

MASTER

JAN 11 1962

Isomeric Transition in Sb^{122m} (3.5 min)*

E. der Mateosian and M. L. Sehgal

Brookhaven National Laboratory, Upton, New York

An investigation of the two previously reported gamma radiations (61 kev and 75 kev) of Sb^{122m} (3.5 min) revealed that the 75 kev transition has a K conversion coefficient in agreement with an E2 transition but a lifetime in agreement with an L3 transition. Delayed coincidences disclosed a 1.8 μ sec lifetime state following the 75 kev transition. This decays through the emission of a 61 kev gamma ray which exhibits a K conversion in agreement with an E1 transition although the lifetime is more like an L2. These transitions are delayed by factors of $\geq 10^6$.

INTRODUCTION

The 3.5 min activity in Sb^{122} was first observed in 1947 by ¹
E. der Mateosian, M. Goldhaber, C. Muehlhause and M. McKeown.
E. der Mateosian and M. Goldhaber ² reported a 0.068 Mev gamma ray associated
with this isomer and J.H. Kahn ³ reported the existence of a two step tran-

* Work performed under the auspices of the U.S. Atomic Energy Commission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

sition, giving 0.059 Mev and 0.074 Mev as the energies of the two transitions.
4
This was confirmed by J.M. LeBlanc, J.M. Cork and S.B. Burson, who gave
0.0607 Mev and 0.0753 Mev as their measured values.

GAMMA RAY STUDIES

The gamma ray spectrum of Sb^{122m} (3.5 min) was studied with a scintillation spectrometer and is shown in Fig. 1. Sources were prepared by irradiating samples of Sb enriched in Sb¹²¹ in the Brookhaven reactor. A K x-ray peak (27 kev) and a peak composed of the partially resolved, unconverted 61 kev and 75 kev gamma rays are seen. A 58.8 kev gamma ray from the decay of Co^{60m} (10.47 min) which is also shown (slightly displaced in position) was used to construct the shape of the 61 kev peak so that the composite peak could be decomposed into its two components. From the areas under the two peaks the ratio of the unconverted 61 kev gamma ray to the unconverted 75 kev gamma ray was determined and found to be 2.9. The ratio of the K x-ray intensity relative to the sum of the intensities of the two unconverted gamma rays was also determined, 1.37 ± 0.1 , after correcting for absorption and crystal efficiencies and multiplying by the
6
fluorescent yield. The ratio is taken to be equal to $e_K / (\gamma_1 + \gamma_2)$ where e_K is the intensity of the K conversion electron, γ_1 , γ_2 are the unconverted 61 kev and 75 kev gamma ray intensities. Tables 1 and 2 show calculated values for these ratios as a function of the nature and multipolarity of the two transitions.

A search was made with an intense source of Sb^{122m} (3.5 min) for the cross-over gamma ray (136 kev). Only a long-lived background of Compton rays due to higher energy gamma rays was seen in the 136 kev region.

In order to set a low upper limit on this transition, a 3014 mgs/cm^2 thick Cu absorber was used, reducing the intensity of the mixed 61 kev-75 kev peak with which the 136 kev gamma ray was to be compared. Readings were repeated as a function of time and a 3.5 min component was sought for in the two energy regions that were compared. After subtracting the long lived components from the 136 kev region the residual counts were taken to be the upper limit to the cross over. Correcting for efficiencies of detection, absorption in Copper and the relative amounts of 61 kev and 75 kev gamma rays in the combined 61 kev-75 kev peak, the ratio of the unconverted 75 kev gamma ray to the 136 kev gamma ray was found to be 60. This implies that if the cross over is an E3, it is $> 6 \times 10^4$ times slower than the Weisskopf estimate for a single particle transition.

A search for high energy gamma rays or beta rays from the 3.5 min level was unsuccessful, an upper limit of 0.5% being established. On the grounds that the 3.5 min lifetime might be associated with a third transition preceding the 75 kev transition, a search was made for soft gamma rays and electrons. No new gamma rays and no electrons greater than 15 kev other than those associated with the 75 kev and 61 kev transitions were observed. Triple coincidences between K and L x-rays and gamma rays were performed with negative results. These results seem to rule out the possibility of a transition greater than 15 kev preceding the 75 kev transition.

COINCIDENCE STUDIES

Coincidence measurements were made with a conventional coincidence circuit of the fast-slow type having a resolving time of 0.24 μsec . Prompt e^- - γ coincidences in Sn^{117m} (14 d) ($\tau_{1/2} = \sim 3 \times 10^{-10} \text{ sec}$) were

used as a control to test the circuit. When e^- - γ coincidences were observed in Sb^{122m} (3.5 min) a reduced efficiency (-0.1 x efficiency for prompt coincidences) was obtained. An oscilloscope triggered with electrons and displaying gamma rays of Sb^{122m} (3.5 min) showed delayed coincidences with a lifetime of a few microseconds. Delayed coincidences were counted as a function of delay time and the curve in Fig. 2 was observed. The 2.6 μ sec lifetime in Tm^{171} is shown for comparison. Sb^{122m} shows a lifetime of $1.8 \pm 0.2 \mu$ sec. The curve in Fig. 2 was obtained by delaying the 75 kev gamma ray, indicating that the 75 kev transition precedes the 61 kev transition.

