

DOE/PC/95701--T7

QUARTERLY TECHNICAL PROGRESS REPORT FOR DOE-ARS
INTERAGENCY AGREEMENT DE-AI22-95PC95701

“Identification and Validation of Heavy Metal and radionuclide Hyperaccumulating
Terrestrial Plant Species”

Progress Report for Period of July 1, 1996 to September 30, 1996

PI:

Dr. Leon Kochian
US Plant, Soil and Nutrition Laboratory
USDA-ARS
Cornell University
Ithaca, NY 14853

Postdoctoral Associate:

Dr. Mitch Lasat

Doctoral Student:

Stephen Ebbs

RECEIVED
APR 01 1997
OSTI

RECEIVED
APR 15 1997
DOE/PC/95701--T7

RECEIVED
APR 15 1997
DOE/PC/95701--T7

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

h

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Enclosed is a copy of a manuscript we are submitting to the Journal of Environmental Quality on our research on the development of phytoremediation technologies for radiocesium contaminated soils. The acknowledgment of DOE support is on page 2 of the manuscript.

Title: Potential for phytoextraction of ^{137}Cs from a contaminated soil

Mitch M. Lasat, Wendell A. Norvell and Leon V. Kochian*

U.S. Plant, Soil and Nutrition Laboratory

USDA-ARS

Cornell University

Ithaca, NY 14853

***Corresponding author: Phone: (607)-255-2454**

Fax: (607)-255-1132

E-mail: lvk1@cornell.edu

Date received:

1 **ACKNOWLEDGEMENTS**

2 The authors would like to acknowledge the US Department of Energy Office of Science and
3 Technology for funding this research through DOE-ARS Interagency Agreement # DE-AI22-
4 95PC95701.

1 **Abstract**

2 Potential for phytoremediation of an aged radiocesium-contaminated soil from Brookhaven
3 National Laboratory was investigated in three phases: 1) hydroponic screening for plant species
4 capable of accumulating elevated levels of cesium in shoots, 2) amending contaminated soil to
5 enhance ^{137}Cs bioavailability, and 3) phytoextracting radiocesium with plant roots and its removal
6 in harvested shoots.

7 The bioaccumulation ratio of Cs in shoots of hydroponically grown plants ranged between
8 38 and 165. From solution, dicot species accumulated 2- to 4-fold more cesium in shoots than
9 grasses. The effect of several chemical compounds on ^{137}Cs desorption from the contaminated
10 soil was investigated. Ammonium salts were the most effective at desorbing Cs from
11 contaminated soil, but only 25% of radiocesium could be desorbed. Although release of
12 radiocesium from the soil was concentration-dependent, this effect appeared to level off above 0.2
13 M ammonium in solution. In a pot study, from the soil contaminated with 400 pCi g⁻¹ soil, the
14 greatest amount of ^{137}Cs , 140 pCi, was removed in shoots of cabbage (*Brassica oleracea* var.
15 *capitata*). ^{137}Cs accumulation in shoots was significantly increased by the addition of 40 NH₄NO₃
16 kg⁻¹ soil. Increasing NH₄NO₃ application from 40 to 80 mmoles kg⁻¹ soil did not further increase
17 radiocesium phytoextraction. The ability to accumulate radiocesium from soil in shoots was
18 significantly different among species tested. This ability increased in order: reed Canary grass
19 (*Phalaris arundinacea*) < Indian mustard (*Brassica juncea*) < tepary bean (*Phaseolus acutifolius*)
20 < cabbage.

1 **Introduction**

2 Soils have become contaminated with radionuclides as a result of above ground nuclear
3 testing, accidental release or nuclear energy generation. ^{137}Cs is a long-lived ($t_{1/2}$ 30.2 years) by-
4 product of nuclear fission. Although recently contamination of the environment with ^{137}Cs from
5 the testing of nuclear weapons has been drastically reduced, large areas are still polluted with
6 radiocesium. For example, in the Republic of Belarus about 1 million hectares of arable land were
7 contaminated with ^{137}Cs and ^{90}Sr by Chernobyl nuclear accident (Kavkhuta et al., 1994).

8 Decontamination of these polluted-soils remains an intractable problem, in part because of the
9 high cost. Recently, the U.S. Department of Energy Assistant Secretary for Environment
10 Restoration and Waste Management was quoted as saying that the \$200 to \$300 billion cost for
11 the cleanup of radionuclide-contaminated soils may be drastically underestimated (Watson et al.,
12 1993).

13 Phytoremediation is emerging as an attractive alternative to energy-intensive, high-cost
14 traditional cleaning methods. This new technology employs the use of higher plants capable of
15 accumulating high levels of contaminants in shoots. Contaminants are removed by harvesting the
16 above-ground plant tissues. In addition of being cost effective (Salt et al., 1995),
17 phytoremediation decontaminates the soil in situ thus preserving both the environment and the
18 ecosystems. Because of these advantages, phytoremediation has been cited as the method of
19 choice for the clean up of large areas polluted with low to moderate levels of contaminants (Baker
20 et al., 1994).

21 Numerous studies have reported on the potential of higher plants to accumulate

1 ¹³⁷Cs in shoots (Dahlman et al., 1975; Salt et al., 1992; Entry et al., 1993; Demirel et al., 1994).

2 These studies were conducted with soils of different physicochemical properties and
3 contamination characteristics which both affect cesium uptake into plants. Therefore the available
4 information is of limited use when planning to phytoremediate sites with different soil
5 characteristics.

6 Earlier work indicated that upon entry into internal plant tissues radiocesium is fairly
7 mobile (Resnik et al., 1969). However, phytoremediation of radiocesium-contaminated sites is
8 impeded by the marked capacity of soils to tightly adsorb Cs (Nishita et al., 1968). In part, this
9 results from the trapping of Cs in layer silicate minerals (Cremers et al., 1988). Desorption from
10 soil particles is an important step toward increasing cesium bioavailability and consequently its
11 uptake into roots. Although earlier reports indicate that radiocesium desorption can be chemically
12 induced (Field et al., 1993; Gombert, 1993) the extent of this release was shown to be highly
13 dependent on soil properties (Francis and Brinkley, 1976; Kirk and Staunton, 1989).

