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MULTIGROUP CALCULATIONS OF EFFECTIVE NEUTRON
FRACTION Bg¢f; PROMPT NEUTRON LIFETIME ﬂp, AND
RELATED KINETICS PARAMETERS FOR LARGE, FAST,
PLUTONIUM-FUELED REACTORS

by

H. A. Sandmeier

ABSTRACT

Large, plutonium-fueled, fast reactors will have a
differentkinetic behavior thanfast reactors fueled with U?3,
due to the much smaller delayed-neutron fraction emitted
in the fissioning of plutonium.

240 24
, Pu?tl

The fissioning of Pu , Pu?*?, and especially

U%% which emit more delayed neutrons per fission than
Pu?¥’, introduces a considerable increase in PBeff over that

for a hypothetical pure Pu®®? reactor.

The cases considered are 800-,1500- and 2500-1liter
cores fueled with plutonium of different isotopic content,
which lead to effective delayed-neutron fractions of approx-
imately one-half the values of similar U?*5-U%8.fueled fast
reactors. The energy spectrum and the number of fissions
weighted with their importance are recorded in order to
reason physically on the obtained parameters.

INTRODUCTION

Due to the increased interest in large, plutonium-fueled, fast reac-
tors, we obtained some important physics quantities related to the kinetics
behavior and stability of such systems.

The prompt neutron lifetime [, and the effective delayed neutron
fraction Beff have been evaluated by using a machine program(l) which
utilized as input the space and energy-dependent real and adjoint flux for
multigroup solutions in spherical geometry. In order to be able to reason
physically on the obtained parametric values, the total number of fissions
for each Pu isotope, as well as for U%*®, has been evaluated for all cores.
Expressions proportional to the worth of prompt and delayed neutrons were
obtained. All worth ratio functions are related to the worth of a prompt
Pu?®? neutron in the core. Finally, six Beff values are obtained for each



delayed neutron precursor family. By using BUM,(Z) the transfer function
code, one gets the zero-power transfer function ZP(jw). The cores used

as representative examples were the ones reported by Yiftah and Okrent.(3)
For the 1500-liter cores, the effect on the above parameters due to dif-
ferent Pu isotopes, i.e., Pu239, Pu24°, Pu241, and Pu242, have been calculated,
as well as the variations due to use of Pu metal, Pu oxide or Pu carbide
fuels. The effect of core size was studied by considering 800-, 1500-, and
2500-liter, pure Pu?¥? metal, oxide, and carbide cores. The diluent in all

cores, as well as the fertile material in the blanket, was U238,

KINETICS PARAMETERS TO BE EVALUATED

The formula used to obtain Beff, ﬁp, and worth functions follows
essentially the basic definitions given in the papers by Long e_ta_l.,(4) and

by Meneghetti(5):
16 16 i
Flss%tm {Bm/<§1 (vzf).rn¢|> <J§1 Bdm,¢1> dv}

Beft - S {B”‘f(llé (sz,:n¢l><gﬁg}¢]> 4V + (1-8M) f<:1261 (VZf):n‘#ﬂ) <,1§1 XT‘*’I) dV} (1)

Fiss matm

The first factor under the integral sign in the numerator of Eq. (1)

6 m
2 (vZg)i ¢4 (2)

i=1

is proportional to the number of fission neutrons born in all groups. In
order to get the number of delayed neutrons, we multiply the sum (2) by
B™, the delayed neutron fraction for material m, where

= (§)H/v?m : (3)

It is important to remember that g™ is obtained from two measured
quantities, the total number of delayed neutrons per fission, (n/F)m, for
material m, and the total neutrons released per fission, P™, for material
m. Both quantities are energy dependent, and it is advisable to state the
reference for both values if numerical values for delayed neutron fractions
are quoted.

The second factor under the integral sign in the numerator of
Eq. (1),

16 Mmoo
Z Paj 5 (4)
J___
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where

6 m
Xﬁdfl ,
j=1

represents a feeding of the delayed neutrons with energies varying in the
range from 200 to 500 kv into the proper energy group in the multigroup
representation. Furthermore we have to take into account the importance
¢>3~* of a neutron in this group.

