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ABSTRACT 

An interactive program for data-fitting by the method of least squares is 

discussed in some detail. The program was implemented on an IBM 360/75 and 

360/91 with an IBM 2250 Mod 11 display unit a s  the man-machine interface. Firs t  

the least squares data-fitting problem is briefly discussed. That i s  followed by 

a short description of the direct search minimization method which was chosen 

to handle the nonlinear least squares problems.. Finally, the displays utilized 

in the interactive data-fitting process a r e  depicted by photographs of the 2250 

screen during operation, and an extensive discussion of the use of the program 

is given. 

The program was written in FORTRAN IV for ease of implementation and 

to achieve some degree of machine independence. 
' \  

The interaction was designed to make the program very easy to use. It is 

hoped that very little (if any) reference to any write-up will be necessary when 

using the program. 



TABLE OF CONTENTS 

. . . . . . . . . . . . . . . . . . .  I . The Least Squares Data-Fitting Problem 1 

. . . . . . . . . . . . . . . .  II . The Least Squares Data-Fitting Method 5 

. . . . . . . . . . . . . . . . . . . . . .  A . Orthogonal Polynomials 7 
. . . . . . .  . . . . . . . . . . . . . . . . .  . . . . . . .  B . SplineFunctions . .  8 

. . . . . . . . . . . . . . . . . . . . . .  . C Fourier Approximatipn 9 . . 

. . . . . . . . . . . . . . . . . . . .  . D . User Defined Functions ? . . 9 

. . . . . . . . . . . . . . . . .  111 . An Interactive Data-Fitting Program 10 
. . . . . . . . . . . . . . . . . .  . . . . . . .  A The Interactive Program . . : 10 

. . . . . . . . . . . . . . . . . . . . . . . .  . 1 Introduction . ; 10 

. . . . . . . . . . . . . . . . . . . . .  . 2 Choosing the function 14 

. . . . . . . . . . . . . . . . . . . .  . 3 Choosing the data mode 14 

. . . . . . . . . . . . .  . 4 Correction and/or subset selection 21 

. . . . . . . . . . . . . . . . . . . . .  . 5 Data transformation 23 

. . . . . . . . . . . . . . . . . . . . .  . 7 Entering parameters 26 

. . . . . . . . . . . . . . . . . . . . . .  8 . Calculating the f i t  29 

. . . . . . . . . . . . . . . . . . . .  9 . Choosing display mode 38 

. . . . . . . . . . . . . . . . . . . . . . .  10 . Displaying the f i t  40 

. . . . . . . . . . . . . . . . . . . . . . .  11 . The branching step 46 

. . . . . . . . . . . . . . . . . .  12 . A fit comparison . . . .  ? 53 

13 Tutorial displays ; . . . . . . . . . . . . . . . . .  53 . . . . . . .  
. . . . . . . . . . . . . . . . . .  14 . Theinteractiveminimizer 55 

. . . . . . . . . . . . . . . . . . . . . .  B . User Defined Functions 63 

. . . . . . . . . . .  . 1 The form (how to code a user function) 63 

. . . . . . . . .  2 . Bow user functions are used by the program 65 

- i v -  



PaE.Te 
3 . The use of object decks for user functions . . . . . . . . . .  65 

4 . Implicit function fitting (UFUNC4) . . . . . . . . . . . . . .  65 

. . . . . . . . . . . . . . . . . .  . 5 Coding an implicit function 67 

. . . . . .  6 Coding the sum of squares for an implicit function 67 

. . . . . . . . . . . . .  7 Coding the plot of an implicit function 69 

8 . Vary an arbitrary number of parameters (UFUWCS) . . . . .  69 

9 . Coding UFUNC5 for a variable number of parameters . . . .  72 

IV . Deck Setup to .use the Interactive ~ i t a - ~ i t t i n ~  Program . . . . . . .  75 

A . Using the Load Module . . . . . . . . . . . . . . . . . . . . . . . .  75 

B . Using Object Deck(s) for User Defined Function(s) . . . . . . . .  75 

C . Preparation of Data Cards . . . . . . . . . . . . . . . . . . . . . .  78 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  References 81 



LIST OF FIGURES 

Page 
. . . .  

Plot of Table 1 data . . . . . . . . . . . . . . . . . . . . . . . . .  3 
. . .  . . 

Least squares f i t  to Table 1 data using even power polynomial . 4 
. . . . . . . . . . . . . . . . . . . . .  The IBM 2250 display console 11 

. . . . . . . . . . . .  Flow Chart -- Interactive data-fitting program 12 

. . . . . . . . . . . . . . . . . . . . . . . . . .  3 . 2  Introductory display 13 

. . . . . . . . . . . . . . . . . . . . . . . . .  3 . 3  Choosing the function 15 

. . . . . . . . . . . . . . . . . . . . . . . .  3 . 4  Choosingthedatamode 16 

. . . . . . . . . . . . . . . . . . . . . . .  3 . 5  Keyboard entry of data 18 

. . . . . . . . . . . . . . . . . . .  3 . 6  Data and function titles display 20 

. . . . . . .  3 . 7  Display for point correction and/or subset selection 22 

. . . . . . . . . . . . . . . . . . . . . . .  3.8 A magnetization curve 24 

. . . . . . . . . . . . . . . . .  3 .9  Transformed magnetization curve 25 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.10  Point deletion 27 

. . . . . . . . . . . . . . . . . . . . . . .  3 .11  Display for degree entry 28 

. . . . . . . . . . . . . . . . . . . . .  3 . 1 2  Entering splino paramotoro 315 

. . . . . . . . . . . . . . . . .  3.13  Entering user function parameters 31 

. . . . . . . . . . . . . . . . . .  3 . 1 C hoooing n minilnization iiletllucl 32 

3 .15  Display of spline fit and selection of new joints . . . . . . . . . .  34 

3.16  Display allowing change of direct search parameters . . . . . . .  36 

. . . . . . . . . . . . . . . . . . . . .  3.17  Direct search spline fitting 37 

. . . . . . . . . . . . . . . . . . . . . . .  3.18 Choosing display mode 39 

. . . . . . . . . . . . . . . . . . .  3 .19  Data and f i t  with f i t  displayed 41 

. . . . . . . .  3.20 Data and fit with orthogonal polynomial coefficients 42 

3 . 2 1  .Data and fit with Fourier approximation coefficients . . . . . . .  43 



Page 
. . 

. . . . . .  Data and f i t  with spline function coefficients and joints 44 

. . . . . . . . . . . . . . . . . . .  Full scope plot of data and f i t  . . 45 
. . 

. . . . . . . . . . . . . . . .  Plot of residuals with f i t  displayed 47 

. . . . . . . . . . .  Plot of residuals with coefficients displayed 48 

. . . . . . . . . . . . . . . . . . . .  Full scope plot of residuals 49 
. . 

. . . . . . . . . . . . . . . . . .  Plot of data and f i t  extrapolated 50 

. . . . . . . . . . . . . . . . . . . . . . .  Branching step display 52 

. . . . . . . . . . . . . . . . . . . . . . . . . .  A fit comparison 54 

. . . . . . . . . . . .  Display allowing choice of tutorial %splay 56 

. . . . . . . . . . . .  3.30a Tutorial display for orthogonal polynomials 57 

. . . . . . . . . . . . . . . .  3.30b Tutorial display for spline functions 58 

3 . 3 0 ~  Tutorial display for Fourier approximations . . . . . . .  ; . . .  59 

. . . . . . . . . . . .  3.30d Tutorial display for user defined functions 60 

3.30e Tutorial display on how to enter numbers from the keyboard . . .  61 

. . . . . . . . .  3.31 Typical display during interactive minimization 621 

. . . . . . . . . . . . . . . .  3.32 Example of a user defined function 64 

. . . . . . . . . . . . . . . . . . .  3 . 3 3  Cnrnp~~ting the sum, sf squares GG 

. . . . . . . . . . .  3.34 Example code to evaluate an implicit function 68 

. . . . . . . .  3.35 Example of sum of squares for an implicit funclivll 70 

. . . . . . . .  3.36 Example code to compute an implicit function plot 71 

. . . . . . . . . . . . . . . . .  3.37 Choosing which parameters to vary 73 

. . . . . . . . . . . . . . . . . . . . . . . .  3.38 How to code UFUNCS 74 

4.1 Dcck setup to use load module (no user function object decks) . . 76 

. . .  4.2 ~ e c k  setup to use an object deck for a user defined hclion 77 

. . . . . . . . . . . . . . . . . . . . . . .  4 . 3  Example of a data set 80 



I .  . . 
I. THE LEAST SQUARES DATA-FITTING PROBLEM 

' , ... 
, : * -  ;:' , . . . '  

There a re  various reasons why one might wish to approximate a given set 

of data points by a curve with a known functional form. Suppose we a r e  given a 

set  of points in a plane {(xi, yi)}E1 . Som,e,theoretical physical grounds may 
. 

give us a function, f(x) , which is supposed to represent the data. The problem 
\ 

is then to determine values for the coefficients occurring in f(x) such that the 

data is approximated by f(x) a s  well a s  possible in the least squares sense. A 

second problem is that of obtaining a "good" (in the least squares sense) approx- 

imation to the data points by some easily (efficiently) calculable function for use 

in some later computation. These problems a re  easily handled by the program 

to be described. 