14 In this study, we analyzed the potential for phytoremediation of a ¹³⁷Cs-contaminated soil
15 from Brookhaven National Laboratory (BNL). The work was conducted in three phases: 1)
16 hydroponic screening for high-biomass-producing plants capable of accumulating elevated levels
17 of cesium in shoots, 2) identification of chemical treatments capable of desorbing ¹³⁷Cs from the
18 soil, and 3) evaluation of ¹³⁷Cs extraction in shoots of selected species grown in pots with
19 contaminated soil.

1 **Material sand Methods**

2 *Hydroponic screening* was conducted in a greenhouse at ambient temperature (12°-20°C)
3 with natural illumination supplemented daily with 10 h of artificial light. Two to three seeds of
4 Indian mustard [*Brassica juncea* (L.) Czern], Arcadia, a commercial variety of broccoli (*B.*
5 *oleracea* var *botrytis* L.), Storage #4, a commercial variety of cabbage (*B. oleracea* var *capitata*
6 L.), Snow crown, a commercial variety of cauliflower (*B. oleracea* var *botrytis* L.), kochia
7 [*Kochia scoparia* (L.) Schrad], tepary bean (*Phaseolus acutifolius* A. Gray), hairy vetch (*Vicia*
8 *villosa* Roth.), colonial bent grass (*Agrostis capillaris* Sibth), red fescue (*Festuca rubra* L.), and
9 reed Canary grass (*Phalaris arundinacea* L.) were germinated on discs cut of 1 mm nylon mesh.
10 Discs were placed at the open bottom of polyethylene cups mounted in holes drilled in lids of 2-L
11 containers (four cups/lid). The composition of the culture solution was; 1.2 mM KNO₃; 0.4 mM
12 Ca(NO₃)₂; 0.1 mM NH₄H₂PO₄; 0.2 mM MgSO₄; 50 µM KCl; 12.5 µM H₃BO₃; 0.1 µM NiSO₄;
13 1.0 µM ZnSO₄; 0.5 µM CuSO₄; 1.0 µM MnSO₄; 0.1 µM H₂MoO₄; 10 µM Fe³⁺-EDDHA (for
14 dicot) or Fe³⁺-HEDTA (for grasses); 1.0 mM Mes-Tris (pH 6.0) and 1.0 µM CsCl. After seed
15 germination, discs were covered with a layer of polyethylene black beads to reduce illumination of
16 the nutrient solution and provide support to emerging seedlings. Nutrient solution was replaced
17 every week. Shoots of four-week-old plants were harvested and dried for 3 days at 65°C. Dry
18 shoots were ground, weighed, and a 0.05-g aliquot was digested overnight in 1 mL of doubled-
19 distilled HNO₃ in a heat block at 120°C. Subsequently, samples were dissolved in 0.75 mL of
20 HNO₃:HClO₄ (1:1, v/v) and incubated at 220°C until dry. Samples were then redissolved in 10
21 mL of 5% HNO₃ and analyzed for cesium content with an Elan-Sciex-250 Analyzer via

1 inductively-coupled argon plasma mass spectroscopy.

2 *Study of the ¹³⁷Cs desorption from contaminated BNL soil*

3 The loamy sand soil obtained from Brookahven National Laboratory (BNL) was cleaned
4 of gravel and organic debris before being passed through a 2-mm sieve. The < 2 mm soil fraction
5 was air-dried and stored for further analyses. Desorption of the ¹³⁷Cs from the soil was
6 investigated using 0.05 and 0.5 M solutions of the following extractants: 1) weak organic acids:
7 acetic, citric, formic, malic, or oxalic, 2) strong acid: hydrochłoric and nitric acid, 3) reducing
8 agents: Na-dithionite or hydroxylamine/hydrochloric acid, 4) neutral ammonium salts: chloride,
9 sulfate, or nitrate, 5) buffered ammonium salts: modified Morgan's solution [0.7 M acetic acid
10 plus 1.35 M ammonium acetate (Morgan, 1941)], or a modified Morgan's extractant containing
11 0.02 M Na₂-EDTA (sodium salt of ethylene diamine tetracetic acid) (Lakanen and Erviö, 1971),
12 and 6) neutral potassium salts: chloride, nitrate, or sulfate. A 15-g aliquot of the <2 mm soil
13 fraction and 45 mL of the chemical extractant were mixed in a 125-mL Erlenmeyer flask and
14 agitated at room temperature in a rotary shaker at 150 rotations min⁻¹. After 2 h, the slurry was
15 filtered through a Whatman No. 42 filter paper. The resulting filtrate was vacuum-passed through
16 a 0.45 µm Millipore membrane. The final filtrate was collected in a 20-mL counting vial and
17 radioactivity was measured using a gamma counter (model 5530, Packard, Downers Grove, IL).

1 *Evaluation of ¹³⁷Cs phytoextraction from contaminated soil*

2 Before starting the pot study, the pH of the strongly acidic BNL soil was raised by adding
3 3 g of Ca(OH)₂ to 20 kg of soil. Ten days later, soil pH had increased from 3.8 to 5.4. This pH
4 was more suitable for plant growth, and because soil pH in the 3.9-8.4 range was reported to have
5 little effect on cesium accumulation in plants (Fredericksson et al., 1966) we felt confident that pH
6 correction would not be detrimental to ¹³⁷Cs transfer from soil to shoots. Twelve pots containing
7 1 kg of soil were each seeded with two pregerminated seeds of cabbage, Indian mustard, reed
8 Canary grass, and tepary bean and placed in a greenhouse at ambient temperature (18°- 27°C) and
9 illuminated with natural light. Pots were watered with a nutrient solution with composition
10 similar to that described above but containing only 300 μ M KNO₃. We minimized the K⁺
11 concentration because it is known that K⁺ competes with Cs for uptake into roots (Shaw and Bell,
12 1991) and because the differences in ¹³⁷Cs uptake rates between plant species were shown to be
13 greater at low potassium concentrations (Buyssse et al., 1996). The twelve pots were divided into
14 four sets of three pots. After 4 weeks of growth, one pot in each set received 13 mmoles of
15 NH₄NO₃ as 100 mL of a 130 mM NH₄NO₃ solution. The second received 27 mmoles of NH₄NO₃
16 as 100 mL of a 270 mM NH₄NO₃ solution. The third pot from each set received only 100 mL of
17 tap water. These treatments were repeated 3 and 6 days later. Thus, each of the four sets
18 contained one pot which received: water (control), 40 mmoles of NH₄NO₃, and 80 mmoles of
19 NH₄NO₃. Six days after the last treatment the shoots were harvested and plant material dried at
20 65°C for 3 days. Dry shoots were weighed, ground and ¹³⁷Cs activity was measured via gamma
21 activity detection.

