q-
llzllu

N

9. STATENENTS . . - “ A .0 3

© " 9.3. conditional statenents [o .

d ' Syntax: ' o [
" <open cond state> ::= IF <empress;pn> THEH : .
o T <closed statement> ELSE <open stateaent>
} AF <expre551on> THEN <statement> &

-

-

: ‘<closed cond state>’
! ~{ Lo ::=;IF <expression> THEN <closed Statement>
: .) ' - ° ELSE <closed statemepnt>,
' ;o . o - L
(' - - X . .
. Semantics: These have the same semantics as in ALGOL.

Examples: | s : 3 ’

7 . . IF X = Y THEN GO TO L

.. 7 IF X THEN U=0 ELSE IF.Y=0 THEN U=Y

- ' ' Lo . o -

. 9.4. Iterative statemeits)
Syntax: In the following prodﬁétlons,fthe letter "J".is to be
systematlcally replaced by the uord "open" ar -the worda"closed"

<J iter state> - ::= FOR <dest1nat10n> expri>
. { STEP <exprz>]
UNTIL <expr1) DO <J statement)

| WHILE <expression> DO < stateneﬂt)

NG - | FOR <POINTER destination>

C - IN-<tord. identifier> :
. ¢ FROM <POINTEBR EXPII) TO <POINTER expr2>]

Do <J statement> .- .

Do <tord identifier> ::= <table identifier>
~ o . | <dict identifier> :] -

‘J TR TR nti The - default option for <exprz> is 1. The default
ptaon fon <POINTER expri> and <POINTER expr2> is a<tord identifier>
1) and . @<tord identifier> (N) reéspectively, if the table or dict
5 as present}y N records. A : '

: LIhe statenentm' 2 . ' -
'm'(" ?oa I = J STEP K UNTIL L DO <statement>

vhere I is a destination. and J, K -and 1 are expressions is
equivalent to the following seyuence of statements;

DEST = @I; &C(DEST) = J; - :
STEPV = K; A :

SRIUUTISP VP

o et

e e e e

4

e e e e o= e
- P .

http://5eaantj.cs

IR

9. .STATEMENTS I el
' EHDV =L % SGN(STEPV); .
AIN:

\
IF &C(DEST) * SGH(STEPV)
TH N.BEGIN <statement>; GC(DEb
, _END
- E .

<= ENDV \

’ 4 . R
) 8C(DEST)+STEPV\ GO TO AGAIN
; \ . .
where DEST is an'intérnal POINTER vatiable and STEPV
1nte:na1 varxables hav1ng the saae types as K and L respectlvely.
The q;ateient o

\

\and EN DV
-

are
is eguivalent to ;

\ .
L o
WHILE <expression> DO <{statement>
. o -

b
AGAIN:

The»statelent

L \ ‘
IF <expression> THEN BEGIN <statement>; GO Tq AGAIN END
: 5 |
FOR P IN TAB -FROM P1 TO PN DO <statelent)
- follcus.

where P, Pl, and. PN a:e pOLnters and TAB is a- tahle, 15

' - ' DEST = @ Pi
AGAIN:

\
‘ : i
‘executed as
L \ .
: e SR
'; EXDY = PN; CONTEHT(DEST) = P13 \ » o Tr
1P CONTENT(DEST) ~= 0 . .. _ : \ o
. THEN BEGIN <STATENENT>; t . ;fw :
- o - - IF, CONTENT(DEbT) = ENDV : |
Ve - THEN BEGIN TALLY (TAB, CONTENT (DEST)); |
T . GO TO AGAIN ¢ S
\"‘ '\ "j: EHD \ . S . \
; . END; AR ‘ . N o
! / ,:\'_ . . . \ .‘ ! Y .
‘ T L .
where DEST and ENDy‘are»piinter variableé, : :
. \ o | P
.y Examples: - o
'FOR I =

S
= 1 UNTIL B%*3 DO A(I) = I
FOR-P.X = 10 STEP ' 1 UNTIL 1 DO Y (P.2Z)
WHILE PA DO BEGIN PA.D=0; PA
FOR P IN SSYMB DO P. KIND

=5 i ;
PA.P END .)
AR
9.5. Case statements " - '
Syntax. V
<chse statenent) $3=-CASE <expression> OF <<{statement> ;list>
, ENDCASE .
-Semantics: The expression is evaluated
internal variable I of type FWI. If I <= 0 or I
,Statements -in "the 1list), no

ORI

L i ek Fet e

and assigned to an
> . {(the number of
action is taken. Otherwvise,

the Ith

http://Senanti.es

i
i
i
1
¢
|
i

- $. STATEMENTS . o ' ' ‘38
- e ,
statewent in. the list is executed. If this statement does mot cause
control %< leave it, control then passes to the point beyond the
ENCLASE symbol. ‘ . :)

Example: - - - - S _ K
CASE N OF ’
. @ =5;

FOR I = 1 UNTIL N DO A(I) o-

GO TC LAB; , ,
BEGI! Q = 57 ron I = 1V OUNTIL ¥ DO A(I)=0 END - . - .

ENDCASE

3. 6. control statements . ";é R E o
© syitax: : o . o - ' o o
5.<(ontrol statement) 1:= {4yoto op> <label> ,
B : '} BRETURN- | SYNTAX | COMPLETE
| HALT [(<integer>)] .. . 7.
. l ..> .
i

CALLPASS (<pass nuaber>)

- BEGINPASS (<pass nuaber> /) T e
- .) . .

as
'y

‘<goto op> GO | GO TO | GOTO

. . . : . ’ - -

Semantics: Execution ot a yoto statement transfers control to

the statement labeled <label>. One cappot jump into or out of a;“

procedure or into the statement ot ag 1terat1ve statelelt

The.’ vBETURN statement is useﬂ only in procedures- it causes the .

>;rocedure to return to the 901nt from* thch Lt vas called.

a

The .SYNTAI>-statement 'is used: only lf the - pass has a syntax,

“subprogram.. It may rot be used -in procedures. Exeécution of " the

statement causes control to rTeturn to the syatax. subprogran
following the last EXEC action executed.-. :

Execu;ioh of . COHPLETE:'téllS CIL that the program is done. ifj

GGS was used, the object modulé for the- genetated ptogran is
completed and written out.ﬁExecutlon then stops. .

Executlon of "HALT <1nteger> } causes the ;nessage ¥ HALT

’<1nteger> " to be prlnted and execution to halt

Executlon of BEGINPASS causes control to ‘trdnéfer " to the

- beginning of pass <pass nunber),‘ while execution of CALLPASS
.transfers control to pass <pass nuaber> at the place where 1it last.
~executed a BEGINPASR or CALLPASS (if.it had _never been executed,

control goes to the begimning of 1t). The CALLPASS 15 ‘thus_ like a
coroutlne call. .) : : S

e e et 8L

S

e) ‘ Y - o

-

© % 9. STATEMENTS

o . : . o Bt

"‘Q"J) \\\ \ .Y‘. . . h . N ..) . ’ . L,

. If the pass belng called is. in:. another coreloadu that coreIoad
is brought into. ~core.ﬂ Passes in the prevxous coreload nay not be

" called again.

, Syntax: - l"“-]

e <rrocedure call = 1dent1t1er>
g : - It <<ac\ual parametgr) Ldistd>)] :

M <specfunc) { <specproc> s -

:= <expre551on>‘| <table 1dent1f1er>

(actuai parameter>
|- <d1ct 1dent1f1er>] <stack Ldentlfzer>

.
~

Semantics: Execution.of a groced&re statenment 1s equzvalent to
the following processs: o e . e - e,
‘A copy. 'is made of the procedure\or functlon body 1dent1f1ed by
the identifier - in., the procedure ..statement. K The actual
parameters of the” procedure stakement, whiéh - must agree ,1n
number and order with the tormal paraneters of the procedure of
function, systematlcally replace those formal paraneters as .
follows: \ o w e e,
‘l1e If the actual parameter is a <destination’ uhose “type
is the same as- the -type of the formal parameter, “the
.address of the <destimatiop> is calculated and assigned to .
an 1nternal variable, sag I, which is different from any
"other variable. The indirect . reference’ -“SC(I)" -then
replaces ° every occurrence of ’‘the . formal- paranéter
rdentlfler in the copy of the procedure body.

2.;If_the actual parameter is a constant the constant' el
converted - to the type .of the corresponﬂlng forlal L
parapmeter (this iust be possrhle) if necessary and the

.5 result ‘replaces every occurrence of the forlal paraleter.‘

3. If the actual. pamaneter is . any ba51c expre551on not.
#covered . in 1 or "2, it is evaluated, assigued to an

internal variable, say :J, vhose type is- the Same as the
: ¢ type of the corresponding formal parameter. The variable J
then replaces every occurence of the fornal paraleter.‘

u. If the actual pacameter Ls(,-ra table, dlct or stack
" identifier, the corresponding formal paraneter nust be a
table, dict or stack, respectively, vwith the same. type. -
The actual parameter replaces every occurrence of the
-formal rarameter. 1dent1t1er in the copy of the. . procedure
body. oo , . N . - .

Y
-

The replace-ent;of parmueters nustTYieId valid expressions.fandf
statements. The -modified -copy of the procedure body i$ then

o . .
> L3

L 9. STATEMENTS g0 S

9

. \4‘
L :

executed. B S N
. ;

. . Ir ‘a tunctlon is executed Ln tnis manner, the value it produces
~ is lcst. .

. . : AN - -
- . \\. - p

<spectunc>s and <specproc’s are calls “On spec1a1 tunctxons and
spec1a1 ;rocedures. See Sectlon z 2a.

. C o) ,\ s . . -
o b - 'Evapples;. . A .
‘- _EJOINREGS (P) = . . L0 ’ - -
’ o o . TIME - . .] ‘jv‘s) : :
o © " LCOKLAB({ A, PP) . R ' R
T " YCUNGESTUNCLE (JOHN) | _ : "
i (: - i - . v . . .)’. .‘A"_
- ‘ | o . g
. 9.8 scanner s{atenents - o B L |
PRI : The folloglng ’<specproc>b are -wused to communicate with the
;o - scampner: - . - & : ’ . B
SRR i L - - -,
' . ’ : | Sithtter sttt ittt |
; 1. SCAN ' 1,
. I=== Fe e === :
| . CHARNMODZ) e
R . | o e s s e s e e | B
R - . | NORMODE 1 K : % ;
-------------------------- I 4
- i SCANNEB { <scauner 1d>) |
. lemem e —c e —————— a . B &,
. £y . : o . . :‘;) . .

3

7 ' ' v L
. . . ¢

Execution of SCAN causes the next symbol to be .. read from- the
e so&rce lapguage_ program - beiny compiled. It 'is 'put-in location
- SCANSYM and on the main stack or the pass in which the SCAN appears

[1f appllcahle) See Section 12.1 tor en_exact description. . o,

Executlon of the statenént -CHARMODE causes “the scannér .to
-4L~ : . - _change ‘its 'method of scanniny Qﬁﬁ"source program to ‘a character by
. * chardcter .scan. See Section 12.1;(. &
. Execution of the statement NOEMODE causes the .scanner to scan:
Lthe ‘sgurce program in norlal rdanlon. See Sectlon 12. % - .

. : Executlon of. SCANNER (<scanner id>) causes the scanner to begin -
" using the scanner definitiron named <scanner id> for forming. source

: language synbols. : L - L /J//

“

<

-

'-_causes the cu:rent output llne to be vrxtten out and the DESCRIPTOR

-

' 9. stareseNts - | S T u
: ;. . : . v o

- The I/° provided is qulte prxlxtxve. Hore pouerf Is0 @may be

added at a later date if necessarye. i g .

13

9.9.1. Input. Sectlon 12.6 explaxns input procedures: when- the
normal scanning. is petforled {cf Section 9. 8). In addltxon, the
‘{Specgroc> o P

reads the next card into the system, string variable EINLINE.

9.9. 2. dufput. Execution of. the <specproc> L ' \

j EOUT {(<<expr> l1st>).

\ . ' . .
causes the . expressions to'.be addeq to fhe current output line.
Strings .are added without conversion. Popinter ‘and bits type
expressions . are first converted using the function' GHEXT (see

below), HWI, FWI and DEC expressions are first converted using the
function. EDECT, while FWF and DWF expressions are first conyerted

-1sing the function SPLPT. When the current output'linejis filled up

a nev one is started, execution ot the <specproc>

N .

b] &gour]

Lot mmd

'

caus%s the current 11ne to he vr;tten out (1f not elpty)n;f

Exetution of the <specgroc>

4 S ‘ A —_—

£ .
80UTDESCR (<DESCR exp)) I
2-..- = - 2 [’

=N

/'.’J* .

7

to te: wrxtten ‘out in a readable fora.
: N

TS ST T I
STDEC(S) | decimal 0%..a,9 = o ENI -

o 9.9.3. Conversiohn functxons.ane tollowing <spécfuncd>s return a -
. bxnary representation of the STRING parameter S: . -
S can contain only . »
. <{specfunc> S ‘is " the characters- . result is
. r = X v == : , 7
2+ | §TBIN(S)] binary - 0,1 BYTES |
' == m———— D i |
"] BTOCT(S) | octal = Oyena,? : - QYBITES |
I
}

" .The result is right-adjusted with leading zeroes if nece!ga’.eu:!-"Tl\l;:T
number of bytes:is the nuaber necessary to represent the string in

»

9. STATENENTS - . . o i TS 42"

| : mm———— - |
) STHEX (S) | hexadec. OgeceysIedieua,t - & BITEE |
i . J

- S -

>

binary. An error message is printéd if S contains .illegal
characters. . - : .

The following <specfunc>s perfotnfﬁhe same Eunction'except that

the parameter A is an atom (BYTE2 representation) of the string 'S:

.] &TBIN(A) |
oo I

| ETOCT (A) } , o -

/ ettt | R 4
s . .],ETDEC(A)-H , N

- | === L -

e

The followlng (specfunc)s are. .used to convert an inteérnal number ‘to -
character form. The result 'is thus a STRING expre551on. Below, A

‘represents an atonm ({ BYTEZ. expressxon). i o LT
<specfunc> ‘the STRING result is l ’

o T T X —- TETmIEETTTT T

dEIN?(<expr>) | <expr> expressed in binary characters |

L oS - S

&D Eé}(<expr>)] <expr>. expressed in decimal char. |

SFLPT (<expr>) | <expr> expressed 1n floating pt. Char.|

IGHEXTI <expr>')] <expr> exgressed'ln hex - characters. B

--—_—_.—..__-_ - __...._..-.. - l

- —— -————

SOCTT(<expr>r) { <expr>, expressed in octal characters. |

SIEXI(A) ;- | strlng co:respondlng to atom 1A

v

e e e e ey

o

I .~ L ., Y

No. conversion is,perfornedlon {expr>; it is changéd as it 'stands in
BEROLY. . . o R ’

Examples:) .

GBINT(B'11010") is equal to *11010' . . c
EDECT(B)11010'} is eyual to 1.26°¢ -
§FLET (\B1110101) is egial to *2.6 E+01'
GHEXT(B'11010') is egual to,*1Ar
6CCTT(B'11010') is equal to *32'-

" §LCECT (—36“:001) is equal to|'-3645001"

ERSFEN

' ' »

i ' SR

A

—

9. STATEMENTS l - o N 43

‘ L : ‘ . | - ,
9.10. Bel eas;ng_storage ‘ I . '

I1f an assxgnnent statenent

<POINTER des't natlon) = <Struct ex‘p)

(vhere .the <struct exp) is’ 'not an <old value)) is executed, CIL

_alfbcates storage for the <struct exp> and puts its address in the

. <EOINTER destination>. It is then the programmers CGSPORSLblllt] to

release this storaye when no longer’ needed “(see Sectian 14.9 for the
spec1a1 case of DESCRIPTORS). The <specproc>

ban

— - -

| '6RELEASE (~CPOTNTER destination> [,<painto type) 1)

{ 3 o o e e .

f':eleases the storage p01nted at by the POINTER and sets it to zero.. .
., The <pointo-type> is needed it .the declaration of the POINTER d1d
- not unalblgously indicate ‘the data helng pointed at.

o

A ‘ Do PR . [PV SO

10. OPERATIONS ON TaBL2Z5, DICTS AND STACKS - . as
10. CPERATIONS- ON. TABLES, DLLTb AND STACKS

“7This section describes how one adds, de{etes and ' _searches for
records in tables, dicts and stacks. Each <specfunc> described here

stack record. Thus they may be used anyvhere a function designator

.yields a POINTER value - either U or the address of a table,_dmﬁ% or. -

is used. Ihey may also ‘appear SeparLately’ llke procedure statements,’

1n which case thelr value is lost. / Aﬁ

& . .
10.1. Operations_on_tables

Syntax: The syntax orf 'tné, ENTER, LOOK, TALLY and’' DELETE
<specfunc>s is . i .

-t

LGOK (<tah1e 1dent1rxer> { - <cosponeht selector>]
“<expression> ‘
[FROM <POINTER. expr2551onl>]
[0 <POINTER expre5510n2> '
[» BACK])

=]
=
)
i3
!7:)
—
A
ot
[
i-
-
(]
-
o7
1]
=]
o
-
~h
M-
©
[a]
A
-
-
A
o
"
e}
v
d
~
——

- -~ —— ——— -

TALLY (<takle 1dent1t1ec> ¢+ CPOIKTER expression>)
Co L . oBACK- 1) . 3

———— g

,_____;____,_..

DELETE (<table identifier> . <POINTER expre551on>)

_———————————— - i - R

b et — - — —— —

« . .
< . . . -

Semaﬁtics:
ENT@R. A new record is added to the table 1dent1f1ed. If the
<exp> is. present <exp> (vwhich aust ve assignment conpatlble with the
type 9f the table records) is assijned to this new. record; ‘otherwise
its value is undefined. The value or ENTER is the address ‘of, the new

record

LOOK. If the\typeqo{\the records, of Rie t&ble is a basic .type,
‘the* component selector \ may not appear. A subset of the records is
searched for one which is ejual to <expressiond. If the type of the
records 1s a structured type, a subset of -the records is searched
for one whose, component selected by the component selector , (default

/optlon, is "1w1") is'equal to <expression>. The conparlson is done .

according to the :ules of Sectloh 84&.6. A
. <POINTER expressxonl> nust point at a record of the- table, say

- the Ith (default option. is' tane address of ‘the first record).
<POINTER exiression2>- must point at a record of the table, say the

_Jth (default option is the address. ot the last, record).l "

It BACK * is ‘missing, the.,recordﬁ tes;qg -are feéordsﬁ"t,

cor

ey 7 10. OPERATIONS ON TABLES, DICTS AND STACKS. . * - 45

A%

- .

1¢1,...,d, in that order (none‘it J-< 1I)- If BACK appears, records
J J-1,...,I are tested, in that order (none 1f J < I)e 13

. 1f a record is found, the value ot LOOK 1s the address_‘of- the
© record- Otherwise the value is 0. : ’

-~

TALLY. The POINTER expression aust be 0.or the address of a

"\‘ ' .record of the table identified. The value of TALLY has type POINTER
'and is given by the follovwing table, assuaing the - table has W
records. :) : . S o
T Value if BACK Value if BACK
.~ .- BOINTER expressiom is_not_present .- is_pregest
e 0 . - “addr. of record 1 'addr. Of record X_
g addr. Of record 1 addr. Of record 2 -0 '
addrs Of record N° .0 , . addr. 0f record ¥-1
addr. Of record-J addr.” of record J+1° addc. Of record J-1
. 1.< J.< N) - s - ‘
; e - -
 DELETE. “The POINTER expression must be ‘the address of a recoid
- in the table, say record I. Ii tnere-are currently N records in" the
table, tr€cords'I, I+1, ... ,- N are deleted “from the table. The value
. ‘of DELETE is the value of - the new last record - record I-1 S (0 if
) table is now empty).‘%v i _ . o ;
sl T ‘ oy A
’ Ao :
’10:&."Oyerat10ns on_dicts : v,
Syntax: The syntax of these <specfunc>s ENTER, LOOK, TALLY and
DELEIi is i ' :
i . C T ’ \ ‘
: P s
N ENTER (<d1ct 1dent1t1er> + SBYTE2 expr6551on> . 1
. \ | [+ <exp> }) * - l. o
J* === - —— ! :
N | ENTER (<dict 1dent1f1er> . <POINTER expr9551on> |
: b [« <exp> 1) - - 0
- - - . |
P LOOK- { <d1ct01dent1f1er> ’ <BYTE2 expre551on>)]
; ————mie e LD - r———q
.. | LOGK (<dict 1dent1frer> , <POLNTER expre551on>) 1
> B - t
. 7 1 TALLY % <dict 1dent1t1er> ’ <POINTER expression> " |
s . ‘ i [‘4 BACK.]) N _— |
. i —— . ~ -
L S N | DELETE (<dict identifier> , <POINTER expre53ion>))'|
, ' -,
- - _..'. * ‘. . . v_ o : . < ' . // T
PR T o - L ' ~ E
»" .;:Sel;ngics: As discussed in Sectionm 12, on _ the 'scamner

P I m. T . N R
L4 .

’
p .
kN e s .

+

A

'ip the ‘inpte

[[URNEEIRRNE | L SU-— e e s

- r . ‘. ‘ .) . . -
10. OPERATIONS ON TABLES,JDICTS AND STACKS . 46
Do -) ° - E - . .

detinition, eac compiler automatically uses a hash-coded internal
dictionary SINTD to aid in changing from source 'language symbols
to their internal representations called ATOMs. Theré is one record

jnal dictionary for each source language syabol
IECOQHJZEG. By using- dicts the compiler writer can use ‘the 1nterna1

'dictlonary to search hls own symbol tables eff1c1ently.

In the 1scussxon of dict declarat1ons it uas stated that the
structured type of the records must begin -with a BYTE ‘component

- followed by a POINTER component. The first component automatically

contains amr infernal mnunmber ldentxfylng the dict. The second
conponent is used to chain dict records vhich.refer to the same ATON.
to-the internal dlctzonary record for that ATOM. Thus, in order to
tind the record ia a dict for an identifier, one only has to search
the chain ‘based on thé internal- dictionary record for that
identxfler.)) - ' : -

F1g. 1, part A shows the record for an ATOM, I, before any dict

records have been chained'to it; the second conponent of the record- -

points to the record: In the same part A it is assumeéd . that the
dicts DICT1 and DICT2 are empty; the 'other rarts of figure 1 Hlll be
used to 1llustrate the operatlons on dlCtS- _ .

