

Nuclear Materials and Equipment Corporation

Apollo, Pennsylvania

Telephone GRover 2-8411

Cable NUMEC

MASTER

NUMEC P-39

March 5, 1962

Mr. Morris Goldberg, Director
 Contracts Division
 New York Operations Office
 U. S. Atomic Energy Commission
 376 Hudson Street
 New York 14, New York

Attention: Mr. Seymour Zirin, Contracts Administrator

Subject: CONTRACT AT(30-1)-2389
 "DEVELOPMENT OF PLUTONIUM-BEARING FUEL MATERIALS"
 MONTHLY PROGRESS LETTER FOR MONTH OF FEBRUARY 1962

Gentlemen:

NUMEC herewith transmits the Monthly Progress Letter for February 1962 covering work performed under Contract AT(30-1)-2389.

Major effort during this period has been directed towards the in-pile testing program. Component PuO₂ and UO₂ powder blending trials are being continued as are characterization studies of coprecipitated powders. Also, the alpha boxes for the hot cell are being outfitted, and the Central Research manipulators obtained from excess property for the hot metal-graphic cell are being repaired and modified. The Preliminary Request for Irradiation Services (AEC Form 21) has been approved for the irradiation of the series of short exposure rabbit capsules. Reactor space has been obtained in the Westinghouse Testing Reactor (WTR), Waltz Mills, Pennsylvania. Preliminary discussion with WTR Project Engineers has resulted in approval of the test specimen and general approval of the capsule design.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

A "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The powder blending studies have been continued in order to develop procedures that yield essentially homogeneous UO_2 - PuO_2 pellets from mechanically blended component powders. Autoradiographs of pellets give indication that powder blending by wet ball milling produces a nearly homogeneous solid solution UO_2 - PuO_2 composition throughout the pellet.

The effect of further heat treatment on powder characteristics following 80 minute reduction at $740^{\circ}C$ of UO_2 -5 w/o PuO_2 powders prepared by co-precipitation with 14.5 molar ammonia has been investigated. The results indicate that the surface area of these powders has been stabilized; i.e., that further heat treatment (up to 70 minutes) at $740^{\circ}C$ does not substantially reduce the surface area, nor does further heat treatment (up to 35 minutes) at 780, 820, or $860^{\circ}C$. While surface area was not affected by this further heat treatment, agglomerate air permeability particle size increased five-fold between 780 and $860^{\circ}C$.

Two additional 350 gram lots of UO_2 -5 w/o PuO_2 have been prepared and characterized in order to determine the effect of hammer milling. The progressive changes in the particle size distribution as a result of such milling are now being evaluated.

Particle size distributions of several plutonium (IV) oxalate and plutonium dioxide samples have been measured with the Sharples micromerograph air sedimentation equipment over a wide range of gas feed pressures to optimize conditions for these materials. Feed pressures of 100-125 psig yielded satisfactory dispersion of all powders although some dependence on powder history was observed. Using a feed pressure of 125 psig, comparison of precursor oxalates (aged in an air atmosphere) with their corresponding oxides indicates that particle degradation occurs during conversion. Studies are now in progress using fresh oxalate samples.

Comparative PuO_2 moisture pickup measurements using a recording thermobalance have shown that intermediate surface area ($10 \text{ m}^2/\text{gm}$) oxide absorbs 90% of its equilibrium moisture content after one hour exposure to ambient air at 76% relative humidity; in comparison, high surface area ($60 \text{ m}^2/\text{gm}$) oxide requires 6-7 hours exposure before 90% equilibrium moisture content is attained. From the limited results obtained to date, it appears that the equilibrium moisture content is proportional to the surface area at 76% relative humidity (0.3% equilibrium moisture for $10 \text{ m}^2/\text{gm}$ powder and 1.8% equilibrium moisture for $60 \text{ m}^2/\text{gm}$ powder).

In preparation for alternate peroxide and oxalate preparation routes for UO_2 - PuO_2 mixed oxide, a wide variety of studies on UO_2 preparation have been completed. Specifically, 16 runs have been made using the uranyl peroxide route in order to study the effect of reactant concentrations, feed acidity, and excess reactant level. Two additional runs were made using UO_4 seed nucleation to improve solids filterability and to minimize losses. Four uranyl oxalate preparations were also made using oxalic acid and diethyl oxalate as reactants. Characterization data on these precursor and oxide materials is now being developed. The laboratory scale preparation glove box wherein similar studies will be performed on PuO_2 is in the latter stages of outfitting and checkout trials with non-hazardous materials have been initiated.

