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ABSTRACT 

Large , plutonium-fueled, fast r e ac to r s will have a 
different kinetic behavior thanfas t r eac to r s fueled with U^^ ,̂ 
due to the much s m a l l e r delayed-neutron fract ion emit ted 
in the fissioning of plutonium. 

The fissioning of Pu^*°, Pu^^^ Pu^*^, and especial ly 
U^^ ,̂ which emit m o r e delayed neutrons pe r fission than 
Pu^^^, int roduces a cons iderable inc rease in ^eff over that 
for a hypothetical pure Pu^''^ r eac to r . 

The cases cons idered a r e 800-, 1500- and 2500-l i ter 
co re s fueled with plutonium of different isotopic content, 
which lead to effective delayed-neutron fractions of approx­
imately one-half the values of s imi l a r U^^^-U^^^-fueled fast 
r e a c t o r s . The energy spec t rum and the number of f issions 
weighted with their impor tance a re recorded in o rde r to 
reason physical ly on the obtained p a r a m e t e r s . 

INTRODUCTION 

Due to the inc reased in t e re s t in l a rge , plutonium-fueled, fast r e a c ­
t o r s , we obtained some important physics quanti t ies re la ted to the kinet ics 
behavior and stabil i ty of such s y s t e m s . 

The p rompt neutron lifetime l-p and the effective delayed neutron 
fract ion ]3eff have been evaluated by using a machine p rogram '1 ) which 
uti l ized as input the space and energy-dependent rea l and adjoint flux for 
mult igroup solutions in spher ica l geomet ry . In o rde r to be able to reason 
physical ly on the obtained p a r a m e t r i c va lues , the total number of fissions 
for each Pu isotope, as well as for U^^ ,̂ has been evaluated for all co re s . 
Express ions propor t ional to the worth of prompt and delayed neutrons were 
obtained. All wor th rat io functions a r e re la ted to the worth of a prompt 
Pu^^'' neutron in the core . Final ly, six ]3gff values a re obtained for each 
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delayed neutron p r e c u r s o r family. By using B U M , ' ^ the t ransfer function 
code, one gets the ze ro -power t r ans fe r function ZP(JCD). The cores used 
as represen ta t ive examples were the ones repor ted by Yiftah and Okrent.'-^/ 
F o r the 1500-l i ter c o r e s , the effect on the above p a r a m e t e r s due to dif­
ferent Pu isotopes , i .e . , Pu" ' ' , Pu^"*", Pu^^\ and Pu^^^, have been calculated, 
as well as the var ia t ions due to use of Pu meta l , Pu oxide or Pu carbide 
fuels. The effect of core s ize was studied by considering 800-, 1500-, and 
2500-l i ter , pure Pu^^^ meta l , oxide, and carbide c o r e s . The diluent in all 
c o r e s , as well as the fer t i le m a t e r i a l in the blanket, was U"*. 

KINETICS PARAMETERS TO BE EVALUATED 

The formula used to obtain /Sgff, £p, and worth functions follows 
essent ia l ly the basic definitions given in the papers by Long et al. ,('*) and 
by Meneghett i l^/: 

Fissmatm L J \ | - 1 / \ i » l / 

'"' p, J , . {""/(I,'"'"'*')(,!""'*;) " • " " / ( ! "'""*') i l '"*0 ••} *" 
The f i rs t factor under the integral sign in the numerator of Eq. (l) 

1 
1=1 

{v^i)T 0i (2) 

is propor t ional to the number of f ission neutrons born in all groups. In 
o rde r to get the number of delayed neutrons , we multiply the sum (2) by 
/3"^, the delayed neutron fraction for m a t e r i a l m, where 

/3""MF /^"" • (3) 

It is impor tant to r e m e m b e r that jB^̂  is obtained from two measured 
quant i t ies , the total number of delayed neutrons per fission, (n/F)^^, for 
m a t e r i a l m, and the total neutrons re leased per fission, v^^, for ma te r i a l 
m . Both quanti t ies are energy dependent, and it is advisable to state the 
reference for both values if numer ica l values for delayed neutron fractions 
a r e quoted. 

The second factor under the in tegral sign in the numerator of 
Eq. (1), 



where 

1 
J = i 

/3dj 

r ep re sen t s a feeding of the delayed neutrons with energies varying in the 
range from 200 to 500 kv into the p roper energy group in the mult igroup 
representa t ion . F u r t h e r m o r e we have to take into account the importance 
0- of a neutron in this group. 

In these calculat ions, both the rea l and adjoint flux a re normal ized , 
but since all quantit ies in this paper a re rat ios of 0 and 0*, we don't have 
to be concerned with this factor. The numer ica l value of Eq. (2) after in­
tegrat ion over all regions and fissionable m a t e r i a l s r e p r e s e n t s , therefore , 
a normal ized number of fission neutrons . Finally, we integrate the num­
e r a t o r of Eq. (l) over all regions where fission takes place and sum over 
all f issionable m a t e r i a l s . 

In the denominator we sum up all the delayed and prompt neutrons 
born in all regions for all f issionable m a t e r i a l s . The quantity X ; separa tes 
the prompt fission neutrons born into the individual energy groups, and then 
we attach the p roper importance to them expressed by (p^, the adjoint flux. 