1 *Statistical analysis*

2 The design of the pot experiment was a two-factorial (four plant species x three soil treatments)
3 replicated in four completely randomized blocks. Data were subjected to ANOVA with soil NH_4^+
4 applications and plant species as the two experimental factors. The differences among treatments
5 were compared with Fisher's least significant difference ($p < 0.01$).

6 **Results and Discussion**

7 *Hydroponic screening*

8 Hydroponic screening allowed us to test a large number of plant species for their ability to
9 accumulate cesium in shoots from a nutrient solution containing $1 \mu\text{M}$ CsCl . The greatest amount
10 of cesium accumulated in shoots of cabbage followed by tepary bean (Table 1). Among grasses,
11 reed Canary grass accumulated the most cesium. Bioaccumulation ratios ($[\text{Cs}]_{\text{shoot}}/[\text{Cs}]_{\text{solution}}$) of
12 the species tested ranged between 38 and 165. Compared to grasses, the values of
13 bioaccumulation ratio were 3- to 4-fold greater in shoots of dicot species. Comparable values
14 were reported for ^{137}Cs accumulation in shoots of wheat (*Triticum aestivum* L.) (Smolders and
15 Shaw, 1995). Values of bioaccumulation ratio significantly greater than 1 suggest that when
16 available cesium is readily taken up plants.

17 Based on the results of hydroponic screening we selected cabbage, Indian mustard, reed
18 Canary grass, and tepary bean to be tested in pots.

1 *Study of ^{137}Cs desorption from BNL soil*

2 The major factor limiting ^{137}Cs absorption by plants is likely to be its low bioavailability in
3 soil. Cesium ions are selectively absorbed at the frayed edges or trapped into interlayer voids of
4 micaceous minerals. Vermiculite (Sawhney, 1965) and illite (Tamura, 1964) are two common
5 micaceous silicates found in soil that exhibit high affinity for cesium. Fixation of ^{137}Cs by
6 micaceous clays and by soils containing these clays has been demonstrated in desorption studies.
7 For example, only 18% of the radiocesium could be displaced by 1 M sodium acetate from an
8 illitic soil 11 days after the treatment (Dahlman et al., 1975). However, 87% of the ^{137}Cs was
9 desorbed from a soil containing predominantly non-expanding kaolinitic clays. The poor
10 desorption from the illitic soil was interpreted as being caused by strong cesium fixation at
11 selective binding sites.

12 In this study we investigated the effect of several chemical compounds on ^{137}Cs desorption
13 from the BNL soil. We used ammonium and potassium salts to desorb the exchangeable
14 radiocesium soil fraction. Because Entry et al. (1996) suggested that synthetic chelates could
15 enhance the release of ^{137}Cs making it more accessible for plant uptake we also extracted the BNL
16 soil with a $\text{Na}_2\text{-EDTA}$ solution. Organic acids were tested because previous work indicated some
17 success with these compounds (Field et al., 1993). Strong mineral acids hydrochloric and nitric
18 acids were used to investigate the direct effect of H^+ on ^{137}Cs desorption. Reducing agents such as
19 Na-dithionite and hydroxylamine/hydrochloric acid were employed to release a ^{137}Cs fraction
20 potentially associated with iron or manganese oxides.

21 Finston and Kinsley (1961) noted that the ions NH_4^+ , K^+ , and Cs^+ form a homologous
22 series with a great degree of physicochemical similarities. Therefore ^{137}Cs displacement from the

1 soil is expected to increase following addition of monovalent cations. Jackson et al., (1965)
2 reported that ^{137}Cs mobility in soil increased with the addition of the monovalent cations in the
3 following order: $\text{Rb}^+ > \text{NH}_4^+ > \text{K}^+$. Similar findings were reported by Tensho et al. (1961).
4 However, Livens and Loveland (1988) reported greater radiocesium mobility under low K^+ or
5 high NH_4^+ in soil. Although it is generally agreed that NH_4^+ , and K^+ are important for ^{137}Cs
6 mobility in soil, the effect of these ions on radiocesium uptake into roots is less obvious . For
7 example, as a result of enhanced bioavailability, greater cesium uptake into plants was reported
8 following ammonium and potassium addition (Schultz et al., 1965). Shaw and Bell, (1991),
9 however, described a competitive inhibition of Cs uptake into roots by any ion of the homologous
10 series.. Clearly, there is some confusion as to the effect of NH_4^+ and K^+ ions on radiocesium
11 mobility in soil and its uptake into roots. Furthermore, because some of these earlier studies were
12 conducted with experimentally contaminated soils (binding to soil particles not completed), it is
13 difficult to apply their findings to a soil contaminated with aged radiocesium (binding to soil
14 particles completed) such as BNL soil.

15 Desorption of ^{137}Cs from the soil following chemical treatments is shown in Table 2.
16 Ammonium salts of strong acids at 0.5 M desorbed about 25% of the soil ^{137}Cs . Somewhat less
17 ^{137}Cs (17%) was desorbed from the soil with 1 M ammonium acetate with or without EDTA.
18 These results indicate that EDTA had little effect on radiocesium desorption from soil.. Compared
19 to NH_4^+ , approximately 40% less radiocesium was desorbed with K^+ salts (Table 2, Fig. 1).
20 Despite successes reported in the literature (Field et al. 1993), extraction of ^{137}Cs with organic
21 acids was totally ineffective. Only small reductions in soil ^{137}Cs activity were obtained with strong
22 mineral acids (2-3%) or reducing agents (1-7%). Our results show that most of the ^{137}Cs was

1 desorbed from the BNL soil by exchange (25% of total radiocesium in the soil).

