
5 .  J ALKALI-METAL CORROSION STUDIES 

W .  0. Harms R .  E. IkcPherson 

The purpose of t h i s  program i s  t o  inves t iga t e  t h e  chemical and 

me ta l lu rg ica l  e f f e c t s  produced i n  s t r u c t u r a l  mater ia l s  during exposure 

t o  a l k a l i  metals.  

conta iner  mater ia l s  f o r  sodium-cooled f a s t  breeder  r e a c t o r  (LMFBR) systems 

and l i thium-cooled space power r eac to r  systems i n  which K serves  a s  t h e  

Rankine-cycle working f l u i d .  

engineer ing s c a l e  a r e  included i n  the  t e s t  program. 

The program i s  designed t o  guide the  s e l e c t i o n  of 

Forced c i r c u l a t i o n  loop experiments of 

Wss  Transfer  of I n t e r s t i t i a l  Impuri t ies  Between 
Vanadium Alloys and Sodium 

J. H. DeVan R .  L. Klueh 
D. H. Jansen R.  L. Wagner 

Although vanadium a l l o y s  a r e  highly r e s i s t a n t  t o  d i s s o l u t i v e  a t t a c k  

by Na, they a r e  qui te  r eac t ive  with nonmetall ic impur i t ies  i n  Na, par-  

t i c u l a r l y  with C, N, and 0. 

of t h e  mechanisms by which vanadium a l loys  a r e  a t tacked  i n  N a  a t  impurity 

l e v e l s  t y p i c a l  of r eac to r  s e rv i ce  condi t ions.  Our program i s  concerned 

with fou r  bas i c  aspects  of t h e  oxidat ion process f o r  vanadium a l l o y s  i n  

Na: 

e f f e c t s  of a l loy ing  addi t ions  of Cr and Zr on t h e  d i f f u s i o n  c o e f f i c i e n t  

of 0 i n  V ;  (3) the  e f f e c t s  of Cr and Z r  i n  V on oxide sca l e  formation 
and on t h e  d i s so lu t ion  of t he  a l l o y s  i n  Na; and ( 4 )  t he  s o l u b i l i t y  of V 

Accordingly, we have begun an inves t iga t ion  

(1) t h e  p a r t i t i o n i n g  of 0 between vanadium a l l o y s  and Na; ( 2 )  t he  

i n  Na a s  a f f ec t ed  by the  presence of 0 i n  e i t h e r  metal. 

examining t h e  k i n e t i c s  of carbon and n i t rogen  t r a n s f e r  between vanadium 

a l l o y s  and types 304 and 321 s t a i n l e s s  s t e e l  i n  a sodium c i r c u i t .  

We a r e  a l s o  
I 

I 

Oxygen Effec ts  on t h e  Co'mpatibility of Vanadium and Sodium ( R .  L. Klueh) 
I 

We have conducted s e r i e s  o f  s t a t i c  capsule t e s t s  t o  eva lua te  t h e  

oxygen p a r t i t i o n i n g  c h a r a c t e r i s t i c s  of pure V and Na and have compared 

these  r e s u l t s  with our previous f ind ings  f o r  t h e  Nb-Na and Ta-Na systems. 
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This comparison was of i n t e r e s t  because of t h e  much g rea t e r  s o l i d  

s o l u b i l i t y  of 0 i n  V than  i n  Ta or Nb. 

The experimental system used f o r  t hese  s tud ie s  cons is ted  of a 

vanadium specimen i n  contac t  with Na i n  a vanadium container .  

su l e ,  p i c tu red  i n  Fig.  5.1, was made from 0.75-in.-OD x 0.63-in.-ID 

seamless tubing, and t h e  end caps and specimens were made from 0.060-in.- 

t h i c k  shee t .  The r e s u l t s  of chemical ana lys i s  of t he  vanadium components 

a r e  presented i n  Table 5.1. 

The cap- 

C .- 

: 

ORNL-DWG 6 4 - - 7 i l 5 R A  

0.065-in. WALL TYPE 304 STAINLES 
STEEL PROTECTIVE CONTAINER 

0.049- in. WA LL VAN A Dl UM CAPSULE 

0 . 0 0 4 - i n .  TANTALUM FOIL LINER 

ARGON 

SODIUM 

VANADIUM SPECIMEN (0.50 x i.0 x 0.04 

S 

in. ) 

Fig. 5.1. Schematic Drawing of Corrosion Test Capsule Used t o  Study 0- Oxygen Effec ts  i n  Vanadium-Sodium Systems. - 



89 

c 

Table 5.1.  Chemical Analysis of Vanadium Components Used i n  
Sodium Compatibil i ty Experiments 

Impurity Element 
a 

Concentration, ppm 
Tubing Sheet 

0 

H 

N 

C 

N i  

S i  

T i  

Z r  

C r  

cu 

Fe 

Mg 
h 

1300, 1600 

2 ,  10 

500, 580 

170, 180 
c 10 
80 
40 

10 
< 4  

10 
200 

20 

A 

1900 

c 1  

570 

470 

100 

80 
20 

20 

40 

20 

500 

40 

80 
~ ~ ~~~~- 

a Two values  ind ica t e  dup l i ca t e  determinat ions.  

The vanadium capsule was pro tec ted  by an outer  conta iner  of type 304 

s t a i n l e s s  s t e e l ,  and both capsules were sea led  under 1 atm of p u r i f i e d  

A r .  We var ied  t h e  concentrat ion of 0 i n  t he  N a  of t he  d i f f e r e n t  capsules 

by adding weighed amounts of N a 2 O  t o  t h e  Na and conducted t e s t s  a t  each 

p u r i t y  l e v e l  f o r  500 h r  a t  600°C and f o r  100 h r  a t  800°C. After  t e s t i n g ,  

each capsule  was inver ted  and quenched i n  l i q u i d  N. The concent ra t ion  

of 0 i n  t h e  vanadium spdcimens and capsules  was determined by vacuum 

fus ion  ana lys i s ;  t he  concentrat ion of 0 i n  t h e  Na was ca l cu la t ed  by an 

oxygen mass balance;  the: vanadium disso lved  i n  Na was analyzed by r eac t ing  

t h e  N a  with isopropyl  a lcohol  and spec t rographica l ly  determining the  

concentrat ion of V.  

Table 5.2 shows t h e  weight changes and concentrat ions of 0 i n  

specimens a f t e r  exposure ' to  N a .  Weight w a s  gained i n  proport ion t o  t h e  

amounts of Na2O added t o  t h e  N a  before  t e s t .  A mass balance f o r  0 

showed t h a t  e s s e n t i a l l y  a l l  of t h e  0 added had t r a n s f e r r e d  t o  the  



800 
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i n  which metal concentrations i n  t h e  N a  increase sharply with add i t ions  

of 0 t o  N a  ( r e f .  1). This f u r t h e r  i nd ica t e s  t h a t  t h e  0 added t o  N a  w a s  

r ap id ly  ge t t e red  by t h e  vanadium capsule and specimen. 

One f u r t h e r  d i s t i n c t i o n  between Nb and V concerns t h e  e f f e c t  of t h e  

i n i t i a l  concentration of 0 i n  t h e  r e f r a c t o r y  metal on i t s  a t t a c k  by N a .  

A t  concentrations a s  high a s  those i n i t i a l l y  present  i n  our  vanadium 

samples (1600 t o  1900 ppm 0) ,  Nb and Ta a t  6 0 0 ° C  undergo r ap id  intergran-  

u l a r  a t t a c k  by Na. Vanadium samples i n  t h e s e  t e s t s ,  however, showed no 

evidence of a t t a c k  by Na. We be l i eve  t h i s  d i f f e rence  i n  behavior r e f l e c t s  

t h e  d i f f e rence  i n  t h e  s o l i d  s o l u b i l i t y  of 0 i n  t h e  two ma te r i a l s .  A t  

6OOoC, 1900 ppm 0 i n  Nb i s  above t h e  s o l u b i l i t y  l i m i t ,  whereas t h i s  l e v e l  

i s  only about 20$ of t h e  s o l u b i l i t y  l i m i t  of V .  

I n t e r s t i t i a l  Mass Transport Between Type 300 Se r i e s  S t a i n l e s s  S t e e l s  and 
Vanadium Alloys (J. H. DeVan, D. H. Jansen) 

Shown i n  Fig.  5.2 i s  t h e  design we have adopted f o r  a thermal con- 

vect ion loop t o  evaluate  t h e  t r a n s p o r t  ra tes  of N and C between vanadium 

a l l o y s  and s t a i n l e s s  s teels  i n  a sodium c i r c u i t .  Heated port ions of t h e  

loops are being constructed of V o r  i t s  a l loys ,  and the  isothermal and 

cooled po r t ions  are of e i t h e r  type 304 or 321 s ta in less  s t ee l .  

Brazed b i m e t a l l i c  j o i n t s  are used t o  couple the  d i s s i m i l a r  loop sec t ions .  

Figure 5 .3  shows the  j o i n t  design, which i s  pa t te rned  a f t e r  t h a t  used 

f o r  e a r l i e r  Nb-l$ Z r s t a i n l e s s  s t ee l  b ime ta l l i c  loop s t u d i e s .  

j o i n t s  f ab r i ca t ed  by t h i s  technique have been examined metallographically,  

one a f t e r  four  thermal cycles  between room temperature and 800°C. 

of t h e  j o i n t s  appeared sound, and a l l  passed a l eak  check with a helium 

mass spectrometer. 1 

Several 

All 

I 
lkss t r a n s f e r  r a t e s l and  i n t e r s t i t i a l  e f f e c t s  on mechanical proper- 

t i e s  w i l l  b e  monitored i n  these  loop systems by means of i n s e r t  specimens 

placed i n  both t h e  heated and cooled sec t ions  of t h e  loop. The i n s e r t s ,  

shown i n  F ig .  5.4, a r e  small, round tens i le  specimens (1/8-in. - d i m  gage 

sec t ion )  t h a t  are joined end-to-end t o  form a continuous, concen t r i ca l ly  

posi t ioned rod running t h e  e n t i r e  length of each v e r t i c a l  loop sec t ion .  



OANL-DWG 68-1075t 

LJ FILL-EXPANSION POT 

COLD 
LEG - 

TENSILE SPECIMEN 
ARRANGEMENT IN 

VERTICAL LEGS 

Fig. 5.2. Bimetallic Thermal Convection Loop Designed to Study 
Interstitial Mass Transport Between Vanadium Alloys and Sodium. 

O R N L - D W G  68-(4214 

/ VANADIUM 

NICROBRAZ 200 
UUM BRAZED AT 1150°C) 

STAINLESS STEEL 

Fig. 5 . 3 .  Braze Joint Design for Vanadium-Stainless Steel Thermal 
Convection Loop System. 
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Fig .  5.4.  I n s e r t  Specimen Designed f o r  Bimeta l l ic  Thermal Convec- 
t i o n  Loop Studies .  

