
Date of Issue: July 19, I960 Report Number: K-1455

Subject Category: PHYSICS AND
MATHEMATICS 
(TID-4500, 15th Ed.)

SOME VALUE FUNCTIONS FOR MULTICOMPONENT ISOTOPE SEPARATION - 
APPLICATION TO A UNIT COST SCALE FOR URANIUM-2J5, 236, 238 MIXTURES

A. de la Garza, G. A. Garrett, J. E. Murphy

Operations Analysis Division 

G. A. Garrett, Superintendent

UNION CARBIBE NUCLEAR COMPANY 
Division of Union Carbide Corporation 

Oak Ridge Gaseous Diffusion Plant 
Oak Ridge, Tennessee

______ ___ VAC ART .V.

\
Authorizing OBicisi.

0*1

This document is
1 '

Authorizing Official



Report Number: K-1455 Subject Category: PHYSICS AND
MATHEMATICS

Date of Issue: July 19, I960 Title: SOME VALUE FUNCTIONS 
FOR MULTICOMPONENT
ISOTOPE SEPARATION - 
APPLICATION TO A UNIT
COST SCALE FOR URANIUM- 
235, 236, 238 MIXTURES

Author: A. de la Garza, G. A.
Garrett, J. E. Murphy

ABSTRACT

This report presents a theoretical study of multicomponent isotope 
separation cascades. A theory is developed which leads to the multi- 
component analogue of the two component "ideal cascade". The multi- 
component analogue is a "matched abundance ratio cascade". Multi- 
component analogues are derived for "value functions","separative 
work", and various relationships of importance in two component 
isotope separation cascade theory.

The theory is applied specifically to the derivation of a multicomponent 
cost formula which could be used to price uranium containing U-236.
(This cost formula is derived merely as an illustration of the theory 
and no recognition or commitment on the part of the U.S.A.E.C. is 
implied).

The multicomponent matched abundance ratio cascade does not minimize 
total cascade flow as does the two component ideal cascade. It is 
found, however, that for uranium isotope separation the total flow 
in the matched U-235/U-238 abundance ratio cascade exceeds the 
minimum by an insignificant fraction for a wide range of U-236 
concentrations.
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SOME VALUE FUNCTIONS FOR MULTICOMPONENT ISOTOPE SEPARATION - 
APPLICATION TO A UNIT COST SCALE FOR URANIUM-235> 236, 238 MIXTURES

INTRODUCTION

A large part of the theory of isotope separation cascades for 
isotopic mixtures which contain only two components involves three 
mutually related concepts - "separative work," the "value function," 
and the "ideal cascade." This is especially true when the separation 
process is an irreversible discrete stage process with a small stage 
separation factor, as is the case for the gaseous diffusion process for 
the separation of uranium isotopes. Reference is made to [1,2] . So 
far there have been few developments in multicomponent isotope cascade 
theory, and there are no multicomponent analogues to the two component 
separative work, value function, and ideal cascade formulas to apply to 
this situation. The broad objective of this report is to extend the 
theory of multicomponent isotope separation in cascades. Multicomponent 
analogues to the two component separative work, value function, and ideal 
cascade formulas are presented.

This report also has a more specific and immediate objective.
When the feed to a gaseous diffusion cascade is natural uranium, it is 
permissible in most situations of interest to treat U-234 concentrations 
as being negligibly small in comparison to the U-235 and U-238 concentra­
tions and thus regard uranium as a mixture of two isotopes. When this is 
done, the application of cascade theory and the three concepts mentioned 
above lead to simplified formulas for estimating cascade design require­
ments such as power, barrier area, and the number and sizes of individual 
stages. Similar considerations lead to estimates of the unit cost for 
the production of U-235 at any concentration. As is well known, the 
published U.S.A.E.C. price schedule can be fit very precisely with a cost 
curve based upon a unit cost of separative work. Reference is made to 
[l,3] • In certain situations where a gaseous diffusion cascade receives 
as feed uranium which has been discharged from a nuclear reactor, a fourth 
isotope, U-236, may be present in a concentration sufficiently high so 
that it affects appreciably the separative work requirements, and hence 
the unit costs for the production of enriched U-235, as shown in £4] .
The more specific and immediate objective of this report then is the 
derivation of a multicomponent unit cost formula which may be used to 
price uranium containing U-236. It is to be emphasized that this multi- 
component unit cost formula is here presented solely to illustrate appli­
cation of the developed theory, and in no way is it implied that the 
U.S.A.E.C. recognizes this formula as the basis for a price schedule for 
uranium containing U-236.
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In view of the second objective of the paper, the development of 
the theory and presentation of results will be done in the setting of the 
separation of uranium isotopes by gaseous diffusion. It is to be under­
stood, however, that the results are not limited either to these particular 
isotopes or separation method. The results are applicable to any separa­
tion process in which the separation factor is small and independent of 
composition.

BRIEF REVIEW OF FEKTIhEM1 TWO COMPONENT SEPARATION THEORY

To fix ideas, some pertinent features of two component separation 
theory are first briefly reviewed. Consider for this purpose the separa­
tion of the U-235, U-238 two component mixture (as UFg) by the gaseous 
diffusion process. By way of nomenclature, a U-235 concentration (mol 
fraction) is denoted by x with appropriate subscripts where required to 
denote feed, product, and waste concentrations of a cascade. The symbols 
for the cascade feed, product, and waste rates are F, P, and W. The inter­
stage flow rate (upflow through the barrier) at stage n is denoted by L, 
which is understood to be a function of stage number. The stage separa­
tion factor for the U-235> U-238 separation is denoted by .

Consider then an isolated stage, operating at a "cut" of one half, 
as shown in Figure 1.

L, x + 6x

2L, x

L, x - Sx

Stage Increment: 
2&x = \|r^ x(l - x)

Schematic of Stage Processing a Two Component Mixture

Figure 1
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The separative work done by the stage is defined to be L i|r jb, and is, 
of course, independent of concentration. The value function is then 
obtained by associating with uranium at concentration x a value 
say per mol, and requiring that the net change in value effected by the 
stage equal the separative work of the stage. Thus, for the stage 
shown in Figure 1,

L24(x + 5x) + L?/(x - 5x) - 2L2/(x) = jj* L , (l)

where &x = i)r^ x(l - x)/2. Since the concentration change Sx is small,
2/(x + Sx) and 2/(x - Sx) are expanded about U{x) in a Taylor expansion, 

and from equation (l), one then obtains the ordinary differential equation

[x(l - xj] 2 d2^/dx2 = 1 , (2)

2
which is correct to terms of order i|r-. . The general solution of equation
(2) is 1

y(x) = cQ + Cj* + (2x - 1) In [x/(l - x)] , (3)

where cq and c, are arbitrary constants. Thus, the two component value 
function lf{x) has been obtained.

Application ofU(x) to cascade theory follows immediately. Consider 
the cascade shown in Figure 2.

2

P Cascade
Product

Cascade
Feed

Cascade Tails

Defining Cascade Schematic

Figure 2
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In an ideal cascade for two component separation, stages are linked 
together to form a cascade and feeds are introduced to the cascade so 
that there are no losses of separative vork anywhere in the cascade.
This is simply accomplished by bringing streams together at stage 
links and feed points only if the concentrations of the mixed streams 
are equal. Consequently, the separative work of the ideal cascade 
equals the sum of the separative work of the stages; thus:

^ Z L \|r 2 = 2 (L?/(x + 5x) + LZ4(x - 5x) - 2LZ/"(x)] . (4)
cascade cascade

Furthermore, since an output L from one stage is an input to another, 
all the interstage flows cancel in the cascade summation. Hence, for 
the cascade of Figure 2 - supposing the cascade to be ideal - one obtains 
from equation (4), the following important relation:

| Z L = PV(xp) + WVCXy) - FV(xp), (5)
cascade

where V(x) = (2x - l) In [x/(l - x)3 . (6)

In an equation, such as (5)> the linear terms of the general value 
function Z,r(x) vanish by material balance, so that henceforth, for 
convenience in these applications, the elementary value function V(x) is 
used and the linear terms are added when required.

It may be seen from equation (5) that by means of the value function 
the separative work of an ideal cascade may be expressed in terms of the 
flows and concentrations of the external cascade streams. This value 
function expression for the separative work of an ideal cascade leads to 
remarkably simple formulas for estimating cascade performance. Thus, for 
the cascade of Figure 2 - supposing the cascade to be ideal - one may 
write the "productivity equations" below, these being the availability 
of separative work and the two material balances:

| Z L tp2 = PV(xp) + WV(x^) - FV(xf) , 
cascade

0 = pxp + Wxw - Fxp,

0 = P + W - F .

(7)
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It may be seen how value function terms and material balance terms are 
added to the equation (7) for application to an ideal cascade with side 
feeds and/or side withdrawals. These productivity equations are basic, 
and their uses are many. As stated in [ll , given an ideal cascade at 
specified feed and product conditions so that the cascade separative 
work is known, the best possible performance of the cascade at another 
set of conditions can be calculated from the applicable productivity 
equations by treating the cascade separative work as a constant property 
of the cascade. Such a calculation is valid provided the stages are 
re-arranged or the interstage flows are adjusted,if need be, so that 
under the changed conditions the mixing of streams of different con­
centrations is avoided. The following are cited in [17 as examples of 
cascade problems which may be solved by this means:

1. The effect of change in product rate on product concentration.

2. The effect of change in feed rate on product rate at constant 
product concentration.

5. The effect of incremental feeds of different concentrations 
on product rate.

4. The effect of withdrawing partially enriched product on 
product rate.

Other examples may be cited, but the above suffice to show the usefulness 
of the productivity equations.

In the gaseous diffusion process, the cascade operating costs are 
very nearly proportional to the cascade separative work. This fact 
quickly leads to a unit cost system for pricing uranium. Let D(x) be 
the unit cost in dollars per kilogram of uranium whose U-235 concentra­
tion is x, and let K be the unit cost of separative work per kilogram 
(of uranium)*.

Then,

D(x) = K [ao + a-jX + V(x)] , (8)

Kilograms and weight fraction, rather than mols and mol fraction, are 
the accepted units for uranium costs. The ratio of the atomic weights 
of the uranium isotopes is so close to unity that the difference between 
mol fraction and weight fraction is negligible.
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where a and a^ are constants, is a unit cost scale which assures that 
the operating costs of the (ideal) cascade are accounted for by the 
material charges and credits; thus, for the cascade of Figure 2:

1 2Cascade Operating Costs = K(jj- S L ) ,
cascade

= PD(xp) + WDCxy) - FD^) . (9)

The constants aQ and a^ in the unit cost expression (8) are determined 
so that D(x) has the correct value for natural uranium and is equal to 
zero at a concentration xq called the "concentration of zero value."
This concentration x may be regarded as that of depleted uranium which 
can be used as feed at no cost in a cascade to produce a product at the 
natural uranium concentration x^ and at the same unit cost iXx) as 
natural uranium. When the constants are thus evaluated, one obtains

D(x) = K [V(x) - V(x0) - (x - xQ) V'(xo)] . (10)

It has been mentioned previously that the U.S.A.E.C. price schedule can 
be fit very precisely by a formula based on a unit cost for separative 
work; references [l] and [3] should be consulted for further discussion. 
For the price schedule in the form (10), the constants given in [1] are:

K = $37-286/kg. U,
D(xn) = D(0.007115) = $39-27/kg. U,

xq = 0.0022138 weight fraction U-235*

From this brief review of two component cascade theory, one can 
well see the relations between the concepts of separative work, value 
function, and ideal cascade, and their possible wide application to 
cascade design, evaluation of cascade performance, and unit cost systems. 
These results are particularly useful in application to gaseous diffusion 
plants because the ideal cascade minimizes the required cascade total 
flows, and hence, leads to minimum power gaseous diffusion plants.

STATEMENT OF SPECIFIC PROBLEMS AND OUTLINE OF SOLUTION 
FOR A MULTICOMPONENT VALUE FUNCTION

The problems in multicomponent separation now considered are those of 
finding multicomponent analogues to the separative work, value function, 
and ideal cascade which have been reviewed for two components. For con­
venience, the problems and results are presented in the three component 
setting of U-235; 236, and 238. Extension to additional isotopes will be 
noted where required.
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First, new nomenclature is introduced as follows: U-235 and U-236 
concentrations are denoted by x and y, respectively, with appropriate 
subscripts where required to denote the cascade feed, product, and waste 
concentrations. The stage separation factor for the two component U-235 
and U-238 separation is denoted by \|r^, and the corresponding factor for 
the U-236 and U-238 separation is denoted by y*. An additional symbol 
k is defined by

k = if 2^1 ’ (11)

which has the value 2/3 for the uranium problem under discussion. Other 
nomenclature is as before.

Consider an isolated stage at a cut of a half and handling the three 
component mixture as shown in Figure 3•

2L

L(x+6x, y+ by)

L (x - 6x, y - by) 

Stage Increments:

2 bx = g(x,y) = ijf x(l - X - y) + (t-,- tp) xy 
2 by = h(x,y) = \|f2 y(l - x - y) - (1^- tg) xy

Schematic of Stage Processing a Three-Component Mixture

Figure 3

By analogy with the two component results, the separative work done by 
the stage is defined to be L i|r^/4, and the three component value function 
is obtained by associating a value Z/'(x,y) with material at concentrations 
(x,y) such that the net change in value effected by the stage equals the 
separative work of the stage; thus:

L£/(x + bx, y + by) + L24(x - bx, y - by) - 2LZ/(x,y) = ^ L \lr-i_2 , (12)
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where:
6x = | g(x,y) = i [\|r1 x(l - x - y) + - \|r2) xy] ,

5y = i h(x,y) = i [^2 y(l - x - y) - - t2) •

Again carrying out the indicated Taylor expansion as with two components, 
one obtains the partial differential equation

g2(d2Zr/dx2) + 2gh(S2Z4/SxSy) + h2(S2ZT/dy2) = ^ , (15)

which is the three component analogue of the ordinary differential 
equation (2) for two components. There are many functions of x and y 
which satisfy this partial differential equation. From the possible 
solutions, one must be chosen which has certain desirable properties 
discussed below.

