

325
4,2462
SCR-480

MASTER

Sandia Corporation

..... MONOGRAPH

NEUTRON FLUX AND SPECTRA
MEASUREMENTS IN THE VOID TANK
OF THE TRIGA MARK-F REACTOR

by

K C Humpherys

February 1962

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Issued by
Sandia Corporation,
a prime contractor to the
United States Atomic Energy Commission

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Price \$0.50. Available from the Office of
Technical Services, Department of Commerce,
Washington 25, D. C.

SCR-480
RADIATION EFFECTS ON MATERIALS
TID-4500 (16th Edition)

SANDIA CORPORATION MONOGRAPH

NEUTRON FLUX AND SPECTRA MEASUREMENTS
IN THE VOID TANK OF THE TRIGA MARK-F REACTOR

by

K. C. Humpherys

February 1962

ABSTRACT

Neutron flux and spectra measurements were made in the void tank irradiation chamber of the TRIGA Mark-F reactor in support of radiation effects studies in that facility. Threshold foils were used for the measurements. Measurements were made with three lead-shielding thicknesses; zero, 3, and 4 inches between the reactor core shroud and the points of measurements.

TABLE OF CONTENTS

	Page
Introduction	5
Description of Reactor Facility	5
Experimental Measurements and Results	6
List of References	17

LIST OF ILLUSTRATIONS

	Page
Fig. 1 -- TRIGA Mark-F Reactor	7
Fig. 2 -- Void Tank	8
Fig. 3 -- Transient Power as a Function of Time After Reactivity Insertion of 1.9% $\Delta k/k$	9
Fig. 4 -- Neutron Flux (> 3.0 mev) Horizontal Profiles in Void Tank of TRIGA Mark-F Reactor With No Lead Shielding	12
Fig. 5 -- Neutron Flux (> 3.0 mev) Horizontal Profiles in Void Tank of TRIGA Mark-F Reactor With 3" Lead Shielding	13
Fig. 6 -- Neutron Flux (> 3.0 mev) Horizontal Profiles in Void Tank of TRIGA Mark-F Reactor With 4" Lead Shielding	14
Fig. 7 -- Attenuation of Neutron Fluxes by Lead Shielding	16

LIST OF TABLES

	Page
Table I Neutron Flux (> 3.0 mev) Radial Profiles in Void Tank	11
Table II Void Tank Midplane Neutron Spectra Measurements	15

NEUTRON FLUX AND SPECTRA MEASUREMENTS IN THE VOID TANK OF THE TRIGA MARK-F REACTOR

Introduction

Measurements of the neutron flux and spectra have been made in a portion of the void tank irradiation chamber of the TRIGA Mark-F reactor in conjunction with radiation effects studies being performed by Sandia Corporation. The reactor is owned and operated by General Atomics, La Jolla, California. Measurements were made by the activation analysis of several threshold foils. The foils used and their effective threshold energies¹ were Pu²³⁹, 10 kev; Np²³⁷, 0.70 mev; U²³⁸, 1.5 mev; and S³², 3.0 mev. The measurements were made with zero, 3, and 4 inches of lead shielding between the reactor core shroud and the point of measurements. The neutron flux above 3.0 mev energy was measured with S³² at numerous points throughout the irradiation volume used, while full sets of foils were used for spectra measurements at two or three representative points for each shielding configuration. Neutron flux and spectra measurements have previously been measured in the TRIGA Mark-F core and void tank by others,^{3,4} using different shielding configurations.

Description of Reactor Facility

The TRIGA Mark-F² reactor is designed for pulsed, as well as steady state, operation and has a cylindrical core with aluminum clad fuel elements of enriched uranium-zirconium hydride. These fuel elements give the reactor a prompt negative temperature coefficient of reactivity which limits automatically the reactor power to a safe level and ensures its inherently safe operation as a pulsed reactor.

The reactor core is located in a 25 ft deep pool of water. The water serves as both shield and reflector. The reactor core is suspended from a movable carriage mounted on rails on the reactor room floor and can be moved within the water tank and positioned adjacent to the void tank irradiation chamber. Figure 1 shows a sketch of the reactor, movable carriage, and void tank. The void tank is a semi-annular dry irradiation chamber pressurized with helium gas to prevent water leakage. Figure 2 gives detailed dimensions of the void tank and reactor core.

Pulsed operation of the reactor is accomplished by the rapid ejection from the core of a control rod with compressed air. This results in an excess reactivity which yields a power excursion that is terminated by the negative temperature coefficient of the fuel elements. The reactor operates typically with the following transient characteristics:²

Reactivity insertion	$1.9\% = \Delta k/k$
Maximum power level	1200 Megawatts
Prompt energy release	18 Megawatt-sec
Minimum pulse width	13 millisec
Maximum repetition rate	12 per hour
Minimum period	4 millisec

A typical pulse shape³ is shown in Fig. 3 where the transient power is plotted as a function of time after a reactivity insertion of $1.9\% \Delta k/k$.

