

DOE/PC/95207--T3

NEW CATALYSTS FOR COAL PROCESSING: METAL CARBIDES AND NITRIDES

Type of report Seminannual
Reporting Period: July 17, 1996-January 17 (Third semiannual)
Principal Investigators: S. Ted Oyama & David F. Cox
Date of Report: January 5, 1997
DOE Award Number: DE-FG22-95PC95207
Institute: Virginia Polytechnic Institute & State University
Department of Chemical Engineering
Blacksburg, VA 24061-0211

Grant Date: July 17, 1995
Contracting Officer's Rep: Udaya Rao

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

m

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

NEW CATALYSTS FOR COAL PROCESSING: METAL CARBIDES AND NITRIDES

THIRD SEMIANNUAL REPORT

S. Ted Oyama & David F. Cox

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States

Abstract

Unsupported molybdenum nitride (Mo_2N) and molybdenum carbide supported on alumina (Mo_2C/Al_2O_3) were compared against commercial sulfided MoS_2/Al_2O_3 and $Ni-Mo-S/Al_2O_3$ for hydrotreating coal-derived gas oil at 633 K (360 °C) and 13.7 MPa (2000 psig). When the catalytic rates were compared on the basis of active sites measured by chemisorption, the nitrides and carbides were estimated to have activities as much as five times that of $Ni-Mo-S/Al_2O_3$ and MoS_2/Al_2O_3 . The comparison was based on sites titrated by CO on the carbide and nitride and by O_2 on the sulfided catalysts. The gas oil product quality from the carbide and nitride catalysts was significantly better than the thermal blank, indicating that the materials were active under practical hydrotreating conditions. X-ray photoelectron spectroscopy analysis after reaction of the Mo_2N and Mo_2C/Al_2O_3 catalysts indicated that surface sulfiding was not extensive.

Table of Contents

Title Page	1
Disclaimer	2
Abstract	2
Table of Contents	2
Executive Summary	3
Introduction	3
Results and Discussion	3
Conclusion	6
References	6

Executive Summary

Catalytic hydroprocessing of oil derived from coal to remove heteroatoms and to saturate aromatic rings is a crucial first step in the refining of these hydrocarbon resources. As the quality of available feeds decreases with time there are increasing needs to develop better catalysts for hydrotreating [1,2]. This report describes hydrotreating of a low sulfur, coal derived liquid at industrial conditions, 633 K (360 °C) and 13.7 MPa (2000 psig) in a three-phase flow reactor with a new class of catalysts: supported and unsupported molybdenum carbide and nitride. The new catalysts have activity surpassing that of a commercial sulfided Ni-Mo/Al₂O₃ catalyst.

Introduction

Catalysts for hydrotreating reactions have traditionally been sulfides of molybdenum with cobalt and nickel promoters [3,4,5]. This report presents the performance of a new type of catalyst: carbides and nitrides of molybdenum. These materials differ substantially from previous molybdenum compounds in being metallic interstitial alloys of carbon and nitrogen and not insulating layered compounds. Interest in their catalytic properties is a result of their recent availability in very high surface area form [6,7].

The present study is motivated by a previous report that the carbides and nitrides are active for denitrogenation of quinoline under batch conditions [8,9]. This high activity in hydroprocessing reactions have been confirmed in a number of studies using model feeds [10,11,12,13]. Here, the performance of the compounds for hydroprocessing is reported using a real feedstock derived from coal liquids. Particular attention is placed on hydrodenitrogenation (HDN). Activities of the molybdenum carbide and nitride catalysts are compared with that of traditional sulfided catalysts, Mo/Al₂O₃ (Amocat™-1B) and Ni-Mo/Al₂O₃ (Shell 324), under identical conditions. A blank reactor packed with inert alundum chips served as a thermal control.

Results and Discussion

The molybdenum carbide and nitride catalysts were prepared as reported earlier [14]. The molybdenum carbide was supported on γ -Al₂O₃ by impregnating the support with an aqueous ammonium molybdate solution and carburizing the dried solid in a 20% CH₄/H₂ reactant stream. The molybdenum nitride was prepared by the temperature programmed reaction of molybdenum trioxide in a flowing ammonia stream. The carbide and nitride catalysts were passivated in 1% O₂/He after preparation.