To handle ithe case involving a function peculiar to the data at hand, we 
> ,  . . .. :.,-. . 

employ user defined functions which a re  coded anew for each different function. 
.. ,, 

;', 7 . . _ . '  . 
A description of how this is accomplished is given in Section III. The case where 

only a good fit i s  desired can usually be handled by one of the built-in functions - 
orthogonal polynomials, spline functions, or  Fourier approximations. A user 

function could also be coded and utilized in this latter case if so  desired. 

2 The least squares or  L norm has a long history of use in the kind of data- 

fitting problems which this program is designed to handle. There is statistical 

basis for the choice as  well a s  historical precedent. In 1809 Gauss [l] f irst  used 

the method of least squares to determine the coefficients of a function from ex- 

perimentally . determined . points. A csnb~ry  later in 1900, Markov [el used a 

minimum variance approach to coefficient determination which is identical to 

the least squares approach under certain assumptions on the e r ro r s  in the data 

points. For more on the statistics involved, see any standard statistics text, 

for example, that by Wilks [3]. 



A.s an example of the type of problem that might easily be handled by this 

program, consider the data points tabulated in Table 1 and shown graphically 

. . in Fig. 1.1.. . .  . . . 

. . - Table 1 

-, ' 1  Data Points 

2.. Now suppose we wish to approximate these data by a polynomial in x (only even 
. . .  . :,- . '. 

I 

1 

2 

3 

4 

5 

powers) with the added restriction that the constant term be non-negative. In 
. . 

other words, the fitting function is  f(x) where 

We need a FORTRAN function to evaluate (I. 1) for any given la.) at any value of 
1 

X( 1) 

.713 

.05G 

.932 

.988 

.994 

x. The required form for coding such FORTRAN functions is specified in Sec- 

tion UI. When this iunction has been coded arrd uul~lyiled, its sbjecl dcclc i~ 

Y( 1) 

2.7 

8.1 

13.2 

21.5 

22.4 

included in the deck of cards necessary to run the interactive data-Iillitg pro- 

Weight 
W(I) 

5.0000 

1.6670 

lo 1110 

.6667 

.6250 

gram and the fitting can be accomplished at the 2250 console. The degree 

(number of terms to be used in (I. 1)) and initial guesses for the coefficients 

(ai} will be requested on-line by the program and the least squares f i t  will then 

be computed and displayed. For ,example, Fig. 1.2 shows lhe fit to the data of - 
Table 1 using n = 3 in (I. 1). 

' ~ a t a  and function obtained from S. Howry (SLAC Computation Group). The 
problem arose during a problem involved with cross 'section estimations. 





FIG. 1. %--Least squares fit to Table 1 clata us& even power polynomial. 



. . .  ,. . 
11. THE LEAST'SQUARES DATA-FITTING METHOD 

:: . :. '. ..'. , .  . .  

The weighted least squares problem can be defined as follows: 

Given: data points (x yi) i=l ( is IN 
weights {wiEl 

a function f(x, al, a2, . . . , an) 

Determine: values of the coefficients ai i=l i ILL 
which minimize the weighted sum 

of squares of residuals, S(al, a2, . . . , an) 

where 

If no weights a re  to be considered we simply set wi = 1, for all i, in the above 

formulation. 

Another formulation considers the e r ror  at each point, say oi. The weight 

in this case is w. = l /oi  so S(al, a2, . . . , a ) becomes (assume ui > 0, all i) 
1 n 

The minimization of S(al, a2, . . ', an) is handled in different ways depending 

on the particular function being used as the approximating function. The built-in 

functions in this program include: 

1. orthogonal polynomials 

2. spline functions 

3. Fourier approximations. 

- 5 -  



Arbitrary functions a re  allowed in the form of user defined functions. For the ' > .. r ,  . 

orthogonal polynomials and Fourier approximations the minimization of the sum 

of squares in (II. 1) is accomplished by essentiallyY~olving a set of simultaneous 

linear equations since the problem is linear in these cases. 

A spline function is a piecewise continuous polynomial of degree m with the 

st 
added property that all derivatives up to and including the m-1 are  continuous 

at the "joints. The "joints" a r e  those points where the polynomial pieces are  

joined together. If the joints a re  fixed, the minimization of (II. 1) is again a 

linear problem Which can be solved Lilreclly by solving a set of simultancouo 

linear equations. 

For spline functions with variable joints (the joints and the coefficients are  

adjusted in order to minimize the sum of squares) as well as user defined func- 

tions the problem becomes non-linear and an iterative method is  needed to 

minimize (II. 1). There a re  various methods such as  gradient methods, steepest 

descent, Newton-Raphson and others which could be uscd to accomplish the 

minimization. However, because of its simplicity of use and because of much 

successful usage of the method in the past, the author has chosen to use the 

"direct search" method to minimize (II. 1) for the non-linear problems. The 

method is described in an article by Hooke and Jeeves in the Journal of the 

ACM (1961), see [41. 

The direct search minimization method can be simply described as a method 

which "feels around" for a smaller function value by adjusting each coefficient 

in turn. When a smaller value is found the point of search moves there. When 

no smaller value can be found by varying the coefficients by the current stepsize, 

the stepsize is reduced and the search continues. When the stepsize is reduced 

to some specified stopping criterion and no more reduction in the function value 

can be achieved, convergence is claimed. 

- 6 -  



The polynomial fitting provided by PEG i s  in the form of orthogonal poly- 

nomials a s  described by Forsythe [5]. These orthogonal polynomials a r e  equiv- 

i alent to the use of monomials, x , as  approximating functions but their compu- 

tational properties a re  much better. 

The calculated polynomial approximation is given in terms of the orthogonal 

polynomials which a re  generated by a recurrence formula: 

The least squares polynomial of degree n, pA(x), is given as  

The output from PEG includes a table of values for ai, Pi, and Si, i = 0, 1, . . . , n. 

Using these values and the above equations, the approximating function, pi(x), 

can be evaluated for any value of the independent variable, with the following coil- 
. . 

sideration. 

PEG scales the data to lie in the interval [-2, 21 before calculating the 

orthoganal polynomial least squares fit. Therefore a transformation on points 

in the original coordinates i s  necessary before using the given ai, Pi, and Si 

to evaluate the approximating function. Assuming the largest and smallest 



abscissa values in the data a r e  % and x respectively, the transformation 1 

. . 

will transform x into x1 to be used with the coefficients output by PEG. 

B. Spline Functions 

A spline function of degree m is a piecewise polynomial with J joints, 

A A A x < X2 < ... 1 "J' The results of calcu1al;ing a least squares spline by PEG are 

given in terms of the polynomial coefficients in each interval. There will be 

J+ 1 sets of polynomial coefficients given by PEG. 

A For x < xl use the lSt polynomial 

A A For xl 5 x < x2 use the znd polynomial 

. st 
For k < x use the J + 1 polynomial J 

A transformation of the data is made by PEG before calculating the spline 

function fit. PEG scales the independent variable values to be in the interval 

[-1, 1j so a reverse transformation is necessary when using the computed f i t  

in further calculations. Assuming that xx is the smallest data value and that . . 

5 is the largest data value the transformation necessary to evaluate the . . spline 

function a point x is.: 

Evaluation of the appropriate polynomial segment at the point x' will give the 

ordinate value corresponding to the point x in the original coordinate system. 