Experimental Measurements and Results

Sulfur measurements were made in three horizontal planes within the void tank; at reactor midplane, 25 cm above reactor midplane, and 25 cm below reactor midplane. The midplane, as used for these measurements, was parallel to and located 46 cm below the bottom surface of the void tank lid. Foils were placed on three radial arcs in each of the three horizontal planes. The arcs were restricted to the volume beneath the void tank lid. (The remainder of the void tank volume was filled with styrafoam.) The radii of the three arcs from the axial centerline of

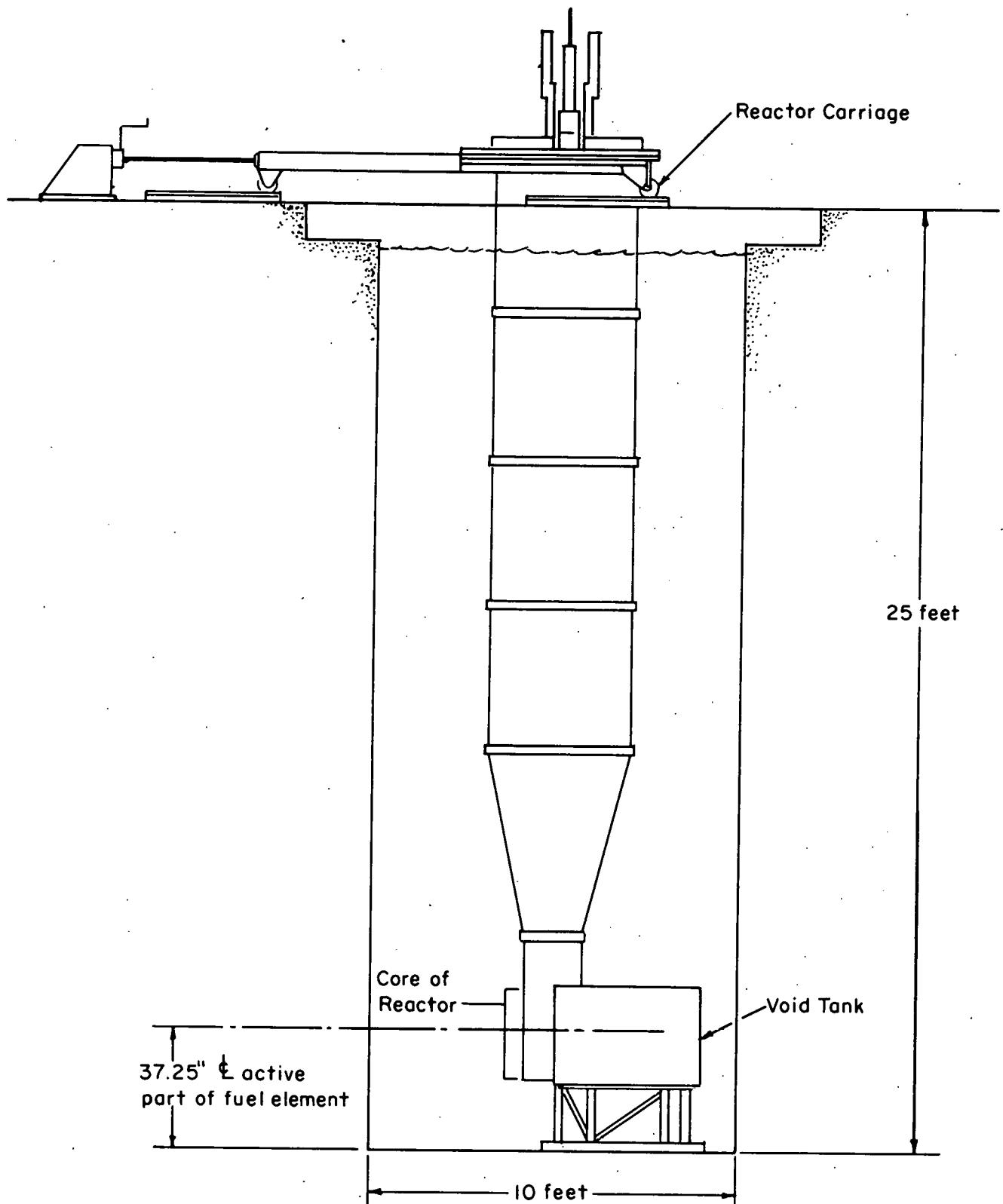


Fig. 1 -- TRIGA Mark-F Reactor

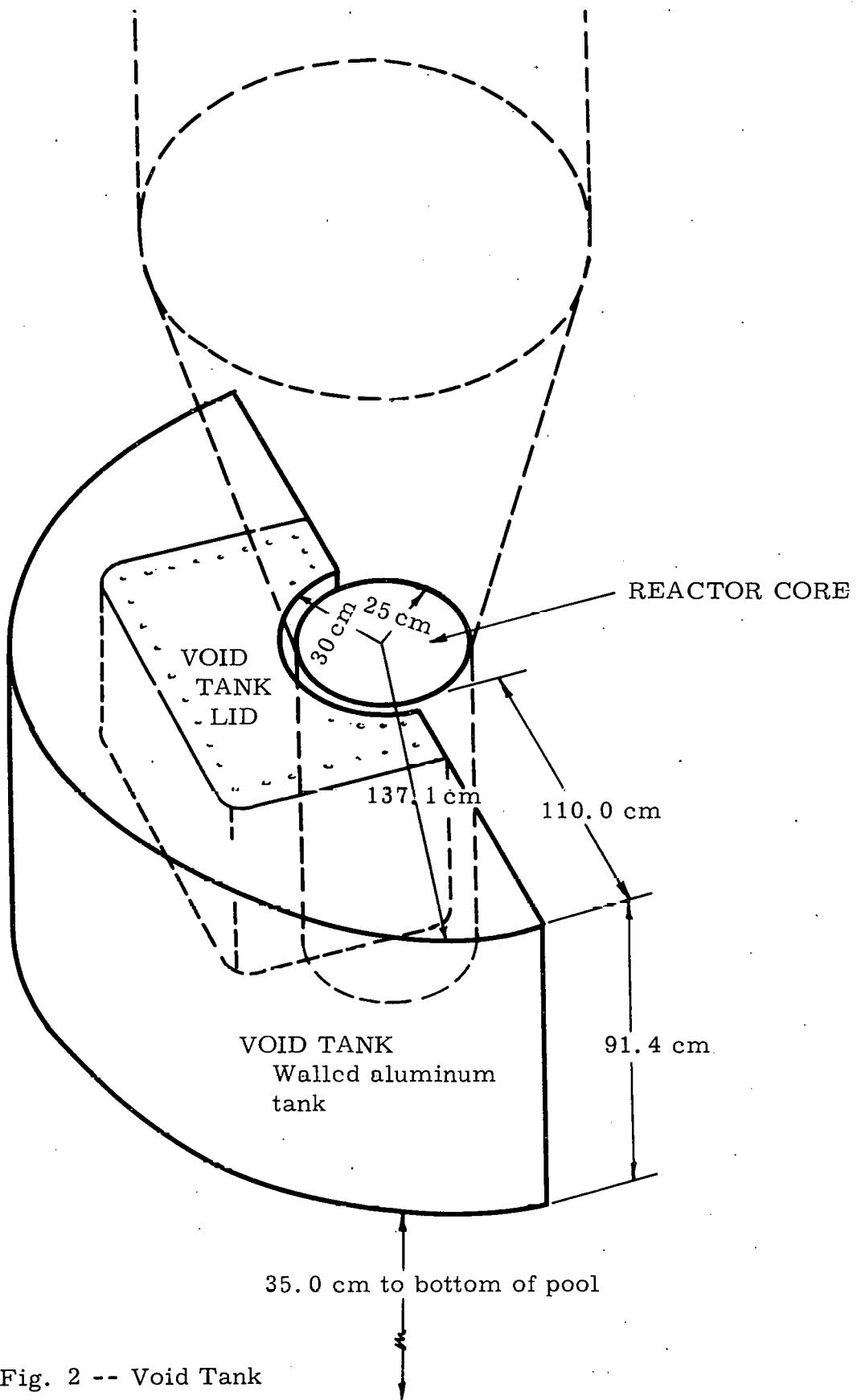


Fig. 2 -- Void Tank

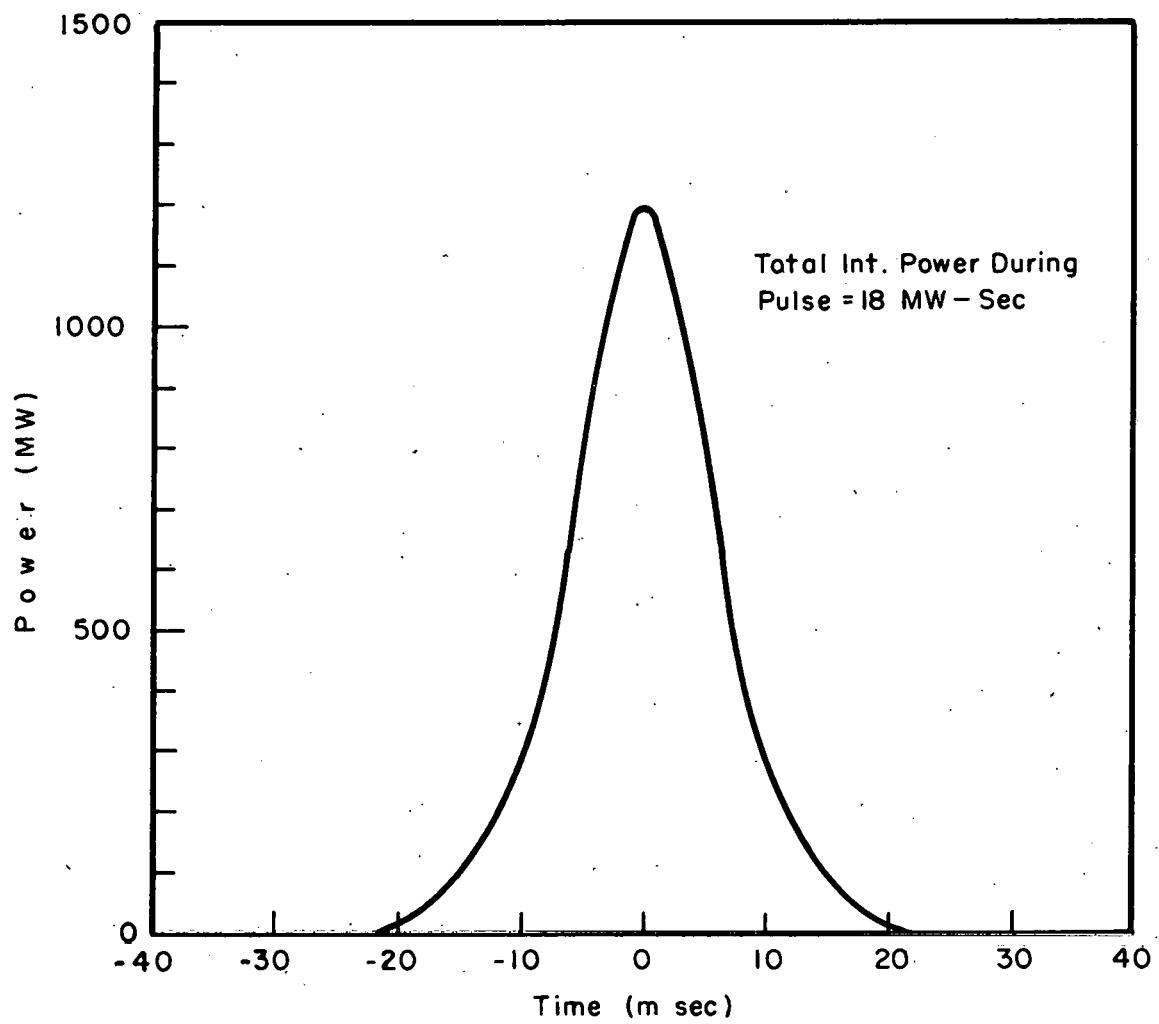


Fig. 3 -- Transient Power as a Function of Time
After Reactivity Insertion of 1.9% $\Delta k/k$

the reactor core were 43 cm, 50 cm, and 62 cm. From three to five sulfur foil measurements were made at various locations on each arc and in each of the three horizontal planes. The locations within the void tank and the measured neutron flux from the sulfur foils are given for the three