2 Desorption of ^{137}Cs by monovalent cations was concentration-dependent (Fig. 1); it
3 increased with cation concentration up to 0.2 M. Further increases in concentration did not
4 significantly increase ^{137}Cs desorption. It is possible that after a 2-h incubation in a 0.2 M solution,
5 equilibrium was reached between monovalent cations and a rapidly exchanging ^{137}Cs soil fraction.

6 *Phytoextraction of ^{137}Cs from contaminated soil*

7 We investigated the potential for radiocesium removal in shoots of four plant species
8 grown in pots with untreated (control) or NH_4^+ -treated BNL soil. The effect of soil treatment on
9 ^{137}Cs shoot concentration and shoot biomass is shown in Fig. 2. Concentration of ^{137}Cs was
10 greater in shoots of the plants grown in ammonium nitrate-treated soil. Compared to control (no
11 NH_4NO_3), addition of 80 mmoles increased ^{137}Cs concentration in shoots from 135% (Indian
12 mustard) to 1200% (reed Canary grass).

13 Although ammonium addition increases radiocesium desorption from soil particles, other
14 mechanisms have also been proposed to account for the ammonium-induced increase in ^{137}Cs
15 mobility and subsequently its uptake in roots. Thus, Kavkhuta et al. (1994), proposed that ^{137}Cs is
16 retained in soil via two distinct processes: 1) specific sorption to soil minerals and 2) radionuclide
17 incorporation in insoluble particles of fuel origin where ^{137}Cs is trapped by a cover of uranium
18 dioxide. These authors proposed that NH_4NO_3 addition stimulates the activity of soil
19 microorganisms involved in the breakdown of the uranium cover increasing bioavailability of this
20 radiocesium fraction. However because of the short period of time which elapsed between
21 ammonium application and shoot harvesting, it is unlikely that the latter mechanism may have

1 played a significant effect on ^{137}Cs uptake into roots.

2 Regardless of the soil treatment, the greatest level of radiocesium was concentrated in
3 shoots of cabbage. From the soil treated with 80 mmoles NH_4NO_3 , cabbage concentrated
4 approximately 1100 pCi g^{-1} dry shoot (Fig. 2A). This represents a 3.2-fold increase compared to
5 shoots of cabbage grown in soil without added NH_4NO_3 .

6 In all treatments, including control, the greatest amount of biomass was produced by
7 tepary bean followed by cabbage. Addition of ammonium nitrate at either 40 or 80 mmoles kg^{-1}
8 soil depressed biomass production in all four species (Fig. 2B); undoubtedly as a result of
9 ammonium toxicity. High ammonium generally inhibits cation uptake, which in turn suppresses
10 growth primarily by inducing deficiencies of magnesium (Manolakis and Lüdders, 1977) and
11 calcium (Pill et al., 1978). The species most susceptible to ammonium toxicity was reed Canary
12 grass; 80 mmoles ammonium nitrate caused a 70% reduction in shoot biomass.

13 The amounts of ^{137}Cs removed from the soil in shoots of the tested species are shown in
14 Table 3. The greatest amount of radiocesium, 140 pCi, was accumulated in shoots of cabbage
15 grown in pots treated with 80 mmoles NH_4^+ . This represents approximately 0.04% of the ^{137}Cs in
16 the pot. It should be remembered, however, that this amount was removed in shoots of 6-week-
17 old seedlings which produced only 0.14 g of dry mass. Ammonium application was most efficient
18 in reed Canary grass increasing ^{137}Cs accumulation in shoots by more than 20-fold. It is possible
19 that roots of Canary grass might have a very low ability of solubilizing radiocesium from soil
20 particles. This would explain the very low ^{137}Cs shoot concentration in plants grown in soil
21 without NH_4NO_3 added. However, total radiocesium accumulated in shoots of this grass was the
22 least among species tested.

1 Bioaccumulation of radiocesium in shoots was statistically analyzed using ANOVA for a
2 completely randomized two factorial design. Interactions between species and soil treatment were
3 not statistically significant ($p>0.05\%$). The amount of ^{137}Cs accumulated in shoots, however, was
4 significantly affected ($p< 0.01$) by both, plant species and soil treatment. The abilities of tested
5 species to accumulate ^{137}Cs in shoots were significantly different ($p< 0.01$). This ability increased
6 in order: reed Canary grass < Indian mustard < tepary bean < cabbage. Soil treatments were also
7 compared using Fisher's least significant difference ($p<0.01$). Compared to control, NH_4NO_3 ,
8 addition significantly increased radiocesium accumulation in shoots. However, the two ammonium
9 applications were not significantly different from each other.

10 Addition of 40 mmoles of ammonium nitrate increased the bioaccumulation ratio ($[^{137}\text{Cs}]_{\text{dry}}$
11 $_{\text{shoot}}/[^{137}\text{Cs}]_{\text{dry soil}}$) in all four species. With the exception of cabbage, however, doubling the amount
12 of ammonium nitrate (from 40 to 80 mmoles kg^{-1} soil) had little effect on the value of
13 bioaccumulation ratio. It is possible that at high concentrations NH_4^+ competes with cesium for
14 uptake into roots. Such an effect has been previously described (Shaw and Bell, 1991). Only
15 cabbage apparently responded to greater addition of NH_4NO_3 ; the greatest bioaccumulation ratio
16 (2.8) was obtained in pots treated with 80 mmoles NH_4NO_3 (Fig. 3).

17 In control pots, the value of the bioaccumulation ratio for ^{137}Cs varied between 0 (reed
18 Canary grass) and 1.0 (cabbage) (Fig. 3). Comparison of these ratios with those reported in the
19 literature should be approached with caution. One concern is that some earlier studies have
20 reported on the bioaccumulation of radiocesium from artificially contaminated soil in which the
21 initial bioavailability of cesium was high. It is well known that radiocesium bioavailability
22 decreases as it ages in these experimentally contaminated soil (Nisbet and Shaw, 1994). Such a

1 difference in bioavailability would make the comparison of the ^{137}Cs bioaccumulation ratios
2 between plants grown in soil with freshly applied ^{137}Cs and those grown in radiocesium-aged soil
3 inappropriate. Comparison of ^{137}Cs bioaccumulating properties could also be confounded if plants
4 were grown in different types of soil. Thus, it has been shown that the organic matter content of
5 the soil has a large impact (up to a factor of 10) on cesium transfer from the soil to shoots (van
6 Bergeijk et al., 1992). This concern has been previously addressed by Cremers et al., (1988).

