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ABSTRACT

This report presents a theoretical study of multicomponent isotope
separation cascades. A theory is developed which leads to the multi-
component analogue of the two component "ideal cascade". The multi-
component analogue is a "matched abundance ratio cascade". Multi-
component analogues are derived for "value functions","separative
work", and various relationships of importance in two component

igsotope separation cascade theory.

The theory is applied specifically to the derivation of a multicomponent
cost formula which could be used to price uranium containing U-236.
(This cost formula is derived merely as an illustration of the theory
and no recognition or commitment on the part of the U.S.A.E.C. is
implied).

The multicomponent matched abundance ratio cascade does not minimize
total cascade flow as does the two component ideal cascade. It is
found, however, that for uranium isotope separation the total flow
in the matched U-255/U-238 abundance ratio cascade exceeds the
minimum by an insignificant fraction for a wide range of U-236
concentrations.
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SOME VALUE FUNCTIONS FCR MULTICOMPONENT ISOTOPE SEPARATION -
APPLICATION TO A UNIT COST SCAIE FOR URANIWM-235, 236, 238 MIXTURES

INTRODUCTION

A large part of the theory of isotope separation cascades for
isotopic mixtures which contain only two components involves three
mutually related concepts - "separative work," the "value function,"
and the "ideal cascade." This is especially true when the separation
process is an irreversible discrete stage process with a small stage
separation factor, as is the case for the gaseous diffusion process for
the separation of uranium isotopes. Reference is made to [1,2] . 5o
far there have been few developments in multicomponent isotope cascade
theory, and there are no multicomponent analogues to the two component
separative work, value function, and ideal cascade formulas to apply to
this situation. The broad objective of this report is to extend the
theory of multicomponent isotope separation in cascades. Multicomponent
analogues to the two component separative work, value function, and ideal
cascade formulas are presented.

This vreport also has a more specific and immediate objective.
When the feed to a gaseous diffusion cascade is natural uranium, it is
permissible in most situations of interest to treat U-23L4 concentrations
as being negligibly small in comparison to the U-235 and U-238 concentra-
tions and thus regard uranium as g mixture of two isotopes. When this is
done, the application of cascade theory and the three concepts mentioned
above lead to simplified formulas for estimating cascade design require-
ments such as power, barrier area, and the number and sizes of individual
stages. OSimilar considerations lead to estimates of the unit cost for
the production of U-235 at any concentration. As is well known, the
published U.S.A.E.C. price schedule can be fit very precisely with a cost
curve based upon a unit cost of separative work. Reference is made to
[1,3] . In certain situations where a gaseous diffusion cascade receives
as feed uranium which has been discharged from a nuclear reactor, a fourth
isotope, U-236, may be present in a concentration sufficiently high so
that it affects appreciably the separative work requirements, and hence
the unit costs for the production of enriched U-235, as shown in [4] .
The more specific and immediate objective of this report then is the
derivation of a multicomponent unit cost formula which may be used to
price uranium containing U-236. It is to be emphasized that this multi-
component unit cost formula is here presented solely to illustrate appli-
cation of the developed theory, and in no way is it implied that the
U.S.A.E.C. recognizes this formula as the basis for a price schedule for
uranium containing U-236.
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In view of the second objective of the paper, the development of
the theory and presentation of results will be done in the setting of the
separation of uranium isotopes by gaseous diffusion. It is to be under-
stood, however, that the results are not limited either to these particular
isotopes or separation method. The results are applicable to any separa-
tion process in which the separation factor is small and independent of
composition.

BRIEF REVIEW OF PERTINENT TWO CCMPONENT SEPARATION THEORY

To fix ideas, some pertinent features of two component separation
theory are first briefly reviewed. Consider for this purpose the separa-
tion of the U-235, U-238 two component mixture (as UF.) by the gaseous
diffusion process. By way of nomenclature, a U-235 concentration (mol
fraction) is denoted by x with appropriate subscripts where required to
denote feed, product, and waste concentrations of a cascade. The symbols
for the cascade feed, product, and waste rates are F, P, and W. The inter-
stage flow rate (upflow through the barrier) at stage n is denoted by L,
which is understood to be a function of stage number. The stage separa-
tion factor for the U-235, U-238 separation is denoted by Wl'

Consider then an isolated stage, operating at a "cut" of one half,
as shown in Figure 1.

L, x + 8x

R

L, x - 8x

Stage Increment:
28x = ¥y x(1 - x)

Schematic of Stage Processing a Two Component Mixture

Figure 1
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The separative work done by the stage is defined to be L wl2/h, and is,
of course, independent of concentration. The value function is then
obtained by associating with uranium at concentration x a value !/ (x),
say per mol, and requiring that the net change in value effected by the
stage equal the separative work of the stage. Thus, for the stage
shown in Figure 1,

LU(x + 6x) + LU(x - 8x) - 2LU(x) = £ Ly, , (1)
where ®x = y, x(1 - x)/2. Since the concentration change ®x is small,

U(x + dx) abd ¥(x - dx) are expanded about /(x) in a Taylor expansion,
and from equation (1), one then obtains the ordinary differential equation

(x(1 - x)) 28 Jax® = 1, (2)

which is correct to terms of order wlg. The general solution of equation
(2) is

U(x) = c, * CyX + (2x - 1) In (x/(1 - x)] (3)

where c¢_ and c, are arbitrary constants. Thus, the two component value
function 7/(x) has been obtained.

Application of U/(x) to cascade theory follows immediately. Consider
the cascade shown in Figure 2.

P Cascade
Product
Cascade
- Feed
F
A4
W Cascade Tails

Defining Cascade Schematic

Figure 2
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In an ideal cascade for two component separation, stages are linked
together to form a cascade and feeds are introduced to the cascade so
that there are no losses of separative work anywhere in the cascade.
This is simply accomplished by bringing streams together at stage
links and feed points only if the concentrations of the mixed streams
are equal, Consequently, the separative work of the ideal cascade
equals the sum of the separative work of the stages; thus:

EILY,® = 2 ([Li(x+ox) + LU(x - 8x) - 2LU(x)) . (%)

cascade cascade

Furthermore, since an output L from one stage is an input to another,

all the interstage flows cancel in the cascade summation. Hence, for

the cascade of Figure 2 - supposing the cascade to be ideal - one obtains
from equation (4), the following important relation:

L sy \yle = PV(xp) + WV(x,) - FV(x,), (5)
cascade
where V(x) = (2x - 1) In [x/(1 - x)) . (6)

In an equation, such as (5), the linear terms of the general value
function 7/(x) vanish by material balance, so that henceforth, for
convenience in these applications, the elementary value function V(x) is
used and the linear terms are added when required.

It may be seen from equation (5) that by means of the value function
the separative work of an ideal cascade may be expressed in terms of the
flows and concentrations of the external cascade streams. This value
function expression for the separative work of an ideal cascade leads to
remarkably simple formulas for estimating cascade performance. Thus, for
the cascade of Figure 2 - supposing the cascade to be ideal - one may
write the "productivity equations" below, these being the availability
of separative work and the two material balances:

1 2
z L Wl = PV(xP) + WV(xw) - FV(XF) s
cascade
0 = Pxy + Wxy - Fxp, (7
O=P+W-F .,
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It may be seen how value function terms and material balance terms are
added to the equation (7) for application to an ideal cascade with side
feeds and/or side withdrawals. These productivity equations are basic,
and their uses are many. As stated in [1] , given an ideal cascade at
specified feed and product conditions so that the cascade separative
work 1s known, the best possible performance of the cascade at another
set of conditions can be calculated from the applicable productivity
equations by treating the cascade separative work as a constant property
of the cascade. Such a calculation is valid provided the stages are
re-arranged or the interstage flows are adjusted,if need be, so that
under the changed conditions the mixing of streams of different con-
centrations is avoided. The following are cited in [1l] as examples of
cascade problems which may be solved by this means:

1. The effect of change in product rate on product concentration.

2. The effect of change in feed rate on product rate at constant
product concentration.

3. The effect of incremental feeds of different concentrations
on product rate.

4. The effect of withdrawing partially enriched product on
product rate.

Other examples may be cited, but the above suffice to show the usefulness
of the productivity equations.

In the gaseous diffusion process, the cascade operating costs are
very nearly proportional to the cascade separative work. This fact
quickly leads to a unit cost system for pricing uranium. ILet D(x) be
the unit cost in dollars per kilogram of uranium whose U-235 concentra-~
tion is x, and let K be the unit cost of separative work per kilogram
(of uranium)*.

Then,
D(x) = K [ao +agx + v(x)} , (8)

*Kilograms and weight fraction, rather than mols and mol fraction, are
the accepted units for uranium costs. The ratio of the atomic weights
of the uranium isotopes is so close to unity that the difference between
mol fraction and weight fraction is negligible.
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where a, and a. are constants, is a unit cost scale which assures that
the operating Costs of the (ideal) cascade are accounted for by the
material charges and credits; thus, for the cascade of Figure 2:

Cascade Operating Costs

il

1, 2
cascade

PD(x,) + WD(x,) - FD(xg) - (9)

The constants a_ and a, in the unit cost expression (8) are determined
so that D(x) hag the correct value for natural uranium and is equal to
zero at a concentration x  called the "concentration of zero value."
This concentration x_ may be regarded as that of depleted uranium which
can be used as feed at no cost in a cascade to produce a product at the
natural uranium concentration and at the same unit cost D(x_) as
natural uranium. When the constants are thus evaluated, one obtains

D(x) = K (V(x) - V(xo) - (x - xo) V'(xo)] . (10)

It has been mentioned previously that the U.S.A.E.C. price schedule can
be fit very precisely by a formula based on a unit cost for separative

work; references [}] and (3] should be consulted for further discussion.
For the price schedule in the form (lO), the constants given in ﬁj are:

K = $37.286/kg. U,
D(xy) = D(0.007115) = $39.27/ke. U,
X, = 0.0022138 weight fraction U-235.

From this brief review of two component cascade theory, one can
well see the relations between the concepts of separative work, value
function, and ideal cascade, and their possible wide application to
cascade design, evaluation of cascade performance, and unit cost systems.
These results are particularly useful in application to gaseous diffusion
plants because the ideal cascade minimizes the required cascade total
flows, and hence, leads to minimum power gaseous diffusion plants.

STATEMENT OF SPECIFIC PROBLEMS AND OUTLINE OF SOLUTION
FOR A MULTICOMPONENT VALUE FUNCTION

The problems in multicomponent separation now considered are those of
finding multicomponent analogues to the separative work, value function,
and ideal cascade which have been reviewed for two components. For con-
venience, the problems and results are presented in the three component
setting of U-235, 256, and 238. Extension to additional isotopes will be
noted where required.



K-1455

First, new nomenclature is introduced as follows: U-235 and U-236
concentrations are denoted by x and y, respectively, with appropriate
subscripts where required to denote the cascade feed, product, and waste
concentrations. The stage separation factor for the two component U-2%5
and U-238 separation is denoted by ¥ , and the corresponding factor for
the U-236 and U-238 separation is defioted by Y5+ An additional symbol
k is defined by

k = We/\vl ’ (ll)

which has the value 2/3 for the uranium problem under discussion. Other
nomenclature is as before.

Consider an 1solated stage at a cut of a half and handling the three
component mixture as shown in Figure 3.

L(x+8x,y+5dy)
by
(x,y) L(x -3,y - dy)
Stage Increments:
2 8x = g(x)Y) = ‘}fl X(l -X -y) + (Wl' Wg) XY,
2 8y =h(x,y) =¥, v(1 - x -y) - (¥7- ¥5) xv.

Schematic of Stage Processing a Three-Component Mixture

Figure 3

By analogy with the two component results, the separative work done by

the stage is defined to be L ¥ 2/4, and the three component value function
is obtained by associating a value U(x,y) with material at concentrations
(x,y) such that the net change in value effected by the stage equals the
separative work of the stage; thus:

LU(x +8x, y + 8y) + LU(x - ox, y - 8y) - 2LV (x,y) =£Ly," ,  (12)
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where:

I}

dx = % g(x,y) (?l x(1 -x -y) + (Wl - Wg) xy)

N = M)

1
8y = 5 h(x,y) (o ¥(1 - x -y) - (v - v) x)
Again carrying out the indicated Taylor expansion as with two components,
one obtains the partial differential equation

(P /2:x) + 2gn(3%Y faxdy) + B22U /ovP) = w2 (13)

which is the three component analogue of the ordinary differential
equation (2) for two components. There are many functions of x and y
which satisfy this partial differential equation. ¥From the possible
solutions, one must be chosen which has certain desirable properties
discussed below.