In these calculations, both the real and adjoint flux are normalized,
but since all quantities in this paper are ratios of ¢ and ¢*, we don't have
to be concerned with this factor. The numerical value of Eq. (2) after in-
tegration over all regions and fissionable materials represents, therefore,
a normalized number of fission neutrons. Finally, we integrate the num-
erator of Eq. (1) over all regions where fission takes place and sum over
all fissionable materials.

In the denominator we sum up all the delayed and prompt neutrons
born in all regions for all fissionable materials. The quantity X separates
the prompt fission neutrons born into the individual energy groups and then
we attach the proper importance to them expressed by (bJ , the adjoint flux.

For kinetics studies we must obtain the individual PBeff(n) for the
usual six families of precursors:

Beftn) = Flsszm;atm{ﬁm)f<z wEof ><Z BdJ J> }
T TG wte] (s T8 ) (£ 79

-
The only difference beltweein Eq. (5) and Eq. (1) is that in the

numerator we insert for the delayed neutron fraction B?ﬁ) the delayed
neutron fraction for the precursor 'family n for each fissionable material

(5)

m. i 413 i
PROMPT‘:l\i:Eé?iTRON :I‘JIFETI'ME ’,
The formula for the prorréliait‘ neutren lifetime in multigroup notation
E 136'¢>1 <1>3k Cav
bp = 16 1 1 16 6)

z VZf (l)J X
Fiss. Mat m 1=1



where vi is the average speed of a neutron in a group:

Ey
L ) 90* dE

1\ JEL v(E , (7)
o e

p¢p* dE

EL

The above quantity was evaluated in two ways. First, it was assumed that
both real and ajoint flux are the same (one-group perturbation theory);

then the spectrum was assumed to be proportional to l/E, as one gets in

a medium with pure scattering without absorption. Secondly, a 574-energy-
group solution by Hummel(6) for an 800-liter plutonium (TYPE A) oxide
core was used to evaluate average neutron speeds in the 16-group set of
YOM.\7) The numerical variations on the prompt neutron lifetime by both
methods were found to be insignificant.

ENERGY SPECTRUM FOR LARGE FAST REACTORS
As a representative illustration we show in Fig. 1 the spectrum of

a 1500-liter Pu (TYPE C) metal, oxide, and carbide-fueled fast reactor.
The adjoint flux for the oxide case is also shown.

WORTH FUNCTIONS

The evaluated worth functions for delayed and prompt neutrons are

m 1=1 j=1
Wg = z (8)
i (sz)l i) 4V
i=1
and
16 16 m
(vZe)i ¢ X5 ¢7) av
W i=] ]=1 (9)
P m
(vZf)i oi) 4V
1=1
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Fig. 1

COMPARISON OF SPECTRA CALCULATED FROM 1500-LITER METAL,
OXIDE AND CARBIDE, PLUTONIUM (TYPE C) FUELED FAST REACTORS

FUNDAMENTAL DELAYED-NEUTRON DATA
The latest available delayed-neutron data for Pu??, Pu**®, and
Pu**! was taken from Cox,(8) for Pu?*? from Smith,(g) and for U?® from
ANL-5800.(10)



The delayed-neutron spectrum was assumed to be the same for all
fissionable materials, i.e., Xm is the same for all fissionable materials
considered. Keepin(ll) discusses the delayed-neutron energies for the
54-, 22-,5.9-, 2.2-, 0.46-, and 0.13-sec half-life precursors of U?3
Stehney(lz) suggests that it is reasonable to assume that the delayed-
neutron spectrum for the Pu isotopes is the same as for U?*®. This sug-
gests that the same precursors are responsible for the delayed neutrons
in either case, U?*® or the Pu isotopes. For all Pu isotopes the delayed
neutrons from the 55-sec half-life precursor have a mean energy of
approximately 250 kv and are therefore fed into energy group 7 in yom.(7)
The five other groups with energies ranging from 300 to 500 kv are given
off into YOM(7) energy group 6.

All numerical values used for Pu???, Pu?t? Pu?‘l, Py?*? and U?38
are listed in Table I.

NUMERICAL EVALUATION FOR REPRESENTATIVE
LARGE FAST REACTOR CORES

The cores investigated numerically are taken from Yiftah and
Okrent.(3) For clarity of presentation we repeat here the pertinent data
for the fuel and the plutonium compositions, as well as the geometrical
dimensions of the reactors investigated.