7 **Conclusions**

8 Results obtained in this study suggest that phytoremediation of the ^{137}Cs -contaminated
9 BNL soil may be feasible. The BNL soil is contaminated to a depth of approximately 10 cm with
10 400 pCi of $^{137}\text{Cs g}^{-1}$. With good management practices, a fast growing high biomass producing
11 crop such as cabbage could yield 15-20 tones dry wt $\text{ha}^{-1} \text{ year}^{-1}$. Our results suggest that with high
12 ammonium, ^{137}Cs bioaccumulation ratio in shoots of cabbage might be as high as 3. Taking these
13 parameters at face values, decontamination of BNL soil to levels below 100 pCi g^{-1} soil would be
14 attainable in less than 15 years. Unfortunately, as radiocesium is removed from the soil the
15 bioaccumulation ratio is likely to decrease, making further removal more difficult. It is possible,
16 however, that implementation of specific management practices could sustain ^{137}Cs
17 phytoextraction over successive cropping. For example, small increase in ^{137}Cs transfer with time
18 was reported in shoots of cabbage grown in peat soil (Nisbet and Shaw, 1994). This agrees with
19 the observation that organic soils have the ability to sustain radiocesium availability for plant
20 uptake (Barber and Mitchell, 1963).

21 A major problem with this assessment is that the ammonium rates used in the green house

1 are excessively high and could be not realistically employed for large scale phytoremediation of
2 radiocesium-polluted sites. It is possible that application of organic fertilizer at the contaminated
3 site could be important not only for maintaining a high biomass production but also for sustaining
4 the rate of ^{137}Cs phytoextraction from soils treated with significantly lower rates of ammonium.

5 The effect of combined application of organic and ammonium fertilizer on radiocesium
6 phtoextraction is not known and should be the focus of the future research.

7

1 **References**

2 Baker, A.J.M., S.P. McGrath, C.D.M. Sidoli, and R.D. Reeves. 1994. The possibility of in situ
3 heavy metal decontamination of polluted soils using crops of metal-accumulating plants.
4 Resources, Conservation and Recycling 11: 41-49

5 Barber, D.A., and W.A. Mitchell. 1963. Influence of soil organic matter on the uptake of ^{137}Cs by
6 perennial ryegrass. In. Annual Report on Radiobiology 1962-1963. ARCRL-10. Agricultural
7 Research Council, Oxfordshire. UK. pp.57-58

8 Bergeijk van, K.E., H. Noordijk, J. Lembrechts, and M. J. Frissel. 1992. Influence of pH, soil type
9 and organic matter content on soil-to-plant transfer of radiocesium and -strontium as analyzed by
10 a nonparametric method. J. Environ. Radioactivity. 15:265-276

11 Cremers, A., A. Elsen, P. De Preter, and A. Maes. 1988. Quantitative analysis of radiocaesium
12 retention in soils. Nature.335:247-249

13 Dahlman, R.C., C.W. Francis, and T. Tamura. 1975. Radiocesium cycling in vegetation and soil.
14 In Mineral cycling in southeastern ecosystems. F.G. Howell, J.B. Gentry, and M.H. Smith (eds).
15 ERDA Symposium Series (CONF-740513), pp 462-481

1 Demirel, H., I. Özer, I. Çelenk, M.M. Halitligil, and A. Özmen. 1994. Uptake of cesium-137 by
2 crops from contaminated soils. *J. Environ. Qual.* 23:1280-1282

3 Entry, J.A., P.T. Rygiewicz, and W.H. Emmingham. 1993. Accumulation of cesium-137 and
4 strontium-90 in Ponderosa and Monterey pine seedlings. *J. Environ. Quality.* 22: 742-745

5 Entry, J.A., N.A. Vance, M.A. Hamilton, D. Zabowsky, L.S. Watrud, and D.C. Adriano. 1996.
6 Phytoremediation of soil contaminated with low concentrations of radionuclides. *Water, Air and*
7 *soil Pollution.* 88: 167-176

8 Field, J.G., R.D. Belden, R.J. Serne, S.V. Mattigod, H.D. Freeman, R.W. Scheck, and E.D.
9 Goller. 100 area Hanford soil washing treatability tests. 'Meeting the Challenge' Environmental
10 Remediation Conference. October 24-28, 1993, Augusta, Georgia. Vol.1. U.S. Dept of Energy.
11 Office of Environmental Restoration. 377-381

12 Finston, H.L., and M.T. Kinsley. 1961. The radiochemistry of cesium. National Academy of
13 Sciences. Nuclear Science Series 3035. U.S. Atomic Energy Commission, Washington. DC

14 Francis, C.W., and F.S. Brinkley. 1976. Preferential adsorption of ^{137}Cs to micaceous minerals in
15 contaminated freshwater sediments. *Nature.* 260: 511-513

1 Frederiksson, L., R. J. Garner, and R.S. Russel. 1966. Caesium-137. *In* Radioactivity and human
2 diet. Russel, R.S., ed .Pergamon Press. Oxford UK. pp: 317-352

3 Gombert, D. 1993. Soil washing evaluation by sequential extraction for test reactor area warm
4 waste pond. 'Meeting the Challenge' Environmental Remediation Conference. October 24-28,
5 Augusta, Georgia. Vol. 2. U.S. Dept of Energy. Office of Environmental Restoration. 371-376

6 Jackson, W.A., D. Craig, and H.M. Lugo. 1965. Effects of various cations on cesium uptake from
7 soils and clay suspensions. *Soil Sci.* 99: 345-353

8 Kavkhuta, G.A., L.F. Rozdialovskaya, and A.V. Basharin. 1994. The role of nitrogen compounds
9 in developing advanced chemico-biological methods of the soil decontamination. Spectrum '94
10 Proceedings: Nuclear and Hazardous Waste Management, International Topical Meeting, August
11 14-18, Atlanta, Georgia. Vol. 2. Am. Nucl. Soc., Inc. La Grange Park, Il. 963-965