’

23

10. OPERATIONS ON TABLES, DICTS AND STACKS

!

FIGURE_1
; : |- . - ' :
INTERNAL DICTIOQNARY "’DIC211 - DICT2
. J ‘ .
A: o bt |
) I |
Nt W i

| e e . —_——— {
] et e e ————— > -
| P |
ATOM. I RECORD. 1
o > «
T B
c - — -
I o ——— ———
L |- —=]em———— >] -—=]-4
I PR T [P B R PR |
7 ATON I RECORD 1 ., . -RECORD 1 .
:D: r - i o e > s - by : T r."—.-1
i ————— ——— e ————— N |
o - >1] - |- 2] -4
1 ol P I | | S DS
ATOM I HECORD 1] 1 RECORD 1
, FTTTmemmmmees 4 i
) . Y R |
» L] L. e ————d
B | F—
& RECORD - 2
E:s pe—————e -3
E i Y ' S — o ————]
4 |- X IRk ok BV S =)=
| . ; -I..._.‘..__1.| | | l___...__.Tl ‘
o - ATOM I - o KECORD -1 | RECOBRD 17
o ‘ v | - ! {\R -
- ’ e | . N e
‘ - -~ . Lo | == 2> - =]
. . Vo 1 7) S
o ' , RECOBD 2 © . BECOBD 2
.‘;_‘ . / v e . T
. [“' ~)
. A ’~ o RPN P m———— amn —\..V
¢ New '

' 10. OPERATIONS ON TABLES, DICTS AND STACKS' ° . = 48

A

-1
-

“ENTER. A ‘D€w . record is’ added to the dict identified, -If <eip>

is .rresent, it 1is assigoed to the record (it must of course be

assigneent coapatible with the recora); otherwise the record . value
is undefined. The :ecord is_then chaLned to the 1nterna1 dlctlonary,

as follows: - T

1. If the second parameter is a BYTE? eXpreSSLOn, “its

. value must be 'an ATOM - tnat is, the internal representatlon ‘of
- SQme source language 51mool. The neu/recotd is inserted in the

~ chain directly after the. 1nterna1 dictjionary record for the

atom. As an example, consider rij. 1, ‘part A.: Executing
') ’ .
ENTER (DLCIZ, I) 3
would- yleld fig. 1, part d. Further execuglon of
; “ENTER (DICT1,1)
. ; S
would yield fig. 1, part L.

< 24 If the second garameter is a POINTEB express;on, 1ts
value must De the address of some chainad dict record (not

nev tecord is inserted in- the Thain ¢ after the chained dict
record. For example, consider tig. 1, part C. If P is a ‘POINTER
‘varlable, executlng -

R N\ ; P = ENTER(DICT1, DICTI(1)) '3T>
woﬁ;d yigid périlp; F?r§hertexecution of |
& |, EMmERQICT2, B) .
‘, iouia yield hart E. ‘ o o o o '_Q{

o

Q0Ka There'are two variationms:

TR
o .

-~ e

Y. If the second’ yarameter is a BYTEZ2 expre5510n, its

value must be~an ATOM. The chain based on that ‘ATOM is searched
for a record in the dict. The value of LOOK is the - address of
the first one found (0 ir none found). Por example, consider
“fig. 1 part’Da Executxon ot .

LOOK{DICT2,I)..- . - .
“yields the ihe addfesé of the record DICT2(1), while execution

of -the "same. statment but with the configuration of flg. 1 part
E would yield the addresi of DICTZ2(2).

2. ‘It the "second parameter is a POINTER expre551on, %its -

value must be the ,address of some chained "dict record. The
records after the® one addrpssed and up to "the internal
'dictionary recdrd are searched for-one in the dict specified.
The value of LOOK1ithne\?ddress of the first one found=(0 if

k - . ,. ': ,l . - . s L

o~

+ necessarily the dict 1dentzt_/§ An the ER operatidn.) the

Te .

-m,’.-wa--,»,/gﬂ P L
&N .

13
§
i
4
X
b

10« OPERATIONS ON TABLES, DICTS AND STACKS - 49
-) S e Lo ST

.none’féﬁn@f._For'gxalplefonnsider fig. 1}paﬁ£'E. Exeéﬁting

LooK(DICTT, DICT1(1))
¢ 'ylelds the address of UICT1(2), while executing

e LOOK(DICTI, DICTI(Z)) or Loox(nxcm1/ DICTZ(Z))

'~ . yields the valj% a.

- / . ".’ N /l e \ f c
TALLY. This works exactly as the TALLtAoperation with jtables.

" DELETE. Thxi\uorks exactly as the DELETB oag;atlon wich tables,

with the addition that the records are tak®nm off ~ the chain before
being deleted. For exasple, consider tig. 1 part E. Executlon of- b

'\ P = DELETE(bICTZ, niCTZ(z)y

yields . the address of record DICT2(1J in P and the conflgutatlon in
fig. 1 part ‘D. : . .

10.3. GOperations on_stacks - . . . s o .

Syntax: The form of the .QUSH and POP,(specfunc>§ is '

*

—— —-—— - . ————

| PUSH <stack‘ideutitiér>'[,, <exp> 1) 1

l___ - — -—I-——l

19P0P (<stack identifier> | , <destination>]) |

e R e e et e g] :
L L : e o -

Senantlcs: -
- PUSH. Executing PUSH—adds a new. record tq the stack ldeﬁ/;fied;

'1The value of the record '“is the value of - <exp> (vhich . must be
‘ ‘assignment compatible with tae record),.if present; otherwise it is

undefined. The value of PUSH is the address of the new record.

PbP.- Executing POP delétés tae . top record froa the<stdck-
identified. If the destination is present, 'the top record (which
must -be- assiynment compatible with the destlnatlon) is first

4ssigned to the destination. Tne value .of POP is the address of the

nev top stack record (0 if the -stack is now empty).

‘Care nust be taken when PUSHing and POPlng the main.stack of . a

‘pass; a semantié¢ routine should not PUSH and POP if it later. refens

. to the nmaiwm staek v1a LO, 11, L2, L3, L4, L5, RI, 82, or H3

4

.\Nﬁ;'

T T 12

10. OPEEATIONS. ON TABLES, DICTS AND STACKS = 50

GIITDIC is the hash-coded INTernal Dictionary used to transforn

source language. symbols into atoms. The following <specfunc>s re
provxded to allow a compller writer some access to 1t. . i

—————— - . -—-,1

7 100K (SENTDIC, <STRING expr>) I
: ENTER (SINTDIC, CSTAING expr> [<BITE expr>]) |
N }'Aron (<POINTER expr>®) " _f-_-‘- N -f:
:TATou ((STRING-expr> ;T "': P
: ETYPE(<EOINTER expr>) N ,-—"f°7":
) i ETYPE(-<STRIN;-;xpr>-)- ii:f-_f---—---ft-’°'f}._
L.

——— e T ——— = —————
= v A 'iéi e

o

expression {(er 0 if no record for.it).

ENTER is executed as follous. 1if; no recocd exlsts for- the

STEING, one is added to &INIDIC, Then the value of the' BYTE

expression becomes the type- ot the string for the current scanner
definition (cf Section 12.1). The default optlon for | the .BYTE
expression is 0..The value.of thls <specfunc> 1s the address of the

. SINTDIC record. ; ate -

AIOH . returns a BYTE2 value;l'In‘the.firsﬁAghse, the POINTER.

expression must yield the address of an EINTDIC record. or a dict
record. Thevalue returned--is the atom for the symbol associated
with the record. In thergecdga case, the value returned is the value
‘assigned to the BYTEZ. variable B vhen the folloving statements are

“executeds: . ”

A . P.= LOOK (§INTDIC, <STRIHG'expr));

IF P ,
‘ . THEN B = ATOH(P? g - : -
T ELSE B ¥ ATOH(ENTER (6INTDIC, . CSTRING exprd))3 o

+ S &TYPE returns a BYTE value - the type of the synbol (cf Section’
12.1) associated with the &INTDIC -or dict record 901nted at by the

POINTER "expression (case 1) 'or with tie STRING expression (case 2) - -

thch nust already be in §INTDIC.

} P 4 .’ .) -, . v . . “’ - . ., . . \;/ .
LCOK rTeturns the address ot»¢he,BINTDIC.rec9rd-for»the¢§TRING

,.
. v P
e o e Y PSRN sy
B i Lo

http://jjfe.se

4) ’ - [P B : ' . A,,n N v . N ’§' y "
11. STOBAGE ALLOCATION AND. ALIGHMENT OF:VALUES % 7 *'51

. oo .
. . . -

11. STORAGE ALLOCATION AND ALIGHHENT OF VALUES . 2 SR

‘While aot necessary, it is often helpful ‘to. know hou storage 1s
al¥ocated<s In ‘the 1IBM 360, data must often begin on a halfword,
" fullvord or doubleword boundarx: We detine-the allgnnent factor as

folléus.f. S . _ . S

; - . .
. AP T .
‘,data nust‘heq1u on . allqnuent faotor is:

“doubleword 8:) . . -
-fullword .- g * 7 o
halfwora L2
. byte : ’ 1° - ’ o
. C o . . T e
. Inm other words, if the allgnnent factor is i then the addréss of the) o
~. leftmost byte. of the data must be a nultiple of i . The following
;Atable gives the alrgnment factor. and storage regurrenent fqr basic
"type values. =0,) St . : ¥ .
. ‘ A _— Co ot : o a.
_Type ~ . allgnment '~ " number of - L T
7;;__ o . fagtor . . 7_1tes used ‘ RO
BYTE /. 1 R IRV R o
BYTEZ 2 o 2, . S RN
BYPE3Z . ‘4 (see A below), . (see A below) T .o
- BYTE4. | .. .- - Tow N
ﬂ%TES(I) o 1. (see ‘B below) ~ I _‘f - o
21} SR 2 . 2 e
FWI 4 e S - :
_DEC to be determined,later . . ' J
FWF 4 S 4,
DWF : , 8 o o : o -
' FOINTER , - 4y {see A below) . .- '(-& % below) ...)
STRING (I}) ',1 (see B belou) ‘L; ﬂ‘ S AEECE

C A. BYTE3 and POIHTER 'values. are CODt§1D9d in the last 3 bytes
of an-IBM.360 .fullword., The tLrst nyte may or may: not -be used for
another value. ‘ i

) /' SR >*, T ‘u;‘._gj 3:53
' B. In certain“cases, K B!TEh or STRING varlable ‘may ‘be given. o
four tytes ~ one for the llength minus 1 and the other three’for the
address iWhere the actifal value- really ise L

- - . . . o ‘.@

The following rules are used to allocate storage for structured
‘type values.-, Iy .

.1« The allgnment factor for a structured type- valué is thé~ maxiaua o
“of the alxgnment factors .of all its components and subconponents.

-, . - “ i " R . L
L - et . - . . - . 4

' 2. The allgnuent factor for anj component. Hlth subconponents LS tue’
saximum of the allgnnent factors of thosé subcouponents. i Cew

N

BN . . . ‘>|) . .)) .) BTN -

g . .- - o ‘ o
11. 'STORAGE ALLOCATION 'AND ALIGNNENT OF VALUES . . . 52

3. -All components of-a const;tuent use the same space. The nulber oi
bytes allocated to a constltuent is the smaximum of the ‘number 'of
;‘bytes needed for each conponent or .the canstituent. Lo ’

.

"allocated to constitueats in‘a left-to-rlght‘lanner..

u.. Bytes ‘are
_ The constituents dre packed tojether as close .as poss1b1e, ftaklnq
into account the1t a11gnnent tactors..l ’ C . . ,h
Lo B i
-eé The numbe: of bytes used is a mult1ple of the alxgnnent f;ctor.
- . R - ¢
L Examples""' i,f - _' - ' j /

SIRUCTURE ST(BYTE B HuL C, BYTE D1 ALT HWI D2); i

”SIRUCTUgEvsglalTn E, FHI\P, G(B!TE ALT BYTE GZ), S1 H).

S1 A1.; S2 A2y ", P oo !

- A1 u111 begln on a haltword, AZ on a fullword. Thef look as
follows (bytes arg nuabered startxng at 0; the underlining after

o each 1dent1f1er indicates whicn bytes that couponent uses)“'- .

. oty

BYTE * 0 1" 2 3 4 5 77 - ,
M ; - D Yoo
) B - C;;__;DJ L .
) - D2____ ' e,
"- . . / : . L -. . .
BYTE 01 2 3 4 5.6 7.8 97710711 12 13 14 15 16 17
A2_' | o _ oL) .
. E__ . F o G ____H_ S . -
T o S : : o GVI___B._ .C_o___D1_ \. N
S e _ Co ; G2_ : p2__<
. - R - g ‘/
1
~ et
. Ne
f : ' g v
- i
“ ! b’ . 3
‘ ~
“ 2
\\" «
. _ . . C o

B "12. SCANNER DEFINITIONS ... T - 5{
. . . s K T o . . L .

e : I
' [

12,‘SC1NNER-DEFINITIOHS

The scannef- is that par < a comapiler which reads in the origimal"
. sgurce’ .ﬂgcogram characters .and composes them into atoms -
identitiers, Lnteger,,single and doupler character de11l1ters, Tand
reserved vords. Thq-scanngr‘definicion indicates how these atoms are.

" to ke formed.

As indicated in Section u} several scanner definitions may be
. yiven. Initially, the first -one is in efféct until changed at
';conpile tile.' C -

The scanner detxnltlon vas dexlned with two .conflicting goals
in’ mlnd" s : . o

. 1. The scanner should pe e:£1c1ent. T0 acconp11§h thzs, ‘the IBH
360 “"translate and test" instrpuctions are used,~ alonq ‘with
three -or four 256-byte taoles per scanner definition. With
this, for example, sequences of 1 to 256 blanks "~ in the input
source progran can be skxpped with one xnstructxon. ’ :

2 The - scanner defxnltlon /shodld be flex1ble enough. to
-acconoddte@d&l existing lanjuages. This. of course was not

ble. Tn order to accomodate sore languages, the compiler

, ytxterncan test, insert and delete characters from each card,

- tefore it "Is ‘actually scanned. He can also switch back and

// _forth from normal 'scanniay to’ character - by - character:-
Lo scanninq (in vhiCh cdse-he-buiLds'atons liinself) . c

N At thlS point, an example will help ‘to make the next sections
e351er ¢ to understand. Suppose our source language consists of octal
expressxons 1ng ‘the operators +,-,%,/ and, *%, Patentheses (and)
are also. used. Numbers are octal 1ntegers. Identifiers must begin
.with 4 or oné\of the letters A throu,h J; the succeedi characters
must . be one ‘f_ the letters A throuygh J. IDBEG is a?#ésétved word
nsed to identify the beginning and end of expressions. Comaents
begin with /% and end with %/, 'Spaces are ignored. The scanner
definition is’ ' : o e o

.

SCANNER ONE - "+ (ONE identifies the scanmner def)

SYN ‘IDBEGSYN IDBEG {IDBEGSYN is a synony- for IDBEG)
DIGIT 0 12 34 56 7 (detines digits) -
* IDBEG $ A B CD . _ .
EPGHIJ (defines beginning id chars.) /
" ICCHAR'A B C D E F G-# I J (defimes.other id chars.) . !
TEBMIN ¢+ - ¢/ ()/~ . (detines single)
. -, T character delimiters) -
IGNORE X'40°* (spaces are completely ignored)
. INVIERMIN NONE ’ : {this class of symbols is empty)
RES IDBEGSYN #x (det'ines reserved words and
s . " 2-character delimiters)
COMMENTQ /* */ o (comments begin with /* -

' and end with %)
ENDSCL; - - s (end of- scanne: defxnltxon)

N i
. oL .

L5
.t N

"f‘iﬁ 12. SCANNER DEFINITIONS . ‘/ - P R ;su'

.. Syntax. T o) Lo ' AP S
. <scanne: def> 3z= SCANNER‘(scanner 1d>) : B r
Lo . [<<synonym def> list>]
oy <<seti; definition) lzst)
- / : { <<re$erved def> lzst)] _
! [<<juote def> lxst)] . .,
. [BEGIN (greprocessor)]
ENDSCAN SN

) . . i

12.1. Scappjng and_the internal dictiona;1L\ N I
/ /\

shen scanning a source projraa, the scanner p:oc0965\£r0l
right through the program. The end 'of a\ line °(card)
significance. (the compiler ariter may, owever, hi his/own-
internal character inserted at‘the end of each) line to gise it . sone»
significance. ‘- cf section 12. 6). In case there are, seﬁatal

~

alternatives for the next source language symbol, the scanner glvays,;.

ricks the longest one. Thus it *BEGIN' aund *BEGIN are both reserved
words and the characters ', B, E' Ge I, N and '\ are scalned“ then
TBEGIN' will be foraed, . . | T : -

| . ;
Scanning_in_normal mode ji¢§gODE) (cf . Sectlion 9. 8)., When h
source lgnguzge sysbol is formed, it is replaced by a 16-bi't number.
The compiler“vorks exclusively ﬁxth this number. The vword’ atom /ﬁs o
used both for a source \ language sylbol and its 16-pit
representation. ' R (PR A -

2\

..,-

o . \ . o i

- In order to replace a symbdl by its 16-b1;'r presentation, the .
system uses a hash—coded internal dictionary, named SINTDIC. SINTDIC
contains /a—\reco:d for eaca source language syaboll scanqu. Besides
the symbdl itself and its 1nte§na1 representation, this record |,
~indicates (for "each scanner detinition) how .the sylbol\has been |

_ used. The possibilities are: . . . ; . J

type - meaning U : \ \
0 " The symbol is undetxned (has not been sLanned uslng
~ this scapner definition). : \ VA

6 - The syabol i's an identifier (I). - c)

7 The syabol is a number (N). . l //

8 " The symbol is a strzng(S).

9 The symbol is a resecved Hord or te:llnator(like +. -
. - BEGIN END) (R).' . St

10 | The syabol begins a conlent [CQ),,

11 [The sylbol begins a scrxngr(SQ). . -

4 , y
When an - atom is scanned, it is passed to the compiler in
location SCANSYM. SCANSYM-contains two BYPE2 componénts. Just hov '
the atbm is put in -SCANSYM depends on'lits use. If it is a reserved,
word or terminator (R), the atoa for it is put in SCANSYN.1 " (first
component), vhile SCANSYE.2 becomes| undefined. If it is an
1dent1t1er (nunher or strinyg), the Retas lbol I (N or S) is- put in
[Sy /. .
L .. / .. B * - s
. / - - . . -
A

i

file:///froi

v [T . v f \

; f‘a\. Vo Lo
S~ '12.'SCAT:ER DEPINITIONS | 55’
r . * ‘\\. | . .
C Kol S \
”'\‘.‘ . ‘/ /
e < 1/
. SCANSYM.1 and theiatom for the 1dent bd er\(nunber or strilg) 1tsol£

is put in SCANSYN.2

N
,"~

' . H
: H /

cﬁaracter lode, the source program cnaracte 5 are put 1n SCllSYa.l

as they are scanned. SCAHS!H.2 beconqs undof&nod. A -
n K . . . (/' .
jz.z.lnefig;gg,szggnzi§ g P~ /;
l Syntax: - ‘ J ' p
SYN <<synoayms pai!) 1

‘<synonys def> ﬁ:' t>
<syncnyl pazr) H
f . <synonyl> <char sequopc.)

' '\,‘ i
'<ehat sequence> ::= <EBCDIC or hex> ”V”“'“'W e

= .- |- <char sequence> CAT <EBCDIC or' hox)
<EBCDIC br hex> ::= <BHCDIC chaar> | <hex char> .
.<hex char> = .2:= X % <hexit> <hezit> °* /
. . _j"}rl-

; i

) Senanticé 1 <hex char) lay not be x'7o" The <hcx char) allovs
one to use other 8-bit combinations as characters, besides the
EBCDIC bit - combinations. Note that a space must be t.pt.l.lt.d by

its hex. representatzon, X400, : . (

The synonyn" 6efin1tion{ assoczates i’ cIL idontitiot (th.

synonyas) vith ‘a sequence of charactors vhich form a source 1!!90!90*22

sysbol (the <BBCDIC char> list-or the <EBCDIC or hex>s in the <char

sequence>). The synonym must be used later in a set definition (cf .i

Section 12.3) or in a reserved vord definitign (cf Soction 12.4%), to
indicato bov the source. language synhol is usod.

Any source language :ylbol caa be given a synoiyl: the
folloulng nust have a synonyl.

¢ 1. Those source languago sylbols lhich ato scanner dctinition
. _roscrvod words: .

BEGIN & -)
CAT CORMENTQ :)
DIGIT .
ENDSCAN
- '1DBLG IDCHAR IGNORE INVIERAIN
NONE _
, RES | _ :
. STRINQ SY , « :
S TERMIN kj. , s 4

2. !hoso source .language l’.bols uhich contain {or are} a spnco _

or a charactcr vhich is not aa BEBCDIC chlractcr.

A synonym lay not bo a,:"//vod -o:d of a subllng--go il vhich 1t is

v

a.r

= <synonym> <<BBCDIC cha > 11-t> Coe
l X

f

o I - b / . . L

N .. /7 % 2. scawem DEFINITIONS | R LT
/ Ay . ; S L , ‘
“used . {production lanquaqow.or senantic’ sublarguage or scanner
»/dqﬁinitiohk) i . , .) . . o
// - . / . . - . -

" - IR I \{
Y.

\ / 12.3.)§g;ﬁ§giinisiggg o .

] IDBEG <caar set>

) { IDCHAR <char set> -

’ .. | TERMIN <char set>) ;

- g * | -INVPERNIN <char seét)> | L /
: i-} IGWORE <char set> ' .

f

e Syntax:lv T . - o
i?ﬁ' - T—<set definition> ::= DIGIT <char set> Cfr

<char set> 2:= NONE | <<character> list> -
<character> 2:= CEBCDIC of hex> | <synopym>. e

!