For kinet ics studies we must obtain the individual /3eff(n) ^o^ the 
usual six famil ies of p r e c u r s o r s : 

„ Fiss.mat.ni I -̂  Vj-l / Vj-1 / J / r\ 
Peff(nl" v^ f /./16 \ /16 \ /./16 „ \ /16 „ \ 1 w / 

The only difference be'tweeh Eq. (5) and Eq. (l) is that in the 
f' ' 1 '" i • m 

numera tor we inse r t for the delayed neutron fraction j3/^\ the delayed 
neutron fraction for the precursor - fami ly n for each fissionable m a t e r i a l 

I 

nn. i • 

PROMPT'i'lSfEUiTRON LIFETIME I 

: ' 1 1 i I 
The formula for the prompt 

IS 

P 

neutron lifetime in mult igroup notation 

dV 

F i s s . M a t . m ^ \i=i / \ j = i / 

(6) 

dV 



where v^ is the average speed of a neutron in a group: 

(7) 

The above quantity was evaluated in two ways. F i r s t , it was assumed that 
both rea l and ajoint flux a r e the same (one-group per turbat ion theory) ; 
then the spec t rum was a s sumed to be proport ional to l / E , as one gets in 
a medium with pure sca t te r ing without absorpt ion. Secondly, a 574-energy-
group solution by Hummell^) for an 800- l i te r plutonium (TYPE A) oxide 
core was used to evaluate average neutron speeds in the l6 -group set of 
YOM.' ' The numer i ca l var ia t ions on the prompt neutron lifetime by both 
methods were found to be insignificant. 

ENERGY SPECTRUM FOR LARGE FAST REACTORS 

As a r ep resen ta t ive i l lus t ra t ion we show in Fig. 1 the spec t rum of 
a 1500-l i ter Pu (TYPE C) me ta l , oxide, and carbide-fueled fast reac tor . 
The adjoint flux for the oxide case is a lso shown. 

WORTH FUNCTIONS 

The evaluated worth functions for delayed and prompt neutrons a re 

i%>^ f̂)P*i)l I P 3 ] * * ) ' ' V 
W? =-̂  ^^" ^, . , '-^^^ '- (8) 

. m 

and 

[YivZiYC 0i) dv 

,.. I'---''-Xl̂ -̂̂ -
p /(I {v^i)T <Pi\ dV 
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Fig. 1 

COMPARISON OF SPECTRA CALCULATED FROM 1500-LITER METAL, 
OXIDE AND CARBIDE, PLUTONIUM (TYPE C) FUELED FAST REACTORS 

FUNDAMENTAL DELAYED-NEUTRON DATA 

The la tes t available delayed-neutron data for P u " ' , Pu "̂*", and 
Pu^*^ was taken from Cox,(8) for Pu^^^ from Smith,(9) and for U"^ from 
ANL-5800.(10) 



The delayed-neutron spec t rum was assumed to be the same for all 
f issionable m a t e r i a l s , i .e . , Xi is the same for all f issionable ma te r i a l s 
considered. Keepin( l l ) d i s cus ses the delayed-neutron energies for the 
54- , 22 - , 5 .9- , 2 .2 - , 0 .46- , and 0.13-sec half-life p r e c u r s o r s of U " ^ 
Stehney(12j suggests that it is reasonable to assume that the delayed-
neutron spec t rum for the Pu isotopes is the same as for U"^. This sug­
gests that the same p r e c u r s o r s a r e responsible for the delayed neutrons 
in e i ther case , U^̂ ^ or the Pu isotopes . Fo r all Pu isotopes the delayed 
neutrons from the 55-sec half-life p r e c u r s o r have a mean energy of 
approximately 250 kv and a r e therefore fed into energy group 7 inYOM.^'/ 
The five other groups with energ ies ranging from 300 to 500 kv a re given 
off into Y 0 M ( 7 ) energy group 6. 

All numer ica l values used for P u " ^ Pu^*^, Pu^'^^ Pn^*^, and U"^ 
a re l is ted in Table I. 

NUMERICAL EVALUATION FOR REPRESENTATIVE 
LARGE FAST REACTOR CORES 

The cores invest igated numer ica l ly a re taken from Yiftah and 
Okrent .(3/ F o r c lar i ty of presenta t ion we repeat here the pert inent data 
for the fuel and the plutonium composi t ions , as well as the geometr ica l 
dimensions of the r e a c t o r s invest igated. 

Core Volume: 

800, 1500, and 2500 l i t e r s 
(Where n e c e s s a r y , some additional core volumes were used.) 

Core Volume F r a c t i o n s : 

Fuel and F e r t i l e Mate r ia l 0.25 
St ruc tura l Mater ia l 0.25 
Coolant 0.5 

Fue l s : 

P u - l 
P u O 
P u C 

P l u t o n i u m C o m p o s 

T Y P E 

A 

B 

C 

a " 8 

2-UO2 

-uc 

i t i on : 

P u " 9 

100.0 
74.7 
40 .0 

D 

Atom 

p^240 

0 

10, 

10. 