In the situation of the uranium isotopes U-235, 236, and 238, it
must be realized that not all concentration differences are effected at
the expense of separative work. Thus, the addition (or depletion) of
U-236 in a reactor in no way involves the expenditure of separative work,
and accordingly, it should be possible, for example, to feed material
containing U-236 to a cascade initially free of U-236 without incurring
a mixing loss in the sense of separative work losses. The three component
Zf(x,y) should then have the property that it permits the mixing of
materials of some appreciably different concentrations without a loss in
separative work, i.e., the value of the unmixed materials equals the
value of the mix. Furthermore, this 7/(x,y) should permit the linking of
stages together in a cascade and the introduction of feed materials to
the cascade so that separative work is conserved everywhere in the cascade.
In such a cascade, at every location where streams are brought together
and mixed, the value of the materials before mixing must equal the value
of the resulting mix. The separative work of the cascade then equals the
sum of the separative work of the stages; hence:

2
i; Ly, = IL)(x +8x, y +8y) + LY(x - 8x, y - dy) - 2LU(x,y) ,
cascade cascade (1)
and furthermore, as in the two component situation,
1 2 e 5
T Il = PU(xp,yp) + WU (x,yy) - FU (xp,yp). (15)

cascade
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It may be seen from equation (15) that, as in the two component case,
such a value function ?(x,y) can then be the basis for a unit cost
system for pricing three component isotopic mixtures. Of course, such

a unit cost system will be strictly applicable only to some reference
cascade - in the same way that the two component cost system is strictly
applicable to the ideal cascade.

It has thus been seen that for the purpose of priecing U-235, 236,
238 mixtures, one requires a function U(x,y) which satisfies the partial
differential equation (13) and furthermore has the property that it
permits the mixing of some materials with appreciably different isotovic
concentrations so that the value of the unmixed materials is equal to
the value of the resulting mix. Given a material with concentrations
2V ), one must then be able to establish whether another material
%h Concentrations (x »Y5 ) can be mixed with the first with value
belng conserved. For %hls purpose, consider introducing a function
M(x,y), called a "match function,"” with the property that if two
materials have distinct concentrations (x,,y,) and (x ,y2) such that
M(x ,¥-) equals M(x2,y ), then these two Materials cainl bé mixed with
value %eing conservéd. Once the match function is known, stages can
be linked together to form a cascade and feeds can be introduced to
the cascade so that separative work is conserved everywhere in the
cascade. Such a cascade is formed by matching streams which come
together, i.e., the match function for streams coming together has the
same value.

For application to operations with U-235, 236, and 238 mixtures,
the applicable value function //(x,y) and associated match function
M(x,y) should also satisfy the boundary condition that they reduce
to the usual two component formulas when U-236 is not present, that
is, when y equals zero. Hence, it is required that ¥/ (x,0) equal? (x)
in (%), and since in the absence of U-23%6, materials are mixed with
value being conserved only when the materials have the same U-235
concentration x, it is required that M(x,O) equal X.

The above discussion on the desired properties of the value
function J/(x,y) is now summarized in concise mathematical language.

It is desired to find a value function.U(x,y) and an associated match
function M(x,y) with the following properties:

1. g (77 /37) + egn(3FU /axdy) + n°R7Y [3F) = v° (16)
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where:
g=\le(l'x'y) +(W1"W2) XY s
b=y, ¥(L-x-y) - (¥ -¥) xy,
0<x¢1l, 0<y«l, =x+y<l.
2' wlU(Xl’yl) + wgy(xglyé) = (wl + W2) Z/(Xajya)) (17)
where:
(xl,yl) and (x2,y2) are distinet and such that M(xl,yl) =
M(xg,ye),
and

M
it

5 (wi X, + W, x2)/(wi + Wé) ,
vy = (W vy +y 3p) /(v +9,),

w,. >0, w

1 22—0, i.e., Wy and w, are material quantities.

2

3. U(x,0) = cg teg x+(2x -1) In (x/(1 - x)] , (18)
where <, and c, are arbitrary constants.
b, M(x,0) = x. (19)

Finding {/(x,y) and the associated M(x,y) is a formidable problem.
The rigorous mathematical analysis and solution are presented in Appendix
I. Unfortunately, the analysis there presented has resisted all attempts
by the writers at simplification. Several observations, based on physical
and geometrical considerations, do permit a heuristic development of the
solution. Such a development follows.

Note first that equation (17) states that if two matched materials
are mixed, value is conserved. Considering that when two materials are
mixed, a portion of one may first be mixed with a portion of the other,
and again, sub-portions may be mixed, etc., until finally the two original
materials are mixed, one may expect that if any number of matched materials
are mixed, value is conserved. It may then be further concluded that the
curve in the (x,y) plane described by the relation

M(x,y) = constant (20)

must be a straight line. The argument, based on Figure L, is as follows:
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A U{(x,y)

k’ M(x,y) = Constant
"

M(x,y) Constant on a Curve

Figure 4

As shown in Figure 4, if M(x,y) is constant on a curve not a straight
line, due to the above extension of (17),7/(x,y) is a plane for concentra-
tions (x,,y.) resulting from the mixing of three or more materials with
distinct colcentrations on the curve M(x,y) = constant; thus:

Zf(x,y) = a + bx + cy, where a, b, and ¢ are constants.
But then 7/(x,y) cannot satisfy the differential equation (16). Hence
the locus of (20) must be a straight line. Consider now that such lines
may be described by
x +y B(M) = c(M) , (21)

where B(M) and C(M) are functions of M only. Since (19) demands that
M(x,0) = x, it then follows from (21) that

x +y B(M) = M. (22)
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It further follows, as a consequence of (17), that over a line, such as
(22), 7/ (x,y) is a line, and hence,

Z/(X)Y) = U(M).Y) =oM) +y B(M); (25)

where (M) and B(M) are functions of M only. Since 7(x,0) is given by
(18) and since from (19), M(x,0) = 0, it follows that (M) in (23) is
known; thus:

oM) =c_  +cg M+ (2-1) 1n M/(1 -M)) . (24)

1

The picture showing these relations between J/(x,y) and M(x,y) is shown
in Figure 5.
Z’f(X:Y)

. %(x,y) linear over a locus

///JCT M(x,y) = constant
- > E
U (x,0) \/ { o

- Y

o T M=x+y B(M)

— Boundary x + y = 1

Relations Between //(x,y) and M(x,y)

Figure 5

Consider now that due to (18), which states that {/(x,y) reduces to the
usual two component value function in the absence of U-236, [/(x,y) must
recognize the expenditure of separative work for the separation of U-235
and U-238. In particular, note that

2(0) =eo , and Y(1) = oo 5
which imply the expenditure of infinite separative work for the complete

removal of U-235 or U-238 in the absence 9£'U-256. One may then expect
that
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y(O)Y) = o0y and 2/-(X, 1 - X) = o0

which imply the expenditure of infinite separative work for the complete
removal of U-235 or U-238 in the presence of U-236. It may then be seen
that /{(x,y) should be infinite on the boundaries x = O and X + y = 1

in Figure 5. Note further that again from separative work considerations,
Zf(X,Y) should be finite for all concentration points (x,,y,) in the
interior of the triangle formed by the three boundaries X = , ¥ =0,
and x + y = 1. It then follows from the above considerations that lines
of constant M cannot densely intersect either of the boundaries x = O
and X + y = 1, for then !/ (x,y) over such lines would be infinite. It
further follows that through every interior point (x.,y.), the line of
constant M passing through (x.,y.) must intersect thé bdundary y = O

in the interval O < x <1, for if there are interior points whose lines
of constant M do not intersect the boundary y = O in this interval, then
such lines must densely intersect at least one of the boundaries x = O
and X +y = 1. In summary, lines of constant M must originate on the
boundary y = O in the interval 0 < x < 1, such lines must pass through
every interior point of the triangle formed by the three boundaries,

and such lines cannot densely intersect the boundaries x = O and

X +y = 1l. Accordingly, either no lines of constant M may be drawn,

in which case the desired J/(x,y) does not exist, or all such lines
intersect at the cornmer point (0,1), in which case ¥ (x,y) may be
expected to have some irregularity at this one point. In the latter
case,

M=x/(1-y). (25)

It remains to find out whether with the above M, a value function
V(x,y) is permitted by the partial differential equation (16). This is
simply found out by using (25) to eliminate x in (16). Thus, one arrives
at a partial differential equation in M and y coordinates in which (23)
may be substituted. The only unknown in (23) is B(M), and the differential
equation in M and y coordinates must be solved for B(M), provided a
solution is permissible. On carrying out the necessary algebraic simpli-
fication when the substitution of (23) is made, one finds that the partial
differential equation in M and y coordinates reduces to an ordinary
differential equation for (M), the y variable vanishing. Hence, a
solution for B(M) is permissible, and on solving for B(M), one has found
the value function //(x,y) = UM,y), given by (23), with the associated
match function M(x,y), given by (253. The details of this part of the
development are presented in the addendum to Appendix I. The results
are that:

for 2k = 1,

U (x,y) = Cy + CpX F Coy + csy In R + [Qx + (£E§El y - l] In R, (26)
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for 2k # 1,
- ~(2k-1) 2k
(x,y) = Cy + C1X + Cp¥ + cgy R + (2x + TV - 1) In R, (27)
vwhere:
=M/(1 -M) =x/(1 -x-y), (28)
and cy2 G2 Cps and c5 are arbitrary constants.

This completes the development of the value function sz,y) and its
associated match function M(x,y).

THE MATCHED ABUNDANCE RATIO CASCADE

It has been seen that the value function //(x,y) and the associated
match function M(x,y) developed in the previous section permit the mixing
of two materials with value being conserved provided the concentrations
(xl,y and (x A ) are such that M(xl,yl) M(xz,yg), i.e., the materials
are matched. ﬁ cascade with the propérty that separative work is
conserved everywhere can then be formed by matching streams wherever
they come together at stage links and feed points.

Consider now that when materials are matched with M = x/(1 - y),
the materials are also matched with the abundance ratio R = x/(l - X = y),
and conversely. Thus, there is no difference whether M or R is used as
the match function. Since for good reasons the abundance ratio is
already prevalent in isotope separation work, the abundance ratio R will
be used as the match function associated with the developed value function
Z/(x,y). The cascade formed by matching R will be called a matched
abundance ratio cascade, or briefly, a matched R cascade.

In this section, formulas for the concentration gradients and
interstage flow rates and the cascade productivity equations will be
developed for the matched R cascade. The matched R cascade has very
much the same role in three component separation as the ideal cascade
has in two component separation.

(a) Concentration Gradients and Interstage Flows:

First, consider the concentration gradients in a three component
cascade without as yet specifying how streams are matched in the cascade.
From the usual material balances and the concentration differences
effected by a stage, one readily obtains for stages in the enricher of
the cascade in Figure 2 the relations



dx/dn
dy/dn

A matched abundance ratio cascade is to be considered, and hence, one

g - [P(xp - x)/L]
h - [P(yp - ¥)/L]

2
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may expect abundance ratios rather than mol fractions to be the more

convenient variables.

Accordingly, introduce

R=x/(1L -x-y)and S =y/(1 -x -7y).

(29)

(30)

Carrying out the necessary substitutions for the indicated transformation
of variables in (29), one then obtains

dR/dn
ds/dn

It

These are the gradient equations in terms of abundance ratios in any
three component cascade¥.

R ¥, -[P(1 + R + 8) (R,
S¥, -[BP(1 + R +8) (s - 8)/L(1 + R, + 8;)] .

- R)/L(1 + Ry + S3)]

Consider now stages in a cascade as shown in Figure 6.

Rn+2
(Xn+2’ yn+2)

*
n
¥ *
(Xn, yn)
R
n
(Xn; yn)

)

n+l)th stage

AR

n th stage

*

n+l
* *

(xn+l’ yn+l)

Rn+l

(xn+l’ yn+l)

~
ngl *

(xn—l’ yﬂ-l)

Schematic of Stages in a Cascade

Figure 6

(31.1)
(31.2)

¥
Note how easily the total reflux gradients are obtained from these

equations.
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Suppose the cascade in Figure 6 to be a matched g.cascade. Then,

Ruse = B - (32)

From the concentration differences effected by the n-th stage, it
follows that

R* - R = [g(dR/ox) +n(ds/dy)) [ =R ¥; ,
so that from (32) and the above, one obtains

R o = R (1+1y). (33)

In the present treatment of the stage number n as a continuous variable,
one has that

R.,-R = 2(dR/dn).

and hence, (33) becomes
dR/dn = R wl/E s (34)

which is the gradient equation for the R abundance ratio in a matched
R cascade.

The interstage flows in the matched R cascade are now readily
obtained. One substitutes (34) in (31.1), solves for L, and finds that

_2p 1+R+S Rp - R (35)
== . ,
ml 1+ RP + SP R

which is applicable to the enricher of the cascade shown in Figure 2.

L

The relation between the R and S gradients in a matched R cascade
also follows at once. Substituting (35) in (31.2), dividing the result
by (34), results in

as/dR = 2k(s/R) -((s; - 8)/(R; - R)],
which may be reduced to

as(r, - R) R¥F/aR = - 5 R™K (36)
As in the development of the value function, integration is here seen
to present two cases, 2k = 1 and 2k # 1. For the case 2k # 1, which is

applicable to the U-235, 236, and 238 situation, one then obtains for
for the enricher of the cascade shown in Figure 2,
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s 1wt o
57 moT W — . (37)

At the feed point, R = R, the R abundance ratic of the feed, since

in the matched R cascade, the R abundance ratio of the feed is matched
to the cascade gradient value. The S abundance ratio S_. at the feed
point is then obtained from (37) with R = R,. It is to be emphasized
that S_., is the cascade gradient value for The S abundance ratio at
the feeé point, and this value SFi is EEE necessarily equal to SF’ the
S abundance ratio of the feed.