In the situation of the uranium isotopes U-255> 236, and 238, it 
must be realized that not all concentration differences are effected at 
the expense of separative work. Thus, the addition (or depletion) of 
U-236 in a reactor in no way involves the expenditure of separative work, 
and accordingly, it should be possible, for example, to feed material 
containing U-236 to a cascade initially free of U-236 without, incurring 
a mixing loss in the sense of separative work losses. The three component 
lf(x,y) should then have the property that it permits the mixing of 
materials of some appreciably different concentrations without a loss in 
separative work, i.e., the value of the unmixed materials equals the 
value of the mix. Furthermore, this 2/"(x,y) should permit the linking of 
stages together in a cascade and the introduction of feed materials to 
the cascade so that separative work is conserved everywhere in the cascade. 
In such a cascade, at every location where streams are brought together 
and mixed, the value of the materials before mixing must equal the value 
of the resulting mix. The separative work of the cascade then equals the 
sum of the separative work of the stages; hence:

^ ZL i)^2 = ZL26(x + 6x, y + by) + L?/(x - bx, y - by) - 2Llf(x,y) , 
cascade cascade

and furthermore, as in the two component situation,

ZL = P^(xp,yp) + WZ/(xw,yw) - Fi/fx^y ). 
cascade

(15)
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It may be seen from equation (15) that, as in the two component case, 
such a value function ?/(x,y) can then be the basis for a unit cost 
system for pricing three component isotopic mixtures. Of course, such 
a unit cost system will be strictly applicable only to some reference 
cascade - in the same way that the two component cost system is strictly 
applicable to the ideal cascade.

It has thus been seen that for the purpose of pricing U-235> 236, 
238 mixtures, one requires a function 2f(x,y) which satisfies the partial 
differential equation (13) and furthermore has the property that it 
permits the mixing of some materials with appreciably different isotopic 
concentrations so that the value of the unmixed materials is equal to 
the value of the resulting mix. Given a material with concentrations 
(X-,,y^), one must then be able to establish whether another material 
with concentrations (x„,yg) can be mixed with the first with value 
being conserved. For this purpose, consider introducing a function 
M(x,y), called a "match function," with the property that if two 
materials have distinct concentrations (x^,y^) and (x^,y^) such that 
M(x^,y.) equals M^g^g), then these two materials can be mixed with 
value being conserved. Once the match function is known, stages can 
be linked together to form a cascade and feeds can be introduced to 
the cascade so that separative work is conserved everywhere in the 
cascade. Such a cascade is formed by matching streams which come 
together, i.e., the match function for streams coming together has the 
same value.

For application to operations with U-235, 236, and 238 mixtures, 
the applicable value function Jj(x,y) and associated match function 
M(x,y) should also satisfy the boundary condition that they reduce 
to the usual two component formulas when U-236 is not present, that 
is, when y equals zero. Hence, it is required that^(x,0) equalZ6(x) 
in (3)j and since in the absence of U-236, materials are mixed with 
value being conserved only when the materials have the same U-235 
concentration x, it is required that M(x,0) equal x.

The above discussion on the desired properties of the value 
function 26(x,y) is now summarized in concise mathematical language.

It is desired to find a value function lf(x}y) and an associated match 
function M(x,y) with the following properties:

g2(b2lr /'dx2) + 2gh('d21/ /8x8y) + h2(82Z^/8y2) = i^2 ,1. (16)
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2.

3.

4.

g = ^ x( 1 _ X - y) + (^ - \|r2) xy, 

h = 1^2 y(l - x - y) - - \jr2) xy,

0 x .< 1, 03y31, x + y^l.

Wl^xl,yl^ + w2^X2,y2^ = (wi + w2^ V (x3^3^ 

where:

(x^yi) and (x2,y2) are distinct and such that M(x-^,y^) =

M(x2^y2)^

and

x5 = (^2. x± + w2 x2^/(wi + v2) > 

y3 = ^wl yl + w2 + W2^

w'^^-O, w2> 0, i.e., w-^ and w'2 are material quantities.

2/(x,0) = cq + c^ x + (2x - l) In [x/(l - x)] , (l8)

where cq and c^ are arbitrary constants.

M(x,0) = x. (19)

Finding ^(x,y) and the associated M(x,y) is a formidable problem.
The rigorous mathematical analysis and solution are presented in Appendix
I. Unfortunately, the analysis there presented has resisted all attempts 
by the writers at simplification. Several observations, based on physical 
and geometrical considerations, do permit a heuristic development of the 
solution. Such a development follows.

Note first that equation (l?) states that if two matched materials 
are mixed, value is conserved. Considering that when two materials are 
mixed, a portion of one may first be mixed with a portion of the other, 
and again, sub-portions may be mixed, etc., until finally the two original 
materials are mixed, one may expect that if any number of matched materials 
are mixed, value is conserved. It may then be further concluded that the 
curve in the (x,y) plane described by the relation

M(x,y) = constant (20)

must be a straight line. The argument, based on Figure 4, is as follows:
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M(x,y) Constant on a Curve

Figure 4

As shown in Figure 4, if M(x,y) is constant on a curve not a straight 
line, due to the above extension of (l7),Z^(x^y) is a plane for concentra­
tions (x^,y..) resulting from the mixing of three or more materials with 
distinct concentrations on the curve M(x,y) = constant; thus:

2f (x,y) = a + bx + cy, where a, b, and c are constants.

But then 2f(x,y) cannot satisfy the differential equation (l6). Hence 
the locus of (20) must be a straight line. Consider now that such lines 
may be described by

x + y B(M) = C(M) , (21)

where B(M) and C(m) are functions of M only. Since (19) demands that 
M(x,0) = x, it then follows from (21) that

x + y B(M) = M. (22)
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It further follows, as a consequence of (17), that over a line, such as 
(22), 2/(x,y) is a line, and hence,

Zf(x,y) = U(M,y) = a(M) + y p(M), (23)

where a(M) and p(M) are functions of M only. Since 2^(x,0) is given by 
(l8) and since from (19), M(x,0) = 0, it follows that a(M) in (23) is 
known; thus:

a(M) = cq + c1 M + (2M - 1) In [m/(1 - M)] . (24)

The picture showing these relations between 2^(x,y) and M(x,y) is shown 
in Figure 5*

M = x + y B(M) 
Boundary x + y

Relations Between V{yL,y) and M(x,y)

Figure 5

Consider now that due to (l8), which states that 2/(x,y) reduces to the 
usual two component value function in the absence of U-236, 76(x,y) must 
recognize the expenditure of separative work for the separation of U-235 
and U-238. In particular, note that

lf{0) = 00 j and £A(l) = o=> ,

which imply the expenditure of infinite separative work for the complete 
removal of U-235 or U-238 in the absence of U-236. One may then expect 
that
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V(o,y) = oo j and 2f(x, 1 - x) = o° f
which imply the expenditure of infinite separative work for the complete 
removal of U-235 or U-238 in the presence of U-236. It may then be seen 
that lf(x,y) should be infinite on the boundaries x = 0 and x + y = 1 
in Figure 5• Note further that again from separative work considerations, 
ZT(x,y) should be finite for all concentration points (x.,y.) in the 

interior of the triangle formed by the three boundaries x = 6, y = 0, 
and x + y = 1. It then follows from the above considerations that lines 
of constant M cannot densely intersect either of the boundaries x = 0 
and x + y = 1, for then Zf(x,y) over such lines would be infinite. It 
further follows that through every interior point (x.,y.), the line of 
constant M passing through (x.,y.) must intersect the boundary y = 0 
in the interval 0 < x < 1, for iJ there are interior points whose lines 
of constant M do not intersect the boundary y = 0 in this interval, then 
such lines must densely intersect at least one of the boundaries x = 0 
and x + y = 1. In summary, lines of constant M must originate on the 
boundary y = 0 in the interval 0 x < 1, such lines must pass through 
every interior point of the triangle formed by the three boundaries, 
and such lines cannot densely intersect the boundaries x = 0 and 
x + y = 1. Accordingly, either no lines of constant M may be drawn, 
in which case the desired ?f(x,y) does not exist, or all such lines 
intersect at the corner point (0,l), in which case ^/'(x,y) may be 
expected to have some irregularity at this one point. In the latter 
case.

M = x/(l - y) . (25)

It remains to find out whether with the above M, a value function 
nx,y) is permitted by the partial differential equation (l6). This is 
simply found out by using (25) to eliminate x in (l6). Thus, one arrives 
at a partial differential equation in M and y coordinates in which (23) 
may be substituted. The only unknown in (23) is f3(M), and the differential 
equation in M and y coordinates must be solved for P(M), provided a 
solution is permissible. On carrying out the necessary algebraic simpli­
fication when the substitution of (23) is made, one finds that the partial 
differential equation in M and y coordinates reduces to an ordinary 
differential equation for f3(M), the y variable vanishing. Hence, a 
solution for f3(M) is permissible, and on solving for (3(M), one has found 
the value function U{x}y) = U(M,y). given by (23), with the associated 
match function M(x,y), given by (25). The details of this part of the 
development are presented in the addendum to Appendix I. The results 
are that:

for 2k = 1,

= c0 + cqx + c2y + c3y In R + L2x + y - l] in R, (26)
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for 2k i,
(x,y) = co + + c2y + c^y R“(2k_1)+ (2x + gk2j ^ y - l) In R, (27)

where:
R = M/(l - M) = x/(l - x - y), (28)

and cq, cg, and are arbitrary constants.
This completes the development of the value function 2f(x,y) and its 
associated match function M(x,y).

THE MATCHED ABUNDANCE RATIO CASCADE

It has been seen that the value function lf(x,y) and the associated 
match function M(x,y) developed in the previous section permit the mixing 
of two materials with value being conserved provided the concentrations 
(xi,yi) and are such that M(x^,y^) = M(xg,y2), i.e., the materials
are matched. A cascade with the property that separative work is 
conserved everywhere can then be formed by matching streams wherever 
they come together at stage links and feed points.

Consider now that when materials are matched with M = x/(l - y), 
the materials are also matched with the abundance ratio R = x/(l - x - y), 
and conversely. Thus, there is no difference whether M or R is used as 
the match function. Since for good reasons the abundance ratio is 
already prevalent in isotope separation work, the abundance ratio R will 
be used as the match function associated with the developed value function 

The cascade formed by matching R will be called a matched 
abundance ratio cascade, or briefly, a matched R cascade.

In this section, formulas for the concentration gradients and 
interstage flow rates and the cascade productivity equations will be 
developed for the matched R cascade. The matched R cascade has very 
much the same role in three component separation as the ideal cascade 
has in two component separation.

(a) Concentration Gradients and Interstage Flows:

First, consider the concentration gradients in a three component 
cascade without as yet specifying how streams are matched in the cascade. 
From the usual material balances and the concentration differences 
effected by a stage, one readily obtains for stages in the enricher of 
the cascade in Figure 2 the relations
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dx/dn = g - [P(xp - x)/l] , ^ ^

dy/dn = h - [P(yp - y)/L]

A matched abundance ratio cascade is to be considered, and hence, one 
may expect abundance ratios rather than mol fractions to be the more 
convenient variables. Accordingly, introduce

R = x/(l - x - y) and S = y/(l - x - y). (30)

Carrying out the necessary substitutions for the indicated transformation 
of variables in (29), one then obtains

dR/dn = R - [p(1 + R + S) (Rp - R)/L(l + Rp + Sp)] , (31.1)

dS/dn = S ^ - (P(l + R + S) (Sp - S)/L(l + Rp + Sp)] . (31.2)

These are the gradient equations in terms of abundance ratios in any 
three component cascade*.

Consider now stages in a cascade as shown in Figure 6.

(xn+2>

Rn
* *v

<V yn

(x.
n

n+l)th stage

n th stage

R

(x.

n+1
*

n+1

R

(x.
'n+1

n+1' yn+l;

R

(x
V

n-1'
* \ 

■^n-l

Schematic of Stages in a Cascade 

Figure 6

Rote how easily the total reflux gradients are obtained from these 
equations.
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Suppose the cascade In Figure 6 to be a matched R cascade. Then,

Rn+2 = R* n

From the concentration differences effected by the n-th stage, it 
follows that

(32)

R* - Rn = [g(dR/dx) + k(css/8y)] n = Rn ,

so that from (32) and the above, one obtains

V2-Sn<1 + *1>- (53>

In the present treatment of the stage number n as a continuous variable, 
one has that

Rn+2 " Rn = 2(dR/dn)* 

and hence, (33) becomes

dR/dn = R + /2 , (34)

which is the gradient equation for the R abundance ratio in a matched 
R cascade.

The interstage flows in the matched R cascade are now readily 
obtained. One substitutes (34) in (31.l), solves for L, and finds that

2 1+R+S Rp_R
1 + Rp + Sp * R (35)

which is applicable to the enricher of the cascade shown in Figure 2.