Core Volume:

800, 1500, and 2500 liters
(Where necessary, some additional core volumes were used.)

Core Volume Fractions:

Fuel and Fertile Material 0.25

Structural Material 0.25
Coolant 0.5
Fuels:

Density, g/cc

Pu-U?38 19.0
PuOZ—UOZ 8.4
PuC-UC 11.39

Plutonium Composition:

Atom Per Cent

TYPE PU.239 Pu240 Pu241 Pu242

A 100.0 0 0 0
B 74.7 10.2 12.4 2.7
C 40.0 10.0 25.0 25.0



TABLE I

FUNDAMENTAL DELAYED-NEUTRON DATA

FISSIONABLE N 8
MATERI1 AL () ()
(1) 0.0127690 | (1) 0.000072%I
(2) 0.0300846 | (2) 0.00062769 | B . = 0.96557700
p, 239 (3) 0.1237760 | (3) 0.000W4g3 | B . = 0.034U2UNO
(4) 0.3254225 | (4) 0.00068621 g = 0.00210345
(5) 1.1216010 | (5) 0.0001793} v =2.9
(6) 2.6970817 | (8) 0.00009310 | REF. (8)
(1) 0.0120415 | (1) 0.00006666
(2) 0.0313076 | (2) 0.0007212I By = 0-97502u30
p, 240 (3) 0.13u8540 | (3) 0.00049090 By, = 0.02499800
(4) 0.3332452 | (u) 0.00095454% [ B = 0.00266660
(5) 1.356u570 | (5) 0.00036061! v = 3.3
(6) 4.0298400 | (&) 0.00007273 | REF. (8)
(1) 0.0128000 | (1) 0.00005168
(2) 0.0299000 | (2) 0.00122483 | B . = 0.99031600
p 24! (3) 0.1238000 | (3) 0.00092282 | B = 0.00968305
(4) 0.3519000 | (4) 0.00208050 B = 0.00533685
(6) 1.6120000 | (5) 0.00087315 | v = 2.98
(6) 4.6210000 | (6) 0.00008389 | REF. (8)
(1) 0.0128360 | (1) 0.00003030
(2) 0.0315060 | (2) 0.00183636 | B . = 0.96212100
p, 242 (3) 0.1156250 | (3) 0.00106060 | B, = 0.03787800
(4) 0.3465750 | (4) 0.00333330 g = 0.00799995
(5) 1.3863000 | (5) 0.00181818 | v = 3.3
(68) 3.u657500 | (6) 0.00012121 REF. (9)
(1) 0.0132000 | (1) 0.00020400
(2) 0.0321000 | (2) 0.00215100 B, = 0-98707000
4238 (3) 0.1390000 | (3) 0.00254300 B, = 0.01289000
(4) 0.3580000 | (4) 0.00609200 | B = 0.01570000
(5) 1.4100000 { (5) 0.00353300 v = 2.62
(6) 4.0200000 | (&) 0.00117800 REF. (10)
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Coolant:

Liquid Sodium  0.84 g/cc

Structural Material: Blanket Thickness:
Stainless Steel 45 cm (uranium)
Blanket Volume Fractions: Reflector Thickness:
y2s3s 0.6 30 cm
Na 0.2 Reflector Volume Fractions:
Fe 0.2 Fe 0.6
Na 0.4

The effect of different fuels was investigated by considering
1500-liter cores with different plutonium compositions: TYPE A, B, and
C for all three fuels, i.e., Pu-U?3%, Pu0,-UO,; and PuC-UC in the core.

The effect of varying core volume was shown by considering 800-,
1500-, and 2500-1liter cores with plutonium TYPE A; Pu-U?38, Pu0,-U0O,
and PuC-UC fuels.

The numerical values are shownin Tables II through VI.

ZERO-POWER TRANSFER FUNCTION ZP(jw)

For kinetics studies it is of interest to obtain the zero-power trans-

fer function. Argonne code BUMI(2) was used for this purpose. The data
necessary to evaluate ZP(jo.))(13) are the effective delayed neutron fractions,

Beff(1) - - - - - Beff(()), and the neutron lifetime ﬁp, listed in Tables II through
VI.