- 8 - 



C . Fourier Approximation 

The function used to calculate the Fourier approx.imation is  

(a. cos jx+ bj sin jx) . m J 

If the data is given a s  N equally spaced points, an algorithm due to Goertzel and 

discussed by Ralston [6] i s  used to calculate the least squares fit. This algo- 

[ WkLl] rithm assumes that the points a re  equally spaced on the interval 0 ,  

therefore a transformation is necessary when evaluating the function for values 

of the independent variable in the original coordinate system. To evaluate the 

function at  a point x, compute 

and evaluate the function at  x' using the coefficients given by PEG. 

In the case of unequally spaced points o r  i f  weighting was used, the coeffi- 

cients printed by PEG correspond to the original coordinate system and no 

transformation i s  needed when evaluating the function. 

D. User Defined Functions 

In the case of least squares fitting by a user defined function, f(x, al, a2, . . ., 
a ), the values of the parameters, al, . . . , a determined by PEG correspond m m y  

to the function in the original coordinate system of the data. There is no auto- 

matic transformation o r  scaling of the data by PEG a s  there is in the three 

previous cases. However, i f  the data is transformed by a user selected option 

, while on-line, the coefficients determined by PEG will correspond to the trans- 

formed coordinate system. 



111. AN INTERACTIVE DATA-FITTING PROGRAM 

A. The Interactive Program 

This program has been implemented on an IBM 360/75 and later an IBM 

360/91 with an IBM 2250 display unit (CRT), see Fig. 3.0. An overall view of 

the capabilities of the program or system is  depicted by the flowchart in Fig. 3.1. 

Each block of the flowchart is numbered according to the numbering used for the 

paragraph describing the function of that block. 

The design of this program is modular in the ecnsc that addit-innnl cnp~lbil= 

ities csul be easily added. k'or example the list of user functions could be ex- 

panded or  the list of built-in functions could be augmented. Also thk inclusion 

of more options a s  to what kind of minimization routine a user wants to use is 

easily accomplished. Additional display modes for examination of the results 

could also be added. 

1. Introduction 

The f i rs t  display to appear on the CRT is a paragraph of introductory re-  

marks. These remarks briefly summarize the flow of the prrrgrRm, give the 

built-in limits on the number of data points a d  number af pa,ramntera (or degree), 

and give some other general information. The display is shown in Fig. 3.2. 

The display shown in Fig. 3.2 as  well a s  several displays to be described 

later have a "*BRANCH OUT" displayed which, when selected by the lightpen, 

will transfer control to the branching display described in paragraph 1II.A. 11. 

One of the options given by the branching d i s p l ~ y  i s  *TUTORIAL DISPLAYS, 

If this tutorial option is selected by lightpen at that point, a choice of various 

tutorial displays will be presented for lightpen selection. The tutorial displays 

a r e  described in detail in paragraph 1II.A. 13. The *BRANCH OUT optioil gives 

an "escape-to-get-help" capability to the program. 
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2. Choosing the Function 

The first step in the data-fitting process is nexh to appear on the GRT* Thia 

is the display whieh allows user selection af a ikim~m WSB a i c h  to app~aximab 

the data. The choices as shown in Fig. 5.3 k h d e  several well known fcurcttio~ 

which are built into the system and a list of wer fianctiom, which. are to be sup- 

plied by the user. The construction and use d ' u ~ e r  &Pined ;Eunctions are de- 

scribed in detail in Section ID. B, A usep -tion may bs w y  ibwtion 

f(x, alp .. . a,.,) where x is the ind~pendeat miable md - me n paranWtt3tB 

(n less than or equal to the limit spec~id in w. 3.2) to be determined by the 

leaat squares fitking process. The parametem may w a r  linearly or  cs' - 
7 

non-linearly , 

This display also in&rectly et2l~ws a us= Co &splay a matihemaUcd de-. 

scriptfa of the function he has ebwa to & fox data-fitting. Thns, for example, 

if he has forgotten exaatly what a ~~ 18 he c ~ f l  qpbkly ~efresb 

memory by loofring at the description stcrrect in the coliliprter. These descri- 

w e  available through the *BEtAN€XX OUT Ei&Wn optian, 

3. Choosing the Data Xodq 

&er choosing the &&ired &u~ticm the next ~tep 3.a e-riag the data to he 

approximated by that funetim. There me two types of rfaEa t%cmrees ia tWs aps- 

tem. The first is external data wbkh cansish of data fram oar* t ~ ~ h n w  

with the job) or &ta from some device saab as a tape oz a &I&. D a h  eakred 

through the keyboard is d s o  c(~~ksd&r& to be Qf external type. The swod type 

of data source is internal, The internal &tdt is eitbr the r~sibLs of the 

immediately preceding data-fitting problem or the original dgta of the imme- 

diately precedfq problem. 

The display which allows the selecticm of diaka mode is ahawn b Fig. 3.4. 







Keyboard entry of data is accomplished through the display shown in 

Fig. 3.5. First one must specify whether or  not there are weights associated 

with the data points. The weights, if given, are  assumed to be the inverse of 

the error  associated with the dependent variable, Y, at each point. After 

choosing tfyestt or  "no" on the question of entering weights, the data is entered 

from the keyboard, point by point. 

Data card entry is accomplished by punching the data on cards in a specified 

format and submitting the data cards with the card deck required to activate the 

data-fitting program. Several sets of data may be put sequentially in the input 

deck. Each data set includes space for a title on the first card which is repro- 

duced on the CRT at run time for identification purposes. The input from cards 

is required to be as  follows: 

st 1 card . . has, in Fortran format 215, the number of points 

and a 0 o r  1 in column 10 to indicate absence or 

presence of weights. Starting in column 21 there 

are .40 columns available for a title. 

2nd card . . . and following have the data points, one per card, 

abscissa first, ordinate second and weight (if so 

dooirod) third. The Fortran format ie 3E 10.5 

so data punched with either an F format or  an 

E10.5 format will be read. 

. (the above may be repeated many times for many data sets) 

last card . . . should have FINISH punched starting in column 1. 

Selecting the residuals of previous fit allows a combination fit to be computed 

on a single set of data. In other words, the original data could be approximated 

by one function, say an orthogonal polynomial of degree 5, and the residuals of 



rtr b*:Sq C&CW wu*@ 
C.cD rcr  .*tC* *LL YUR.CZ~ 

FIG. 3.5--Keyboard entry of data. 



'that polynomial fit could then be fit by a Fourier approximation. The resulting 

combined f i t  would give a closer (in the least squares sense) approximation to the 

data than either the fifth degree polynomial or  the Fourier approximation alone. 

This capability would also be useful to an investigator who wishes to test if the 

residuals are  time dependent. 

Data may also be selected from an on-line file (e.g., a disk or  tape). The 

user would enter from the keyboard information to allow the program to read 

data fr ticular device. (This option has not yet been implemented.) 

The data of previous fit choice of data mode allows comparative least squares 

fits to be computed. That is, the same data can be approximated over and over 

by different functions. As described in paragraph III.A. 12 this program has a 

built-in comparison mechanism for the three standard functions, orthogonal 

polynomials, spline functions, and Fourier approximations. 

Following entry of the data by any of the aforementioned 'means, a display 

appears which presents a plot of the data with a title for the data as  well as a 

title for the chosen fitting function. Data titles are obtained from columns 21 

through 60 of the first data card for each data set. Function titles, for user 

defined functions, are obtained from the user function which, when called with 

zero for the number of parameters, i s  expected to stare a title for display pur- 

poses, The mechanics of accomplishing this are discussed in Section 111. B. 

Figure 3.6 shows an example of this display whose purpose is to identify data 

and user functions during a run on the machine. 

The choice of origin and scale for the plot shown in Fig. 3.6 and in all other 

plots displayed by the PEG system is made so as to utilize the given area a s  

fully as possible. The maximum and minimum values for each axis are chosen 

to correspond to the maximum and minimum values of the values to be plotted. 



FIG. 3. &-Data and function titles display. 



This eauses &he numbers displayed dmg each -8 - not to have "reawnablew 

scales. Reasonable scales can be obtained for plotting purposes by using an 

algorithm described by Dixon and Krolvnal [1965]. Use of this algorithm will 

change the origin and scales .so that the division points an the graph will be 

k simple numbers (a simple number, s, is defined to have the form s = pi 10 , 
where pi is tiken from a set such as (I, 2,5b. 

Once W data has been entered, either imterdy or &om an e s b d  soume, 

the .clisplay shown in Fig. 3.7 allows cor&on i(d$erati~n) of indivaill paints d ?';* .pi ' - ' 
or selection of a subset of the data. 