The relation between the R and S gradients in a matched R cascade 
also follows at once. Substituting (35) in (31-2), dividing the result 
by (34), results in

dS/dR = 2k(S/r) -[(Sp - S)/(Rp - R)], 

which may be reduced to

dS(Rp - R) R_2V<3R = - Sp R“2k . (36)

As in the development of the value function, integration is here seen 
to present two cases, 2k = 1 and 2k ^ 1. For the case 2k =£ 1, which is 
applicable to the U-235> 236, and 238 situation, one then obtains for 
for the enricher of the cascade shown in Figure 2,
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s , (Vr)^215-1) -1

Sp - 2k - 1 TrJTr) — •

At the feed point, R = R^,, the R abundance ratio of the feed, since 
in the matched R cascade, the R abundance ratio of the feed is matched 
to the cascade gradient value. The S abundance ratio S^,. at the feed 
point is then obtained from (37) with R = R^. It is to 'fee emphasized 
that Sp. is the cascade gradient value for the S abundance ratio at 
the feect point, and this value is not necessarily equal to Sp, the 
S abundance ratio of the feed.

From the above examples, it is clear how similar formulas may be 
developed for gradients and interstage flows of the stripper of the 
cascade in Figure 2, as well as for more complicated cascade situations.

(b) V Balances and H Balances

A set of productivity equations for a matched R cascade may be 
developed directly from cascade considerations; thus, the cascade 
separative work may be found by adding interstage flows, given by 
expressions such as (35)> over all the cascade. Another approach, based 
on value function considerations, is simpler to develgp, simpler to 
apply to more complex cascade situations, and simpler to extend to 
additional isotopes. For this purpose, the value function, either (26) 
or (27), is written in the form:

If(x,y) = co + CpX + c2y + c^ H(x,y) + V(x,y). (38)

Thus, for the case 2k ^ 1,

H(x,y) = y R-j21"-1) (39)

Pk
V(x,y) = (2x + 21TTT y - ^ ln R* (4°)

As in the two component situation, V(x,y) is called the elementary value 
function. The new function H(x,y) is called the homogeneous function.
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For the reasons stated in the discussion leading to (l5)> a 
"balance on a matched R cascade nets to the sum of the separative work 
of the stagesj thus, for the cascade of Figure 2, if operated as a 
matched R cascade, one has

| 2L il^2 = PZ/(x ,yp) + w2/(xw,yw) - F^(xF,yF) . 

cascade

More generally, for the same reasons as above, a 7f balance on some 
considered section of a matched R cascade leads to the sum of the 
separative work of the stages in the considered section. Thus, if E.,
j = 1,2,................ , J, are the stream flows, at concentrations (x^y.),*1
cutting across the envelope defining some section of a matched^R Cascade,

1 2 J .
j- £ L z V If (x ., y ) ,
Section j=l J J d

(41)

where outputs are entered as positive quantities. Since cQ, c,, cp, 
and c^ in (58) are arbitrary, it follows at once from (4l) that

J
i- S L 2 = £ E. V(x.,y.), called a V balance, (42)
Section 3=1 3 33

and j

0 = f E. H(x.,y.), called an H balance. (43)
J ^ J J *3

(One also obtains 2 E. =0, Z E.x. =0, and Z E.y. =0, but these are 
simply the three independent ma^ePial balances wili ah are true in any 
cascade.)

Both V balances and H balances are of use in obtaining productivity 
equations. In particular, it may be noted that an H balance permits 
obtaining with ease the (x,y) gradient in the cascade. The use of these 
balances is illustrated by the following example.

Consider the cascade shown in Figure J.
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Schematic of a Cascade 

Figure 7

By means of an H balance on the indicated section of the cascade in 
Figure 7, an expression for the (x,y) gradient between the E withdrawal 
point and the F feed point will be obtained. The H balance on the section 
is

PH(xp,yp) + EHCx^y-g) + (L - P - E) H(x,y) - LH(x*,y*) = 0, 

which is re-written

P [H(xp,yp) - H(x,y)] + E [hCx^) - H(x,y)]

- L [H(x*,y*) - H(x,y)J = 0 . (44)

Consider now that for most isotope separations, the differences (x* - x) 
and (y* - y) are small, so that one may write
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H(x*,y*) - H(x,y) = (x* - x)(dH/dx) + (y* - y)(BH/By).

Furthermore, by material balance,

L(x* - x) = P(xp - x) + ECxg - x),

L(y* - y) = P(yp - y) + E(yE - y).

Substituting the above expressions in (44), one then obtains

P [H(xp,yp) - H(x,y) - (xp - x)(Sh/Sx) - (yp - y)(SH/5y)]

+ E [H(xE,yE) - H(x,y) - (xg - x)(5h/Sx) - (yE - y)(SH/Sy)] = 0, (45)

which is seen to be an expression for the (x,y) gradient between the E 
withdrawal point and the F feed point.

From the above example, it is clear how, by means of H balances, 
relations involving external flows and concentrations may be obtained 
for other cascade situations.

(c) Productivity Equations

By means of V balances and H balances, a set of productivity 
equations for any three component cascade, operated as a matched R 
cascade, is quickly obtained. Thus for the cascade of Figure 7* one 
immediately has the V balance, the H balance, and the three material 
balances for the entire cascade:

cascade

0

0

0

0

PV(xp,yp)

FH(xp,yp)

^p +

^P + EyE 

P + E + E

+ EV(v V

+ EH(xE,yE)

+ WxW " FxF 

+ Eyw - Fyp

+ wy(vyw)

+ WH(xw,yw)

FVtx^yg) ,

FH(VyF) '

(46)

If in Figure J, one supposes that E is a side feed, the above five 
equations suffice for the usual productivity calculations. (E is then 
entered as a negative quantity in the above productivity equations.) 
Note however, that if E is a side withdrawal, the above five equations 
are not complete, since both Xg and yE cannot be specified. One may
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specify a desired x^, for the withdrawal, hut one then must take the y^ 
found at the point of withdrawal. The section H balance which led to 
(45) gives the required additional relation to complete the productivity 
equations in this situation. Since (xg,yg) are gradient concentrations, 
(45) is evaluated at x = and y = y^, and

H(xp,yp) - HCxg^g) - (xp - XgXciH/aXg) - (yp - yE)(dH/dyE) = 0, (4?)

where:
(dH/dXg) = (5H/Sx) at x = Xg, y = yE ,

(SH/SyE) = (SH/5y) at x = Xg, y = yE .

The five equations (46) and equation (47) complete the set of productivity 
equations for the cascade of Figure J. Other situations are similarly 
treated and offer no new difficulties.

Needless to say, the above three component productivity equations 
have the same uses as those for two component separation. In addition, 
by means of differential analysis, the three component equations readily 
lead to evaluating the nuisance effects of a third component of low 
concentration in the separation of two major components, such as the 
effects of U-254 on the separation of U-235 and U-238, which can became 
significant at high U-235 concentrations.

UNIT COST SCALE WITH TEE MATCHED ABUNDANCE RATIO CASCADE

The three component value function Z^(x,y) which has been developed 
immediately leads to a unit cost scale for U-235> 236, and 238 mixtures 
being separated by gaseous diffusion in a matched R cascade. Let 
D(x,y) be the unit cost in dollars per kilogram of uranium whose U-235 
concentration is x and whose U-236 concentration is y, and as before, 
let K be the unit cost of separative work in dollars per kilogram.
Then,

D(x,y) = K [aQ + a^x + apy + a^ H(x,y) + V(x,y)J , (48)

where the a's are arbitrary constants, and from (39) and (4o), H and V 
for U-235, 236, and 238 mixtures are:

H(x,y) = y [x/(l - x - y)J , (49)

V(x,y) = (2x + 4y - 1) In [x/(l - x - y)] . (50)

For the reasons already given for the two component cost scale used by 
the U.S.A.E.C., this three component cost scale assures that the operating 
costs of a matched R cascade are accounted for by the material charges 
and credits.
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There are four arbitrary constants in (48). These constants are 
evaluated from the following considerations:

1. The cost scale D(x,y) should have a locus of zero value; thus:

D(xB,yB) = 0.

2. Uranium at concentrations (x^y-g) may be used as feed to a 
matched R cascade to produce some product, say, at concentra­
tions (x„,yljl). Though this product does not accrue feed 
costs, it does accrue cascade separative work costs, and 
consequently, D(xT,y_) > 0 for concentrations (x^y^) not on 
the locus of zero value. To assure a non-negative cost scale 
for the entire range of concentrations, D(x,y) is made a 
minimum on the locus of zero value; thus:

8D/8x = 0, dU/dy = 0, for x = Xg, y = yB .

3. In order that the resulting cost scale include the U.S.A.E.C. 
schedule for U-235 and 238 mixtures, the locus of zero value 
should include x , the zero point of the U.S.A.E.C. price 
schedule; thus:

D(xo,0) = 0.

The details of the required mathematical analysis for the 
evaluation of the constants are presented in Appendix II. Suffice it 
to say that in this analysis, it is very convenient to consider the 
cost scale as a function of the abundance ratio R and the U-236 
concentration y rather than a function of x and y. The resulting values 
of the constants are shown below:

a = L(R - 1) + lnR_) = -7.1086 ,
° (R° - 1)(R + 1?

a = - -------5— --------- + 2 In R I = 462.9338 ,
1 Ro ° (51)

a = - [(R - 1) + -------------+ pir^T ln Vl = l6-hhll>
2 o (2k _ x)2 2k - 1 o

= -------------? R 2k-1 = 1-738 ,
5 (2k - if °

where Rq = xo/(l - xq). The numerical values given above are obtained 
with k = 2/3, applicable to U-235^ 236, and 238 mixtures, and x =
0.0022138 weight fraction U-235^ the zero value of the U.S.A.E.C. price 
schedule given in [l] .
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U.S.A.E.C + a,xPrice Schedule
y - 1) In R]+ (2x + 2k - 1

Line of constant
abundance ratio R

(U-235)

The Three Component Unit Cost Scale
Figure 8
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Before detailed numerical results are presented, the general 
aspects of the resulting cost scale D(x,y) are briefly reviewed. As 
shown in Figure 8, the following are the more important characteristics 
of the cost scale:

1. The locus of zero value is the line of constant abundance
ratio Rq which passes through the two component concentration
x of zero value, o

2. When y = 0, the U.S.A.E.C. price schedule for U-235> 238 
mixtures is obtained.

3. The cost scale becomes infinite on the axis representing 
the U-235 and U-236 mixture, as well as that of the U-236 
and U-238 mixture.

Some numerical results are now presented. Table I lists D(x,y) 
so as to show the effect of U-236 on the unit cost of uranium at various 
U-235 concentrations of interest. The tabulated D(x,y) is obtained with 
the constants in (48) evaluated as in (51) and a unit cost of separative 
work K = $37.286/kg U, given in [1]. It is to be noted in Table I how 
the unit cost of uranium increases as the U-236 concentration increases 
at a constant U-235 concentration. The rise is small over most of the 
permissible U-236 range, but it may surprise one that it rises at all. 
The reason for the rise is that the developed cost scale accounts for 
cascade separative work, and as the U-236 concentration increases at 
fixed U-235 concentrations, it takes more separative work per kilogram 
of uranium for that uranium to be produced from feed material of zero 
value.

SOME REACTOR CONSIDERATIONS

The increase of the developed unit cost for uranium as the U-236 
concentration increases at constant U-235 concentration may seem a most 
peculiar characteristic of the cost scale to a reactor operator. In 
particular, since as a rule*, U-236 is produced in a reactor, it would 
appear that by producing U-236 a reactor can increase the unit cost of 
material, and thereby conceivably generate power at no cost. Some 
investigation of what a reactor does in relation to the developed cost 
scale is then in order.

A possible exception is when the U-236 concentration of the reactor 
charge is considerably greater than the U-235 concentration, and the 
U-236 production from U-235 neutron capture is less than the U-236 
lost to U-237 formation.



TABLE I

UHIT COST SCALE($/kg. U) FOR U-235, 256, 238 MIXTURES

0.00 0.02 o.o4 0.06 0.08

x = Mol

0.10

Fraction

0.12

U-235; y

o.i4

= Mol Fraction

0.16 0.18

U-236

0.20 0.30 o.4o 0.50 0.60 0.70 0.80 0.90

0.90 115335. 15362. 15392. 15428. 15479. 15557-*

0.80 13575. 13594. 13615. 13637. 13660. 13685. 13712. 13744. 13783. 13&38. 13926.*

0.70 111830. 11847. 11864. 11882. 11900. 11919. 11939. 11960. 11982. 12006. 12032. 12292.*

0.60 10094. 10109. 10124. 10140. 10156. 10172. 10188. 10206. 10223. 10242. 10261. 10376. 10655.*

0.50 8365. 8379. 8392. 8406. 8420. 8434. 8449. 8464. 8479. 8495- 8511. 8600. 8717. 9014.*

0.1+0 6642. 665^-. 6666. 6679. 6691. 6704. 6717. 6730. 6743. 6757. 6771. 6846. 6935. 7053. 7366.*

0.30 4926. 4936. 4947. 4958. 4969. 4960. 4991. 5003. 5014. 5026. 5039. 5103. 5176. 5263. 5381. 5710.*

0.20 3218. 3227. 3236. 3246. 3255. 3264. 3274. 3284. 3294. 3304. 3314. 3368. 3429. 3498. 3581. 3697. 4040.*

0.10 1527. 1533. 1540. 1548. 1555. 1562. 1570. 1577. 1585. 1592. 1600. 1642. 1688. 1740. 1801. 1877. 1985. 2335.*

0.08 1192. 1199. 1205. 1212. 1218. 1225. 1232. 1239. 1246. 1253. 1260. 1298. 1341. 1389. 1445. 1514. l6ll. 1835.