The decay constants A used for all transfer functions are the values
for Pu®®? listed in Table I. The effect of using different decay constants
was investigated and found to be negligible.

The values for ZP(jw) in amplitude and phase are shown in Figs. II
through IV. As a comparison we show a previously obtained zero-power
transfer function ZP(jw) for EBR-I, Mark III, calculated by Okrent.(14)
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TABLE II

EFFECTIVE DELAYED-NEUTRON FRACTION B.¢f AND RELATED
KINETICS DATA FOR 800-LITER, PLUTONIUM A METAL, OXIDE,
AND CARBIDE FAST REACTOR CORES

W,0) W)
Fist )
8 WORTH OF DELAYED WORTH OF PROMPT WORTH RATI0S
eff( ) NEUTRONS IN CORE (c) | NEUTRONS IN CORE (c) Fis(tor)

AND BLANKET (b) FOR AND BLANKET (b) FOR
FISSIONABLE MATERIALS | FISSIONABLE MATERIALS

-7
CORE: 800 LITER, PLUTONIUM A, METAL; ,fp = 1.66752 x 10 *; peff = 0.00390167

(1) 0.00008187 ) o062 [ (0™ =120 |00 =0.ou0 | [wc,uh
239 239, _ - —  |=0.889
(2) 0.00076924 (P =0.00 | (c.u®™) = 1108 | (100 =0.080 | [T g
(3) 0.00070385 _ - (e,u” ) =0.181 | et
(4) 0.00142400 —_— _ (e,Pu™"") = 0.778 W (c.pu239)]
(5) 0.00087u63 —_ g ey - 0.8
238, _ 238, _ 3 = O
(6) 0.0002u798 (,u%%) =o0.288 | (v,u2%%) =o0.387 - W (c.pulY)
—— L p -
(5,07 =0.080 | | (c,u2% ]
P
2 |- y.022
W (c,Pu?®)
L"» J
CORE: 800 LITER, PLUTONIUN A, OXIDE; £ = 3.00751 x 1077; 8, = 0.00321875
(1) 0.00007893 (02 =025 | (c,u®®) = 1100 [(e,ron =0.018 | W (c,uBd ]
239, _ 239, _ d = 0.9u5
(2) 0.00072036 (c,Pu?®®) = 1,001 (c,pu?®) = 1,085 | (b,tot) = o0.084 w5 1= 0
(3) 0.00060705 e - (038 = o.0m | [%lePe )
(%) 0.0011%4192 - _ e,Pu?®) = 0.auy |t 230"
(5) 0.000u8226 _— —_— _— WylePur) 0.022
(6) 0.00018822 (v, = 0.3m (6,u?%®) = o0.u3y FIPRPSE TN
L'e ™’ J
(v,u%%) = 0.084
1.022
CORE: 800 LITER, PLUTONIUM A, CARBIDE; £ = 2.50021 x 10775 g = 0.003u8400
(1) 0.0000802] (c,u?®) = 1.001 €, 0 =1 (e, o) = o0.024 rwd(c.um)
(2) 0.000740Y (c,Pu?3®) = 0.978 (e,Pu®®) = 1.001 (b,tot) =0.076 |[——539-|=0-918
(3) 0.00084502 SE— - (2% =0.103 | |plePe )
(¥) 0.00125111 - - (c,pu?®) 0821 | 2397
(5) 0.00055609 - S —— Wole,Put 0,806
(6) 0.00021124 0,uB 20322 (6,0 =o0.u20 —_— WY
P
(0,088 =0.07% | [y (c.u?%®) ]
p
= 1.021
wp(c,Pu239)