From the above examples, it is clear how similar formulas may be
developed for gradients and interstage flows of the stripper of the
cascade in Figure 2, as well as for more complicated cascade situations.

(b) V Balances and H Balances

A set of productivity equations for a matched R cascade may be
developed directly from cascade considerations; thus, the cascade
separative work may be found by adding interstage flows, given by
expressions such as (35), over all the cascade. Another approach, based
on value function considerations, is simpler to develgp, simpler to
apply to more complex cascade situations, and simpler to extend to
additional isotopes. For this purpose, the value function, either (26)
or (27), is written in the form:

U xsy) = cq + eqx + cpy + o5 Hx,y) + Vx,y). (38)

Thus, for the case 2k # 1,

H(x,y) = y R2EL) (59)
Vix,y) = (2x + EEE%—I y - 1) 1In R. (L40)

As in the two component situation, V(x,y) is called the elementary value
function. The new function H(x,y) is called the homogeneous function.
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For the reasons stated in the discussion leading to (15), a
balance on a matched R cascade nets to the sum of the separative work
of the stages; thus, for the cascade of Figure 2, if operated as a
matched R cascade, one has

% ZL Wle = PZ/(XP’yP) + wz/(xw)yw) - FZ/(XF;YF) .
cascade

More generally, for the same reasons as above, a Y balance on some
considered section of a matched R cascade leads to the sum of the
separative work of the stages in the considered section. Thus, if E,,
J=1,2y0000000., J, are the stream flows, at concentrations (x.,y.),
cutting across the envelope defining some section of a matched’R éascade,

J

2
];_‘I'- L s = X EJ Z/(xj,yj) I3 ()'"l)
Section j=1
where outputs are entered as positive quantities. Since Cor €12 Cos
and cs in (38) are arbitrary, it follows at once from (L1) that
J
% ILvy 2. Z E, V(x.,y.), called a V balance, (42)
Section j=1 J J7d
and J
z
0= . E. H(x.,y.), called an H balance. L
3=1 3 ( J’yJ)’ ( 3)

(One also obtains ZE, = 0, x E.x, = 0, and X E,y, = O, but these are
simply the three indeﬂendent mafetial balances wHith are true in any
cascade.)

Both V balances and H balances are of use in obtaining productivity
equations. In particular, it may be noted that an H balance permits
obtaining with ease the (x,y) gradient in the cascade. The use of these
balances is illustrated by the following example.

Consider the cascade shown in Figure 7.
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Vo x oy

Schematic of a Cascade

Figure 7

By means of an H balance on the indicated section of the cascade in
Figure 7, an expression for the (x,y) gradient between the E withdrawal
point and the F feed point will be obtained. The H balance on the section
is

PH(xp,yp) + EH(xp,yg) + (L - P - E) H(x,y) - LH(x*,y*) =0,

which is re-written
P [H(xp,yp) - H(x,y)] +E [H(xpyg) - H(x,y))
- L [H(x*,y*) - H(x,y)] =0. (L)

Consider now that for most isotope separations, the differences (x* - x)
and (y* - y) are small, so that one may write
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H(x*,y%) - H(x,y) = (x* - x)(3H/3x) + (y* - y)(3H/dy).
Furthermore, by material balance,

L(x¥ - x) = P(XP -x) + E(xE - x),
L(y* - y) = P(yp - ¥) + E(yg - ¥).

Substituting the above expressions in (44), one then obtains
P (H(xp,yp) - H(x,y) - (xp - x)(3H/3x) - (yp - ¥)(3H/3y)]
+ B [H(xg,yg) - Hx,y) - (35 - x)(3H/3x) - (v - ¥)(3H/3y)] = 0, (45)

which is seen to be an expression for the (x,y) gradient between the E
withdrawal point and the F feed point.

From the above example, it is clear how, by means of H balances,
relations involving external flows and concentrations may be obtained
for other cascade situations.

(c) Productivity Equations

By means of V balances and H balances, a set of productivity
equations for any three component cascade, operated as a matched R
cascade, is gquickly obtained. Thus for the cascade of Figure 7, one
immediately has the V balance, the H balance, and the three material
balances for the entire cascade:

i;i;;ﬁile = PV(xp,yp) + EV(xg,yp) + W(x,yy) - FV(xe,vg)
0 = PH(xP,yP) + EH(XE,YE) + WH(XW,YW) - FH(XF:YF) s
0= PXP + EXE + wa - FxF ’
o - (46)

Pyp + By + By, - Fyp
0O=P+E+E-F.

If in Figure 7, one supposes that E is a side feed, the above five
equations suffice for the usual productivity calculations. (E is then
entered as a negative quantity in the above productivity equations.)
Note however, that 1f E is a side withdrawal, the above five equations
are not complete, since both X and g cannot be specified. One may
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specify a desired for the withdrawal, but one then must take the Vg
found at the point of withdrawal. The section H balance which led to
(45) gives the required additional relation to complete the productivity
equations in this situation. Since ( ,yE) are gradient concentrations,
(45) is evaluated at x = Xy and y = yp, and

H(xp,¥p) - Hlxg,yp) - (xp - x5)(3B/0xg) - (vp - vg)(3B/dyg) =0,  (47)

where:

(JH/dx)
(3H/dyg)
The five equations (46) and equation (47) complete the set of productivity

equations for the cascade of Figure 7. Other situations are similarly
treated and offer no new difficulties.

(dH/dx) at x = Xgy ¥ = Vg »
(3H/dy) at x = Xy ¥ = Vg -

Needless to say, the above three component productivity equations
have the same uses as those for two component separation. In addition,
by means of differential analysis, the three component equations readily
lead to evaluating the nuisance effects of a third component of low
concentration in the separation of two major components, such as the
effects of U-234 on the separation of U-235 and U-238, which can become
significant at high U-255 concentrations.

UNIT COST SCALE WITH THE MATCHED ABUNDANCE RATIO CASCADE

The three component value function //(x,y) which has been developed
immediately leads to a unit cost scale for U-235, 236, and 238 mixtures
being separated by gaseous diffusion in a matched R cascade. let
D(x,y) be the unit cost in dollars per kilogram of uranium whose U-235
concentration is x and whose U-236 concentration is ¥, and as before,
let K be the unit cost of separative work in dollars per kilogram.

Then,

D(x,y) = K [ao +ax +ay + a H(x,y) + V(x,y)] , (48)

where the a's are arbitrary constants, and from (39) and (40), H and V
for U-235, 236, and 238 mixtures are:

y [x/(1-x-n]3 (49)

(2x + 4y -1) In [x/(L -x -y)] . (50)

H( X:Y)

V(x,y)

For the reasons already given for the two component cost scale used by

the U.S.A.E.C., this three component cost scale assures that the operating
costs of a matched R cascade are accounted for by the material charges
and credits.
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There are four arbitrary constants in (48). These constants are
evaluated from the following considerations:

l. The cost scale D(x,y) should have a locus of zero value; thus:
D(X—.B,yB) = o'

2. Uranium at concentrations (x_,¥. ) may be used as feed to a
matched R cascade to produce sofe product, say, at concentra-
tions (x ,yT). Though this product does not accrue feed
costs, 1T does accrue cascade separative work costs, and
consequently, D(xT,y ) > 0 for concentrations (x.,y.) not on
the locus of zero value. To assure a non-negativVe cost scale
for the entire range of concentrations, D(x,y) is made a
minimum on the locus of zero value; thus:

dD/dx = 0, dD/dy =0, for x = Xy ¥ =¥y -

3. In order that the resulting cost scale include the U.S.A.E.C.
schedule for U-235 and 238 mixtures, the locus of zero value
should include x_, the zero point of the U.S.A.E.C. price
schedule; thus:

D(XO,O) = 0.

The details of the required mathematical analysis for the
evaluation of the constants are presented in Appendix II. Suffice it
to say that in this analysis, it i1s very convenient to consider the
cost scale as a function of the abundance ratio R and the U-236
concentration y rather than a function of x and y. The resulting values
of the constants are shown below:

a,= R -1)+ 1InR) = -7.1086 ,

(Ro - 1)(Ro +1
a; = - R +2 1n RO] = 462.9338 ,

o (51)
1 2k
a, = - [(R; -1)+ P— + s—— 1nRJ] = 16.4h11,
1 2k-1
as = 5 RO = 1.738 ,
(2kx - 1)
where R = x /(l - X_). The numerical values given above are obtained

with k = 2/3% applicable to U-255, 236, and 238 mixtures, and x _ =

0.0022138 weight fraction U-235, the zero value of the U.S.A.E.e. price
schedule given in [1] .
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‘ D(x,y)
U.S.A.E.C. ) (2x-1)
//Price Schedule D(x,y) = K [ao tagX +ayy +agzy R
for U-235, 238 -
’ + (2% + =7y - 1) 1In R]

/m//’D(X,Y) at constant R = x/(1 - x - y)

(0,1)

- Y
(U-236)

Line of constant
abundance ratio R = x/(1 - x - y)

(U-}2{55)

The Three Component Unit Cost Scale

Figure 8
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Before detailed numerical results are presented, the general
aspects of the resulting cost scale D(x,y) are briefly reviewed. As
shown in Figure 8, the following are the more important characteristics
of the cost scale:

l. The locus of zero value is the line of constant abundance
ratio R which passes through the two component concentration
X of zéro value.

2., When y = 0, the U.S.A.E.C. price schedule for U-235, 238
mixtures is obtained.

3. The cost scale becomes infinite on the axis representing
the U-235 and U-236 mixture, as well as that of the U-236
and U-238 mixture.

Some numerical results are now presented. Table I lists D(x,y)
so as to show the effect of U-236 on the unit cost of uranium at various
U-235 concentrations of interest. The tabulated D(x,y) is obtained with
the constants in (48) evaluated as in (51) and a unit cost of separative
work K = $37.286/kg U, given in (1}. Tt is to be noted in Table I how
the unit cost of uranium increases as the U-236 concentration increases
at a constant U-235 concentration. The rise is small over most of the
permissible U-236 range, but it may surprise one that it rises at all.
The reason for the rise is that the developed cost scale accounts for
cascade separative work, and as the U-236 concentration increases at
fixed U-235 concentrations, it takes more separative work per kilogram
of uranium for that uranium to be produced from feed material of zero
value.

SOME REACTOR CONSIDERATIONS

The increase of the developed unit cost for uranium as the U-236
concentration increases at constant U-235 concentration may seem a most
peculiar characteristic of the cost scale to a reactor operator. In
particular, since as a rule*, U-236 is produced in a reactor, it would
appear that by producing U-236 a reactor can increase the unit cost of
material, and thereby conceivably generate power at no cost. Some
investigation of what a reactor does in relation to the developed cost
scale is then in order.

*A possible exception is when the U-23%6 concentration of the reactor
charge is considerably greater than the U-235 concentration, and the
U-236 production from U-235 neutron capture is less than the U-236
lost to U-23T7 formation.



UNIT COST SCAIE($/kg. U) FOR U-235,

TABIE I

2%6, 238 MIXTURES

X = Mol Fraction U-235; y = Mol Fraction U-236

0.00 0.02 0.0k 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.90 15335, 15362, 15392, 15428, 15479. 15557.%
0.80 13575. 13594, 13%615. 13637. 13660. 1%3685. 13712. 1374k, 137835. 135638, 13926.%
0.70 118%0. 11847, 11864, 11882, 11900, 11919. 11939, 11960. 11982. 12006. 12032. 12292.%
0.60 10094. 10109. 1012k, 10140. 10156, 10172, 10188, 10206. 10223. 10242, 10261. 10376. 10655.%
0.50 8%65. 8379. 8392. 8406, 8he2o,  8Lzk, 8khg, 8Lek., Bh79. Bh495. 8511, 8600. 8717. 901lhk.*
0.40 66h2, 665k,  6666. 6679, 669L.  670L, 6717. 67%30. 6743,  6757. 6771. 6846, 6935. T053. 7366.%
0.30 ho26,  Loz6.  holk7.  Lgs8,  Lo6g,  L9GO. 4991.  5003. 5014, 5026,  503%9. 5103, 5176« 5263. 5381l. 5710.%
0.20 3218,  3%227. 3236, 3246, 3255, 326k, 3274, 3284, 3294, 3304, 331k, 3368, 3hkog, 3498, 3581, 3697. LOLO.*
0.10 1527, 1533, 15ho, 1548,  1555. 1562, 1570.  1577. 1585. 1592,  16é00. Lek2, 1688. 1740. 1801. 1877. 1985, 2335.%
0.08 1192, 1199. 1205, 1212, 1218, 1225, 1232, 1239, 12hk6, 1255, 1260, 1298, 1341, 1389,  14ks5, 151k, 1611, 1835,
0.06 860.9 866.5 872.1 877.9 883.7 889.7 895.7 901.9 908.1 914.5 920.9 955.2 99%.2 1036. 1087. 1149. 1234, 1398,
0.0k 5344 539,0  543.7  s548.5  553.4 558.,3 563.4  568.5 573.8  579.1 58k.5 613.5 45,9  682.9 T26.6 780.5 853.5 981.7
0.03 37h.6  378.6 382.7 386.8 391.0 395.3 399.7 L4ok.,2  L408,7 L413.4  418.1 Lyz,5 k2.2 505.3  5hk.5  593.2 659.k  7T72.7
0.02 219.5 222.,6 225,9 229,1 232.5 235.9 239.4  243,0  24k6,7  250.5  254,3 275.0 298.8 326.6 360.0 Lho2.1  459,9  558.0
0.01 75.46  77.36  79.30 81.30 83.36  85.47 87.65 89.89 92,21 94.59 97.05 110.6 126,7  1h6,1  170.5 202,35  247.7  326.6
0.009 2.4 64,16 65,95  67.75 69.63  71.56 T3.56  75.62  T7.7h  79.93 82.20 9Lk.73  109.7 128.0 151.0 181.4 225.0 301.h4
0.008 49.89 51.42 53,00 5k.63 56.31  58.05 59.85 6L.70 63.62 65.61 67.66 79.09 92.89 109.9 131.5 160.2 201.9 275.h4
0.007 37.93  39.26 Lo.64 L2,06 43,53 L5.05 46,63 L8.26 49,96 51.71  53.54 63.76 76.24  91.80 111.8 138.7 178.2 248.7
0.006 26.76 27.86 29.01 30.20 3l.4k 32,73 34,06 35,45 36,90  38.L1  39.97 48,84 59.86 73,79 91.97 116.8 153.6 220.8

*
At stated U-236 concentration less 0.005.

