

MASTER

MAR 29 1962

UCRL-10011

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
Contract No. W-7405-eng-48

NUCLEAR SPIN OF 9.5-hr Au^{196m}
Yau Wa Chan, W. Bruce Ewbank,
William A. Nierenberg, and Howard A. Shugart

January 8, 1962

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

Nuclear Spin of 9.5-hr Au^{196m}

Yau Wa Chan, W. Bruce Ewbank,
William A. Nierenberg and Howard A. Shugart

Department of Physics and Lawrence Radiation Laboratory
University of California
Berkeley, California

January 8, 1962

ABSTRACT

The nuclear spin of 9.5-hr Au^{196m} has been measured by the atomic-beam magnetic-resonance method. Measurements in the $^2S_{\frac{1}{2}}$ electronic ground state have yielded the result $I = 12$, which is consistent with predictions of the simple shell model.

Nuclear Spin of 9.5-hr $Au^{196m\dagger}$

Yau Wa Chan, W. Bruce Ewbank,
William A. Nierenberg[†] and Howard A. Shugart

Department of Physics and Lawrence Radiation Laboratory

University of California

Berkeley, California

January 8, 1962

I. INTRODUCTION

The existence of the 9.5-hr isomeric state of Au^{196} was first reported by McMillan and co-workers¹ (1937) and later by Wilkinson² (1949). More recently, the decay scheme of this isomer has been studied by Van Leishout et. al.³ (1959), and independently by Kavanagh⁴ (1960). A nuclear spin of $I = 11$ was predicted in both the latter studies, based on electron conversion ratios for the isomeric transition. The direct measurement of the spin of this isomer now has been made successfully, by the method of atomic beams. The measured nuclear spin is $I = 12$.⁵

II. THEORY and EXPERIMENT

An atomic-beam magnetic-resonance apparatus of the flop-in type was used to measure the nuclear spin of Au^{196m} by observing the $\Delta F = 0$ transitions in the $^2S_{\frac{1}{2}}$ electronic ground state at low magnetic fields. The apparatus used and the theory and technique involved have been described elsewhere.⁶ Therefore, only a brief discussion of the method is given here.

The energy of a free atom of gold in the $^2S_{\frac{1}{2}}$ electronic ground state may be represented in a magnetic field by the Breit-Rabi formula.⁷ At low magnetic field, in the "linear" Zeeman region, the frequencies of all possible transitions (including the multiple quantum transitions)⁸ for $\Delta F = 0$ are the same and can be written by

$$\nu \approx \frac{(-g_J + 2Ig_I)\mu_0}{(2I + 1)h} H \approx \frac{-g_J\mu_0}{(2I + 1)h} H, \quad (1)$$

where

I is the nuclear spin, g_J and g_I are electronic and nuclear g factors,
 μ_0 is the absolute value of the Bohr magneton,
 h is Planck's constant,
and H is the external magnetic field.

Therefore, in the Zeeman region, for a given spin the relation between the frequency ν and the magnetic field H can be represented by a straight line as shown in Fig. 1 for $I = 11, 12$, and 13 .

The radioactive isotope used in this experiment was produced from natural platinum foil by bombardment with 48-Mev α particles from the Crocker 60-inch cyclotron on the Berkeley campus. The Au^{196m} was formed by the reaction $Pt^{194}(\alpha, pn)Au^{196m}$ along with the much more favorable reactions $Pt(\alpha, kn)Hg$, for $k = 1, 2, 3, 4$. The induced mercury activity was much higher than that of gold. In order to separate the gold from this mercury and the platinum target, about 20 mg of gold carrier and about 500 mg mercury carrier were dissolved along with the platinum target in hot concentrated aqua regia. Ice was added in order to make the resultant solution cold and dilute. A standard chemical method was employed to extract the gold chloride from the rest of the solution into ethyl acetate. After evaporating the gold bearing ethyl acetate, by pouring it slowly into boiling dilute HCl solution, metallic gold was precipitated by adding water freshly saturated with SO_2 .