shielding configurations in Table I. As can be seen from Table I, there is very good agreement (approximately $\pm 5\%$) on a given radial arc in the irradiation volume. The data in Figs. 4, 5, and 6 were taken from Table I and show integrated neutron flux averages versus radial distance from the axial centerline of the reactor core for each of the three shielding configurations and in each of the three horizontal planes.

Complete sets of threshold foils (Pu^{239} , Np^{237} , U^{238} , and S^{32}) were positioned at various locations on the 43 cm and 62 cm arcs in the midplane shelf for each of the three shielding configurations. Measurements were also made on the 50 cm arc of the midplane with 4 inches of lead shielding. The location within the void tank and the measured data are given in Table II. The data are also given normalized to the flux above 0.01 mev. Figure 7 is a plot of neutron flux as a function of lead shield thickness in the midplane on the 62 cm radial arc for each of the four threshold foils.

All data were taken with reactor transients of 18 ± 2 MW-sec energy release, as measured by General Atomics. The neutron flux measurements on the various transients were normalized with respect to each other by means of sulfur monitor foils positioned in a reproducible position outside of the void tank. The transient giving most nearly the median activity on the monitor foil was used as the normalization reference point.

TABLE I

Neutron Flux (> 3.0 mev) Radial Profiles in Void Tank

0" of Lead Shielding

25 cm Above Midplane			Midplane			25 cm Below Midplane		
43 cm arc from core centerline	50 cm arc from core centerline	62 cm arc from core centerline	43 cm arc from core centerline	50 cm arc from core centerline	62 cm arc from core centerline	43 cm arc from core centerline	50 cm arc from core centerline	62 cm arc from core centerline
1.51×10^{12} nvt 1.44 1.55 1.62 1.71	1.22×10^{12} nvt 1.27 1.30 1.38 1.43	9.83×10^{11} nvt 10.3 9.56	2.57×10^{12} nvt 2.54 2.61 2.52 2.71	1.62×10^{12} nvt 1.82 1.94 1.94 1.92	1.15×10^{12} nvt 1.18 1.27	10.30×10^{11} nvt 9.84 9.84 9.72 10.64	9.56×10^{11} nvt 9.53 9.55 9.59 9.44	7.27×10^{11} nvt 8.25 7.88
1.55×10^{12} ave	1.32×10^{12} ave	9.89×10^{11} ave	2.59×10^{12} ave	1.84×10^{12} ave	1.20×10^{12} ave	1.01×10^{12} ave	9.54×10^{11} ave	7.73×10^{11} ave