W e  have completed t h e  f a b r i c a t i o n  of t h r e e  loops with hot- leg 

sec t ions  of pure V and cold- leg sec t ions  of type 304 s t a i n l e s s  s t e e l .  

Two s imi l a r  loops with type  321  s t a i n l e s s  s t e e l  cold l e g s  a r e  a l s o  being 

constructed.  Operation of these  loops i s  await ing the  f a b r i c a t i o n  a t  

ORNL of developmental  V - C r  a l loys  and t h e  de l ive ry  of Westinghouse 

Vanstar a l loys .  Both types of mater ia l s  w i l l  be used a s  i n s e r t  specimens. 

I n t e r s t i t i a l  E f fec t s  on Mechanical P rope r t i e s  of Vanadium Alloys 
( R .  L. Wagner) 

A s  discussed above , , t he  pickup of  i n t e r s t i t i a l  impur i t i e s  from N a  

i s  a c r i t i c a l  cons idera t ion  i n  t h e  development and use of vanadium 

a l l o y s  f o r  LMFBR cladding. 

tamination may have on cyeep p rope r t i e s  and t h e  d u c t i l e - t o - b r i t t l e  

t r a n s i t i o n  temperature of candidate  a l loys .  

p rope r t i e s  rank very high i n  t h e  l i s t  of e f f e c t s  t o  be  evaluated i n  our 

ana lys i s  of corrosion specimens. To supplement t h i s  e f f o r t ,  we a r e  a l s o  

I <  

O f  s p e c i a l  concern a r e  t h e  e f f e c t s  t h i s  con- 
I 

For t h i s  reason, mechanical 
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planning inves t iga t ions  of t he  mechanical p rope r t i e s  of specimens t o  

which contaminants have been added from a low-pressure (< lo-' t o r r )  gas.  

This p o s s i b i l i t y  w a s  suggested i n  conjunction with absorpt ion s tud ie s  

t h a t  a r e  under way t o  provide oxygen-doped vanadium samples f o r  corrosion 

t e s t i n g .  

with s i n g l e  impur i t ies  from a gaseous atmosphere with t h e  e f f e c t s  on 

creep brought about by corrosion exposures. 

We p lan  t o  c o r r e l a t e  t h e  creep p rope r t i e s  of a l l o y s  contaminated 

Data r ecen t ly  published by H'drz2 show t h a t  above 900°C engassing 

k i n e t i c s  f o r  pure V i n  r a r i f i e d  02 a r e  con t ro l l ed  by the  r a t e  a t  which 

0 2  a r r i v e s  a t  t h e  vanadium sur face  and t h a t  t h e  r eac t ion  r a t e  i s  the re -  

f o r e  d i r e c t l y  propor t iona l  t o  pressure .  

t o  temperatures of i n t e r e s t  f o r  our creep s tud ie s ,  500 t o  900°C. 

We a re  extending these  f ind ings  

Compatibil i ty of S t a i n l e s s  S t e e l  and Insu la t ion  i n  LMFBR Systems 

A .  P .  Litman 

This new t a s k  i s  a two-year e f f o r t  designed t o  guide t h e  s e l e c t i o n  

of containment p ip ing  and thermal i n s u l a t i o n  f o r  LMFBR systems and i s  i n  

d i r e c t  support of t h e  Fast  Flux T e s t  F a c i l i t y  (FFTF). The s t r u c t u r a l  

ma te r i a l s  f o r  t h e  FFTF closed sodium loops,  while not ye t  f ixed ,  w i l l  

probably be types 304, 316, o r  321 s t a i n l e s s  s t e e l  operat ing a t  370 t o  

760°C. A quest ion not y e t  f ac to red  i n t o  the  c r i t e r i a  f o r  s e l e c t i o n  of 

ma te r i a l s  f o r  t hese  loops i s  t h e  extent  t o  which t h e  long-term oxida t ion  

r e s i s t a n c e  of t hese  s t a i n l e s s  s t e e l s  w i l l  be a f f ec t ed  by i n t e r a c t i o n  with 

thermal i n s u l a t i n g  ma te r i a l s  o r  a sodium l eak .  

comprehensive s tudy of t h e  l i t e r a t u r e  and t e s t s  of t h e  compat ib i l i ty  of 

s t a i n l e s s  s t e e l s  and thermal i n s u l a t i o n  i n  a i r  and i n e r t  gas, with and 

without t h e  presence of Na. 

This t a s k  includes a 

* G .  H'drz, Z .  Metallk. 59, 180 (1968).  
I - - 
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Effec t  of In su la t ion  on Oxidation of S t a i n l e s s  S t e e l  ( C .  D. Bopp) 

Years of experience have l e d  t o  r e l i a b l e  i n s u l a t i o n  p r a c t i c e s  f o r  

dynamic sodium systems constructed of s t a i n l e s s  s t e e l s ;  but  most of 

t h i s  i s  highly empir ical ,  and information i s  lacking  i n  t h e  a reas  of 

long-term, cyc l ic ,  and t r a n s i e n t  e f f e c t s .  

Table 5.3 shows some of t h e  t y p i c a l  i n s u l a t i o n  ma te r i a l s  used a t  

ORNL and t h e i r  chemical compositions, b a s i c a l l y  s i l i c a  and alumina. The 

in su la t ions  a r e  genera l ly  manufactured by j e t  b l a s t i n g  a molten mixture 

of minerals t o  produce r e l a t i v e l y  shor t  ceramic f i b e r s .  Spinning pro- 

duces longer  f i b e r s .  By combining d i f f e r e n t  lengths  of f i b e r s  with or 

without a b inder  by var ious  techniques,  manufacturers can produce papers, 

blankets ,  f e l t s ,  ropes,  b ra ids ,  boards, blocks,  t e x t i l e s ,  tubes,  and 

c a s t  shapes. I n  addi t ion  t o  t h e  ma te r i a l s  d e t a i l e d  i n  Table 5.3, a wide 

v a r i e t y  of more expensive in su la t ions  a r e  ava i l ab le ,  s u i t a b l e  f o r  LMF'BR 

se rv ice  t o  760°C. These include almost pure oxides [ i . e . ,  Si02 (Glas- 

rock, Min-K 1301, Ref ra s i l ,  As t roquar tz ) ] ,  porous A1203, and porous 

Z r O 2 .  

Oxidation and Catastrophic  Oxidation of S t a i n l e s s  S t e e l .  - The 

r e s i s t a n c e  of s t a i n l e s s  s t e e l s  t o  mildly oxid iz ing  condi t ions  i s  wel l  

known and i s  a t t r i b u t e d  t o  t h e  p ro tec t ive  na ture  of chromium-rich oxides 

t h a t  form on t h e  sur face  of t h e  metal. Experience and examination of 

ava i l ab le  thermodynamic da ta  ind ica t e  t h a t  i n  t h e  temperature range of 

i n t e r e s t ,  t o  760"C, no r eac t ion  should occur between t h e  oxides of Fe, 

C r ,  o r  N i  on s t a i n l e s s  s t e e l  and pure alumina or s i l i c a .  However, t h e  

presence of low-melting and v o l a t i l e  oxides,  S, and t h e  halogens, 

combined o r  i n  elemental  form, can l ead  t o  ca t a s t roph ic  oxidat ion a t  

t h e  i n t e r f a c e  between base metal and oxide. 

i s  bel ieved t o  be t h e  formation of l i q u i d  or semil iquid phases t h a t  

des t roy  the  p ro tec t ive  oxides.  

One of t h e  poss ib le  causes 
l 

I 

The resul t  i s  t h e  onset of extremely 

rap id  corrosion accompaniied by t h e  formation of voluminous cor ros ion  

products.  Numerous s t u d i e s  have demonstrated t h a t  ox ida t ion  occurs a t  

normal, o f t en  pa rabo l i c , ;  r a t e s  up t o  t h e  melt ing poin t  of b inary  or 

t e rna ry  e u t e c t i c  mixtures ( inc luding  t h e  fore ign  subs tance) .  Above 

t h e s e  d e f i n i t e  temperatures,  oxidat ion occurs a t  a l i n e a r  o r  acce le ra t ing  

I 

I 
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r a t e  and i s  ca t a s t roph ic .  m e r e  a r e  seve ra l  o the r  mechanisms by which 

oxidat ion may be acce lera ted  by impur i t ies .  A common one i s  an increase 

i n  the  semiconductivity of t h e  oxide f i l m ,  which may enhance reac t ions  

a t  t h e  i n t e r f a c e  of oxide and gas .3  

i n  t h e  number of ca t ion  vacancies,  although it has been shown t h a t  a 

Another p o s s i b i l i t y  i s  an increase  

number of thermodynamic va r i ab le s  must be considered i n  t h i s  case.  4 

Though seve ra l  pos tu l a t e s  have been proposed t o  expla in  the  a c t u a l  

d e t a i l s  of t h e  corrosion mechanism(s), much disagreement s t i l l  e x i s t s .  

This i s  not surpr i s ing ,  s ince  even t h e  normal oxidat ion behavior of 

s t a i n l e s s  s t e e l s  s t i l l  has not been descr ibed by a un i f i ed  mechanism. 

Numerous examples of ca tas t rophic  oxidat ion have been reported,  

inc luding  t h e  corrosion of b o i l e r  tubes because of t h e  presence of V o r  

Na i n  low-grade f u e l s  and N a  or S i n  t he  atmosphere. 

a i r  has been found t o  aggravate t h i s  type of cor ros ion .5  

f a c t u r e r s  have long been plagued with extensive cor ros ion  of hea te r  

elements due t o  t h e  presence of impur i t ies  such a s  PbO, MoO3, WO3, V2O5,  

Na20, NaZSO4, and NaCl i n  t h e  furnace in su la t ion .  A t  ORNL, c e r t a i n  types 

of Sauereisen cements containing NazSiO3 have produced ca tas t rophic  

oxida t ion  of type  316 s t a i n l e s s  s t e e l  a t  760°C (Fig .  5 .5) .  

Water vapor i n  t h e  

Furnace manu- 

Oxidation r e s i s t a n t  a l l o y s  t h a t  a r e  p a r t i c u l a r l y  suscept ib le  t o  

ca t a s t roph ic  oxidat ion include types 316 and 317 s t a i n l e s s  s t e e l ,  19-9 DL, 

N-155, Refractaloy B, and 16-25-6 a l l o y .  All of these  a l l o y s  contain 

Mo, and t h e  19-9 DL and N-155 a l l o y s  a l s o  contain 1 t o  2% W .  Both Mo 
and W form highly  v o l a t i l e ,  mobile oxides.  It i s  be l ieved  tha t  t h e  

molybdenum oxide vapors t h a t  evolve on hea t ing  accumulate i n  s tagnant  

atmospheres cause ca tas t rophic  a t t a c k .  