12 Kirk, G.J., and S. Staunton. 1989. On predicting the fate of radioactive caesium in soil beneath
13 grassland. *J. Soil Sci.* 40: 71-84

14 Lakanen, E., and R. Erviö. 1971. A comparison of eight extractants for the determination of plant
15 available micronutrients in soils. *Acta Agr. Fenn.* 123: 223-232

1 Livens, F.R., and P.J. Loveland. 1988. The influence of soil properties on the environmental
2 mobility of caesium in Cumbria. *Soil Use and Management*. 4(3): 69-75

3 Manolakis, E., and P. Lüdders. 1977. Die Wirkung gleichmäßiger und jahreszeitlich
4 abwechselnder Ammonium- und Nitraternährung auf Apfelbäume. I. Einfluss auf das vegetative
5 Wachstum. *Gartenbauwissenschaft*. 42: 1-7

6 Morgan, M.F. 1941. Chemical soil diagnosis by the universal soil-testing system. Connecticut
7 State Agr. Expt. Sta. Bull. 450:579-628

8 Nisbet, A.F., and S. Shaw. 1994. Summary of 5-year lysimeter study on the time-dependent
9 transfer of ¹³⁷Cs, ⁹⁰Sr, ^{239,240}Pu and ²⁴¹Am to crops from three contrasting soil types: 1. Transfer to
10 the edible portion. *J. Environ. Radioactivity* 23:1-17

11 Nishita, H., R.M. Haug, and K. A. Larson. 1968. Influence of minerals on *Strontium-90* and
12 *Cesium-137* uptake by bean plant. *Soil Sci.* 105: 237-243

13 Pill, W.G., V.N. Lambeth, and T.M. Hinckley. 1978. Effects of nitrogen forms and level of ion
14 concentrations, water stress, and blossom-end rot incidence in tomato. *J. Am. Soc. Hortic. Sci.*
15 1031: 265-268

1 Resnik, M.C., O.R. Lunt, and A. Wallace. 1969. Cesium, potassium, strontium, and calcium
2 transport in two different plant species. *Soil Sci.* 108:64-73

3 Salt, D.E., M.Blaylock, N.P.B.A. Kumar, V. Dushenkov, B.D. Ensley, I. Chet, and I. Raskin.
4 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment
5 using plants. *Biotechnol.* 13:468-474

6 Salt, C.A., R.W. Mayes, and D.A. Elston. 1992. Effects of season, grazing intensity and diet
7 composition on the radiocesium intake by sheep on a re-seeded hill pasture. *J. Appl. Ecol.* 29:
8 378-387

9 Sawhney, B.L. 1965. Sorption of cesium from dilute solutions. *Soil. Sci. Soc. Amer. Proc.* 29:25-
10 28

11 Schultz, R.K. 1965. Soil chemistry of radionucleides. *Health Physics.* 11: 1317-1324

12 Shaw, G., and J.N.B. Bell. 1991. Competitive effects of potassium and ammonium on caesium
13 uptake kinetics in wheat. *J. Environ. Radioactivity.* 13:283-296

14 Smolders, E., and G. Shaw. 1995. Changes in radiocaesium uptake and distribution in wheat
15 during plant development: a solution culture study. *Plant and Soil.* 176: 1-6

1 Tamura, T. 1964. Selective sorption reactions of cesium with soil minerals. Nucl. Safety.
2 5(3):262-268

3 Tensho, K., K.-L. Yeh, and S. Mitsui. 1961. The uptake of strontium and cesium by plants from
4 soil with special reference to the unusual cesium uptake by lowland rice and its mechanism. Soil
5 and Plant Food. 6: 176-183

6 Watson, R., D. Glick, M. Horsenball, J. McCormick, S. Begley, S. Miller, G. Carroll, and S.
7 Keene-Osborn. 1993. America's Nuclear Secrets, pp. 14-18. Newsweek December 27, 1993.

1 Table 1. Accumulation of cesium in shoots of several plant species from a nutrient solution
2 containing 1 μM CsCl.

3

	Shoot mean dry wt (g)	[Cs] in shoots $\mu\text{g g}^{-1}$ dry wt	Bioaccumulation ratio [†]	Total Cs accumulated in shoots (μg)
7 broccoli	0.062	14	105	0.87
8 cabbage	0.075	22	165	1.58
9 cauliflower	0.065	14	105	0.91
10 colonial bent grass	0.043	6	45	0.26
11 hairy vetch	1.071	15	113	1.11
12 Indian mustard	0.075	16	120	1.22
13 kochia	0.068	8	60	0.54
14 reed Canary grass	0.060	6	45	0.36
15 red fescue	0.028	5	38	0.14
16 tepary bean	0.079	19	143	1.50

17 [†][Cs]_{shoots}/[Cs]_{solution}

Table 2. Effect of several chemical compounds on ^{137}Cs desorption from the BNL soil.