Correction d a p i n t  is accomplished by entering the index of the point, the 

new (or unchanged) value of the independent variable, X, the new (or unchaugba, 

value of the dependent variable, Y, and if weights are asaociated with the data, 

the new (or unchanged) value of the weight for that point. After entering all 3 

(or 4 if weights) quantities defining the altered value of the paint, a final "endm1 

key replaces the point in the computer and on the CRT plotted graph of the data 

with the new value. 

As shown in Fig. 3.7 this display shows a table of the data points as held 

in the computer memory. The limited size of the display area limits the table 

to 15 entries. To circumvent this problem the "FORWARD DATAv1 and 

'lBEVETLSE DATA" lightpen options are presented. FORWARD DATA will c81~8e 

the next (higher index) 15 points to be displayed. 

Choosing "SELECT A SUBSETw with the lightpen allows the choice of a 

subset of the data which is concurrently graphed and listed tabularly. As numy 

as 5 pairs of indices may be given to select a subset. Each pair (nil nl), with 

1 i ni S n. S N where N is the total number of points, specifies that data p o w  
J 





{(xi, y 2 r L i  s h a m e  included in the data set to be fit. If several (i 5) such 

pairs are given, their intersection must be empty. A final "endff key will 

cause the new data set as specified to be graphed and tabulated as the then cur- 

rent data set. 

5. Data Transformation 

It is sometimes desirable to transform the original data in some manner. 

For example, a semi-log or log-log plot of a curve can be more meaningful and/ 

or  easier to handle computationally than the original data. An example of such 

a ease is shown in Fig. 3.8 which graphs data representing the magnetization 

curve of annealed ingot iron. 

Several transformations are available for user selection by lightpen. The 
1 

independent and dependent variables are acted upon separately. After chooshtg 

a pair of transformations the transformed data can be displayed for examination 

before proceeding with the fitting process. If a user wants to change his mind 

after seeing the results of his first choice of transformations, he may back up 

to the original data and try another transformation. The various options are 

shown in Fig. 3.8 and Fig. 3.9. It is easy to add additional transformations to 

the program in case a desired capability is not included. Figure 3.9 shows the 

results of transforming the data shown in Fig. 3.8 by choosing Y replaced by Y 

and X replaced by L0GI0(X). The transformed curve is easier to handle com- 

putationally and could be approximated by orthogonal polynomials, for example. 

The resulting least squares fit could then be made to apply to the original data 

by a change of variable. 

6. Data Point Deletion 

Following the display which allows transformation of the data, another 

display appears which allows individual point deletion. The lightpen is used to 







select points for deletion. Pointing the lightpen at one of the tabulated points 

causes an arrow to mark the selected point in the table and a srndl rectangle 

to enclose the spot representing that point on the accompanying plot. Once the 

desired point is selected in this manner, the option "DELETE SELECTED 

POINT" is selected by lightpen and the point is eliminated from the set of data 

points under consideration. The other options available by lightpen selection 

are shown in Fig. 3.10. 

After the data Bas been entered, and then modified as desired, the next step 

in the fitting process is to choose the degree and in the case of a non-linear 

function, the initial values for the parameters. The display which allows these 

choices to be made takes three different forms depending on the type of function 

being used. 
I& 

Figure 3.11 shows the form of the display for orthogonal pol;vnami&s and 
'I. 

for Fourier approximations. In these cases the only parameter to be specified 
&.' 

is the degree. For poIynomials, the degree entered is the highest degree poly- 

nomial to be used in tlne fit. For the Fourier approximation the degree is the 

number of sine (and cosine) terms to be used in the approximating function. 

That is, if the degree entered is d, the approximating function, f(x), is given by 

All three forms of this display for entering parameters include the graph 

of the data points and a table showing the numerical values of the data. The 

table has the FORWmD and REVERSE lightpen options as discussed previoasIy. 





FIG. 3.l.l.--BiSpliay for degree entry. 



Figure 3.12 illustrates the form taken by the display in the case of spline 

functions. For splines the needed information includes the degree, the number 

of joints, and values for the joints. Also to be made is the decision as to whether 

the joint values entered are to be held fixed while computing the least squares 

fit or whether the joints are to be varied by the program in determining the 

least squares fit. If the joints are held fixed, a chance to enter new values 

through the keyboard is given as described in paragraph m.A. 8. 

When a user function has been selected as the least squares approximating 

funotion, the third form of this display, Fig. 3.13, comes into play. For these 

functions the it&ms to be entered are the number of parameters, whether or not 

automatic parameter adjustment is desired, and initial guesses for the param- 

eters. If automatic parameter adjustment is selected the parameters will be 

varied so as to minimize the sum of squares of the residuals, If not, the fit 

will be computed for the initial guess and then that fit will be displayed dong 

wit& an option to enter another guess for the parameter values. Again, this 

option is discussed in more detail in paragraph III. A. 8. 

After parameter entry for a user function is completed, a display appears 

which allows selection of a method for minimization of the sum of squares. The 

available choices are the Direct Search method and the interactive minimizer 

(see paragraph ILI.A. 14). More methods could be p ro~ammed  and added to 

this list. Figure 3.14 shows how this selection is made. 

8, Calculating the Fit 

Depending on which type of function has been selected the calculation of the 

least squares approximation takes different forms. These may be classified in 

three groups. 

a. non-iterative (for linear problems) 



FIG. 3.12--Entering spline parameters. 



- 
FIG. 3.13--Entering user function parameters. 



FIG. 3.14--Choosing a minlmi.z&ticln method, 



b. by Direct Search 

c. by interactive minimizer 

For orthogonal polynomials and Fourier approximations the fit is computed 

by a non-iterative algorithm. During the calculation a message, "FIT IS BEING 

COMPUTED, '' is displayed on the CRT. Upon completion of the least squares 

computation the next display, which allows the selection of a display mode (see 

paragraph IU. A. 91, appears on the screen. 

Spline fuuction fitting with fixed joints is accomplished directly (non- 

iteratively) while the "FIT IS BEING COMPUTED" message is displayed an the 

CRT. Following the cdculation, a display showing the results of that fit and 

dowing entry of new guesses for the joints appears on the screen. This proc- 

ess can be repeated indefinitely allowing a bser to locate values for the joint8 

which give a llgoodrl fit. The computer program keeps track of which of all  
' 

previously tried sets of joints gives the least sum of squares and displays this 

informption to the user as  an aid to the selection of a new sat of joints. Figure 

3.15 shows this display. The positions of the joints are indicated by vertical 

lines of varying lengths. The shortest lines indicate previous values for the 

joints, the next longer lines show the current joints, and if new values are keyed 

in they will be indicated by the longest lines. 

Another feature of this display is the capability to choose by lightpen whether 

to plot the current fit or the best of all previous fits on the displayed graph. 

The direct search minimization routine has several parameters which con- 

trol its convergence decisions and its stepping behavior. There are preset 

values for these parameters which are felt to be generally applicable; however, 

the option to change theso parameters is presented to a user just before the 

program begins use of the direct search routine. The display which allows 

- 33 - 



FIG. 3.15--Display of spline fit and selection of new joints. 



user specification of the parameters is shown in Fig. 3.16. As shown, the 

display includes sufficient explanatory text so that someone only slightly famil- 

iar with the direct search routine can make reasonable guesses as to whether 

or  not he wants to change any of the parameters. 

Spline function fitting with variable joints uses the direct search minimi- 

zation routine to adjust the joints. The sum of squares of the residuals is 

treated as a function of the joints and is minimized with respect to the joints. 

During each iteraction of the minimization process a plot of the data with the 

current fit superimposed is displayed on the CRT. The program stops after 

each iteration to allow user inspection of the fit at that point and waits for an 

"END'' key signal o r  lightpen signal before continuing with the next iteration. 

A typical display during this iterative process for spline fitting is $shown in j1 

Fig, 3.17. A lightpen op'tion allows early termination of the iterative process. 

When the Direct Search minimization is completed the program displays 

a picture exemplified by Fig. 3.15. In fbis case ''previowtt corresponds to the 

starting values, otherwise everything corresponds to the discussion of Fig. 3.15. 