I 

I 

Experimental Approach. - Because of t he  shor t  time allowed f o r  t h i s  

po r t ion  of t h e  program, ,our experimental  approach f o r  determining t h e  

e f f e c t  of i n su la t ion  on jthe oxidat ion of s t a i n l e s s  s t e e l  i s  reduced t o  

an inves t iga t ion  of whether var ious commercial thermal in su la t ions  w i l l  

3J. H. Eriken and K. Hauffe, Z .  Physik. Chem. 59, 332 (1968).  

4 K .  Hauffe, Oxidation of Metals, p. 304, Plenum Press ,  New York, 
- - 

1965. 

5H. L. Logan, Corrosion 17, 185t (1961).  - - 
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Fig.  5 . 5 .  Area of Catastrophic  Oxidation Induced by Contact with 
Sodium S i l i c a t e  t h a t  Produced Fa i lu re  of Type 316 S t a i n l e s s  S t e e l  2- in .  
Sched-40 Pipe a t  760°C. 
products;  (b )  oxide products.  

( a )  Zone of f a i l u r e  a f t e r  removal of oxide 
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induce ca t a s t roph ic  a t i o n .  If we f i n d  , we w i l l  i d e n t i f y  t h e  

impurity responsible .  I f  t he  condi t ion i s  only a c t i v e  during l o c a l  
atmosphere s tagnat ion,  we w i l l  cha rac t e r i ze  t h e  system t o  determine 

preventa t ive  condi t ions.  

A schematic of our experimental se tup  - almost complete a t  t h e  time 

of t h i s  wr i t i ng  - i s  shown i n  F ig .  5.6. Specimens (coupons o r  tubes)  

ORNL-DWG 68-13257 lzma FURNACE 

INSULATION 

STAINLESS STEEL COUPONS 

GAS FLO SILICA TUBES 

/ 

Fig .  5.6. Experimental Arrangement f o r  Determining Compatibil i ty 
of S t a i n l e s s  S t e e l  with Thermal Insu la t ion .  

w i l l  be packed i n  in su la t ion  and oxidized isothermally i n  a i r  o r  o ther  

atmosphere with a given moisture content .  

a b i l i t y  of t h e  in su la t ion  w i l l  be  con t ro l l ed  by compressing it t o  v a r i -  

ous ex ten ts ,  and a i r  w i l l  be forced t o  flow through the  in su la t ion  a t  a 

given r a t e .  I n  o ther  t e s t s ,  t h e  space between t h e  in su la t ion  and the  

specimens w i l l  be varied,.‘ 

oxygen consumption, weight change a f t e r  descal ing,  s tandard metallo- 

graphic techniques,  e l ec t ron  microprobe t r a c e s ,  and/or o the r  means a s  

necessary.  I 

In  some ins tances ,  t he  perme- 

The amount of oxidat ion w i l l  be determined by 

I 

The e f f e c t  of su r f ace  condi t ion - o f t e n  important i n  oxidat ion 

s tud ie s  - w i l l  be inves t iga ted  by pretreatment of t he  specimens. 

a l ready known t h a t  work hardening a f f e c t s  t h e  chromium content (and 

the re fo re  t h e  p ro tec t ive  na ture)  of t he  s c a l e  t h a t  i n i t i a l l y  forms when 

s t a i n l e s s  s t e e l s  a r e  heated. We w i l l  s tudy t h e  e f f e c t  of moisture by 

r egu la t ing  t h e  moisture content of t h e  gas, and i n  most cases  we w i l l  
remove moisture f r o m t h e  in su la t ion  with c i r c u l a t i n g  dry a i r  a t  about 

It i s  
I 
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300°C before  t e s t .  

of t h e  surface s c a l e  t o  s p a l l i n g .  I n  some experiments, we w i l l  s tudy 

t h e  e f f e c t  of s t r e s s  by t h e  use of C-ring specimens f ab r i ca t ed  from 

tubing .  

Thermal cycl ing w i l l  be used t o  t e s t  t h e  r e s i s t a n c e  

Effect  of Sodium on Oxidation of S t a i n l e s s  S t e e l  - Insu la t ion  Couples 
( C .  D. Bopp) 

Because l eaks  are always possible  i n  closed sodium systems, w e  

intend t o  record and categorize t h e  events t h a t  t a k e  p l ace  during a 

sodium l eak  i n  s t a i n l e s s  s t e e l  containment lagged w i t h  i n su la t ion .  It 

i s  wel l  known t h a t  t h e  presence of sodium l i q u i d  o r  vapor g r e a t l y  aggra- 

va t e s  t h e  oxidat ion of high-temperature a l l o y s .  

t h e  f luxing of previously formed p ro tec t ive  sca l e s  i s  a p a r t i c u l a r l y  

d e s t r u c t i v e  mode of a t t a c k .  In t h i s  respect ,  t h e  mixtures with r e l a t i v e l y  

low melting po in t s  (shown below) t h a t  may f o r m  by i n t e r a c t i o n  of N a ,  0, 

aluminum s i l i c a t e  i n su la t ion ,  and metal  i n  LMFBR systems a r e  important: 

A s  previously discussed, 

Components Melting Temperature, "C 

Na20-Fe203-Si02 800 
Na20-Fe203-Al203-SiO~ 715, 728 

Na20-FeO-Si02 667 

Na20-FeO-Al203-Si02 667 

Na 2 0 -MOO 3 510 

For s impl i c i ty ,  w e  have omitted considerat ion of N a 2 0 2  and NaOH, although 

these  compounds could a l s o  form under t h e  proper condi t ions.  

i s  most l i k e l y  t o  be present  a t  lower temperatures (< 550"C), and some 

NaOH w i l l  be  formed i n  moist gases.  

components may lower t h e  melting po in t s  s u b s t a n t i a l l y  below t h e  values  

l i s t e d  above. 

The N a 2 0 2  

The presence of t h e s e  a d d i t i o n a l  

Small Leaks. - I n  t h e  lower range of temperatures f o r  LMF'BR systems, 

a small l eak  may be se l f - sea l ing .  

of t h e  absorbency of t h e  i n s u l a t i o n . )  

less  s t ee l  would be minimized. A t  t hese  lower temperatures, a small 

l e a k  - even if it were not sealed by N a  soaking i n t o  t h e  i n s u l a t i o n  - 

(This p o s s i b i l i t y  would be a funct ion 

I n  such cases the  a t t a c k  on s t a i n -  
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extensive r e p a i r  t o  t h e , a f f e c t e d  areas. I n  any event, corrosion w i l l  

be minimized i f  t h e  l eak  i s  de tec ted  a t  t h e  ea r l i e s t ,  poss ib l e  moment 

and t h e  a f f e c t e d  i n s u l a t i o n  i s  replaced.  

. .  

We w i l l  examine t h e  problem of small l eaks  with t h e  t e s t  device 

shown i n  Fig.  5.7. 

a s t a i n l e s s  s t e e l  capsule containing Na. 

of corrosion of t h e  capsule i s  determined. 

A r  a s  we l l  a s  i n  a i r ,  s ince  t h e  da t a  for A r  w i l l  be  appl icable  t o  i n s t a l -  

l a t i o n s  where an  i n e r t  cover gas i s  used. It i s  poss ib l e  t h a t  i n  A r  t h e  

N a  may r eac t  with t h e  in su la t ion  t o  produce products t h a t  corrode s t a i n -  

l e s s  s t e e l ,  al though i n  a i r  it i s  l i k e l y  t h a t  most of t h e  corrosion w i l l  

be produced by Na2O and Na202 .  

The l eak  is  simulated by unplugging a small  ho le  i n  

Af te r  a given time, t h e  amount 

Leakage w i l l  be s tud ied  i n  

ORNL - DWG 68 - 43256 mf FURNACE SODIUM 

STAINLESS STEEL CAPSULE 

INSULATION GAS FLOW 
c- 

GAS FLO STAINLESS STEEL TUBES 

SMALL LEAK 

Fig .  5.7. Experimental Setup f o r  Evaluating t h e  Ef fec t s  of Small 
Sodium Leaks i n  S t a i n l e s s  Steel-Thermal Insu la t ion  Systems. 

Large Leaks. - It i s  probable a t  higher  temperatures i n  LMFBRs t h a t  

any l eak  w i l l  soon become a l a r g e  l eak .  I n  order  t o  t e s t  t h i s  and t h e  

inf luence of var ious i n s h a t i o n s  i n  proximity t o  t h e  leak,  we are con- 

s t r u c t i n g  t h e  t e s t  device shown i n  Fig.  5.8. I I n  order  t o  s imulate  as 

c lose ly  as poss ib l e  LMFBR and FFTF condi t ions,  we w i l l  hea t  t h e  t e s t  pot  

l a r  t o  LMFBR condi t ions.  1 The sodium pressure  aga ins t  t h e  l eak  (and the  

sodium flow) w i l l  be maintained by i n e r t  gas pressure.  

with an immersion hea te r .  I This  w i l l  induce temperature grad ien ts  s i m i -  

Leak Detection. - Early de t ec t ion  of l eaks  i s  important i n  LMFBR 

systems, and continuous sampling of t h e  a i r  confined by t h e  i n s u l a t i o n  



102 

ORNL- DWG 68- 13255 
STAINLESS STEEL CLAD 

INERT GAS /'IMMERSION HEATER 
PRESSURE 

J/ ,,,,,SODIUM 

STAINLESS STEEL TUBE 

LARGE LEAK 

- IN SU L AT ION 

Fig. 5.8. Schematic of Pot  T e s t  for Determining Ef fec t  of a Large 
Sodium Leak i n  S t a i n l e s s  S t e e l  Containment Lagged with Thermal Insu la t ion .  

may accomplish t h i s .  There a r e  seve ra l  p o s s i b i l i t i e s  f o r  t he  sensing 

device f o r  such a system, but  perhaps a s tandard coulometric instrument6 

s e n s i t i v e  t o  oxid iz ing  vapors w i l l  prove s a t i s f a c t o r y .  We w i l l  i n v e s t i -  

ga te  t h e  s e n s i t i v i t y  of t h i s  method by using it t o  monitor t h e  Na2O 

ae roso l  produced i n  some of t h e  experiments a l ready descr ibed.  

Corrosion of Refractory Alloys i n  Lithium, Potassium, and Sodium 

J. H. DeVan A.  P. Litman W .  R .  Huntley 

Auxil iary e l e c t r i c a l  o r  ion-propulsion requirements f o r  space 

vehic les  necess i t a t e  power p l a n t s  of high e f f i c i ency  t h a t  w i l l  operate  

a t  high temperatures.  For these  app l i ca t ions ,  nuclear  power systems 

have been proposed i n  which a l k a l i  metals a r e  used t o  t r a n s f e r  heat ,  

d r ive  a turbogenerator,  and l u b r i c a t e  r o t a t i n g  components. Accordingly, 

we a r e  inves t iga t ing  t h e  cor ros ion  p rope r t i e s  of candidate a l k a l i  metals,  

6R. L. Chapman, Inst$. Control Systems - 41, 79 (1968). - 



103 

L 

pr imar i ly  L i  and K, under condi t ions of i n t e r e s t  for space app l i ca t ions .  