Gamma-gamma delayed coincidences (75 kev γ -ray delayed 0.4 μ sec) were performed with a channel in the triggering input set first on the 75 kev gamma ray and then the 61 kev gamma ray. Figures 3 and 4 were obtained in this way. In Fig. 3 K x-rays and the unconverted 61 kev gamma ray are seen in delayed coincidence with the 75 kev gamma ray triggering. Chance coincidence corrections were made both by following the single counts in each channel and computing the chances and also by delaying the 61 kev gamma ray instead of the 75 kev gamma ray and counting coincidences for a length of time equivalent to the above runs. After making the proper corrections for chances, K x-ray fluorescence yield and absorption, the ratio of the area under the K x-ray peak relative to the area under the 61 kev peak was taken. This ratio is precisely α_K , the K conversion coefficient for the 61 kev gamma ray. The value obtained for this coefficient is 0.88 ± 0.10 . Similarly, from Fig. 4, the K conversion coefficient for the 75 kev gamma rays was obtained and its value is 3.1 ± 0.5 . These measured conversion coefficients are compared in Table 3 with calculated values taken from M.E. Rose.

NEUTRON ACTIVATION CROSS-SECTIONS

The thermal neutron activation cross-section of the Sb^{122m} 3.5 min isomer was measured by irradiating a sample of enriched Sb^{121} in the thermal column of the Brookhaven reactor and comparing the 3.5 min activity with the 2.8d ground state activity. The cross-section of the 2.8d activity was checked against a gold sample and a cross-section of 6 barns was obtained, essentially in agreement with the Seren, Friedlander and Turkel literature value of 6.8 barns. The thermal neutron activation cross-section of the Sb^{122m} 3.5 min isomer was calculated to be 0.057 ± 0.010 barns on the assumption that the 75 kev γ ray is an E2 transition and the 61 kev, an E1 (see below). The isomeric ratio, (~105), is in agreement with the isomeric ratio rule.

DISCUSSION

Experimentally determined values for the K-conversion coefficients of the 75 kev and 61 kev gamma rays, the ratio of the unconverted 61 kev and 75 kev gamma rays and the ratio of the K x-ray peak to the unconverted gamma rays were compared in Tables 1-3 with theoretical values and all conversion data are in agreement with an E2 assignment to the 75 kev gamma ray and E1 to the 61 kev. These assignments, however, require that the transition from the second excited state (3.5 min) be about 10^8 times retarded, and that from the first excited state (1.8 μ sec) be about 10^6 times retarded over the Weisakopf estimates. The 3.5 min lifetime is in agreement with a spin change ¹⁰ of 3 and the 1.8 μ sec lifetime is in agreement with a spin change of 2. In Fig. 5 constructed singles spectra for various assumptions for the multipolarities of the transitions are compared with a typical experimentally determined singles spectrum. The large K

x-ray intensity required by the E3-E2 assignment for the multipolarities of the 75 kev and 61 kev gamma rays makes this assignment most unlikely. ¹¹

The decay scheme of Sb¹²² is shown in Fig. 6. The ground state ¹² spin has been measured, the rest of the spins and parities have been assigned tentatively on the basis of the multipolarities which agree with the conversion data.

All of the spins assigned to the levels in Sb¹²² are allowable spins on the basis of the shell model. Since the spins of the stable antimony isotopes, Sb¹²¹ and Sb¹²³ have been measured and are $\frac{5}{2}$ and $\frac{7}{2}$, one may assume that the odd proton has low lying d_{5/2} and g_{7/2} states. In the Sn isotopes both experimental data and theoretical calculations suggest low lying s_{1/2}, d_{3/2}, d_{5/2}, g_{7/2} and h_{11/2} levels for the odd neutron. These nucleon configurations may combine in various ways to give the measured ground state spin and the spins assigned to the excited level. Since the ground state (2-) has negative parity it must involve an h_{11/2} state. A proton in a g_{7/2} state and a neutron in an h_{11/2} (g_{7/2}, h_{11/2}) could give the ground state. The first excited state (3+) may be obtained if the neutron were in an s_{1/2} state, the proton again in the g_{7/2} state (g_{7/2}, s_{1/2}). The second excited level (5+) may be a (g_{7/2}, d_{3/2}) or a (d_{5/2}, d_{5/2}) configuration. The last assignment might explain the delayed E2 transition since two nucleons would be involved in the transition. The following E1 transition by the single particle model would involve a neutron transition from an s_{1/2} state to an h_{11/2} state which should highly forbid the E1 transition.