.2 

.0 

e n s i t y , g / c c 

19.0 
8.4 

11.39 

P e r Cent 

Pu^^i 

0 
12.4 
25.0 

p^242 

0 
2 . 7 

2 5 . 0 



TABLE I 

FUNDAMENTAL DELAYED-NEUTRON DATA 

FISSIONABLE 
MATERIAL 

P u " ^ 

Pu2^° 

Pu^^ ' 

Pu^^'*^ 

u"» 

N) 

(1) 0.0127690 

(2) 0.03008M6 

(3) 0.1237760 

(M) 0.325M225 

(5) I . I 2 I 6 0 I 0 

(6) 2.6970817 

(1) 0.0129415 

(2) 0.0313076 

(3) 0.I3U8540 

(U) 0.33321452 

(5) I.356U570 

(6) M.0299M00 

(1) 0.0128000 

(2) 0.0299000 

(3) 0.1238000 

(U) 0.3519000 

(5) 1.6120000 

(6) M.6210000 

(1 ) 0.0128360 

(2 ) 0.0315060 

(3) 0.1155250 

(14) 0.31465750 

(5) 1.3863000 

(6) 3.U657500 

(1) 0.0132000 

(2) 0.0321000 

(3) 0.1390000 

(14) 0.3580000 

(5) 1,14100000 

(6) 14.0200000 

C
O

. 

(1) 0.000072141 

(2) 0.00062759 

(3) 0.00014141433 

(U) 0.00068621 

(5) 0.00017931 

(6) 0.00009310 

(1) 0.00006666 

(2) 0.00072121 

(3 ) 0.000149090 

(U) 0.0009514514 

(5) 0.00036061 

(6) 0.00007273 

(1) 0.00005168 

(2) 0.00I22U83 

(3) 0.00092282 

(14) 0.00208050 

(5) 0.00097315 

(6) 0.00008389 

(1) 0.00003030 

(2) 0.00163636 

(3) 0.00106060 

(14) 0.00333330 

(5) 0.00I8I8I8 

(6) 0 . 0 0 0 I 2 I 2 I 

(1) 0.00020U00 

(2) 0.00215100 

(3) 0.002514300 

(U) 0.00609200 

(5) 0.00353300 

(6) 0.00117800 

p^g = 0.96557700 

P = O.O3I4I42UI4O 

p = 0.002I03U5 

V = 2.9 

REF. ( 8 ) 

p^^ = 0.975021430 
do 

p^^ = 0.021499800 

p = 0.00266660 

V = 3.3 

REF. ( 8 ) 

P^^ = 0.99031600 
do 

p = 0.00968305 

p = 0.00533685 

V = 2.98 

REF. ( 8 ) 

P_,̂  = 0.96212100 
do 

p^^ = 0.03787800 

p = 0.00799995 

V = 3.3 

REF. ( 9 ) 

p = 0.98707000 

P = 0.01299000 

p = 0.01570000 

V = 2.62 

REF. (10) 



Coolant: 

Liquid Sodium 0.84 g /cc 

St ructura l Mate r ia l : Blanket Thickness : 

Stainless Steel 45 cm (uranium) 

Blanket Volume F r a c t i o n s : Reflector Thickness : 

U"^ 0.6 30 cm 

Na 0.2 Reflector Volunae F r a c t i o n s : 

Fe 0.2 Fe 0.6 

Na 0.4 

The effect of different fuels was investigated by considering 
1500-l i ter co re s with different plutonium composi t ions : TYPE A, B, and 
C for all th ree fuels, i .e . , Pu-U"^ , PUO2-UO2 and PuC-UC in the core . 

The effect of varying core volume was shown by considering 800- , 
1500-, and 2500-l i ter co re s with plutonium TYPE A; Pu-U"®, PuOz-UOz 
and PuC-UC fuels. 

The numer i ca l values a r e shown in Tables II through VI. 

ZERO-POWER TRANSFER FUNCTION ZP(ja)) 

For kinet ics studies it is of in te res t to obtain the ze ro -power t r a n s ­
fer function. Argonne code B U M ( 2 ) was used for this purpose . The data 
n e c e s s a r y to evaluate ZP(J6D)V13J a r e the effective delayed neutron f rac t ions , 
^ei£{l) /^eff(6)' ^^^ ^^^ neutron lifetime i p , l i s ted in Tables II through 
VI. 

The decay constants X used for al l t r ans fe r functions a r e the values 
for Pu"^ l is ted in Table I. The effect of using different decay constants 
was invest igated and found to be negligible. 

The values for ZP(JCD) in ampli tude and phase a r e shown in F igs . II 
through IV. As a compar i son we show a previously obtained ze ro -power 
t rans fe r function ZP(jco) for EBR-I , Mark III, calculated by Okrent.(l '^/ 



TABLE II 

EFFECTIVE DELAYED-NEUTRON FRACTION jS f̂f AND RELATED 
KINETICS DATA FOR 800-LITER, PLUTONIUM A METAL, OXIDE, 

AND CARBIDE FAST REACTOR CORES 

g 
e f f ( ) 

W (̂ ) 

WORTH OF DELAYED 
NEUTRONS IN CORE ( c ) 
AND BLANKET (b) FOR 
FISSIONABLE MATERIALS 

W ( ) 
P 

WORTH OF PROMPT 
NEUTRONS IN CORE (c ) 
AND BLANKET (b) FOR 
FISSIONABLE MATERIALS 

FIS( ) 