Because of t h e  r e l a t i v e l y  high temperatures (> lOOO"C), t h e  inves t iga t ion  

i s  concerned l a r g e l y  with r e f r a c t o r y  metal  conta iner  mater ia l s .  

Compatibi l i ty  of Boi l ing Potassium with Refractory Alloys 

Refluxing Capsule Experiments (J. R .  DiStefano).  -We have reached 

a l o g i c a l  terminat ion poin t  i n  our study of t h e  e f f e c t s  of re f lux ing  

K on r e f r a c t o r y  metals.  Accordingly, although two t e s t s  i n  opera t ion  

w i l l  be continued t o  5000 hr ,  we p lan  no a d d i t i o n a l  t e s t s .  A t o p i c a l  

r epor t  has been wr i t ten7  covering a l l  but t h e  most recent  t e s t s ,  some 

of which a r e  discussed below. 

We have examined two W-26$ Re r e f lux ing  capsules which, a s  reported 

las t  quar te r ,  operated f o r  5000 h r  a t  a boiler-condenser temperature 

of 1250°C. The two capsules were of s i m i l a r  dimensions (0.86 i n .  ou ts ide  

diameter x 0.040 i n .  wal l  thickness  x 12 in .  long) ,  bu t  one w a s  f a b r i -  

ca ted  from a powder metallurgy product and t h e  o the r  from an arc-melted 

ingo t .  Both were t e s t e d  i n  t h e  as-extruded condi t ion.  

Our examination of t h e  powder-product capsule showed no measurable 

However, cor ros ion  e f f e c t s  i n  e i t h e r  t h e  condenser o r  b o i l e r  s ec t ions .  

t h e  capsule f ab r i ca t ed  from arc-melted mater ia l ,  as shown i n  Fig.  5.9, 

contained a r i n g  of c r y s t a l l i n e  deposi t  i n  t h e  condenser s ec t ion  about 

1/2 in .  below t h e  top  end cap. 

appearance of t h e  wal l  of t h i s  capsule a t  s eve ra l  pos i t i ons  along i t s  

length .  The depos i t  i s  1 c l e a r l y  v i s i b l e  i n  t h e  upper - le f t  photomicro- 

graph and i s  seen t o  b e , i n t e g r a l  with t h e  condenser w a l l .  The b o i l e r  

wal l  has undergone subsurface a t t ack ,  t h e  depth increas ing  w i t h  d i s tance  

down t h e  b o i l e r .  An electron-probe microanalysis of t h e  depos i t  showed 

it t o  cons i s t  of almost !pure W. Resul t s  of t h e  microprobe scan a r e  shown 

Figure 5.10 shows t h e  metallographic 

1 

7J. R.  DiStefano, Refluxing Capsule Experiments with Refractory 
Metals and Boil ing Alka l i  Metals, ORNL-4323, i n  prepara t ion .  

8J. R .  DiStefano, h e l s  and h t e r i a l s  Development Program Quar t .  
Progr.  Rept . June 30, 15168, ORNL-4330, p. 82. 
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Fig. 5.9. Tungsten m s s  Transfer Deposit in Condenser Section of Arc- 
Melted W-26% Re Capsule Containing Boiling Potassium for 5000 hr at 1250°C. 

Y-90489 

LOWER BOILER BOrTOM OF BOILER MIDDLE OF BOILER 

Fig. 5.10. Metallographic Appearance of W-26% Re Refluxing Capsule 
that Operated with Boiling Potassium for 5000 hr at 1250°C. 
made from an arc-cast extrusion.) 

(Capsule was 0' 



,* < Y 

1 ,  I 

I '  .i 

' $ 5  * 105 p 
t b  i 

* -  
P I  6 ;  

i n  Fig.  5.11. 

which, as shown i n  Fig.  5.12, was depleted of W and enriched i n  Re i n  

t h e  a t t a c k  zone. 

This &plt co r re l a t ed  with,analysis of t he  b o i l e r  wall ,  
* r  

I n  specula t ing  a s  t o  t h e  cause of t h e  p r e f e r e n t i a l  tungsten mass 

t r a n s f e r  i n  t h i s  capsule,  we must account not only f o r  t h e  inverse na ture  

of t he  depos i t ion  ( i . e . ,  i n  t h e  condenser r a t h e r  than  t h e  b o i l e r ) ,  but 

a l s o  f o r  i t s  occurrence i n  only one of t h e  two W-26% Re capsules t e s t e d .  

We be l ieve  t h a t  none of t h e  c l a s s i c a l  solut ion-deposi t ion modes put f o r t h  

f o r  r e f lux ing  potassium systems i s  compatible with our observat ions and 

t h a t  some o ther  mechanism must be operat ing.  Resul t s  observed i n  our 

pure niobium capsules,  reported l a s t  time,' may give a c lue  t o  t h i s  

o t h e r  mechanism. We noted i n  t h e  case of pure Nb t h a t ,  as a consequence 

of deple t ion  of 0 f r o m t h e  condenser regions,  we acquired a small  amount 

of 0 i n  t h e  K i n  the  b o i l e r  region.  Based on Nb-K s t a t i c  capsule t e s t s ,  

t h e  l e v e l  of 0 i n  the  K was s t i l l  f a r  below t h a t  which should have l e d  

t o  migrat ion of 0 i n t o  t h e  Nb or  t o  ser ious  oxidat ive corrosion.  Never- 

t h e l e s s ,  we have observed both e f f e c t s  i n  re f lux ing  systems. This 

s t rong ly  suggests t h a t ,  because of t he  b o i l i n g  process,  t h e  a c t i v i t y  of 

0 a t  t h e  b o i l e r  sur face  l o c a l l y  exceeds t h a t  assoc ia ted  with t h e  "mixed- 

mean" concentrat ion of 0. 

of W a t  t h e  t o p  of t h e  capsule.  

a t  1200°C, t h e  oxygen a c t i v i t y  needed t o  form W02 i s  considerably below 

t h e  a c t i v i t y  reached i n  a s a tu ra t ed  so lu t ion  of 0 i n  K. I f  t h e  l o c a l  

oxygen a c t i v i t y  were s u f f i c i e n t  t o  form W02, it i s  not unreasonable, i n  

view of t he  r e l a t i v e l y  high vapor pressure  of t h i s  oxide, t h a t  W02 mole- 

Such an e f f e c t  could a l s o  expla in  the  depos i t s  

Free energy cons idera t ions  suggest t h a t ,  

cu les  could be swept along with potassium vapor t o  t h e  condenser. 1 0  

Once outs ide  the  region of l o c a l l y  high oxygen a c t i v i t y ,  any W02 mole- 

cu le s  would encounter st'rongly reducing condi t ions.  So long a s  they 

'J. R .  DiStefano, h e l s  and h k t e r i a l s  Development Program Quart .  
Progr .  Rept. June 30, 19,68, ORNL-4330, pp. 7 5 8 4 .  

''A s imi l a r  conclusion could be drawn f o r  thermally s t a b l e  compounds 
of t h e  type Kx Wy Oz. [Gee H. Kessler,  A. Hat te rer ,  and A. Herald, 
"Action of Alka l i  Metal Vapours on t h e  Trioxides  of Molybdenum and 
Tungsten," pp. 46%73 i n  The Alka l i  Metals, Chem. SOC. (London) Spec. 
Publ.  22. The Chemical Society,  London, 1967.1 - -  - 
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were surrounded by vapor, however, r eac t ion  would be dependent on 

c o l l i s i o n s  i n  t h e  gas s t a t e ,  a process s u f f i c i e n t l y  slow t h a t  some of 

t he  W02 molecules ( a c t i n g  a s  a noncondensible) could conceivably reach 

t h e  top  of t h e  capsule.  

occurred, probably a s  a heterogeneous r eac t ion  a t  t he  capsule wal l .  

Oxygen would then  be recycled v i a  t h e  condensate back t o  the  b o i l e r  

region. 

Here they  would remain t rapped u n t i l  reduction 

Whatever t h e  reasonableness of t h e  above speculat ion,  t h e r e  i s  

evidence t o  support  t h e  b e l i e f  t h a t  0 cont r ibu ted  t o  t h e  observed mass 

t r a n s f e r .  

i n  which mass t r a n s f e r  was found o r i g i n a l l y  contained about t h r e e  t imes 

more 0 (about 60 ppm) than  t h e  depos i t - f ree  capsule (about 20 ppm 0 ) .  

A s  a consequence of t h i s ,  t he  l e v e l  i n  t h e  b o i l e r  wal l  i n  t he  former 

capsule increased t o  almost 140 ppm 0, while t h a t  i n  t h e  l a t t e r  capsule 

d i d  not increase  measurably above the  s t a r t i n g  l e v e l  of about 20 ppm 0. 

Nei ther  t e s t  showed any measurable amount of W o r  Re i n  t h e  K a f t e r  

This i s  based on t h e  f a c t  t h a t  t h e  arc-melted W-26$ Re capsule  

operat  ion .  

Natural  C i rcu la t ion  Boil ing Potassium Loops ( D .  H. Jansen) .  -As 
reported l a s t  q u a r t e r , l l  we have concluded a s e r i e s  of n a t u r a l  c i r c u l a -  

t i o n  b o i l i n g  loop experiments designed t o  eva lua te  t h e  e f f e c t s  of bo i l i ng  

K on r e f r a c t o r y  metals.  The f i n a l  loop i n  t h i s  s e r i e s  was constructed 

of t h e  molybdenum-base a l l o y  TZM and was operated under t h e  following 

t e s t  condi t ions.  

Boiler-condenser temperature 1200 "C 

Subcooler t e m p e r a t v e  650 "C 

Condensing r a t e  
, 

R t o t a l  = 42 g/min I 
- -  dR - (0.13 g min'l em-*) 
dA i 

I 
The loop completed 4400 \hr of a scheduled 5000-hr t e s t  run and was 

stopped by a creep f a i l u r e  i n  t h e  vapor l i n e .  

The condi t ion of t h e  loop a f t e r  opera t ion  i s  shown i n  Fig.  5.13. 

Only t h e  upper lef t -hand corner of t h e  loop, where t h e  f a i l u r e  occurred, 

I'D. H. Jansen, m e l s  and f i t e r i a l s  Development Program Quar t .  Progr.  
Rept. June 30, 1968, ORNL-4330, pp. 84-85. 
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Fig. 5.13. Alloy TZM-Boiling Potassium Loop Showing Configuration of  
Mitered Corners. Rupture i s  a t  upper le f t -hand  corner .  

showed any change i n  macroscopic appearance. 

f i c a t i o n  i n  Fig.  5.14, t h e  f a i l u r e  occurred i n  a shor t  s ec t ion  of tubing 

t h a t  joined t h e  ho r i zon ta l  dryer  s ec t ion  t o  the  v e r t i c a l  condenser l e g .  