A standard tantalum oven body with carbon liner and carbon cap was heated by electron bombardment to provide the source of beam atoms. The usual slits were replaced by a carbon snout to ensure good collimation of the beam.

Sulfur-coated buttons were used to collect radioactive atoms for the resonance detection. After exposure each button was counted in continuous-flow methane counters:

III. RESULTS

The spin-search experiments indicated a strong signal at a frequency corresponding to $I = 12$, as shown in Fig. 2. The decay of these samples showed an enrichment of activity with the half-life of Au^{196m} (9.5-hr) over the normal composition of the beam. Figure 3 shows the decay curves of the beam, of the activity on spin $I = 12$, and a theoretical curve calculated for 9.5-hr Au^{196m} decaying to the ground-state 6.1-day $^9\text{Au}^{196}$.

Seven resonances at different magnetic fields are shown in Fig. 1. A plot of the magnetic field intensity against the corresponding resonance frequency is also shown in the same figure. Note that all the points lie very close to the line given by Eq. (1) for $I = 12$. The decrease of resonance height with increasing magnetic field shows evidence of multiple-quantum transitions.¹⁰ Consequently the hyperfine-structure separation of Au^{196m} is probably very large. This evidence is supported by the fact that there is no deviation of the observed points from the Zeeman line in Fig. 1.

Although the harmonic output of the Tektronix Type 190 oscillator is small, there was the possibility that the resonances might be produced by some harmonic of the fundamental frequency of the oscillation. Such an occurrence would imply a different value for the nuclear spin. A simple experiment was performed to eliminate this source of possible error. After a resonance had been observed on $I = 12$, other exposures were made at frequencies corresponding to 2, 3, 5, and 7 times the resonance frequency. No significant signal was observed. The resonance therefore could not be induced by any output harmonic between the second and tenth. Since the seven

resonances of Fig. 1 lie on a straight line of proper slope for $I = 12$; the possibility of the resonances being associated with other spins is remote. Only spins $I = 0$ and $I = 2$ occur with a slope which is an integral multiple of the slope for $I = 12$. Repeated exposures at the frequencies corresponding to $I = 0$ and 2 have indicated no resonance of 9.5-hr activity. On the basis of this evidence the spin assignment is unambiguous.

IV. DISCUSSION

In this region of the periodic table the spherical shell model is expected to apply. There is only one possible coupling of levels that will explain the experimental result, $I = 12$. Nordheim's weak rule predicts that a proton in the $h_{11/2}$ level and a neutron in the $i_{13/2}$ level should couple to a value near the possible maximum. In our case that maximum is $I = 12$. From pure shell-model orbitals the parity is expected to be odd. Even with considerable quenching, the nuclear moment should be very large compared to the other gold isotopes.

FOOTNOTES AND REFERENCES

† Work supported in part by the U. S. Office of Naval Research and the U. S. Atomic Energy Commission.

‡ On leave as Science Advisor to NATO, Paris.