F l S ( t o t ) 
WORTH RATIOS 

CORE: 800 LITER, PLUTONIUM A, METAL; Ji = 1.66752 x lO"^; p^^^ = 0.00390167 

( 1 ) 0 .00008187 

(2 ) 0.0007692U 

(3 ) 0 .00070395 

(U) o.oom2uoo 
(5 ) 0 .00067463 

(6 ) 0.0002U798 

( c , u " ° ) = 0 . 9 6 2 

( c P u ) = 0 .939 

( b , u " ' ) = 0 . 2 8 8 

( c , u " ° ) = 1.130 

( c P u " ^ ) = 1.106 

( b , u " ° ) = 0 . 3 8 7 

( c . t o t ) = 0.9X0 

( b . t o t ) = 0 .060 

( c , u " * ) = 0 . 1 6 1 

( c , P u " ' ) = 0 .779 

( b , u " ' ) = 0 . 0 6 0 

[W <C.U"«) 1 

W ( c . P u ^ ' ) 
L -• J 

W / c , P u " » ) 

W ( c . P u " ' ) 
P 

W ( c . u " " ) " 
P 

W ( c . P u " ^ 
L P 

= 0 .869 

= 0.8149 

= 1.022 

CORE: 800 LITER, PLUTONIUM A, OXIDE: ^ = 3.00751 x lO" ; P ^̂  = 0.00321875 
p eff 

( ! ) 0 .00007893 

(2 ) 0 .00072036 

(3 ) 0 .00060705 

(>4) 0 .001 I1II92 

(5 ) 0.000118226 

( 6 ) 0 .00018822 

( c , u " ° ) = 1.025 

( c , P u " * ) = I.OOI 

( b , u " * ) = 0 . 3 « l 

( c , u " ' ) = 1.109 

( c P u ) = 1.085 

( b , U ^ ' ° ) = 0.U3U 

( c . t o t ) = 0 .916 

( b . t o t ) = 0.08U 

( c . u " ' ) = 0 . 0 7 1 

( c . P u " ' ) = 0.8U»t 

( b , U ^ ' ' ) = 0.08U 

' W ^ ( c . u " » ) ' 

W ^ ( c , P u " « ) 

W ^ ( c . P u " ^ 

W ^ ( c . P u " ' ) 

W ^ ( c . u " ' ' ) " 

W ^ ( c , P u " ^ 

= 0.9145 

= 0 .922 

= 1.022 

CORE: 800 LITER, PLUTONIUM A, CARBIDE; J^ = 2.50021 x lO" ; B = 0.003U8U09 
^ ^ p eff 

(1 ) 0 .0000802! 

(2) 0.000740111 

( 3 ) O.OOO6I45O2 

(U) 0 . 0 0 I 2 5 I I I 

(5 ) 0 .00055609 

(6) 0 .00021 I2U 

( c , u " ' ) = I.OOI 

( c , P u ^ ' ^ ) = 0 .978 

( b , u " ° ) = 0 . 3 2 2 

( c , u " ° ) = I . I I U 

( c , P u " * ) = 1.091 

( b , u " ' ) = 0 . 4 2 0 

( c . t o t ) = 0.9214 

( b . t o t ) = 0 .076 

( c . u " " ) = 0 . 1 0 3 

( c . P u " ^ = 0 . 8 2 ! 

( b , u " ° ) = 0 . 0 7 6 

"W^(c .u" ' ' ) " 

W ^ ( c . P u " ' ) j 

W ( c . P u " ^ ' 

W ^ ( c . P u " ' ' ) 

W ^ ( c . u " ' ' ) • 

W ^ ( c , P u " ' ) 

= 0 .918 

= 0 .896 

= 1.021 



TABLE III 

EFFECTIVE DELAYED-NEUTRON FRACTION /3eff AND RELATED 
KINETICS DATA FOR 1500-LITER, PLUTONIUM A METAL, 

OXIDE, AND CARBIDE FAST REACTOR CORES 

^ f f ( ) 

w^( ) 

WORTH OF DELAYED 
NEUTRONS IN CORE (c ) 
AND BLANKET (b) FOR 
FISSIONABLE MATERIALS 

W ( ) 
P 

WORTH OF PROMPT 
NEUTRONS IN CORE (c ) 
AND BLANKET (b) FOR 
FISSIONABLE MATERIALS 

FIS( ) 

F l S ( t o t ) 
WORTH RATIOS 

CORE: 1500 LITER, PLUTONIUM A, METAL; 1 = 1.89851 x 10'^; p^^^ = 0.00390760 

( 1 ) 0 .00008131 

( 2 ) 0 .00076528 

(3 ) 0 .00070345 

( 4 ) 0.00142813 

( 5 ) 0 .00068010 

( 6 ) 0 .00024934 

( c , u " ^ = 0 .973 

( c . P u " ' ) = 0 .952 

( b , u " ° ) = 0 . 2 5 8 

( c , u " ° ) = I . I 6 I 

( c , P u ^ ' ' ) = 1.139 

( b , u " ° ) = 0 . 3 5 2 

( c , t o t ) = 0 .955 

( b . t o t ) = 0 .045 

( c , u " ° ) = 0 . 1 7 4 

( c P u " ^ = 0.781 

( b . u " ' ) = 0 , 0 4 5 

" w ^ ( c . u " » ) " 