This sho r t  tubing sec t ion  was p a r t  of an o r i g i n a l  dryer  segment t h a t  had 

t o  be replaced a f t e r  1300 h r  of opera t ion  because of a s imi l a r  creep 

f a i l u r e  under t h e  dryer  hea te r  upstream of t h e  l a t e r  f a i l u r e .  The shor t  

s ec t ion  was l e f t  i n  p lace  because (1) it was loca ted  wel l  away from t h e  

As shown a t  a higher  magni- 
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Fig.  5.14. Fa i lu re  Area of TZM Loop Showing Deformation of Tubing 
Comprising t h e  Vapor Carryover Line. 
a rea .  

V e r t i c a l  l e g  i s  top  of condenser 

dryer  hea ter ,  (2)  it had shown no deformation i n  1300 hr ,  and (3) t h e  new 

dryer  s ec t ion  was m o r e  e a s i l y  a t tached  by not running it a l l  t he  way t o  

t h e  miter  j o i n t  (Fig.  5.’14). 
dryer  d id  c o n s t i t u t e  a weak l i nk ,  s ince  it had l e s s  wal l  th ickness  than 

e i t h e r  t h e  new dryer  l i n e  or t h e  ad jo in ing  condenser l eg .  

term creep da ta  on TZM a r e  l imi ted ,  t he  a v a i l a b l e  da t a  suggest t h a t  t h e  

f a i l u r e  of t h i s  s ec t ion  can be explained by t ime-temperature-s t ress  

condi t ions without recourse t o  a weakening e f f e c t  of t h e  K. 

However, t h i s  sho r t  s ec t ion  of t he  o r i g i n a l  

Although long- 

Weight changes of i n s e r t  specimens contained i n  t h e  condenser and 

subcooler s ec t ions  of t h i s  loop were discussed l a s t  qua r t e r .  ’’ Specimens 

from the  condenser showed l i t t l e  weight change, while subcooler specimens 

gained an average of 10 mg/cm2. 

s e n t a t i v e  i n s e r t s  from these  r e spec t ive  loop sec t ions  i s  compared i n  

Fig.  5.15. Note t h a t  r e c r y s t a l l i z a t i o n  took p lace  i n  both regions with 

The metallographic appearance of repre-  
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Fig. 5.15. Views Showing Ins id  
Liauid-Vapor In t e r f ace ,  About 1250°C 

Surface of ( a )  Boi ler  a t  Approximate 
and ( b )  Horizontal  Vapor Line, About 

1 2 b ° C .  
Etchant:  H ~ O - H ~ O ~ - H ~ S O L + ,  

The m a t e r i a l  in ( b )  w a s  f r o m  a m o r e  recent and purer  heat. 

t h e  exception of a narrow zone bordering t h e  exposed surface.  

examining t h i s  region t o  determine what chemical changes may have occurred 

t o  cause the  apparent gra in  s t a b i l i z a t i o n .  

We a r e  

Specimens from t h e  b o i l e r  and dryer  regions showed no changes from 

before- tes t  specimens o ther  than r e c r y s t a l l i z a t i o n  and gra in  growth 

(F ig .  5.16). Specimen temperatures i n  t h e  lower subcooler region were 

apparent ly  below t h e  r e c r y s t a l l i z a t i o n  threshold,  and these  specimens 

were e n t i r e l y  s imi l a r  i n  appearance t o  before- tes t  specimens. 

Forced Ci rcu la t ion  Boil ing PGtassium Loop Tests ( E L - 8 )  (B. Fleischer,  

C .  W .  Cunningham). - For severa l  years  we have been evaluat ing t h e  cor- 

ros ion  and eros ion  p rope r t i e s  of r e f r ac to ry  a l l o y s  i n  K using forced 

convection loop systems. A D-43 a l l o y  loop with D - 4 3  t e s t  s ec t ion  (FCL-8) 

was t h e  t h i r d  i n  a series of loops designed t o  evaluate  t h e  e f f e c t s  of 

bo i l i ng  potassium l i q u i d  and high ve loc i ty  potassium vapor on niobium- 

base a l loys  and on TZM. 
l a s t  quarter .12 

Operating condi t ions of t h i s  loop were discussed 

During t h i s  repor t ing  per iod t h e  loop was removed from 

12B. F le i scher  and C .  W. Cunningham, Fuels and Materials Development 
Program Quart. Progr. Rept. June 30, 1968, ORNL-4330, pp. 85-97. 
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t h e  vacuum chamber i n  which it was operated and sect ioned f o r  metal lur-  

g i c a l  examination. 

f o r  t h e  next t e s t  loop. 

We a r e  now modifying t h e  vacuum system i n  prepara t ion  

Liquid metal removal. The potassium inventory was drained i n t o  an 

evacuated tank  a t  t h e  end of t h e  10,000-hr operat ing per iod ,  

draining,  t he  loop operat ing condi t ions were ad jus ted  t o  ensure a maxi- 

mum removal of t he  K t o  t h e  dump tank:  

J u s t  before  

1. 

2. 
The b o i l i n g  condi t ions were ad jus ted  t o  871°C and 38.2 ps ia .  

The vapor i n  t h e  dryer  w a s  superheated t o  996°C t o  supply hea t  

t o  t h e  t e s t  s ec t ion .  

3. The r a t e  of heat  removal t o  t h e  NaK c i r c u i t  was reduced t o  hold 

t h e  condenser i n l e t  condi t ions a t  732°C and 12 p s i a .  

4. The d r a i n  valve was opened t o  a l low passage of t h e  l i q u i d  K, 

d r iven  by t h e  combined forces  of g rav i ty  and vapor pressure .  
5 .  The potassium pump w a s  then  reversed t o  improve removal of 

l i q u i d  t rapped i n  the  h e l i c a l  flow passages of t h e  pump. 

6. The high temperature and t h e  s to red  heat  i n  t h e  b o i l e r  leg ,  

crossover  l i n e ,  and condenser l e g  d r i ed  r e s i d u a l  pockets of K. 

7. The d r a i n  valve was closed, and t h e  loop was allowed t o  cool 

t o  ambient temperature t o  leave t h e  loop under vacuum wi th  only  t r a c e s  

of condensed K. 

8 ,  The NaK economizer c i r c u i t  was drained by g rav i ty  and l e f t  

f i l l e d  with A r  a t  atmospheric pressure .  

We o r i g i n a l l y  planned t o  remove any r e s i d u a l  t r a c e s  of K b y  

d i s t i l l a t i o n ,  b u t  we could not do so because of a l eak  discovered i n  the  

NaK coolant system when the  vacuum b e l l  j a r  was removed. However, sub- 

sequent sec t ion ing  of t h e  b o i l e r  and condenser revealed them t o  be f r e e  

of K so t h a t  t h e  d i s t i l l a t i o n  s t ep  w a s  not e s s e n t i a l .  

Visua l  examination of b o i l e r  and condenser l egs .  

i n i t i a l l y  sect ioned i n t o  t h r e e  p a r t s  a s  shown i n  Fig.  5.17. 

The loop was 

The dryer  

wal l  with i t s  thermocouple w e l l  and hea te r  support t a b s  i s  shown i n  

F igs .  5.18 and 5.19. 

t h e  temperature of t h i s  s ec t ion  reached 1370°C f o r  a b r i e f  per iod.  

Disp i te  t h i s ,  we saw no dimensional changes, and t h e  only ex te rna l  

e f f e c t  noted was a general  br ightening of t h e  outer  sur faces .  

While we were t r y i n g  t o  s t a b i l i z e  the  loop flow, 
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Fig. 5.18. Dryer and Test Sect ions of D-43 Alloy Loop (FCL-8) 
Af te r  Tes t .  
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A groove apparent i n  one of t h e  miter  welds was made before  t e s t  

t o  e l imina te  a dye penetrant  i nd ica t ion  found a f t e r  preopera t iona l  

annealing. 

Evaluation of pump. During t h e  10,000-hr operat ing per iod of t h i s  

loop, it was necessary t o  increase  t h e  vol tage  t o  t h e  potassium pump 

gradual ly  t o  maintain a constant r a t e  of flow i n  t h e  loop. 

na t ion  a f t e r  t h e  t e s t  d i sc losed  decreased pump ef f ic iency .  The 

diameter of t h e  e x t e r i o r  s h e l l  of t h e  pump c e l l  had increased in 

some areas  a s  much a s  1/32 i n .  

a r a d i a l  c learance of about 0.015 i n .  had developed between the  wal l  and 

an i n t e r n a l  h e l i c a l  core .  

flows within the  h e l i c a l  pump c e l l  and gradual ly  decreased the  pump 

performance. 

would appear t o  have been t o o  low t o  cause t h i s  extreme amount of creep. 

Our study of t h e  cause of t h i s  phenomenon i s  s t i l l  i n  progress .  

Our exami- 

X rays  of the  pump c e l l  confirmed t h a t  

The growth of t h e  outer  s h e l l  allowed bypass 

The pressure  s t r e s s  on t h e  outer  s h e l l  of t he  pump c e l l  

Analysis -- of NaK leakage. A s  reported l a s t  qua r t e r , I3  a NaK l eak  was 

de tec ted  when t h e  vacuum chamber was opened. Visual  inspec t ion  showed 

t h a t  t h e  l eak  was very small. 

f o i l  wrap from t h e  o u t l e t  l i n e  of t h e  NaK economizer, it appeared t h a t  

NaK might have leaked from t h e  extruded Nb-l$ Z r s t a i n l e s s  s t e e l  t r a n s i -  

t i o n  j o i n t  shown i n  Fig.  5.20. 

revealed a small  defec t  on t h e  outer  surface a t  t h e  i n t e r f a c e  between 

t h e  Nb-l% Z r  and s t a i n l e s s  s t e e l .  X-ray inspec t ion  a l s o  showed a 

delamination type of defec t  on t h e  i n t e r i o r  sur face .  

removed f r o m t h e  p ip ing  system, thoroughly washed i n  a lcohol  and b o i l i n g  

water, and then  checked f o r  leakage on a helium l eak  d e t e c t o r .  

was indicated,  bu t  we cu t  t h e  j o i n t  l ong i tud ina l ly  and found t h a t  t h e  

i n t e r i o r  surface was indeed delaminated a t  s eve ra l  a r eas  where t h e  

Nb-l% Z r  tapered i n t o  the  s t a i n l e s s  s t e e l .  

t h e  leakage of NaK occurred because of t h i s  de fec t ive  a rea  i n  t h e  t r a n s i -  

t i o n  j o i n t .  The r a t e  of leakage w a s  probably qu i t e  small, and the re fo re  

it i s  conceivable t h a t  NaK had been leaking  i n t o  t h e  vacuum v e s s e l  long 

before  the  end of t h e  t e s t .  