0.06 860.9 866.5 872.1 877.9 883.7 889.7 895.7 901.9 908.1 914.5 920.9 955.2 993.2 1036. 1087. 1149. 1234. 1398.

0.01+ 534.4 539.0 543.7 548.5 553.4 558.3 563.4 568.5 573.8 579.1 584.5 613.5 645.9 682.9 726.6 780.5 853.5 981.7

0.03 374.6 378.6 382.7 386.8 391.0 395.3 399.7 4o4.2 408.7 413.4 4l8.1 443.5 472.2 505.3 544.5 593.2 659.4 772.7

0.02 219.5 222.6 225.9 229.1 232.5 235.9 239.4 243.0 246.7 250.5 254.3 275.0 298.8 326.6 360.0 402.1 459.9 558.0

0.01 75.46 77.36 79-30 81.30 85.56 85.47 87.65 89.89 92.21 94.59 97.05 110.6 126.7 146.1 170.5 202.3 247.7 326.6

0.009 62.44 64.16 65.93 67.75 69.65 71.56 73.56 75-62 77.74 79.93 82.20 94.73 109.7 128.0 151.0 181.4 225.0 301.4

0.008 49.89 51.42 53.00 54.63 56.31 58.05 59.85 61.70 63.62 65.61 67.66 79.09 92.89 109.9 131.5 160.2 201.9 275.4

0.007 37.93 39.26 40.64 42.06 43.53 45.05 46.63 48.26 49.96 51.71 53.54 63.76 76.24 91.80 111.8 138.7 178.2 248.7

0.006 26.76 27.86 29.01 50.20 31.44 32.73 34.06 35.45 36.90 38.41 39.97 48.84 59.86 73.79 91.97 116.8 153-& 220.8

At stated U-236 concentration less 0.005.
M W -0 I

vn
VJ1
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A reactor takes in material which contains a quantity X kg. of 
U-235 and Z kg. of U-238. The R abundance ratio of this material then 
is R = x/Z. Suppose an incremental amount 5X of U-235 is burned up.
At the same time an incremental amount SZ of U-238 is used. One has 
then that

(6R/R) = (BX/X) - (BZ/Z).

But since SX is proportional to Xcr , and SZ is proportional to Z<Tg, 
where cr^ and erg are the appropriate cross-sections, it follows that

(SR/R) = [l - (o-o/o- )]- (SX/X)-0.99(SX/X) in the thermal neutron 
range. Note then that'a reactor always decreases the R abundance ratio 
of material because of U-235 burn-up. At the same time, except for the 
situation already noted, U-236 is produced, so that the U-236 concentra­
tion y increases. Now, it may be established from the developed cost 
scale that

8D/8R '> 0, and 8D/8y ^ 0,

except on the locus of zero value. Hence, it may be seen that in the 
considered situation, a reactor decreases the unit cost of material on 
both counts, namely, decreasing R and increasing y. Wrong conclusions 
should not be drawn from the characteristic of the cost scale of 
increasing unit costs with increasing U-236 concentration at fixed U-235 
concentration.

Perhaps a more natural presentation of the cost scale for the 
above purposes is a tabulation of the cost scale in coordinates of the 
abundance ratio R and the U-236 concentration y, as shown in Table II. 
Here, it may be clearly seen that as a reactor decreases the U-235 
relative to the U-238, (that is, decreases R), the unit cost drops, 
and as U-236 is introduced, the unit cost also drops.

Some burn-up costs as determined with the developed cost scale 
will now be briefly reviewed. These are shown in Table III. It is 
here supposed that a reactor at 3°$ burn-up is originally charged with 
material at the stated charge concentrations which cover a range of 
U-235 concentration levels with and without U-236. The discharge 
concentrations are computed from the assumed burn-up of 30$ and from 
the indicated uranium isotope cross sections in the thermal neutron 
range. The unit cost of burn-up in dollars per kilogram of U-235 has 
been computed two ways for comparison. The burn-up cost Cl has been 
determined from a four component cost scale (U-234, 235* 236, and 238) 
developed in the manner exemplified for three components. The other



TABLE II

UNIT COST SCALE ($/kg U) FOR U-235, 236, 23b MIXTURES AS A FUNCTION OF R AHD y

R = Mol Fraction U-235/Mol Fraction U-238; y = Mol Fraction U-236

\ y
R \ 0.00 0.02 o.o4 0.06 0.08

10.0 15497. 15200. 14902. 14605. 14307.
5.0 14159• 13887. 13615. 13343. 13071.
2.0 11251. 11035. 10819. 10603. 10388.
1.0 8365. 8206. 8046. 7887. 7728.

0.5 5497. 5394. 5290. 5187. 5083.
0.2 2652. 2604. 2555. 2507. 2459.
0.1 1374. 1351. 1327. 1303. 1279.
0.05 658.0 647.4 636.9 626.4 615.9

o.o4 509.6 501.7 493.9 486.0 478.1
0.03 360.8 355.5 350.3 345.0 339.7

0.02 213.5 210.7 207.9 205.0 202.2
0.01 74.16 73.39 72.63 71.87 71.10
0.009 61.4l 60.82 60.22 59.62 59.02

0.008 49.ll 48.66 48.22 47.77 47.32

0.007 37.37 37.06 36.75 36.43 36.12

0.006 26.38 26.18 25.98 25.79 25.59

0.10 0.20 o.4o 0.60 0.80 0.95

14010. 12523. 9549. 6574. 3600. 1369.
12799- 11438. 8717. 5996. 3275. 1234.
10172. 9093. 6935. 4776. 2618. 999-8

7568. 6771. 5176. 3581. 1986. 790.4

4980. 4463. 3429. 2394. 1360. 584.2

2411. 2170. 1688. 1206. 724.6 363.2

1255. 1136. 898.5 660.6 422.6 244.2

605.3 552.7 447.4 342.2 236.9 158.0
470.2 430.9 352.1 273.4 194.6 135.6

334.4 308.0 255.1 202.3 149.4 109.8
199.3 185.2 156.8 128.4 100.0 78.72
70.34 66.52 58.89 51.26 43.63 37.91

58.42 55.43 49.44 43.45 37.46 32.97

46.87 44.63 40.16 35-68 31.20 27.84

35.80 34.25 31.12 28.00 24.87 22.53

25.40 24.41 22.45 20.49 18.53 17.06
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TABLE III

EXAMPLES OF U-235 BURN-UP COSTS 
(30$ Burn-Up Assumed)

Charge Burn-Up Costs
Concentrations | ($/Kg. U-235)
U-235 u-236 1 c2 C4

.90 .00 17204 17044
.05 1 17204 17072

.80 .00 17148 17018
.05 17147 17037

.60 .00 17078 16977
.05 17078 16995

.4o .00 17003 16921
.05 17002 16944

.20 .00 16846 16785
.05 16844 16826

.10 .00 16585 16540
.05 16583 16615

.05 .00 , 16105 16072
.°5 16101 16207

.02 .00 14723 14705
.05 14717 14990

.01 .00 12465 12456
.05 12457 12931

C2 is based on the U.S.A.E.C. price 
schedule for U-235> 238 mixtures.

C^ is based on a four-component unit 
cost scale applicable to a matched-R 
cascade processing U-234, U-235> U-236, 
and U-238 mixtures.
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burn-up cost Cg has been determined from the U.S.A.E.C. price schedule 
for U-235, 238. It is to be remembered that the four component cost 
scale includes the U.S.A.E.C. schedule as a special case. The 
comparison between C^ and Cg then indicates the effects of the nuisance 
isotopes on some reactor economics. In particular, note how the unit 
cost of burn-up increases with the presence of U-236 in the reactor 
charge; at least initially, this rate of increase is seen to be 
unexpectedly small. Detailed studies on the effects of the developed 
cost scale on reactor economics similar to those presented in [4] are 
nevertheless indicated and will be the subject of another report.

EXAMPLE OF PERMISSIBLE CASCADE OPERATIONS

It has been previously stated that the developed cost scale has 
the property that materials having the same R abundance ratio may be 
mixed without incurring a mixing loss. This property permits some 
mixing operations of interest both in reactor and cascade operations, 
and an example of particular interest in cascade operations will be 
briefly discussed.

Consider two cascades as shown in Figure 9* Here, Cascade 1 is 
kept free of U-236, and Cascade 2 receives uranium with U-236. Both 
cascades are matched R cascades, and both span the same R range, 
namely, from Rq to Rp. (Furthermore, since both span the same R range, 
both have the same number of stages.) The mixing operations possible 
are best exemplified on the (x,y) plot in Figure 9* In the considered 
situation, a reactor returns material at point A and requests material 
with a U-235 concentration x . The reactor return can then be fed to 
Cascade 2, enriched up to point B with abundance ratio Rp, and product 
from Cascade 2 can be blended with product from Cascade 1 also at R^ 
to make a blend at the desired U-235 concentration x . The possibility 
of such blending operations is of interest particularly with mixtures 
containing U-234 and U-236 at relatively high U-235 concentrations.
In such a situation, there is the possibility of finding oneself very 
short of stages if further U-235 enriching is to be done in a single 
cascade.

INVESTIGATION OF PROPERTIES OF THE MATCHED R CASCADE

It has been seen that the matched R cascade plays a central role 
in the application of the value function and unit cost scales which have 
been developed. It has been previously mentioned that the two component 
ideal cascade has the very desirable property of being a minimum power



-1455

Blend at desired
U-235 concentration x,

Product atProduct at

Reactor
Return

Natural
Feed

Natural 
Feed ~

PermittedPermitted

Tails at Tails at

Cascade 2Cascade 1

Concentration

line

Gradient of Cascade 2

R line

U-235 Concentration

Example of Permissible Blending Operations with Matched R Cascades

Figure 9



K-lJ+55
33

cascade; and, of course, a similar property for the matched R cascade 
would also he desirable. The writers have not been able to establish 
such a property for the matched R cascade. Some cost properties of 
the matched R cascade have been established and these are discussed 
below.

As shown in Appendix III the unit cost D(x,y), developed for 
U-235, 236, 238 mixtures, may be interpreted as the unit cost of 
material at concentrations (x,y) which has been produced in a matched 
R cascade from material of zero value with abundance ratio R . A 
pertinent question to ask is whether with some other mode ofcascade 
operation it is possible to produce at lower cost material at the 
same concentrations (x,y), the feed of zero value still having 
abundance ratio Ro. The situation is as shown in Figure 10.

Product at concentrations 
(x,y) and unit cost D(x,y)

Cascade 
Operation: 
matched R

Infinite
Feed
Reservof

Reservoir concentrations 
(£, Tj) with R abundance ratio

R0 = 1/(1 - t - n)

Product at concentrations (x,y) 
and unit cost min. D(x,y)

Cascade Operation:
unspecified

Infinite Feed
Reservoir

Reservoir concentrations 
( £ 1, T]' ) with R abundance ratio

R = 67(1 - 6' - V)

(R is R abundance ratio of zero value) v o

Comparison of a Matched R Cascade Operation 
with a Minimum Cost Cascade Operation

Figure 10
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For the situation shown in Figure 10, it has been possible to establish 
a lower bound for min. D(x,y). For the development of this lower bound, 
reference is made to Appendix III; it is there shown that:

min. D(x,y) > (l - y) D(x*,0) + y l(x,y) , (52)

where:
x* = x/(1

I
I(x,y) = K In

- y),
k(R - Rq)

R

+ Ro
l/k k(E - R0) + R0 

R

l/(l-k)

and other notation is as before. The above inequality is applicable 
to the situation of Figure 10 for the case 0 < k < 1, which includes 
the U-235, 236, 238 mixture with k = 2/3. With the lower bound given 
by (52), it is then possible to estimate how much cheaper material of 
specified concentrations (x,y) can be produced from material of zero 
value with some other mode of cascade operation than the matched R 
mode. Since here the feed is at zero value, the difference between 
D(x,y) and min. D(x,y) is due to a difference in separative work 
requirements, and hence, this difference also indicates how far from 
minimum power a matched R gaseous diffusion cascade may be. For the 
purposes of these evaluations. Table IV lists the ratio D(x,y)/min. 
D(x,y), with min. D(x,y) estimated by (52), for concentration ranges 
of interest. It may be seen that the tabulated ratios indicate a 
very favorable comparison of the matched R cascade with some other 
mode of cascade operation for a large range of U-235 and U-236 
concentrations. Incidentally, the fact that the matched R cascade 
is not a minimum power cascade implies that it is possible to mix 
some materials with a gain in value in the sense of the developed 
If(x,y). This opens some blending possibilities to both the cascade 
and reactor operators. Thus, for example, it may be advantageous to 
a reactor operator to blend two materials, before returning these to 
the cascade, and to ask the cascade operator for credit on the blend. 
Table IV indicates such possibilities to be small, but nevertheless, 
they will be considered in the previously mentioned study on the 
effects of the developed cost scale on reactor economics.

Another very desirable property of the two component cascade is 
that considerable changes from ideality can be made without large 
changes from the ideal separative work requirements. Indeed, it is 
this stationary property which permits application of ideal cascade 
theory to actual non-ideal cascades. This stationary property of the 
ideal cascade has been established analytically; reference is made to 
[2]. It has not been possible to establish a similar property for the



TABLE IV

COMPARISON OF D(x,y) AND MIN. D(x,y)
The Tabulated Numbers are 100 ' [D(x,y)/min« D(x,y)] - l} .