W ^ ( c . P u " ^ 

W ^ ( c , P u " ^ 

W ^ ( c , P u " ^ 

• w ^ ( c . u " ' ) " 

W ^ ( c . P . " ^ 

= 0 .854 

= 0 .836 

= 1.020 

CORE: 1500 LITER, PLUTONIUM A, OXIDE; Ji - 3.78915 x lO" ; B = 0.00320268 
p eff 

( 1 ) 0 .00007830 

(2 ) 0 .00071507 

( 3 ) 0 .00060362 

( 4 ) 0 .00113731 

( 5 ) 0 .00048167 

( 6 ) 0 .00018771 

( c . u " ° ) = 1.040 

( c . P u " ^ = 1.017 

( b . U ^ ' * ) = 0 .309 

( c , u " ' ) = 1.138 

( c . P u ^ ^ ' ) = I . I 16 

( b , u " * ) = 0 .399 

( c . t o t ) = 0 .935 

( b . t o t ) = 0 .065 

( c , u " * ) = 0 .082 
239 

(c .Pu ) = 0 .853 

( c U ^ ^ ' j = 0 .065 

w ( c , u " « ) ' 
0 

W ( c . P u " ^ 
P 

" w ^ ( c . P u " ^ ' 

W ( c . P u " ^ 
P 

• w ( c , u " ' ' ) ' 
P 

W ( c . P u " » ) 
P 

= 0 .932 

= 0.911 

= 1.020 

CORE: 1600 LITER, PLUTONIUM A, CARBIDE; J, = 2.99667 x 10' ; $ = 0.00347546 

( 1 ) 0 .00007951 

( 2 ) 0 .00073479 

( 3 ) 0 .00064226 

( 4 ) 0.00124947 

(5 ) 0 .00055799 

( 6 ) 0 .00021144 

( c , u " ' ) = 1.013 

( c . P u " ' ) = 0 .991 

( c . u " ' ) = 0 .289 

( c , u " ° ) = 1.144 

( c P u " ^ = 1.122 

( b , u " ° ) = 0 . 3 8 5 

( c . t o t ) = 0 .942 

( b . t o t ) = 0 .058 

( c . u " ° ) = 0 . 1 1 6 

( c . P u ^ ' ' ) = 0 .826 

( b . u " ' ) = 0 .058 

" w , ( c . u " » ) " 

W ( c . P u " ' ) 

" w , ( c . P u " ' ) " 
0 

W ( c . P u " ' ) 
P 

• w ( c . u " S ' 
P 

W ( C P u " ' ) 
p 

= 0 .903 

= 0 .883 

= 1.020 



TABLE IV 

EFFECTIVE DELAYED-NEUTRON FRACTION jŜ f̂  AND RELATED 
KINETICS DATA FOR 1500-LITER, PLUTONIUM B METAL, 

OXIDE, AND CARBIDE FAST REACTOR CORES 

B f f ( ) 

W ( ) 
d 

WORTH OF DELAYED 
NEUTRONS IN CORE ( c ) 
AND BLANKET (b ) FOR 
FISSIONABLE MATERIALS 

W ( ) 
P 

WORTH OF PROMPT 
NEUTRONS IN CORE (c) 
AND BLANKET (b ) FOR 
FISSIONABLE MATERIALS 

FIS( ) 
F l S ( t o t ) 