3" of Lead Shielding

25 cm Above Midplane			Midplane			25 cm Below Midplane		
6.21×10^{11} 6.08 6.95 6.78	5.41×10^{11} 5.38 5.24 5.51	4.22×10^{11} 4.20 4.20	1.11×10^{12} 1.23 1.25 1.11	6.83×10^{11} 7.91 8.52 8.48	5.11×10^{11} 5.08 5.41	4.07×10^{11} 4.09 4.00 3.91	3.91×10^{11} 3.96 3.78 3.46	3.15×10^{11} 3.13 3.17
6.50×10^{11} ave	5.39×10^{11} ave	4.21×10^{11} ave	1.18×10^{12} ave	8.05×10^{11} ave	5.21×10^{11} ave	4.02×10^{11} ave	3.79×10^{11} ave	3.15×10^{11} ave

4" of Lead Shielding

25 cm Above Midplane			Midplane			25 cm Below Midplane		
4.37×10^{11} 4.71 4.80 4.84	3.86×10^{11} 4.06 4.26 4.65	3.15×10^{11} 3.24	8.39×10^{11} 8.24 8.50 8.34	5.03×10^{11} 5.93 5.99 6.16	3.82×10^{11} 3.76	2.57×10^{11} 2.63 2.80 3.64	2.69×10^{11} 2.66 2.82 3.27	2.20×10^{11} 2.42 2.42 2.88
4.58×10^{11} ave	4.21×10^{11} ave	3.28×10^{11} ave	8.37×10^{11} ave	5.78×10^{11} ave	3.74×10^{11} ave	2.80×10^{11} ave	2.76×10^{11} ave	2.35×10^{11} ave

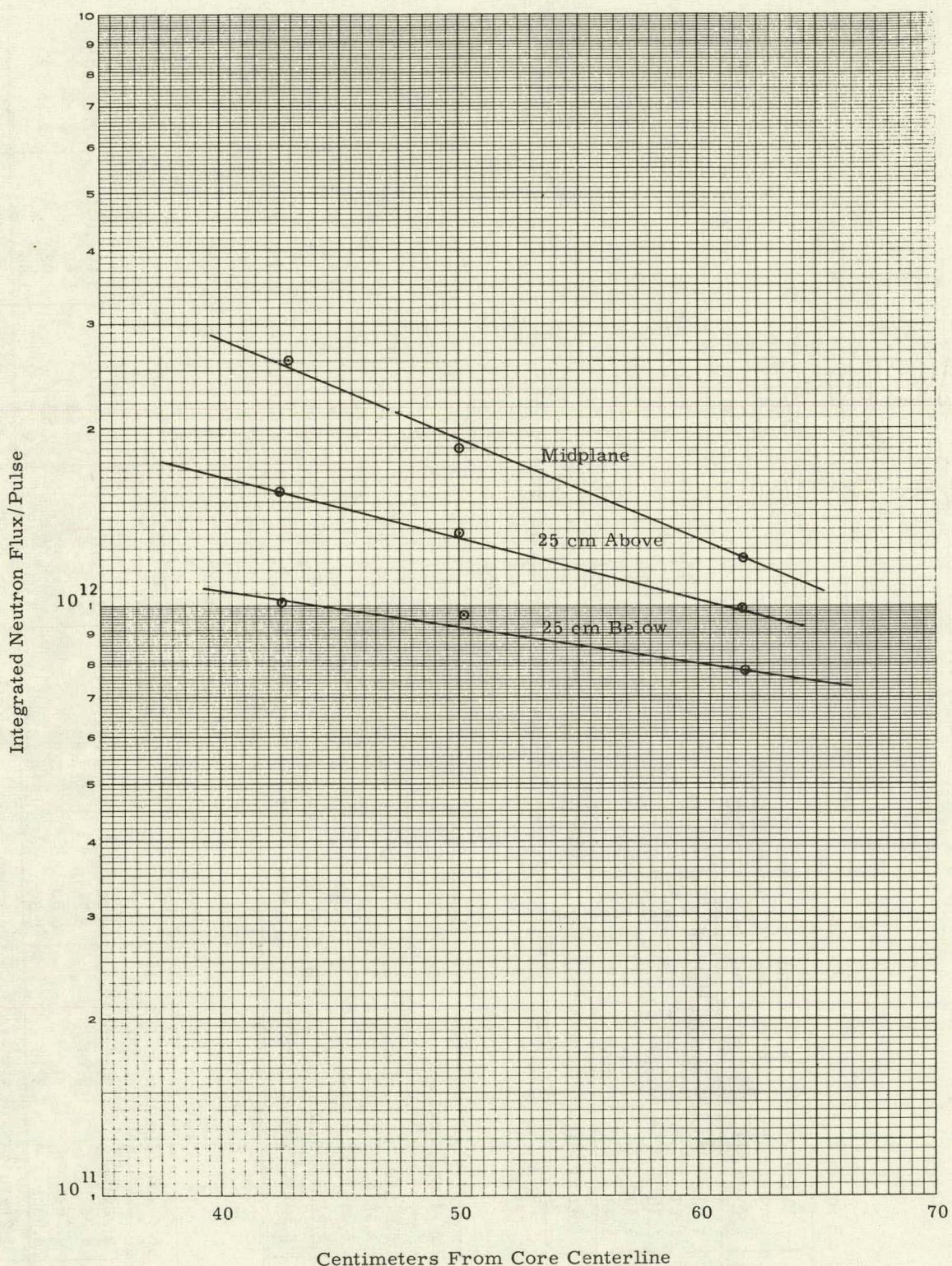


Fig. 4 -- Neutron Flux (> 3.0 mev) Horizontal Profiles in Void Tank of TRIGA Mark-F Reactor With No Lead Shielding