TABLE III

EFFECTIVE DELAYED-NEUTRON FRACTION Beff AND RELATED

KINETICS DATA FOR 1500-LITER, PLUTONIUM A METAL,
OXIDE, AND CARBIDE FAST REACTOR CORES

W) W)
Bets( ) WORTH OF DELAYED WORTH OF PROMPT FisC WORTH RATI0S
NEUTRONS IN CORE (c) | NEUTRONS IN CORE (c) Fis(tot)
AND BLANKET (b) FOR AND BLANKET (b) FOR
FISSIONABLE MATERIALS| FISSIONABLE MATERIALS
CORE: 1500 LITER, PLUTONIUM A, METAL; ¢, = 1.89851 x 1075 g, = 0.00390760
(1) 0.00008131 (c, 0% =0.973 | (c,u®®) =181 | (c,t0t) =0.955 Fwd(c.u23°)
(2) 0.00076528 (e, Pu®) =0.952 | (c,Pu®®®) = 1139 | (b,tot) =0.085 o oum| 0.854
(3) 0.00070345 (c,u"2°) =0 | [t
(W) 0.00/42813 (c,Pu?®®) = 0.781 TN
(5) 0.00068010 HglePu - 0.838
238 238 239,
(8) 0.0002ug3Y4 (1,028 =o0.288 | (6,023 =o0.352 W (c,pul3®)
) i
(,u%) = 0,085 W (e, 028
P
= 1.020
W (c,pu?®®)
- p -
CORE: 1500 LITER, PLUTONIUM A, OXIDE; £, = 3.78815 x 07, B,y = 0.00320268
(1) 0.00007830 (U8 = om0 | (,u®®) =113 | (c o) = 0.035 W (c,u2%
239, _ 239 d =0.832
(2) 0.00071507 (,Pu®® = 1017 |, = 1.6 | (b,tot) = 0.085 239, | O
(3) 0.00080362 (c.uB8) = 0.08 W (e,Pe’™)
(4) 0.00113731 (c,pu?¥) = 0,853 | 239 1
(5) 0.00048187 Hd(c,Pu }
238 238 =0.91
(8) 0.00018771 (b,0""") =0.309 (6,U"™") = 0.300 W (c,Pu??
L P p
(e, 0% = 0.085 W (c,u2% ]
P
= 1.020
W (c,pu?®
. p -
CORE: 1500 LITER, PLUTONIUM A, CARBIDE; _€_ = 2.99867 x 107; 5, = 0.003u75u8
(1) 0.00007851 € u®) =0z | @u®®) = | e tor) = o.ou2 W, (e,0%%)
(2) 0.00073479 (c,Pu® = 0.001 | (e,pu®% = 1122 | (b,0t) = 0.088 - 239, |~ 0-903
(3) 0.0006u226 (e, 0¥ =o.ne | |"eP )
(M) 0.0012ugy7 (c,Pu?®®) = 0828 | 239
(6) 0.00056799 Wyle,Pu)
238 238 — a9 |- 0-883
(6) 0.000211uy (c,U"™") = 0.289 {6,U"") =0.385 W (c,Pul®)
. p -
(0, =008 | [y (c,02%, ]
p
)= 1020
Hp(c,Puzag)




TABLE IV

EFFECTIVE DELAYED-NEUTRON FRACTION B ¢ AND RELATED
KINETICS DATA FOR 1500-LITER, PLUTONIUM B METAL,
OXIDE, AND CARBIDE FAST REACTOR CORES