Lz
151 o't
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A reactor takes in material which contains a quantity X kg. of
U-235 and Z kg. of U-238. The R abundance ratio of this material then
is R = X/Z. Suppose an incremental amount X of U-235 is burned up.
At the same time an incremental amount 3Z of U-238 is used. One has
then that

(8R/R) = (8X/X) - (3Z/Z).

But since ®X is proportional to X0_, and ®Z is proportional to Zog,
where 05 and 0g are the appropriatg cross-sections, it follows that

(8R/R) = [1 - (op/0.)]- (8X/X)=0.99(8X/X) in the thermal neutron
range. Note then t atsa reactor always decreases the R abundance ratio
of material because of U-255 burn-up. At the same time, except for the
situation already noted, U-236 is produced, so that the U-236 concentra-
tion y increases. Now, it may be established from the developed cost
scale that

dD/3R>0, and 3D/dy € O,

except on the locus of zero value. Hence, it may be seen that in the
considered situation, a reactor decreases the unit cost of material on
both counts, namely, decreasing R and increasing y. Wrong conclusions
should not be drawn from the characteristic of the cost scale of
increasing unit costs with increasing U-23%6 concentration at fixed U-235
concentration.

Perhaps a more natural presentation of the cost scale for the
above purposes is a tabulation of the cost scale in coordinates of the
abundance ratio R and the U-236 concentration y, as shown in Table IT.
Here, it may be clearly seen that as a reactor decreases the U-235
relative to the U-238, (that is, decreases R), the unit cost drops,
and as U-236 is introduced, the unit cost also drops.

Some burn-up costs as determined with the developed cost scale
will now be briefly reviewed. These are shown in Table III. It is
here supposed that a reactor at 30% burn-up is originally charged with
material at the stated charge concentrations which cover a range of
U-235 concentration levels with and without U-236. The discharge
concentrations are computed from the assumed burn-up of 30% and from
the indicated uranium isotope cross sections in the thermal neutron
range. The unit cost of burn-up in dollars per kilogram of U-235 hsas
been computed two ways for comparison. The burn-up cost C, has been
determined from a four component cost scale (U-23k, 235, 2%6, and 238)
developed in the manner exemplified for three components. The other



TABLE II

UNIT COST SCALE ($/kg U) FOR U-235, 236, 235 MIXTURES AS A FUNCTION OF R AND y

R = Mol Fraction U-235/Mol Fraction U-238; y = Mol Fraction U-236

R 4 0.00 0.02 0.0k 0.06 0.08 0.10 0.20 0.40 0.60 0.80 0.95
10.0 15497. 15200. 14902, 14605. 14307, 14010. 12523, 9549, 6574, 3600. 1369,
5.0 14159. 13887. 13615, 13343, 13071. 12799. 114%8. 8717. 5996. 3275. 123h,
2.0 11251. 11035. 10819. 10603. 10388. 10172, 9093, 6935. 4776, 2618. 999.8
1.0 ‘8365. 8206. 8oLé6. 7887. T7728. 7568. 6771, 5176. 3581. 1986. 790.4
0.5 5497 . 539k . 5290, 5187. 508%. 4980. Lh63, 3429, 239l 1360. 584 .2
0.2 2652, 260k, 2555, 2507 . 2hsg, 2h11. 2170. 1668. 1206, 4.6 363.2
0.1 137k, 1351, 1327. 1303. 1279. 1255. 1136. 898.5 660.6 Lo2.6 24h 2
0.05 658.0 6L7.4 636.9 626.4 615.9 605.% 552.7 L. b 32,2 236.9 158.0
0.04 509.6 501.7 49%.9 4186.0 478.1 470.2 430.9 352,1 273 4 194.6 135.6
0.03 360.8 35545 350.3 345.0 339.7 334 4 308.0 255.1 202.3 1494 109.5
0.02 213.5 210.7 207.9 205.0 202.2 199.3 185.2 156.8 128.4 100.0 78.72
0.01 416 7%.39 T2.63 71.87 71,10 70.34 66.52 58.89 51.26 43,63 37.91
0.009 6141 60.82 60.22 59462 59.02 5842 55.4% Lo 4l 43,45 37.46 32,97
0.008 49,11 L8.66 48,22 b7.77 h7.32 46,87 4,63 40.16 35.68 31.20 27.84
0.007 37.37 37.06 56.75 36.43 36412 35,80 34,25 31.12 28.00 24,87 22,53
0.006 26,38 26.18 25.98 25.79 25459 25.40 ol L1 22,45 20.49 18.53 17.06

62
qeHT-A
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TABIE III

EXAMPILES OF U-235 BURN-UP COSTS
(30% Burn-Up Assumed)

Charge Burn-Up Costs
Concentrations ($/Kg. U-235)
U-235| U-236 Co Cy

.90 .00 17204 17044
.05 17204 17072

.80 .00 17148 17018
.05 171h7 17037

.60 .00 17078 16977
.05 17078 16995

Lo .00 17003 16921
.05 17002 1694k

.20 .00 16846 16785
.05 16844 16626

.10 .00 16585 16540
.05 16583 16615

.05 .00 16105 16072
.05 16101 16207

.02 .00 14723 14705
.05 1h717 14990

01 .00 12465 12456
.05 12457 12931

C. is based on the U.S.A.E.C. price

2 schedule for U-235, 238 mixtures.

Ch is based on a four-component unit

cost scale applicable to a matched-R
cascade processing U-23hk, U-235, U-236,
and U-238 mixtures.
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burn-up cost 02 has been determined from the U.S.A.E.C. price schedule
for U-235, 238, It is to be remembered that the four component cost
scale includes the U.S.A.E.C. schedule as a special case. The
comparison between CM and C, then indicates the effects of the nuisance
isotopes on some reactor economics. In particular, note how the unit
cost of burn-up increases with the presence of U-236 in the reactor
charge; at least initially, this rate of increase is seen to be
unexpectedly small. Detailed studies on the effects of the developed
cost scale on reactor economics similar to those presented in [4] are
nevertheless indicated and will be the subject of another report.

EXAMPIE OF PERMISSIBLE CASCADE OPERATIONS

It has been previously stated that the developed cost scale has
the property that materials having the same R abundance ratio may be
mixed without incurring a mixing loss. This property permits some
mixing operations of interest both in reactor and cascade operations,
and an example of particular interest in cascade operations will be
briefly discussed.

Consider two cascades as shown in Figure 9. Here, Cascade 1 is
kept free of U-236, and Cascade 2 receives uranium with U-236. Both
cascades are matched R cascades, and both span the same R range,
namely, from R_to R_. (FUrthermore, since both span the same R range,
both have the same number of stages.) The mixing operations possible
are best exemplified on the (x,y) plot in Figure 9. In the considered
situation, a reactor returns material at point A and requests material
with a U-235 concentration x_ . The reactor return can then be fed to
Cascade 2, enriched up to point B with abundance ratio R,, and product
from Cascade 2 can be blended with product from Cascade E also at
to make a blend at the desired U-235 concentration x . The possibility
of such blending operations is of interest particularly with mixtures
containing U-234 and U-236 at relatively high U-235 concentrations.

In such a situation, there is the possibility of finding oneself very
short of stages if further U-235 enriching is to be done in a single
cascade.

INVESTIGATION OF PROPERTIES OF THE MATCHED R CASCADE

It has been seen that the matched R cascade plays a central role
in the application of the value function and unit cost scales which have
been developed. It has been previously mentioned that the two component
ideal cascade has the very desirable property of being a minimum power
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cascade; and, of course, a similar property for the matched R cascade
would also be desirable. The writers have not been able to establish
such a property for the matched R cascade. Some cost properties of
the matched R cascade have been established and these are discussed
below.

As shown in Appendix III the unit cost D(x,y), developed for
U-235, 236, 238 mixtures, may be interpreted as the unit cost of
material at concentrations (x,y) which has been produced in a matched
R cascade from material of zero value with abundance ratio R . A
pertinent question to ask is whether with some other mode ofocascade
operation it 1s possible to produce at lower cost material at the
same concentrations (x,y), the feed of zero value still having
abundance ratio Ro' The situation is as shown in Figure 10.

Product at concentrations Product at concentrations (x,y)
(x,y) and unit cost D(x,y) and unit cost min. D(x,y)

Cascade Operation:

Cascade unspecified
Operation:
matched R
| )

Infinite Infinite Feed
Feed ( ) Reservoir (ﬁ A:)
Reservolr

Reservoir concentrations Reservoir concentrations

(¢, ) with R abundance ratio (¢', n') with R abundance ratio
Ry =¢/(L-¢-m) R o=¢/(1L-¢" -n")

(Ro is R abundance ratio of zero value)

Comparison of a Matched R Cascade Operation
with a Minimum Cost Cascade Operation

Figure 10
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For the situation shown in Figure 10, it has been possible to establish
a lower bound for min. D(x,y). For the development of this lower bound,
reference is made to Appendix III; it is there shown that:

min. D(x,y) > (1 - y) D(x¥,0) +y I(x,y) , (52)
where: p )
x¥ = x/(1 - s
yk(R - R)) + R 1/k k(R - R) + R 1/(1-k)
I(x,y) =K In [ = ] ‘ 2 ] ,
o

and other notation is as before. The above inequality is applicable
to the situation of Figure 10 for the case 0 < k < 1, which includes
the U-235, 236, 238 mixture with k = 2/3. With the lower bound given
by (52), it is then possible to estimate how much cheaper material of
specified concentrations (x,y) can be produced from material of zero
value with some other mode of cascade operation than the matched R
mode. Since here the feed is at zero value, the difference between
D(x,y) and min. D(x,y) is due to a difference in separative work
requirements, and hence, this difference also indicates how far from
minimum power a matched R gaseous diffusion cascade may be. For the
purposes of these evaluations, Table IV lists the ratio D(x,y)/min.
D(x,y), with min. D(x,y) estimated by (52), for concentration ranges
of interest. It may be seen that the tabulated ratios indicate a
very favorable comparison of the matched R cascade with some other
mode of cascade operation for a large range of U-235 and U-236
concentrations. Incidentally, the fact that the matched R cascade

is not a minimum power cascade implies that it is possible to mix
some materials with a gain in value in the sense of the developed
Z[(x,y). This opens some blending possibilities to both the cascade
and reactor operators. Thus, for example, it may be advantageous to
a reactor operator to blend two materials, before returning these to
the cascade, and to ask the cascade operator for credit on the blend.
Table IV indicates such possibilities to be small, but nevertheless,
they will be considered in the previously mentioned study on the
effects of the developed cost scale on reactor economics.

Another very desirable property of the two component cascade is
that considerable changes from ideality can be made without large
changes from the ideal separative work requirements. Indeed, it is
this stationary property which permits application of ideal cascade
theory to actual non-ideal cascades. This stationary property of the
ideal cascade has been established analytically; reference is made to
(2). It has not been possible to establish a similar property for the



The Tabulated Numbers are 100 $(D(x,y)/min. D(x,y)] - 1}.