Reactivity was measured in stainless steel 7.9mm/14.3 mm (ID/OD) reactors with the catalysts (14/20 mesh) physically mixed with alundum chips (14/20 mesh) to a bed volume of 11 cm³ and held by plugs of the same chips. The reactors were operated at 633 K and 13.7 MPa with cocurrent upward flow of oil (4 cm³ h⁻¹) and H₂ (106 μ mol s⁻¹, 159 cm³(STP) min⁻¹). Such upward flow ensures good catalyst contacting and operation in the kinetic regime with a liquid saturated in hydrogen. Temperatures were monitored by movable thermocouples mounted axially along the length of the reactor.

Catalysts were packed into the reactor to give the same number of active sites when possible. Active sites were counted by the static chemisorption of O₂ in the case of Ni-Mo-S/Al₂O₃ and MoS₂/Al₂O₃ and CO chemisorption in the case of molybdenum carbide and nitride

The coal-derived feed is referred to as a coal-derived gas oil because it has a similar boiling point range to the intermediate stream of the same name found in petroleum refining. The coal gas oil was obtained from the Wilsonville coal liquefaction facility (Run 257). The catalysts showed no signs of deactivation for the duration of the run of 260 hours.

Table 1 gives a comprehensive summary of the product qualities after 260 hours on oil. The molybdenum carbide and nitride catalysts yield products that are significantly better than those from the blank (thermal) reactor. The blank product characteristics are close to those of the feed. Furthermore, all the measurements indicate product qualities are higher than those from sulfided Ni-Mo-S/Al₂O₃ and MoS₂/Al₂O₃. Notable is that there was little aromatic saturation, as measured by C13 NMR, or change in the ratio of H/C achieved by all but Mo₂N at these process conditions.

Table 1
Analysis of the Product after 260 Hours on Coal Gas Oil

	Mo ₂ N	Mo ₂ C/Al ₂ O ₃ ³	NiMoS/Al ₂ O ₃	MoS ₂ /Al ₂ O ₃	Blank	Feed
C / wt%	88.76	88.64	88.68	88.64	88.35	88.54
H / wt%	11.05	10.83	10.79	10.77	10.73	10.73
H/C ratio	1.50	1.47	1.46	1.46	1.46	1.46
S / ppm	28	49	38	55	84	116
N / ppm	1730	2410	2890	2900	3480	3580
Aromatics / wt%	29.6	32.1	32.3	33.0	33.4	33.5

Table 2 compares *relative* pseudo first-order rate constants for desulfurization, denitrogenation, and aromatic saturation relative to Ni-Mo-S/Al₂O₃. The pseudo first-order rate constants (k) themselves are obtained by integrating the expression $V = F_0 \int dx/kC$ where F_0 is the molar flow rate, k is the rate constant and C is the concentration. This results in the expression, $k = (1/\tau) \ln(C_{\text{feed}}/C_{\text{product}})$, where $\tau = V/v_0 = 11 \text{ cm}^3/159 \text{ cm}^3 \text{ s}^{-1} = 0.069 \text{ s}$. The pseudo rate constants are further normalized by the amount of active sites in each of the reactors.

A concern with using molybdenum carbide and nitride for hydrotreating applications is that the formation of molybdenum sulfide is thermodynamically favored in the presence of sulfur [14,15]. Consequently, the catalysts were characterized after reaction by XRD and XPS analyses. XRD did not show the presence of crystalline MoS₂ at the detection limit concentration of 1 wt% on the molybdenum nitride (molybdenum carbide was not examined). The results from XPS are shown in Table 3.

Table 2
Estimated Relative First-Order Rate Constants^a per “Active Site”^b

Catalyst	Desulfurization	Denitrogenation	Aromatic saturation
Mo ₂ N	1.3	3.4	3.4
Mo ₂ C/Al ₂ O ₃ ^c	2.1	5	3.1
MoS ₂ /Al ₂ O ₃	0.67	0.98	0.41
Ni-Mo-S/Al ₂ O ₃	1	1	1

^a Calculated by $[\ln(\text{co}/\text{c})_i]/[\ln(\text{co}/\text{c})_{\text{Ni-Mo}}]$.
^b As titrated by CO for the carbide and nitride and by O for the sulfides.
^c Rate constant corrected by 718/268, the ratio of μmol O uptake by Ni-Mo to CO uptake by Mo₂C/Al₂O₃ in the reactors.