The use of the Direct Search method for a user function fit is similar to the 

spline fit with variable joints. During each iteration a display corresponding 

to that shown in Fig. 3.17 is put on the CRT and requires an "ENDit key or  

lightpen signal to continue with the next iteration. An option allows early ter- 

mination of the iteration. When the Direct Search iterative process terminates, 

a display similar to the one given by Fig. 3.15 appears on the CRT. At this 

point we may optloaally enter new values of the parameters as a new guess and 

repeat the fil cdculatiwn cycle. 

Differing from the spline however, when the step corresponding to Fig. 3.15 

is finished, the interactive minimizer is automatically brought into play for user 



FIG. 3.16--Display allowing change of direct search parameters. 



FIG. 3.17--Direct search spline fitting. 



hrnction fits. The interactive minimizer is described in detail la p~~ 

I33.A. 14. It will suffice to say here that the interactive minimizer can be easily 

bypassed or  it can be used to check and/or improve the results of the Mxeclt 

Search minimization. 

me inbradive minimizer may be selected for we by itself tm &owa in 

F 3. 14. In this cstse the routine fo r  interactive minimization is brought. in 

d i r d y  rather than after the Dhct Se-ch has been terminated, 

9. Chwsing Display Mode 

A £ k  the least quares fit has been computed a  display allowing user mlec- 

ti- &a dieplay mot% is put on the CRT. There a m  seven di@emt dkp1bt.y 

modes, a h  showing a different facet of the cornputad fit, Pigme %,I8 ~ h s  

W display as it is presenhd to a user for bis gelwtim. En addition to what- 

i q g  one of the display Modes, if the fit has been wmpfed using orthogmal ply- 

mEds or  the Fourier approximation, a user may alga specify the &agree of 

fit he wwld lfke to see displayed, This i a  pr~c(i!n&&~ since for them 

fumtfons al l  fits for degrees less than or equal to the degree speciffed in p a -  

graph III. A. 7 are available without the necessity of further cclmputations. 
\ 

The seven moders of displaying the c a l c d m  least squms fit ass: 

a. A plot of the data and fit with a tabular display of the fit, 

each on half of the CHT screen. 

b. A plot of the data. and fi t  with a display of the ~08fficienke 

of the fit, each on half of the CRT screen, 

e. A full CRT screen plot of the data and the fit. 

d. A plot of the residuals with a tabular display of the fit, 

each on half of the CRT screen, 



I 

FIG. 3.18--Choosing display moae. 



e. A plot of the residuals with a display of the coefficients 

of the fit, each on half of the CRT screen. . C 

f. A full CRT screen plot of the residuals (connected by 7 

straight lines to make a continuous curve). , . 
;? ' .. -: , I  

r . I  

g. A full screen plot of the data and fit with the fiiing -.- 
5 ;  * % 

. . - ,  .. J 
function extrapolated in both directions. ' C .. 

, ', - t ' -  - .. U ~ . - V  
- ., . - Z  . J. $. 
.i -1; , 

1 L - - . , . +  10. Displaying the Fit . *  - - ,  
8 '  , I :\- 

. - :  & 
z. .!" : 

- 

' - 1 '  ' 

. + 
- - '-. 5 Aftsr choosing one of the seven display modes dtscussed above, the ehman - =-. * 

- - -- 

sp1af-srs-on the ~ ~ ~ 6 c r G n .  ~i*e 3.19 shows an example of tBe first 

mode. Notice that the tabulax values showing the fit haw heen wt~d on by the 

lightpen ''FORWARDt1 command to display points, 16 through 21 (there were a 
' ?  

9. ,. , , st - .  ", " 8 " .  

total of 21 points in this case). . -- 
-dm 

The second option of the display modes takes different forms d e p e n d t ~  oq 

the fitting 'function involved. The upper halt of the screen always shows 8 p l ~ t  

of the data points with the fitting function superimposed, The lower half Q$ the 

screen displays the coefficients of the fit which are different for eaoh fuimtion, 

Along with the coefficients is displayed a brief mathematical description of how 

they are  used to formulate the given function. In the case of s ~ l i n e  fUactions a, 

"FORWARD" and "REVERSE" lightpen option is given to allow scrutiny of the 

polynomial segments which make up the spline function. Figures 3.30, 3.21 

and 3.22 show the form of this display for orthogonal polynomials, Fourier 

approximations and spline functions, respectively. 

An example of the third mode of display is shown in Fig. 3.23. h this 
il, a . 4  

case the plot of the data and fit is expanded to f i l l  the whole screen of the CRT 

thereby allowing a closer examination of features of the plot. 





- 
FIG. 3.80--Data and fit with orthogonal polynomial coefficients. 



FIG. 3.21--Data and fit with Fourier approximation coefficients. 
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PIG. 3.22 Data md fit with aplinc function coefficients and joints. 





The fourth mode of display is as shown in Fig. 3.24. Here the residuals 

are plotted and the points are connected by straight line segments. On the lower 

half of the screen the data and computed fit with residuals are presented in q 

tabular fashion. 

The residuals are plotted along with a display of the coefficients in the 

fifth mode of display. Again, a s  described for the second of these display modes, 

the coefficient displays vary according to the function being used. Figure 3.25 

illustrates this display mode. 

~h&s%dh display mock is-a full scope prof 6,' the residiikls-. As FeforeXhe 

points are connected by straight lines and the eqanded plot allows anJi fine de- 

tails to be examined fully. An example of the use of this mode of display is 

shown in Fig. 3.26. 

The seventh and final display mode involves an extrapolation of the computed 

approximating £unction for both higher and lower values of the independent varf- 

able. Given that the independent variable, x, lies in the interval a I x l b for 

the original data, the extrapolated function will be plotted for (a - y) x 5 

(b + y) . This choice of extrapolation limits is arbitrarily chosen and easily 

altered. Figure 3.27 shows an example of the extrapolation display. 

11, The Branching Step 

Following the display(s) showing the computed fit, the next step in the natural 

order of the data-fitting process is the step. From this point, pro- 

gram control is transferred to one of the previous steps to allow initiation of a 

new problem or a new attack on the problem at hand. The points to which con- 

trol may be transferred are: 

a. Starting over from the beginning 

b. Choosing the function 
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FIG. 3.25--Plot of residuals with cocfficicnts displayed. 



FIG. 3.26--Full scope plot of residuals. 





c. Choosing the data mode 

d. Correction and/or subset selection 

e. Data transformation 

f. Point deletion 

g . Choosing degree - entering initial parameters (joints for splines) 

h. Choosing display mode 

i. Examine fit comparison (to be described in paragraph lII.A. 12) 

j. Return to where came from 

k, TERMINATE COMPUTER PROCEEEWG . 
In addition to the above there are two options which allow a user to look at 

W e r  displays which a re  for information only and have no computational pur- 

pose. These are: 

1. Display data and function titles (see Pig. 3.8 in paragraph m.A, 3) 

m. Tutorial displays . 
Lightpen selection of item m brings out a display which Pi&s various tutorial 

displays. Selection of an item from that list causes display of the mrresponding 

tutorial material, 

This branching step display is shown in Fig. 3.28. This display is activated 

in two ways. It i8 either reached in the natural order of events, following one of: 

the various fit displays discussed in paragraph m.A. 10, o r  it is reached by 

means of the "*BRANCH OUT" lightpen command which is mentioned in para- 

graph 1II.A. 1 and is available on eight different dispIays. Item j above, "Return 

to where came from, " is useful in connection with the M*BRANCH OUT" com- 

mand as it allows return to the proper point in the data-fitting process without 

requiring the user to remember where he was when he selected the "*BRANCH 

OUT" option. 





The -ram does not allow transfer of contzd b paints in the process that 

are not yet meaningful. For example, if a fit has not yet been mmputecE, a 

transfer to item h, "choose display mode, " is n a e ~ l e s s .  In su& a case the 

program behaves as if "Rehuk tb. Where e r n e  fromw 'ksaice beem 8e~edsd. 

In aWtion to the above choice8 there is a lightpn emnmabddto %ve &e 

fit just displayed" for comparison purposes. This is necessary in order, 'to 

specify which fits are to be compared when the display h be described la para- 

graph III. A. 12 is requested. 

Figure 3.28 shows the display which allows user selection of the m a y  

branching options, 

12. . A .Fit Comparison 

This dispIay shows a comparison of the approximatiolae okMn.ed by ca&og- 
9 

anal polynomials, spline functions, and the Fourier appk&n&ion. Fpr gdh 

husetioon the degree (and number of joints for splines) b glven which relates 

the number of parameters in that fitting function. Then %%e maximum residuds, 

and the sum of squares of the residuals for each fit me 1isl;ed for compri&n. 