TABLE IV

COMPARISON OF D(x,y) AND MIN. D(x,y)

tE\\{\ 0.00 0.02 0.0k4 0.08 0.10 0.12 0.1k 0.16 0.18 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.90 0 0.03 0.06 0.16 0.23%

0.80 0 0.03 0.06 0.12 0.16 0.20 0.2k 0.30 0.38 0.52%

0.60 0 0,03 0.06 0.11 0.15 0,18 0.21  0.25 0.29  0.33 0,58  Ll.32%

0.40 0 0.03 0.06 0.13 0.16 0,20 0.2% 0.27 0.31 0.35 0.57 0.86 1.29 2.73%

0.20 0 0.0k 0.08 0.17 0.22  0.26  0.31  0.36 0.1 0.46 0.7 1.06 1.h7 2.01 2.88 6.13%

0.10 0 0.05 0.11 0.22 0.28 0.34 0.41 O.h7 0.53 0.60 0.97 1.40 1.92 2.57 3.48 4,98 10.97*
0.05 0 0.07 0.13 0.28 0.35 0.k 0.50 0.58 0.66 0.75 1.21 1.76 2.42 3.27 L.ho 6.12 9.79
0.01 0 0.06 0.12 0.26 0.33 0.40 0.48 0.56 0.65 0.7k 1.25 1.91 2.76 3.89 5.50 T97 12.6k4
0.006 0 0.04 0.08 0.17 0.22 0.28 0.34 0.40 0.46 0.53 0.94 1.51 2.27 3.35 k.93 T.46 12.35

*
At stated U-236 concentration y less 0.005.

14
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three component matched R cascade, but numerical studies do indicate
that matched R cascades have a desired stability. Examples of some
numerical studies are shown in Figure 11l. Here a matched x cascade
has been completely determined numerically by an iterative computing
scheme and the cascade separative work has been determined by summing
Ly E/h over all the stages. With the external stream flows and
concentrations of the matched x cascade, a cascade value balance has
been made with the developed unit cost scale so as to obtain an
estimate of the cost of cascade separative work K ZL v 2/#, whence
the cascade separative work is estimated by dividing by K, the unit
cost of separative work used for the cost scale. A comparison of

the actual and estimated separative work is tabulated in Figure 11
for three different cascade situations. It may be seen that the
comparisons are favorable, and this would indicate that some freedom
may be taken in applying the value function for matched R cascades to
other modes of cascade operation in the same manner that the two
component value function for ideal cascades is applied to non-ideal
cascades. Analytical investigation along these lines is nevertheless
needed; results already available are presented in Appendix IV.

GENERALIZATION TO MORE COMPONENTS

The three component value function Z/(X,y) and the three
component matched R cascade readily generalize to more components.
Consider, for example a mixture of the four components C,, C,, Cs»
and C) . Let x,y and z denote the concentrations of C., 6 , and 33.
Iet |, denote the stage separation factor for the two component C
and C, separation; and similarly, let y, and V;, denote the corres-
ponding factors for the C, and CH separation and the C5 and 04
separation. Further, let

kg,l = ¢2/Wl )

kB,l = ¢5/Wl .

Then, a four component value function Z[(x,y,z), applicable to the case
2k2’l-¢ 1 and 2k5,1_# 1, is:

(x,y,2) = <,

+C) +CpY + gz + Oy Hz’l(x,y,z) + Cs HB,l(X’y’Z)
+ V(x,y,2) ,

where the c's are arbitrary constants, and



B
(Reactor return) Concentration
Quantity x(U-235) y(U-236)
N
— Case 1 P: 100.00 0200  .00556
(Natural feed) 2% U-235  E:  99.11  .012L .00675 V_ /V_, = 1.0001k
in P N: 159.22 .0072 .00000 &+ ©
i Case 2 P: 100.00 3500 3264
35% U-235 E: 87.49 2h12 3908 v l/v , = 1.0080
W in P N: 2780.1k L0072 0000 L ¢
A = Se ative work uired b
el par requirec by Case 3 P:  100.00  .8000  .1536
matched-x cascade.
80% U-235 E: 86.35 JTh27 L1811 v l/V 5 = 1.0029
V., = Separative work given by D(x,y) in P N: 317L.37 .0072 0000 eL ¢

balance on streams and stream
concentrations of matched-x
cascade.

X, = .0022 for all cases.

Application of D(xly) for Matched R Cascade to a Matched x Cascade

Figure 11
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. ) R-(Ekg’l -1)
2,1~ 7 ’
-(2k -1)
H =z R ( 5,51
5,1 ?
2k, 1 2k5 N
V=(2X + gm——2—mr y + m—=2——z - 1) In R 5
2k - ok -1
2,1 5,1
R=x/(1L -x -y -2) .

The cascade associated with the above four component value function is,
of course, the matched R cascade, R now denoting x/(l - X -y - z). The
two homogeneous functions, H and H 17 and the elementary value

function V play the same rolg’%s befo?é.

From the above example of a four component value function, it is
readily seen how other four component value functions are obtained for
different separation factor ratios, and in general, how value functions
for more components are obtained.

OTHER SUBJECTS

A few brief remarks will now be made on more general subjects.

Consider first the match function which has been here introduced
to isotope separation in cascades. The match function played a
significant role in the development of the three component value
function. The match function here prescribes how to link stages
together to form a cascade and how to introduce feeds to the cascade
so that separative work is conserved wherever streams are mixed. Now,
most of the mixing in a cascade i1s done at the stage links, and the
concentrations mixed at these links differ by very little in contrast
to the large differences in concentration which may occur at a feed
point. Hence, it makes sense to consider match functions on a purely
local basis and ask for a match function which makes iB possible to
conserve separative work at the stage links to order y“, which after
all, is the same order of correctness of the partial differential
equation defining the value function. ©Suffice it then to say that
it is in fact possible to develop such local match functions in
situations where some mixing is permissible. The development of local
match functions for three component mixtures is presented in Appendix
IV.
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From a more general viewpoint, onme can forget about an association
between match functions and value functions and simply consider a match
function as a recipe for linking stages together to do a certain
separation job. For example, one may consider processing some mixture
of isotopes in a cascade when the interest is not in enriching a
particular isotope, but rather, in enhancing some average property of
the mixture, such as an average cross-section. In such a situation,
there is intuitive appeal in investigating a match function which is
a linear form in the concentrations of the various isotopes. From this
more general viewpoint, much remains to be investigated about match
functions.

Finally, a word about value functions. The three component value
function here developed permits the absence of one of the components.
This value function is applicable to operations with U-235, 236, and
238 mixtures which may or may not contain U-236. Suppose, however,
that the isotopic mixture always includes the three components. A
value function applicable to the processing of such a mixture in a
cascade must then of necessity become infinite when any one of the
components is absent. Furthermore, all mixing should result in a
loss of separative work. A value function of particular interest in
this situation is:

Vo) =3 e (¥ (ex vy - 1) W[x/(1 - x - y)
o (xr2y - 1) /(1 - x - 9] + (b - ¥) (x - ¥) In(x/y))

The function V,(x,y) is a solution of the partial differential equation
given previously. It is symmetric in the concentrations and has a
minimum at the point (1/5, 1/5), and these are properties analogous to
those of the elementary value function for two components. The single
minimum can be moved by means of the evaluation of arbitrary constants
in an additive linear form in x and y to the concentrations of the
natural mixture, that is, an infinite reservoir of zero value material.
This function also has the property that any mixing whatsoever results
in loss of value, as would be expected when all concentration changes
are effected by expending separative work. The application of this
function to isotope separation remains to be exploited.

In conclusion, as seen from the above remarks and others previously
made, there remain many unsolved problems in the theory of multicomponent
isotope separation in cascades.
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APPENDIX T

MATHEMATICAL DEVELOPMENT OF THE VALUE FUNCTION

A. Statement of Problem

We have seen in the text that for our purposes, we wish to find a
value function J/(x,y) and a match function M(x,y) with the following
properties:

2 25, .2
1o 8" Uy + 280U, +00 by =V s (1-1)
vhere
g=llflx(l-x)-‘lf2xy,

h=vy, y(1 -y) - ¥ xy,

0<x<1, 0<£y<1l, x+y< 1.

In this appendix the partial derivatives are denoted by the
appropriate subscripts.

Be oy U iyy) + oy Uligvy) = Gy +wy) & Cesory), (1-2)

where
(Xl’yl) and (XE’y2) are distinct and such that
MGty ) = M),
g = (v %) +wy x5)/(wp + ),
vy = (v vy + Wy v,/ Gy + W),
Wy 2 0, LA > O.
3. ! (x%,0) = c, +Cp X+ (2x - 1) 1n T f = (1-3)

where s and c, are arbitrary constants.
M(x,0) = x. (1-4)

It is to be noticed that with (I-3), we imply that (I-1) holds on
the boundary y = O.

Subsequently, we will, for convenience, denote (x,y) and M(x,y)
by / and M, respectively, and we will follow this practice with other
functions we introduce.
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B. A Necessary Form of M
We first show that the locus on the (x,y) plane of
M =M, a constant, (1-5)

must be a straight line.

Suppose M = M_ on a curve not a straight line, specifically, a
curve such that tﬁere is one po%nt P = (x_,y_ ) on the curve in whose
neighborhood d°y/dax= (or dzx/dy ) is®not z8ro® et P, = (x_ + €15 Vg t
n ) be points on the curve in this neighborhood, and as sho%n in °
Figure I-1, let PO, Pl’ and P2 be distinct.

M Constant on a Curve

Figure I-1

Consider first the secant (P ,Pl). Since M(PO) = M(Pl) =M, it
follows from (I-2) that for (x,y? on (PO,Pl),ZV'is linear in x and y.
Hence,

CU = Px+2U axdy + U/ d%y =0

XX Xy Yy

for (x,y) on (P ,Pl) and dx and dy such that dy/dx = o), the slope of
(Po,Pl). Therelore,

2
Z/%x + 20, ZCKY + 0y é/yy =0 at (x,y) = (xo,yo). (1-6)
By considering the secant (PO’PE)’ we similarly obtain
2
Z/%x + 20, Z/xy + 0, &/yy =0 at (x,y) = (xo,yo), (1-7)

where 0, is the slope of (Po’PE)‘
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Consider now (I-2). ILet w) =W, =1, and let x; =X, ¥y, =¥ ,

Xy = X+ Bx, ¥, = Yo + DY. (I-2) then becomes

2
Zf(xo,yo) - 22/(x0 +0x, y + dy) + Z[(xO +208x, y + 2y) = 0, (1-8)
where M(xo,y ) = M(x + 28x, y + 2y). (1-9)

Let dx - 0. Since from (I-9), it follows that sy/sx = M /M , it then

follows from (I-8) that

2
U + 29, g/xy + 0, gfyy =0 at (x,y) = (xo,yo), (1-10)

where o = -M /M , the slope of the tangent to the curve M = Mo at the
point (% ,y. )" 7

Consider now that it s been supposed that in the neighborhood of
P , the derivative 4 y/dx is not zero. It follows that it is always

pgssible to find Pl and P2 such that

9 # 01, 9y £ 0 5y Oy # Oy e

Consequently, (I-6), (I-7), and (I-10) can hold only if /8 74 , and
/ _ are zero at (x ,y ). But then (I-1) cannot be satlsfféd. ﬁgnce,
we”¥ave shown that fl =M  cannot have a neighborhood where dgy/dx

not zero, and therefore, loci of constant M must be straight lines in
the (x,y) plane.

Consider further that due to (I-4), lines of constant M must
intersect the x-axis, and hence, such lines may be described by

x +y B(M) = c(m), (I-11)

where B(M) and C(M) are functions of M only. Since (I-4) demands that
M(x,0) = x at y = O, it follows from (I-11) that

x + By = M. (1-12)

We have thus established a simple and useful form of M.

C. A Necessary Form of ¥/

With (I-12) we have that
£7/(X;Y) = Zf(M ~ By, Y):
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and hence, we may express the value function as a function of M and
Y, l.e.,

u(,y) = I/ (x,¥). (1-15)
We proceed to develop a necessary form of U.
With direct differentiation of (I-13), we obtain

U, = (My/MX)2 V.. - (MM M) Y U - () v - (I-14)

From (I-10) we see that the term in brackets in (I-14) is zero, and
from (I-12), we obtain directly that
M /M) = B(M),

from which it follows that at constant M,

(My/MX)y = 0.

Hence, we have established that

and therefore, that
U= aM) + yB(M), (I-15)

where (M) and B(M) are functions of M only. Furthermore, we see from
(I-12) that ¢(x,0) = U(M,0). It then follows that U(M,0) = ¢ (M,0), and
therefore, from (I-3) and (I-15) we have that

M) = c_ +cM+ (M -1) In [M/(1 - M) . (I-16)

Thus, o is known.

At this point of our development of the value function and match
function, we see from (I-12), (I-15), and (I-16) that we have two
unknown functions, namely, B(M) and B(M). We proceed to eliminate B.

With direct differentiation of (I-lB), we find that
/. =U, M +7U I-1
Yy =M, + U, (1-17)
and from (I-12) and (I-15), we find directly that
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Mo =3B/(1-B'y); Y =a +B'y; U =B. (1-18)

We now let
f(x) = Z/y evaluated at y = O (1-19)

and we then have from (I-17) and (I-18) that

B=°f-a'B. (1-20)
Furthermore, we see from (I-12) and (I-19) that

f(x) = £(M), (1-21)
and with this and (I-20), we may express U(M,y), given by (I-15), as

U=a+ (f - aB)y, (1-22)
and we now need to find f.

