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INTEFtACTION . BETWEEN PRISMATIC 

AND GLISSIU DISLOCATIONS 

G. Saada* and J.. Washburnw 

ABSTRACT 

A t heo re t i c a l  study i s  made of the  in te rac t ion  between moving 

dis locat ions  and , la rge  point  defect  c lu s t e r s  i n  t he  form of Frank 

s e s s i l e  loops and p2rfect  prismatic l o o p s .  Long range in te rac t ions  

a r e  shown t o  be negl igible .  The contact  in te rac t ion  depends on t he  

ty-pe and or ienta t ion of the  leaps r e l a t i v e , t o  the  g l ide  plane and. 

Burgers vector of the  gl id ing dis locat ion:  

a) Perfect  prismatic loops can i n t e r ac t  with moving dis locat ions  I ~ 
i n  four d i f f e r en t  ways. These ca se s  a r e  analyzed i n  d e t a i l .  

b )  The i n t e r ac t i on  with a  F'rank s e s s i l e  loop depends on its s i z e .  

However, even loops possibly too small t o  be v i s i b l e  by t rans -  

mission e lect ron microscopy can form strong loclring points on . 

a moving dis locat ion.  
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+ x  Professor of Metallurgy, Department of Mineral Technology and Inorganic 
M~lter ia ls  ResearchDivision, Iawrence Radiation Lsboratory, University 
of California,  Berkeley,. California,  '3A ' , 



1. Introduction 

The c lus te r ing  of excess vacancies due t o  rapid  quenching of F2C 

mztals from high temperature leads t o  the  formation of prismatic d i s l o -  

cation loops ( b o t h  per fec t .  and imperfect),  s tacking f a u l t  te t rahedra ,  

and h e l i c a l  d is locat ions .  (' 4, 1n pura a l ~ i n w n  only pzr fec t  loops 

a with Burgers vector - U10> and stacking f a u l t  loops with Bxgers  vector 
? 

a 
-all> aPe observed. Fig. 1 shows'a t y p i c a l  qcenched and aged sub- 
3 
s t ruc tu r e  i n  pure aluqinum. 

The presence of these loops causes an increase i n  the  y i e ld  

( 5 )  s t rength and a low i n i t i a l  r a t e  of work hardening. It has a l s o  been 

observed t h a t  small  amounts of p l a s t i c  deformation 3estroy the  loop 

substructure and it has been suggested t h a t  t h i s  accounts f o r  the  low 

( 6 )  i n i t i a l  hardening r a t e .  

It i s  the  purpose of t h i s  paper t o  exp la in ' the  increase i n  the  

y ie ld  s t rength  and the  sweeping away of t he  loop subst ructure  on the  

bss i s  of a de ta i l ed  analysis  of the in te rac t ions  between moving d i s -  

locat ions  and prismatic loops i n  the  FCC s t ruc ture .  Possible e f f e c t s  . . , 

due t o  i so la ted  vacancies or very small c lu s t e r s  w i l l  not be considered. 

2. Long Range Interact ion 

When the  dis tance between EL moving dis locat ion and a prismatic 

loop t h e t  cuts  i t s  g l ide  plane is la rge  c.ompared t o  the  radius RL of the  

loop, there  is l i t t l e  in te rac t ion .  The s t r e s s  f i e l d  due t o  t he  loop 

1 
f a l l s  off as - where d i s  the  dis tance t o  the  loop. I f  d i s  smaller  

. .d2 

than R then t h e  loop w i l l  be equivalent t o  two " t rees"  of opposite 
L 

Burgers vector(7) as defined i n  t h e  f o r e s t  theory of flow s t r e s s .  
(8 t o  13)  



I f  a loop does not cut  the  g l ide  plane of ,the moving dis locat ion 

but l i e s  within the  volume kR t o  e i t h e r  s ide ,  and i f  RL i s  l e s s  than 
L 

a few hundred .angstroms there  a r e  three  processes, one of which w i l l  

probably br ing the  two into. contact: 

a )  cross s l i p  of a segment of the  moving dis locat ion 

b)  conservative climb of the  loop (as  observed by fioupa and 
. . 

(14) 
' . pr ice )  

c )  motion of ,  a per fec t  loop along i t s  g l ide  cylinder.  

3 .  Contact In teract ions  . . 
. . 

Dislocation reactions t h a t  may occur when a moving dis locat ion 

( 1 5 )  in te r sec t s  a prismatic loop w i l l  be described with the  a i d  of Thompsons 

notation ( ~ i g .  2 ) .  The moving dis locat ion w i l l  always be assumed t o  have 

Burgers vector BC and gl ide  plane a. '('The plane, a,  i s  shown shaded i n  

Fig. 2 . )  

3.1 Interact ions  with perfect  loops . 

Perfect  prismatic loops formed by condensation of excess vacancies 

can have any of the  s i x  Burgcrs vectors, AB, BC, CD, AD, AC, BD. The 

energy of a perfect  loop probably var ies  only s l i g h t l y  f o r  small  ro ta -  

t i ons  on Its g l ide  cylinder away from the  plane of minimum dis locat ion 

lengkh, :(110), whic,h l i e s  a t  r i g h t  angles t o  i t s  Burgers vector.  For 

example, a loop vi$h Burgers vector h can probably l i e  on the  (111) 

planes a or  d or on any intermediate plane. Therefore, in te rac t ion  with 

a moving dislocation may often r e s u l t  i n  ro ta t ion  of a prismatic loop. 