In the example shown in Fig. 3.29 all three functions involved 5 parameters and 

so were equally good candidates in the sense oi number cd p2lP&llli3tC!fs; however, 

as shown by the maximum residuals and the sums of sqwwes of residuals the 

spline function was by far the best fit to the particular data involved. Figures 

3.20 and 3.21 show two of the fits compared here. 

This fit comparison is most useful for comparing approximations to the 

same set af data. Far this, the option to use the data of UYe previous fit as 

described in paragraph DI. A. 4, is very useful. 

13. Tutorial Displays 

Many displays in this data fitting program have a lightpen option which will 

cause transfer of control to the branching display described in paragraph m.A. la. 





# 

From the branching display a user may then request tutorial information which 

may help him interact more profitably with the program. This essentially gives 

a user a "HELPv button which he may push at any time. To make the HELP 

fasility applicable to many situations the tutorial displays cover a variety of 

subjects and situations that may occur while using the interactive data-fitting 

system. 

Figure 3.30 shows the display that appears when the request for tutorial 

displays has been made. 

Each of the individual tutorial displays has a lightpen command which will 

return ctontrol to the display shown in Fig, 3.30. From there control can be 

transferred back to the branching choice display where control can in turn be 

transferred to any one of the other &eps in the &ta-fitting process. 

Five of the tutorial displays are shown in Figs, 3.30a, 3.30b, 3.30c, 3.3Qd 

and 3.30e. Additional tutorial displays can be easily added to the system. 

14. The Interactive Minimizer 

Here we shall give only a brief description of the interactive minimizer. 

The minimization problem is to locate values of the n which give a 

minimum value for the function (sum of squares in our problem). At such a 

minimum the function will be at a minimum with respect to each parameter con- 

sidered by itself. Thus if we hold all parameters fixed except one, and plot 

the function as we vary that one parameter we will obtain a plot as  shown in 

Fig. 3.31. The minimization problem is solved if we find values for all param- 

eters which are at the minima of such curves drawn for each parameter. The 

interactive minimizer allows user modification of all parameter values until 

the curves for all parameters are simultaneously minimized at the chosen values. 
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FIG. 3.30--Display d l u w h ~  ohuioe uf lulurial display. 
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FIG. 3.3Oa--Tutorial display for orthogonal polynomials. 



b'N. 3. YUb--'l'utorial &$play for splme functions. - - -  - -= ,r  - -  . 
- 
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FIG. 3.30~--Tutorial display for Fourier approximations. 



FIG. 3. Sod--T~ztori,al display for nser defined fi~nctions . 



FIG. 3.30e--Tutorial display on how to enter numbers from the keyboard. 



FIG. 3,3 1--Typical display during interactive minimization. 



Figure 3 . 3 1  shows the lightpen commands that a r e  available for the purpose 

of carrying out the minimization. After all parameters have been adjusted, a 
. . 

summary display is presented which shows current values for parameters and 

function and allows either another iteration (cycle through the parameters) o r  

termination of the minimization by this method. 

When the interactive minimization routine is entered at  the termination of 

the minimizing efforts of the direct search routine it can be useful for checking 

purposes. One can simply cycle through the parameters once and check to  be 

sure  that for each parameter the value found by direct search is indeed at the 

minimum of the corresponding curve. If obvious improvements can be made 

then, of course, it is easy to make them at this point. In general the direct 

search results a r e  good. However, if the convergence cri teria in direct search 

a r e  somewhat leiient, improvements can be made in the interactive minimizer. 

B. User Defined Functions 

In order to  introduce flexibility into the interactive data-fitting program the 

ability to employ a user defined function as the least squares approximating 

function has been implemented. The only restrictions on these user defined 

functions a r e  that they must have no more than fifteen parameters to be adjusted 

and that the parameter list conform to the requirements of the data-fitting pro- 
. . 

gram. A final restriction is that they be able to handle the case of zero param- 

eters and preferably use this case to store a function title for later on-line dis- 

play 

1. 'I'he Form (How to Code a User F U I ~ C ~ ~ U I I )  

The form of these user defined functions must be as  shown in Fig. 3.32. 

The available,names . .  : .., for user f y c t i ~ n s  ,are UFUNC1, UFUNC2, UFUNC3, 

IJFZJNC4, and UFUNC5. The current implementation handles UFUNC4 and 



EXAMPLE OF A USER OEFINEU FUNCTION 

R E A L  FUhCTION UFUNCl (X+A,N)  
IIJTEGEK N 
F.EPL A ( N ) , X  

K I S  THE h U M R E R  OF PARAMETEKS, O L E O  15 o 

P ( N 1  I S  AIJ bRRAY CONTAININS THE CURRENT VALUES 
UF THE PARAMETERS0 

X I S  THE VALUt  OF TliE Ii$DEPENDENT VARIABLE 
AT k H l C H  THE FUIUCTIUN IS TO BE EVALUATED0 

TO ILLUSTRATF---- ASSUME THE FUNCTION TO !3E F I T  
C  I S  A CONSTANT PLUS AN EXPONENTIAL TERMo 
C 
C A l  + AZ*EXP(A3*X)  
C 
C 
C I F  N EGUALS C WE P U T . A  T I l L E  I N  
c. 

C O V M O ' ~ / T I T L / D T I T L ( 1 ~ ~ )  , F T I T L ( 5 t l S I  
INTEGER O T I T L , F T I T L  
IhTEGER TLE(  1 5 I / ' P U T  FUNCT.ION T I T L E  E o G i  AI+AZ*EX-P(A3*XI  HERE ' /  
INTEGER T I 1  I. 

C 
REAL T 

C 
I F t N  o G T o  0 )  GO TO 7072 
CO 7 9 7 1  T l 1 = 1 , 1 5  

F T I T L ( l r T I t 1  = TI . .F l 'F I I  I 
7 0 7 1  CONTINUE 

LiFUNCl = C)oO 
RETURN 

7072 CONTINUE 
c 

T = A ( 3 ) * X  
C 

IF( A B S ( T I  e G T e  17009 I GU TO 200 
c 

liFUlVC1 = A ( 1 )  + A ( Z ) * E X P (  T I 
C 

lCC K L i U K K  
C 

2 C G  bFUNC1 = l o O E 7 0  
GO TO 100 

C  END U fUNC l  
END 

FIG. 3.32--Example of a user defined function. 



UFUNCS in special ways to be described later. The use of the first  three func- 

tions by the data-fitting program will now be described. a 

2. How User Functions are  Used by the Program 

Assume the data points a re  given a s  {(xi, Yi)}zl and that the desired fitting 

function has been coded as UFUNC 1 (see the example shown in Fig. 3.32). A 

routine to calculate the sum of squares of the residuals then calls UFUNCl a s  

shown in Fig. 3.33. The actual code also provides for weights to be utilized in 

computing the sum of squares if weights a r e  given for each data point. The 

weights enter into the calculation a s  shown by the comment in Fig. 3.33. 

3. The Use of Object Decks for User Functions 

The current implementation of the data fitting program on the IBM 360/91 

, allows object decks for user defined functions to be included with the deck that 

activates the program. The object deck overrides any user function with the 

same name that may be stored on disk, thereby allowing user defined functions 

to be changed very simply. 

The user written routines which may be included a s  object decks are: 

UFUNCl (see paragraph IU[. B. 1) 

UFUNC2 (see paragraph 111. B. 1) 

UFUNC3 (see paragraph III. B. 1) 

IMPFCN (see paragraph III. B. 5) 

SQUELL (seeparagraphIII.B.6) 

CEPLT (see paragraph IIIi B. 7) 

UPUNC5 (scc paragraph Ill. B. 9) 

4. Implicit Function Fitthig (UFUNC4) 

UFUNC4 has been reserved for least squares fitting of data to an implicit 

function of two variables, f(x, y) = 0. Thus the coding necessary for a user to 



COYPUTING THE SUM OF SQUARES 

REAL F U h C T I O N  S U M S Q [ X t Y p N t A p N P I  
INTEGER NINP 
PEAL X ( N l t Y I N I p A ( N P 1  

X (  AND Y (  1 C O N T A I N  THE O A T A  P O I N T S o  
& I S  THE NUMBER OF OATA P O I N T S *  
6 0  CiJNTAINS THE CURRENT VALUES OF THE PARAMETERS0 
biP I S  THE NUMSER OF PARAMETERS@ 

I N T E G E R  I 
REAL TEMPpTEMPl  

TEMP = TEMP + ( Y ( I I  - TEMP1 )**2 
I F  WEIGHTED TEMP-TEMP+( HE I G H T ( 1  I * (  Y ( I  I -TEMP1 1 )*a2 
C O N T I N U E  
SUMSQ = TEMP 
RETURh 
END S U M S G  
E N 0  

FIG. 3.33--Computing the sum of squares. 



accomplish this kind of fitting is  changed from that required for UFUNC1, 

UFUNC2, and UFUNC3. 