Development of alternate methods for agglomerating and shaping spherical PuO_2 particles is continuing. Satisfactory particle shapes have been obtained by a dry ball-mill agglomerating technique. This product has been sintered to a high density at $1600^{\circ}C$, and evaluation is now underway.

Impurities have been found in the cold entrance zone and the furnace tube zone adjacent to the sintering zone in one of the high temperature sintering furnaces. Analysis of a sample taken from the cold zone showed the presence of cadmium, boron, manganese, gallium, and lead. Presumably, these impurities had been volatalized from pellets. Analysis of a sample taken from near the sintering zone showed the presence of molybdenum, silicon, uranium, nickel, iron, and a trace of plutonium. Subsequent spectrographic analysis of the furnace components (wire, tube, grain, and cement) showed that these materials were free of the offending high cross section elements. It has now been established that these materials were present in significant amounts in the plutonium nitrate as received. This is now being discussed with the supplier. The sintering furnace has now been cleaned of all loose powdery material, and molybdenum sintering boat covers are now being used to minimize furnace contamination.

Economics studies on near-thermal reactor systems indicate that plutonium fuel cycle costs are appreciably below uranium fuel cycle costs even when analyses are based on assuming an ideal burnable poison for the uranium systems. This analysis further substantiates previous conclusions that plutonium value is greater than uranium value in such reactor systems. Since a major fuel cycle cost item for the plutonium systems is the inventory charge, studies are now underway to determine the effect of utilizing some inert material such as ZrO_2 in the fuel elements. The

use of such inert material should allow reduction in inventory charge and will not result in reduction in core life (i.e., in MWD/Tonne allowable irradiation) since the irradiation limit is probably determined by materials limitations and not by reactivity limitations. If the results of these economic studies turn out as contemplated, some materials development effort will be directed towards the use of inert materials in fuel elements.

Very truly yours,

Karl H. Puechl
Acting Director
Advanced Materials Center

KHP/lkp

EXTERNAL DISTRIBUTION

U. S. Atomic Energy Commission, New York Operations Office

M. Goldberg, Contracts Division
S. Zirin, Contracts Division
M. Balicki, Research and Development Division
V. Siuta, Research and Development Division
L. Topper, Research and Development Division
H. S. Potter, Patent Group

U. S. Atomic Energy Commission, Chicago Operations Office

B. Anderson

U. S. Atomic Energy Commission, National Laboratories

F. C. Moesel, Office of Technical Information - Washington (2)
J. M. Simmons, Division of Reactor Development - Washington (5)
M. Whitman, Division of Reactor Development - Washington
T. O. Ziebold, Division of Reactor Development - Washington
Reports and Statistics Branch - Washington
F. Foote, Argonne National Laboratory
H. Young, Argonne National Laboratory (4)
E. J. Kreh, Bettis Atomic Power Laboratory
E. A. Eschbach, Hanford
E. A. Evans, Hanford
J. Musser, Hanford
I. D. Thomas, Hanford
O. J. Wick, Hanford
W. K. Woods, Hanford
W. Cashin, KAPL
H. Rizzo, Lawrence Radiation Laboratory (3)
R. D. Baker, Los Alamos Scientific Laboratory
L. B. Jones, Mound Laboratory
Office of Technical Information Extension, ORNL

U. S. Atomic Energy Commission, Contractors

W. O'Leary, Allis Chalmers Manufacturing Company
R. W. Dayton, Battelle
W. Duckworth, Battelle
R. H. Gale, Combustion Engineering
L. H. Matheson, Dow Chemical Company
A. Strasser, Nuclear Development Corporation of America
Olin Mathieson Chemical Corporation
R. W. Hartwell, Power Reactor Development Company
C. W. Kuhlman, United Nuclear Corporation

DO NOT PHOTOSTAT

NUMEC DISTRIBUTION

R. J. Atkins	A. L. Maharam
A. Biancheria	J. Marley
F. M. Cain	O. Menis
C. S. Caldwell	J. Miles
J. Eck	L. P. Pepkowitz
G. Ehrlich	K. H. Puechl
F. Forscher	P. Rey
R. Frumermann	J. E. Ross
H. J. Garber	W. G. Ross
E. E. Garcia	J. Ruzbacki
J. Goodman	J. Scott
O. S. Gray	Z. M. Shapiro
E. K. Halteman	F. Shipko
R. M. Horgos	J. Stoner
R. A. Jaroszeski	M. M. Turkanis
L. J. Jones	B. Vondra
W. Judd	S. Weber
A. Kasberg	A. M. Weis
H. Krake	Library (5)

DO NOT AUTOSTAT