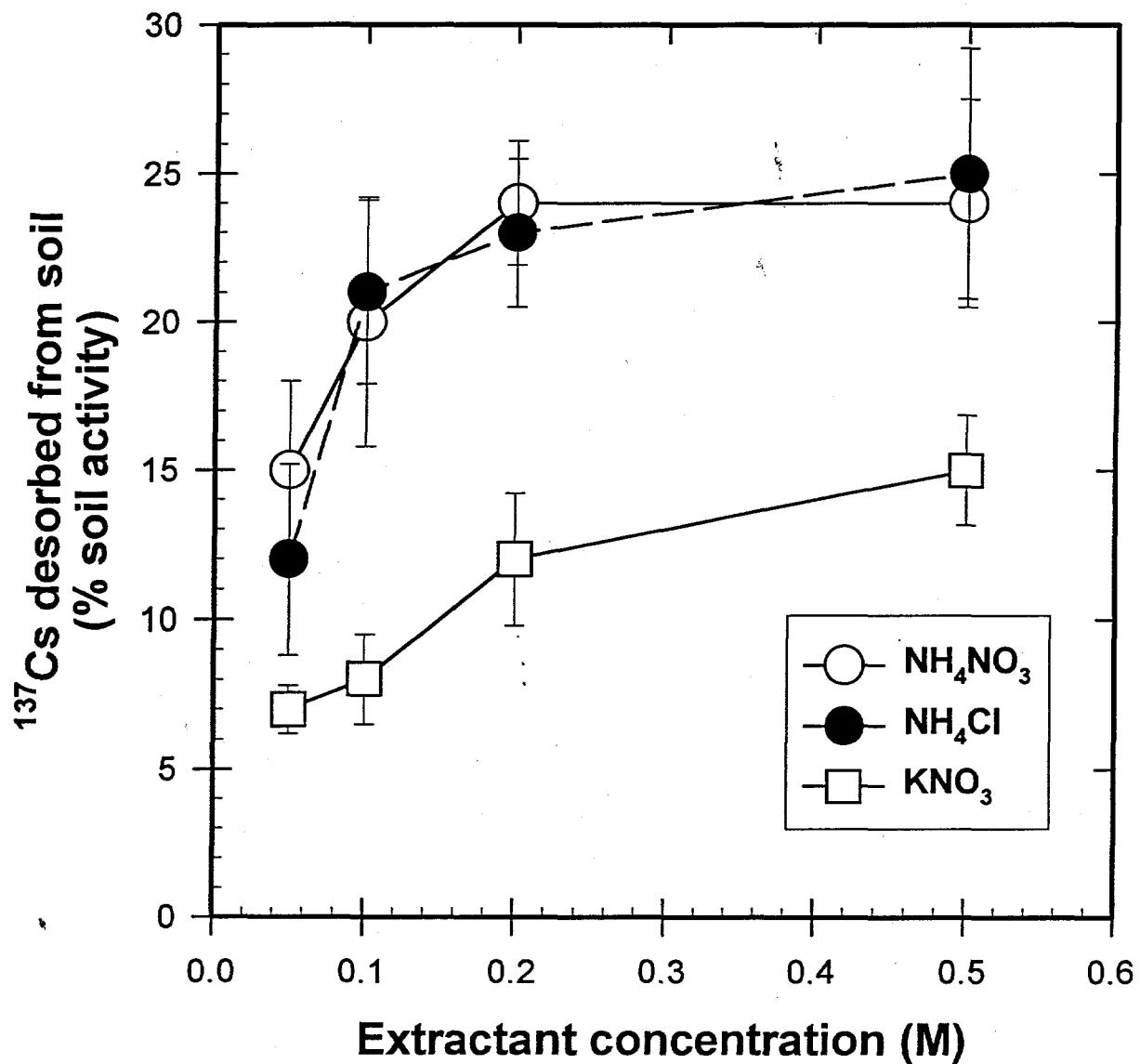
	Ammonium salts				Potassium salts				Organic acids				Mineral acids				Reducing agents				
	NO_3^-	Cl^-	SO_4^{2-}	Acetate	NO_3^-	Cl^-	SO_4^{2-}	Acetate	Formic	Acetic	Malic	Citric	HCl	HNO_3	Na-Dithionite	Hydroxylamin-HCl	EDTA				
0.05 M	15	12	15	†	-	7	8	6	0	0	0	0	1	2	1	3					
0.5 M	24	25	22	-	15	14	14	0	0	0	0	0	3	2	1	1	7				
1.0 M	-	-	-	17	18	-	-	-	-	-	-	-	-	-	-	-	-				

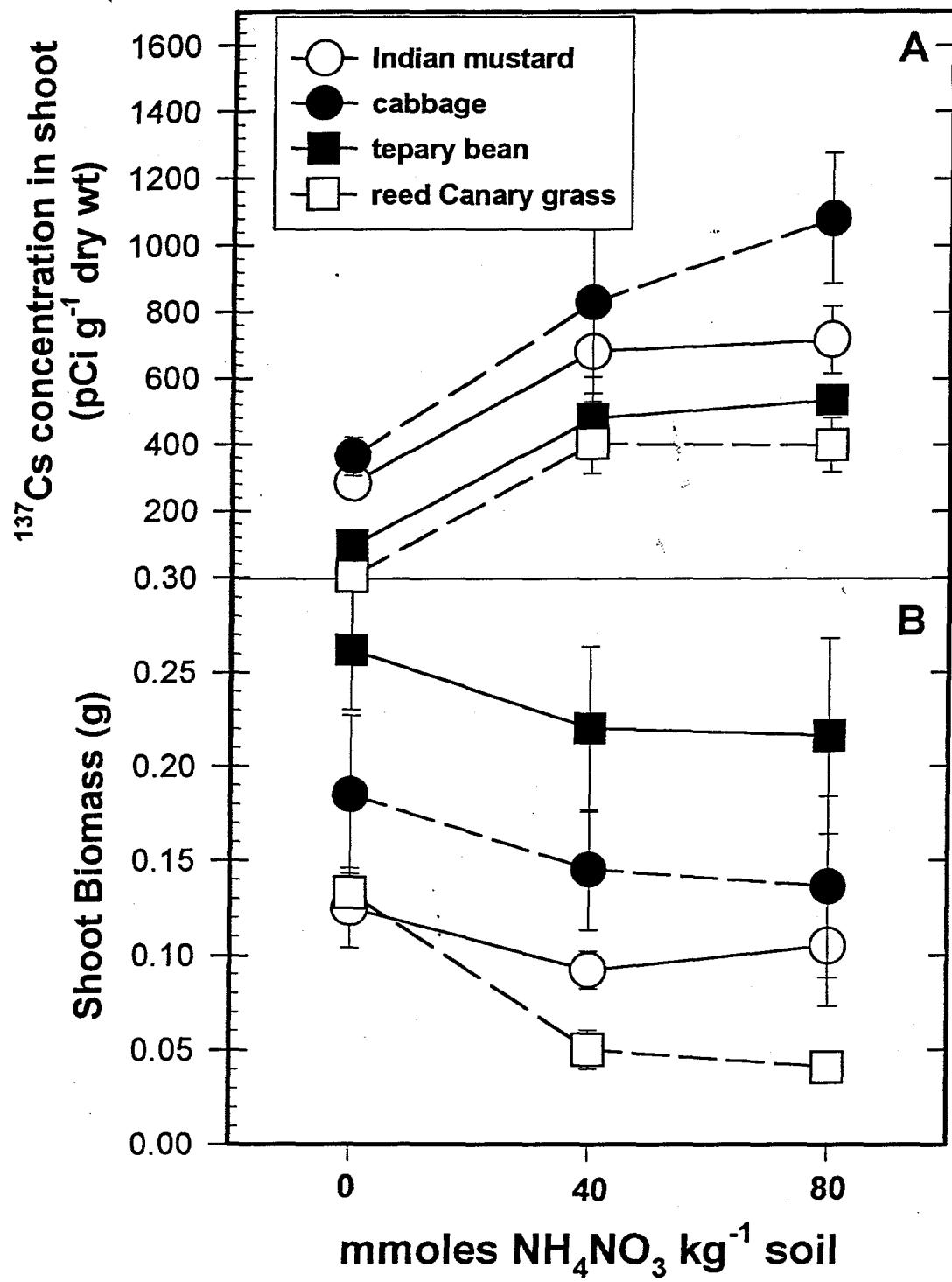
† ^{137}Cs activity in the BNL soil was 400 pCi g dry soil⁻¹