WORTH RATIOS 

CORE: 1500 LITER, PLUTONIUM B, METAL; Ji = 1.941 10 
P 

= 0 .00426902 

(1 ) 0 .00007773 

(2) 0 .00083204 

(3 ) 0 .00075384 

(4 ) 0 .00158773 

(5) 0 .00077303 

(6 ) 0 .00024465 

23fl 
( c . U ) = 0 . 9 6 3 
( c , P u ^ " ) = 0 . 9 4 3 

2U0 
( c . P u ) = 0 .967 

2111 
( c . P u ) = 0 .941 

2142 
( c . P u ) = 0 .956 

( b , u " ° ) = 0 . 2 5 7 

( C . U " « ) = 

( c . P u " ' ) = 

( c P u ^ ^ O ) = 
241 

( c . P u ' ' " ) = 

( c . P u " ^ ) = 

( b . U ) = 0 .352 

. 161 

. 139 

. 155 

. 136 

.154 

( c , t o t ) = 0 . 9 6 5 

( b . t o t ) = 0 .045 

( c , u " ° ) = 0 . 1 7 4 

( c , P u ) = 0 .625 
2140 

( c . P u ) = 0 .018 
2141 

( c . P u ) = 0 .133 

( c .Pu ) = 0 .005 

( b , U ^ ' ° ) = 0 .045 

W ( c , u " « ) 
0 

W ( c . P u " ' ) 
P 

W . c . P u " ' ) ' 
d 

W ( c . P u " ' ) 
P 

W ( c . u " ' ) 
P 

W ( c P u " ' ) 
P 

= 0 . 8 4 6 

0 .828 

= 1.020 

CORE: 1500 LITER, PLUTONIUM B, OXIDE; Ji = 3 .88897 10 = 0 .00369389 

(1 ) 0 .00007436 

(2) 0 .00080521 

(3) 0 .00067342 

(4) 0.00I35I4I 

(5) 0 .00060539 

(6 ) 0 .00018410 

( c . u " ' ) = 1.033 

( c . P u " ' ) = I . O i l 

( c P u " " ) = 1.026 
2141 

( c . P u ) = I . 010 
214 2 

( c . P u ) = 1.026 
( b . U ^ ' ° ) = 0 .308 

( c . u " ' ) = 1.138 

( c . P u " ' ) = I . 116 

( c . P u ' ^ " ) = 1.131 
2m 

( c . P u ) = I . I 14 
2142 

( c . P u ) = I .131 
( b , u " ° ) = 0 .400 

( c , t o t ) = 0 .934 

( b , t o t O = 0 .066 

( c . u " ' ) = 0 .082 

( c . P u " ' ) = 0 . 6 7 6 
2U0 

( c . P u ) = 0 .017 
24 I 

( c . P u ) = 0 .155 
242 

( c . P u ) = 0 .004 

( b , U ^ " ) = 0 .066 

W ( c , u " ^ 
d 

W ( C . P u " ' ) 
P 

W , ( c , P u " ' ) 
d 

W ( c . P u " ' ) 
P 

W ( c , u " « ) ' 
P 

W ( c . P u " ' ) 
P 

= 0 .926 

= 0 .906 

1.020 

CORE: 1600 L ITER, PLUTONIUM B, CARBIDE; JI = 3 .07530 
P 

10 
"^eff 

= 0 .00392487 

(1) 0.00007574 

(2 ) 0 .00081750 

( 3 ) 0 .00070596 

(4 ) 0 .00144617 

(5 ) 0 .00067184 

(6 ) 0 .00020766 

( c , U ^ ^ ' ) = 1.006 

( c . P u ^ ^ ' ) = 0 .985 
240 

( c . P u ) = 0 .999 
241 

( c . P u ) = 0 . 9 8 4 
242 

( c . P u ) = 0 . 9 9 8 
( b , u " ° ) = 0 .289 

( c . u " * ) = 1.144 

( c . P u " ' ) = 1.122 

( c P u ^ " " ) = 1.137 
241 

( c . P u ) = I .121 
242 

( c . P u ) = 1.137 
( b , u " ' ) = 0 .385 

( c . t o t ) = 0 .942 

( b , t o t ) = 0 . 0 5 8 

( c . u " ° ) = 0 . 1 1 5 

( c . P u ^ " ) = 0 .656 
240 

( c . P u ) = 0 .017 

( c . u " * ) = 0 . 1 4 8 
242 

( c . P u ) = 0 .005 

( b , u " ° ) = 0 .058 

W ( c . u " ' ) 
d 

W ( c . P u " ' ) 
P 

W ( c . P u " ' ) 
d 

W ( c . P u " ' ) 
P 

W ( c . u " ^ " 
P 

W ( c . P u " ' ) 
P 

= 0 . 8 9 6 

0 .877 

= 1.020 



TABLE V 

EFFECTIVE DELAYED-NEUTRON FRACTION iSeff ^^^ RELATED 
KINETICS DATA FOR 1500-LITER, PLUTONIUM C METAL, 

OXIDE, AND CARBIDE FAST REACTOR CORES 

. f f ( ) 

w ( ) 
d 

WORTH OF DELAYED 

NEUTRONS IN CORE (c) 

AND BLANKET (b) FOR 

FISSIONABLE MATERIALS 

W ( ) 
P 

WORTH OF PROMPT 
NEUTRONS IN CORE ( c ) 
AND BLANKET (b) FOR 
FISSIONABLE MATERIALS 

FIS( ) 
F l S ( t o t ) 

WORTH RATIOS 

CORE: 1500 LITER, PLUTONIUM C, METAL; J = 1.96703 x 10 
'eil 

= 0.00U881485 

(1 ) 0 .00007039 

( 2 ) 0.000914009 

(3) 0.00082769 

(14) 0.00185693 

(5) 0.00093U62 

(6) 0.000235114 

( c .u " * ) = 0.937 
oqq 

(c .Pu ) = 0 .918 
( c . P u " " ) = 0.931 

241 
(c.Pu ) = 0 .916 

242 
(c .Pu ) = 0 .931 
( b . u " ' ) = 0 .252 

(c 

(c 

(r. 

(c 

(c 

(b 

u"«) 
„ 239, Pu ) 

240, 
Pu ) 

P u " ' ) 
242. 