Sesantics: sﬁt defiaitions serve to describe) the wuse' o

" character in the squrce lamguaje., Each character must appea
: least one set do;lliq}ol. These definitions are used by the’

to build the actual source laayuayje symbols. A set definiti i

the <char set> /NONE .defines am empty set, The sets have the

" . followiag meaning: @ : . ey %
1. Tks set of DI'Its\uro.uuod)toflbtn g_égg;§ according to the
syntax) ,/ e - \

~

<source numper> ::= <<Aaigit> list>.

When a source nunbof/is formed, the metasymbol l\ls\retu:\ed in
SCANYSM. 1, vhilo the atom tor the source number itself is| put
in SCANSYM.2. \Note that no actual conversion of the nulet is

/

performed. {
-

/ ‘ : .
2. The sets IZ§EG and IDCHAR are used to form sQurce (langyage)
identifiers according to the syntax - N S \

<source id> ::= <Char in set IDBEG>
‘ . [<<char in set IDCHAR> list>].

" . ‘vhem & source identifier is formed, the ' metasyabol I/ is
k returned ia SCANYS5M.1, while the atom for the source identifier

j itself is put ia SCaNSYA. 2.

/ 3. .The =met TERMIN contains the single character syabols of the

/
laaguage. Examples from ALGOL and PFORTRAN are ¢ - (and

/ sowrce
'} « These characters are called 8, since they

terainate identifiers or muambers. When scanned, the atoa for a-

tersinator is put im SCANSYH.T vwhile SCANSYN.2 - becomes

undefined.

4. The characters in the set LNYTERMIN signal the end of an.
aton beisg formed. For example, in soae ‘languages: a 'space

b~

[

12. SCANNER DEPINITIONS

tollov;ng an’

.

i&enfifiec ends that identifier; A D is two -

1d¢ntifiors -~ 4 and B. Houevat, thése characters are - IN isible
- they are not passed ‘on- to’ tho conpller (except in sbrin).a

5.° Thel characters, -“in the set IGMORE are conpletcly ignorod
(except in strings) if they appear -in the soirce program. For
exalple, in some ALGOL zlplelentations blanks are ignorcd- A BG

is the Ldentlfiet

‘The~d¢£ault‘option, in

aissing, is taken from

The'

and IDCHAR may have a non
nonen

DIGIT 0 12

234567

DIGIT

12.4.

LY

. 'of the source

IDBEG A B C
IDCHAR A B

OO W
WO M™E

TERMIN NONE
INVTERMIN X*40°
IGNORE NONE

7 .

™ Y

ABC.] , .

- ER

case a set détiniﬁlod fbt‘gne‘of iho Edts ik
the tolloving sert ddfiniglons: .

6
G
P

ESTUY®XYZ-
QRSTOVE XY

789 L
HIJKLHANOPHQ Q Y
GHIJKLMDMUOTP X

following restrictions are placed on the sets. The :.sets IDBEG

may have a

Reserved words

Sjntax'
Creserved def>
<{res vord>

<termin>
<{source id>

" other two sets must be empty.

mpty Antersection. The "sets IDCHAR anad

BES <<res word> 11st>

¢source id>

| <termin> <source id> | <terlin> 1

| <termin> <terl1n>

| <synonym>)

"a character in the set TERMIN® -
"a source laaguage zdentifier (cf sets-

IDBEG, IDCHAR)“

*

Semantics: The rgsérved derinition detlareé‘thc résérved‘uords

Syntax
<yuote def>

<guote. pnir)v
<begin quote>
<end quote>

language.

Note that we include double character

symbols like // and /% here. If a synomym appears bere, the source
language syabol it represents aust have one ot the other fotls given
above.

12.5. i&;ins_4.@.99!1:1&.939&!& JEEN _ R

STRINGY <<quote pair> list>
| COMMENT) <<quote pair> list>
- A

<beygin guote> <end quoti)
<termin> | <rem word> | <synoaym>

<termin> | <termin>] | <symonym>:
ha N7 .

L 87

201

ty intersection. The intersection of any -

TN

s

\

R e ey yY!;,m o e o= s . - N IR /

Y
o~

"¥2, SCAWMERDEPINMITIONS - « - ., .+ 7. . s

Y e ' YR

reserved word; the end ‘gquote must consist ‘of: one .or tvo terminators.
Comaents are deéleted from the soufce progras.!A comament 1s thus - an
ilviliblo torninatot (sot IIVTBBHIH).: K) e

e « -

:ttings. The beginning quote can be any terminator or -reserved word,

Thc set STRINGQ contazns paxrs of beqﬁnn:tg and‘ind qudtcs .for
while the end guote must consist of one or tvwd terminators. When a

ko

-‘atom for thg,str1qg (vithout the quotes] 13 “laced in SCAIS!u.Z.

12.6. processing before scaming {// I
Syniax: <preprocessor> = <proced re ca11> " of a ptocodure
: ' vlthaut pataleters" e - .

string 'is detected, - the metasymbol S is put inm SCANY$M. 1 and the -

Solantics. The set couuxlru containl paits of bcginning and end. .~
- quotes for coasents. The begznning juote can be .any, terminator ot

: ' ' R ,
S¢nantxcs. The procedure nust be in core during the ﬁ?ige the '

scanner definition is used. When reading in a nev source progral

line, the scanner .puts it ia the system 'string variable BINLINE. and.
executes . the procedure ‘call. This procedure can themn do any

prep:ocess;ng necessary before the scanner actually ‘scans the line,

. The result of this preprocessing must be put in the systea string
variable: stLIﬁB. The orlg1nal line should also be written outlusing_

8OUT. . .~ v gl
N . . \

! Por exanple, suppose e HlSh to preprocess a FOBTBAH ptoqtal.

Thé -end of a’line means the end of a statement except vhen columa 6

of ‘the next card is nonblank. In addition, coluans 1-5,7-72 are
fixed. fields. Suppose in, the scanner definjtion ve declated the
terminals .EOS (end of = statement) and EOL to be two byte

reptesentatlons which-cannot appear on the input card The following-

p:ocedure then w111 acconpl;sh what we want:
T

?BOCEDUBE PR!PROC'

BEGIN GOUT(ﬁlnLINE). GOUE‘ /* vr;te out the 11ne */ :' }

IF SUBBYTE(6INLINE,S,1) '
THEN BEGIN /* this is not a contxnuatxon card+/’
o ESCLINE. = EOS /% put in end of, statement,*/ .
: S .. CAT SUBBITE(&IHLIHE 0,5) /i label :field, -/
CAT EOL /% end of label,*/
CAT SUBBYTE(bIHLIHE 6, 669 /* rest of card &/
END : ’
ELSE BEGIN g a4 continuatlon cafd. %/ - -
¢ &ESCLINE = SUBBYTE(&IHLIHE 6 66)
END

e

’

~ 1f the iprcprocqssor) is aissiny .from ‘& scanner definitiom, a

procedure vwith the folloviny ptocedura body is autolatically 1nvoked
before each nev line is scannod' .

.

Y X

12, SCANNER DPF INLTIONS o . 89
. /,’4‘ ,i"f o / D L
Bzcn sour(scmz, e, . - /% lind number */
s SINLIHE); : o /% input line ¥/ .
A soux : ' Coe :
sscuuz = SUBBYTE (6INLINE,0,72); /* only cols 1 to.72 %/
END o - . S o

. The followxng systel indentxtxurs ate‘used in connection with
the scanner. . . K .

'STRING(BO) GINLINE. Alvays contaxns the last source progral line.‘
e TBIIG(ZSG) GSCLIIE Current Source prdér&l linp bean lorkcd on.’

STBING{ *5) ECLINE. Contaxns the nuaber of the cu:rent Lino (vith
lead1ng hlanks).(e o T '
HWI ENLINE. The number Of the current line.

PR . . i
. ;

/

/

i

13. PRODUCTION ,LANGUAGE (PL) - .~~~ =" . &0

/

',p\ié. ERODUCTION LANGUAGE (PL) o S .

.E;oduct;on lagg__g. (PL) is' a sunladwunge E{JCIL ’dESiQned for

wvriting "parsers®™ or "syntax apalyzers" of programs. It co®Sists
primarily ot so-called- productiédns which work with a LIFO stack.

Briefly, as ‘a source program. is scanned, the sgurce -symbols are

Flaced on the stack and an attempt fanade'to match the teop stack

- sywbols with “those designated bj tna@ current Eroductlon. ‘If no match:

© . production LS to. become the curceat product1on.; Lo b

‘This . ;roduct;on has ~the follou1ng meanzng. If the top three stack
‘nbcords contain the symbols IF, n and THEN, then replace these three-

loccurs the folloulng production necohes the current, one.and a Ratch-
is ‘attempted agaim; -this- continues unmtil ‘a match occurs. -‘When it -

does, the toy of the stack is rearranyed and- several actions are
petformed’’ as .indicated.#7 the: current productxon. These ac actions may
cause more symbols té& be stacked, may cause a. .portion of the
sesantic ,subprogran to be executed ~"and may also Lndlcate which

3

.At this poxnt an ex?gnle nxght help to make th;s uhole sectlon
clearer. Con51der the. fok'ouxng ptoductlom R

. ¢t -
e -~

'xr E THEN >,IcL " 'EXEC SIFCLAUSE GOFfHEannT

records’ by - a single record containing the synbol ICL, execute that
portion of the -semantic . subproyranm labeled- SIPCLAUSE, make the.
production ' labeled THENPART the current productzon ;and begin
matching, again. . o ' . . . T E

) Production ianguage‘ need not’ pe used,- ;ﬁ whlch case- the -
semantics portion of " a -pass’is executed as a program in thevusual4

o

manner; statements are executed Ln the order in vhich- they appear.

If production languagye 115 used in a- pass, then it is the

"production language subprogram shich is -in-command - which drives

the compiles... It causes source language syabols to be scanned anad~
invokes . pa:ts of the senantlc sublanguage. :

Syntax: ' ' . A
<PL subprogram> 1= PRODLANG = ¢
. ‘ [<<Pi declaration> list> J'
a - . ‘PRODUCTIONS <<product10n) list>
hNDbYNTAX .

13. 1 comments_and_blanks

: == . X N
A comment in PL is any segjuence of characters, mot including - the
subsegquence Y::;", encloseéd in the comment quotes "::% and “::% . A
compent pay appear "between decldrations and/or producttons. N ' :

’a

Blanks =may nppear anyuneré except between characters of a <PL

"identifier>, {source symbol>; <ideantifier>, or reserved word. At

least one blank must separate thes if they are adjacent.

~N

.oaw

. . ., 13. PRODUCTION LANGUAGE .(PL) 61 Tt
Co ' B . t i
. . P , 1 .) . .
B - "l - - . o - .o, P
- -~ i t‘f‘ |

130 2 EL ;es.;ved_ rds

@

- The reserved uords ot productlon ldn,udge ar"'

, - AN[- LA ’ﬁf . .
T o CALL CLASS CLASSLAB e
; EIDSYNTLX ERROR E>XEC °
Go : i
HALT ~ ‘ -
TIFCINT o L Ny , o
' N L : \ T
- \PBODLANG Pxonucrxous - , o L S
- BETURN - . . : E
"S. SCAN SCANHER scausru SIGNAL STAK R P R -
~ UNSTK - . e S L
- ’ ' —Aé Lo ‘ |.v A :/ . i - . S L .. P 2 / f
P A R I TR o . J
- .They say 'nob be used as jdeantifiers 'in a'BL,su%prqgnAI._ : . !
‘ '13.3. Source languagé_syabols S i;'*f/ e S . _
e - . o S g S *
éff Syntax . ' v ““
o <sourge symbol) E :}="an1 seguehce of 1 to 250 BBCDI; § o
" . S - characters - excépt W@, MM, M3 and
' i ,’ ”‘ space(blank). It may. not: be a PL reserved :
J . Wworde" - .
| <source language synbol) <,
_ Semantics: A soyrce syubol is.a seguence of. characters which
“s.wa§>\ﬁeclared in a ‘sdanner def1n1t1on to be a sysbol of the language
to be compiled (cf Sd&tion 12. 2). Note that:in this subprogran only,
_ the source syabol may appeat without the "S" 1n front of 1t, as long
4 as it follovs the rules glven aboves " .
Exaaples: . - 3r" o ' K '
- 4 . N -
S g i e e ' .
BEGIN . . V‘/f) : LR , LT :
+ B ' . R o - et T
3s 1s the source language sylbol LY L s : :
CLASS is not 4 source symbol since it is a reser!ed vord. '
- : $CLASS tbpresents the source language sylbol CLLSS. ‘ - . -
o // AND and’ $AND are 5§u1valent. ,) ",: . R
13-4 g_tas!! . . -
ot . . 1 . -
Syntax. <letasylbol 5L 1 N) S | ANY . __' I |
The letasylbols I, N, and S represent an 1dentifier, a nuaber r]:
k (sequencé of digits) and a string .of the source language being - oo
compiled, respectively. ANY represeats any source language syabol. .~
‘Their use uzll be)explaxned later, . . o LT
735 p_jdeotifiers S S T
N ‘ S o , 3 ¥ R)
: ‘vﬁP . IS ‘Q_‘ * e

http://Exaapl.es

R

P

. 13. 'PRODUCTION LANGUAGE (PL)~

-

- yntax

<PL 1dent1fler> 1= “any seguence of 1 tb, 250 EBCDIg

- ‘ o ‘ characters
’ i ' space. It

"<PL label>

except

oy

"3“ Ol-Il B

">

"
’

and

"may not be a PL reserved.vord

. <P] ‘2:= (PL-identifier>
, _ - <PL int> - .. "t:= <PL identifier>
e - X <class-name> 2= <PL ideatifier>

?\'

 § ;~ : » .)

‘semantics: by- the "symbol '<iaentifier>

identifier ™

first of yhich aust be a,;lettgr. <identifierd>s

subprogral are '« declared . elsewhere -

1anguage Synbol as’ a label ‘in the semantic program,

< - -~

-as a

~ PL Ldentatxers - those declared ' and
subprogﬁﬁm - -are less restricted, .as indicated by the above

. A "PL ‘identifier may be- declared only once in-a PL prograa and must”
be dlfierent frol any Ldentltxer ‘or symbol used in a PL

.
N . - s L
o o

o
£

Ve nhean

or pe used as a <soutce synbol).

the

“in

us

La’

ual

PL .

(cf Section 1.3) - a seguence of letters -and dlqifs, the
‘used

synonya for a source

N

i3;6..gg§munication between syntax and semantics

3

"13.6.1 the main stack .

-

7

-

P:oduc;ion langque.nses a LIFEO stack: Th

"as the major

- .subprogram and the semantic subprojram.
this ©purpose ‘is defined by a <main

communicatidn. - between the

The. st

is stack

production

etc.
. Y
used only

a
s?nt

o

PL.

aAX.

subprogran.

serves a
-langquage.

ack to be

us

ed’

156

€ for.
stack dec> in the semantic

sublanguage (cf Section 5.2). It dust be STATIC {cf Section 6.2) and
the first three conmponents of the stack records must be of type
BYTEZ. Apart from thlsthhe compiler writer is free to
structure of,the stack record as he chooses. The secand component is:
called ‘the slntax cofiponent of tae stack- it is used to
{atoms for the) 'symbols of the language. T

sl

define

sto

re

FT

the

the

- As source- language sympbols-are ‘scanned” at complletlme, they are
“put’ im locatkon SCANSYM {cf Sectiorl. 12 1) -and then pushed onto the

K btack as follou5') . -

Loy

S

metasymbol I (N or §) is put into the second BYTE2

. and .- the.atom for thenzdentltler (nunber or strlng)

'system use. i -

A

B

o -1.--;t'thé symbol is an identifier (number or string),

the

component,
is put.-into .

AN the thlrd B?TEZ component. The'zlpst ccm;onent is reserved ~for

24 If the symbol is not an ldent1f1er (nuﬁber or sttlng),

For- examp}e

~and B are identifiers, PLUS is a.reserved word and 1 is a number.

the source language belng COmleed. Thenh the stack would be:

~
.
A

.

-

in

» .

, its atem is put in the second ' BYTE2 component.. The first
Ea com;oneht is reserved.for system use while the thlrd conponent
i becomes - undeflned. : . .

y . LI .
Suppose the string "A = B PLUS 1" is scanned, where i’

i

s

. ¥

=~

. - 13-"-paobUC‘TIon-LANGU?AGE "(ei.). ELADEE B X I
" .stack_rec. 1st_conmp. n;énd’co;E; ”iig_going ",f fl'}b'
reserved :, - N . '{i,‘ Lo ~"..r,'
reserved . . PLUS . undeiiged_t"
) reserved I . ;) X ‘
. . _ reserved = undefined
' reserved I~ ‘A SR
V : : P ;/»"
13.6.2 1ocat10n SIGNAL v, B

BYTE identifier SIGNAL is a systen 1dentitior local to ap,pdss'
whose value can be"qhaﬁ)ed An. the usual mamper ia ‘the semantic:
suktlanguage and tested :1n production [language. Its value is”

© initially undefined. (éf'Section~13.€a actlion 7).,

13,7, Qggla;ations in_PL

o

Syntax ' B T : :
<PL declarat on> ::= <int dec>]. <class dec> -
T : | <classlan dec> -
<ifi€idec> . - . ::= INT <<PL int> list> _ .
<class dec> . :== CLASS <tIass name> <<synbol> 115t>
<c;asslab dec> ::= CLASSLAR Cclass named> - .
T ' <<sgqpo label) llst> ’ . .
. <symbol ‘label> ETE <symbol> <label S
e U<sylbol> "t .. 2:= <source symbol> | XPL 1nt> “I-j ¥ 1S

1 <tnt 1dent1£1er>

.
< '

can be thought of as "nonterminal™ sylbols used to help define the

syntax of the source languagje. .They can. be placed in the . syntag

portion - {second component) of the stack. Bach INT-identifier is

represented 1nternally by a*16 bit (BYTE2). 1nteger assigned by C;L.;

) CLASS. and CLASSLAB declaratxons aerve to associate the
<symbol>s with . the ‘class name. This _is sllply a motational
convenience;. a productlon containing a class nawe is oquivalent to a

sequence of productions, each with one of the <s,lbol>s substituted.

for the class nanme.

1

Addxtlonally, a CLKSSLAB.declar;tioi associates "one se}antic

. ".label ' 0f the semantic sublanjuage vith each' sysbol, providing-

another conven;ence mentioned. later 1n discussinq lctipns.

-

" INT ldentlflers and- CldSS names aust be declared before they .

‘are used.) o P

- .

Exanples. R _‘_ . e

INT PBIHARY FACTOR TERH EXPBESSION

Semantics: The’ ldentlflera decLared in an INTernal declaration

K\"

A produg%ionnls exgcuted as follows:

I) - ¢ S

13. . PRODUCTION LA4GUAGE (PL) . S
- .' -1 - . R) - . J)
CIASS UNABRYOPERATOR + - I
_CLASSLAB OPERAND I ROUTIN:.I N aou'rmaen PRIMARY nounuzp .
13.8; Prgggctlons
Syntax . . .
"roductlon>__‘ 11= EPL Label) H <productlon>

] -<lett part> [<r1qht part)]
{<action> list> .. o
1=<<symp> ‘'listd> ’ '
1= w>n <<symb> list>] .
i= "5ee Sectlon 13.9"

<left part>
.<right.part>
<action>

TR

<soucce bjmbol) | <neté’sylboi>‘
1 <1nt identifier> | <PL int>
I <class naae> :

<syab> - S s

/

A Kleft patt) may contain at most 5 <symb>s in the list.
Y <right part> may contaln at most 3 <sylb)s in the list.

' . . . : 4 ,
: - . . - . . B

" Semantics: The first production to be executed is'sthe first
one. Productions’ are’' executed in order of occurrence except vhen
this is caanged by an action. A sejuence of:productions lay act as a’

subroutine. See Sectlon 13,9, actions 1 and 8.

-

.

1. The <symb>s in the left part are compared with. the symtax

components’ (second compdnent) of the top records of the stack. f

A .match voccurs if one of the :ollov1n§ holds for each (sylb) in

the left. part--

on the syntax comgonent of the correspbndlng record.

Lo .‘C) the <symb> is-a class nage and the syntax component

/ ‘ ,
) -the <symb> is a <syambol> and the samé (synbol) appearS‘

ﬁ) the'<symb> is ANY (it natches any sylbol on the stack). o

-of

~the.. corresponding . stack record lS a syabol in the class

| <c1ass name) (cf bectlon 13, 7)- i

eiecition is finished.
. | - . -

- &,

order, as tollows-‘

‘If a match JOCCUrs . yo- on to step’;zf if no match occurs,

2+ If the right-pért»o&curs,in tae production, then the records
matched in; 1) _are deleted- Ero- the stack. .Any <syabd>s -
appearlng ‘in- the right part are’ then stacked in left-to-right"

.A) if the <sylb> is awY, I, S, N or a class name, it must
also have appeared in the lett-part. The complete stack

;

.
P

record, whose ,positios corresponded to the. rightmost

P

13. Pl 'DUCTION LANGUAGE (2L) - o 65

.'occurrence of the <symb> in the iéft pabt,;is stacked, .
r . . . ’
B) if the <syab> is 4 source synbol, "PL int or int
identifier, a record is adde@ to the stack and its sccond
. component /becomes that synbol.q_ .

a

j‘ 3. The actlon! are execated.