X 0.00 0.02 0.0^ 0.08 0.10 0.12 o.i4 0.16 0.18 0.20 0.30 o.4o 0.50 0.60 0.70 0.80 0.90

0.90 0 0.03 0.06 0.16
0.23*j

0.80 0 0.03 0.06 0.12 0.16 0.20 0.24 0.30 0.38 0.52*

0.60 0 0.03 0.06 0.11 0.15 0.18 0.21 0.25 0.29 0.35 0.58 "•H

o.4o 0 0.03 0.06 0.13 0.16 0.20 0.23 0.27 0.31 0.35 0.57 0.86 1.29 2.73*|

0.20 0 0.0k 0.08 0.17 0.22 0.26 0.31 0.36 o.4i 0.46 0.74 1.06 1.47 2.01 2.88 6.13*

0.10 0 0.05 0.11 0.22 0.28 0.3^ 0.4l 0.47 0.53 0.60 0.97 i.4o 1.92 2.57 3.48 4.98 10.97*1

0.05 0 0.07 0.13 0.28 0.35 0.12 0.50 0.58 0.66 0.75 1.21 1.76 2.42 3.27 4.40 6.12 9-79 |

0.01 0 0.06 0.12 0.26 0.33 0.40 0.48 0.56 0.65 0.74 1.25 1.91 2.76 3.89 5.50 7.97
12.64 1

0.006 0 0.04 0.08 0.17 0.22 0.28 0.34 o.4o 0.46 0.53 0.94 1.51 2.27 3.35 4.93 7.46 12-55 1

At stated U-236 concentration y less 0.005-

'oJ
vn

K
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three component matched R cascade, but numerical studies do indicate 
that matched R cascades have a desired stability. Examples of some 
numerical studies are shown in Figure 11. Here a matched x cascade 
has been completely determined numerically by an iterative computing 
scheme and the cascade separative work has been determined by summing 
L over all the stages. With the external stream flows and
concentrations of the matched x cascade, a cascade value balance has 
been made with the developed unit cost scale so as to obtain an 
estimate of the cost of cascade separative work K ZL \|r^2/4, whence 
the cascade separative work is estimated by dividing by K, the unit 
cost of separative work used for the cost scale. A comparison of 
the actual and estimated separative work is tabulated in Figure 11 
for three different cascade situations. It may be seen that the 
comparisons are favorable, and this would indicate that some freedom 
may be taken in applying the value function for matched R cascades to 
other modes of cascade operation in the same manner that the two 
component value function for ideal cascades is applied to non-ideal 
cascades. Analytical investigation along these lines is nevertheless 
needed; results already available are presented in Appendix IV.

GENERALIZATION TO MORE COMPONENTS

The three component value function and the three
component matched R cascade readily generalize to more components. 
Consider, for example a mixture of the four components C-,, C^, C,, 
and Ci . Let x,y and z denote the concentrations of C^, C^, and 
Let \lr-, denote the stage separation factor for the two component C^ 
and C^ separation; and similarly, let -^2 an(^ ^4 denote the corres­
ponding factors for the and C^ separation and the C^ and C^ 
separation. Further, let

kj,!= •

Then, a four component value function /(x,y,z), applicable to the case 
2kg p ^ 1 and- I* is:

(x,y,z) = c0 + Cp + c2y + C5Z + c4 H2 1(x,y,z) + c5

+ V(x,y,z) ,

where the c's are arbitrary constants, and



N
(Natural feed)

E
(Reactor return)

Vcl

Vc2

Separative work required by 
matched-x cascade.
Separative work given by D(x,y) 
balance on streams and stream 
concentrations of matched-x 
cascade.

Concentration 
Quantity x(U-23>5) y(U-236)

Case 1 P: 100.00 .0200 .OO556
2$ U-235 E: 99.11 .0121 .00675

in P N: 159.22 .0072 .00000

Case 2 P: 100.00 .3500 .3264
35$ U-235 E: 87.49 .2412 .3908

in P N: 2780.14 .0072 .0000

Case 3 P: 100.00 .8000 .1536
80$ U-235 E: 86.35 .7427 .1811

in P N: 3174.37 .0072 .0000

x = .0022 w for all cases.

V n/V 0 = 1.00014 cl c2

V /V = 1.0080 cl c2

Vcl'/Vc2 = 1-002S'

Application of D(x,y) for Matched R Cascade to a Matched x Cascade

Figure 11
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-(2k n -1)
H2,l R ^

-(2k -1)
h5,i = z R ’

V = (2x +
2k

'2.1 2k

2k2,l " 1 y + '3,1
2\i -1

- 1) In R ,

R=x/(l-x-y-z) .

The cascade associated with the above four component value function is, 
of course, the matched R cascade, R now denoting x/(l-x-y-z). The 
two homogeneous functions, ^ and H-, and the elementary value 
function V play the same role'as before.

From the above example of a four component value function, it is 
readily seen how other four component value functions are obtained for 
different separation factor ratios, and in general, how value functions 
for more components are obtained.

OTHER SUBJECTS

A few brief remarks will now be made on more general subjects.

Consider first the match function which has been here introduced 
to isotope separation in cascades. The match function played a 
significant role in the development of the three component value 
function. The match function here prescribes how to link stages 
together to form a cascade and how to introduce feeds to the cascade 
so that separative work is conserved wherever streams are mixed. Row, 
most of the mixing in a cascade is done at the stage links, and the 
concentrations mixed at these links differ by very little in contrast 
to the large differences in concentration which may occur at a feed 
point. Hence, it makes sense to consider match functions on a purely 
local basis and ask for a match function which makes it possible to 
conserve separative work at the stage links to order , which after 
all, is the same order of correctness of the partial differential 
equation defining the value function. Suffice it then to say that 
it is in fact possible to develop such local match functions in 
situations where some mixing is permissible. The development of local 
match functions for three component mixtures is presented in Appendix 
IV.
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From a more general viewpoint, one can forget about an association 
between match functions and value functions and simply consider a match 
function as a recipe for linking stages together to do a certain 
separation job. For example, one may consider processing some mixture 
of isotopes in a cascade when the interest is not in enriching a 
particular isotope, but rather, in enhancing some average property of 
the mixture, such as an average cross-section. In such a situation, 
there is intuitive appeal in investigating a match function which is 
a linear form in the concentrations of the various isotopes. From this 
more general viewpoint, much remains to be investigated about match 
functions.

Finally, a word about value functions. The three component value 
function here developed permits the absence of one of the components.
This value function is applicable to operations with U-235j 236, and 
238 mixtures which may or may not contain U-236. Suppose, however, 
that the isotopic mixture always includes the three components. A 
value function applicable to the processing of such a mixture in a 
cascade must then of necessity become infinite when any one of the 
components is absent. Furthermore, all mixing should result in a 
loss of separative work. A value function of particular interest in 
this situation is:

V-L(x,y) = £ (2x + y - l) ln[x/(l - x - y)]

+ ig2 (x + 2y - !) ln(y/(l - X - y)] + (\lr-j_ - \(r2)_2(x - y) ln(x

The function V-,(x,y) is a solution of the partial differential equation 
given previously. It is symmetric in the concentrations and has a 
minimum at the point (l/3, l/3), and these are properties analogous to 
those of the elementary value function for two components. The single 
minimum can be moved by means of the evaluation of arbitrary constants 
in an additive linear form in x and y to the concentrations of the 
natural mixture, that is, an infinite reservoir of zero value material.
This function also has the property that any mixing whatsoever results 
in loss of value, as would be expected when all concentration changes 
are effected by expending separative work. The application of this 
function to isotope separation remains to be exploited.

In conclusion, as seen from the above remarks and others previously 
made, there remain many unsolved problems in the theory of multicomponent 
isotope separation in cascades.



K-1455
4o

APPENDIX I

MATHEMATICAL DEVELOPMENT OF THE VALUE FUNCTION

A. Statement of Problem

We have seen in the text that for our purposes, we wish to find a 
value function Z/(x,y) and a match function M(x,y) with the following 
properties:

£ + 28^ + hV (i-n1

where

g = ^ x(l - x) - i|r2 xy,

h = ^2 y(i - y) -

0 ^ x ^ 1, O^y^l, x + y4l.

In this appendix the partial derivatives are denoted by the 
appropriate subscripts.

2. w1 ?/(x1,y1) + w2 Z/(x2,y2) = (w]L + Wg) ^(xj^y ), (1-2)

where

(xi^yp) and are distinct and such that

M(x1,y1) = M(x2,y2),
X5 = ^W1 X1 + w2 x2^^wl + w2^

y3 = ^W1 yl + W2 ^^^l + w2^

} 0, w2 > 0.

3* ?f (x,0) = cQ + Cj^ x + (2x - 1) In (1-3)

where cq and c^ are arbitrary constants.

M(x,0) = x. (1-4)

It is to be noticed that with (I-3), we imply that (l-l) holds on 
the boundary y = 0.

Subsequently, we will, for convenience, denote lf(x}y) and M(x,y) 
by If and M, respectively, and we will follow this practice with other 
functions we introduce.
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B. A Necessary Form of M

We first show that the locus on the (x,y) plane of

M = a constant, (l-5)

must be a straight line.

Suppose M = M on a curve not a straight line, specifically, a 
curve such that there is one point PQ = (xo,yQ) on the curve in whose 
neighborhood d2y/dx2 (or d2x/dy2) is not zero. Let P.^ = (xq + yQ + 
tu) be points on the curve in this neighborhood, and as shown in 
Figure 1-1, let PQ, P^, and Pg be distinct.

M Constant on a Curve

Figure 1-1

Consider first the secant (P ,P-^). Since M(Pq) = M(P^) = Mq, it 
follow's from (l-2) that for (x,y^ on W is linear in x and y. 
Hence,

'If = 'f d2x
XX

+ 2 Z/ dxdy + 
xy

d2y = 0

for (x,y) on (P jP-,) and dx and dy such that dy/dx = cr^, the slope of 
( Pq , P-^). There?ore,

f + 2cr If + cr 2 if = 0 at (x,y) = (x ,y ). (l-6)

By considering the secant (Po,Pg), we similarly obtain

If + 2a0 ]/ + cr 2 If = 0 at (x,y) = (x ,y ),
u xx 2 f xy 2 v yy \

where is the slope of (P ,Pg).

(1-7)
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Consider now (1-2). Let w^ = Wg = 1, and let = xq, >

Xg = xq + 25x, ^2 = ^o + (l-2) then becomes

^^xo,yo^ ~ 2^xo + 5x^ yo + &y^ + ^(^ + 2 8x^ yQ + 28y) = °i (i-Q)

where M(x ,y ) = M(x + 26x, y + 25y). (1-9)

Let &x 0. Since from (l-9), it follows that sy/sx -> -M /M . it then 
follows from (l-8) that X y

7f + 2cr 7/* + cr /f = 0 at (x.y) = (x ,y ),^ xx o u xy o u yy \ * \ 7 (1-10)

where cr = -M /M , the slope of the tangent to the curve M = M at the 
point (x ,y y °

Consider now that it jgas been supposed that in the neighborhood of 
Pq, the derivative d2y/dx is not zero. It follows that it is always 
possible to find and Pg such that

<To
Consequently, (l-6), (1-7), and (1-10) can hold only If. If , If , and 
If are zero at (x ,y ). But then (l-l) cannot be satisfied. Mnce, 
weyKave shown that 0 =°M cannot have a neighborhood where d2y/dx2 is 
not zero, and therefore, loci of constant M must be straight lines in 
the (x,y) plane.

Consider further that due to (l-4), lines of constant M must 
intersect the x-axis, and hence, such lines may be described by

x + y B(M) = C(M), (1-11)

where B(M) and C(M) are functions of M only. Since (l-4) demands that 
M(x,0) = x at y = 0, it follows from (l-ll) that

x + By = M. (1-12)

We have thus established a simple and useful form of M.

C. A Necessary Form of If

With (l-12) we have that
If (x,y) = y(M - By, y).
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and hence, we may express the value function as a function of M and
Y, i.e.,

U(M,y) = If (x,y). (1-13)

We proceed to develop a necessary form of U.

With direct differentiation of (l-13), we obtain

U = (M /M )2 // - 2(M /M ) y + If - (M /M ) V . (1-14)
yy ' y' x xx ' y^ ^ xy ^ yy v y; xyy x v '

From (1-10) we see that the term in brackets in (l-l4) is zero, and 
from (l-12), we obtain directly that

My/Mx) = B(M),

from which it follows that at constant M,

(M /M ) = 0.
y x y

Hence, we have established that

and therefore, that

U = a(M) + yP(M), (1-15)

where a(M) and p(M) are functions of M only. Furthermore, we see from 
(l-12) that^(x,0) = U(M,0). It then follows that U(M,0) = ^/(M,0), and 
therefore, from (1-3) and (l-15) we have that

a(M) = co + c^M + (2M - 1) In Im/(1 - M)] . (l-l6)

Thus, a is known.

At this point of our development of the value function and match 
function, we see from (l-12), (l-15), and (l-l6) that we have two 
unknown functions, namely, B(M) and |3(M). We proceed to eliminate (3.