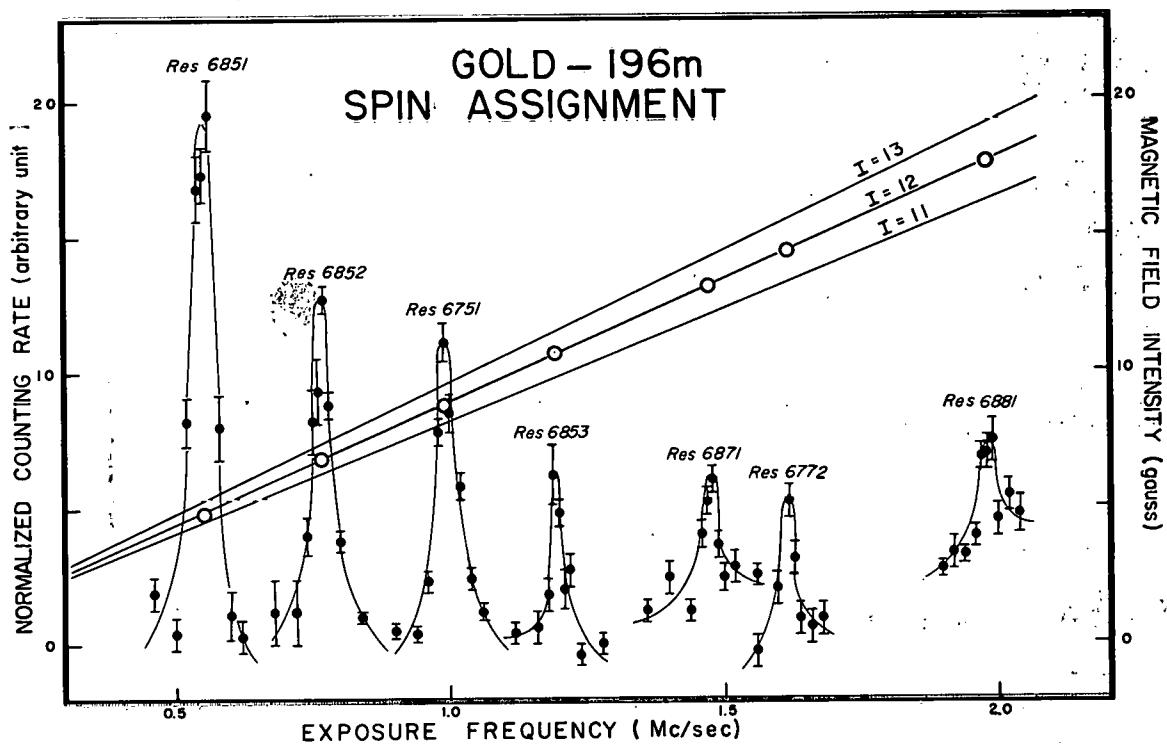

1. E. McMillan, M. Kamen, and S. Ruben, Phys. Rev. 52, 375 (1937).
2. G. Wilkinson, Phys. Rev. 75, 1019 (1949).
3. R. Van Lieshout, R. K. Grgis, R. A. Ricci, A. H. Wapstra, and C. Ythier, Physica 25, 703 (1959).
4. T. M. Kavanagh, Can. J. Phys. 38, 1436 (1960).
5. Y. W. Chan, W. B. Ewbank, W. A. Nierenberg, and H. A. Shugart, Bull. Am. Phys. Soc. Ser. II, 6, 513 (1961).
6. J. P. Hobson, J. C. Hubbs, W. A. Nierenberg, H. B. Silsbee, and R. J. Sunderland, Phys. Rev. 104, 101 (1956).
7. G. Breit and I. I. Rabi, Phys. Rev. 38, 2082 (1931).
8. P. Kusch, Phys. Rev. 93, 1022 (1954).
9. H. P. Yule and A. Turkevick, Phys. Rev. 118, 1591 (1960).
10. M. N. Hack, Phys. Rev. 104, 84 (1956).

FIGURE LEGENDS

Fig. 1. Resonances of Au^{196m} as observed at several different magnetic fields. The circles represent a correlation of the frequency of each resonance peak with the field intensity at which the resonance was observed. The straight lines are the Zeeman lines for gold, corresponding to different possible spin assignments.