ACKNOWLEDGEMENTS

The authors wish to thank G.T. Emery, W.R. Kane and M. Schmorak for stimulating discussions and Dr. M. Goldhaber for continued interest and encouragement.

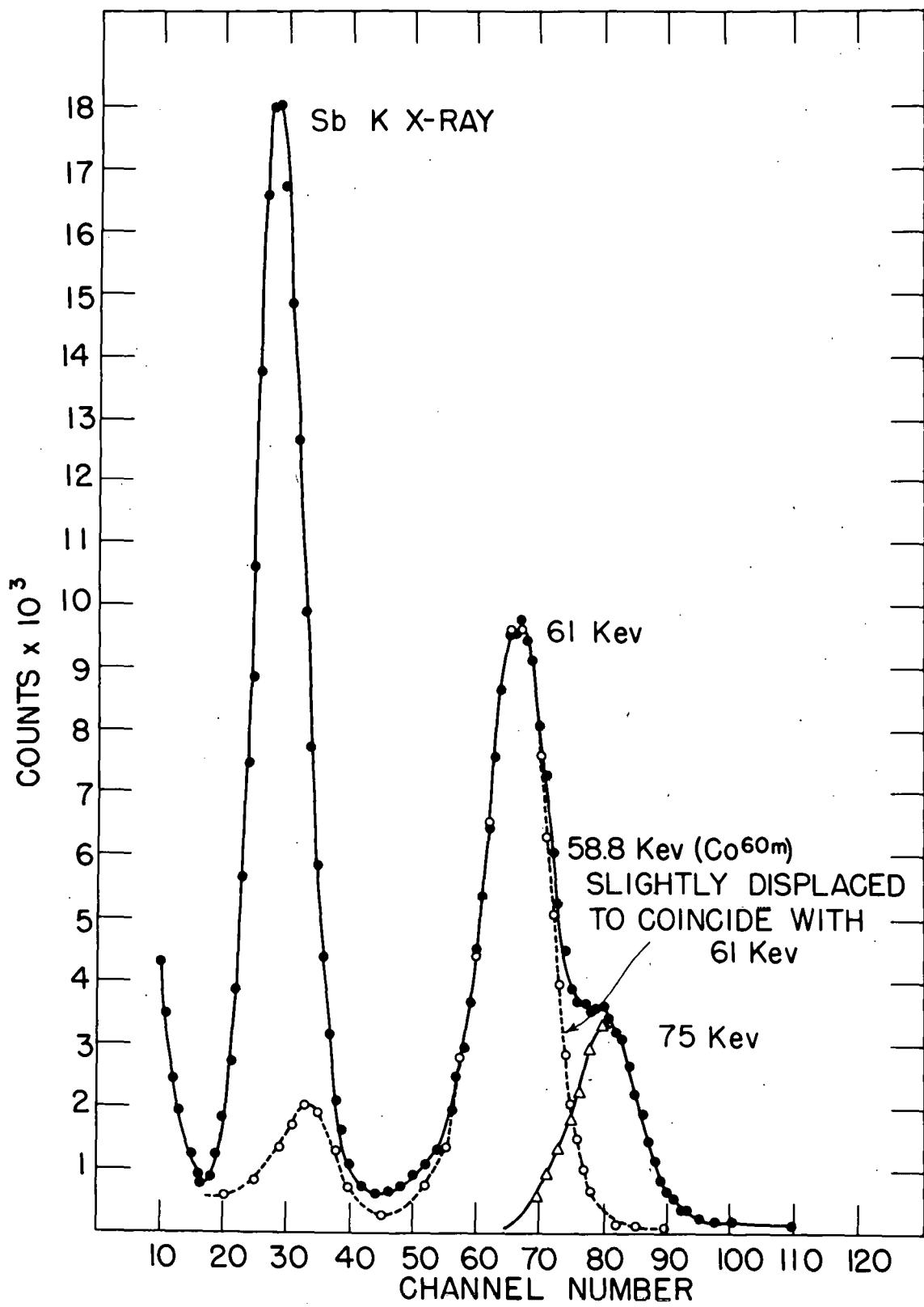
REFERENCES

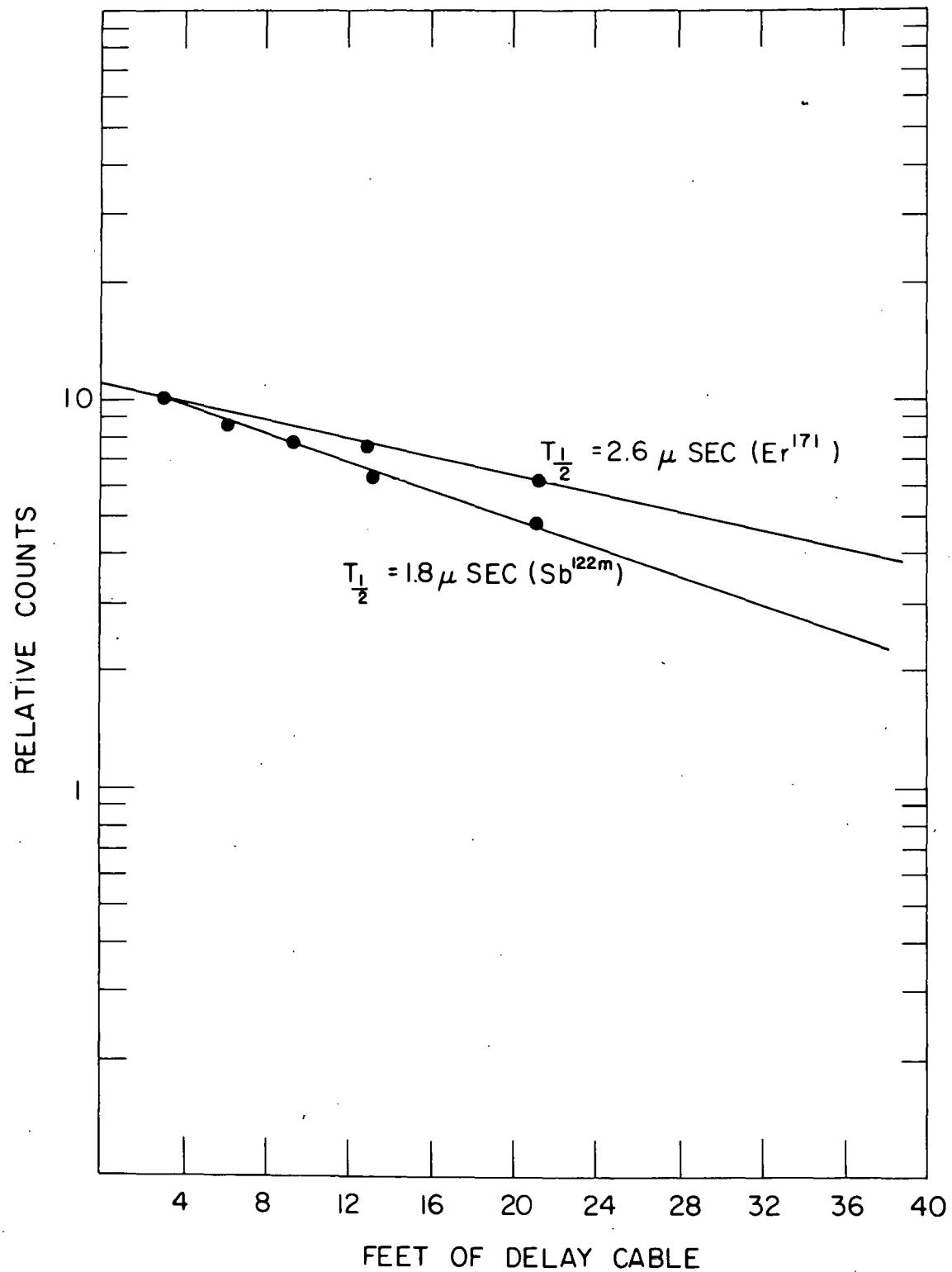
1. E. der Mateosian, M. Goldhaber, C.O. Mühlhausen and M. McKeown, Phys. Rev. 72, 1271 (1947).
2. E. der Mateosian and M. Goldhaber, Phys. Rev. 82, 115 (1951).
3. J.H. Kahn, Oak Ridge National Laboratory Report ORNL 1089 (1951).
4. J.M. Blanc, J.M. Cork and S.B. Burson, Phys. Rev. 98, 39 (1955).
5. Obtained from Oak Ridge National Laboratory.
6. Nuclear Spectroscopy Tables, p. 81 (A.H. Wapstra, G.J. Nijgh and R. Van Lieshout) (Interscience Publishers, Inc., New York).
7. Internal Conversion Coefficients, M.E. Rose (Interscience Publishers, Inc., New York).
8. L. Seren, H.N. Friedlander and S.H. Turkel, Phys. Rev. 72, 888 (1947).
9. E. Segré and A.C. Helmholz, Rev. Mod. Phys. 21, 271 (1949); E. der Mateosian and M. Goldhaber, Phys. Rev. 108, 766 (1957).
10. Nuclear Data Sheets, prepared by the Nuclear Data Group, National Academy of Sciences.
11. Recently, C.J. Gallagher, Jr. and H.L. Nielson have reported a similar case in W^{183} (5.3 sec) (Nuclear Phys. 24, 422 (1961)) of an isomer with an M2 conversion coefficient and an E3 lifetime. Whereas they may be able to explain the situation in W^{183} by ascribing the delayed transition to K-forbiddenness, such an explanation is unlikely in Sb^{122} .
12. L.S. Kisslinger and R.A. Sorensen, Mat. Fys. Medd. Dan. Selsk., 32 No. 9 (1960).