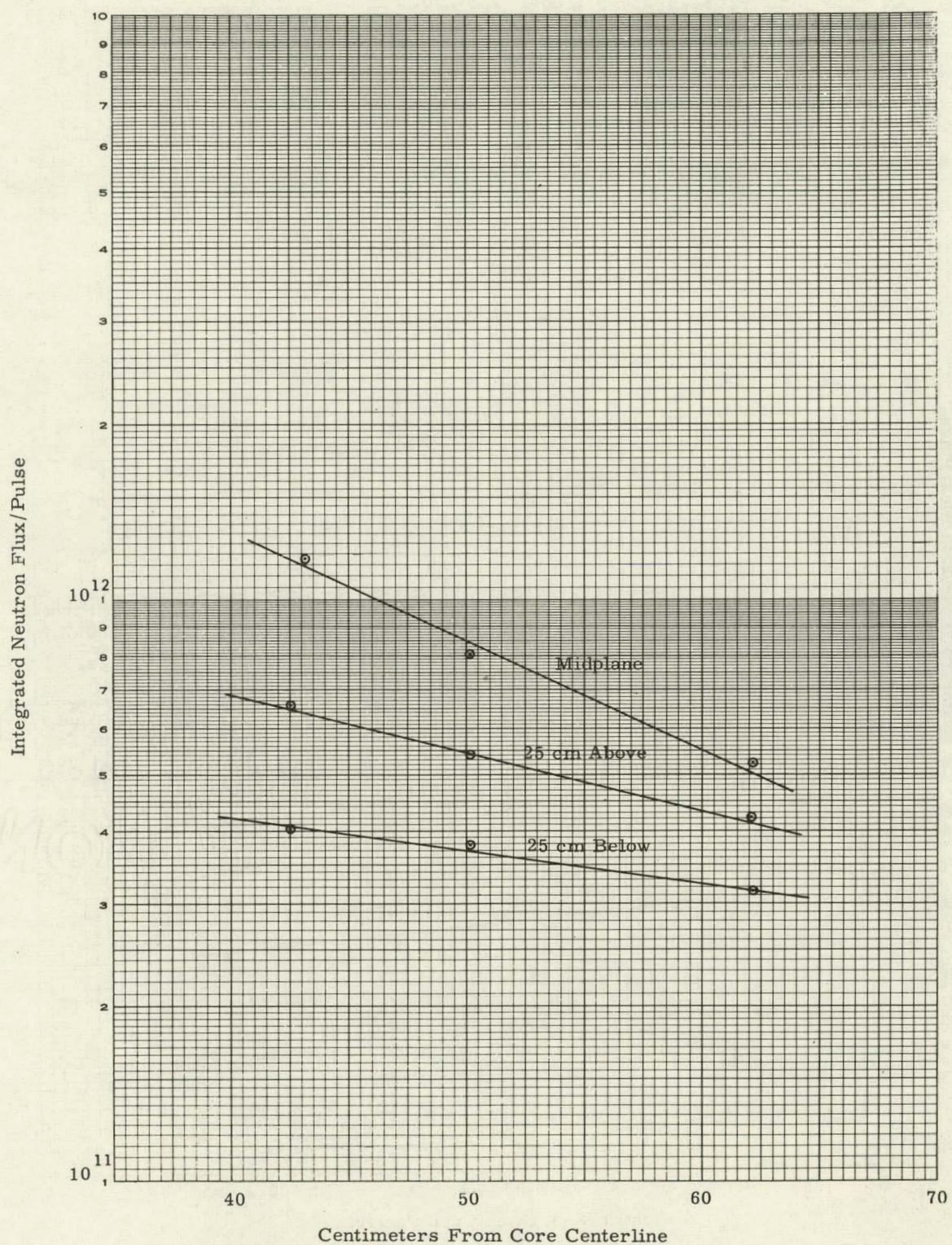


Fig. 5 -- Neutron Flux (> 3.0 mev) Horizontal Profiles in Void Tank
of TRIGA Mark-F Reactor With 3" Lead Shielding