After  we removed t h e  p ro tec t ive  tantalum 

Dye penetrant  inspec t ion  of t h i s  p iece  

The j o i n t  was 

No l eak  

Hence we would conclude t h a t  

13B. Fle i sche r  and C .  W. Cunningham, Fuels and Mater ia ls  Development 
Program Quar t .  Progr.  Rept. June 30, 1968, ORNL-4330, pp. 85-97. 
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Inspection of vacuum chamber. During t h e  t e s t ,  w e  found an a i r  

l e a k  i n  t h e  area where t h e  ion pump w e l l s  were welded t o  t h e  vacuum 
chamber w a l l .  

t h e  chamber i n  t h e  l o w  ( lom8 t o r r )  range. 

a f t e r  t e s t  revealed a defect  extending completely across  t h i s  weld. 

A second defect w a s  found i n  another  weld. 

and strengthened by overlaying weld metal around t h e  e n t i r e  j o i n t .  

n i t rogen component observed i n  t h e  r e s i d u a l  gas during loop operat ion 

can be explained by t h i s  l e a k ,  

be l i eve  it w a s  e f f e c t i v e l y  consumed by t h e  l eak ing  NaK. 

ponent can be explained i n  p a r t  by t h e  a i r  l e a k  and i n  p a r t  by a poss ib l e  

l eak  f’rom an a rgon- f i l l ed  thermocouple assembly. 

Refurbishing - of t r i o d e  - ion pumps. 

However, t h e  ion pumping capaci ty  w a s  s u f f i c i e n t  t o  hold 

A dye penetrant  examination 

Both welds a r e  being r epa i r ed  

The 

The oxygen component w a s  missing; we 

The argon com- 

The t r i o d e  ion pumps were recon- 

d i t i oned  a t  t h e  vendor’s p l an t ,  where t h e  cathode construct ion w a s  

changed. 

cathode w e r e  replaced by an a l l - t i t a n i u m  expanded-metal-screen cathode 

construct ion.  

s t a i n l e s s  s t e e l  i s  advantageous. 

The t i t an ium w i r e  and the  supporting s t a i n l e s s  s t e e l  of the 

The vendor has found t h a t  t h e  el iminat ion of s p u t t e r a b l e  

Inter im vacuum t e s t .  Preparations a r e  being made f o r  a vacuum tes t  

before i n s t a l l i n g  t h e  next t e s t  loop i n t o  t h e  chamber. 

serve t o  v e r i f y  t h e  l eak - t igh tness  of t h e  chamber, t o  determine t h e  per- 

formance of t h e  reconditioned ion pumps, and t o  evaluate  t h e  i n t e g r i t y  

of both new and old pene t r a t ions  t h a t  a r e  required f o r  t h e  next t e s t .  

This t e s t  w i l l  

P o s t t e s t  examination. The main loop w a s  sectioned as shown i n  t h e  

Each s e c t i o n  w a s  cleaned with bu ty l ,  methyl, and diagram i n  Fig.  5.21. 

e t h y l  a lcohols  t o  ensure safe removal of a l l  unreacted K. 

potassium metal w a s  found during t h i s  cleaning. 

r i n sed  30 min with hot flowing water, d r i e d  with an alcohol  r in se ,  and 

capped t o  await f u r t h e r  examination. 

No r e s i d u a l  

A l l  p a r t s  were then  

A l l  a u x i l i a r y  piping l i n e s  were examined f o r  r e s i d u a l  K. Any K 

found w a s  removed by melting under kerosene. 

c e l l ,  valve, and economizer were then cleaned a s  previously described 

f o r  t h e  main loop. 

These l i n e s  and t h e  pump 

Visual i n spec t ion  of a l l  pieces  before and a f t e r  cleaning showed 

no evidence of mass t r a n s f e r .  When t h e  t e s t  pieces  were removed, a 
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small  d i sco lored  a rea  was noted on b lade  2 a t  the  vapor stream impinge- 

ment po in t .  

E f fec t  of Oxygen on Compatibil i ty of Refractory Metals  and Alka l i  Metals 
(R. L. Klueh) 

Oxygen Ef fec t s  i n  t h e  Tantalum-Potassium System. - We have completed 

our eva lua t ion  of t h e  Ta-0-K system a t  800 and 1000°C ( r e f .  14). The 

s tud ie s  supplement those  completed e a r l i e r  on t h e  Nb-0-K system.15 

add i t ion  t o  providing da ta  on equi l ibr ium s t a t e s ,  t h e  t e s t s  were designed 

t o  y i e l d  da ta  on t h e  k i n e t i c s  of weight changes of t he  tantalum speci-  

mens r e s u l t i n g  from oxygen d i f fus ion  and tantalum d i s so lu t ion .  However, 

because of t h e  r ap id  d i s so lu t ion  and because t h e  specimens i n  some cases 

were pene t ra ted  by t h e  K, t h e  k i n e t i c s  da t a  a re ,  a t  b e s t ,  q u a l i t a t i v e .  

In  

Table 5.4 shows t h e  temperature, time, and oxygen condi t ions inves- 

t i g a t e d  i n  t h i s  t e s t  series.  Potassium penet ra ted  a l l  but one of  the  

tantalum specimens t o  which 0 had been added before  t e s t i n g  ( i . e . ,  spec i -  

mens containing 1 6 5 0  ppm 0). Figures 5.22, 5.23, and 5.24 show t h e  

appearance of tantalum specimens containing 680, 1200, and 1800 ppm 0 

a f t e r  exposure t o  K a t  800°C; each of t h e  specimens e x h i b i t s  a t t a c k  pre-  

f e r e n t i a l l y  along g ra in  boundaries.  

because of t h e  unusual gra in  s t r u c t u r e  of t h e  Ta ( i . e . ,  t h e  elongated 

gra ins  p a r a l l e l  t o  t h e  " f l a t "  edge of t h e  specimen). 

t i v e l y  deep pene t r a t ion  i n  t h e  long i tud ina l  d i r e c t i o n  with the  shallower 

pene t r a t ion  i n  t h e  t r ansve r se  d i r e c t i o n .  Attack i n  t h e  l a t t e r  d i r e c t i o n  

was confined t o  a band of small ,  equiaxed gra ins  near t h e  sur face  and 

was ha l t ed  by gra ins  elongated i n  t h e  d i r e c t i o n  of r o l l i n g  - confirmation 

t h a t  only grain-boundary a t t a c k  i s  occurr ing.  

proceeds with t h e  formation of a t e rna ry  oxide which then  d isso lves  i n  

K as t h e  system tends toward equi l ibr ium. 

metallographic preparat ion,  could explain t h e  apparent absence of cor- 

ro s ion  products i n  t h e  a f t e r - t e s t  microstructures .  

Figure 5.24 i s  e spec ia l ly  i n t e r e s t i n g  

Compare t h e  r e l a -  

We be l i eve  t h a t  a t t a c k  

This,  a s  w e l l  a s  l o s s  during 

14R. L. Klueh, Fuels and Ivhterials Development Program Quart .  Progr.  
Rept. June 30, 1968, ORNL-4330, pp. 142-146. 

1 5 A .  P. Litman, The Effec t  of Oxygen on t h e  Corrosion of Niobium by 
Liauid Potassium, ORNL-3751 ( Ju ly  1965). 
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Fig. 5.22. Tantalum, Which I n i t i a l l y  Contained 680 ppm 0, After  
Exposure t o  Potassium f o r  100 hr  a t  800°C. 
HNO3, and NHkHF. 

Etched i n  a so lu t ion  of H20, 

Fig. 5.23. Tantalum, Which I n i t i a l l y  Contained 1200 ppm 0, Af te r  
Exposure t o  Potassium f o r  100 h r  a t  800°C. 
HNO3, and NH4HF. 

Etched i n  a so lu t ion  of H20, 



Fig. 5.24. Tantalum, Which I n i t i a l l y  Contained 1800 ppm 0, After  E q o -  
sure  t o  Potassium f o r  100 h r  a t  800°C. 
and NH4HF. 

Etched i n  a so lu t ion  of H20, HNO3, 

A t  1000°C, t h e  addi t ion  of 660 ppm 0 t o  Ta d id  not a f f e c t  a t t a c k  by 

K, and l i t t l e  a t t a c k  ( s i m i l a r  t o  F ig .  5.22 a t  800°C) was noted f o r  t h e  

specimen containing 1000 ppm 0. Heavy a t t a c k  a t  1000°C re su l t ed  f o r  a 

tantalum specimen containing 1600 ppm 0 a f t e r  1 h r  exposure t o  K, a s  

shown i n  Fig.  5.25. 

These r e s u l t s  a r e  q u a l i t a t i v e l y  s imi l a r  t o  those obtained by 

DiStefano16 f o r  t h e  Nb-0-Li and Ta-0-Li systems: 

c e n t r a t i o n  of 0 i n  t h e  Ta must be exceeded before  pene t r a t ion  occurs 

( t h i s  l e v e l  increases  with increas ing  exposure temperature) ;  (2 )  above 

t h i s  th reshold  l eve l ,  ttie amount of a t t a c k  ( i . e . ,  depth of pene t r a t ion )  

increases  with an increase  i n  t h e  i n i t i a l  concentrat ion of 0 i n  t h e  Ta; 

(3) t h e  a t t a c k  i s  not a f f ec t ed  by t h e  concentrat ion of 0 i n  t h e  K; 

( 4 )  when 0 2  d i f fuses  out of t h e  specimen rap id ly ,  a s  a t  1000°C, it 

(1) a threshold  con- 

16J. R. DiStefano, 'Corrosion of Refractory E t a l s  by Lithium, 
ORNL-3551 (Apr i l  1966). 
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Fig .  5.25. Tantalum, Which I n i t i a l l y  Contained 1600 ppm 0, A f t e r  
Exposure t o  Potassium f o r  0.5 h r  a t  1000°C. A s  pol ished.  

l i m i t s  t h e  depth of penetrat ion.  

s t u d i e s  and DiStefano's s tud ie s  of L i  i s  t h a t  t h e  l a t t e r  showed a t t a c k  t o  

occur i n  Ta a t  815°C w i t h  as l i t t l e  as 300 ppm 0 ( r e f .  16) .  

i n d i c a t e  t h a t  t h e  threshold concentrat ion i s  higher  f o r  pene t ra t ion  by K 

t han  by L i .  