With direct differentiation of (l-13), we find that

2/ = II, M + U ,J y M y y

and from (1-12) and (l-15), we find directly that

(1-17)
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My = B/( 1 - B'y); = a1 + p'y; Uy = p. (l-l8)

We now let

f(x) = V evaluated at y = 0 (l-19)

and we then have from (l-17) and (l-l8) that

P = f - a'B. (1-20)

Furthermore, we see from (l-12) and (l-19) that

f(x) = f(M), (1-21)

and with this and (l-20), we may express U(M,y), given by (1-15), as

U = a + (f - a’B)y, (1-22)

and we now need to find f.

Consider that from (l-l) we have that

2J^g2 V + 2gh?/ + h^ Z/" ) = 0,
dyx& xx s xy yyy ’

y yx

and hence,
2g g If + g2 If + 2h(g If ) + 2. g h. if 

y xx 0 yxx xy y
+ 2h h Z/* + h2 Z/" =0.

y yy yyy
In particular, at y = 0, we have that 

from (l-l), g = ^ x(l - x), 

from (l-l), gy = -t2 x, 
from (l-l), h = 0, 

from (l-l), h^r = x>
y

from (1-3), 2^^ = l/ [x(l - x)] ,

from (1-19), = f, and ^ = f".

(1-23)

(1-24)

We substitute (1-24) in (l-23), carry out indicated algebraic 
reduction, and we obtain

f" + 2 k - x 
x(l - x) f = 2k

*2U-*)5 '
(I-S5)
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where k = Thus, we now have an ordinary differential equation
for f. Carrying out both integrations, we obtain

f = c2 + c3 ^ + 02 ,

where c? and c, are arbitrary constants, and 

0-jL = J x (1 - x) v dx,

02 = 2k / 01'(y X-2(1-K) ^ _ x^-(2k+l) ^

We now substitute (l-26) and (l-l6) in (l-15), and on carrying out 
indicated algebraic reduction, we obtain

U(M,y) = cD + c1(M - By) + c2 y + c3y 01 + [02 - ^ B]

+ [2(M - By) - l] In 5-^- ,

where:
from (1-21), 0X(x) = ^(M), and 02(x) = 0g(M), 

from (l-12), M = x + By.

Thus, we have succeeded in expressing the value function and the match 
function in terms of only one unknown function, B = B(m). We proceed 
to find the necessary B.

D. The Necessary B

(1-26)

(1-27)

y

(1-28)

Consider first the function

J(M,y) = y02 (I-29)

in (1-28). Since the product of j(M,y) and an arbitrary constant is a 
term of U(M,y), it follows that if ( (x,y) = U(M,y) satisfies the 
inhomogeneous equation (l-l), then H(x,y) = J(M,y) must satisfy the 
homogeneous equation

gH + 2 gh H + h H =0xx xy yy
(1-30)

and similarly, if If(x,y) satisfies (1-10), H(x,y) must also satisfy 
(1-10), and hence.

y xx
[2 2MMH +M2H =0. 

x y xy x yy (1-31)
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We now combine (1-30) and (l-3l) and we obtain

(gM + h M ) (g M H + h. M H )=0 \&x y' y xx x yy7

Note that the quantity

(1-32)

H = g M + h M (I -33)m- & x y \ ^ /

cannot be identically zero; in particular, at y = 0, p = \|r^ x(l - x). 
Hence, from (l-33) we conclude that

My xx + h Mx H
yy

= o. (1-34)

Using only the relations J =0 and J„ = y , which are readily 
obtained from (1-29), we now rMuce (1-34) to ^

[(
M

g
xx
IFX

+ h
M u yJM_yy\ . p hn My

M 1 v J Jy y MM
+ = 0 •

We eliminate the indicated derivatives of J and M 
(1-29), we obtain

(1-35)

From (1-27) and

= M(1 - M)/2(M - k)’

and from (l-12).

M = 1/(1 - B'y) ;x

M = B" M 5y

M = B M ; y x

M B2 M + 2 BB' M c 
xx xXX X “ yy

Substituting these expressions in (l-35)^ we reduce it to

M(1 - M) „ „
G + 2(M' k') ^ B - °^

(1-36)

(1-37)

where
1 r h M(1 - M) 
y Ly M - k + g + BhJ

With substitution from (1-12), we now write h and g as functions of M 
and y; we obtain

g = t-L (M - By) [(1 - M) + (B - k) y] , 

h = ^ y [(B - k)y - (M - k)] .
(1-38)
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With these expressions and indicated algebraic reduction, we find that 

0=^ k(l - k) (B - M)/(M - k), 

and hence, (1-56) becomes
<B - M> + 2§ffTT ^ B" = °- d-39)

We see at once from (l-39) that since (B - M) is a function of M 
only, one of the following cases must hold:

(i) B" = 0,

(ii) p = p(M), a function of M only.

We examine these cases individually.

Suppose case (i) holds. From (l-39) we have then that B = M.

Suppose case (ii) holds. Consider first that in any case we have from 
(1-33) and (1-36) that

p M(1 - M) + [M(B - k) - B(1 - k)J y
,1, “ 1 -DNr *t 1 - B'y (1-40)

Carrying out algebraic reduction, we find that

(B - M)' = (1 - k - M) (B - M)/M(l - M),

from which it follows that

B" = k(l - k) (B - M)/[M(1 - M)]2 .

When in (l-39) we set p = M(l - M) and B" as given by (l-4l), we 
readily see that B = M.

We thus see that both case (i) and case (ii) result in

B = M

and hence, we have established the necessary B.

Substituting (1-42) in (l-28), we obtain

’l

(1-41)

(1-42)

2M - 1>U(M,y) =0^+0-, M(1 - y) + c2y + c^y ^ + (02 - ^ ~ ^)y

+ |2M(1 - y) - l] In
1 -W 
M

1 - M ^ (1-43)
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and
M(x,y) = x/(l - y). (1-44)

Thus, we have succeeded in specifying completely the value function 
and the match function, and furthermore, both functions are uniquely 
specified.

E. Proof that Specified If (x,y) is Solution

We have established that £/~(x,y) = U(M,y) must be given by (1-45), 
but we have not shown that i?/r(x,y) satisfies the partial differential 
equation (l-l). This we proceed to do.

Again we find it more convenient to consider U(M,y). We first 
transform(I-l) to an equation in U(M,y); we obtain directly:

(g2 M + 2g h M + h2 M ) U, + p2 U,., + 2ph U. + h2 U = , (1-45)
xx 6 xy yy ^My yyfl^v "

where, as before.

p = g M + h M . B x y

Our specified U(M,y) given by (1-45) is:

U = a + Py,

where:
a" = l/[M(l - M)]2 ,

P = f - a'M, (from (l-20)), 

f = f(M) satisfies the differential equation

, (from (l-2l) and (l-25)),
M^(1 - M)^

M(x,y) = x/(l - y).

f" + p k - M ft = 2k
M(r^MT - m2(1 _ h)3

We must show that this specified U satisfies (1-45)• 

We first obtain directly that

Mx = 1/(1 - y);

M = 0 ;xx

Mxy = Mx (1-46)
M = 2M M 

yy x y
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Substituting the above in (1-45), we note that the factor of UM 
collapses to

2hpMx,

and hence, (1-45) may be re-written;

^ + V + ** Dmm] 11 + h2 Uyy = +12 •

We may now verify that:

from (1-38), h = ^ (k - M) y(l - y), 

from (1-46), hM = \|/-, (k - M)y;
X J_

from (1-40), n = i|f M( 1 - M), 

and from direct differentiation of U = a + Py:

^ = 0!- +P'y ; V"3' ;

UMM = Q:,, + i Uyy = °-

When we substitute the above in (1-47), we obtain

2(k - M) (a' + p 1) + M(l - M) p" = o. (1-48)

We recall that our specified U requires

a" = l/[M(l - M)J2 and p = f - a'M,

whence ,
a"' = -2(1 - 2M)/[M(l - }A)y ,

p' = f - a"M - a', and p" = f" - a"'M - 2a".

We substitute these expressions in (l-48), carry out indicated 
algebraic reduction, and we obtain

f" + 2 k - M 
M(l - M) f' 2k

P ^ *
m (i - uy

which is in fact the differential equation f satisfies. Hence, our 
specified U(M,y) satisfies (l-45) and lf(x,y) satisfies (l-l). 
Furthermore, it is easily verified that our specified U also satisfies 
the other solution requirements (1-2), (l-3), and (l-4).
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F. Explicit Expressions for If(x,y)

To obtain explicit expressions for lf(x,y) from (1-43), we must 
carry out the necessary integrations for 0, and in (l-27), remembering 
that here 0^(x) = 0 (M) and ^(x) = 0„(M). We find that there are two 
cases for the required integration, 2k = 1, and 2k / 1. Carrying out 
the integration, we then find:

for 2k = 1:
0-L = In M

1 - M '
2M - 1 

1 - M

for 2k 0 1:

0 = (_JL_^1 '1 - M

+ (In 

-(2k-l)

M \ l/n M x2 1 - M + ^ln 1 - M *

)

2M - 1 2k+ In M
v2 1 - M 2k - 1 1 - M

Substituting (1-49) and (l-50) in (1-43), we obtain U(M,y); thus: 

for 2k = 1:
MU(M,y) = co + c-j^ M(l - y) + c2y + c^y In 5—^4

-M r) - 1] m M+ [2M(1 - y) + |(ln 3-^,

for 2k 0 1:

U(M,y) = c^ + cn M(l - y) + cQy + c,.y(

y

M
o ' j ' y'l - M

+ [2M(1 - y) + T y - l] In

)

1 - M '

(2k-l)

M

for 2k 0 1:

(x,y) = c + c,x + c y + c,y + (2x + 2k

(1-49)

(1-30)

(1-51)

(1-52)2k - i1' 1 - M *
To obtain 7f{x,y)} we substitute (1-44), M = x/(l - y); thus:

for 2k = 1:
Z^(x,y) = cq + c^ + c2y + c^y In R + [2x + ^(ln R) - l] In R, (l-53)

2k - 1 1) In R, (1-54)

where
R = x/(l - x - y).
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APPENDIX I - ADDENDUM

DEVELOPMENT OF THE VALUE FUNCTION, GIVEN THE MATCH FUNCTION

Given that

M = x/(l - y) (IA-1)

is the necessary match function, it remains to find out whether a 
value function Tfi'x.jY) is permitted by the partial differential 
equation (l6) in the text. This is done below.

Text equation (l6) is first transformed to coordinates of M and y;
thus:

2 BSl S2u, <1 o IV, .2 au 2d2U0,uu
JT? + 2gh S3? + h ^ ® + ^ ^ + 2,ih 5H3y

^ V,2 a u _ , 2 + h g — >
Sy

. SM ^where p = g ^ + h ^ ,

(IA-2)

(IA-3)

and U(M,y) is given by text (23). From text (25), one finds directly 
that

BM/Sx = l/(l - y), SM/dy = M(SM/Sx),

B^/Sx2 = 0, S^/^y2 = 2(^M/Sx) (SM/dy), S^/SxSy = (Sm/Sx)2. (IA-4)

Substituting from (IA-4) in (IA-2), one first notes that the factor of 
du/dM collapses to

2 h p(dM/dx),

and hence, (IA-2) may be re-written as

= V-J2- (IA-5)

g and h, it may be verified

h = ^(k - M)y (1 - y),

h(BM/Sx) = ^(k - M)y, 

p = ^ M(1 - M),

r0. /3m Su ^ S2U x a2U -1 ^ . 2 B2U
[2h(37 SI + SHS-y) + ^ > + h ^

From (IA-1, 3^ 4), and the expressions for

(IA-6)
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and from direct differentiation of text (25),

Su/SM = a' + p'y, c)2u/3Mdy = p' , (lA-7)

B2u/5m2 = a" + p"y, 52u/Sy2 = 0 ,

and furthermore, from text (24),

a" = l/[M(l - m)]2 . (IA-8)

One now substitutes from (IA-6, 7^ 8) in (IA-5) and finds that

M(1 - M) (a” + p") + 2(k - M) (a' + p') - l/M(l - M) = 0, (IA-9)

the y variable vanishing, and thus, the partial differential equation
(IA-2) for the value function fr"(x,y) = U(M,y) has been reduced to an
ordinary differential equation for [3 = f3(M), the only unknown function
in the expression text (25) for the value function^ Hence, it has now
been established that there is in fact a value function 2^(x,y) with an 
associated match function M(x,y) given by (lA-l), this Z/"(x,y) = U(M,y) 
being given by text (25) with a = a(M) given by text (24), and p = B(m) 
being the solution of (lA-9).

Equation (lA-9) is now solved. It is easier to solve for (a + (3).
In carrying out the indicated integrations, one finds that two cases 
for the integrations are necessary; namely: 2k = 1, and 2k ^ 1. One 
then obtains:

for 2k = 1:
a + p = C0 + Cjl + | IXj-te)] 2 > (IA-10)

for 2k f- 1:
“+ = co+ C1 (r4TTr<a!"1) + 5FVT (IA-11)

where C0 and C-^ are arbitrary constants.

From (25), one has that

U(M,y) = (l - y) a + y(a + p).

and hence, with text (24) and (IA-10) and (lA-ll), the value function 
may be expressed as a function U(M,y) of M and y for both integration 
cases. To obtain Z^(x,y), one now uses (lA-l) to eliminate M from U(M,y), 
and one obtains:

for 2k = 1:
2r(x,y) = cQ + CjX + c2y + c^y In R + [2x + y - l] In R, (lA-12)

for 2k f 1:
ZT(x,y) = co + c^x + c2y + c^y + (2x + y - l) In R, (lA-15)

where: R=x/(l -x -y), (lA-14)

and cq, c^, c2, and c^ are arbitrary constants.
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APPENDIX II

DETERMINATION OF CONSTANTS FOR THE U-235, 236, 238 
UNIT COST SCALE

A. INTRODUCTION

We have seen in the text that the unit cost scale applicable to 
a three component material produced in a matched R cascade is

D(x,y) = K [ao + a^ + a2y + a5H(x,y) + V(x,y)] , (H-l)

where:

D(x,y) is the unit cost of material at concentrations x and y, 
K is the unit cost of separative work.