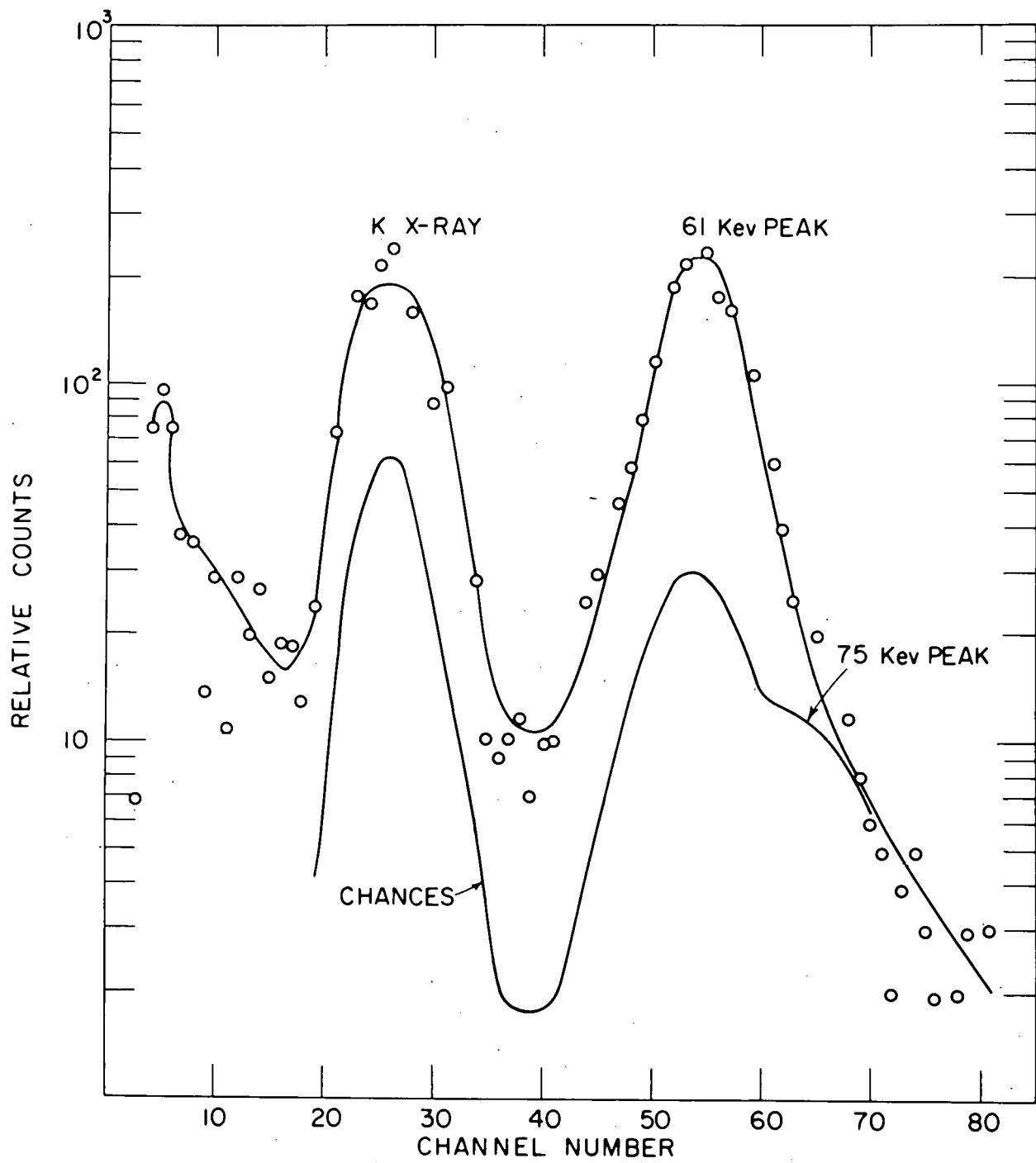
FIGURE CAPTIONS

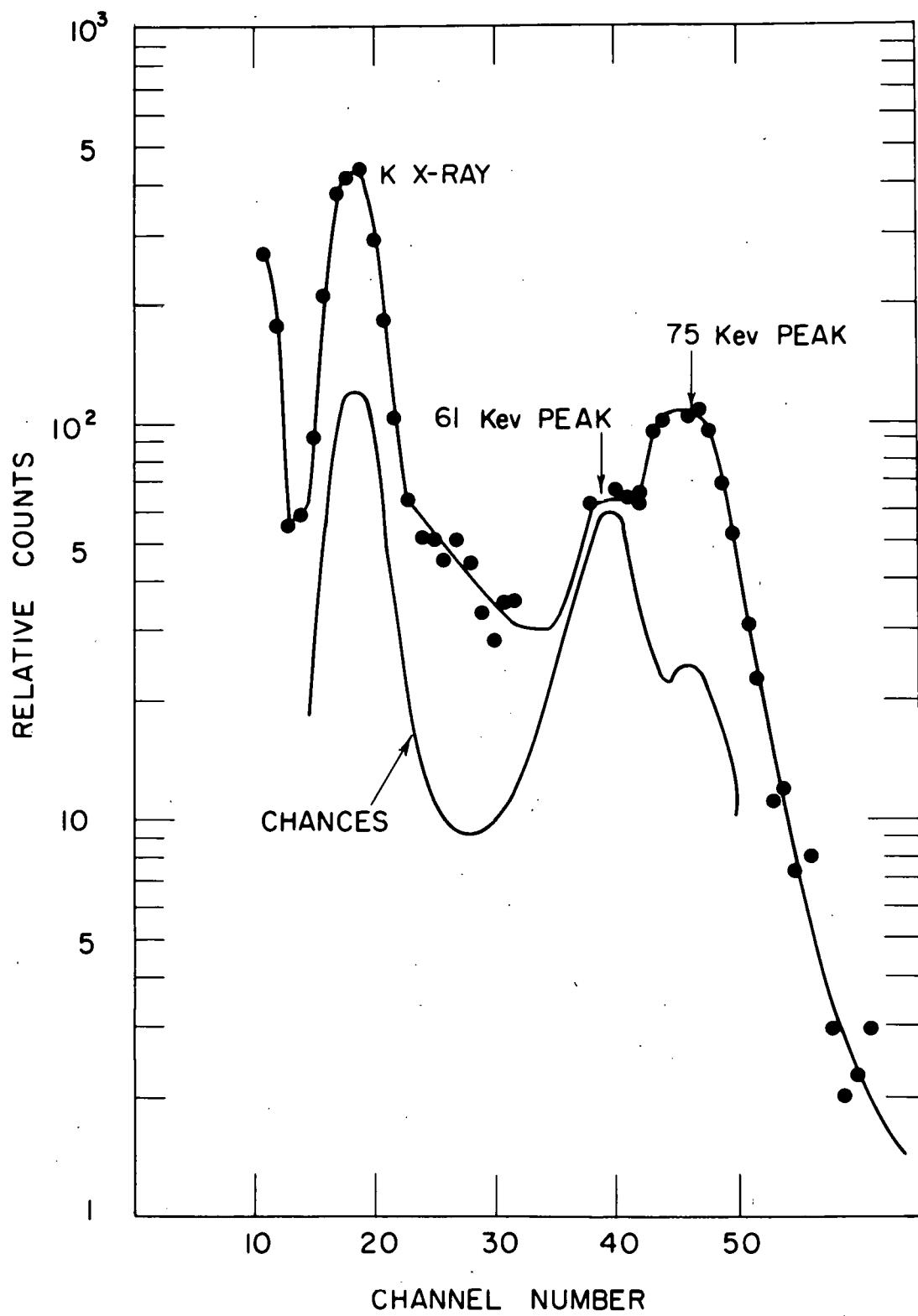
Fig. 1 Spectrum of gamma rays observed in the decay of Sb^{122m} (3.5 min) with a scintillation spectrometer. The detector was a 1 x 1 inch NaI(Tl) crystal. Two partially resolved unconverted gamma rays of 61 kev and 75 kev energies are seen as well as the K x-ray of Sb. The 58.8 kev gamma ray of Co^{60m} (10.47 min) was also run and is shown slightly displaced in energy so that it coincides with the 61 kev peak. The shape of this gamma ray peak was used to resolve the 61 kev and 75 kev gamma rays. (Neg. No. 8-108-61)