Consider that from (I-1) we have that

dy 2 7 29 _
e " 2gh2(%y +h u/yy) =0,
and hence,
2g8 U +g U _+20(g¥_ ) +2gn
NA XX TYXX Xy 'y vy X
2
+ 2 + h = O. -2
h b, L/yy &/yyy (-23)

In particular, at y = 0, we have that
from (I-1), g = N x(1 - x),
from (I-1), g, = -¥p X,
from (I-1), h = O,
from (I-l),fhy =¥y - ¥y X, .
from (I-B),A/XX =1/ [x(1-x)]°,
from (I-19), /. = f', and Z[yxx = f".

(I-24)

yx

We substitute (I-24) in (I-23), carry out indicated algebraic
reduction, and we obtain

k - x 2k
" + 2 ' = ——— (1-25)
XL - x) xe(l _ X)B 4
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where k = WQ/W . Thus, we now have an ordinary differential equation
for f. Carryihg out both integrations, we obtain

f=c,+ cs ¢l + ¢2 s (I-26)

where c, and ¢, are arbitrary constants, and

2 3
g, = f e X)-E(l-k) ax,

g, =2k [ ¢l'(J[ x2K) (1 (B gy a,

We now substitute (I-26) and (I-16) in (I-15), and on carrying out
indicated algebraic reduction, we obtain

(I-27)

- oM - 1
UM,y) = o + ey M = By) + ey v + ey ) + (B, - =gy B) v

+ [2(M -By) -1) 1n IJ¥TW , (1-28)

where:
from (I-21), ¢l(x) = ¢1(M), and ¢2(x) = ¢2(M),
from (I-12), M = x + By.
Thus, we have succeeded in expressing the value function and the match

function in terms of only one unknown function, B = B(M). We proceed
to find the necessary B.

D. The Necessary B

Consider first the function
JM,y) = y8, (1-29)

in (I-28). Since the product of J(M,y) and an arbitrary constant is a
term of U(M,y), it follows that if / (x,y) = U(M,y) satisfies the
inhomogeneous equation (I-1), then H(x,y) = J(M,y) must satisfy the
homogeneous equation

2 2
g H,+2ehH +h H =0, (1-30)

and similarly, if (x,y) satisfies (I-10), H(x,y) must also satisfy
(I-10), and hence,
2 2

M. H_ -2M M H +M_H =0. (1-31)
Yy XX Xy Txy X Yy



K-1455
L6

We now combine (I-30) and (I-31) and we obtain
(gMX +h My) (g M H, +hM HW) = 0. (1-32)
Note that the quantity

cannot be identically zero; in particular, at y = 0, p = ¥, x(1 - x).
Hence, from (I-33) we conclude that

M H +h M H = 0. I-34
g M H o x By (I-34)
Using only the relations J = 0 and JM =y JM , Wwhich are readily

obtained from (I-29), we now réduce (I-34) to s
M M vJ
(o= +n ) +22): L 4y - o, (1-35)
X Ng Y

We eliminate the indicated derivatives of J and M. From (I-27) and
(1-29), we obtain

/ey = ML - 1)/201 - k),

and from (I-12),

M =1/(1 - B'y) ; M. =BM ;

M _ =B"M"’y ; M_ =B"M +2BB'M°"°.

XX X vy XX X
Substituting these expressions in (I-35), we reduce it to

M(1 - M) no_

PR S (1-57)
where

G—l‘. EM.{.g.{.BhJ “

T yty M-k

With substitution from (I-12), we now write h and g as functions of M
and y; we obtain

¥, M -By) (1 -M)+(B-%vy] ,

¥y v (B -Xy - (M -x)].

g
(1-38)
h
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With these expressions and indicated algebraic reduction, we find that
G =1y, k(1 -k) (B -M)/(M - k),

and hence, (I-36) becomes

(B -M) + 2%%%}{-%%- %i B" = O. (1-39)

We see at once from (I-39) that since (B - M) is a function of M
only, one of the following cases must hold:

(i) B" =0,
(ii) p = p(M), a function of M only.

We examine these cases individually.
Suppose case (i) holds. From (I-39) we have then that B = M.

Suppose case (ii) holds. Consider first that in any case we have from
(I-33) and (I-36) that

o M1 -M) +(MB-%k)-B(L-k)Jy
o T—57 . (I-40)

Carrying out algebraic reduction, we find that
(B-M)'=(1-k-M) (B-MM1-M,
from which it follows that
B" = k(1 - k) (B - M)/[M(1 - M)]2 . (1-41)

When in (I-39) we set p = ¥y M(1 - M) and B" as given by (I-41), we
readily see that B = M.

We thus see that both case (i) and case (ii) result in
B=M (I-42)
and hence, we have established the necessary B.

Substituting (I-42) in (I-28), we obtain
M - 1
U(M,Y) =Cq T C M1 - y) + Coy + CB.Y ¢l + (¢2 - m)y

+[2M(1 - y) - 1] In o (1-43)



K-1455
48

and
M(x,y) = x/(1 - y). (T-Lk)

Thus, we have succeeded in specifying completely the value function
and the match function, and furthermore, both functions are uniquely
specified.

E. Proof that Specified /(x,y) is Solution

We have established that U (x,y) = U(M,y) must be given by (I-43),
but we have not shown that &f(x,y) satisfies the partial differential
equation (I-1). This we proceed to do.

Again we find it more convenient to consider U(M,y). We first
transform (I-1) to an equation in U(M;Y); we obtain directly:
2 2 2 2 2
(g M +2gh MXy +h Myy) Uy + K~ Uy, + 2uhb UMy +h Uyy =¥, (1-45)

where, as before,

bo=g M, +hM.
Our specified U(M,y) given by (I-43) is:
U=a+ By,

where:
o 1AMU.-MH2,

B =f -aM, (from (I-20)),
f = f(M) satisfies the differential equation
1 k - M v 2k
£+ 2 m ' = m ) (from (I—gl) and (1—25)),

M(x,y) = x/(1 - y).
We must show that this specified U satisfies (I-45).

We first obtain directly that

/(1 - y);
X Xy X (1-16)
M _ =0 H M

XX ¥y X ¥

M

It
=

B
=
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Substituting the above in (I-45), we note that the factor of Uy
collapses to
2huM,
and hence, (I-45) may be re-written;
2 2
(n(m, u, + Uy, ) + 0 Ul o + 00 =" . (1-47)
We may now verify that:
from (I-38), h = y; (k - M) y(1 - y),
from (I-46), BM_ = y; (kx - M)y,
from (I-40), p = 2] M(1 - M),
and from direct differentiation of U = o + By:
— 1 1 . — .
Uy = Q' +B'Y; Uy, =B' 3
PN || n . =
UMM_cx +By ; Uyy_o.
When we substitute the above in (I-47), we obtain
2(k - M) (@' +8') + M(1 - M) B" = 0. (1-48)

We recall that our specified U requires

a"

1/M(1 - M)]2 and B = £ - a'lM,

whence
o= -2(1 - 20)/[(u(1 - ),

B' =f' -a"™M - a', and B" = " - a"'M -~ 20a".

We substitute these expressions in (I-48), carry out indicated
algebraic reduction, and we obtain

2k

k -M
"+ 2 ! = ———— s
MZl - M5 M2(l _ M)5

which is in fact the differential equation f satisfies. Hence, our
specified U(M,y) satisfies (I-45) and )(x,y) satisfies (I-1).
Furthermore, it is easily verified that our specified U also satisfies
the other solution requirements (I-2), (I-3), and (I-k).
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F. Explicit Expressions for Zf(x,y)

To obtain explicit expressions for U/ (x,y) from (I-i3), we must
carry out the necessary integrations for ¢l and ¢ in (I-E?), remembering
that here @.(x) = ¢1(M) and ¢2(x) = ¢, (M).” We fifid that there are two
cases for the required integration, 2K = 1, and 2k # l. Carrying out
the integration, we then find:

for 2k = 1:
M
1= T (I-49)
N U S T T R PR T
2T TT-HW T-w Tt -owoc
for 2k # 1:
~(2x-1
¢=(M>()
17 \T - ’ (1-50)
g M-1, 2 M
o T WM Ik -1 T-M™"*

Substituting (I-49) and (I-50) in (I-43), we obtain U(M,y); thus:

for 2k = 1:
U(M,y) = c, * ¢ M(1 -y) + co¥y + Cg¥ 1n i—gjﬁ
v [eM(1 - y) + Kin 5 i o) - 1) In g “ o (I-51)
for 2k # 1: (2k-1)
U(M,y) = e, + ¢y M(1 -y) + e,y + CBY(I_:WW)
+ [(2M(1 - y) + EEE%_T'y - 1) 1n ¢ % T (1-52)

To obtain Zf(x,y), we substitute (I-44), M = x/(1 - y); thus:

for 2k = 1:
U(x,y) = Cy + C1X + Cp¥ + cy In R+ [ox + %(ln R) - 1] In R, (1-53)
for 2k # 1:
B -(2k-1) 2k
(x,y) = Co * C1X + Co¥ + CgY R + (2x + TV - 1) 1n R, (I-54)

where

R=x/(1-x-y).
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APPENDIX I - ADDENDUM
DEVELOPMENT OF THE VALUE FUNCTION, GIVEN THE MATCH FUNCTION
Given that
M=x/(1 -y) (1a-1)

is the necessary match function, it remains to find out whether a
value function ¥ (x,y) is permitted by the partial differential
equation (16) in the text. This is done below.

Text equation (16) is first transformed to coordinates of M and y;

thus:
2 %M 3%M .2 3°M, U eaau
(67 =5 +28h 557+ b —%) + 2uh
Bxe xoy 552 S BM S_gy
2 97U 2
+hT ==y, (1a-2)
By
where u = g 5— +h gM-, (1A-3)

and U(M,y) is given by text (23). From text (25), one finds directly
that

OM/dx
BEM/BX2

Substituting from (IA-4) in (IA-2), one first notes that the factor of
JU/M collapses to

1/(1 - y), M/dy = M(aM/dx),
0, 3M/dy° = 2(3M/3x) (M/3y), 3M/oxdy = (M/dx)°. (TA-4)

1

i

2 h uw(M/3x),

and hence, (IA-E) may be re—written as

MU . DU ) + 5 U

[Eh(g— F S—g ] b+ h - = \lfl . (IA"5)

BM Ay

From (IA-1, 3, 4), and the expressions for g and h, it may be verified
that:

=y (k - M)y (1 - y),

h(M/dx)

Wl(k - M)y; (IA—6)
= ‘lfl M(l - M)}

=
I
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and from direct differentiation of text (23),

dQU/M = a' +B'y, BEU/BMby =B', (1A-7)
BQU/BM2 =a" + 8"y, a2u/ay2 =0 ,
and furthermore, from text (24),
o' = 1/[M(1 - M)]2 . (12-8)

One now substitutes from (IA-6, 7, 8) in (IA-5) and finds that
M(1 - M) (a" +8") +2(k -M) (a' +B') - 1L/M(1 - M) =0, (18-9)

the y variable vanishing, and thus, the partial differential equation
(IA-2) for the value function / (X,y) = U(M,y) has been reduced to an
ordinary differential equation for B = B(M), the only unknown function
in the expression text (25) for the value function. Hence, it has now
been established that there is in fact a value function / (x,y) with an
associated match function M(x,y) given by (IA-1), this /(x,y) = U(M,y)
being given by text (23) with a = a(M) given by text (24), and B = B(M)
being the solution of (IA-9).

Equation (IA-9) is now solved. It is easier to solve for (a + B).
In carrying out the indicated integrations, one finds that two cases
for the integrations are necessary; namely: 2k =1, and 2k % l. One
then obtains:

for 2k = 1:
M 1 M 2
o +p = CO + Cl ln(m) + '2— Lln(l—-_-_—ﬁ)] 3 (IA-lO)
for 2k # 1:
M \-(2k-1) 1 M
@+p =Cy+Cy (l-M) +2k_lln(l_M), (1a-11)

where Co and Cl are arbitrary constants.
From (23), one has that

UM,y) = (1 -y) a+y(a+8),

and hence, with text (24) and (IA-10) and (IA-11), the value function

may be expressed as a function U(M,y) of M and y for both integration
cases. To obtain //(x,y), one now uses (IA-1) to eliminate M from U(M,y),
and one obtains:

for 2k = 1:
In R
U(x,y) = Cy + CyX + Cp¥Y + czy In R + (2x + L——§—l y -1)1In R, (IA-12)
for 2k # 1:
= -(2k-1) 2k
Ux,y) = ey + ex + ey + czy R +(2x + z—= ¥ - 1) 1n R, (IA-13)
vhere: R =x/(1 - x -y), (IA-1L)

and Cyr © s and c, are arbitrary constants.