H(x,y) = y(j_ r(2k-l)
y y

V(x,y) (2x + y - 1) In x
x - y y

and the a's are arbitrary constants. 
(We here suppose the case 2k ^ 1.)

In this appendix, we determine values of the arbitrary constants 
applicable to the pricing of U-235, 236, and 238 mixtures. We let x 
denote the U-235 concentration and y the U-236 concentration. To 
evaluate the constants, we impose the following conditions on the cost 
scale:

1. The cost scale D(x,y) should have a locus of zero value.

2. On the locus of zero value, D(x,y) should be a minimum, thus 
assuring a positive cost scale for the entire range of 
concentrations.

3* In order that the resulting cost scale include the usual U-235> 
238 cost scale, the locus of zero value should include x , the 
U-235 concentration of zero value of the U-235> 238 cost scale.

We proceed to develop a D(x,y) satisfying the above conditions.
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B. Mathematical Development

We first note from (ll-l) that for a constant 

R = x/(l - x - y),

D(x,y) Is linear in x and y. Since at constant R, x and y are 
linearly related, we may then write D(x,y) as

D*(R,y) = (1 - y) D*(r,o) + y d*(r,i),

where:
D*(R,0) = D(x,0) ,

D*(R,1) = D(0,1) .

From (ll-l), we have that at constant R,

D(x,0) = K [a + a^ + (2x - l) In R] ,

1tPk-1^
D(0,l) = K J^a^ + a^ + + 2k - 1

In r] ,

where R = x/(l - x).

Hence, from (II-4) and (II-5) we have that

R
1 1 + R R + 1

+ 5-r- y In R] ,D (R,0) = K [ao +

D*(R,1) = K [ao + a2 + a^"^21^"1^ + 

and we thus know D (R,y) given by (II-3).

2k - 1 In R] ,

The conditions (l), (2), and (5) can be stated for D (R,y). 
reading R for x, and we proceed to impose these conditions on D 
thus:

(1) MRb, yb) = 0,

(2) dD‘
Sr

i.e., y^) is the locus of zero value.

= 0.
R =
y = y>

SD
S7 = o.

R =
y

= Bb

(II-2)

(H-5)

(II-4)

(H-5)

(II-6.1) 

(II-6.2)

i.hy
(H,y);

(ii-7)

(ii-8)

(II-9)
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(5) D (Bo,0) = 0, where Ro = xj{± - xo). (II-IO)

We now determine the arbitrary constants in (II-l) with these conditions. 

We first have from (II-3) that
*

= -D (R,0) + D (R,l),

and hence, from (II-9), it is necessary that

-D (R^O) + D (1^,1) == 0. (II-11)

In particular, since from (II-IO) it is necessary that take the
value R , and furthermore thato'

D*(Ro,0) = 0,

it follows from (ll-ll) that it is necessary that 

D*(Ro,l) = 0.

Hence, we see from (II-3), (II-12), and (II-13) that then

(11-12)

(11-13)

D (Ro'yb) = (1 " yb) D (Ro'0) + yb D (Ro'l) = ° f°r a11 yb‘ (II-14)

Therefore, R^ = R is a locus of zero value. Thus, if we choose the 
arbitrary cgnstanSs so that (II-12) and (II-13) are satisfied, the 
resulting D (R,y) satisfies (II-7), (II-9), and (II-IO), but (II-8) 
remains to be met. To satisfy (II-8), it is necessary that

8D
5r

= 0. (II-15)
R = Rc
y =

From (II-3), we have that

§D*,i v dJ)*(R,o) , „ dD*(R,l)
5R ^ dR ^ dR '

and hence, from (II-15), it is necessary that

*,
(1 _ y )^ yb' dR + y>

dD (R,l)

R = R dR R = R_
= 0 for all y^, (ll-l6)
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from which it follows at once that

= o.
dD*(R,o)

dR

dD*(R,l)
dR

R = R

R = R_
= 0,

(H-17)

(11-18)

and satisfying these two equations assures that (II-8) is satisfied.

In summary, for our cost scale D (R,y) to satisfy conditions (l), 
(2), and (3)> the arbitrary constants must be chosen so that

D (Ro,0) = 0, 
dD^(R,0)

dR = 0,
R = R_

and
D (R .1) = 0,

dD (R,l) 
dR = 0.

R = R

(H-19)

(11-20)

(11-21)

(11-22)

We now proceed to determine the constants a , a,, ap, and a^. 
from (11-19, 20, 21, and 22). We first determine a and a,. From 
(II-6.1) and (11-20), we have that 0

al =
d In R /dB

d(RTT)/dB
R = R

whence,

a, = [2(ln R ) + —2
(R„ - 1) (R + 1)

R
-J •

From (II-6.1) and (II-I9), we have that

(II-25)
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R R - 1
a = - a, --------t- - --------t- In R ,o 1R+1 R+l o’o o

and with (II-25), we find that 

a = [(In R ) + (Rn - l)] . (11-24)

We now determine a„ and a,. From (II-6.2) and (11-22), we have that

a5 =

whence,

a, =

2k

*2 3

1 din R/dR 
- i an-^-D /dR R = R

R 2k-1

'5 ' (a - X)2 •

From (II-6.2) and (ll-2l), we now have that

1

(II-25)

-(2k-l)a^, = - a - a^ R 2 o 3 o In R2k - 1 o

and with substitution from (11-24) and (11-25), we obtain

a2 = - [ 2irrr R0) +
(2k - 1)‘

+ (R - 1)] • (11-26)

This completes the detemination of the constants. In summary, we 
have:

a = [(R - 1) + In R ] ,
o LN o ' oJ ^

ai=-t
(R - 1) (R + 1)

--------- + 2 In R ] ,o *R

a2 = - [(Ro - 1) + 2k

R,2k-1 (2k - 1) 2k - 1
lnRJ .

(H-27) 

(11-28) 

(II-29)

a, -5'(2R-1)2 ’

where R =x/(l-x), o p o 2x = the concentration of zero value when y = 0. 
o

(II-30)
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C. Numerical Evaluation of Constants for U-235> 256, and 258
Unit Cost Scale

Benedict and Pigford in reference [l] give the constants for the 
U.S.A.E.C. price schedule ($/kg. U) for U-235 and 238 mixtures in the 
form of UFg as follows:

xq = 0.0022138 weight fraction U-235>

K = $37.286/kg. U separative work.

With these constants and our formulas, we may then compute a unit cost 
scale for U-235, 236, and 238 mixtures. We have that

R = x /(l - x ) = 0.0022187, 
o o' ' o ’

k = 2/3 for the ratio of the separation factor of U-236 
from U-238 to that of U-235 from U-238.

With equations (11-27, 28, 29, and 30) we then compute

a = - 7.1086,
a1 = 462.9338,

a2 = 16.4411,

a, = 1.1738.
3

Our unit cost scale for U-235, 236, and 238 mixtures then is given by 
(ll-l) with the above values for the constants. Thus, we have

D(x,y) = 37-286 [-7.1086 + 462.9338 x + 16.4411 y

+ 1.1738 yC—iL—)"1/5 + (2x + 4y - 1) ln(i-_ ^ _ y)] , (II-31)

which gives the unit cost ($/kg. U) of uranium in the form of UTV 
having isotopic concentrations x U-235 weight fraction and y U-236 
weight fraction.

The unit cost scale D(x,y) resulting with the above constants is 
tabulated in text Table I. The behavior of D(x,y) for relatively high 
U-235 concentration x and high U-236 concentration y is of particular
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interest. The cost formula shows that as y approaches (l - x), D(x,y) 
goes to infinity. Numerical evaluation shows, however, that this 
approach of D(x,y) to infinity is remarkably slow as shown in Table 
II-1 below.

TABLE II-1 

D(0.85,y) VERSUS y

y
o.oo

o.o4

0.08

0.12

o.i4

0.145

0.1495

0.1499

0.149999

D(Q.85,y)

14452. 

14498. 

14552. 

14629. 

14705.
14742.

14859.

1^937.

15161.
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APPENDIX III

A LONER BOUND FOR A MINIMUM UNIT COST

A. INTRODUCTION

In Appendix II, we developed a unit cost scale D(x,y) applicable 
to a matched R cascade processing U-2J5, 236, and 238. The cost scale 
has the following two properties:

1. Material with an abundance ratio R has zero value. Thus, 
= 0 for a material with U-2^5 concentration | and a 

U-236 concentration N such that Rq = |/(l - | - l).

2 The unit cost scale D(x,y) is at a minimum for material with
an abundance ratio R . Thus,o ’

8D and 8D
§7 = 0

where | and T] are as above.
As a result of these two properties, our cost scale D(x,y) may be 
interpreted as the separative work cost per unit of material of 
concentrations (x,y) which is produced in a matched R cascade from 
material of abundance ratio R available in infinite quantities. 
This may be seen from Figure Sn-i as follows:

Infinite Reservoir of 
Abundance Ratio R

Production From Material of Zero Value

Figure III-l
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Since our cost scale is of the form

D(x,y) = K[aQ + a^ + + a^H + v] ^

with the cascade in Figure III-l operated as a matched R cascade, we 
have by means of V and H balances and the three indicated material 
balances, as illustrated in the text, that

P [D(xp,yp) - D(|,ti) - (Xp - |)(dD/d£) - (yp - ti)(Sd/Sti)] =

K(J- £ L ^ ).
cascade

Since our cost scale has the property that D(|,t]) = 0, = 0, and
Sd/Sti = 0, we then see that

D(xp,yp) = K(^ £L ^J/P, 
cascade

and thus, D(x ,y ) is the cost of separative work per unit product, 
a not unexpected result.

Consider now that in the situation of Figure III-l, the cascade 
need not be operated as a matched R cascade. If we can prescribe 
some mode of cascade operation which results in less separative work 
requirements per unit of product than the matched R cascade, the unit 
cost of product will then be less than that given by our cost scale 
which is applicable to the matched R cascade. Hence, a pertinent 
question to ask is: for how much less than the D(x ,y ) of the 
matched R cascade may we produce material of concentrations (xp,y ) 
from material of abundance ratio Rq at zero value? In this Appendix, 
we give a partial answer to this question. We develop a lower bound 
for the unit cost of production at concentrations (xp,yp) from material 
of abundance ratio R of zero value for the case 0 < k <1, which isO 'applicable to U-235> 236, 238 mixtures.

B. Some Preliminary Formulas

A matched R cascade is operated so that 

dR/dn = R^/2.

More generally, we now let 

dR/dn = p R\|rp , (HI-1)
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where p = p(R), a function of R. We proceed to find an expression 
for the separative work of the cascade in Figure III-l with this 
general condition. From text equations (jl.l) and (31.2), we have 
that

dR
dn R^-l

P 1 + R + S 
L 1 + Rp + Sp

(Rp - R), (III-2a)

dS
dn s^2

P 1 + R + S , 
L 1 + Rp + Sp S). (Ill-2b)

We now substitute (III-l) in (ill-2a) and 
expression for the inter-stage flow:

P 1+R+S Rp-R
L " (1 - p) Ifp 1 + Rp + Sp R

From (ill-3) we obtain

we obtain the following

(III-3)

TJ P 1+R+S Rp_R
^ an - (1 - p) tp 1 + Rp + Sp R

dR
(dR/dn) ’

We eliminate dR/dn with (III-l), and with some re-arranging, we obtain

£ ^j2 <WP = 1 + R + S Sp - R
4p(1 - p) 1 + Rp + dR.

R
(III-4)

The separative work per unit product for the cascade shown in Figure 
III-l then is

(^2L * 2)/p = 
cascade _

1 1 + R + S
4p(1 - p) 1 + Rp + Sp

Rp - R
“2 dR. (III-5)

We may notice from both (III-4) and (III-5) that

0 p C 1 . (ill-6)

We now need a relation between R and S. We substitute (ill-3) in 
(ill-2b), divide the result by (III-l), and we obtain

dS kS l-pSp"S 
dR p R ‘ p Rp - R ‘ (HI-7)
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1 2To determine £ L \|r^ )/p for a given p = p(R), 
cascade

we need to solve (III-7) for S, substitute this result in (III-5), 
and carry out the indicated integration.

C. Development of Lower Bound on Unit Cost

With the results of the previous section, we see that for the
situation of Figure III-l, the minimum unit cost of production at
specified concentrations (xp,yp) from material of abundance ratio
R is o

min. D(xp,yp rain 1 1+R+S
Ml - P) 1 + Rp + Sp dR, (III-8)

where
Rp = Xp/(l - Xp - yp), Sp = yp/(l - Xp - yp)>

and S satisfies (III-7), here re-written:

dS
dR

Sp - S^ Sp - S 
R—TR) + R~^ * (HI-9)

To determine the min. D(xp,yp) we must find the function p = p(R) 
which minimizes the integral in (III-8) constrained by the differential 
equation (III-9). Determining this minimum is seen to be a difficult 
task. Determining a lower bound for the minimum is not too difficult, 
and this we proceed to do.