The chief  d i f f e rence  between t h e  present  

This would 

A s  shown i n  Table 5 .4 ,  t h e  concentrat ion of Ta i n  t h e  K increased 

as the  leve l  of 0 i n  t h e  K increased. 

t h e  K i s  somewhat l a r g e r  t han  t h a t  shown i n  Table 5.4 because of 0 donated 

by t h e  Ta of t h e  container  and specimen.) 

involves t h e  formation of a compound containing 0, t h e  f i n a l  concentrat ion 

of 0 i n  t h e  penetrated specimens may include 0 i n  t h e  form of a corrosion 

product as w e l l  as 0 dissolved i n  t h e  Ta .  

(The f i n a l  concentrat ion of 0 i n  

Since we be l i eve  penet ra t ion  

The specimens exposed t o  K with a high concentrat ion of 0 contained 

a dark sca l e .  When we t r i e d  t o  i d e n t i f y  the  s c a l e  by x-ray d i f f r a c t i o n ,  

we detected only tantalum metal. Furthermore, within experimental e r r o r ,  

removal of t h e  s c a l e  from t h e  specimen d i d  not change t h e  oxygen content 

of t h e  specimen. 

. 
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Oxygen Effec ts  i.n.,the Niobium-Sodium System. - The r e s u l t s  of t he  

Ta-0-K system discussed above, toge ther  with previous s tud ie s  16,17 a t  
ORNL, i nd ica t e  t h a t  t h e r e  i s  a marked d i f f e rence  i n  t h e  e f f e c t  of 0 

on t h e  compat ib i l i ty  of r e f r ac to ry  metals and a l k a l i  metals depending 

upon whether 0 i s  present  i n  the  r e f r ac to ry  metal  o r  t h e  a l k a l i  metal. 

We a r e  a t tempting t o  ca tegor ize  these  d i f f e r e n t  e f f e c t s  i n  t h e  Nb-0-K, 

Ta-0-K, Nb-0-Na, Ta-0-Na, Nb-0-Li, and Ta-0-Li systems. For these  

s tud ie s  we a r e  using s t a t i c  capsules of t h e  conf igura t ion  previously 

described f o r  s tud ie s  of Ta-0-K ( r e f ,  18). 
a t  6OO0C,  s ince  t h i s  temperature i s  of d i r e c t  i n t e r e s t  i n  sodium-cooled 

f a s t  breeder  r eac to r  appl ica t ions .  

All t e s t s  a r e  being conducted 

Our f i r s t  t e s t s  i n  t h i s  s e r i e s  were conducted on the  Nb-0-Na system. 

Four capsules  containing unoxidized niobium specimens were exposed t o  

Na with seve ra l  oxygen l e v e l s ,  and two capsules  conta in ing  niobium speci-  

mens with 950 and 1600 ppm 0, respec t ive ly ,  were exposed t o  Na with 

about 50 ppm 0. 

All t e s t s  were conducted f o r  500 h r .  Resul ts  a r e  shown i n  Table 5.5 .  

Although t h e  specimens appeared d u l l  a f t e r  t e s t ,  none of them appeared t o  

have a s c a l e .  

specimens showed considerable  oxygen loss, while the  unoxidized specimens 

showed l i t t l e  oxygen change. 

p r o f i l e s  of t h e  unpenetrated specimens ind ica ted  t h a t  t h e  oxygen concen- 

t r a t i o n  was near equi l ibr ium a f t e r  500 h r  a t  600°C. 

All specimens showed weight l o s s e s .  The two oxidized 

Diffusion ca l cu la t ions  and microhardness 

Metallographic examination of t he  two oxidized specimens ind ica ted  

t h a t  they  had been penet ra ted  by t h e  Na. The pene t r a t ion  was much l e s s  

severe than  f o r  similarl iy oxidized tantalum specimens exposed t o  K a t  

600°C ( r e f .  1 9 ) .  

concentrat ion i n  t h e  Nb-'0-Na t e s t s  may include 0 present  as an i n t e r n a l  

cor ros ion  product a s  wel l  as 0 i n  s o l i d  so lu t ion .  

I 

As i n i t h e  case of t hese  Ta-0-Ktes t s ,  t he  f i n a l  oxygen 
I 

'?A. P. Litman, The Effect  of Oxygen on t h e  Corrosion of Niobium by 
Liquid Potassium, ORNL-3751 ( J u l y  1965). 

18R.  L. Klueh, Fuel's and I k t e r i a l s  Development Program Quart .  Progr.  

1 9 R .  L. Klueh, "Oxygen Effec ts  i n  t h e  Tantalum-Potassium System, 'I 

Rept. June 30, 1968, ORNL-4330, p .  142. 

pp. 120-124, t h i s  r epor t .  
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Table 5.5.  Effect  of Oxygen on Compatibil i ty of 
Niobium and Sodium a t  600°C 

Niobium i n  
Sodium 

( P P d  Before Af te rb  (mg) After 

59 -0.1 400 

Oxygen i n  Oxygen i n  Niobium Weight 

( P P d  Change' (ppm) 
Sodiuma 

Before 

50 70 

300 

700 
1000 

50 

800 

1400 

2200 

5 00 

70 62 - 0 . 5  

70 64 -2.0 

83 -1.7 

540d -1.7 
70 

950 
50 1600 440d -6.2 1000 

a 

bDeterrnined by vacuum-fusion analys is .  

All specimens were 1 x 0.5  x 0.04 i n .  

Oxygen added a s  Na2O t o  Na containing about 50 ppm 0. 

C 

dMicrostructures show t h a t  Na penetrated these  specimens. 

P a r t i t i o n i n g  of Oxygen Between Potassium and Zirconium and Sodium 

and Zirconium. - A s  noted i n  t h e  previous report2 '  w e  have re-examined 

t h e  value o r i g i n a l l y  assigned t o  t h e  equi l ibr ium d i s t r i b u t i o n  coe f f i c i en t  

f o r  t h e  d i s t r i b u t i o n  of 0 between Z r  and K ( i . e . ,  

) .  Below we w i l l  demonstrate why we be l ieve  atom f r a c t i o n  of 0 i n  Z r  
KO = atom f r a c t i o n  of 0 i n  K 
t h a t  t h e  equi l ibr ium d i s t r i b u t i o n  coe f f i c i en t  a t  815OC i s  much l a r g e r  

than o r i g i n a l l y  thought and then  show how t h i s  new coe f f i c i en t  a f f e c t s  

t h e  gettering-vacuum-fusion (GVF) method f o r  determining oxygen con- 

cent ra t ions  i n  K (and Na). 

Zirconium containing 1 w t  '$ 0, when exposed a t  815°C t o  t r i p l e -  

ge t te red  K (< 10 ppm 0 ) ,  gained a small amount of weight and increased 

i n  0 ( r e f .  21) .  

t i o n  coef f ic ien t ,  K , a t  815°C. 

This r e s u l t  can be used t o  set  l i m i t s  on t h e  d i s t r i b u -  

Taking 10 ppm 0 a s  t h e  upper l i m i t  f o r  0 

'OR. L. Klueh, Fuels and mterials Development Program Quart .  Progr. 

2 1 ~ .  P.  Litman, p r i v a t e  communication. 

Rept. June 30, 1968, ORNL-4330, p. 146. 
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t h e  a f t e r - t e s t  concentrat ion of 0 i n  t h e  K,. it follows t h a t  

K k 5  "C 
1 ppm 0 a f t e r  t e s t ,  

> 2 x lo3. But s ince  t h e  concentrat ion was probably c lose r  t o  

more reasonably approaches l o 4  or higher .  K%5 "C 
Using t h e  oxidat ion da ta  of Mackay22 f o r  Z r  i n  Na along with recent  

s o l u b i l i t y  da ta  f o r  0 i n  N a  ( r e f .  23) and following t h e  same argument 

a s  above, w e  f i n d  t h a t  KO f o r  Na a t  635°C must be g r e a t e r  than  5 x l o4 .  
This i s  i n  accord with Mackay's r e s u l t s ,  which showed t h a t  Z r  could be 

oxidized a t  635°C i n  Na t h a t  had an oxygen concentrat ion determined by 

a cold t r a p  operat ing a t  160°C. 

t h a t  t h e  c o e f f i c i e n t  should not change by more than an order  of magni- 

tude a t  800°C, t h e  temperature of t h e  C;VF anneal,  

Theoret ical  ca l cu la t ions  of KO suggest 

Once KO has been es tab l i shed  as being very much l a r g e r  than  uni ty ,  

it follows, under t h e  condi t ions of our GW ana lys i s  technique, t h a t  

when pure Z r  i s  exposed t o  K or N a  containing 0, e s s e n t i a l l y  a l l  of t he  

0 i s  ge t t e red  by  t h e  Z r .  Therefore, t he  amount of 0 o r i g i n a l l y  present  

i n  t h e  l i q u i d ,  C f ) ,  i s  given by  

(Zr)  i s  the  0 ge t t e red  by t h e  Z r  and Wzr and W a r e  t h e  weights where go 

of t h e  Z r  and a l k a l i  metal, respec t ive ly .  The d i s t r i b u t i o n  coe f f i c i en t ,  

being e f f e c t i v e l y  i n f i n i t e ,  does not en te r  i n t o  t h e  ca l cu la t ion .  

We are now conducting recovery t e s t s  designed t o  v e r i f y  Eq. (5 .1) .  

A 

Corrosion of Refractory Alloys by Lithium 

Thermal Convection Loop Tests (J. H. &Van). - The s i x t h  i n  a s e r i e s  

of l i t h ium thermal convection loop t e s t s  designed t o  study mass t r a n s f e r  

of r e f r ac to ry  metals w a s  terminated a f t e r  completing a 3000-hr t e s t  run. 

This loop, EL-6R, was f ab r i ca t ed  of t h e  tantalum-base a l l o y  T-222 and 

operated a t  a maximum hot- leg temperature of 1350°C. Compositions of t h e  

21T. L. hkckay, Oxidation of Zirconium and Zirconium Alloys i n  Liquid 
Sodium, NAA-SR-6674 (Febyuary 1962).  

22V. J. Rutkauskas, Determination of t h e  S o l u b i l i t y  of Oxygen i n  
Sodium by Vacuum D i s t i l l a t i o n ,  LA-3879, Los Alamos S c i e n t i f i c  Laboratory 
(September 17, 1968).  
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loop tubing and i n s e r t  specimens a r e  given i n  Table 5.6 ,  and flow r a t e  

and temperature conditions f o r  t h e  tes t  a r e  shown below: 
Maximum hot- leg temperature, "C 1350 

Minimum cold-leg temperature, "C 1140 
Lithium flow r a t e ,  g/min 240 

Lithium ve loc i ty  , cm/sec 2.5 

T e s t  duration, h r  3000 

A f t e r  operation, the  loop was drained t o  c o l l e c t  a sample of L i  and 

w a s  then  f lushed with l i q u i d  ammonia t o  remove r e s idua l  Li. 
sheet  specimens were then removed and t e s t e d  f o r  weight change, chemistry, 

and metallographic condi t ion.  