In the case of an implicit function, two special routines must be coded by 

the user and the object decks included with the run deck. As currently imple- 

mented, UFUNC4 will fit data to an ellipse where the equation of the ellipse is 

given a s  

2 2 R cos (e - 2 2 
0) R sin (8 - 00) 

2 
4- - 1 . 0 = 0  

. a b2 

where 

and a and b a re  the semi-major and semi-minor axes of the ellipse. The quan- 

tities xo and yo represent the coordinates of the center of the ellipse and 0 is 
0 .  

the angle by which the major axis is tilted from the x-axis. 

Given an implicit function, f(x, y) = 0, such as (III. I), the three special 

routines to be coded by a user a re  

a. a routine to evaluate the function f(x,  y), 
N 

b. aroutinetocompute C [f(xi, yij12, and ' 
i=l 

c. a routine to compute points for plotting the computed 

function for display purposes. 

5. Coding an Implicit Function 

The implicit function must be evaluated by a routine like that shown in 

Fig. 3.34. The name and parameter list must correspond to that3hown. 

6. Coding the Sum of Squares for an Implicit Function 

For implicit functions the user may encode the routine which will calculate 

the sum of squares which is to be minimized to determine the least squares fit. 

Tl~e ~%eason for requiring tlris is to allow specification of coastfaints. If no 
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E X A M P L E  CODE TO E V A L U A T E  AN I M P L I C I T  F U N C T I O N  

R E A L  F U N C T  I O h  I MPFCN(X,Y,A, N P I  

I N T E G E R  N P  
R E Q L  X v Y , A ( N P l  

RP I S  THE NUMBER O F  P A K A M k T E R S e  
P ( N P )  C O N T A I N S  T H E  CURRENT V A L U E S  O F  THE PARAMETERSe 
X v Y  R E P R E S E N T  T H E  P O I N T  A T  W H I C H  TO E V A L U A T E  THE 

I P i P L  I C  I T  FUFdCTI ON 

FOR 2XAFPLC. - - - , -CONSIDER TJIL C Q U A T I  ON C O R  AN C L L I  P S T r  

X**2 / A**2 + Y**2  / B**2  1 l o 0  

T H I S  CAlJ  R E  R E W R I T T E N  A S  AN I M P L I C I T  FUF iCTION 

F ( X f Y J  = !I = X**2 / A * * 2  + Y * * 2 / 0 * * 2  - l o 0  

AN E L L I P S E  T H A T ' S  R O T A T E D  AND T K A N S L P T E D  WIiL  
h A V E  F I V E  PARAMETERS---  

A (  1 )  = X C O O R D I N A T E  t i F  C E N T E R  
A (  2 1 = Y C O O R D I N A T E  UF CENTER 
A ( 3 )  = ANGLE OF T I L T  OF M A J U R  A X I S  
A ( 4 )  = S E M I M A J O R  A X I S  
A (  5 )  = S E M I M I N O R  A X I S  

R E A L  T l q T 2 v T 3  

RETURN 
END I i J lPFCN 
EN II 

FIG. 3.34--Example code to evaluate an implicit function. 



constraints a re  appropriate, the built-in code will compute the sum of squares 

and no user written code need be included. 

The code for the implicit function sum of squares calculation must corre- 

, spond to that shown in Fig. 3.35  with respect to the name and parameter list. 

Constraints may be handled as  in the example where parameter values not within 

the allowable region cause the sum of squares to be very large. This essentially 

puts up a high wall around the allowable region in parameter space. 

7. Coding the Plot of an Implicit Function 

Since an implicit function may be a multiple valued function when one of the 

variables is considered as  an independent variable, the plotting of the function 

for display purposes must be handled differently. To accomplish this a separate 

routine must be coded to compute points in the x, y plane which when connected 

sequentially will produce a faitffil representation of the function at  hand. 

An example is the most appropriate method to describe the code needed 

for this routine since different implicit functions will necessarily be plotted 

differently. Some may best be plotted by polar coordinate representations and 

some by rectangular coordinates. Figure 3.36  shows the FORTRAN code needed 

to  generate a set  of points for plotting a n  ellipse. 

As before, the name and parameter list of any user defined routine must 

correspond to that shown in Fig. .3.. 36. 

8. Vary an Arbitrary Number of Paraineters (U.FUNC5) 

Sometimes a. problem arises which involves a function of many parameters 

which is to be used to approximate some data in the least squares sense. With 

many parameters however, one may desire to hold some of the parameters 

fixed and allow the remainder to vary. Thus :a least squares fit involving a 

subset of the parameters can be obtained. 



E X A M P L E  SUY-OF-SQUARES FOR AN I MFL I C I T  FUNCTTDN 

P E P . L  FUNCTION SQUELL(APi4P 1 
INTEGER NP 
REAL A ( N P )  

.. , 

C O M M O N / I b i T G R S / I l , I Z ,  1 3 , 1 4 , 1 5 , 1 6 t N 9 1 8 , 1 9  
INTEGER 1 1 , 1 2 9  1 3 9 1 4 , 1 5 , I 6 t N , I 8 , I 9  
C G M M U N / D A T A / X ( l O C J ~ Y ( 1 i ) ~ ) ~ ~ T S ( ~ I O O )  
KEAL X v Y I W T S  
U C A L  I M P F C N  

X ( )  AND Y(  1 C O N T A I N  THE DATA P O I N T S  
N I S  T l ! t  NUMDCR O F  DATA P U I N T S  
b 0  C O N T A I N S  THE CURRENT VALUES OF THE PARAMETEPS 

CONSTRAINTS IMAY R E  HAiJDLEL) HEREo 
F O R  EXAWPLE, THE LENGTklS LJF E L L I P S E  AXES 

MUST B E  P O S I T I V E o  ( S E E  t X A M P L E  I P P F C N  R O U T I N E )  

T E M P  = 1 0 O E 7 0  
GI] TO 1 0 5  
TEFAP = 
DU 100 I - l , N  

SQ = I M P F C N ( X ( I ) , Y ( I ) , A , N P )  
TEMP = T E M P  + SO*SQ 

CONTINUE 
SQUELL = TEMP 
RETURN 
END 

FIG. 3.35--Example of sum of squUes for an lnlplicit function. 



4 

E X A M P L E  CODE 'TU CUlYPc lT t  AN 1MPL.TC:I.T -FUNCTION ;PLOT 

SURKUUT I N E  C E P L T (  A.iNF1T.c XI;,'>YF.) 

1 N T t G E . R  NF I T  
R E A L  Y F( 'NF I T  ) . f Y F . (  NF.I,T.).q A'(.S) 

~ ( : ~ ( ' X , ) ~ , . A ~ ( 2 , ) ' )  ='(:C.E NTIEP-) 
T H I S  F I I IUT INE  CCMPUTE.:S POL t i T S  Foil .A.(':3) .-= ' T I L T  
P L O T T I N G  At'J E L L I P S E  U-SIILG I H - E  .A'( 4 ) := ,-A---:SEM'I "M-AdOR :A)(;I S 
PARAMETRIC  FORM OF: AN E L L I - P S E  .;&(;:5:,) ;= B --,- cS.E M?I , M:I,NO R AX.1 S 

. INTEGER I 
R E  A 1  .XN , CDP., SDP CNO P rxSNi) P:,.X~l.,,..Y:l~,LI PT,"CiT..,iS~T-c'TM~P.r:T.WC:P:I~~6s'~2;8'-3~1 85:J:l:Y 

xbi = N F I T  - 1 
CP = T x C P I  / XN 
C T  = C O S ( A ( 3 ) )  
ST = S I N ( A ( ? ) )  
CNDP = i o n  
SNDP = 3on 
CCP = C C S ( D P )  
SDP = S I N ( D P 1  

T?IP = CNDP*CDP - SI'\l.)p+SUp 
SiJDP = SNDP*CDP + C r \ ~ D p # s ~ ) p  
CNUP = TMP 

C O N T I N U E  

PETUKN 
END C E P L T  
END 

FIG. 3.36--Example code to compute an -implicit-function plot. 