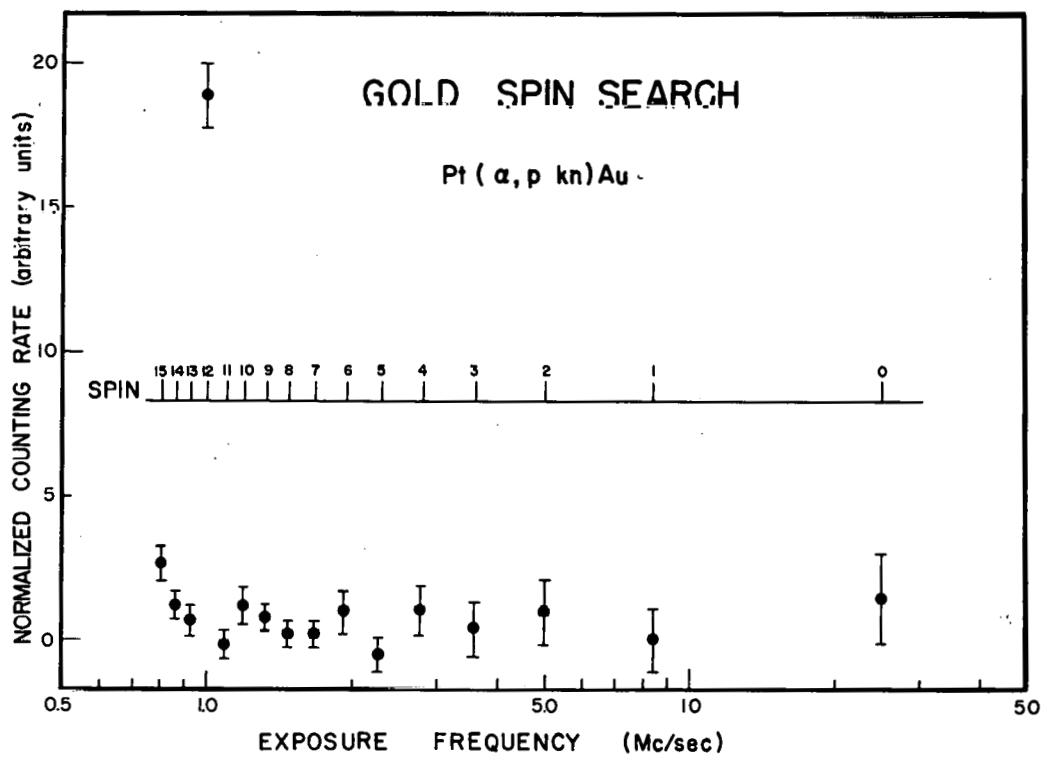

Fig. 2. Spin search at $H = 8.94$ gauss for radioactive gold produced by $\text{Pt}(\alpha, p \text{kn})\text{Au}$ reactions.

Fig. 3. A comparison of the decay of the beam activity and the decay of $I = 12$ activity. The solid curve is a theoretical curve, assuming 9.5-hr Au^{196m} decaying to its ground-state 6.1-day Au^{196} .

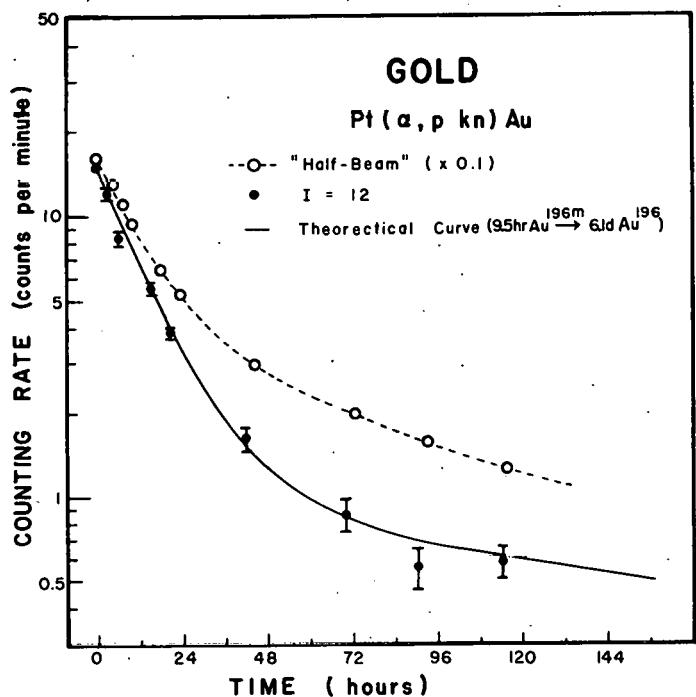

MU-25215

Fig. 1

MU-25301

Fig. 2

MU-25214

Fig. 3

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.