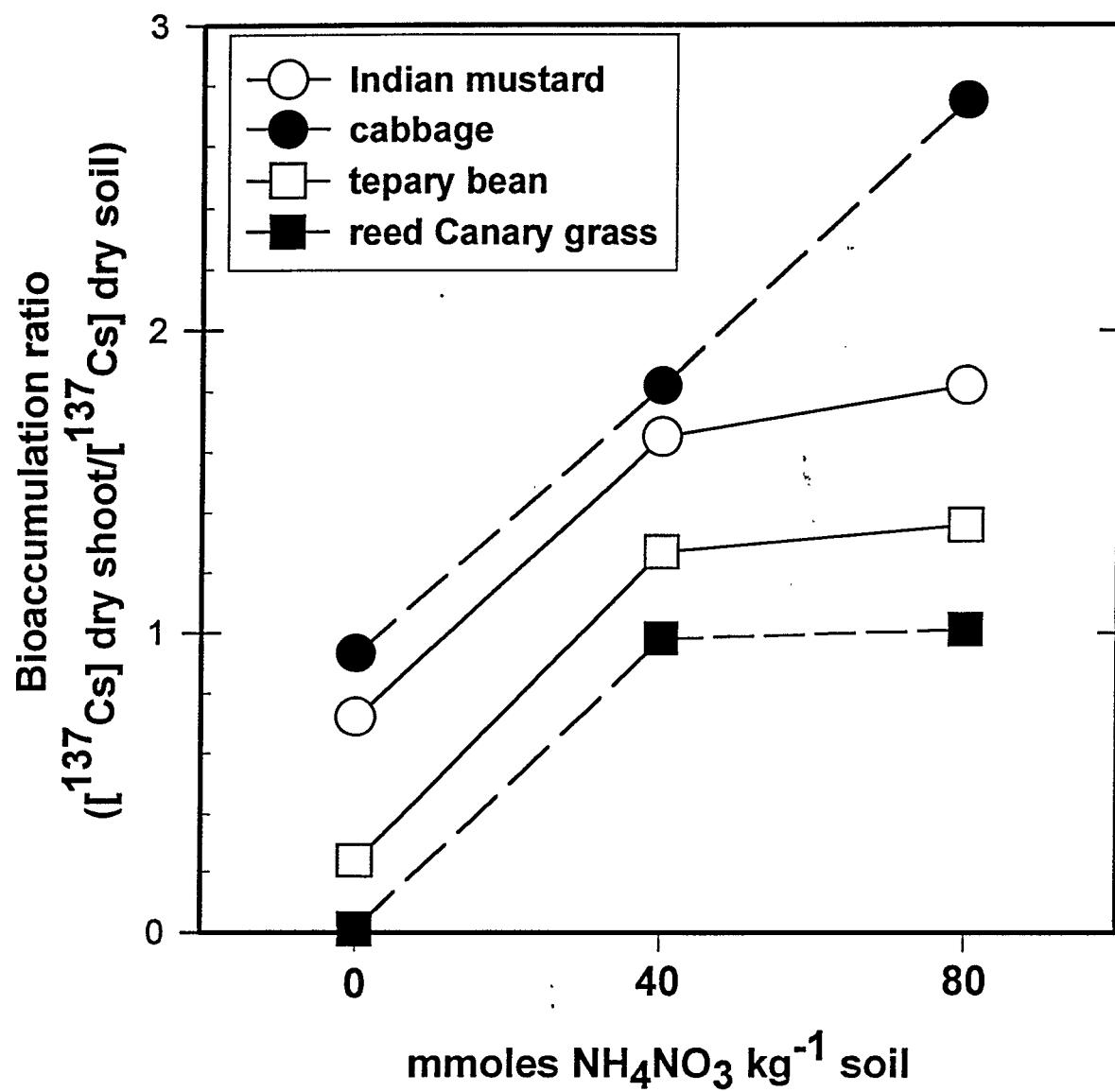
† Data not available

1 Table 3. Effect of soil treatment on ^{137}Cs accumulation[†] in shoots of four plant species.

Soil treatment	Indian mustard		cabbage		tepary bean		reed Canary grass	
	pCi	%	pCi	%	pCi	%	pCi	%
Control (no NH_4NO_3)	37	100	69	100	28	100	1	100
40 mmoles NH_4NO_3	61	165	110	159	100	357	18	1800
80 mmoles NH_4NO_3	64	173	140	203	118	421	12	1200


10 [†]Determined as: $[^{137}\text{Cs}]_{\text{shoot}} \times \text{shoot biomass}$


1 **Figure legends**


2 **Figure 1.** Concentration-dependent desorption of ^{137}Cs from the BNL contaminated soil. Soil was
3 incubated in NH_4NO_3 , NH_4Cl , or KNO_3 at concentrations shown. After 2 h, the slurry was
4 filtered and gamma activity in solution measured.

5 **Figure 2.** Effect of soil treatment with NH_4NO_3 on: A) ^{137}Cs concentration in shoots, and B)
6 shoot biomass of four plant species.

7 **Figure 3.** Effect of soil treatment with NH_4NO_3 on ^{137}Cs bioaccumulation ratio in shoots of 40-
8 day-old plants.