1’ ©2 3
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APPENDIX II

DETERMINATION OF CONSTANTS FOR THE U-235, 236, 238
UNIT COST SCAIE

A. INTRODUCTION

We have seen in the text that the unit cost scale applicable to
a three component material produced in a matched R cascade is

D(x,y) = K [?o +a X +ayy + aBH(x,y) + V(x,y) ], (I1-1)
where:

D(x,y) is the unit cost of material at concentrations x and y,
K is the unit cost of separative work,

X -(2k-1
H(x,y) = Y('l'—‘:—x—j—y) ( ) s
2k X
V(x,y) = (2x T Y- 1) 1n l-x-y°’

and the a's are arbitrary constants.
(We here suppose the case 2k # 1.)

In this appendix, we determine values of the arbitrary constants
applicable to the pricing of U-235, 236, and 238 mixtures. We let x
denote the U-235 concentration and y the U-236 concentration. To
evaluate the constants, we impose the following conditions on the cost
scale:

1. The cost scale D(x,y) should have a locus of zero value.

2. On the locus of zero value, D(x,y) should be a minimum, thus
assuring a positive cost scale for the entire range of
concentrations.

5. In order that the resulting cost scale include the usual U-235,
238 cost scale, the locus of zero value should include X the
U235 concentration of zero value of the U-235, 238 cost scale.

We proceed to develop a D(x,y) satisfying the above conditions.
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B. Mathematical Development

We first note from (II-1) that for a constant
R=x/(1-x-y), (11-2)

D(x,y) is linear in x and y. Since at constant R, x and y are
linearly related, we may then write D(x,y) as

D(R,y) = (1 - ¥) D(R,0) +y D (R,1), (I1-3)

]

where:

D*(R,0) = D(x,0) , (11

D*(R,l) = D(0,1) .

From (II-1), we have that at constant R,

D(x,0) = K [a  +a;x + (2x - 1) 1n R] ,
_ -(2k-1) 1
D(O,l) =K Lao + a2 + 8.5R + m 1n R] 3 (II-S)
where R = x/(1 - x).
Hence, from (II-4) and (II-5) we have that
* R R -1
D (R,0) = K [ao ta TR tRoT 2 R} , (II-6.1)
* -(2k-1) 1
D (R,l) =K [ao + 8.2 + aBR + ST In R] 3, (II-6.2)

*
and we thus know D (R,y) given by (II-3).

*
The conditions (1), (2), and (3) can be stated for D (R,y),by
reading R for x, and we proceed to impose these conditions on D (R,y);

thus:

(1) D(R, %) = O, (11-7)

i.e., (Rb’ yb) is the locus of zero value.

*'W
(2) ?rl]; R = 0. (II"8)
gg - 0. (11-9)
JR =
o
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(3) D*(Ro,o) = 0, where R_ = x /(1 - x_). (1II-10)

We now determine the arbitrary constants in (II-1) with these conditions.
We first have from (II-3) that

3D ¥ *
5§ = -D'(R,0) + D (R,1),

and hence, from (II-9), it is necessary that
* *
-D (Rb,O) +D (Rb,l) = O. (11-11)

In particular, since from (II-10) it is necessary that R take the
value Ro’ and furthermore that

*
D (RO,O) =0, (II-12)
it follows from (II-11) that it is necessary that
*
D (Ro,l) = 0. (11-13)
Hence, we see from (II-3), (II-12), and (II-13) that then
* * *
D (Ro,yb) = (1 - yb) D (RO,O) + ¥, D (Ro,l) = 0 for all y, . (II-14)

Therefore, = R_1s a locus of zero value. Thus, if we choose the
arbitrary cgnstan%s so that (II-12) and (II-13) are satisfied, the
resulting D (R,y) satisfies (II-7), (II-9), and (II-10), but (II-8)
remains to be met. To satisfy (II-8), it is necessary that

*
D

5 = O. (II-15)

R=R
y = YB

From (II-3), we have that

3 D’ (R,0) aD (R, 1)
SR = (1 -vy) ———aﬁig— +y =g

and hence, from (II-15), it is necessary that

* *
(l -y ) %&9_)_ + ¥y @._(-EL:L_)_ =0 for all y,_, (II_]_6)
/) TR |p_gp b T @® |p_g b

[8) o)
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from which it follows at once that

* ]
@2%%%21 -0, (II-17)

* 3
dD (R,1) -0, (I1-18)

R IR Ro

and satisfying these two equations assures that (II-8) is satisfied.

*
In summary, for our cost scale D (R,y) to satisfy conditions (1),
(2), and (3), the arbitrary constants must be chosen so that

D (R ,0) =0, (II-19)
*
92.%%&91} - o, (II-20)
R=R
[0}
and *
D (Ro,l) = 0, (11-21)
*
dp (R,1) - 0. (I1-22)
R g - R,

We now proceed to determine the constants 8, 81y 8o, and a
from (II-19, 20, 21, and 22). We first determiné a ~and’a . From
(II-6.1) and (II-20), we have that

R-1
L d = 1n R /AR
= - H
b g/
R =R
o]
whence,
(Ro - 1) (Ro +1)

a; = - (2(1n R)) + ) . (I1-23)

From (II-6.1) and (II-19), we have that
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RO RO -1
8, = - g 5T E +T 2R
o o
and with (II-23), we find that
a = ((1n RO) + (RO -1)) . (1I-2k4)
We now determine a, and 85 From (II-6.2) and (II-22), we have that
0 = 1 dln R/AR
3° T2k - 1 ,.-(2k-1) ’
dR /dR R = R
o
whence, . k-1
ay = ——— (II-25)

> (ex - 1)°
From (II-6.2) and (II-21), we now have that

B -(2k-1) 1
8p = - 8, - 83 Ry " PR oI

and with substitution from (II-24) and (II-25), we obtain

In Ro s

1l

o 1)2 + (Ro -1)) . (IT-26)

This completes the determination of the constants. In summary, we
have:

a = [(RO -1) +1n Ro] s (II-27)
8, = - [(R° _ 1;0(R° ) +21nR) , (11-28)
ay=- [(R -1) 4+ —F—p+—=_ r ), (11-29)
o1 (2x - 1) 2k - 1
ay = ZEEQTTIF? , (11-30)
where R_ = x_/(1 - xo),

X tﬁe concentration of zero value when y = O.

o

1l
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C. DNumerical Evaluation of Constants for U-235, 256, and 238
Unit Cost Scale

Benedict and Pigford in reference h} give the constants for the
U.S.A.E.C. price schedule ($/kg. U) for U-235 and 238 mixtures in the
form of UF6 as follows:

X, = 0.0022138 weight fraction U-235,

K

$37.286/kg. U separative work.

With these constants and our formulas, we may then compute a unit cost
scale for U-235, 236, and 238 mixtures. We have that

R
o

k

xo/(l - x_) = 0.0022187,

2/3 for the ratio of the separation factor of U-236
from U-238 to that of U-235 from U-238.

With equations (II-27, 28, 29, and 30) we then compute

a, = - 7.1086,
a, = 462.9338,
a, = 16,4411,
8y = 1.1738.

Our unit cost scale for U-235, 236, and 238 mixtures then is given by
(II—l) with the above values for the constants. Thus, we have

D(x,y) = 37.286 [-7.1086 + 462.9338 x + 16,4411 y
+ 1.1738 y(I_:_g_:_y)-l/5 + (2x + b4y - 1) ln(i—:—i—:#;)] , (II-31)

which gives the unit cost ($/kg. U) of uranium in the form of UF
having isotopic concentrations x U-235 weight fraction and y U-236
weight fraction.

The unit cost scale D(x,y) resulting with the above constants is
tabulated in text Table I. The behavior of D(x,y) for relatively high
U-235 concentration x and high U-236 concentration y is of particular
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interest. The cost formula shows that as y approaches (1 - x), D(x,y)
goes to infinity. Numerical evaluation shows, however, that this
approach of D(x,y) to infinity is remarkably slow as shown in Table
IT-1 below.

TABLE II-1

D(0.85,y) VERSUS y

y D(0.85,y)
0.00 14h52,
0.0k 14498,
0.08 14552,
0.12 14629,
0.1k 14703,
0.145 14742,
0.1495 14859,
0.1499 14937,

0.149999 15161.
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APPENDIX III

A LOWER BOUND FCR A MINIMUM UNIT COST

A. INTRODUCTION

In Appendix II, we developed a unit cost scale D(x,y) applicable
to a matched R cascade processing U-235, 236, and 238. The cost scale
has the following two properties:

1. Material with an abundance ratio R_ has zero value. Thus,
D(&,n) = O for a material with U-285 concentration £ and a
U-236 concentration M such that Ro =t/(1 -¢ -n1n).

2. The unit cost scale D(x,y) is at a minimum for material with
an abundance ratio Ro. Thus,

3D ]
g}z { - =0 and yy =0 I
Y

where &€ and "M are as above.
As a result of these two properties, our cost scale D(X,Y) may be
interpreted as the separative work cost per unit of material of
concentrations (x,y) which is produced in a matched R cascade from
material of abundance ratio R available in infinite gquantities.
This may be seen from Figure fII-l as follows:

P XP’ yP

L—P L 5;71

£ -d¢,n - On Infinite Reservoir of

Abundance Ratio RO

Production From Material of Zero Value

Figure ITT-1
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Since our cost scale is of the form
D(x,y) = K[ao +aiX +ayy + aBH +V),

with the cascade in Figure III-1 operated as a matched R cascade, we
have by means of V and H balances and the three indicated material
balances, as illustrated in the text, that

P [D(xp,yp) = D(&,1) - (x - £)(3D/3E) - (yp - n)(3D/an)) =

K(l IL 2).
I 1
cascade

Since our cost scale has the property that D(£,m) = O, dD/dt = O, and
3D/dn = 0, we then see that
1 2
D(xp,¥p) = K(f £L ¥;7)/P,
cascade

and thus, D(x Y ) is the cost of separative work per unit product,
a not unexpected result.

Consider now that in the situation of Figure III-1, the cascade
need not be operated as a matched R cascade. If we can prescribe
some mode of cascade operation which results in less separative work
requirements per unit of product than the matched R cascade, the unit
cost of product will then be less than that given by our cost scale
which is applicable to the matched R cascade. Hence, a pertinent
question to ask is: for how much less than the D(x_,y.) of the
matched R cascade may we produce materiagl of concen%ragions (XP,y )
from material of abundance ratio R_at zero value? 1In this Appengix,
we give a partial answer to this question. We develop a lower bound
for the unit cost of production at concentrations (x ,yP) from material
of abundance ratio Ro of zero value for the case O <"k < 1, which is
applicable to U-235, 236, 238 mixtures.

B. Some Preliminary Formulas

A matched R cascade is operated so that
dR/dn = Rwl/E.
More generally, we now let

dR/dn = p Ry, » (I1I-1)
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where p = p(R), a function of R. We proceed to find an expression
for the separative work of the cascade in Figure III-1 with this
general condition. From text equations (31.1) and (31.2), we have
that

dR _ P 1+ R S - R _
R VIS s wea-wile B (111-22)
ds _ P 1+R+S

=% "I TR o TR S, (sp - 8). (III-2b)

We now substitute (III-1) in (III-2a) and we obtain the following
expression for the inter-stage flow:

P 1+R+S RP - R

(1 - p) ¥y 1+ RP + SP R
From (III-3) we obtain

L =

. (III-3)

L an P 1+R+s *p-R dR
ST ¥, L1+ R, + Sy R (dr/dn) °

We eliminate dR/dn with (III-1), and with some re-arranging, we obtain

- R
- 1 1+R+s Bp

dn/P =
I " Te{IT-0) T+R, +5; g2

dR. (III-k4)

The separative work per unit product for the cascade shown in Figure
IIT-1 then is

- R
1 2 RP 1 1+R+S RP
(+FZL ¥, ) /P = dR. (I11-5)
H-casca e ér to(l - p) 1+ Rp + 5 R2
o
We may notice from both (III-4) and (III-5) that
0<p<1l. (I11-6)

We now need a relation between R and S. We substitute (III-3) in
(III-2b), divide the result by (III-1), and we obtain

S. -8
s _k 8 _l-p °p
dR p R o R, - R~ (I11-7)
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To determine (l ZL 2)/P f i = p(R)
g wl or a given p = p s
cascadé
we need to solve (III-7) for S, substitute this result in (III-5),
and carry out the indicated integration.
C. Development of Lower Bound on Unit Cost
With the results of the previous section, we see that for the
situation of Figure III-1, the minimum unit cost of production at
specified concentrations (xP,yP) from material of abundance ratio
RO is
Rp - R
1 1+R+S RP
min. D(x,,y.) = min. K / 2 dr, (III-8)
PV P Ro Ip(l - p) L + RP + SP R
where
Ry = xp/(1 = x5 = yp), 8p = vp/(1 - xp - vp),
and S satisfies (III-7), here re-written:
S, -8 S, -8
as 4 _ Ll S P P
=S = E(R = - R R) + TR . (II1-9)
To determine the min. D(x_,y.) we must find the function p = p(R)
which minimizes the integral in (III-.8) constrained by the differential
equation (ITI-9). Determining this minimum is seen to be a difficult
taske. Determining a lower bound for the minimum is not too difficult,
and this we proceed to do.
We first note from (III-8) that
R - R
P 1 1 +R+ [min. 5] Bp
. S, L -
min. D(xp,vp) 7 K / P T TR TR S > dR. (III-10)