We first note from (III-8) that
r ]_

min. D(xp,yp) >x K J [max.'4p(l p]]
R

1 + R + [min. S] ^ " R 
1 + Rp + Sp r2 dR. (Ill-10)

Since from (ill-6), we have that 

0 p(R) < 1, 

it follows that

max. 4p(l - p) = 1 for all R.
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Hence,

min. D(xp,yp) > K
A

R

1 + R + [min 
1 + Rp + S.

q-| Kp “ R—-^2“ ^
P R

(III-11)

and we must find a lower bound for S.

We first introduce the function Sp = Sp(R) defined by

k Sp Sp - Sp

R R-, = 0,
Rp “p

from which we find directly that

(III-12)

SPR
S1 " k(Rp - R) + R ’ (HI-13)

and
dS-1

dR"
= S' =

kSpRp

1 [k(Rp - R) + R] 2 * (III-14)

We now note that with (ill-9) and (ill-12), we may write
S - ST n a Sp - S S S - S

s’ -si‘p RkS - iT-TT? - (k - - sLTR-a - 1
R Rp R R ^ - R Rp R

S-,
+ k— -Si *

Let
A(R) = S - Sp , 

whence. A' = S' - Sp, 

and we re-write (III-15) as

(III-15) 

(III-16)

A' - (ki + ^A_P ___
kpR+p Rp-R) A =

k S
.. _ q»R bl* (m-17)

We now substitute from (ill-13) and (III-14), and we obtain

A- - (- i + 1 “ -p
'p R P Rp

1 ) a _ -k(l ~
R' Lk(Rp - R) + R]‘

(III-18)



K-1455
65

The integrating factor for (lll-l8) is

Gdi) =exp -/(!! +da,

and hence, we have

A*G

Rt

R

(IL - t) G(t)
—-------------------^ at
(k(Rp - t) + t]

Note now from (lll-lj) that

s^y = sp,

and hence,

A(Rp) = S(Rp) - S1(Rp) = 0. 

We then have from (III-20) that

S - s1 =
k(l - k) Sp (Rp - t) G(t)

"GW
R [k(Rp - t) + t]‘

dt.

(Ill-19)

(III-20)

(III-21)

We may now conclude that if 

0 < k ^ 1,

then

S - Sp > 0 for R ^ Rp ,

and hence, we have established* that Sp is a lower bound for S. With 
this result and (lll-ll), we obtain the desired lower bound on the 
unit cost, thus:

It should be mentioned here that Dr. J. W. Neuberger of the University 
of Tennessee has shown that Sp is the greatest lower bound for S.
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min. D(xp,yp) > K f
*P

R

where from (ill-13),

1+R+S1 Rp-R

1 + Rp + Sj R
dR ,

Sp R
S1 = k(Rp - Rj + R ‘

This lower bound holds provided 0 < k 1.

D. Evaluation of Lower Bound on Unit Cost

(III-22)

In this section, we develop an expression for our lower bound on 
D(Xp,yp) suitable for numerical evaluation. We first note that (III-22) 
may be written:

min. D(xp,yp) > Ip + I2 ,

where: 1 + Rp
I1 K1 + Rp + Sj

K

A

R

I2 1 + Rp + Sp
R

1 + R 
1 +

Rp - R

R

o

R

1 R2
dR.

We proceed to evaluate Ip and Ip.

We note first from (III-24) and (III-5) that

(IH-23) 

(III-24)

(in-25)

RP

R
1 + R 
1 + Rp dR

is the separative work per unit product in a cascade in Figure III-l 
with p = l/2 and Sp = 0. A cascade with p = l/2 is a matched R 
cascade, and hence.
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1 + R 'V-11
1+RP R2

where D(x ,0) is our unit cost applicable to a matched g cascade for 
material at concentration y = 0 and concentration x = x such that

V^1 - xP) = XP/(1 - xP - yp) = Rp •
We readily find that

x* = Xp/(1 - yp) , (HI-27)

and hence^ we obtain from (111-24, 26, 2j) that 
1 + F?.

\ =i + +- sp D(v0) = (1 - y?) D(v°)- dn-28)

dR = D(x ,0), (III-26)

Thus, 1^ has been evaluated.

We now evaluate I^. We first substitute for from (lll-lj), 
and with some algebraic reduction, we obtain:

R-

^ = k
R k(Rp - R) +

Rp-R
R dR, (III-29)

We now make the substitution q. = R/(Rp - R)> and we obtain directly:

Rp - R______________ jR = f_______ Rq_______  _ 1 , q ,
k(Rp - R) + R R J q( 1 + qj (k + q) ~ k '‘k + q-1

__L_ in(i_!Li).
1 - k vk + qy

Reverting back to R, we now obtain

RpLr u „ n
. dR r 1

R
J Rp - R np

k(Rp - R) + R R ^k ln k(Rp - R; + R + 1 - k ln k(Rp - R) + r3

R

R
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Carrying out the indicated end-point evaluation, we find that

k(lL - R ) + R 1/k k(lL - R ) + R 1/(1 " k)
I2 = yp K { in [^^2--------2] } • (m-50)

and hence, has been evaluated.

In conclusion, with (III-28) and (lII-JO), we have from (III-23)
that

min. D(xp,yp) > (l - yp) D(xp,0)

^ 0 R P o+ yp K In [■

k(Rp 0 Ro) l/k k(Rp - Ro) + Rq 1/(1 ' k)

R 3 [
Rp ] ,

where:

■^■p ^ ~ yp)^

Rp _ xp/(^ “ ^p _ yp)^

which may be used to compute the lower bound for D(xp,yp).
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APPENDIX IV

THE CONJUGATE MATCHED ABUNDANCE RATIO CASCADE

A. Introduction

In Appendix I, a three component value function lT(xfy) was 
developed with the property that if materials of the same abundance 
ratio R are mixed, value is conserved. This property of If(x,y) 
immediately led to the matched R cascade discussed in the text. In 
the matched R cascade, only streams of the same R abundance ratio 
are mixed, and consequently, separative work is everywhere conserved. 
For a cascade such as that of text Figure 2 - supposing it to be a 
matched R cascade - we then have that

2:L * 2A = PZA(xp,yp) + wZT(xw,yw) - fZ^x^) . (iV-l)
cascaae

In this appendix, we will show1 that the matched R cascade is not the 
only cascade with the properties that separative work is everywhere 
conserved and that a value balance on the cascade with the developed 
value function tf{x}y) nets to the cascade separative work. We do 
this by developing a local match function m(x,y) which may be used 
to match interstage flows in the formation of the cascade. Feed 
streams to the cascade, however, must still be matched with the 
abundance ratio R. We call the resulting cascade a conjugate matched 
R cascade.

B. Mixing of Two Equal Streams Having Small Concentration Differences

A stage link consists of the n-th stage up-flow meeting with 
the (n+2)-th stage down-flow to form the input to the (n+l)-th stage. 
If we neglect the net up-flow with respect to the inter-stage flow, 
a stage link can be shown as follows:

1
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(n+2)th. Stage 
Downflow L

x + Sx
y + &y

or
(n+l)th Stage 

x,y Input

nth Stage T 
Upflow L

x - 5x
y - &y

Schematic of a Stage Link 

Figure IV-l

We want to know how to make the above stage link so that there is no 
mixing loss in the sense of the developed value function 
Thus, we want

Llf(x + 5x, y + By) + LZ^(x - Bx, y - By) - 2LlT(x,y) = 0. (IV-2)

We now remember that the partial differential equation satisfied by 
if(x,y) is a stage value balance correct to second order terms in g 
and h, which are the concentration differences effected by the stage. 
Let us then content ourselves to have (IV-2) correct to second order 
terms in 8x and By which are of the same order of magnitude as g and 
h. Expanding lf(x + Bx, y + By) andZ/~(x - Bx, y - By) about ^(x,y), 
we then obtain in place of (lV-2)

(IV-3)

Let us now write

If + 2(dy/dx) If + (dy/dx)2 tT = 0 
xx ' ^ xy ' ' yy (iv-4)
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Since If(x,y) is given, we consider (IV-4) as an ordinary differential 
equation. We may then solve for (dy/dx), and on integration, we 
obtain two solutions, corresponding to the two roots, (dy/dx)^ and 
(dy/dx)^, of the indicated quadratic. Let these two solutions be:

^(^y) = c1 ,

^2(x,y) = C2 , (IV-5)

where and Cg are constants. We then have that

(dy/fe)1 = - V^ly >

(dy/dx)2 = -^x^^y *
(IV-6)

Suppose for the moment that both #4 and ^7 are real functions of 
x and y. It is then seen that ^7 and vtf may oe considered to have 
local matching properties. If inFigure IV-l, we join the two streams 
at the stage link such that, say.

^(x + 6x, y + By) = ^(x - Bx, y - By), 

we then have that

8y/&x = - (IV-7)

provided Bx and By are small. On comparing (IV-6) and (IV-7), we 
see that By/8x then satisfies (IV-4) and, hence, (IV-2). Therefore, 
when we match at the stage links with either 7^^ or f: 2> we conserve 
value in the sense of the developed value function If {x,y) to order

We supposed above that both 77?^ and^g are real functions, and 
this is now easily established.

Consider that at constant abundance ratio 

R = x/(l - x - y),

our developed value function 2f {x}y) 
and hence, for

R(x + Bx, y + By) = R(x - Bx,

is a linear form in x and y, 

y - By),
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(IV-2) is exactly satisfied. Therefore,

(dy/dx)1 = - Rx/Ry , (17-8)

is a root of the quadratic (IV-4). Since (dy/dx^ is real, (dy/dx)2 
must then also be real. Since (dy/dx)1 is known, (dy/dx)^ is 
immediately obtained from the relation that the product or the two 
roots of a quadratic equals the constant term. Hence, we have from 
(IV-4) and (IV-8) that

(dy/dx)2 = -(Ry/Rx)(?/x/^y). (IV-9)

That the above (dy/dx)2 is not always equal to (dy/dx)^, corresponding 
to the R abundance ratio, may be verified directly from (IV-8) and 
(IV-9), tut this conclusion follows from a theorem in differential 
geometry on developable surfaces.

We have now found two match functions:

^(^y) = R,

and
^72(x,y) = m(x,y), the solution of (IV-9).

The abundance ratio R, as we have seen before, has the property that 
streams may be matched with value being conserved regardless of 
whether the concentrations of the streams have small differences or 
not. On the other hand, m(x,y) may be used to match streams only 
when the concentrations of the streams have small differences; whenO
inter-stage flows are thus matched, value is conserved to order V-i } 
which is acceptable accuracy. For these reasons we call R a broaa 
match function and m a local match function. We now proceed to show 
how the local match function may be used in forming a cascade in 
which separative work is everywhere conserved.

C. The Conjugate Matched R Cascade

Consider stages in a cascade as shown in text Figure 6, and 
suppose the stages to be linked with our local match function; thus:

m(x.n+2J (IV-10)
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Since the concentration differences are small, we have that

m(x , y ) = m(x , y ) + (x - x)m +(y - y ) m ,' -n ■' “ in ' ' n7 n ' n n7 v xt/-n n7 -\r7n' n n n x n n

m(x.

and

n+2' yB+2) " m(xn> ^ + (xn+2 ‘ xn) mx + (yn+2 ‘ yn) my’

xn+2 - Xn = 2(dx/'to)^

y.n+2 yn = 2(dy/dn).

(iV-ll)

(IV-12)

Since the n-th stage concentration increments are

xn - xn = 8> 

yn - yn = h’

with g and h as before, we obtain from (IV-10, 11, 12), 

[(dx/dn) - g/2~) mx + [(dy/dn) - h/2] my = 0. (IV-13)

Supposing the considered stages to be in a simple enricher with a 
single product withdrawal P at concentrations (xp,y ), we have from 
text (29) that

dx/dn = g - [P(xp - x)/L] , 

dy/dn = h - [P(yp - y)/L] .

From (IV-13) and (lV-14), we may then solve for L; thus:

(IV-14)

L = 2P
(xp - x) mx + (yp - y) my

g m + h m & x y
(IV-15)

Returning to (lV-9), we see that for the local match function

(m /m ) = (R /R ) {If /If ). (IV-16)
s x y' ' y x' ' xx' yy' '

Substituting (IV-16) in (IV-15), we obtain

(x-p - x) R Z/" + (y-p - y) R ^
VP ' y xx WP xyy

g R //■ + h. B. ITB y17 xx xu yy
L = 2P (IV-l?)
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With (IV-14) and (IV-17), and similar equations for a stripper, we 
are then able to compute by the usual "run-down" calculations the 
x and y concentration gradients and the interstage flows. For 
separative work to be conserved everywhere in the cascade, the feed
F is matched to the cascade with the R abundance ratio. The resulting 
cascade we call the conjugate matched R cascade. It has the property 
that

£L ilr-j2 = PZf(xp,yp) + wZ/r(xw,yw) - F^x^yp, 
cascade

2correct to order i|r^ .

The conjugate matched R cascade is of particular interest because 
it shows that cascade value balances with our value function net to 
the cascade separative work for other modes of cascade operation 
than the matched R one. Indeed, for these purposes it is applicable 
to any cascade whose stages are linked with either m and/or R, and 
not all stages must be linked with the same match function. Feeds, 
however, must always be matched with R. It is also of importance to 
note that since our developed unit cost scale is of the form

D(x,y) = Klf (x,y),

our cost scale is also applicable to a variety of cascade operations - 
which is certainly a desirable property for a cost scale.
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