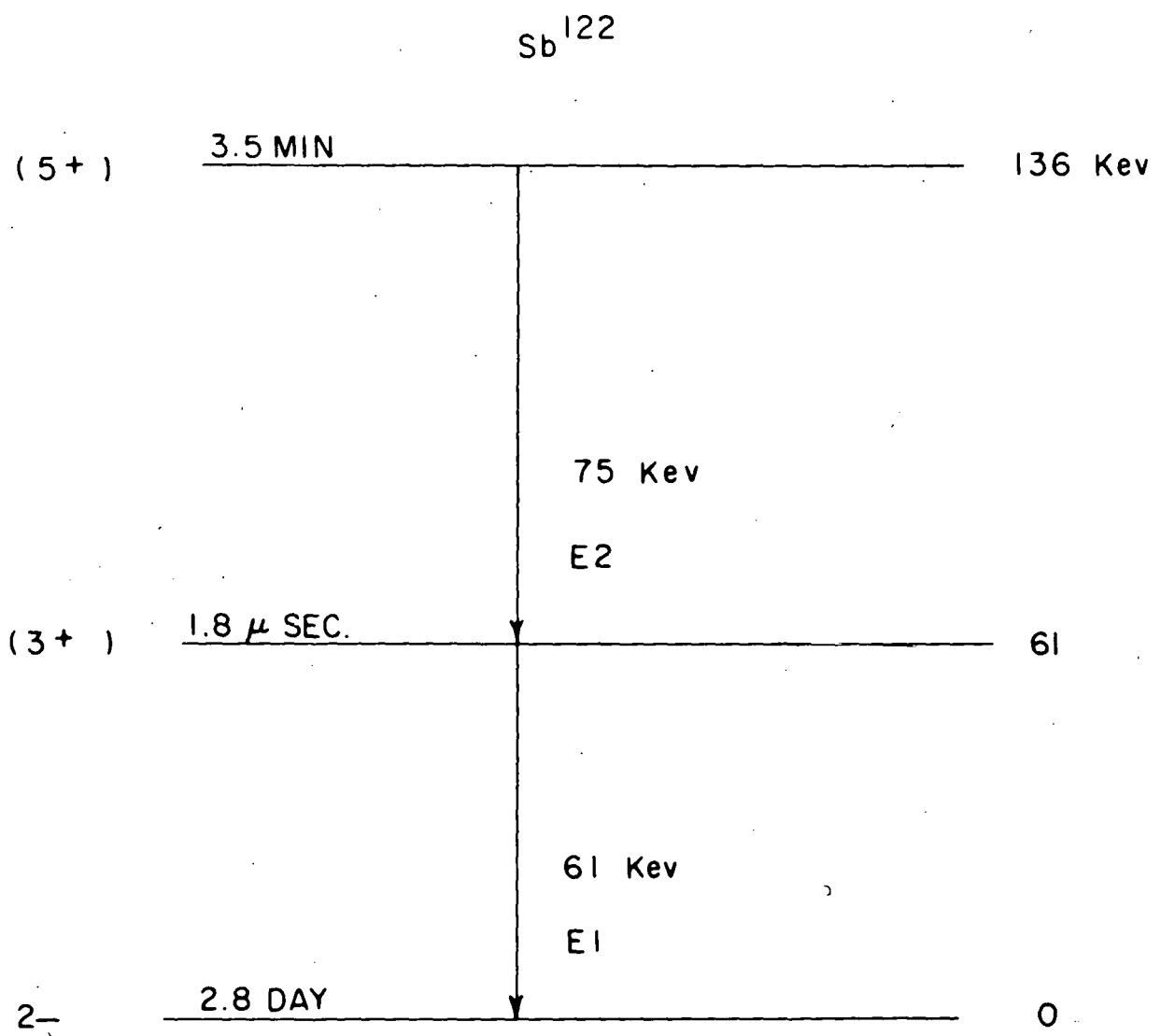
Fig. 2 Delayed coincidences in Sb^{122m} (3.5 min) as a function of time. HR 2000 cable was used to effect the delays. Each foot of cable is equivalent of 0.11 μ sec. Er^{171} (7.8 h) was run as a control showing the 2.6 μ sec state which exists in Tm^{171} . (Neg. No. 8-111-61)


Fig. 3 Spectrum of gamma rays coinciding with the 75 kev gamma ray of Sb^{122m} (3.5 min) in delayed coincidence. A 0.4 μ sec delay was used in the triggering channel, which was set on the 75 kev gamma ray peak. Chance coincidences were determined both by counting singles and calculating the chance coincidences and by making a similar run with the 61 kev gamma ray delayed instead of the 75 kev. (Neg. No. 8-110-61).


Fig. 4 Spectrum of gamma rays coinciding with the 61 kev gamma ray of Sb^{122m} (3.5 min). The triggering channel was set on the 61 kev peak of Sb^{122m} and the display channel was delayed 0.4 μ sec. Chance coincidences were both calculated from the singles counts and determined experimentally by repeating the run with the delay in the 61 kev channel. (Neg. No. 8-107-61).


FIGURE CAPTIONS (cont'd)


Fig. 5 Decay scheme of Sb^{122m} (3.5 min). (Neg. No. 8-106-61)


Fig. 6 Comparison of singles spectrum of Sb^{122m} (3.5 min) with constructed curves based on various assumptions of multipolarity for the two gamma ray transitions involved. The best fit (E2-E1) for the 75 kev and 61 kev gamma rays is in agreement with conversion data. (Neg. No. 8-109-61).