W) W)
d [
Bors( ) WORTH OF DELAYED WORTH OF PROMPT Fist WORTH RATIOS
NEUTRONS IN CORE (c) {NEUTRONS IN CORE (c) FIS(tot)
AND BLANKET (b) FOR |AND BLANKET (b) FOR
FISSIONABLE MATERIALS|FISSIONABLE MATERIALS
CORE: 1500 LITER, PLUTONIUN B, METAL; £ = I.SM110 x 1077; g, = 0.00426902
(1) 0.00007773 (0?8 0083 | (U =161 | (cowou =0.985 ||w (c,u®®)
239 239 S l-o0.8u8
(2) 0.00083204 (c,pu?3%) —o.u3 | (c,pu®®% = 1138 | (b,t0t) = 0.0u5 239|= O
(3) 0.00075384 (c,Pu?"®y = 0,957 (c,pu?®) = 1185 (c, 028 = o.gy | [¥pleP )
(4) 0.00158773 (epu®y cocour | e, pu®™) = 1138 | (c,pu®®®) = 0.825 | 239.)
(5) 0.00077303 (c,pu®?) = 0.958 | (c,pu®h) < iamn | (e,p*) 0.0 (|MlTe
(6) 0.0002u4g5 (0,078 <0257 | ,u%%% =032 | (c,pu®™) =033 ||y (c.puBY|
(c,pu™?) = g.005 |[L°® i
y - .
{b,U""") =0.045 ||y (c,u2%%
| = 1020
W {c,Pu 39)
L P i
CORE: 1500 LITER, PLUTONIUM B, OXIDE; £, = 3.88807 x 107'; §, . = 0.00360389
(1) 0.00007436 (.0 =033 | U™ = 1im | (o0 =o0em ||w (c,u?%)
239 239 R P 0.926
(2) 0.00080521 (c,Pu } = 1.011 (c,Pu ) = 1.118 (b,tot} = 0.068 , 239 .
(3) 0.00067342 (e,pu®) = 1026 | (e,pu™® =113 | (e, 0% =o.0me [[%l0P)
(4) 0.00135(41 (c,pe®y = 1010 { (e,pu®™y =i | (e,p®®) = 0.678 | 239 ]
(5) 0.00060539 (e.pu®?) = 1026 | (e,pu™h =13 | (e, ) = 0i0i7 ||MeSP )
(6) 0.00018Y410 (6,07 =0.308 | ,u%% =000 | (c,p®) =01 ||y (c.puBY)
(c,Pu®*?) =0.00u |L°P ]
238 -
(b,u%*®) = 0.086 (wp(c,u”“)
2 |- 1.020
W (c,Pu?®)
-p Jd
CORE: 1500 LITER, PLUTONIUM B, CARBIDE; ¢ = 3.07530 x 1075 . = 0.0032u87
(1) 0.0000757y 0% =008 | (e, = | (o0 = ooz v (c,u
(2) 0.00081750 (c,Pu?3%) = 0,985 | (c,pu?™) = 1122 | (5,000 = 0.088 ||——555|= 0.898
(3} 0.00070596 (e, Pu?®) = 0.990 (c,Pu?*) = 1137 (e, u38) =015 [ [¥ple P )
(%) 0.00144617 (e,pu?y =008 | (e, pu®™h =12 | e,pa®) = 0iese | 239 7
(5) 0.0006718U (c,pu®?y =0.908 | (c,pu®? = 1137 | (e, = 0007 [MalePe TN 0.877
(6) 0.00020766 (0,02 =020 | (5,u%*% =035 | (0% =oims ||y (o pu 29
te,Pu?*?) = 0.005 |L° J
238 r b
(5,u™") = 0.088 ,,p(c,um,
= 1.020
W (c,Puzsg)J
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TABLE V

EFFECTIVE DELAYED-NEUTRON FRACTION Bo¢f AND RELATED
KINETICS DATA FOR 1500-LITER, PLUTONIUM C METAL,
OXIDE, AND CARBIDE FAST REACTOR CORES

W) W)

d P
Bors ) WORTH OF DELAYED WORTH OF PROMPT FIsC ) WORTH RATI0S
effl( NEUTRONS IN CORE (c) {NEUTRONS IN CORE (c¢) FIS(tot)