1329. Agzzga§ _ : _ ,

We now present the possible actions which ¢an‘occur in a
production. ’ y . L o, :
1a (CALL. <PL__label> Eiecdte thé productzons startxng at the one

’ labeled by the <PL label>, and continue until the action RETURN -
. 1s -executed. This is thusdjust a .subroutine call. It asay be
‘recursive. Restriction: the action EXEC <c1iss name> .may not
. appear after a CALL action in a production.’ . i

24 EBBOB <1nteqer> Prlnt " ERROH <1nteger>“

3. EXEC_Slggel) Begxn executiny tne ‘semantic . subprogral of the pass
© 7 "at the Statement labeled <label>. When the: Semantic statenent
SYNTAX is exécuted, returs to. the action following this one.
.The <label’ nay‘hot be xn a procedure or 1totat1ve statement of

the passS.

u."BxEC £class_nape> The class 'nase, uhicﬁ Bust have been declared’
- in a CLASSLAB declaration,. must 4lso appear in the left part of
any productxon in which this acticm appears. Consider the
sysbol in the stack corresponding tn the topmost occurrence of
the class name in the lett part ot ‘the production. The semantic
" subprogram is executed bheginaing at the semantic” label
associated with this sympol. in the declaration ‘of the class
name. Upon execution ot the semantic Statement SYNTAX, ‘control
retyrns to the. production’ subprogram at the point following

this action. Pledase note the restrictionm in action 1.

<

Example- Suppose ue have tne declaratlon "
CLASSLAB SISN ¢+ SPLUS - SMINUS
:and'thét the stack'Cohtains |

‘E + L~ E (top of stacm

and- flnally that -a matcn has]ust occurred usan “the productlon

. E SIGN E SIGN E* EXEC SIGN -

Then the senantlc ‘subprb,ral ¥ill- be -executed begimaing at
label SHINUS. ‘, ’ ’ -

5. GO <PL 1abel> The productlon labeled <PL 'label> boco.ol"gio

. A op T / . -
13.. PRODUCTION LANGUAGE ({PL) . R AR 66 ’

current pro&uctzon and matchinyg hegxns. Any nctlons follouinq
the GO action v1ll never -be executed.

6. HALT < nteger) Print the lessage "HALT tinteget)“} and 'stdp the b"
progras.) - K oA : SN T

7. 1r SIGNAL Go_<PL lnbe1> If slbIAL is TBUB ‘(not . zero), execute’ the
' "GO <PL label> actlon (cf/éectlon 13.6.2). '

8. EETURN BReturn to the point ~after thg last CALL executed jJéf

' EEI on. 1). T e)
9. §_LN If this pass 13 not 1n parallel v1th,others, build the next
’ atom of .the source projram, put it in SCANSYM (cf Section:
'14.1), and push it onto the stack (cf Ssectxon 13.6.1). ’
10. §_A!__$Ln§gjg§2 This is e,uxvalent to" SCAN SCAN «se SCAN
‘<integer> times. - . _ o - ’

SR P §§]!!;j;_51§gn51{13;2 The. Ldontzfier must name a §cann£:
detinition (cf Sectiom 12.). Until another SCANNER jaction’is

" executed, the source projram vill be scanned according to’ the
scanncr dofinition 1dont1flod.

1207 SIAK_ <§x!§912 The sylbol is pushod onto the stack (conponent 2 .
of the nex :ecord - ¢t Scctxon 13.6 1).- . .

3

kcf{

13, 'STAK_SCAN3IE Push the, s,lboL il >clnsxn._onto " the stack.
Section 12.1). : . . ot k ‘ . o
&
Y .)
= .
l a

pmzems 4 e e Al — o A P ok kM e e m b e e e

et s e s P

program with the tolloving structure: SN

:fhe ‘main reason’ for the above{rastrgilion is to keep the code for

A)) ’ N

. - ‘ _ N
_*b; CODE -GENERATIUN SYSTEM (CGS)) : 67 NN

10L CCDE GEVBEATIOH SYSTEH (CGS)

.. cogsnuxns ' . LR

is being generated at’ conpxle time. Code gets stored in a CODEAREA
autonatxcally .as code bracket statements (cf Section 14.6) and
exjressions (cf Section 14.5) are executed. The compiler writer may
also enter his own information lqto a CODEAREA with an ENTER
statement (cf Section 14.1.5). At runtime, the contents of the
CODEAREA becomes the program beiny run. . .
. ADy number of CODEAREAsS may be used at compile time. ' They may
contain code, tables of constants, or a aixture of both. Pach
COLEABEA becomes a named gg ;ogl or CSECT, of ‘the qenetatod object
sodule. . . . '

Ve make the following :estrxctxon om the use of- COD!AR!As' tﬁ6
bytes of code for a subroutine saould be contiguous. By a subroutine

. 'We ‘m@an a section or a program which may be "called® froa many

places, and -vhich returns to tne calling point vhen finished. To
illustrate this, suppose ‘a one-pass ALGOL con;ilot is compiliag .a

BEGIN PROCEDURE B; L ,/ﬁ\\\;
. UEGIN PROCEDURE C; . - S
BEGIN ... qu. s
‘TuD;
. PROCEDURE D; o
- * BEGIN ... END; - .

R . .- e, . B . T T

! D

Code for the main program and ror ' procedures B and C . must ' be
generated into different, CODEAREAS, while the code for ‘procedure. D
say not ba in the same area as the main progran codo. One possiblo

configuratior vould be:

‘CCDEAREX .,
N 3
|"HAIN | - |PROC Bi. | I
anOGBAﬂ] .lf—-;——] | PROC C|
i . 1. |BROC D|_)" |

i

! M | | T R |

»

*, 14. CODE GENERATION >5YSTEM .(CGS) ‘ o 68

.

each lojzcalxpart'of‘the.source proyram in- .contiguous bytes. This

.facilitates base reyister allocat1on And branchinq, uh1ch on the IBM

360 are’ conplzcated tasks.\

_The llportant poznts to reaeaper aoout CODEAREAS are:

1. A CODEAREA at COlplle time 1is read only storage at’ runtlle.

\

2. 1he Lnforlatlon is to Be tilled into the CODEARBA at colp11e

time. .] \\ . \;"
: \
‘3. Each CODEAREA is a seyarate gnyszcal entzty (a naleg_sectiog‘

in 0s 360 ternznology).

4. At co-pzle tiwe, there is aluays one ‘eurrent CODEAREA 1nt0‘r
which code is being generated

. N C
5. All CODEAREAS are in core during runtxle (cf Section 14.9
for multiple coreloads). i

The offset of a byte in a LODEAREA is the address of that byte.
in the CODEABEA. The tirst byte has otfiset 0, the second has offset
1, etc. Within CGS the address or any byte in a codearea is givea by.
the pair (CODEAREX number, offset). CGS tates care of addrcsaabillty ’

-prokless vhen/generating code.

T\
14. 1.2 register descrlytxon; N o \\\

CGS maintains a set of ;eg;gte;_gesg;_g_;ggg for each COD!AIBI
These register descriptions describe (at coapile time) the ~runtime
contents of the IBM 360 rejisters after the currently last
instruction in the CODEAREA has ‘been executed (at runtime). For

.exalple, supyose the statenent

. coDE(aGazG(I)‘z D)
.) .

" has just been executed.- Tais statement loans "“generate code to put,

the value of the runtime ‘variable described by the DESCRIPTOR D into
general register '1." The’code tor this.is generated and put into the
current CODEAREA. Then the reyister '} description is changed to
indicate that this value is nov in rngstor 1-; o

Execution of the lbOV. .statesent quht also .cause ‘other
descriptions to chaage. Fof exaajle, if the runtime variable is not’
directly addressable, code must. tirst be generated to 1lcad a’
register - with the correct address ; (this is done by CGS

. automatically). When' this happons, the doscription oféthat register
. «is also changed. , L

A conpzler writer may chcn,o cnd/or test register QQScriptionSA

‘hznself. All operationa Oh thea are cxplaiiod in Section 4.4,

. . e
/ . .]
i .
/ . .
]
/

file:///part

4. CODE GEMERATION SYSTEN' (CGS) . o 69

1“.1.i\vystol variables connected vith CODEAREAS =~ - .~

¥ariable type - BeaBiRd

&§cOoDE¥O BYTE contains tae number idontifyinq the curront
S oo CODEAREA.

&CODELOC . BYTE] coatains, tae offsot of tho next frea’ byto

. in tne¢ curreant CODEAREA, and thus the
" numb@r oI bytes in the CODEAREA so far.

v

2 S v
.14.1.4 creating-and s¥itchiny CODEAREAS. L
Evaluation ofjthe'<spoc£unc> v ,/4
iy
| GCREATECODEAREA i o

[e b L T SR |

,/,

-'“caﬁbcq A new CODEAREA to be created. The rogiltir do:criﬁtidns "of
" this npev. COCEAREA all initially inmndicate thkat the registers are

eapty. The valuq of the fuaction desiynator is a BYTE value - the
nunber assigned to the nev CODEAREA. This number identifies the
CODEAREA and is used to communicate with CGSe .

The <spec£unc$ ' : , L i

l"--‘---‘--.--_-_---‘--“---“

|
| SUSECODEAREA (<oxyrcs§10n>)
;

is evaluated as follovs- the <oxp:assxon> iz evaluataed, assignod to,

an internal BYTE variable I (sayl, and CODEAREA I (whith nmust have
already been created) becomes the ¢ygpept CODEAREA. This.means that

any code generated before tae next USECODEAREA- functionm designator

executed, will be added to this CODEAREA. The value of the function
designator is the BYTE value ass;gned to the prevjoys current

. "CODEABREA.

-

14.1.5 -entering data into a CODEAREA

Code 1s entered into the current CODEAREA as code-bracketed

" statements ‘are executed and code is produced. ~ In addition,

<specproc>s of the followiny torm qan be used: T

[m———— - - - -

:| ENTEh ¢ CODEAREA, [<exp:e551onl>,] <exp;essioh2>‘) i

...... — - 3

[, -

ThLS's;afelentmis executed as follois; f\> : o '

e v i bR e e e .

x*ini'cqb; GENERATION SYSTEM (cGS).. - - . T0

1. If <o:p:osstonl> is liss;ng, then <oxprossion'> is evaluated
and added to the current CODZAREA at, the next free byte with
the ‘proper aligamest (ct:.Sectiom 11 for alignment factors for
differeat basic types). Variabple §CODERLOC .is - changed to the
cffset ot the first free byte a:tog the addo& bytes.
T 9
2. If <cxpr0lllonl> 1: preseat, it 1: evalnatod and assxgned to-
an iptermal BYTE) variable .I (sa 7). Wext <expression?> is.
evaluated and the resuit is put in tle CODIARBA at the offset -
I.. ' '

It,‘}h;' Blrzl llstrnction is used and the entc:cd data ‘is actually’ 4,
code, ‘it is the compiler veciter's rolponlibility for "updating the
[egister dcscriptiols. ' : ‘ . b

Exanglé. ENTER(copzAn:A, B)

14. 1.6 initial condltxons : - T

Inztxally, CODEAREA 9 is the current CODBAREA ‘and is the only
one in- existence. It ‘may alread, contdzn sose information; CODELOC
may not initially be zero.

: A . ' TN~ ,
4.2 DATABBERS . . S
14;;.1 introduction |
A- DATAAREA is a runtime taple for storing data -.valuol
- corresponding to source lan,uage variables, teaporary results, etc.
. In contrast to a CODEAREA which at ruatime is read-only ltorage, a

DATAAREA is read-write storaje. Uader certain circulstalcel, ‘a
DATAAREA can be initialized at compile time. ‘)

Storage'ls allocated in a DATAAREA to runtise .variables through
the allocate statements (cf. Sectxon 14.2.4). The allocCated storage
can be.injtialized at compile time by the EINIT or ENTER statements:
«(ct Sectlon 1a.2.u). . ,

a

_within the DATAABEA.~ The first byte has offset 0, the second has
offset 1, etc. Within CG5 the address.of any byte in a DATAAREA- is
. given by the pair (DATAABEA nulbf:k\otfset vlthin‘PlTAlngl)- 2

) Actually, ‘the BYTE numpers -Which identify’ DATAAREAS ‘are
dlfterent from those 1dent1tyln, CODEAHEAS. Therefore a pait

(area nulber, otfset)

unlquely addresses a.byte or an AHEA (CODEAREA or DATAAREA).

’_!

¥

. - ‘ ’ o . "

14. CODE GENERATION SYSTEM (CGS) =~ & omn

''14.2.2 system variables comnected with DATAAREAS

‘yariable type 2€30404 . '
. GDATANO BYTE contains the nu-bex Ldentzfylng the curreat’
L . DATAAREA.
GDATALOC BYTE] ‘contains tne offset of the next free byte

in the current' DATAAREA, and thus the
’ . _ number of bytes in the DATAAREA s0 far.

14.2.3 creating and/suiecning DATAAREAS . - <
The <sgécfunc$' ' X

I &cxzntzoﬁrnnﬁza (. (DYNANIC')] |

. L—-——-—----—- - - - - - Y e]

.

creates a nevw, elﬁty‘DATlAREL. The.value of the function dediqnatof
is a BYTE Value which identifies the DATAARZA and vhich 18 used to
co-nunlcate vith. CGS about the DATAAREA.‘. Coe

1

There at€ tvo types of DATAAREAS -<STATIC anQ\D!NAHIC.

1. 'lt (DINANIC): . is lxssxng xn thée above tunction dosignator,
/. 4he DATAAREA is STATIC. This m@ans that it is'a named sectioa
’ (conrtrol section), of .tane ,ohJect module bexng generntod- it
exists fhtoughout runtime (cf Section 14.9 " for multiple-
coreloads.) ~it may be initialized at compile tl-e. CGS handles
all probleas -of addtcssxng STlnIC DATAAREAS. = - .
2. nIt (DYNARIC) is present. the Dl AAREA is DYNANIC. MNo named-
settion for it exists in .the object module being created amd it
caanot be initialized. Its fuaction is to describe e format
of a section of storaye vhich may or may not exist at differeant

* assembly language program.

“ﬁfé One use of a DYNAMIC' DATAAREA is for . the variables and
- temporary lotations associated.vith .a ;rocedure. At compile’
: "time storage can be lallocated -wvithin the DATAAREA and code
. generated whith uses . the DATAA!!A (even though no storage
actually exlsts). At runtiae, vhen the procedure is callcd the «
necegsary storage corresponding to the -DATAAREA must be taken

-

 from free storage ahd used. Just before the praced re retucns’

to the ca111ng poxn(, the storagc is tolcasod agqin.
~ Sinte DYHAHIC DATAAREAS a;e,not allays in core and nmay also
appear in different ‘locations, CGS aeeds some ~help in
addressing variables in them. Briefly, the compiler writer mast
indicate a variable or reyister which contains the’ address of.
‘the DATAAREA. . See Section 16.2 6-for full details. ; .
ne, \ . >
The <specfunc> : : ’ ’ ’ . : v

" stages of runtime. It thus is like a “DSECT" in aa™ 0S. 360"

e

- T . J coe el e, . A ° s e b AT ¢y e

\ 1 . R
et ' : I . ' R) /"-.:
*14. CODE GENERATION SYSTEM “(CGS) . R 72
' o - ‘) ' ' ‘ - o
. A ' Cone
. - 'f"+"'?_7°"T""""'f‘ """" AT ‘
P i . | SMSEDATAAREA (<e;pressiop>) 1 . “

L L T D - pepu—— |

4 .
N . ! . : i

1

“is évaluqted as follows: tne <ekéres§ion) is-evaluated, assigned to
- an',internal BYTE variable I.(say), aad DATAAREA I (which "must have

already’ been created) becowes tne current DATAAREA, This means that

" any storaye allocated or entered py ah allocate or ENTER - statement

(ct Section 14.2.4) - is entered into this DATAAREA until the next
USEDATAAREA function designator is executed. Also, all storage.
needed for temporary results Uy CGS is ‘allocated in the- current
OATAAREA. The value of the USEDATAAREA function designator " is the
BYTE bumber of the previoys current DATAAREA. / -
14.2.4 allogating and initializing DATAARER storagd
. . C iy e S N . ,
-Before reading this section glance over Sectionm 14.3.
’14.2.“.1 Ihe < <specproc> GALLOCE allocates storage to ' one o}
more runtime varxables of tae same type. . _

oy

1
. j;;!glgg. To bulld a DESCRIPTOx for a haltword/xnteger and alldbatev
Aruntxle stcrage for it, use])

aw o~

D= DESCRIPTOR(KIND bHiI) GALLOCP(D).

N

To build a DESLHIPTOR for a POIBTEK and allocate runtlle atorage‘ in |
" “LATAARREA 3 for six POINTERS, use o

L= DESCRIPTOR(KIND 5poxuraa). bALLOCP(D,G DATIAREA 3) .

The Syntax of the sALLoc2:<s§ecp:gb> is

. A
! i SALLOCP N <DE>CHIPTOH ddst1nation> Y |

l ¢ : { + <expressionl)>] 1 .
I’ T [- DATAAREA <expressionz>]) | :
i

——— el e e i e o 0 . e e e e

y

-

The default optxon tor. <expresszonl> 15 1. The default qptlon ‘fcr

'”DATAAREA <expression2> is DATAAHEA bDATAHO (the current DATAAREA).

")

The statelent acconpllshes the fbllowlng.

1. 'The ‘DESCRIPTOR . <dest1nat10n> is checked. It.-®ist not
describe a label, procedure or .be undefined. The address of the
varlable must be. conpletely undetzned. N .
2. DATAABEA <expr9551on2> becones the current DATA@REA. ‘

L

G

allocates runtise storuge tor it. Tne value of the functlon is the

kY

.’ . "' ‘L, e, ‘ / o ‘ “.,_ Lo N.v.\..“
14. CODE GENEBATION SYSTEN (CGS), , 73

"»l

3. EDATALOC is xncreased, it ‘necessary, to prov1de the proper
alignment for the runtzne vat;able descr;ﬁed by the ,DESCRIPTOB

<destination>.’. ’,’ s : . L . : ﬂ¢

ha The ad?iess (GDATANU GDATALOC) becones the ?asxc address of S
the DESCRIPTOR <dest1nat10n>. .
- <express1onl> is evaluated ‘and assxgned to an 1ntetna1 HHI
variable [(say); the result must be nonnegative. EDATALOC is”
_then increased-to provide.rooa for I ruhatime variables of - the
type specified by ‘the DESCAIPTOR <destination> i(If I = O,

.nothlng happens). e : o o A

. . Y . . . " -
6. The\DATAAREA which was current hefore this.‘statelenl{,jae
executed becomes the -current DATAAREA.: SR ' -

e
I3

1t 254, 2 The_ §ALLQ§__§§QQC§QQ§> Dullds a DEéCKIFTOB and then

DESCBIFTOR. . o TN : R "

<

E;__g;g__ To buxld and allncato sto:age for a- halE:e:d 1nteger, 'use

i

el B D a GALLOCP(GHHI) . f:'f e e

P

To . build a DESCRIPTOE for a PuIlTBR and allocute stotage for] of B

B

then Ln DATAEREA 3, use .- - . Lo . e

'in = bALLOCP(GPOIITEi 6, DlTllRtA 3 -

To Just alzgn EDATALOC (cutrent DATAAREA oftset) on 1,a'fA-dv:)ublewc,:rcl

A N Y

boundazy,.use - : o . e . . .
P sALLocr(en-r.O) T T
The syntax ‘of the EALLOCF (speczunc) is S A ’ '
L —————— e _— .
1 EALLOCP ¢ <exptesslon°) S | o
B | e - ,\<exptossionl)_] 1 / ?-‘
~ R D L DATAAHBA <¢xproslion!)] X, e
. . Dl —m——— e -——— - m=r=d ' S

Y

.‘.,.." L RN . N [

CIt 15 evaluated as Eollous-

/s : SR , -)

L] .
v1._<expressxon°> is evaluated ‘and assxgned to an Lhtetnal "BYTE
variable. J (say). A new DESCRIPTOR D (say) -is then generated

> Hlth KIND ; J., - - . ’ sy LT

>

- - Se Y,

» 2 The statenent

-

GALLOCP(D L ,<exﬁteSSLont>J L DATAAREA <express1on!>1) T

\ s

A et

< . e ‘kh¢ - c o BT
S R SR . R
R i e e . " LT

~© s 14, GODE GENERATION SYSTEM (CGS) Sl 74

: S N N R A '

: . e . M . 'f L _ . " oo X) i o . a . _l"-

_is thed executed.

3. 'The. value of the function 1is the DESCRIPTOR ‘De If its
- addcess is -.assigned to- a - POINTER variable, it 1is the
_programmérs responsibility to release the storage for D ‘when no
lcnge: neededa Otherulse the sisteﬁ'takes care of it.

2 .
. . 5

< 1u.¢.u 3 The EINIT <5gecgroc> 1n1t1al1zes runtlne variables 1n'
a STATIC DATAAREA. ° %, = : '
i - L . Y'nj*f" ST
‘ Exa_gles. Let D.be a DESCRIPTUR of a- HHI value- To izltlalize the
“variakle- it descrlbes with 0, use T e : ’
¥) . A
&INITTD,O) . e . S

To .initialize it and .three following halfword ifitegers with the
. current value of a compile time-varianle I, use : .
. : ' ' GINIT (D, 4,1) -

s . -

let“PD be 'a DESCRIPTOR of a POINTER. To 1n1t1allze the ‘variable to.

poxnt to itself, us)
. - t

sxnrr(pn £ADD (D)) (ct"Sectioﬁ 14.3.4.5).

o »]
To 1n1t1allze 1t to contaln)the addrebs of . CODEAREA 1 offset 4, use ;-

>~ - - - .
§INIT(PD, EDDRESS(1,4)) (ct Sectlon-iu.3.1.1y. e
. L - “ &
R . . O ‘- . Lo . $. «
.o : ' ¥ o : .
The syntax of the EINIT <specyro;>,is . ’)
r___-__.; _____ e i ’
R) - SINIT (<DESCRIPTOER. dest1nat10n> B |
R s L e <exgre551onl> 1] N -
) (. Ty <exprebSLOn2> bE S B R
_.____,_.—__.__..__..___,__,__-____..______.'_____1 .

] uSIﬂIT { <DanRIPTOR destination> {

oo - . +» <expressionl>] IE)
T o <bDuRbSb exp) 3} o S N
. .

F,

@

The default option for <e1pre5516n1> is a.J

The 'second. form is used

it the€ runtime variable has type 'PULNTER; the value to which it is

1n1tlalxzed is the value ot <4DDRESS exp> = cf[Sectlon 14.3.1.1).
Ihe LlrSt ‘forn 15 used if tne runtime variable is not” a pointer.
.Ihe statement IS executed ab folloHS' o °

.