Pu ) 

u"") 

= 1 

= 1 

•= 1 

= 1 

= 1 

= 0 

162 

139 

. Ibb 

.136 

Ibb 

351 

( c . t o t ) 0.9514 

0.0U6 ( b . t o t ) 

( c . u ' " ) = 0 . 1 7 3 

(c .Pu' '^) = 0.395 

( c P u ' ' * " ) = 0 .020 
24 I 

(c .Pu ) = 0 .316 
242 

(c.Pu ) = 0.050 

( b . u " ' ) = 0.0U6 

W(c,u"«) 
d 

W (c .Pu ) 

w , ( c , p u " ^ 
d 

W ( c . P u " ' ) 
L P 

W ( C , U " " ' ) ' 
P 

W ( c . P u " ' ) 
P 

0 .823 

0 . 8 0 6 

1.020 

CORE: 1500 LITER, PLUTONIUM C, OXIDE; ^ = 3.95275 
P 

, - 7 
'^eff 

O.OOUI47I42I4 

(1) 0.00006663 

(2) 0.000914628 

(3) 0.00077U65 

(14) 0.00169858 

(5) 0.00081130 

(6) 0.00017678 

( c , u " * ) = 1.013 

( c . P u ' ' ' ) = 0.991 

( c P u " * " ) = 1.006 
241 

(c .Pu ) = 0 .990 
242 

(c .Pu ) = 1.006 
( b , u " ° ) = 0.3014 

238 
( c . U " ) 

( c . P u " ' ) 
, „ 240, 
(c .Pu ) 

( c . P u " ' ) 
, „ 2t2> 
(c .Pu ) 

(b .u ' '» ) 

= 1.139 

= I . I I 6 

= 1.132 

= 1. 1114 

= 1.131 

= 0 .398 

( c . t o t ) 

( b . t o t ) 
23 8, 

( c .U ) 

( c . P u " ' ) 
240. 

(c .Pu ) 

( c . P u " ' ) 

( c . P u " ' ) 

(b,u"«.) 

= 0.9314 

= 0 .066 

= 0 .079 

= 0.1423 

= 0 .019 

= 0.3614 

= 0.0U7 

= 0 .066 

W f c . u " " ) 
0 

W ( c . P u " ' ) 
. P 

W , ( c . P u " ' ) 
d 

W ( c . P u " ' ) 
P 

W (c .U 
P 

238, 

, j , „ 2 3 9 , 
W (c.Pu ) 

P 

= 0 .908 

0 .888 

= 1.021 

CORE: 1500 LITER, PLUTONIUM C, CARBIDE; J " = 3.12706 x 10" O.O0146UU146 

(1) 0.00006822 

(2) 0.0009U771 

(3) 0.00079831 

(14) 0.00I767U5 

(5<) 0.00086293 

(6) 0.00019983 

73R 

(c.U ) = 0.985 

(c.Pu ) = 0.96U 

( c P u " * " ) = 0 .878 
241 

(c .Pu ) = 0 .963 
242 

(c .Pu ) = 0 .977 
( b . u " ' ) = 0 .285 

(c .u"«) 

( c . P u " ' ) 

( c . P u ' ^ 

( c . P u " ' ) 

( c . P u ' % 

( b . u " ' ) 

1145 

122 

137 

121 

137 

0 .383 

t o t ) 

t o t ) 

u"" ) 

. P u ' " ) 

.Pu'^") 

. P u " ' ) 

P u " ' ) 

,u "») 

= 0 .9m 

= 0.059 

= 0. 113 

= O.mi 

= 0.020 

= 0.3149 

= 0.0148 

= 0.059 

W^(c.U ) 
d 

W ( c . P u ' " ) 
P 

W r c . F u " ' ) " 
d 

,., / o 239, 
W (c .Pu ) 

P 

W ( c . u ' " ) 
P 

W ( c . P u " ' ) 
P 

0 .877 

= 0.859 

1.020 



TABLE VI 

EFFECTIVE DELAYED-NEUTRON FRACTION /Sgff AND RELATED 
KINETICS DATA FOR 2500-LITER, PLUTONIUM A METAL, 

OXIDE, AND CARBIDE FAST REACTOR CORES 

Bff( ) 

V 
WORTH OF DELAYED 
NEUTRONS IN CORE (c) 
AND BLANKET (b) FOR 
FISSIONABLE MATERIALS 

W ( 
P 

WORTH OF PROMPT 

NEUTRONS IN CORE ( c ) 

AND BLANKET ( b ) FOR 

F I S S I O N A B L E MATERIALS 

FIS( ) 
FlS(tot) 

WORTH RATIOS 

CORE: 2500 LITER, PLUTONIUM A, METAL; J. = 2.06918 x 10 
P e f f 

= 0.003907145 

(1) 
(2) 

(3) 

(H) 
(5) 

(6) 

0.00008086 

0.00076188 

0.00070239 

0.00IU2937 
0.00068300 

0.0002U997 

( c . u ' " ) = 0 .986 

( c . P u ' " ) 0 .967 

( b . u ' " ) = 0 .233 

( c . u ' " ) = 1.190 

( c . P u ' " ) = 1.169 

( b . u ' " ) = 0 .323 

( c . t o t ) 0.965 

0 .035 ( b, to t ) 

( c . u ' " ) = 0 . 1 8 3 

( c . P u ' " ) = 0 . 7 8 2 

( b . u ' " ) 0.035 

W , ( c . u ' " ) 
d 

W ( c . P u ' " ) 
L P 

W , ( c . P u ' " ) ' 
d 

W ( c . P u ' " ) 
L P 

W ( C . U ' " ) ' 
P 

,, / o 239, 
W (c .Pu ) 

P 

0.8143 

= 0 .827 

1.018 

CORE: 2500 LITER, PLUTONIUM A, OXIDE. J = 14.1*3106 X 10 
P 

= 0.00319037 

(1) 