AND BLANKET (b) FOR AND BLANKET (b) FOR
FISSIONABLE MATERIALS | FISSIONABLE MATERIALS

CORE: 1500 LITER, PLUTONIUM C, METAL; .ep = 1.96703 x l0-7§ Beff = 0.00u86U85

238
(1) 0.00007039 (e, u® -0.037 [ (c,u®®®) =1.162 | (c,tor) = 0.954 W (e, U™
239 239 — | = 0.823
(2) 0.00094009 (c,Pu ) = 0.9i8 {c,Pu ) = 1.139 (b,t%;; = 0,0u8 W (c.P 239)
c,ru
(3) 0.00082768 (c,pu?%%) = 0.931 (c Pu?*®) = 1186 | (c,u ) =073 p d
(¥) 0.00185693 (c,pu?*!y = 0.018 (c,Pu:“') a3 | (epul) —0.385 | T g
(5) 0.00093462 (e.Pu?*?) = 0.0 (e.Py Y2) - 1iss | (e Pu ") = 0.020 ¢ - 0.806
(6) 0.00023514 (,0%8% =o.262 | (6,4 =o0.35 (c.,pult)) = 0.318 Y (c.pu?Y)
{c,Pu”'") = 0.050 L P
(o,u®®) = 0.0u8 r,p(c,U23°,
= 1,020
Hp(c,Puzas)
CORE: 1500 LITER, PLUTONIUM C, OXIDE; ¢, = 3.95275 x 077; 8, = 0.00u7U2Y
(1) 0.00008663 (c.uzzg) =1.013 | c,u®® =i | (e, o0y = 0.03u W, (e, 02%)
(2) 0.0009u628 (e,pu’ % = 0.001 (c,Pu®%) = 1,118 | (b,t0t) = o0.068 ———357| = 0-908
(3) 0.00077485 (e,Pu?%) = 1,008 | (c,pu) = 1132 | (.0®%) =007 | [ WpfePe)
(%) 0.00169858 e,pu®y 0,000 | (e,pu®y =i | (e,pu®®) = 0au2s | f 239]
(5) 0.00081130 (c,Pu?) = 1008 | (c,pu? = tiat | (c,pu®) s 0018 || MgtOPe )
(6) 0.00017678 (t,uB8 =0.304 | (5,u®% -o0.308 | (c,pu?*") = 0.36y Woe,puB9
(c,pu®*? =007 | L P i
238 [ 9
(0,02 = 0.066 W (c,u2%8
= 1.021
W (c,PuzaQU
CORE: 1500 LITER, PLUTONIUM C, CARBIDE; —Ep = 3.12708 «x ‘0-7; Beff = 0.00464446
(1) 0.00006822 (c,u®% =o0.085 | (c,u®® = 1146 | (c,t0t) = 0.9u1 rwd(c,um)
(2) 0.00004771 te,Pu?¥) =008 | (c,Pu®®®) = 1122 | (b,tot) = 0.050 ——5 | = 0.877
(3) 0.0007983! (c,Pu:u?) =007 | (c,p®™) = iimr | (0% =0.113 WylePu)
(4) 0.00176745 te.,pu?!y <0083 [ (e,pu®) =120 | (e,p®®® =0un | 239 -
(5) 0.00086293 (e,pu?) 20,077 | (e,pu®™H = 1137 | (c,pu®®) = 0.020 Wyle,pu™)| o.s50
(6) 0.00019983 (b,02%) =o0.288 | (6,07 =o0.383 | (c,pu?*!) = 0.3u0 PFPTSECEN
tc,pu®*?) =o0.0u¢ | L ° J
(,u%%) =o0.080 | 238, ]
. =o. W (e,u?%)
= 1.020
W (c,Pu?®
L » g
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TABLE VI

EFFECTIVE DELAYED-NEUTRON FRACTION B.¢f AND RELATED

KINETICS DATA FOR 2500-LITER, PLUTONIUM A METAL,
OXIDE, AND CARBIDE FAST REACTOR CORES

Bats( )

LA

WORTH OF DELAYED
NEUTRONS IN CORE (c)
AND BLANKET (b) FOR
FISSIONABLE MATERIALS

W)
p

WORTH OF PROMPT
NEUTRONS N CORE (c)
AND BLANKET (b) FOR

FISSIONABLE MATERIALS

Fi18( )
FiS(tot)