1. The address . of the ‘runtine varlable defined by the
DESLRIPTOR <destination> is evaluated {at compiletime). It must

o wv. \ . o I . 'L.‘ \

s

¥

4

™

A

y‘k .

.+ 14 (CODE GENERATION SYSTE# (CGS)

St .15

yield an. address of the form (area number, offset). (this means”
“for example thdt no - 1nd1rect addressxng lay be specified.) -

2;. <expresszonf> is’ evaluated and a551gned to an 1nterna1 HVI
-va;lable 1 .

‘say)--the result nust be nonnegatlve.

3. <expresszon3> (or <bDDRLbb exp) in the second case) is

evaluated and assigned " to an 1nternal variable J (say) .whose

type i the same as that given by component KEND of thq\

INESCRIPTOR <destination>. -

Ge The value of J is stored inm the DATAAEEA at 'the offset

sfecified by the result ot step 1, amnd 1n the following I - 1
Tuntime variables of the same KIND. 5 .
& L AR

14.2. 4. u The ENTER DATAAAEA <sgecgroc> can be used to enter
ddta Lnto STATIC DATAAREAS: Its syntax is: . e S

— S R

| ENTER (DATAAREA, [<expressionl>,] <expression2>) |
L. -—= - - — . g

- —_ —— ==

It is executed exactly lxke the ENTER CODEAREA statenent (cf Sect1on
1421 5),_except that-a DATAABEA (wnigh X must be STATIC] is used.
-instead.of a CODEAREA. - 1 . . . ’ :

2

Exangple. ENTER(DATAAREA,C)

pE e

~14.2.5 initial conditions ' -

r . -

v/

A

®

Inlflally, DATAAREA -~ 2 is the current DATAAREA and is the only
one. in 911stence. It is bTATIL ‘and may alreddy contain some
lnformatlon. o ’ . o

P . . " ~ .
4. 2 6 addr9531nq DYNAHIC DATAAREAS

-

" sincé’ DYNAHIC DATAAREAS are\ not .always in core - ahd since

several copies may exist at amy -one time - CGS 'needs help .in
addressing them. There .are two klnds of stateménts dealing with this

12

° protlem; the first kind tells CGS that a DYNAMIC DATAAREA ~has- been
'createa (at runtlme) and jives its Locatlon, the second kind tells
CGS that a DATAABEA is no longer: avallable-

v’

14.2.6.1 'AddresSing’ ney QDATAABEIS.u The .following three

<specfunc>s give, CGS the address of a DATAAREA ‘that 'can be
reference# 1n the current CODEAREA only. - -

’

74. CODE GENERATION SYSTEM (CGS)- S 76..

S gm——— e mm———— e - - - e —————————— ———mme—emy
[} o SDY‘ADD { <DESCh axp>) b)

I____;L ... ~=

"] EDYNADD ((DESCR exp> , <uDDRESS exp>) ' |

\ . -_—_.—‘——__—_-_———-—----—----_-‘——¢---_——---—-—-—I

-:system- A variable of type DESCRIPTOR describes a runtime variable

1 EDYNADD [<register no? N (bDDRESS exp>)- o

[-

. .

In-tne.fitstwcage, the DESCAIPTOR must-desétibe~a,8?01NTEB constaht;

.the value of ‘the pointer must ope the address (in (ared number,

oftset) tora) of the DATAAREA .vhich can nov be refereaced. In the
second and third cases, tne <6DDRESS exp? ‘gives the.address of the
CATAAREA, wnile the actual place vhere this value resides is either
at the address specified py7 tne <DESCRIPTOR exp> or in register

<rejister . nod.

“1an all three cases the vaiue of the <specfunc> is a pointer to
a DESCEIFTCE of a EPOINTER coastant whose -value. is the adifress
given.] .o

a

To14.2.6.2 relédsiﬁg the DATAAREA. The <specproc>

T ERELDYNADD (<POINTER expr)) i
d

. I . o . .
tells CGS that the SPOINTER constant described by the DESCRIPTOR
rointed at by the <EPOINTER expr> can no longer be used to refaerence
data while executlng the current CODEAKEA. S

it

e t. ”;:_ "‘: . ﬁ ,‘. - Jll; :" ~

14.3. Ihe DESCRIPTOR

DESCRIPTOR is a structured type wnich 'is declared implicitly by the

or value in terms of the IBM 360 basic data. types. _CGS provides.

‘several functions which alter, test and use,k DESCRIPTOBS; the

compilér writer should use these: :rather than try to perform these
operations himself.

We use ‘the word DESCRIPTOR-for the structured type and also for
a gquantity of. that :'structured type. When writing prograns, the’

identifier "&D".gan be used in yiace of "DESCRIPTOR".

‘During the code generation procéss, CGS paintains po1nters to'
DESCRIPTORS unlch are being used to yenerate code. For exanple, if a -

DESCRIETOR of ® Jabel has peen ised to gemerate, a branch but the
address.of that label is still undeéfined, CGS x?rds “this fact and
fixes the ~branch address later. Also, if a val¥e is in a register,

¥

the register description points to a DESCRIPTOR of that value. For

.14, CODE GENEBATION SYSTEM (CGS) =~ L £ 3

x

. this. i Teason CGS ‘places the foliovingz_rgSQriction on théfpse-of:

.. DESCRIFTORS:.

- related structured typess - . -

’

A DESCRiPTOR"being ‘used by CGS_should not. be-
cnanged or loved to dnother 10cgt10n

In . crde: to be safe, a compiler wrlter should work with poxnters to
DESCRIPTORS, instead ot the. DLSCRIPTORS theaselves.

ST 4.3 strdcture of the DE%CQiPTUR , o o '_ ‘ 4
This section discusses the format of DESCRIPTORS .qndhftﬁrée

N

144 3-1 1 STRUCTURE GDDREDS (BYTE ABEA, BYTE3 OP?SBT),

5DDBESS deflnes the basic address (BA) of a runtilo ,varllblo in
“terms .or a 'CODE or DAT}ARLA numper (AB!A) .and” an offset of the
"variatle in the AREA (OFPSET). - This is ‘not the ‘whole ltoty on
addressing; the DESCRIPTOR also dllovs for subscriptilq nnd iadirect

addressing.) !

;f"A' X ’ . 515 '
14.3.1.2 STRUCTURE DESCRIPTOR o E S ;
BYTE: KIND, . _ ‘ ‘ : oo
BYTE ADDRCONT, s A . :

BYTE CONTROLS,
BYTE REG ALT BYTE BYTLLENG,) S
6DDRESS ADDE ALT POINTER ' (ECONST) pC

. ° ALT POINTER (usuascn) PS, . -
"BYTEY THEIHS), A '

.or quantlty. The list belou gives systen identifiers -of constants,»
their- hex valvue (vhich may chanyge; use the 1dent1f1et§ only) and the
ty,e of- var1able they descrlne.

;ggg;;fleg value meaniny - tne varjable is

. EUNDEF . - 00 underined
’ EBYTE .~ 01 _ one (8 bit) byte ° -
EBYTEZ2 ; 02 ¢ two contlguous (8 bit) bytes
EBYTE3 - 03 -three contijuous (8 bit) bytes
GHYTEU 04 - - four contiguous (8 bit) bytes
o GHWT 05 HalfWord .Inteyer :
: "EFWI ~ 06 FullWord Intejer :
SFWF. . - 07 .Fylleord Floating point- nuaber ‘
§DWFE ,' 08.. DoubleWord Floating p01nt nulber ’ v
&LEC 09 ~'- DECimal integer-. .
BPOINTER 02 address ot something or 0_
&BYTES 0B 1 to 256 contiyuous bytes(coaponents
' BYTELENG, P53, CONTRBOLS helpy describe hov many
bytes)

& FROC 710 procedure

" "14. CODE GENEBATION SYSTEM' (CGS) , S 78

ELABEL 20 : ' label

Note .that if. you delete the tirst-letter "E" from most of the system
identifiers " above, a CIL basi¢ type is left (exasple - SHWI becomes -
H¥I). In these cases, dall a«ttributes (ie. Length,- -alignment
propertxeS) for the runtlle ‘varianle are the'sapq as :those for a
value of the basxc type. - R . L e

- Conponent ADDRCONT yives aore Ln:orlatlon ahout addressing the '
runtime variable. It indicates whether the basic address (BA).is.
undefined, whether it is given by component ADDR, or whether it is a
register. Subscripting and indirect addressing are also indicated.
See 14.3.1.5. : e :)

Conponent CONIBQLS contains miscellaneous bits ‘used . for

-Qifterent purposes. The followiny table nges system identifiers for

constants, their hex values, and tne meaning vhen an identifier is -
"anded" with component CONTHOLS. : i

'sjstei , hex meaniny vndnfidcniif{erlis
identifier value "anded® with CYNIROLS - \.
6L - 01 for DESCKIPTOKS of GBYTES .only. If 0, number

BYTELENG otnerwise the number of " bytes is

i S described b; what PS points to.
ENEG * 7 02 if-not 0, negatxve of tuutile value is
} : desirad. .

ENOSAY ow if not 0, save DESCBIPTOR,‘Lf 0, can be

R ’ * released atter one .use in code generation.
EQRD 08 if not 0, a saved :egxster descriptxon poxnts

o o to DESCwIPTOR,
&CURS . 10 if not v, CG3 c:eated DESCRIPTOR '
&LZ - ;20 ° (only wnen KIND is BITES (1,2 or 3) or

GPOINTE® and tne value is in a register). 1f
not 0, leading bytes ot the register are 0.

Component__REG lndxcates vnetner the value is in a regxster or
not (cf Section 1d4.4.1):

.

0 = not in a registert* .

1 through F mean general regxster 1 through 1S -

10 denotes general reqlster 0 :

"11 denotes floatiny reyister 0 .

12 denotes floating rejister 2 Co-

13 denotes.floating rejister U :

14 dénotes floating rejister 6 N j)
Component BYTELENG is used only it the KIND is §BYTES. It ¢an

contain the number of bytes smimus 1 (it constant and. less than 257).

-See componeat CONTROLS'. .], T

variable. In certailn cases, however, the basic. address is defined by

‘comgonent ADDR of the gquantity pointed at by component PC or PS (see

£,

of bytes minus 1 is given im component- .

~

14. CODE GENERATION SYSTEM (CGS) 79

also conponent'COITBOL. ‘
Coaponent EC is used if the value is a constant. It polltl at a

quantlty of structured type 63UBSCR which gives the conltqnt itself
and .its address.))
. . &

i

gg!Eg_gn__g§ has tvo uses.) ’ .

1. If ' the runtime ‘“variable is ‘subscripted (cf compoment
" ADDBCONT), PS points at a yuantity of structured type §SUBSCR
which.contains the basic address and a pointer to the subscript

DESCBIPTOR.v -

v 2. If the runtxle varxable is of type BYTES amd if conponent

control "“anded" with E€BL is not 0, then PS points at a quantity

. of structured type GSUHSCR which contains the basic address and

*a pointer.to .a DESCRIPTOR or the number of bytes lxnus 1. Such
DESCRIPTOHS may not indicate subscriptinq.) ;

Iu 3 1.3 STRUCTURE ECONST ' .
- BYTEY4- VALUE ALT EDDRESS ADDRVAL. N
6DDRESS ADDR) ; :
. . 9 .
A gquantity of type ECONST is used to help descr;be constnnts. The
constant is held in component VALUE or ADDEVAL (if the constant is a
relocateable address). The, address of the- constant is contalned.in
ADDR. If ADDH.AREA and ADDR.OPFSET are both =zero, the anress is

undeflned.
/

14.3. 1.4 STRUCTURE ESUBSCH (oo o
POINTER (DESCAIPTOR) SUBDCR, EDDRESS -ADDR):;

a quantlty of type 6SUBSCR is wused to help describe runtime -
variabkles 'which are subscripted or of .type EBYTES (see below).
Component ADDR contains the base address of the variable. If
subscripting, ESUBSCR points ~to'a VESCRIPTOR of the subscript. If
not suksctipting and the runtime variaple is of type &BYTES, &SUBSCR
[oints to a DESCRIPTOR of the number ot bytes minus 1.

/ R . .
14. 3. 1 5 addtess description and tormat of DESCRIPTORS. This
section '~ describes" just how the eftective address is to be obtalned
from tne basxc address. Component ADDZCONT plays the key tole _here, -
In the tables below, BA specxzxes that ~the bas1c “address is
given. Lty conponent ADDR, .vhileé B indicates that the basic address is-
the register.given by the numper im ADDR.AREA. X spec1f1es a
subscript - its value is jiven by the DESCRIPTOR pointed at by the
" tointer PS.SUBDCR. V*" indicates iadirect addressing. The format

14. CODE GENERATION SYSTEM (CGS) ° : .. 80

[

»

nuaber refers to the‘foriat of the DESCRIPTOR when ADDRCONT has the
given value. The possibleAfor ats are given after the tables. .

.

VALUE OF ADDRCONT AND HEAHING IF KIND IS NOT EBYTES R

alye

O
-
. {p
et

effectxve address 1s

_ {(undefined) :

BA (and the value . is a constant)

BA ' o

*BA '

SEEBA

B

¥R

- %R o . :

/ BA+X . o :

U R (BAX) S
.// - (*BA)+X o : :
C * ((*BA) +X) - L L
“(*R) #X , o - . o
*((*R)+X) - - . . ST

+

DOW» OODAWNE WK - Ol

L

k)Luuu)wiu.aa.g;.d.gu;ka

-
- 2
=
[=1
3]

OF ADDRCONT AND MEANING IF KIND IS &BYTES '

- effectiye address_is-

> _ .(undefined) ’

~ BA (value is a constant)
BA- .

[[]
Ie: -
o

~

*BA) . .
*%Bp - . ‘ \ a _
R

&R C

Ck*R . ' T

SNV E W . ol

EEEEFFEEaLE
o) e
-])

u1mnnu1U|w

Forlat 4 lé used if the number of bytes ninus . 1 is contalned in
con;cnent BYTELENG»,'otherwlse format 5:1is used. :

6, °

Tos

.14. CODE GENERATION SYSTEM (CGS) - . S8

Eossible formats of.a DsscaIProu‘ S e .
ra [suintehnintiahabaieb St e k| o
LT |KIND |ADDRCONT jCONTROLS |BEG | 2 N
bed T —rr - =1 '
| ADDR N A R -
e =1 '
| THEIRS |
Lmiom ----_-—.}U
”
e T ———— T < - type ESUBSCR -
12} JKIND JADDRCONT |CONTHOLS] REG | . pdyp=———=——v 1
Leu ! —eme——m—e oo ——————] I |SUBDCR -|--->
IBS - . R 4 |emm———|
I=f== = -——-mm——-e-- 1 1 ADDR i
ITHEIRS 1 Lom e a——- ——]
==t ettt 4 describes subscript
AN .
DR - A _
. "'-4- . i . : 'f\/
ot - - m——————— -==n type SCONST
131 S-IKIHD IADDRCONT |CONTd0LSj "REG | ¢>pm———m———y
=4 l-—- it - =i | JADDRVAL. |
© 1BC T S -4 |
X | - . == ===l “- | ADDR I
v ITHEIRS . L. | - R
[t ; - fommm e ~-d co e ~
r - f ——mm T ——emmseme—fe————
14 |KINC | ADDRCONT |CONTROLS | BYTELENG |
-4 i-= -~ mmmmmmrmm—mmem
: {ADDR . S R
: j=== -- m--mossemmoo-es ==
{THEIRS =~ cT 1
L= = '» e L e o
s]
£ -fi--'r-"‘a ' type GSUBSCR
151 jKIHD]ADDRCONT |CONTROLS | I | .
t-d jm—mm—- ——m e ———— | | ESUBDCR =]--=>
1BS : : e el i
o j——- ——=- =1 "~ JADDR I
b) [THEIRS oA lemaeee—— 4

Lo e --=-=-------J Jdescribes number of bytes

N - . . : S ”

v

RS S

if T is a table of DESCRIPIOBS, then

et Sectlon 1420 4.2)

DESCRIFTOR.

\.' ’ . ’ | . | | . . ':.‘ ' J
V' 14.3.2 gepérating DESCK ; ToRs '

14. CODE GENERATION SYSTEM (CGS) | . Lo 82

\\“\tbe/QESCRIPTOR is a.structured type, and a' new quantlty of that

type can be generated and 1n1t1a11:ed in the usual{ manner. Hovever .
it is easier and safer to initialjze only componen KIND and use the '
CGS operations to lanipulate the rest. To aid in this, - the . system’

sets. all components to“0 before initializing a new DESCRIPTOR, 'since
zero is the natural initial state for its conponents. For exasple,

(\hT(Z) = DESCRIPIOR(KI!D=SLIBEL) - .

‘puts zn the second element - a DEbCRIPTOR ot a label ulth‘én.nndetined

a@dress. 1f P is a POINTBE variaplae, then .79
, - BV (KLND = auux) L
&)

allocates space for a uev DEbCRIPtOI ot kind GHHI,
conponents to zero, and puts tae address ot the DESC

IPTOR in P.

' DESCRIPTORS may also’ be Jenerated using the '¢specfunc> &ALLOCF

14e 3.3 def1n1ng the hasac address (BA)’

veral

Once colponent KIND is’ detxned, there. are s !
that

tilling in the ©basic .address. Belov, ‘we assum

1. If the DESCBIPTOR defines a' label or procedure, use “it in
code brackets = (cf Sections 14.6.4. ‘and 14

CODE (Dz) . ,

2. If the runtlle varidble is to be in _a DATAAREA, ‘use the
<specproc> EALLOCP or the. <spec£unc> [3 LLOC?.; Example:
£ALLOCP (D) o

o

3. If the runtime variable is external .to thJ ptbgfaly bﬁihdi
compiled, use the EEXTLEEN <Syecp;oc> (cf dect;on 18.3.6) .

Example: ELEXTERN(D).

4. If the address to be sed 1is alteady/ knovn, . use the
<specproc> EASSIGNAD ' (c: &Sectlon 1“.9.013).._ Example:
SASSIGNAD(D,SDDRESS(1,0)) (addr 55 of CODEAR!A 1. - -

14.3.4 defining the effective address_(EA}

Besides the basic address, the DESCRIPTOR can indicate indirect.

addressing’ and subscripting. The fihal address is called the
effective address (EA). This Sectlon describes vwvays of indicating

\

‘ X . L \

6.7} . Example:-

cts-'aii othef -

e e e e p——T

Tu

e s et i U WA Ve

LA

A

N\

. 14. CODE GEMEBATION SYSTEM (CGS) _ - .83

oA TR
effective addresses.

. It is*important to realize that the operations described here

may generate code. For exaaple, if an operation asks for

subscripting for a DESCRIPTOR ot a &BYTES variable, code must " be

.generated . to calculate the effective address because DESCRIPTORS of.
§BYTES variables do not allov subscripting. In general, CGS tries to

postpone code generation” as much as possible,‘'since this usually
;rcduces better cude,) N o g o

Sectlon 14, 3. 1. 5 indicates, tor each’ ‘type of runtlle varxable,s’

what kind of address;ng the uE:LRlPTOB can desct;be.
!’» : ’
'1u.1.h.1 specifying suhgg;;gting. Syntax.

<DESCR exp> . u= CDESCH expl> { <DESCR exp2> }

£ | <DLSLR expi> (<expre551on>)

' Semantics: A new DESCRLPTOR is yenerated. All of its components

except those which help define tne etfective address are identical
to those of <DESCR expt>. IIf EA is the effective address. of <DESCR
expt>, then the effective address ot the new DESCRIPTOR is found as
follows: i [L) o .

 Case 1: <DESCR-exp2$ is present. The effective address is
EA + (funtime value descrined by <DESCR exp2>)

,Case~2:'<éxpt> is’ present. <expr> is evaluated apd assigned to
an internal FWI variable I (say)..Then the effective address is

EA ¢+ I.. - . S

This may cause code to be jeneyated..This depends on whether or not
the nev effective address can be described in a DESCRIPTOR. If
<DESCR expl> is a CGs DE»CRIPTOR, 1t lill bo released it posslblo
(cf ‘Section 14.8).

Exanples. D1(p2) - D1(1) . D1(2)(btx) is equivalcnt to D1{2+6%I).

-

140344, 2 §é§siixisz__;inﬁi:sez;.;ﬁg%iggz%ns; THe folloving
address nq. T S

*<specfunc> is used to specity indirect

——————— e e e e e

N s
‘+) €INDIR (<DESCR exp> , <expression>]) |

L --------_---——--“”——---—J

The value of this function & signutor is a structured value of type
DESCRIPTOR. All components, exgept those vhich have to do with
addressing, are the same a% those of <DESCR expd.- ‘If BA is the

"effective address of <descr exp>, the effective address of thor_pov

DESCRIETOR is - .

CONTENT (EA} .

7

14. CODE GENERATION SYSTEHM (CGS) S O 1
4 N . ‘ . _ Lo

If gaxpressxon) is ptesent, it iIs assiyned to conponent KIND: of the

—

'vneu BESCRIPTOB.

This may cause code to De yenerated. Thxs depends on.uhether'of_

not the new effectlve addreSS can bpe desc:;bed 1n a’ DESCBﬂPTOR.u

If <descr exp> is ‘a &3 DEbL&IPTOR, it Hlll be reled%ed if

rossible (cf Section 14.8).
Examples. GINDIE(D). ’ ‘ T
&INDIR (D) (5) (indirect addressxn, tolloued by subscrlptlng).
EINDIR (D(5)) (subscrlptxng folloued by indiTrect addressxng).

L e ' , - . O /
TT— . . (_'k - P /

Futs the effectxve address of ‘the. DESLBIPTOR <DESCR. exp) 1nto"thef

DESCRIETOQR - <deseination>. Onl; the address-describiwg c01ponents of

<destination> //hre . changed. Examples: . EASSIGNAD (D1,D2) . .