Eighty-two 

The weight-change r e s u l t s  a r e  shown i n  Fig.  5.26. The weight change 

around t h e  loop w a s  analogous t o  t h a t  observed f o r  Nb-l$ Z r  and D-43 a t  

1200°C, where about two-thirds of t he  loop sur face  l o s t  weight and one- 
t h i r d  gained weight. Also, a s  i n  t h e  niobium alloy loops, specimens 

from t h e  weight gain region of t h i s  loop were covered by a t h i n ,  gold- 

colored f i l m .  

weight changes f o r  t h e  T-222 specimens, no dimensional changes could be 

detected on any of t h e  specimens. 

A s  would be expected from t h e  small magnitude of t h e  

Chemical analyses of t h e  i n s e r t  specimens, although not complete, 

have shown a s i g n i f i c a n t  t r anspor t  of H f  from t h e  h o t t e r  t o  t h e  cooler 

loop surfaces .  

of H f  near t h e  sur face  of t h e  i n s e r t  specimens; the r e s u l t s  ar? shown i n  

Fig. 5.27. 

around t h e  loop mirrors t h e  weight-change p r o f i l e  shown i n  Fig.  5.26: 

X-ray fluorescence was used t o  evaluate  t h e  concentrat ion 

Note t h a t  t h e  p r o f i l e  of t h e  hafnium surface concentrat ion 

Table 5.6. Compositions of T-222 Components Used i n  Loop TCL-6R 

a Chemical Composition, wt  % 
Loop Component W H f  0 N C Ta 

I n s e r t  Specimens 10.2 2 . 3  0.005 0.004 0.014 Bal 

Loop Tubing 10 .3  2.2 0.003 0.002 0.013 Bal 
(0.030 x 1 x 0.8 i n . )  

(1 i n .  ou ts ide  diameter 
x 0.065 i n .  wal l  th ickness)  

__ 
a Loop annealed a f t e r  assembly f o r  2 h r  a t  1300°C. 
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DISTANCE FROM HEATER ENTRANCE (in.) 

Fig. 5.26. Weight Change of T-222 Thermal Convection Loop Af ter  
Operating w i t h  Lithium for 3000 h r  a t  1350°C. 
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Fig. 5.27. Hafnium Concentration Near Surfaces of T-222 I n s e r t  
Specimen After  Operation with Lithium. Analyzed by x-ray f luorescence.  
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regions of weight l o s s  r e f l e c t  hafnium dep le t ion  while regions of weight 

gain r e f l e c t  hafnium enrichment. 

Additional metallographic and chemical analyses of loop sec t ions  

and i n s e r t  specimens are i n  progress.  

T-111 Forced Circulat ion Loop (FCLLL-1). - Loop equipment , 
design. ( D .  I;. Clark) A l l  design work has been completed, and drawings 

have been issued f o r  construct ion.  

t e s t -bed  loop f o r  studying new r e f r a c t o r y  a l l o y s  a t  very high temperatures 

i n  high-velocity l i q u i d  L i .  I n s t a l l a t i o n  of component p a r t s  and assem- 

b l i e s  i s  being delayed u n t i l  completion of t h e  preliminary check-out of 

t h e  reworked t r i o d e  ion pumps. 

being i n s t a l l e d  f o r  check-out during t h i s  per iod.  

3000-amp e l e c t r i c a l  feedthrough, t h e  f lange pene t r a t ion  f o r  t h e  f i l l  and 

dra in ,  and sampling systems, t h e  p a r t  f o r  t h e  o p t i c a l  pyrometer, and t h e  

can and f lange f o r  t he  h e l i c a l  induction pump. 

Work has continued on t h e  T-111 a l l o y  

All ava i l ab le  vacuum penetrat ions a r e  

Included w i l l  be t h e  

Fabricat ion of T-111 assemblies. (B. F l e i sche r )  We completed 

welding of t h e  r a d i a t o r ,  hea t e r  sec t ion ,  economizer, and pump l i n e s ,  

We f a b r i c a t e d  t h e  r a d i a t o r  c o i l  by b u t t  welding s t r a i g h t  pieces  of tubing 

toge the r  and then bending them, All welds were inspected a f t e r  bending 

and found t o  be f r e e  of c racks .  The ends of t h e  c o i l  were then cu t  o f f  

and prepared as subassemblies t o  f a c i l i t a t e  welding of thermocouple w e l l s ,  

end caps, and i n l e t  and o u t l e t  tubing. 

welded t o  the  main c o i l .  

The subassemblies were then b u t t  

The economizer, h e a t e r  sec t ion ,  and pump l i n e s  were constructed by 

welding of component p a r t s  previously bent and machined i n  accordance 

with d e t a i l  drawings. 

attempting t o  achieve dimensional t o l e rances  and proper alignment. 

check f o r  proper mating of t h e  economizer, r a d i a t o r ,  and hea te r  sec t ions ,  

w e  placed t h e  p a r t s  on t h e  t e s t  stand and al igned them with respect  t o  

t h e  copper bus assembly. 

and hea te r  s ec t ions  w a s  required t o  properly mate t h e  p a r t s .  

We experienced considerable d i f f i c u l t y  i n  

To 

Additional bending of po r t ions  of t h e  economizer 

Annealing --- of T-111 welds. (B.  F l e i sche r )  Welds of T-111 severely 

This problem contaminated with 0 w i l l  f a i l  r ap id ly  when exposed t o  L i .  

can be a l l e v i a t e d  by annealing t h e  welds f o r  s eve ra l  hours a t  1315°C 0- 
before exposing them t o  L i .  Even though t h e  welds we made i n  assembling 
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FCLLL-1 were performed under clean, i n e r t  condi t ions i n  a dry box, t he  

p o s s i b i l i t y  of undiscovered weld contamination made it prudent t o  anneal.  

The cos t  of t h i s  insurance i s  inconsequent ia l  compared t o  t h e  cost  of 

ma te r i a l s  and l abor  a l ready invested i n  t h e  assemblies.  

Accordingly, w e  prepared the  assemblies f o r  annealing by an outs ide  

cont rac tor .  The loop surfaces  were wiped with l i n t - f r e e  c l o t h s  soaked 

i n  a lcohol  and then wrapped s p i r a l l y  a t  about 3 1 4 - h .  p i t c h  with 0.060-in.- 

diam tantalum wire .  Tantalum f o i l  0.001-in. t h i c k  by 2- in ,  wide was 

wrapped a t  ha l f  l a p  over t h e  wire, which serves  as a spacer  t o  prevent 

welding of t h e  f o i l  t o  t h e  p a r t s .  The f o i l  a c t s  a s  a mechanical b a r r i e r  

t o  minimize environmental contamination. 

We annealed t h e s e  subassemblies i n  a 12-f t - long by 4-ft-diam vacuum 

furnace loca ted  i n  the  Refractory & t a l  Center, Mater ia ls  Systems Divi- 

sion, Union Carbide Corporation, Kokomo, Indiana.  The annealing cycle  

i s  descr ibed i n  Table 5.7. 
by p lac ing  Pt-6$ R h  v s  Pt-30$ Rh thermocouples a t  a n t i c i p a t e d  hea t - lag  

loca t ions .  Sample coupons of T-111 were placed a t  var ious loca t ions  t o  

check contamination. 

The temperature of t he  p a r t s  was determined 

After  annealing, a l l  t h e  f o i l  and p a r t s  were s t i l l  b r i g h t .  An 
unwrapped T-111 con t ro l  specimen was bent 90" without any evidence of 

cracking. 

showed no contamination of wrapped o r  unwrapped specimens. 

Analysis of t h e  c o n t r o l  specimens repor ted  i n  Table 5.8 

Fabr ica t ion  - of con t ro l  specimen u n i t s .  (D. L. Clark, B. F l e i sche r )  

Furnaces f o r  t h e  exposing of con t ro l  specimens have been f ab r i ca t ed .  The 

u n i t s  are shown i n  Fig.  5.28. Figure 5.29 shows t h e  con t ro l  specimen 

ma te r i a l  mounted on t h e  holders .  One of t h e  furnaces  w i l l  be used t o  

expose t h e  specimens a t  1370°C while t h e  o ther  w i l l  opera te  a t  1205°C. 

The u n i t s  w i l l  be mounted on t h e  t o p  of t he  tes t  s tand .  

w i l l  be used f o r  comparison of mechanical p rope r t i e s  of t h e  same ma te r i a l  

These specimens 

exposed a t  t h e  same temperature t o  L i  i n s i d e  t h e  loop. 



Table 5.7. Vacuum Annealing Cycle f o r  FCLLL-1 T-111 Loop 

Temperature, "C 
Vacuum 

Time 
(Pm) 

Descr ipt ion of Operation 
Furnace 

Pa r t  sa Pre s sure 
( t o r r )  

Pos i t ion  2 Posi t ion 1 

x 10'~ 

200.0 S t a r t  heatup 
270.0 

12 : 30 
S t a r t  260°C hold 260 

80.0 
1:oo 

End 260°C hold 260 
290.0 

1:25 
315 1:35 

St a r t  540 "C hold 
540 42 0 445 44.0 2:lO 

End 540°C hold 
330.0 

2:35 
7 05 
815 67 0 705 170.0 

3:OO 
S t a r t  815 "C hold 

815 760 780 73.0 
3:15 

End 815°C hold 
90.0 

3:30 

190.0 
3:40 

87 0 
1095 1010 1030 320.0 4:05 

650.0 
4:20 

540.0 
4: 35 

230.0 
4:45 
5:05 
6:45 End 2-hr anneal ( s t a r t  1330 1310 1315 63.0 

7:20 
7:35 
8:35 260 

11: 55 

a 

540 305 345 120.0 

Realign vacuum instruments 87 0 

S t a r t  1095 "C hold 
End 1095 "C hold 

S t a r t  2-hr anneal 

1095 1060 1070 210.0 
1315 1250 1270 
1330 1290 1300 
1330 1310 1315 

cont ro l led  coo l  down) 
Cut off a l l  furnace power 81 5 860 860 7.5 

540 5.6 

95 6.7 
5 

Thermocouples placed a r b i t r a r i l y  a t  an t i c ipa t ed  heat-lag pos i t i ons .  ..... I .  



Unexposed con t ro l  
specimen 
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Table 5.8.  I n t e r s t i t i a l  Element Concentration of 
Control  Samples During FCLLL-1 Anneal 

90 140 12 3 70 140 7 4 

Exposed a t  t o p  of 80 150 7 12 70 140 8 1 

Exposed a t  bottom of 70 140 10 7 70 140 13 1 

furnace 

furnace 

a These specimens were wrapped with two l a y e r s  of 0.001-in.- 
t h i c k  tantalum f o i l .  



134 



k
 

0
 

(H
 

x 
0
 

r
i 

cl 
4
 

r
i I 

E3 (H
 
0
 