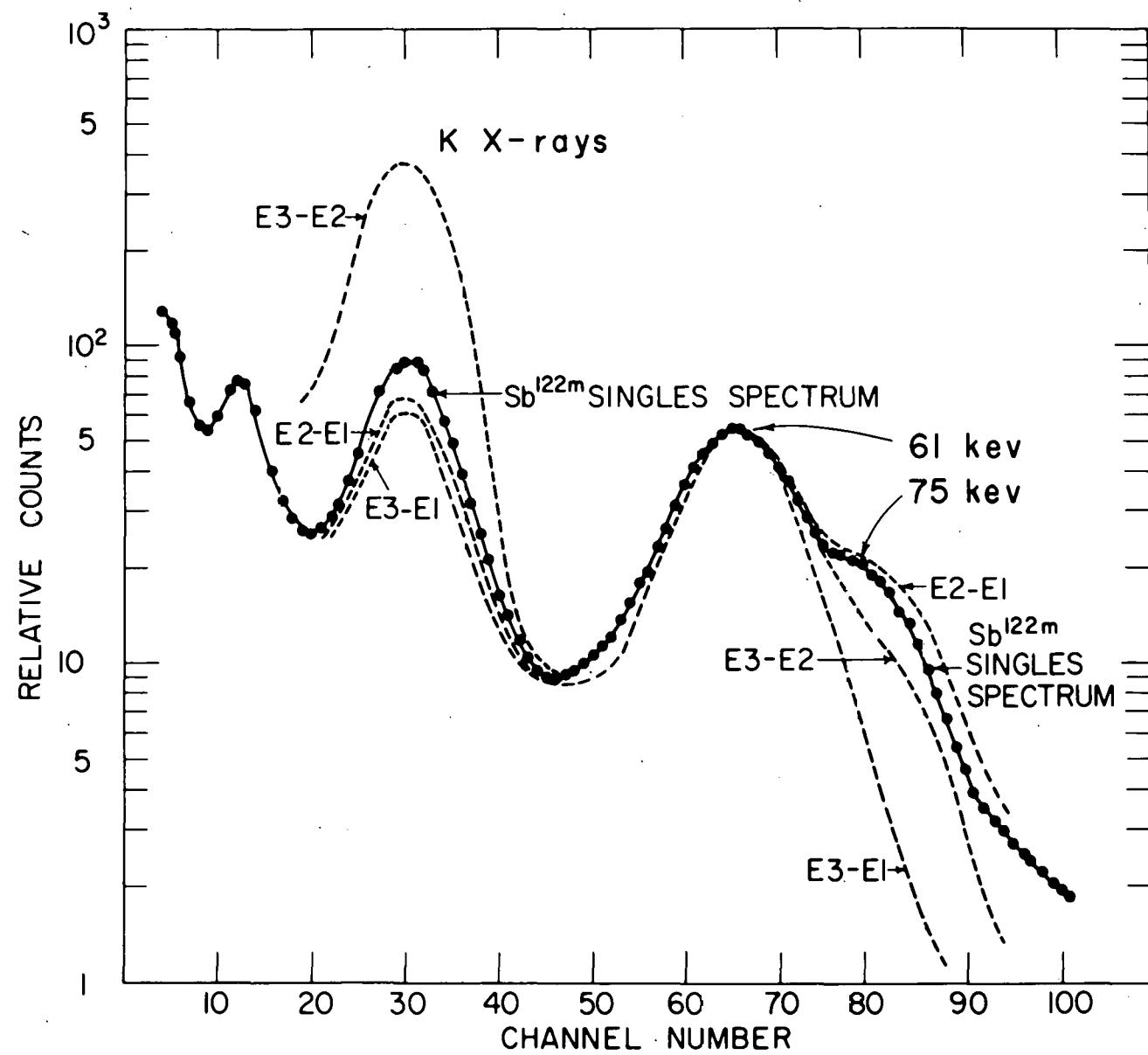


TABLE I

Ratio of unconverted 61 kev gamma ray to unconverted 75 kev
gamma ray for various assumptions of multipolarity

$\frac{61}{75}$ kev	E_1	E_2	M_1	M_2
E_1	0.81	0.14	0.41	0.036
E_2	3.0	0.52	1.51	0.13
E_3	39.1	6.8	19.7	1.7
E_4	733	128	370	32.5
M_1	1.34	0.23	0.67	0.06
M_2	10.4	1.83	5.3	0.46
M_3	106.6	18.6	53.8	4.7
M_4	130.4	228	660	57.8

TABLE II

Ratio of K x-ray relative to total unconverted gamma rays
(75 kev and 61 kev) for various assumptions of multipolarity

$\frac{61}{75}$ kev	E_1	E_2	M_1	M_2
E_1	0.46	0.92	0.85	1.40
E_2	1.14	3.48	2.33	5.88
E_3	1.0	6.4	2.8	25
M_1	0.85	1.9	1.52	2.77
M_2	1.75	8.0	3.92	1.87
M_3	1.66	10.48	4.1	44.5

TABLE III

K conversion coefficients of the 61 kev and 75 kev gamma rays
of Sb^{122m} (3.5 min) for various assumptions of multipolarity

Nature of Transition	61 kev		75 kev	
	Calculated Value	Experimental Value	Calculated Value	Experimental Value
E1	0.62	0.88 ± 0.10	0.344	3.1 ± 0.5
E2	5.00		2.69	
E3	30.00		16.4	
E4	---		96.7	
M1	2.10		1.15	
M2	30.		13.6	
M3	270.		113.	
M4			862.	