SASSIGNAD(DI, EINDIR (D2) (1)) . - o - N
v R ‘ D - ‘ EEE 1 .
1u.3.u. 4 forcing code_to _pe -jenerated, The functions described

in Sections 14.3.4.1 - 14.3.4.3 may cause code to be genarited. The-

following <specfunc> indicates 'that code Agst bé generated (if
possx?lg) to calculate the ettectxve addtess.-

<

S - -------—---1

‘ R _ T
e | EEACALC { <bESCR exp>) | K
L - -—d

, > ' . . N . B R e

The resulting value. "ié a - DBSCHIETOR .which has- all the
characteristics of <DESCR exp> wicept that ‘the EA specifies no

subscripting " and at wmost Jhe level of indirect-addressing (the -

ddd:osl is ln a rogl:tor or 1- BeRmorLYy)~ _”;/;“ : S

. - . . _ A . :
. 103eS ugiay a__effective address 3s a value, Execution of
the <specfunc> B [o T

L e c e e —— e e - ————
L | CEAVAL ((DSSCR .lpt) ||
= - - -
. yiolds ‘ DESCRIPTOR with (Ilb &POIITII. The value it describes is

the cttoctlvo .ddrols o! tho <DEsCR oxp). This lay causo code to be

goncratoc

Lo

BT —

- . L : .- L
oo 14. CODE GENERATION SYSTEM (CGS). .~ = - =00 85
¥ N o R ' T L L& - : =

N ' ’

) . PRI i L - -~
- The <specfunc> 3 ‘ N * e
. S~ e fm e e ;--_;;--5 S .:'.w”ﬂ_xn -
(AR . [EADD (- <nzscu exp> 7o U B

.t s) ' ———— ————d

yields ah GDDBESS'value: vhichf is- tne"addrésé coi;aich in, the
DESCRIPTOR <DESCR exp>.) o T) T

- s "' .) e » L
14.3.5 “the I;ngth of . 8BYTES vari&bles e

. The <specfunc> ELENGTH is used to indicate the nu.ber of bytes

P

(lxnus 1) .in a GBYTES ruﬁtlle vquanle. Its syntax is

1

RS-
. . . ---‘--'--‘-‘—‘--»---"‘---1
R ' 1 SLENGTH (<n£scu expt>, <DESCR exp#>) 1 - -
. D et e e e e e i s . st e e - —— I
. | SLENGTH (<DESCR expl>,” <expre551on> B i
» »'ﬁ- t———-——-——‘-——————— ——'-- - ———J
h N . o - o .

- LR

It produces'e DESCRIPTOR with KIND = £BYTES, The number of bytes
minus '1° .is given by the runtime variable described by (DESCR exp2>

-, or by the current: value of <expresszon>. All ‘other -<cofiponents are

the sare as. those~of <DESCR, expl). -

| = - . ’ - AP
!xalples. 8LENGIH(D1 5) - ’ J e
Glength(81nd1r(d1), 2) o i . :

.) 16.3;6 ruhtiie entty'?oints and exiernql'references
"] Hhen an 05 3560 object module ‘is be eing generated " one can
specify eptry pejnts - bytes within this object module which may be
reterenced by other -object modules - and external references~ -
references to names Wwhich are not in thi§ object module but. which

\ w111 ke resolved by the 0s lxnxage editor just before ruhtile.
//"‘\ X . T
\iv7[- V4. 3. 6.1 Ihe bENIRt <syecH;oc) Ls used to 1ndxcate .ap - entry
’ "poxnt.-Its syntax lS. . o to
T " n ; o . . - ﬂ.
< 1 GENTB! (<DESCR destlnat10n> 0 <STBING expr)).

It is executed as follovs: The DESCRIPTOB Jestlnatxon must have an
effective address of the form '(AREA number,- offset). The STRING
expression is evaluated and assiyned to an internal variable S (say)
fof type STRING(B). The value of S _then becomes the name of the entry
p01nt. . i . .

1

Exalple: Enrnx(ni,'szu') .

i

“14. CODE GENERATION SYSTEN. (CGS) . ° T 86
o - . - U A .)
\

TN -

©

. dU-JLG 2=Ihe §EXTERN.. <syecgroc> is usedatp indicate an external -
reference. The syntax is: . o : L

- "- r 3
- | bExTEiN (<DESCR desﬁlnatlon}

_'[' M - ' .
It is executed as follous- Tne address in- the DESCRIPTOR destlnatlon
pust beé undefined.: Spate is allocated for.a PQINTER variable in ‘the
Current'DATAAREA, if 'STATIC, or VDATAAREA 2 if DYNAHIC At runtinme
this-PCINTER will contain tne address of the external ‘reference, the -
~address of this POINTER_ becomes the-: BA of thes DESCRIPTOR .and
.indirect. addressing. is also indicated.- The STRI¥G expression is
“evaluated and 3551gned to -a variable S (say) with ype STRING(8).
The value of 5 is tfenr the name of tne extermal address. o :

]a.j:Tﬁgenérating DESCsIPTORS for constants \<

i, CbSt keeps a table of DanRLPTo&S.ior constants. “A11 constants,
‘are stored ip DATAAREA 2 - and-only ‘it they adre actually “needed at-
runtimé. - The <following <spectunc>s ~ all yield-a value which'is a

. EqINTER to a DLSCRIPTOR forp a constant:

'..r“'"‘“""-——"‘““-"“““"““"“_“'"“"'“,1 y
p © 'ECON [<ex9r°)“ <expf >, |
T et 1
| 6CON { L<expr0>] <exprl> <expr2> <expr3> DI
| e e e e e e |
: . §CON” e <8DDKESb exp) B R)
Lmm e = i i - ot e e s e A e o . S e o e 4

(' . ‘ R ! h : - . L .- i ‘-t . : -

The "derault cptlon for <expyr0> in the f1rst two cases is GUNDEF. In -

" vthese two cades, <epxr9> is evaluated and assigned to an internal

4

BYTE variable I (say). The value of 1 then becomes the KIND of the
DESCRIETOR being-created. The constant. itself is then»evaluated."In
the r~tirst - case it is <expri>; in the:second case, <expri> 1s th

" integer pakt, <expr2> the fraction, and <expr3> the - -exponent. ¥ (al

tnree must - pe” 1nteger—vhlued and the signs of <exprl> and <exprz>

.must ke the same). The constant is tnen ‘converted to the KIND”of the
- new. DESCRIPIOK and inserted im it (1f KIND = EUNDEP, the KIND is
: chan,ed to tke KIND of the constant.) Co

In the thl[d case, a PUINTEn to a. DEbLRIPTOR of a SPOINTER constant
is generated; the value of the constant is the value of the <&DDRESS
exg>. - Lo, : : ' .

Ekamhles: to ‘create a DESCRIPTQR’ag tne .constant 1.23x10-6 use
‘acc'mm 23%.000001) or z,couu 23,-6). '

Io create a doubleword constant ror it, use

) :yte 1n the current CODEAREA, use . ey

. vfu.u; Rubtime registers and their descriptions

&

U GCON (6DMF,1,23,-6) .

T0 create a constant whose valie is the address of the next free

"~ §CON (6DDRESS (CODENG, &CODELOC)) o . ok

..

.kGS malntaihe descr1pt10ns of -the .contents of the quntlme reglsters
" las code is peing generated. The description of a register -consists)
‘mainly of a pointer to the DESCRLPTOR of the value in the ‘register’

'

.and some status bits which indicate. how the register is being used.

For example, if the statement p = CODE(D+5} is ‘ekecuted, code

, is *generated to add 5 to tne value described by the DESCRIPTOR D, a.

"t4. CODE GENEBATION SISTEM (CGS)- . S 8T

new DESCRIPTOR D1 {say) 1is jJenerated to describe -the. resulting-

value, ‘and ‘the address of D1 is stored .in P. Suppose’ the resulting

_runtinme value is in in general- register 5. Then the descrlptlon for

:eglster 5 will De changed to point to Di.
’ I
" The compller Hrlter can leave most of the reglster handllng to
CGS, - or he can make full use:of the fac111t1es described in th1s
section to do his own teglster allocation. N , '

© 14.4.1 register numbers and hames.’

Syntax: : H
<register no> ::= <BYTE expressxon)
‘<register name>.::= EGREG. | EFREG | EREG(<express1on>)

®

Semant1c-. The,registérS'ate nulbﬂred as follows: N

1 - gyeneral register 1
2+ general régister 2 .
F

- general reglster 15
10~ geheral register 0 T~
" 11- floating register
1Z- floating register
13- floating register
-14- tloating reyister

oOENOD
s
3

- In certain contexts, the systen names EGREG and EFREG denote a
general’ reglster and a floatiny register, respectively. The precise
reglster to use is plcked by CGS. Also, the construct GREGLI), vhere
1 is”'a 'BYTE expression, -is used to denote reglster Iino certaln
contexts. . . .o -

~
.

L4 . .
14.4.2 general - runtime register usage

.

14. CODE GENERATION SYSTEY (CGS) =~ - ‘- 88
‘ o ' .) .I‘ toee . ._) .

* CG5 uses the usual 0S 3b0 susroutine linkage <¢onventions. .4
compiler °~ writer need. not tollow them, :but it is better if

cenventions are followed. When not actually linking, . these linkage .

rejisters. can pe used for other purposes. The table below gives a
brief explanation;.a more complete description may be found. in the
~IBH SystemlBoO Operatinq System , - Supervisor and Data Hanagement
Services 1Form C28—66461, pd,es 3 - 16. : .

n

In'. adiition’, CGS reqﬂlr%? TWOo to three addltlonql registers ‘to -
ke uaed as base reyisters at fuptine. These ‘contain the address of
DATAARFA . 2, the address of tune.current DATAAREA (if not 2 and if
reyister 13 does not hold -it), and- the .address’ of the «current
sutroutine {(or main progran). ' ’ :

-~

reiis

ister use - o
0 temporary or llnxa,e. garameter. ‘Not restored.
1 temporary or llnna,e.~pdrameter or address of a !

ks

. parameter list. Not rebtored.
2=7 temporary. Restored.

- © 8 tehporary or used t yrovlde addressablllty for
- .. instructions (see 'Felow). Bestored. . -
-9~ address of a suppro,ram beiny xecuted (usdélly)'tﬁe“
) address of a CODEAREA). Hestored. -
0. temporary. ‘westored. .
11) temporary, 1 if current DATAAREA is 2 or its address is
o in register 13; otneculse address of cirrent DATAARBA.
o . Restored.
12 ‘address of DATAAdnA 2e uestored. ¢
13 linkage: address or a SAVE AREA. This- may also be the
" address of a DATAAREA if the SAVE AREA is part of it.
: Restored. ‘ SN ' - .
‘14 = temporary or linkaje: return address. Restoreg, -
' 15 _ temporary or linkdyje: eatry point when calling a

proyram.. Not rescored.
Floatlng reglsters dre not restored) w

Those ‘registers narked ggggggggl may be used.for any purpose. qun
return from a subprogram, those reyisters marked restored (reg 2-1u)
contain the same values they coantained just before the subprogram

was called. . o o ‘

- The prohfgm of addressinj more than 4096 bytes of instructions.
is 'solved as follows. KRegister 9 always contains.the base address of
the suhyro;ram beLug executed. If the code beimng executed ‘does not
lie within 4096 bytes of tliis addiress, register 8 contains the base:
address - of- the subprogram plus the multiple of 4096 bytes which
gives the executed instructions addressability. Each branch is a
single -instruction. If the 1n=g¥uctlon being- branched to-is not
addressakle,~then an indirect braacir will cccur.” For example, the

dlagram kelow shous a branch.to laoel C; e

s 1
N\

PR

' 14. CODE GENERATION SYSTEM (UGS): ; v - 89
CuﬁEAREA an alvays-addressable AREA .
L TTEEEERE e T b
|) A [!
! | 4096 BYTES | ====-- >} LA 8, CODEAREA*“Ogﬁ e
- i T B C ===y el
R | 1 T]
| . |
=>C: ' |
4096 BYTES |
|

1
|
|
i
|
L

It is best to use reglsters 0 and. 1. on a short- tern teaporary basis,
51uce these reglsters are used orten tor paraneters to subprogramse.

. \
14.4.3 register descriptions

At any time .during codp,;eugratipn there is a - set of current
reyister descriptions which describe the. funtime state of the
registers. after the last instruction entered in the'current CODEAREA

- has been. executed. As new instructions are generated,_these register

descriptions are changed to -retlect . the. cliange in- the runtime’™

.machine. There may be several set3\ot reglster -descriptions at-any

time; when talking about rejister descripfions in. general, ve mean
the current register descriptions unless otherwise stated.

. A register descript£6h4consists essentially of a pointer to . a
DESCRIPTOR of the value ~in the. register and some "status" b1ts,
These status bits are explained 1n tne follovlng table. ’ .

-

status meaning f L. -
0 The reglster is ggggzy (nothing in it). .
1 " The register is §USED. This means that it vas

formerly &NEW (see pelow) and the~ ‘'value in the
register was used at least once since being put in
the register. A USED value may be'fdiscarded (not
‘saved) if a reyister is meeded. C
2 . GSAVE the value in- the reglster until furthgr
’ . " notice. If the reyister 1is needed for something ’
) .« 7 ‘ else, the value must be ,saved; if its -DESCRIPTOR
’ : ‘contains an addresa, thlS location will be used,
C othervwise CGS assiyns it a temporary location.
3 "The value is tNEW. Once it is used to generate code
it. will be switched to EUSED. When CGS generates ' a
new . value " and ‘its DESCRIPTOR, the -register.
containing tne value is set to GNEW.

u . The register is belng used as a EFAST location for
a variable or ‘just cont a value which is not to
be disturbed until £ rth £. notice. For example,

L

14. CODE GENERATION SYSTEN (CGS) -

»
t

registers 12 and 13 are GPAST registers‘(éf Sect;bp

W.uo2) .,)
. L o t _ v
14.6.4 testing register status -
.’Pi;e funé:kohé, each with a single BYTE p;raieter uhiéﬁ is’ a
rejister n“'PEEL,tESt the status oz the regxster specifled-
v <specfunc> o N value is PALSE - g
N\ unless status is
| §1SENPTY (<register no>) ..6EMPTY | ,
| 51sUSED (<register no>) - GUSED |
| B1SSAVE. (<register me>). ESAVE |
|_sIs'm-:u (—:regis;;;-no>)TENEH -‘| ‘
1 TeTsrAsT (<register mo>) oPAST 1
\mmm e S e e mm mmm e '
S
14.4.5 genenatxng code tolgung reglst;rs .
Hhen CGS needs a new rejister to hold a Tuntime value, it looks

at the, current

- 90

register descriptions and uses one vith the lovest

status. (This is conpllcated somevhat by the fact that at times .
evgn-odd register pair is needed,. put we won't go into that here).
The following table indicates wnat ~nappens to .the value .in

register chosen,

L d -

rejister chosen “"disposition ot the old

has_status valye in the_register

0 (EEMPTY) - i

1 (SUSED) the old value is lost

2 (£SAVE) if the DESCHAIPTOR associated with the.

. h 4reg1=ter value has. an undefined addresSs,

assija it an address. Then if the value
not a’ constant, generate 1nstruct10ns to

" - : ‘store tne value. : .

3 (BUSED) . same as tor &SAVE. ’

© 4 (8FAST)

'

never dumped in this msanner.” A &FAST

an

the

is

~

é

re ister can be .used for a difterent.

purpose only if its status is changed.

When a reglster 1s dumped~ toe re,xbter descriptlon status is set to

SEMPIY.

The comgiler

% ‘

ot

writer may eszicitly'ask that code be qenerated

12

14. CODE GENERATIUN SYSTEM’ (CGS) S e 9y

‘

tc store S'register-lThe.<specgroc>. - ’ S
. - N . J‘_ . . . r
- - - ’ \/

- - -——n

r . . a
| EDUMPREG (<reyister nod>) |

%F

" does thlssfothhe register speécitied. The statement is ~executed as

given 'in: the alove table. Note that EFAST" reg;sters may not be
dumpéd. - . S .

14.4.06 generatxng ‘code to load and use«reglsters

.

The :eglster ‘name’s EFAEG bGREG and 5REG(<expressxon>) may
apgear on the lefthand 51de ot an assxgnnent statement uxthln code

brackets. For exanple,

.

CODE (EKEG = D) - n ,

is valid. The nLLpose of this statement is to generate code to load

a value into a reyister. The execution of _this statement is
IBxpljined in detail in Section 4.6.2. i

A reyister name SREG({re,ister .no>) may also appear in a

runtime -expression within code brackets, to indicate that the

fgontents of that reyister is to be used. See Section 14.5. ¥

1

‘1#.“ 7 alg erlng reglster debccxptxons } . : /

ulthcut gene}at ng code. For example, aftér generating code for a
tunction call,‘lt nay be necessary to -tell CGS that the value of the
functicn is in teg1ster 1.

oy, 7.1 chanqxng the status to GEMETY. Tﬁe <specfunc>

r

changes the descr;gtlon of the register speczfzed to §ENPTY. The
DESCRIETOR of th value in the -register 1s changed to reflect the
fact that it is no longer there and is then 'released if possible.
The valie of -the { function jis a POINTER to” the DESCRIPTOR of the
value (0 if destroye or there was nonea) : i . .

4. 4.7.2 chanqlnq the status to other than SEHPTY. Execution of

The <specproc>s

r 3
| EUSED(<register nod). |
|=-— I
. | GSAVE(<register nod} |
‘ o === -~

retxmes necessacy . ;o alter a register description-

':change the status of the cejxster - to .the desired .status. The

14, CODE GENERATIUN sYSLEM (CGS) © /- . T 92

ENEW (. <reyister nod>) '}

| &FAST{ <reyister- no>) |

Ll - - e e e - -

frevious status must not have been bEﬁPTY." -

c

14. u 7.3 1nd1cat1ng that 4 value is 1n a reglster. Executioh,of
the (speciroc>s : . A

e e e i o g .

| 6USED(<reéister no>, <DESCR exp))]
. A | T
L N GSAVEI <re,ister, no>, <DESCR" exp>)|

. | ENEW (<re,1gtec n0>, <DE3CR exp>) | S
4 ‘_————-————_—--—-_————---———————-ﬁ—_—l

| &FAST(<rejister no>, <DESCR: exp))l)

. ""f‘°""f1'77"“““"“ﬁf """

ST /

pecforess the following) Tae s;atgment 5ﬁﬂPTY(<register. no>) -is
exectued, enmptyiny register ‘<register nec>. Tle status of - the
register 1is °~ then cnanged to the desired ‘status (procedure nanme),
with <DESCR. exp> bexng the DESCKIPTOK of the value ih- the reyister.

Notice thnat ausolutely no cude is 7Jencrated . by any of (the
‘procedures or functions describea in this Sectionm 14.4.7. The only

_wpurpose is to change a register descriptions

v

1H 4. 8 sav;ng and restorlng reg; ster déscriptions.

f It is oftenradvanta;eoub to save a set of register descrlptlons
for later use. For example, fewer instructions .may be generated for-

a conditional statement if one indicates that the contents of .the
registers are the same at tne bejinning of 'the: THEN statement ‘and

.the ELSE statement. The followin, <{specproc>s are used to manipulate

the set of register descriptions. In all cases, the paraneters P, and
P1 are <dest1nat10n>s of ter PuINTh&

e GSAVEREGS(P). ‘Storaje is allocated for a set of 'régister'

2 descriptions. Tne current register descriptions are

EdN

- S copied into the allocated storage. The address of the
,allocated storaje is put in P,

Za 6US£REGS(P). The set_of regyister descriptions pointed at by
P. dare copied into the current register description
P /5 . areae : . :
{ . .pointed at by P is released and P is set to ZeI0o.

4. &JOINHEGS(P). The Set. ot registe: descriptions pointed at by

-

3. ERESTREGS(P). Same as GUSEREGS, but in addltlon, ‘the storage_

14. CODE GENERATION SYSTEM (CGS) ° . . | .+ 93

= . . ‘.

e P are joined with the current register descriptioms -
) for each register, ir both déscriptions are.the sanme,
e the description reaains; if\{}e tvo descriptions are
.different tne curremt register description is set to
SENPTY. The storaje pointed at hy P is roloased and P

is set to Zero. . 2

S. SJOINREGS(P P1). Join the regxstor descriptions poisted at’
;) by P to those or £1.(as in 4.). Release the storage
~ " _pointed at by P and set P to zeroc. ¥ote: this does
not change the current rejister descriptions. . '
. '6. GEXCHREGS (P). The rejister descriptioas pointed at by P
P becone the curreant rejister descriptioas, vhile P is
* changed to point to tae provxpus Curreat oaes.

- Hhen the current regxstef descriptions are chauqod, CGS alvays
checks to make sure that all reyister values are comsisteat with
normal usage (cf Section 14.4.2). FPor exasple, :oq;:tot] Ild 9 are
- continually updated by CGS it necessary.

14,5, Code expressions

- 14.5.1 syntax., . o - ‘ .
": {rumprimary> - ::= <constadt> | <DESCR exp> -
’ : | <run variaole>
| 6REG (<rejister ao)]
. | (<runexp>) :
<runfactor>. : = <runprxl¢ry> '
’ | <runprimary> ** <tunfnctor)
BT . ‘t '<unar; op> (runtacto:)
<runexp> .. 1v= <rCuntactocr> *
' ’ ‘ | <runexy> <mult op> <runexp> oY
" | <cunexp> <add op> <runexp> Co
| . <runexp> <bait. op> <runexp>
| <runexp> <relational op> <runexp>
{ <cunexp> AND <runexp> . .
| <runexp> OK <cunexp> T

N

oo 14,5.2 semantics

= -14.5.2.1 runtime primaries, A runtise primary yields a
. PESCRIPTOR of a. runtime value. There are several types of runtime
[Timaries: A : :

- \

<constantd. The DESCRIPTOR ,is:.a DESCRIPTOR for the constant.
This does not necessarily mean that the constant occupies a
flace in storage at ‘runtime. It will only appear in the object

;rogram if actually necassary.h

5§§§g§_2522= These have neenl iscussed in: Sections 14.3 and

)

o el o s

C e
'

14. CODE GENERATION "SYSTEM (CGS) ™ . - -1

N v

T4.3.48. 1. .

«

v<r§n varlable). A <run variable> is a varlable declared to be
valid at runtime. If a primary is both a <rum variable> and a
<DESCR exp>, its use as a <DESCR exp> takes precedence.