Integrated Neutron Flux/Pulse

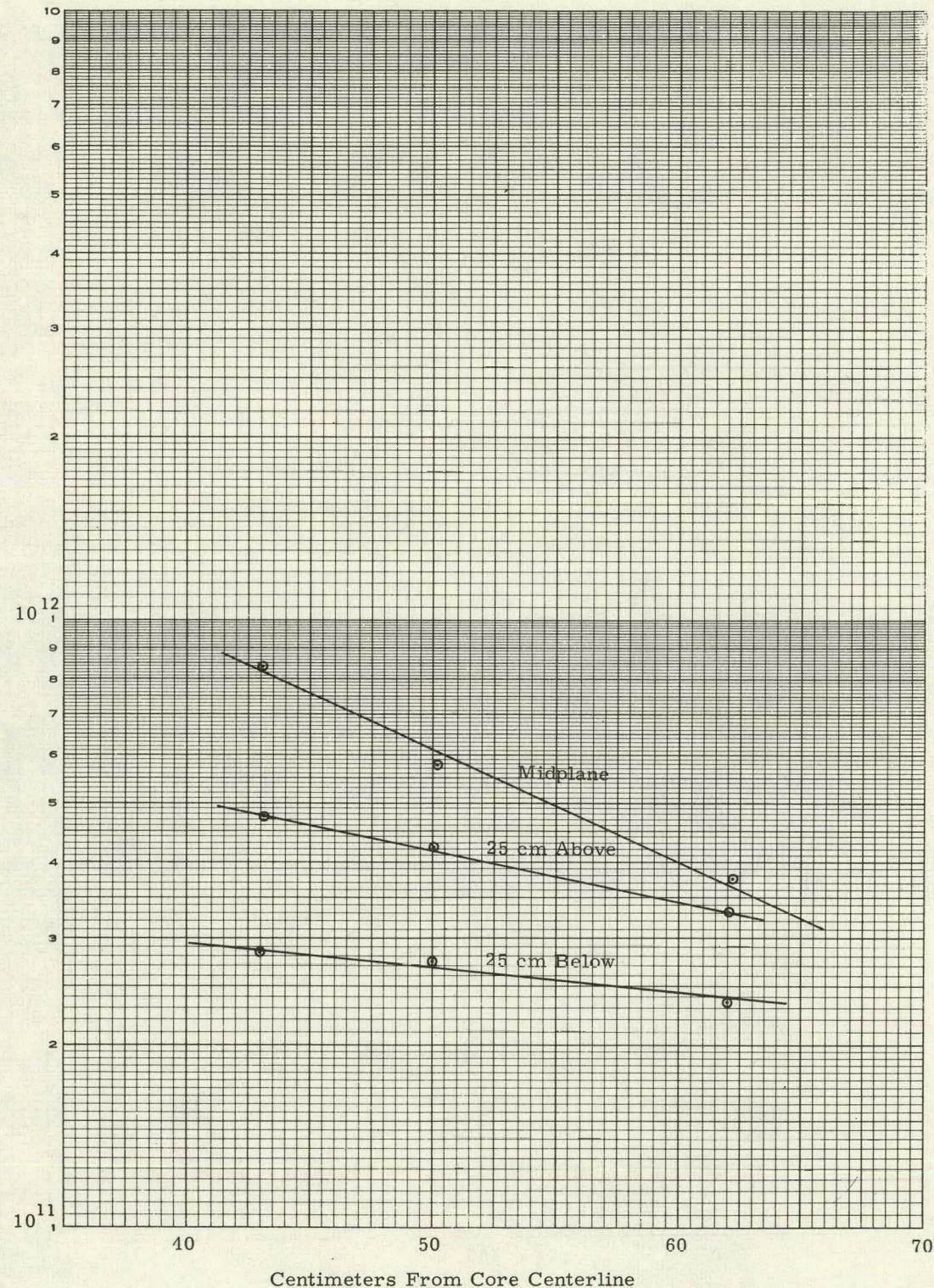


Fig. 6 -- Neutron Flux (> 3.0 mev) Horizontal Profiles in Void Tank
of TRIGA Mark-F Reactor With 4" Lead Shielding

TABLE II
Void Tank Midplane Neutron Spectra Measurements

		0" of Lead Shielding					
Foil and threshold	nvt	43 cm from centerline		50 cm from centerline		62 cm from centerline	
		normalized	nvt	normalized	nvt	normalized	nvt
Pu ²³⁹ 0.01 mev	1.63×10^{13}	1.00				7.98×10^{12}	1.00
Np ²³⁷ 0.07	1.23×10^{13}	.75				6.06×10^{12}	.76
U ²³⁸ 1.5	8.50×10^{12}	.52				2.94×10^{12}	.37
S ³² 3.0	2.59×10^{11}	.16	1.84×10^{12}			1.20×10^{12}	.15

		3" of Lead Shielding					
Foil and threshold	nvt	43 cm from centerline		50 cm from centerline		62 cm from centerline	
		normalized	nvt	normalized	nvt	normalized	nvt
Pu ²³⁹ 0.01 mev	1.20×10^{13}	1.00				5.75×10^{12}	1.00
Np ²³⁷ 0.7	8.75×10^{12}	.73				3.60×10^{12}	.63
U ²³⁸ 1.5	4.57×10^{12}	.38				1.65×10^{12}	.29
S ³² 3.0	1.18×10^{12}	.10	8.05×10^{11}			5.21×10^{11}	.09

		4" of Lead Shielding					
Foil and threshold	nvt	43 cm from centerline		50 cm from centerline		62 cm from centerline	
		normalized	nvt	normalized	nvt	normalized	nvt
Pu ²³⁹ 0.01 mev	9.38×10^{12}	1.00	7.42×10^{12}	1.00	4.87×10^{12}	1.00	
Np ²³⁷ 0.7	6.71×10^{12}	.71	4.65×10^{12}	.63	3.13×10^{12}	.64	
U ²³⁸ 1.5	3.20×10^{12}	.34	2.02×10^{12}	.27	1.22×10^{12}	.25	
S ³² 3.0	8.40×10^{11}	.09	5.78×10^{11}	.08	3.75×10^{11}	.08	