)

Since from (III-6), we have that
0 <p(R) < 1,

it follows that

max. 4p(l - p) = 1 for all R.
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Hence,

- R
. l+R+[min.S]RP
>
min. D(xp,yp) > K v/. T+ R, + 8 > 4R,
. P R
o]

and we must find a lower bound for S.
We first introduce the function §; = Sl(R) defined by

kS SP - Sl

RP - By B

from which we find directly that

1
R - 0

SP R
1=HRP-R)+R ’

and
dSl o k SP RP

1 ) [k(RP -R) + 3]2 )

We now note that with (III-9) and (III-12), we may write

st -8 = ks - i S (x i Sl{) it
1L o R R, -R R RP - R RP - R
S
L '
+RT-Sl.
Let
ANR) =8 -8

l 2

whence, A' = 8' - Si,

and we re-write (III-15) as

kS

1 '
R Sl'

k1l 1-p 1
p R o RP - R

) b =

We now substitute from (III-13) and (III-14), and we obtain

(1 - x) Sp(Rp = R)
k(R - R) + R)®

k1, 1-p_ 1
PR P R, -R

) o =

(II1-11)

(I1I-12)

(III-13)

(I1I-14)

(I11-15)

(I1I-16)

(11I-17)

(II1-18)
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The integrating factor for (III-18) is
_ k1l 1-p 1
o(R) = o - [ (Fg+isl g (111-19)
and hence, we have
R
P (R, - t) G(t)
AG = k(1 - k) sPJ[RP e ~ dt. (III-20)
R R &Ry - %) +t]

Note now from (III-13) that

Sl(RP) = SP 2
and hence,

AMRp) = 8(Ry) - 8,(R;) = 0.
We then have from (III-20) that

k(1 - k) S Rp (Rp - t) G(t)

S -8, = dt. III-21
1 G(R) - [e(Ry - %) + )° ( )

We may now conclude that if
0<k<1,

then

-8, <
S Sl 0 for R RP B
and hence, we have established* that S5, is a lower bound for S. With
this result and (III-11), we obtain the desired lower bound on the
unit cost, thus:

*
It should be mentioned here that Dr. J. W. Neuberger of the University
of Tennessee has shown that Sl is the greatest lower bound for S.
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1 +R+ Sl RP - R

TR, 75, . dr , (I11-22)

min. D(xP,yP)'> K jr
R
)

where from (III-13),

SP R

17 KR, - R) + R :

S

This lower bound holds provided 0 < k < 1.

D. Evaluation of Lower Bound on Unit Cost

In this section, we develop an expression for our lower bound on
D(x ,yP) suitable for numerical evaluation. We first note that (III-22)
may be written:

min. D(xP,yP) > I, + I, (III-23)
where: 14 RP RP L4 RP - R
I =K V/’ dR, (III-2k)
1 T+R, + 55 T+R, g2 .
R
[o]
Rp - R
K Rp
Le s J S T (111-25)
P P Tp R
[o]

We proceed to evaluate Il and IE'

We note first from (III-24) and (III-5) that

Rp

V/- 1+r Hp-F
RO 1+ RP R2
is the separative work per unit product in

with p = 1/2 and SP = 0. A cascade with p
cascade, and hence),

dR

cascade in Figure III-1
1/2 is a matched R

n o
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RP - R
*
K 1+r R dR = D(x.,0), (III-26)
1 +R 2 P
P R
R
o
¥
where D(x ,O) is our unit cost applicable to a matched B cascade for
material at concentration y = O and concentration x = x such that
* *
XP/(l - xP) = xP/(l - Xp - yP) = Ry -
We readily find that
*
xp = xp/(1 - 5p) (III-27)
and hence, we obtain from (III-24, 26, 27) that
1+ RP % %
I, =W D(xP,O) = (1 - yP) D(XP,O). (I11-28)
P
Thus, Il has been evaluated.
We now evaluate I,. We first substitute for Sl from (III-13),
and with some algebraic reduction, we obtain:
R
P RP - R
1
I, =vp K / MR- -R +8 R dR. (TII-29)
R P
o
We now make the substitution q = R/(RP - R), and we obtain directly:
/ fp T ® &_f dq S L9
kiRP -R)+R R < a(l + q) (k + q) k kK +q
1 1l +q
+ T ln(k — q).
Reverting back to R, we now obtain
R R
7 P
R SN S S N S
RO k RP -R)+R R k k(RP -R)+R 1 -k k(RP - R)+R .

o)
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Carrying out the indicated end-point evaluation, we find that

1/ 1/(1 - k)

k(R - R R k -R)+R
KRy - Ry + Ry (Rp - R) + 03, (111.30)

K-{ln L R ] [ R,

and hence, 12 has been evaluated.

I

o =Jp

In conclusion, with (III-28) and (III-30), we have from (III-23)

that
min. D(xp¥p) > (1 - ¥p) Dlixp,0)
k(R, O R ) 1/x K(Bp - R)) + R 1/(1 - k)
+yp K 1n [—'—R';'——] [ Ry ),
where:
= /0 5y,
Ry = xp/(1 - x5 - yp),

which may be used to compute the lower bound for D(xP,yP).
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APPENDIX IV

THE CONJUGATE MATCHED ABUNDANCE RATIO CASCADE

A. Introduction

In Appendix I, a three component value function //(x,y) was
developed with the property that if materials of the same abundance
ratio R are mixed, value is conserved. This property of U (x,y)
immediately led to the matched R cascade discussed in the text. In
the matched R cascade, only streams of the same R abundance ratio
are mixed, and consequently, separative work is everywhere conserved.
For a cascade such as that of text Figure 2 - supposing it to be a
matched R cascade - we then have that

Ly, k= PU Gapyg) + WY (yy) - U Gevy) - (1v-1)

cascade

In this appendix, we will show that the matched R cascade is not the
only cascade with the properties that separative work is everywhere
conserved and that a value balance on the cascade with the developed
value function Zf(x,y) nets to the cascade separative work. We do
this by developing a local match function m(x,y) which may be used

to match interstage flows in the formation of the cascade. FPFeed
streams to the cascade, however, must still be matched with the
abundance ratio R. We call the resulting cascade a conjugate matched
R cascade.

B. Mixing of Two Equal Streams Having Small Concentration Differences

A stage link consists of the n-th stage up-flow meeting with
the (n+2)-th stage down-flow to form the input to the (n+l)-th stage.
If we neglect the net up-flow with respect to the inter-stage flow,

a stage link can be shown as follows:
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(n+2)th Stage X + dx
Downflow L y+ 8y

’ 2L (n+l)th Stage

) X,y Input

nth Stage L X - Ox
Upflow y - Oy

Schematic of a Stage Link
Figure IV-1

We want to know how to make the above stage link so that there is no
mixing loss in the sense of the developed value function Zf(x,y).
Thus, we want

LU(x +8x, y + 8y) + LU(x - 8x, y - 8y) - 2LY (x,y) = 0. (IV-2)

We now remember that the partial differential equation satisfied by
U(x,y) is a stage value balance correct to second order terms in g
and h, which are the concentration differences effected by the stage.
Let us then content ourselves to have (IV-2) correct to second order
terms in dx and dy which are of the same order of magnitude as g and
h. Expanding /(x + 8x, y + 8y) andJ/(x ~ 8x, y - 8y) about ¢ (x,y),
we then obtain in place of (IV-2)

(8x)° fox + 25x8y ny + (8y)° fyy = 0. (IV-3)

Let us now write

U, + 2(dy/ax) Uiy * (ay/ax)® fyy = o. (Iv-k)
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Since Zf(x,y) is given, we consider (IV-4) as an ordinary differential
equation. We may then solve for (dy/dx), and on integration, we
obtain two solutions, corresponding to the two roots, (dy/dx) and
(dy/dx)g, of the indicated quadratic. Let these two solutions be:

ml(x’y) = Cl 2
mMy(x,5) = Cy (1v-5)
where Cl and 02 are constants. We then have that

(dy/dx)y = ~Tp /Wy, «

(1IVv-6)

Suppose for the moment that both 7. and’/, are real functions of
x and y. It is then seen that 7 and %V maygbe considered to have
local matching properties. If in Figure IV-l, we join the two streams
at the stage link such that, say,

Z?l(x + 0x, y + By) = ZVIK)c - ®x, y - 8y),
we then have that
dy/8x = - Zle/zvly s (IV-7)
provided 8x and 8y are small. On comparing (IV-6) and (IV-7), we
see that 8y/6x then satisfies (IV-4) and, hence, (IV-2). Therefore,

when we match at the stage links with either 7. or 7/_,, we conserve
value in the sense of the developed value functTon # (X,y) to order

¥°-

We supposed above that both777l and”?2 are real functions, and
this is now easily established.

Consider that at constant abundance ratio
R=x/(1-x-y),

our developed value function Zf(x,y) is a linear form in x and Yy,
and hence, for

R(x + 8x, y + &y) = R(x - 8x, y - dy),
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(IV-2) 1is exactly satisfied. Therefore,
(dy/ax); = - R,/R, (1v-8)

is a root of the quadratic (IV-4). Since (dy/d.x)l is real, (dy/dx)2
must then also be real. Since (dy/dx)l is known, (dy/dx)
immediately obtained from the relation that the product o% the two
roots of a quadratic equals the constant term. Hence, we have from
(IV-4) and (IV-8) that

(dy/ax), = (R /R /U ). (1v-9)
That the above (dy/dx), is not always equal to (dy/dx)l, corresponding
to the R abundance ratio, may be verified directly from (IV-8) and
(IV-9), but this conclusion follows from a theorem in differential
geometry on developable surfaces.

We have now found two match functions:
ZVl(x,y) = R,

and
%72(x,y) = m(x,y), the solution of (IV-9).

The abundance ratio R, as we have seen before, has the property that
streams may be matched with value being conserved regardless of
whether the concentrations of the streams have small differences or
not. On the other hand, m(x,y) may be used to match streams only
when the concentrations of the streams have small differences; when
inter-stage flows are thus matched, value is conserved to order V¥
which is acceptable accuracy. For these reasons we call R a broa&
match function and m a local match function. We now proceed to show
how the local match function may be used in forming a cascade in
which separative work is everywhere conserved.

C. The Conjugate Matched R Cascade

Consider stages in a cascade as shown in text Figure 6, and
suppose the stages to be linked with our local match function; thus:

* %
m(Xn+2" yn+2) - m(xn, yn) ) (1v-10)
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Since the concentration differences are small, we have that

* * * *
m(x, v,) =mlx, v) +(x -x)m +(y, -y )m ,

x Y (Iv-11)
m(Xn+2’ yn+2) = m(xn, yn) + (Xn+2 - Xn) me * (yn+2 - yn) s
and
- x_ = 2(dx/dn),
n+2 n (1V-12)
Ypep = Yy = 2(dy/dn).

Since the n-th stage concentration increments are

Xn-X = g,
*
n = Yp =B
with g and h as before, we obtain from (IV-10, 11, 12),

(ax/an) - g/2) m, + ((ay/an) - n/2)m = o. (1Iv-13)
Supposing the considered stages to be in a simple enricher with a

single product withdrawal P at concentrations (xP,yP), we have from
text (29) that

ax/dn = g - [P(xp - x)/L) ,
(Tv-1k)
dy/dn = h - [P(yp - ¥)/L] .
From (IV-13) and (IV-14), we may then solve for L; thus:
(xp =x)m_+ (yp - ¥) m
L=2p —% x P Y. (1IV-15)

g m, +h my
Returning to (IV-9), we see that for the local match function
(m/m ) = (R /R) (U /U, ) (IV-16)
Substituting (IV-16) in (IV-15), we obtain

(xP - x) Ry?fxx + (yP -y) RxZ/yy
g Rylfxx + h Rx&cxy

L =2P . (IVv-17)
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With (IV-14) and (IV-17), and similar equations for a stripper, we
are then able to compute by the usual "run-down" calculations the

x and y concentration gradients and the interstage flows. For
separative work to be conserved everywhere in the cascade, the feed

F is matched to the cascade with the R abundance ratio. The resulting
cascade we call the conjugate matched R cascade. It has the property
that

i- L "’12 = PU(xpyyp) + W (xpy,) - FV(XF,ng),

cascade
2
correct to order Wl .

The conjugate matched R cascade is of particular interest because
it shows that cascade value balances with our value function net to
the cascade separative work for other modes of cascade operation
than the matched R one. Indeed, for these purposes it is applicable
to any cascade whose stages are linked with either m and/or R, and
not all stages must be linked with the same match function. Feeds,
however, must always be matched with R. It is also of importance to
note that since our developed unit cost scale is of the form

D(X:Y) = KZ[(X:Y):

our cost scale is also applicable to a variety of cascade operations -
which is certainly a desirable property for a cost scale.
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