GREG (<rggi§ter no_la‘ The reglster specified contains the
value; its KIND is the KIND. of the DESCRIPTOR associated - vwith
the teglster. If no DESCRIPTOR is assoc1ated Hlth it currently,
the KIHD is assuled to be yFWI.

_14.5.2.2 the _operators. The operators available to operate on
runtise values are exactly the same as those available to operate on
compile. time values. The precedence of the operators {cf Section
8.2.2) and the conversion ot operands (cf Section 8.2.3) are. also
the same. The only difference is that evaluation of a <runexp>
causes code to be yenerated for it. This code, when - executed . at
runtise,” will perfora the desired- evaluation. After the code is

-yemerated, a DESCRIPTOR is builp to describe the runtime result.

450 3. 3 gs;ng ede gggggggs_gggggg Eressxons.

Syntax'
CTCESCR exp> 3:= CODE'(<:unexp))

N

Semanticsi Execution of tn;s expression causes cobde- to ‘be

. qcncratld to evaluate the <rumexp> {if necessary). The result As the

DEbCRlPTOR for the runtiae result of the <rumnexp>.

-

Execution of a code statement causes code to be' generatéd for the
runtime _ statements appearinj between the code brackets “CODE (" and
“*)¥. In the nonterminals detined below, the term "runstate" stands

‘tor \":unfxne statement". In general, ‘a -statement : within code

trackets has the same peanin, as a similar statenent oq}side, except

that it indicates a runtlle statement. d
Syntax: - o -
<code statement) 3= COUE ((-<<runstate> ;list>]) .
<runstate> O dae <opén runstate>] <closed runstate) .)
~<open_runstate> :.:: <runlabel definition> <open runstate>

| <open cond runstated>

= L,<runlabel'defjnition>:]
[<€losed runstate>] . |
i

<c9mpound'rupstate> 7\\\\/

<closed runstate> ::

8

14. CODE GENERATION SYSTEM (CGS) . : 95

<assiynment runstate> -
<closed cond .-rupstate>. : -
<procedure run call> .
-<control funstate> B
<procedure control>

.14.6.1 compound runtime statements o T N

Syntax: ' . - i - I
<compound runstate> ::="BEGIN <<runstate> ;list> END-

Semantics: ' j»"conpound runtime statement is used to group
several runtime statements into a single uait, just as a .compouad .
statelent is used (cf Sectxon 9.1). o 3 : —

. "

14.6.2 assignment runtime statements

Syntax. - .
T <assxgnnent runstate) 3= (DESCR exp) = (runoxp)] s R
-) ! | <run-variaple> = <rumexp>’ A
o o S | <re,15terlnale) = <runexp> |

© -, Semantics: code | is EQZHErated to evaluate the <runoxp> and a
DESCRIFTOR for. the result is puilt. Code is then. genorated to store
the result, ependan on u&xch of the above forms aro usod' ’ '

1. <DESCR exp> = <runexp>. "ode is generated to convert ‘the
<runexp> to the KIND of the <DESCR exp> and to stére the result
in the location descrxned by it (the address must be definod).

-2« <run var1ab1e> = <runexy>. Code is generated to convert‘&nd
store the <rumexp> in the <ran variable>. .
3. <register name> (&6GREG. or &FREG) "= <runexp>. An empty
‘regyister is. found; - if Gaecessiry one is dumped. Code*is then
" generated to store the <runexp> in this register. Its status is
changed to ENEW. Code may be yenerated to convert the <runexp>
. tao floating p01nt (inteyer) if necessary, depending om which"

register name is used. ‘

4. <register mname> (BREG(<regyister no>) = (runefp). If the

register status is GEMPTY, we proceed as in (3) above. If not,

code 1is generated to convert the <runexp> to the KIND of the

DESCBRIPTOR associated with the register and to store the . value-
in it The reglster status is not changed. .

~ . .

14.6.3 conditional runtime statements ’ o i -/Q"

Syntaxs) ’
<open cond runstate> "::= IF <runexp> THEN <closed runstatﬁ)
' ~ ELSE <open runstate>
* | IF <runexp> THEN <{runstate>

T M PP E Btra ke evan B S okt 4t e S

' 14. CUDE GENERATIUN SYSTEM (CGS) . . . - 96

\ "

<closed cond rulstate>'-t 44 <runoxp> tH!I <closed runstate)
ELSE <closed runstato) K

: SQlantxcs. Execution or a conditiosal runtime statelenb causes
code to Le Jenerated for it. Execution of this code at runtime . will
peztorn the opoqctxons in tae usual nannor (ct. Sectlon 8:2)%

' zxa-ple- IF DV <= D2 THEN D1 = b2 ELSE GOIF D1

14.-6.4 runtime label detihitions

Syntax' .
. <run11001 detxnxt;on> ;:=-<DEscu exI> .
‘ N I..<DESCR ex?> (0): i
|} <DESCh exo) (<POINTER dest;nation>)

Semantics: The <DESCR exp> must 'eldva DESCRIPTOE vith KI (D =
¢LABEL and with a cocgletelx undefined iddress.’

‘address (£CODINO,ECGDELOC) 7 tnat is, he address of the next
Eyte in the current CODEAREA. Any alredﬂ¥ngenerated references
this label will.
branch instruction. (cf Section 14.6.5).
descrxptxons,are changed as follous., T

Tee -

o 1. 1f the form <DESCB exp) : is
; descriptions are changed as follows.

§USEl registers are set to GEN TY.
'registets'romain unchanged. It is up-to

&SAVE and- &FAST
Rake sure

the.conpller writér to

Cowe

of registers 9 and 8.

Ir a reglster is GNEW an errar message is prxnted. This is

L because the value has not been* ws:d and -it ‘is - probably. a
M nzstake. Lsanslatlon contlnues.. n e

If the form <DESCR exp) (<POINTER destxnat10n>)

2a
the POINTER must jpoint at a set ot register, descertxons. These

ths &éurrent register descriptions and . the <dest1nat10n>
‘descriptions are

becone
is set to). The- prev1ously current reglster,

released. . .

It 15

~descripticas tenagy unchanged.
to make sure tnat’ the descriptions are correct.

" -responsibility
’ ""14.6.5 runzime cbntrol‘stdtemenf$ | ‘oL o
*.. .syntax: ' o ‘ i s .

. <control rinstate> ::= <goto op> <DESCR exp> -

I GOIF <runexp> TO -<DESCR exp)

, N i

It is given he
to .

be fixed up - the addvess will be inserted ip the
The _current 4regxster_-

used, -the current .registér: .

that these registers are
correctly loaded at all pranches to this label. <GS takes care’

: is used, -

‘3. If ‘the form <DESCR exp> (0): Ais',used,: the register
i the compiler vriter's

e oo

. -

14 CODE GENERATIUN. SYSTEM (CGS)_ ~° ~° " - .. .97
.-j /\ x‘.'.“‘ - '~ ‘,“ . N .
L 1 GOIFNOT <runexp> TO <DESCR exp>
Semantics? Executlon or a runtime control staﬁenent causes AanV)
uncondztxcnal or conditional branca to be generated; The <DESCR exp> - . —._ .
indicates ‘where to bramch to. It it has’ KIND " 6LABEL, its address‘)
~need not yet” bé défined. - CGS will automatically fix up the address-
wvhen it becomes defined (cf Sectlon 14.6.6). The * <DESCR exp> nay
have KIND EPOINTER; in which caseé its value is, the address to branch:
to. In any case the address beiny . branched to wmust lie in thc e
CCDEAREA vhere the -branch: occuks. ~ - - . Co

- :) . e : - ey N

With the conditional branchés GOIF. and GOIPNOT, at ruatime the:
tranch will occur if the value of the <runexp> is not zero (rIUB) or

zero (FALSE), respectlvely. A . .

See' Section - 14.4. 2 tor sa discussion . of the. 1lstrnctioQ:ﬁa,j -
actually. generated. CGS tecoynizes and produces better code in c;s T
the <runexp> has the form <runreLat10n> (ct Sectxon 14.5) - :

1&.6.6‘runtimé;pr6cédufe calls

-

- - ™. Syntax: \\77 .
.~ ... ' <procedure run >z:= <DE§CB exp>
| Semantxcs: ‘The. <DESCR exp> must yield a DESCRIPTOR v1th KIND .
"EPROC. Executlon proceeds as follows. s e =
e) 1'\Code is generated to dump reg1sters lu and 15 it necéséary: g

\
S

2. Code is’ genetatea to load reglste: 15 with the address defxned by

< thgy <DESCR exp> (see below), it necessary. A DESCRIPTOR for it is -
b 't ‘and assocjated. Hlth reglster 15, an&\the reglstep status is
S changed to GUSED. C .) J - X . l' . i

3. A BALR 14, 15 or a BAL .4, 1(157 1nstruct10n is ' generated (see
7 kelow) e - . .

-

\ -

'-liuﬁ o If the address in the <DESCR exp> is not- yet defl d, the BALR’
o instruction will . be generated.” When it becomes efined, the .
S effective address can only be. the basic address 1tsel§_(no lndirect
. . -~ N 7 .

addressing or subscrlptxng).

If the<address is already -defined, and has the form A+X,: (*A) *X

or (**A)#f icf Section 14.3.1) where X is a copstant, the address A-
(LA Or ¥¥}) . Hlll be loaded into :eglster 15 and the 1nstructﬁon
| e E BAL 14, value of. X (15) o

e

Qill be éeﬁerated. Otherw1se code is BAEB‘1Q,1? is generate&.

el 1“&6;7 runt’me procedure entries and exits

http://Seiantj.es

. - e

.a¥

! 4. "CODE GENERATION 3YSTEM (CGS) . ’ : 98-
e *Ssyntax: -, - [.
L) * <{rprocedure control) 2= <procedure entry> o
" 1 <procedure-exit> T
.i ... '<irocedure entry> ::= <DE3Cd exp>-: . - L
T <pcocedure exit> :¢= RETUHN - . -

g . . S

“'}, troredure entry p01nt. The <DESCR exp> KEND must be /E§PROC. &CODELOC -

\f Semantlcs: ‘A <proceddre eatry>- defines the .address of a

is'increased. dntil it is a multlple ot 8 {on-a doubleword boundary).

Then the address (ELODENO &CODELOC) is a551gned to the DESCHiPTOR.,

. "In addition,. the reglster cescrlytlons are set as fgllows. o,

f

O reglgters Oﬂ\j SEHPTY . . S
s . register 12 LFAST - contains address of- DATAAREA 2‘ L
' " register 14-GEMPTY L
. register 15 BFAST contains address of the entry p01nt.
" Before executinjy a <procedure entryd>, ‘the 3’;p11er Hrlter must do
the tollcwing. . . ; - e .o

p -

1. Ir-this is not a multlyle entry point in~a procedure, swztch
to a CODEAREA thCh at ttis g01nt is not helng used.p

l.-"
R - 3
L 2. If. thlS is a multlple eutry poiht. in Q proceddre, generaté'
- .. the correct branch around tais eatry poxnt.ii' sl :
e)] P A A
After executlng ‘a <procedure entry), the compller wrlter must do the
%lloulng. : . o e oy
o I 1. Genetate xnstructlons to*gfﬁfg ‘the . relgisters’ inm ~the old
' ’ fSAVEABEA "and to get a new. SAVEAHEA. 7 / - . o
. a "',’ * . .
rx-'_ e 2. Generate 1nstruct10ns to move reglster 15 to reglster 9. .

3. Chan;e the register descrlptlons to. reflect the proper
reglster contents (espeCLall) reglstefs -0,1,9, 13 and 15.)

. / - .

“ 4. Genepaté:minstructlops " to- take .care of the procedure
Raramétets, B ‘ X o -

5. Indicate the new ?urrenE'DATAAéEA, if.applicdble.

Execution of a <procedure exit> causé; the folioulng code to ~be-
gene:ated (conventlonal a5 sungrogram return). C

N L 13,&(13) : restore save area address ,‘ T .
L 14,;12(13) * . return address in register 14 . -
LM 2,12,28(13) » 'reload reglsters 2—42
BR. 14 h " retura ’

o If this is | the dast. Lnstructlon/ to .be- gengrated in this
. procedure the compiler writer snould switch. to another CODEAREA and
cerhagrs DATAAREA. This CODEAREA can pow: be used for another

<

4

gy .

. .

14. CODE GENERATION SYSTEN -(CGS) Co : 997

. : - L
¢ - . .

o . : . . ~
frocedure. .)

e

BN
. S) ’ N - - . N
14.7. Iemporary runtlme stora;e ' : ; L

‘At times CGS must temporarlly store values (for exanple,’ if a

;réglster must be dumped). When this occurs, CGS allocates storage in
“the cucrent DATAAREA, with the aid ot the GALLOCP statement. (cf
.Section "14.2.4)a4 This storaje remains in existence for this purpose

as lonyg as the DESCRIPTOR of the value ddes. When the DESCRIPTOR is

released, CGS will "use the storage assigned to .it for other -

.temporary values.

“1:.8. Whén_CGS_releases DESCRIPTORS - ‘ X

, CGS is continually jemeratiny DESCRIPTORS. If ‘these are
allocated new space, bit EOURS is set to 1, as soon as suchk a
‘DESCRIPTOR is used in. the code. genération process, it can be
released. Should the compiler writer wish to save it, he'should set

bit &NCSAV to 1. it is then his responalblllty to\release it.

A more detalled explanatlon Hlll appear in a later ver51on.

14.9. §2gcit2in3 multiple corelbads) S) !

® Thi$ Section will be completed at a later date.

\‘U " ‘ ' - L

A

.

o . » . .

APPENDIX A. TABLES OUF PERMISSIBLE OPERANDS

M

This appendix gives the ‘types; ot permissable operands for the bimary

and unary ‘operators. In the taples below, B, B2, B3, B4 and BS
stand for BYTE, BYTEZ2, BYTE3, BYTE4 and BYTES(I) (for, some. I,

. respectively. P stands for POIQTER.

EacH‘rou‘réprbsents~a left-nand oLerand, each column a

$

right- *

hand - éperand oOf the operator. Tane corresponding table element is’
either.blank - which means that that particular left-right pair 'is
not: valid-.~- or is 'some typb. In the -latter case, before ther

operation is“perforged the two operands are converted to

type

v

i
»
Lo
\
\
4
!
i
\

i
v

{as - explained, in Séction 8.2.3). 'In addition, the result of the™

1.
3

operation has that type.

\v;;

L

+ BT B2 B3 B4 BS HWI FWI FWF DWF DEC

N _ -
.B1 {HWI FWI.FWI FWI FaI HWI FWI FWF DWE DEC P
B2 |FWI FWI FWL FWI Fwl FWdI FWI FWF DWF DEC P.
‘B3 |FWI FWI PWI FWI FWI FWl FWI FWF DWF DEC P
’ B4 |FWI FWI FWI FWI FWI FWI FWI FWF-DWF DEC P
. BS |FWI PWI FWI FWI,FWI FWI.FWI FWF DWF DEC P
HWI |HWI FWI FWI'.FWI FWI HWL FWI EWF DKF DEC P _
"FWI |FWI FWI FWI FWI Fil FWI FWI FWF DWF DEC P
FWF | EWF EWF FWF FWF FWF FWF FWI FWF DWF DEC
DWF |DWF DWF DWF DWF DWF DWF DWF FWF DWF DEC
DEC |DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC
P JE P P P P ¥ P T 7
UNABY + E1_ B2 B3 B4 BS HWI FwI FWF DWF DEC P

|ET B2° B3 BA- BS. HWL FWI FWF DWF DEC P

/
. X N) /. . ! .
- B1 B2’°'B3 B4 B3 'HWI FWI FWF DWF DEC P

B1 JHWI FWI PWI FWI FWI HWI PWI FWF DWF DEC
. . B2 |FWI FWI FWI FWI FWI FWI F&I FWF DWF DEC
. - . :.'B3 |EWI FWI FWI FWI FWI FAI FWI FWF DWF DEC .
B4 | FWI FWI FWI FWI' FWl FWI FwI FWF DWF DEC
BS |PWI FWI FWI FWI FWI FWI FwWI FWF.DWF DEC
HWI jHWI FAI FWI FWI Fidl HWAI FWI FWF DWF DEC
FWI yEWI FWI FWI FWI FWI-FWl FWI FWF DWF DEC’
FWF .|FWF FWF FWF FWE FWF EWF FWI PWF LWF DEC
‘DWF JCWF DWF DWF DWEF DWF DWFP DWF FWF DWF .DEC
CEC |LEC DEC DEC DEC DZC DEC DE¢ DEC DEC. DEC -- .

@

P P P P P P P e

B

UNARY - - B1 B2 B3 B4 BS HWLI FWI FRF DWP. DEC P

|HWI' FWE FWI FWI FWwI HWI FWI FWF DWF DEC

-

e

st

"

5

Y=

e

APPENDIX A.

’

%

HWL PWI

TABLES Of PERMISSIBLE OPERANDS

"

DWP DEC

o 81 B2 B3 B4 85, P F
\'_l— - _ c g 0 == : _
B1 |HWI FWI PWYI FWl PwI H4IL FWI PWF CWF DEC
4 B2 | FWI FWI FWI FwI FWl PWI ¥WI FWF LCWF DEC
B3 |FWI FWI FWI FWI FWI FdL FWI FWF DWF DEC
B4 [FWE FWI FWI PWI FWI FAN1 Fwl FWE DWF -DEC
BS |FWI FWI FWI EWI FWL FWI FWI FWF DWP DEC
HWI {HWI FwI FWI FwI HWI FWI FWF .DWF DEC
FWI |FWI F¥I FWi FWL FWl FwI FWF DWF DEC
FWFP | FWE/ FWF FWF F4F FWF FdF PWI FWF DWF DEC
DWF |DWF DwF DWF'DWP DWF DWF DWF FWF DWF-DEC
DEC |.DEC DEC DEC DEC DEC DECDEC DEC LDEC DEC
c l 3 v Zf//
'Aj /. B} E2 B3 B4 s HWI FWI FWF DWF DEC
. S) e . e
g | FHF FWF FWF FWF FWF -FWF FWF FWF DWF DEC
B2 | FWF FWF FWF FWF FWF FiF.PWE FWF. DWF DEC
E3) FWF FWF FWF FWF FWF EWF EWF FWF DWF DEC
., . B4 JEWF FWF FWF FWF FWF FWE FWF FWF DWF DEC
BS | EWF FWF FWF FTWF 'FAF FWF FWF FWF DWF DEC
HWI |FWF FWF FWF FWF FWF. FWF FWF FWF DWF DEC
FWI (FWF FWF FWF FWF FWF FWdF FWF FWF DWF DEC
FWF | FWF" FNF FWAF FWEF FWF FWF FWF FWF DWF DEC
v _DWF |DWF DWF DWF DWF DWF DWF DWF DWF DWF DEC
LEC |DEC .DEC, DEC DEUC DEC DzC DEC DEC DEC DEC
By 1 B :
bits operators BITAND, BITOr, BITEXOKR. . .
S Bt - B2 B3 B4 B3 . HWI FWI FWF DRF DEC
I K B E . L N
B1 |B1.<B2 B3 ‘B4 BS B2 B4 B4 BS BS
B2 |E2 -B2 B3 B4 'BS B2 B4 B4 BS BS
B3, |B3 B3 B3 -B4 BS B3 ‘B4 B4 _BS BS
B4 - |B4 B4 ,B4 B4 B4 _B3 B4 B¥ BS BS
BS. {BS .BS BS .BS .BS 'B5 #8S BS BS BS
JHWI yB2 B2. B3 B4 bBS. B2 B4 B4 BS BS -
FWI jB4 B4 B4 B4 .BS B4 B4 -B4 BS BS
FWF| B4 . B4 B4 B4 'BS BY B4 - B4 BS .BS,
DWF |BES BS - BS BS5 BS B5 BS':BS BS BS
DEC-|BS .BS, BS BS B85 BS BS BS BS BS
P L — ‘

.

v

O

" APPENDIX "A. TABLES OF PERMISSIBLE OPERANDS ' A3

‘Exponentiation A**B. If A is HWI, FWI

i
\ \
R

' .

or a blts tfpe-ﬁinﬁ”B is ‘a

positive integer copstant, the result is FWI. Otherwise the resul
is DWF. A and B can have any type except POINTER and STRING. ’ .

-

REM and ¢/, are explained. in seé;idn-e;z.u.-ﬁ

v

\\\g Y. B2
S

|

B2 . {STRING.

'STRING ' |STRING

STAING ;. e o e
- . s - i Lo .
STRING / o

STRING - 7
S I

With the CAT operator, a BYTEZ oHerand is assuned to be an atol, and

the.string of characters 1t represents is used.,ﬂ

S
- §

/
/

~

Py

)
N

. ATOM 10.4

" BEGINPASS 9.6
CALLEASS 9.6 .
CHARMODE 9.8 |
COMPLETE 9.6 .
DESCRIETOR 14.3.1.2
FALSE : 5.3

LO- 71

L1 7.1

12 7.1

13. 7.1

- LY . ' - 7.1

KO 7a1
RN 7.1

R2, 7.1
NOEMODE ? 9.8 n
SCAN : 9.8

. SCANSYM 12.1
TRUE . 5.3

EADD 14.3.4.5
EALLOCF . ;142,422
&£ALLOCP) 14,2. 4.1
EASSIGNAD : C14.3.4.3 -
&BINI " 9.9.3
EBL. 14.3.1.2
EBYTE < 14.3.1.2
EBYTE2 i 14.3.1.2
EBYTE3 14.3.1.2
EBYTEY 1W.3.1.2
EBYTES 14.3.1.2 .
ECLIME 12.6
£CODELOC 14.1.3
&CODENG 14.1.3 -
ECON , 14.3.7
ECONST A _ 14.3..1.3
-ECREATECODEAREA 11,4
ECREATEDATAAREA 14.2.3
£D 4.3
EDDRESS 14, 3. 1.1
&6DATALOC 14.2.2
EDATANG 14.2.2
EDYNADD 1. 2:6.1
§DEC TL14.3.1.2
6DECT 9.9.3 ‘
EDUMPREG 14.4.5
EDWF 14.3.1.2
§EACALC 16.3.4.4
SEAVAL . 14.3.4.5
sENPTY 4.4, 7.1
EENTRY 14.3.6.1
SEACHREGS 1W.4.8

-~ EEXTERN 14.3.6.2
EFAST— 44722

. APPENDIX B. SYSTEM. IDENTIFLERS

&FLPT
£FREG
SEMF

* GPWI
4GREG

BHEXT v
GHNE
GIN
SINDIR

CGINIT
§INLINE -
_ §INTDIC

SISEMPTY
SISPAST
GISNEW

* BISSAVE
5L1SUSED vl
5JOINBEGS
&LABEL.