Integrated Neutron Fluxes

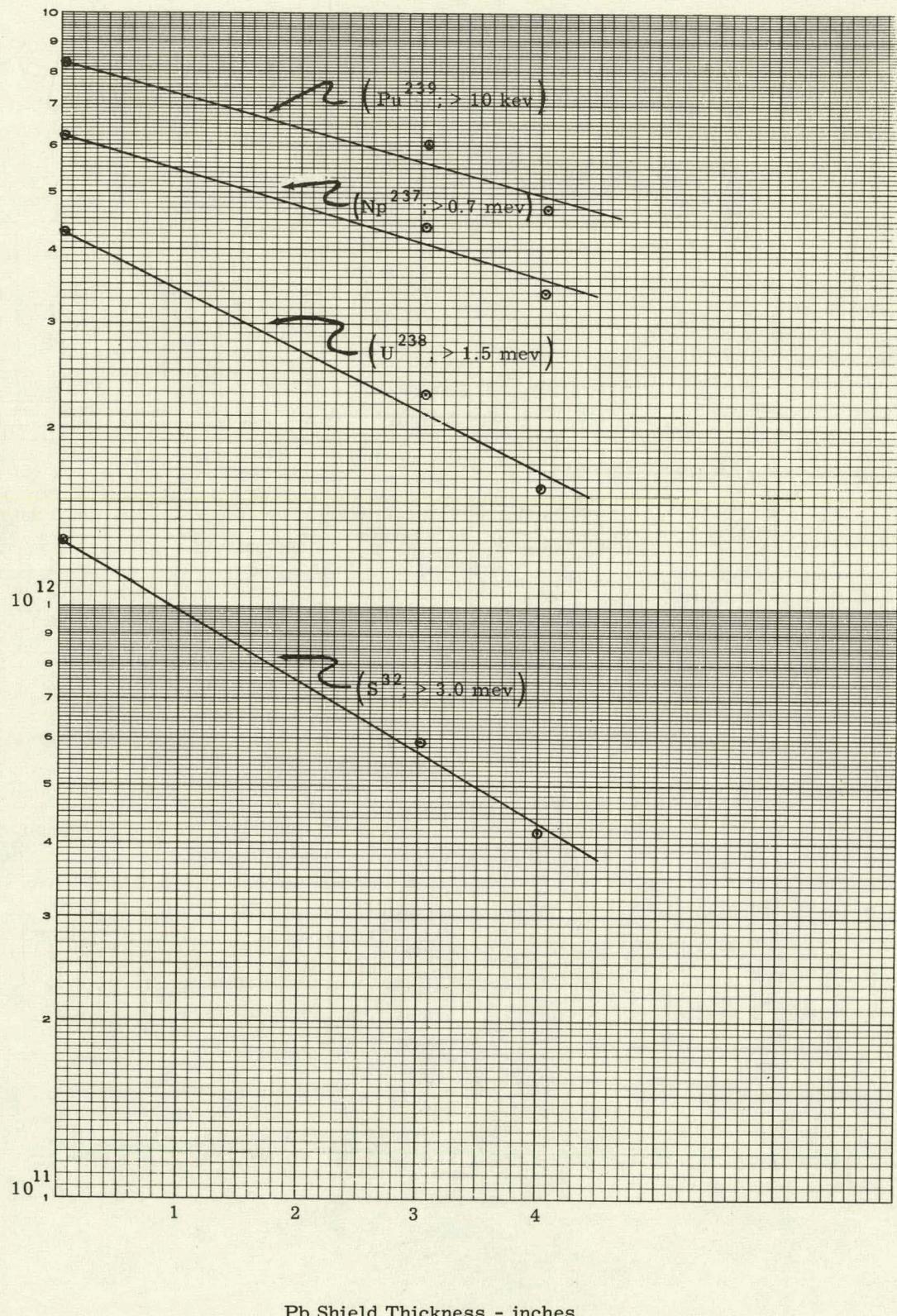


Fig. 7 -- Attenuation of Neutron Fluxes by Lead Shielding

List of References

1. Humpherys, K. C. and Buckalew, W. H., "Foil Activation of Neutron Flux and Spectra Measurements in Reactor Environments," (to be published).
2. General Atomics, "TRIGA Mark-I and Mark-F Reactors and Supporting Facilities," GA-1695 Rev A (March 1961).
3. Leidenheimer, G., Quam, W., Leek, C., and Borella, H., "Dosimetry Measurements of the General Atomic TRIGA Mark-F Reactor," EG&G Report #S-38 (May 1961).
4. McNeilly, J. H. and Kinch, J. W., "Neutron Flux Measurements of the TRIGA Mark-F Reactor," Sept. 1961.

TID-4500(16th Edition)
RADIATION EFFECTS ON MATERIALS

<u>No. of</u> <u>copies</u>	<u>Distribution</u>
603	UC-40