User defined function, UFUNC5, has been implemented to allow this choice 

of parameters for least squares consideration. The choice of parameters i s  

made at execution time through an interactive display. The display allowing the 

user  to select which parameters a r e  to be varied is shown in Fig. 3.37. For 

each of the original parameter set, a number i s  entered from the 2250 keyboard. 

Entry of zero causes the corresponding parameter to be held fixed at its current 

value. An entry of one causes the program to treat the corresponding parameter 

as one of those to  be used in the minimization. 

9. C o w  UFUNC5 for a Variable Number of Parameters 

Figure 3.38 illustrates the coding necessary for a user definition of UFUNCS. 

The function name and parameter list correspond to those for other user defiped 

functions (UFUNC1, UFUNC2, and UFUNC3), but there a r e  two arrays in 

COMMON storage which hold the information necessary to a1l .o~ use of a vari- 

able number of parameters. One array, GLOBP; contains the original values 

of all parameters, and the other array,  WHCP, signals which parameters a r e  

being varied. If WHCP(I)=O, the Ith parameter is held fixed and its value is 

given by GLX)BP(I). On the other hand, if WHCP(I)=l, the 1th parameter is 

being varied and its value is found in the array A which has been passed as a 

parameter. If WHCP(I)=l, and there a re  J values of K such that WHCP(K)=l 

with 1 5 K I I, then the current value of the Ith parameter i s  found in A(J+l). 



FIG. 3.37--Choosing which parameters  to vary. 



HOW TO CODE UFUNCS 

REAL FUNCTION UFUNCSt XSAIN) 
INTEGER N 
HEbL X ,A (N)  

C 
COCMON/MURPH/GLOBP( 1 5 )  siriWCP( 15 ) 
REAL GLOBP 
INTEGER WHCP 
REAL CH(15)rF 
INTEGER I p J  

C PUT THE DECLARATINS NECESSARY TO A PARTICULAR 
C FUNCTION HERE. 
C T H I S  STURES ALL PARAMETER VALUES I N  Cf i t  I 
c SOME VALUES C O ~ E  FROM G C OBP~ )---THE FIXED OWES 
C SaME VALUES COME FROM A < )  --- THE V A R l E O  ONES 
C 
C TO k6NDLE M=O (PUT FUNCTION, TITLE I N  CQHMON) 

COMMDN/TITLfDTITC(lOl~FT I T L I 5 t  151 
INTEGER C T I T L .  FT ITL  
IhYTFGER TJI 
INTEGER T L E t l S $ / * T H I S  EXAMPLE IS A T H I R C  
IF ( N e G T o O l  GO TO 7072 
6 0  7071 T i I = l r l 5  

F T I T L ( 5 , T I I l  = TlflTfIJ 
7071 CONTINUE 

UFUNCS = QoO 
RETURN 

7072  CONTINUE 
J = 1 
CQ 1 0 5  1=1,15 

IF~WHCPI I I  a, co ru 103 
CH42) = ACJI 
J = J + 1  
GO TO 105 

103 CH( I 1  = GLOBP (I I 
505 CONTINUE 

C 
C NOW INSERT HERE THE CUOE TD 
C EVALUATE A PARTlCUCAR FUNCTIONgFt X r C M ) ,  
C USING PARAMETER VALUES I N  CHf 4. 
C FINALLY STORE THE FUNCI iON VALUE 
C I N  UFUNCSe 
C UFUMCS = IFUNCTION VALUE) 
C PULYMOMIAL EXAMPLE (DECiREt 3 I . 

J = 3  
F = C H ( 4 )  
DD 110 I = F w 3  

F= F*X 4 CH4J 1 
J= J-1 

110 CONTINUE 
C VALUE OF POLYNOMIAL I S  I N  F 

UFUkCS = F 
RETURN 
END 

DEGREE POLYNUHIAL P 

FIG. 3.38--H0~ to CO& UFUNC5. 
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IV. DECK SETUP TO USE THE INTERACTIVE DATA-FITTING PROGRAM 

There a re  two methods of using the interactive data-fitting program. Lf no 

newly defined user defined function is to be included, an existing load module 

can be used. However, if an object deck is included for a user function, the 

deck setup which includes all the linkedit and overlay instructions must be used. 

These two deck setups will now be described in more detail. Following that, 

we will give a description of how data cards must be prepared for inclusion with 

the deck. 
. . .  - 

A. Using the Load Module . . 

When no object deck for a user defined function is  to be included, an existing 

load module can be called in. Since the load module has already been link edited 

and prepared for overlay, considerable savings in machine time can be made by 

using the load module instead of using the deck setup which requires a linkedit 

and overlay preparation. 

The deck setup for using the existing load module is shown in Fig. 4.1. 

B. Using Ohject nenkls) for TJser Qe&ned Functio.n(s) 

When an object deck for a user defined function (see Section 111. B) is to be 

included, tho existing load module may not be used. In this case it is necessary 

to linkedit and prepare lor overlay each time EL new user defined function is to 

be used. 

The deck setup for running with an object deck for a user defined function 

is outlined in Fig. 4.2. 



Col. 72 

I I / '(DATA CARDS) 

DISP=(SHR, PASS) 

DD DSNAME=PUB. LBS. PGG, %LUME=SER=PUBG~, UNIT=2314, + 
. 

J O B  'LBS$CG, 30M, 10000L, ( L  B SMITH BIN 105)', 105, REGION=150K, + 

FIG. 4.1--Deck setup to use load module (no user function nhjcct decks). 



JOB CARD (with REGION=150K and PRTY=10) 

Several cards specifying data se t  information to 
the linkage editor. 

<insert  object decks for UFUNC1, UFUNC2 etc. here) 

(other object decks that a r e  part  of PEG) 

INCLUDE DD1- - - 
\ 

INCLUDE DDlO I 
ENTRY MAIN 

INSERT MAIN I 
INSERT' PUTARO I 

Several cards specifying the overlay 
structure. 

FIG. 4.2--Deck setup to use an object deck for a user defined function. 



C . Preparation of Data Cards 

A data set  for one data-fitting problem consists of N+1 cards. The first 

card contains the following information: 

N - - - thc number of data points. 

WEIGHT --- 0 or 1. 0 if data includes no - weights. 

1 if data includes weights. 

DTITLE --- 40 characters used as a title for the data set 

which will be displayed on-line on request. 

Thc remaining N cards contain lhe N data points, one point per card. Each 

omd oontaino , 

X(1) , Y(I) , and if WEIGHT=l, W(I) . 
X(1) is the abscissa value of the Ith point. 

Y(I) is  the ordinate value of the Ith point. 

W(I) is the weight (or inverse of the error) associated with the 

Ith point. 

The format for preparation of the data card is as follou7s: 

C u d  1 --- FORNIA'I' (215, lUX, 10A4) 

Thus N is in columns 1-5 (right jnstified) 

WEIGHT is in columns 6-10 (0 or 1 in column 10) 

U'I'l'l'LU is  in colu~rlris 21-60 

Card 2 through N+1 --- FORMAT (3F10.5) 

X(1) is in columns 1-10 

Y(1) is in columns 11-20 

W(1) is in columns 21-30 if WEIGI-IT=1. 

flumbers punched in E10. d (d 5 4) or any 10 column F format with an explicit 

decimal point will be entered correctly. 



As many data sets as desired may be put one after the other in the input 

decks as shown in Fig. 4 .1  and Fig. 4.2. 
. . .  . . , >  . . .  

A card with FINISH punched beginning in column 1 should follow the last 

data set. The purpose of this is to signal to the program that no more data is 

there to be read. If no FINISH card is found, the program will halt with a read 

error .  

An example of a data set  is shown in Fig. 4.3. 



30 ' 1  
' l o  . '  

20 
. 3 0 .  
40  

. . 5 o 
6 u 
7 o 
8 o 

90 
1 Oc 
1. ]lo 
I f 0  
130 
140 
150 
160 
170 
18u 
190 
20s 
2 10 
2 20 
2 30 
2 40 
2 50 
2 60 
270. 
2 80 
290  
300 

FIG. 4.3--Example of a data set. 
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