ELENGTH
§LZ.

GNEG
ENEW .
GNLINE
ENOSAY
LOCTT ,
EORD . e .
E0URS
00T
50UTDESCR

 EPOTNTER

5PROC

EHEG

&RELDYNADD.
GRELEASE s
- RESTREGS

54 VEREGS

ESAVE

Y

§SUBSGR -
&TBIN
&TDEC
&TEXT
&THEX
&TOCT
- &TYPE
. GUNDEP
LUSECODEAREA
GUSED -
"LUSEDATAAREA
&USEREGS

_/ ESCLINE
<

The following

AB

©9.9.3
14. 4.1
14.3.1.2
14,3, 1.2
-T4.4.1
9.9.3
A4.321.2
9.9.1
14.3.4.2
14.2.4.3
12. 6
10. 4)
14. 4.4 -
18, 4.4
14. 4. 4
14, 4.4

T

14.4.8
14.321.2
14.3.5
14.3.1.2
14.3.1.2 -
14.4.7.2
12.6
14,31, 2
9.9.3
14.3.1.2
14.3.1.2
9.9.2° |
9.9.2 7
14.3.1.2
14.3.1.2
4. 4.1
14.2.6.2
9.10 -
14.4.8

1%.3.1.2
16.1.4
14.4.7.2°
164.2,3 > _
1u.4.8

identifiers

are used to .name coapoaents of

¢

"

\

N

e

" system structured types.

. ‘ - -
ADDR o« . T4.3.1.2 :
ADDR P 18.3.1.3 R
* ADDR ¢ o 14.3.1.4 o
ADDRCONT e 18530122 ™
" ADDRVAL " . 14.3.1.3
" ABEA S o T4y3.1.1
BYTELENG | L3
CONTROLS 14.3.71.2
KIND . 14.3.1.2
CPPSET : 14.3.1.1
PC 14.3.1.2
s 1 14e3.1.2
REG 14.3.1.2
SUBDCR - 14.3. 1.4
THEIRS 143,122 ;
VALUE . T 14.3.1.3
1
|
} .
¢
\
>

: APP'ENDIK B. SYSTEM IDENTIFIERS

AS

N

L ’ "APPENDIX C. PROGRAM EXAMPLES L A6
_APPENDIX C. PROGRAM EXAMPLES : '

Ejénple 1. . This exénpie'illuSt;ates basic deciatations, assignment
and iterative statements. It computes and ~ prints

~E

statements
factorial N,for ¥=1,...,10._ . E
N . : A - TN
BEGIN FWI I,N; ,* I and N are Fullword Integers ¥y . C
. I = 1; ’ : .)) - - R
*'FOR N ="1 UNTIL 10 DO ' ' -
BEGIN I =i I*N; _
- EOUT (YFACTORIAL', N, I)
. END;’ o . -
END; . o _ :
. . ¢
- A
. ‘ h
Al [R
! - ‘:-aj
®
!
- ’
| 1
i -
N
— ¢)
,‘\ '
L]
. b
- b8
. c ¢

7)
APPINDIX C. PROGRANM EXANPLES

A-, T 8

Exanple -2 This exalple is a direct tramslationm frol ALGOL inta,CIL
" ot Knuthis algotithm for calculatiny tne day and nonth‘,of_
s+ given the year (cf Co-l\ ACH 5 (April 62), 209). .

Baster,
P
rsocznuns "EASTER (HWI rzna, /'1qput *, A
) KONTH, /*output */ VAR ' . R
DAY) ; /*output */ e :
BEGIH HHI GOLDBNNUHBER. CBNTUBY, GEEGORIAHCORBECTIOH,) .
. CLAVIAN CORRBRECTION, EXTRIDAYS, EPACT; . ’
GO DENNUMBER .= YEAR REM 19.¢+ 1; '~ ' l
) - IF WEAR > 1582 ’ . .
N THEN BEGIN CENTURY =, YEAR // 100 + 1; - . ”\
: GREGORIANCORBECTION = (3 * CEHTUBY) // 4 - 12
CLAVIANCORRECTION = (CENTUR! 16—~
EYTRADAYS =

(CENTUR!—lB)//ZS) /7 3 \
(5%YEAR) // 4 - GREGORIANCORRECTION - 10;)
(11*GOLDESNUNBER + 20 # CLAVIANCORRECTION |
. ‘;- GREGORIAN CORRECTION) REN 30;

If EPACT:<= 0 THEN ERACT = EPACT + 30;
g TF (EPACT

3 25 AND GOLDENNUMBER > 11) OR EPACT
- THEN EPACTQ- EPACT + .1;

EFACT =

|
c L
=24 . o

END 2 . S . \;
ELSE BEGIN EXTRADA!S = (S*YEAR). / ‘4; : T !
‘ EPACT -5 (11-s0LuﬁnuuuaER - asn 30 R "-v\
. END: i / . B B
DAY = 4 - EPACTj o _ A L
IF LDiY¥ < 21 THEY DAY = DAY + 30; . R
DAY = DAY + 7;/‘(ernanays+nhr) REM 73 ST .. V.
g IF FAY > 31 THEN BEGIN MONTH = 4; DAY = DBY — 317END . : ~ - 3
END; . , . o A S . }
- ! ’ B s
e RV R
ek | -
< - 7 - . \ o
! ‘A~ ;\
. N
. .
.
. i
» ;
g H
Vo . ;
. - - {
v “
/‘\ - - -
I "!\s' ~ "‘ ! Rt H

http://E3UNPI.ES

- e give'tq vays of inplenenting this in CIL.

B : .
. R . . .
. > . . - -

'APPENDTX C. PROGRAM EXAMPLES R -
. = P i ;
. . \ s

Example 3. This ‘éxénple ‘illustrates ‘one use of tables, BYTE
varlables and SUBBYTE designators. In JACHM January 1962, Stephdn

“Warshall!'’ gave the following algorlthl‘fdr computing M* =,H¢Ht...*H
if M is a n by n Boolean matrlx.,v ﬂ, .. 3 oL N

v 9

1. set i= 1. . : S C

2+ For all. §. such that #(j,i) = 1 T T, ¢
set H(j,k) "u(j k)_kB M{i,k) for all k. s L

13. zhcrenent i by . _‘ﬂﬂ

4o If i <—‘n, go to step 23 otherulse stop.

-

PBOCEDUBE HSTAR(BYTES TABLE H PRI N)., R o

: /¢ M is 4 table of _records, each of type BYTES(N) (a - .
sequénce of N B-bit 'bytes). N is- between 1 and. 256. .
For I,Jd = 1,...,N, SUBBYTE (M (J), AN - ‘
is’ the matrix element M(J,Ij. and ixli take on. i

e only the values 0 or 1. t/

BEGIN , ‘ " '

F¥I I,J; o . /tI J are FullHotd Intbqers.#/

FOR I= 0 UNTIL N-1, DO /*¥loop on I */) -
FOR J =.A:UNTIL ¥ Do /*loop on J %/ . SR
b suasx;E(u(J),I 1) =1 : AR o
o THEN 4 (J) = M(J) BLTOR M(I+1); i ’ o
END: . o - ' S ‘ o [

EEOCEDURE MSTAR1({ BYTES TABLE M; FWI Nr- .

/% this .is as in the above case. Hovever thls tlne ‘each of the
8 bits in-a byte of a record M(I) represents & matrix
element. Thus the matrix répresented can be 256¢8 by 256*8.
For I,d = 1,u..,N, if K = {(J-1) REM 8 + 1 ! .
then bit .k of the byte SUBBYTE(M(I), (J-1} // 3 l)

- :epresentg'the matrix element H(I,Jd). */

BEGIN : R M _ e “,z S
. RVI'T, d’K Ly - £ -

. BYIES(&) HKSK-‘ L - /t ﬂASK is a sequence.of 8 bytes */
. MASK . X'80U0201008000201'- /¥ thCh is used to isolaté a i<'_

single bit of an 8~bit byte: T
. SUBBYTE (MASK,K, 1) BITAND B
¢ yields “the .value: {0 or not zeroj
of the K+ith bit of the BYTE
7 . e variable B fog K-O,.-., ./
--FOR I-'= 1 UNTIL K'DO . .

Ea . ot o ‘

R

_~APPENDIX C. PROGRAM EXAMPLES
- o,

= {I~1) REM 8;

= (I-1) s/ .8;. Yo -

‘FOR-d = 1 ONTIL-N DO . o
. IF'SUBBYTE (N'(J),L,1) BITAND suaan‘t(m\sx K,1)

. - THEN H(J) = K(J) SITOR n(n

END %

v

W i
. n . e Y
f
b 2
’ ¥
v
5\ s 1 o
N N .
>
-
-
. e £
5
v ¢
[-£4
AN /';
. C e . {
- a
b, . ¢
.
- ,i . R .
1Y

A9

~

APPENDIX C. PKOGRAM EXANPLES U : . ~ 7 A0

. . R .
+¢xamp1e 4. This example. illustrates tne nse of tables, structures
and fointer variables. . We wish to describe ' the symbol tables
necessary to iaplement ALGOL block structire. Blegks will be
numbered; starting with 1, in the order of. their
Llock is open, \ts identitiers will be stored "in table SYMOP. When a
‘block is closed, the records tor identifiers im it -will be moved
“-from SYAQP to table SYMCL. All records for .a bléck are conthuous.~l
takle BLOCK helps to -ndlcate where the records for each block are.
Fo: exarple, if we have so tar parsed

. s
BEGIN COMMENT block 1; L
" ‘BEGIN COMMENT bplock.2;

. g

END
'BLGIN COHNENT DIOCK 3'

the fébles will look like’ - .

STHCL BLOCK .. SYMop ’
ittt R Sunnint TR el ttideied Pt St ¥ ittt v .
lldents*forl | | block 1—--f - fidents forl
| block 24 . [1 1= - " '} block 1}

-1 . (RSl N B bttt B et] | |
A e 4 { t——{-block |- |———— === X
: . L=———i- 2° | ¢=----<->}idents for -
. - B Rt i 4 - }. block 3]
@& © .} block.j=-4 o2, N
) R e e nr I Lt .
b memmd .
’ B . -t I‘ 7&1
The déclarations necessary are:) . . T
'STRUCTURE SYHSTB(/*stfﬂctute s34 SYHOLD, SYuNEH record*/
BYTE2 AT, /*aton for identifiec*/
. BYTE ‘TYPE, /*type of identitier*/ '

"BYTE BLOCKNQ) ; /* 1ock numher in which declared*/
DYNAMIC SYMSTR TABLE 50 SYHUP;: /*table for 1dentlflers 1n open
’ . ’ blocks*/ .

‘DYNAuiC SYNSTR TABLE 99 SYNCL;. /*tanle for ids. 1n’nlosed blockst/

7

1D1NAHIC BLKSTR 50 BLOCK; /*tanle to coatrol biock:structqre*/‘

S&EUCIURE BLKSTR{ ,*structure of BLOCK table record */
BYTE BLOCKNO, /*block numbers/

© BYTE BLOCKSU, /*surrounding block nuaber*/

“ POINTER PF, /*to first record for block*/

) POINTER PL, . “/*to" last record for ‘block (0 if none)t/
BYTE TAB) ; /*0= bloubhln sYnop, 1= S!HCL.‘/

v

BLINS. When a -

APPENDIX C. PROGEAM-EXAMPLES ' v ALY

BYTE BLECUR, BLKLAST; ~ /#curreat block mumber and last block
: - numper assigned- Bath are initially 0%/

"POINTzﬁl{BLKsrR),B; /%*pointer to records of type BLKSTH.*/
FOINTER (SYMSTR) P1,P; /*pointer to records of'hype SYMSTR*/

BYTE AT, TYPE; { " /*jlobal variables. ¢/

The tollovlng should(perhaps be explained. el P'}is; a poinfer<

variable po;ntlng to some structured type record, and.ff ¥ is the
name of some component of tnat structured type, then .

!
1

oo Cpax

is'a reference to the compoment X -or the record pointed at .bys D. Ia
addition, we assume there is a stack operating in the ‘usuwal manner.
LQ and L1 refer to the top and second stack records before the last

matching of the’/ stack vith a production began. RO and’ R1 refer tob

the current top and ‘second stack records. .

Two semantic routinea'_are used-to opeﬁ new ®locks dn& close‘
blacks when entirely parsed: Y

. SOPEN: /*thxs rbutlne is.called when a neu BEGIN for a block
.is scanned, It*adds a new record. for the new . block in
. table BLOCK anrd fixes current block nuamber. =/
BLKLAST- BLKLAST+1; /*fix up the last block number - %y
ENTER (BLOCK, BLKSTR(ELKCUR RO.BLKNO,0,0,0); e
) . s%*add the record fgQr the new block#/ ;7
. BLKCUR = BLKLAST; /%¥fix up current block Number. */ v
SINTIAX; o /¥return to’ produc}xons*/

SCLOSE' /*th;s semantic routine is called when BEGIN END is
s on the stack. It moves the records for this block from
‘table SYMOP to SYNCL and tixes everything up. %/
B = @ BLOCK(BLKCUR), /*save the address of BLOCK .record .
- for curreant block in B.#*/

% IFP B.PP- . /¥if this pointer is. non-zero, we have some, q

THER BEGIN - /¥record to move to- SYHCL. */ e

-91 = TALLY (SYMCL,0,BACK); /*save address of cirrent lastt/
: g /*¥record. of SYNMCL.*/ €
POR P IN SYMOP FROM B.PF TQ,B.PL DO /*move the necessaryt/
ENTER (SYMCL,6C(2)); : 7 ‘/*records from
. : / SYHOP to SYMCL#%/

'DELETE(SYHOE,B,ER); . /*lelete the moved records*/ ,

J BePL: = TALLY(SYMCL,F1}; /*now fix up the block record*/

| B.PF °'TALL!(SYHCL 0,BACK) ; to point to the new records

Lo] IN symcl:*/ . o e

gv €nd; S .

- TAR = 1; . /*the records-.are now in SYH#CL. */ '
»$LKCUB = ELOCK(BLKCUR).BLOCKSU, /¥new current block is the */ ’
SYNTAX; - i /*prevxous surroundlng one., */ e .

.)) - . L R
. ~ - ‘
- . N
b /
r _—
- t ' 2
. : ‘ —
. wf -
Y . ¢ S 2

-~

1

*

“APPENDIX C. PROGBAN EXANPLES
" S L : .

Tvo procedures are used to. enter records LﬂtO the symbol tables
tog look tor :ecords for 16ent1£1ers~)

PROCEDURE DEC; /*thls procedure enters a record for Ldentxfxer
AT"with type TYPE ror block number: .
BLKCUR. */ .
begin pOLnter P: i
P = ENTER(SYMOP, SYHSTR(AT TYPE, BLKLUR)), /*enter the record,
-put its address in P.¥/ |
IF P=0 THEN BLOCK(BLKCUR).PF=P; /*¥tix up the block structure*/

"BLOCK (BLKCUR) . PL=P; >) /*tanle record for thls block.*/

END;.

'PBOCEDURE'fINp' /*this rout;ne looks in block BLKCUR and’

surroundiny blocks; tor an identifier nanmegd AT.

A2

and

.If found, P = address of its record; otherv1se

e T p=0. BLKCUR, AT and P are global.+/
BEGIN BYTE K; . ’
- POINTER(BLKSTR) B; . B
K = BLKCUR /*assume. ve can't- find AT {P=0) anﬂ
' lnxtlallze K to current block nunber*/

WHILE K DO © /*we try current block -and “each
. surrounding block, in succession*/
BEGIN B=a BLOCK (K) ; /*save address of block record*/)
© IF B-TAB | /*ve look tor "the identifier in ‘the records
tecords for-the block - in STNCL if block
/ . is clesed, or SYMOP if open.*/ _',-‘
T@EN P = LOOK(SYMCL.AT, AT FROM B..PF TO B.PL) -
gESE P = LOOK {SYMOB.AT, AT FROM B.PF TO B.PL); .-
Y “IF P /¥if P=0, AT .wasn't in block, ot/
. THEN K = 0 © 7. /%get K. to surround;nq block nunber*/
o ELSE K = B. BLOCKSU /*otheruzse ve jare done - set K to*/

- END; " /%0 to end the NHILE statelnt‘/

APPENDIX C.. PROGEAM EXAMPLES ' 13

'

Exanple 5. This example illustrates the. use -of code brackets to
- generate code. for conditional . statements of the“usual form. We
" assume that IFy, THEN and ELSE are reserved words, that BE and S -are. 1

INTS for Boolean expressioi and .statement respectlvely, and "that

ENDIF is a class name for Syuwbols which cap ' end 'a conditional

statément. The productions used here (we only list the ones

hecessary for lllustratlon) are ')

' IF BE THEN > THEN - ° EXEC SBE SCAN GO BEGINSTATEMENT
THEN- § ELSE > ELSE éxEé STHELSE SCAN GO BEGINSTATEMENT
‘e, ’IHEN.S EHDIP > 5 ENDIF = EXEC SLFEND . /‘Gc'ﬂi@ui'rznxu'r)
 ELSE-S5 ENDIF > S ENDIF EXEC SIFEND /5*.0 ENDSTATEMENT
. . : . ‘

The following semantic routides yenerate. code.for conditional,
statements, without «cariny about the contents of the runtiae
reyistersa We assume the main stack has a component D vhlch can be a‘ : —

Lo;nter to a DESCRIPTOR. .

" SBE: . /*stack céntalned FF BE THEN and L1.D contains a ., o

901nter td a DESCRIPTOR for BE. ¥/ . - . .
0.D = /*jenerate a new label to juap tox/ - ’
DESCBIPTOR(KIND GLABEL) /*¥if BE is false and stack it.*/ - p
_b?%oEErGOIFNOT L1.D T0 ‘BR0.D); /*yeherate a branch-on-BE- falset®/ A .
© /%to the lahel.*y P R
SYNTIAX; ' /*return to productlons.t/ ’ ..
! .
* STHELSE: s¥stack contained THEN $ ELSE. and we assume that the. AN
'3 * c¢code for ,Statement 'S ha already been generated. x/ : .
:;r} RO.D = -) . *jenerate a new label to juap to*/ E
P DESCRIPTOR (KIND=$"_LABEL); /*¥after S5.is ‘executed ﬂstack it.s/ X
’ cons(co ‘B0.Dy; Y s¥jenerate the branch.to-it.*/ . [}
“'CODE {L2.D:). "% 7 y+derine the address of the.label*/ \\-'
. . : - /¥to Dranch to' if BE is false.®/ Lo
’ . /*CGS sets regxster descrptxgns*/ ;
-) i : /*¥to! tEMPTY and fixes any*/)
) /*grevxous branches to the labell */
RBLEmSE(Lz DY; - . 7#label is no longer needed- -Teleser/. b
SYNTAX; . /*Lt, refurn to ptoduct1ons.*/ e
‘» B ». K .
R SIFEND’ /"l staok;contalned THEN S ENDIF'O: ELSE s ENDIF ’
and ve assume code (for statement S has been generated. *
- L2.D.contains ajpoikter to a DESCRIPTOR for an' N
. internal 1afel éor ,statement tollowing ENDIF. ¥/ N
CODE(L2.D:z); /*¥define the address of the label tg, -
. B ' ,branch to if BE is false (or after R
' s ; “tne. JJHEN statement has been - - -
ﬁ/ . T exea;ted). Reyg descriptiomsiset to B
. 'f\\rf ‘ EEMPTY and previous branches te . *
: tapel are fixed up. */ ! :

ERELEASE[LZ D) ;. S '/*release the DESCRIPTOR.*/’

[

"APPENDIX c.‘vnocaxu\axnaeLzs M .) ‘ ATY
) . > . . ad
SYNTAX; .) /*return to productions.*/
a

The zolloulng semantic routines can pe used in place of,those abdve.
They 1illustrate the use of tne reglster Qescrlptxoné to generate

better gode. In addition to component D, we assume that - the ! main

tack ‘contains' a pointer gogggpent- which will point td'register
escriptions.:) “ -

" SBE: /tstagﬂ is as prevxous case*/'

R0.D = DESKYRIPTUR (KIND=§LABEL); /*as in prev1ous caset/
CCDE (GOLFNOT L1.D TO RO.D); /*as in previous caset/ -

ESAVEREGS (ROLPY “/¥3ave the current reglstec descrlp

tions for later use.*/

SYNTAX; o -// B - I e

STHELSE- /*a=-in previcus case, but EQ P conta1ns a. pointer
s - to registér descrlptlonb as’ they were at the beglnnlng of
* . the THEN statement.*/

“ RO.D = DESCBIPTUR(KIND GLABbL), /*¥as in prGV1ous case®/

-CGDE (GO RO.D); L /%¥as in previous-casexy

SEXCHHEGS(LZ P)) /*savF the current.register descrip
. - tionsf{fror-later use and make the.

[current ones the same as they Here

:) .. - ftor the .THEN statement.*/
EO.P=12%; L - w/*nake sure its stagked ridht. *
CODE(L2.D (0} 2). ‘ /*define label -“but leave’ reglgter

-ELEASE (L2.D) ;) /*descclptlons alone., */

NTAX; : - .

' . . - &,

' SIPEND. /%as in previous case,:but lz.p contains polnter to descrip-_

tions of registers as they were upon the branch dn=false
or the branch atfter the THEN statement.*/ - -
GJOIHREGS(LZ.P). . . /*¥join the reyister descrlptlons v
with current ones, since these

v i describe the only places that’ rnch
’ d to heré.*/ - \
CODE (L2.D (0% z); . : /%.as; betorg, but leave register
6RELEASE (L2.D); ¥ ' descriptions-alone.*/ !

L SYN1AX; w . . i