(2) 

(3) 

(U) 

(5) 

(6) 

0.00007777 

0.00071051 

0.00060062 

0.00113320 

0.000148105 

0.00018723 

( c . u ' " ) = I .05U 

( c . P u ' " ) = 1.033 

( b . u ' " ) = 0 . 2 8 1 

( c . u ' " ) 

( c . P u ' " ) 

I. 166 

I.IU5 

( b . u 
23i 

) = 0 .368 

( c . t o t ) 0.9U8 

0 .052 ( b . t o t ) 

( c . u ) = 0 .090 

( c . P u ' " ) = 0 .858 

( b . u ' ^ ' ) = 0 . 0 5 2 

W ( c . u ' " ) 
d 

W (c .Pu ) 
, P 

W , ( c . P u ' " ) 
d 

W ( C . P u ' " ) 
P 

W ( c . u ' " ) 
P 

W ( C . P u ' " ) 

0 .921 

= 0 .903 

= 1.019 

CORE: 2500 LITER, PLUTONIUM A, CARBIDE; I f = 3.377148 x 10 
I "I I 

= 0.003146535 

(1) 

(3) 

(3) 

(U) 

(5) 

(6) 

0.00007892 

0.00072995 

0.0063957 

0.0012U68e 

0.00055871 

0.00021I3U 

( c . u ' " ) = 1.025 

(c .Pu ) = 1.006 

( b . u ' " ) = 0 .263 

I ' t l 238 
( d . u ' " ) = 1.172 

( c l . P u ^ ' ) = I . 182 

(blu'") 0.353 

( c , t o t ) 0.9514 

0.0146 ( b . t o t ) 

( c . u ' " ) =0 .1214 

( c . P u ' " ) = 0 .830 

( b . u ) 0.0U6 

W ( c . u ' " ) 
d 

W ( C . P u ' " ) 
P 

,̂  / r, 239.' 
W^(c,Pu ) 

d 

W (c .Pu ) 
P 

W ( c . u ' " ) 
P 

W ( c P u ' " ) 
p 

0 .890 

= 0 .873 

1.018 
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CONCLUSIONS 

Tables I through VI a r e a r r anged in such a way as to be largely 
self explanatory. One impor tant quantity for stability studies is the value 
l/j3eff, as it de t e rmines the amplification in the plateau region of the 
zero-power t rans fe r function. Some numbers for representa t ive sys tems 
a r e 

^eff 

EBR-I , Mark III 
(U^^^-U^S) System 

Typical Large F a s t 
(Pu-U"^) System 

0.00683 

0.0035 

1 / ^ eff 

146 

286 

We note that the value l/jSeff is doubled up by going from the EBR-I, 
Mark III (u"^-U"®) sys tem to a typical large fast (Pu-U^^^) system. 

Let us assi ime two r eac to r s with equal heat t ransfe r cha rac t e r i s t i c s , 
s i zes , and other per t inent data for the feedback function, i .e . , PK(JCD)(-'-3) 

(power coefficient). F u r t h e r m o r e , we assume that the U^̂ -̂U^̂ ® system has 
a smal l bump in the load power t rans fe r function LP(jco), as shown in 
Fig. V. By replacing the U 235 U 238 238 neutronics system with a Pu-U system, 
we would get a significant inc rease in the tendency towards resonance in­
stability due to the doubling up of the amplification. This i s , in fact, equiv­
alent to a doubling up of the power level in the U^^ -̂• U"^ sys tem. 

3 
•—1 

a. 

/r> ..238. 
(Pu-U ) 

(u"^u"») 

CO 
rad 

sec 

FIG. V 

LOAD POWER TRANSFER FUNCTION FOR 
FAST PLUTONIUM AND u"^ REACTOR 



The effect of ra is ing power level in a l inear system is studied in 
detail in Ref. 13. Bethel l^ j pointed out that it is relatively easy to c o r r e c t 
such resonances if thei r mechan ism is visual ized during the design s tages 
of the r eac to r . The core cons idered here i s , of cour se , quite hypothetical, 
but it is well to r e m e m b e r that the neutronics cha rac te r i s t i c s of a plutonium 
sys tem will introduce additional amplification because the delayed-neutron 
fract ions of Pu^^^are th ree t imes sma l l e r than the delayed-neutron f r ac ­
tions of U^^^.(13) A considerable inc rease of jSgff is introduced in the Pu 
cases due to Pu^*", Pu2*\ Pu^*^, and U"^. Especial ly U"^ contributes con­
s iderably, since the U"^ f issions in the 1500-l i ter Pu (TYPE C) oxide 
core shown in Table V, for example , a re close to 20% of the fissions of 
Pu^^^ in the co re . 

In the las t column of Table V one notes for the above case that the 
wor th of a delayed U^^* neutron in the core is slightly higher than the worth 
of a delayed Pu^^' neutron in the core . 

F r o m F igs . II and III one could single out fuel compositions and 
core s izes which would be worse than others with respec t to introducing 
amplification, but it is felt that genera l ized conclusions should not be 
drawn at this point. F igure IV shows that the phase for these cores con­
s idered is not effected ve ry much, as indicated by the variat ion between 
F and G. 
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