Table 3
Surface Composition Measured by XPS

Mo ₂ N / mol%								
	C	O	Mo	S	N	Na	Al	Si
fresh	24.4	29.2	21.3	--	25.0	--	--	--
used	46.8	28.6	12.5	3.2	7.9	--	--	0.9
reduced	12.8	42.9	26.2	--	18.1	--	--	--
Mo ₂ C/Al ₂ O ₃ / mol%								
	C	O	Mo	S	N	Na	Al	Si
fresh	4.8	37.8	1.9	--	--	--	55.5	--
used	33.4	40.0	2.0	1.4	0.8	0.2	22.2	--
reduced	3.1	60.4	4.7	--	--	--	31.7	--

Fresh catalyst reduced with flowing H₂ at atmospheric pressure and 677 K (404°C).

The XPS data for molybdenum nitride catalyst withdrawn from the reactor reported in Table 3 indicates a sulfur-to-molybdenum ratio of 3.2/12.5 = 0.26, well below the expected ratio of 2 should MoS₂ have been formed within the sampling depth for XPS (roughly 1-2 nm). Consequently, it does not appear that extensive sulfiding of the molybdenum nitride occurred during its use. The same argument and conclusion applies to Mo₂C/Al₂O₃. It cannot be ruled out, however, that some MoS₂ was formed at the topmost atomic layers of the nitride (carbide) crystallite surface. An analysis of the oxidation states of molybdenum in the used molybdenum

carbide and nitride catalysts indicates that not all the molybdenum was reduced to the Mo^{+4} state (only 63% in the case of Mo_2N) during the pretreatment.

It is clear from the results that molybdenum carbide and nitride are active for hydrotreating under practical industrial conditions. While the feedstocks were coal-derived liquids, it is very likely that molybdenum nitride and carbide will exhibit similar catalytic properties for hydrotreating petroleum-derived liquids.

Conclusions

It is significant that for a reasonable attempt at counting sites (CO adsorption on the nitrides and carbides and static O_2 adsorption on the sulfides) that Mo_2N and $\text{Mo}_2\text{C}/\text{Al}_2\text{O}_3$ compare very favorably with a commercial sulfided $\text{Ni}-\text{Mo}/\text{Al}_2\text{O}_3$ catalyst. It also noteworthy that the XPS data indicate that Mo_2N and Mo_2C are not detectably sulfided despite operation at high pressures, temperatures, and with real hydrocarbon feeds.

Acknowledgments

This work was carried out in collaboration with D. J. Sajkowski of Amoco Oil Corporation.

References

1. R. Sivasubramanian and J.R. Katzer, *Catal. Rev. Sci. Eng.* 20 (1979) 155.
2. T. C. Ho, *Catal. Rev. Sci. Eng.* 30 (1988) 117.
3. F. E. Massoth and G. Muralidhar, in H. F. Barry and P. Mitchell (Eds.) *Proc of the Climax Fourth Int. Conf. on the Chemistry and Uses of Molybdenum*, Climax Molybdenum Company, Ann Arbor, Michigan, p. 343, 1982.
4. H. Topsoe and B. S. Clausen, *Catal. Rev. Sci. and Eng.* 26 (1984) 395.
5. R. R. Chianelli *Catal. Rev. Sci. Eng.* 26 (1984) 361.
6. L. Volpe, S. T. Oyama and M. Boudart, in *Preparation of Catalysts III*, Elsevier, Amsterdam, 1983.
7. L. Volpe and M. Boudart, *J. Solid State Chem.* 59 (1985) 332.
8. J. C. Schlatter, S. T. Oyama, J. E. Metcalf, III, R. M. Lambert, Jr., *Ind. Eng. Chem. Res.* 27 (1988) 1648.
9. S. T. Oyama, J. C. Schlatter, J. E. Metcalf, III, and J. M. Lambert, Jr., *International Chemical Congress of Pacific Basin Societies, Symposium on "Upgrading Strategies for Heavy Oil and Sands Bitumen"*, Honolulu, Hawaii, Dec, 1989.
10. C. W. Colling and L. T. Thompson, *J. Catal.*, 146 (1994) 193.
11. E. J. Markel and J. W. Van Zee, *J. Catal.* 126 (1990) 643.
12. H. Abe and A. T. Bell, *Catal. Lett.*, 18 (1993) 1.
13. M. Nagai, T. Miyao and T. Tuboi, *Catal. Lett.*, 18 (1993) 9.
14. S. T. Oyama, J. C. Schlatter, J. E. Metcalf, J. M. Lambert, *Ind. Eng. Chem. Res.*, 27 (1988) 1639.
15. R. B. Levy, in *Advanced Materials in Catalysis*, J. J. Burton and R. L. Garten, Eds., p. 101, 1977.