WORTH RATIOS

CORE: 2500 LITER, PLUTONIUM A, NETAL; £ = 2.06918 x 1075 B . = 0.00390745
- -
(1) 0.00008086 (0% o008 | (™) = 1100 |(c,1000 =o0.085 || (c,0%*
(2) 0.00076188 (c,Pu®) = 0.087 | (c,Pu?®) = 1,169 | (b,t01) =0.038 735~ 8%
(3) 0.00070239 (e,u?®) =o0.183 | [P )
(W) 0.00142937 tc,Pu?®) = 0.782 239,
[h {c,Pu™™")
(8) 0.00068300 ¢ - 0.827
(8) 0.00024997 (o,u®%®) =o0.233 | (b,u?%%) =o0.323 W (c,pul®®)
L P J
(6,07 =0.035 |[y (c.u2%,
p
= 1.018
W (c,Puzsg)
AY - p -
CORE: 2500 LITER, PLUTONIUM A, OXIDE, {, = ¥.¥3106 x 107" g . = 0.00318037
(1) 0.00007777 @™ = rosu | (0™ =168 [ (00 =o.ou8 W (c,u®)
(2) 0.0007105 (.,pu®® = 1,033 | (,Pu?®) = 1.5 | (b,10)  =o0.052 73, |~ 092!
(3) 0.00060062 (c,u®%®) =0.000 |["%‘Pe )
(4) 0.00113320 (c,Pu?®®) = 0.858 | 239
(5) 0.00048105 Wgle Pu 0t
238 238, _ 239, | = 0-903
(6) 0.00018723 (b,02%) =o0.281 | (6,u®®) =o0.388 W (c.pu?®®)
e |
(b,UnB) = 0.052 -w (C'U238) ]
L
= 1.019
LH (c.?uzag)
‘ P |
CORE: 2500 LITER, PLUTONIUM A, CARBIDE; L8 ;= 3.377u8 x 1077; Byqs = 0-00346535
1
1y -
(1) 0.00007892 U =025 [ (@UP%) =72 | (ero0 =008 | (e,u?®)
(2) 0.00072995 (c,Pu?®®) = 1008 |1 (clPu®%) = 1182 | (5,100 = 0.0u8 —7as,| 080
(3) 0.0063957 I (.00 = 0.12y [Mple P )]
() 0.0012u686 , (e,pa™) 0830 |1 a0
(6) 0.00055871 ‘l " g cry - 0.873
(8) 0.00021134 (6,07 =0.263 |l (4™ =o0.353 £ (c.pul®)
p |
i - .
!‘,\ (6,07 <o.0u8 | [y (c.u2%,
p
= 1,018
y W (c,Pu??)
, L» |
|
|
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CONCLUSIONS

Tables I through VI are arranged in such a way as to be largely
selfexplanatory. One important quantity for stability studies is the value
l/ﬁeff, as it determines the amplification in the plateau region of the
zero-power transfer function. Some numbers for representative systems
are

Beff 1/ Bets
EBR-I, Mark III
(U?35-U?38) system 0.00683 146
Typical Large Fast
(Pu-U?3%) System 0.0035 286

We note that the value 1/Beff is doubled up by going from the EBR-I,
Mark III (U%35-U?38) system to a typical large fast (Pu-U?38) system.

Let us assume two reactors with equal heat transfer characteristics,
sizes, and other pertinent data for the feedback function, i.e., PK(ja))(l3)
(power coefficient). Furthermore, we assume that the U23-U%8 system has
a small bump in the load power transfer function LP(jw), as shown in
Fig. V. By replacing the U?**~-U?3® neutronics system with a Pu-U%® system,
we would get a significant increase in the tendency towards resonance in-
stability due to the doubling up of the amplification. This is, in fact, equiv-
alent to a doubling up of the power level in the U?3°-U?3® gystem.

238

(Pu-U""")

235 238
-

(v

|LP(io )|

[rad}
w r——
sec
FIG. V

LOAD POWER TRANSFER FUNCTION FOR
FAST PLUTONIUM AND U?® REACTOR
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The effect of raising power level in a linear system is studied in
detail in Ref. 13. Bethe(l5 pointed out that it is relatively easy to correct
such resonances if their mechanism is visualized during the design stages
of the reactor. The core considered here is, of course, quite hypothetical,
but it is well to remember that the neutronics characteristics of a plutonium
system will introduce additional amplification because the delayed-neutron
fractions of Pu?3?are three times smaller than the delayed-neutron frac-
tions of U%%.(13) A considerable increase of Beff is introduced in the Pu
cases due to Pu24°, Pu241, Pu242, and U238, Especially U238 contributes con-
siderably, since the U?3® fissions in the 1500-liter Pu (TYPE C) oxide
core shown in Table V, for example, are close to 20% of the fissions of
Pu?*? in the core.

In the last column of Table V one notes for the above case that the
worth of a delayed U??*® neutron in the core is slightly higher than the worth
of a delayed Pu®*? neutron in the core.

From Figs. Il and III one could single out fuel compositions and
core sizes which would be worse than others with respect to introducing
amplification, but it is felt that generalized conclusions should not be
drawn at this point. Figure IV shows that the phase for these cores con-
sidered is not effected very much, as indicated by the variation between
F and G.
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