Four d i f fe ren t  cases can be dist inguished on the  basis  of the  ang- 

ular re la t ionships  between the  Burgers vector of the  loop, the  d i rec t ion  

EX!, and plane a: 



a )  Consider f i rs t  t h e  i n t e r a c t i o n  of a mcving d i s l c 2 a t i o n  wi th  

a p r i sma t i c  d i s l o c a t i o n  t h a t  has  &I ( o r  51) as i ts  Burgers v e c t o r .  I n  

t h i s  case. t h e  B?lrgers vec to r s  of t h e  loop  and t h e  moving d i s l ' oca t ion  

a r e  a t  r i g h t  angles .  Only long range i n t e r a c t i o n s  0c.cu.r. 

3 3 

b )  I f  t h e  d i s l o c a t i o n  loop has  BC o r  CB ss i ts  Burgers vec to r ,  
. . 

t h e  r e s u l t  of t h e  i n t e r s e c t i o n  w i l l  be as dep ic t ad  i n  F ig .  3. A f t e r  

t h e  cu t t fng ,  t h e  loop  i s  ' smal le r  and t h e  moving d i s l o c a t i o n  has  acqu i r ed  

a loop  MM1 t h a t  cioes no t  l i e  i n  t h e  o r i g i n a l  g l i d e  p lane .  If t h e  moving 

d i s l o c a t i o n  is no t  puz-e screw, t h e s e  segments w i l l  probably be a b l e  t o  

s l i d e  a long  t h e  d i s l o c a t i o n  i n  t h e  d i r e c t i o n  of t h e  B ~ r g e r s  vec to r  and 

fo l low it. Therefore,  t h i s  i n t e r a c t i o n  w i l l  cause a p rog res s ive  des-  

t r u c t i o n  of t h e  s u b s t r u c t u r e .  I f  t h e  jogs do no t  g l i d e , ,  t h e  arms ML 

and M'L1 of t h e  moving d i s l o c a t i o n  w i l l  have t o  develop i n  s p i r a l ,  meet 

and a n n i h i l a t e  without  des t roy ing  t h e  loop. Provided t h e r e  a r e  equa l  

a  
numbers of loops f o r  each of t h e  p o s s i b l e  - U10> Burgers v e c t ~ r s ,  a 

2 

given d i s l o c a t i o n  w i l l  i n t e r a c t  i n  t h i s  way wi th  one loop  out  of s i x .  

Therefore,  t h e  number of t h e s e  events  as , soc ia ted  wi th  an  increment of 

s t r a i n  is:  

where 

de  i s  t h e  amount of s t r a i n  

N i s  t h e  number of loops pe r  u n i t  volume 

R is t h e  average r ad ius  of t h e  loops.  

I f  it i s  assumed t h a t  t h e  moving d i s l o c a t i o n s  a r e  not  n e a r l y  

screw, 1 .e . )  each t ime a loop  i s  c u t  t h e  jogged segment MY1 i s  always 

a b l e  t o  g l i d e  away conse rva t ive ly  i n  t h e  d i r e c t i o n  of its Burgers vec tor ,  



then a uni'formly dis t r ib t l ted  shear of 10% w i l l  mske one loop out of 

s i x  smaller  than lob i n  d iaae te r .  I f  shear takes  place simultaneously 

i n  a l l  of t h e  s i x  g l i d e  systems, tben a l l  t h e  loops w i l l  be svept  al.e.y. 

The experimentally observed disappearance of prismatic loops i n  quenched 

aluminum deformed by r o l l i n g ( 6 )  probably occurs by t h i s  mechanism. 

3 3 

c )  Suppose now t h a t  t h e  pr ismat ic  d i s l o c a t i o n  has BD or DC 

(or  t h e i r  opposites)  as Burgers vector  and l i e s  i n  a plane c u t t i n g  t h e  

plane a. 

I n  Fig.  4 t h e  g l i d e  cyli'nder of t h e  loop, P, is  c u t  by t h e  g l i d e  

plane a of the  d is locat ion,  BC, albng two s t r a i g h t  l i n e s  (shown a s  dashed 

l i n e s ) .  Lot M be t h e  point  of i n t e r s e c t i o n  where t h e  conf igura t ion of 

+ 3 

t h e  d i s loca t ion  l i n e s  and t h e i r  B:ugers Gectoys is  such t h a t .  b1 ' b2 < o 

a t  t h e  quadruple node. Then a r e s u l t a n t  d i s loca t ion  MlM2 w i l l  be formed 

which must l i e  along t h e  i n t e r s e c t i o n  of t h e  two g l i d e  surfaces  a s  

shown i n  Fig.  4. 

ASSM~ f i r s t  t h a t  t h e  pr ismat ic  loop P l i e s  i n  a (111) plane.  

The increase  i n  length and t h e  gain  i n  energy cannot be evaluated .wi th  

high precis ion,  but  t h e  r s a c t i o n  should occur. If t h e  conf igura t ion is 

as depicteil  i n  Fig.  4, the re  w i l l  ba a. tendency f.or t h e  loop t o '  r o t a t e  

toward.the plane normal t o  i t s  Burgers vector .  If t h i s  happ.~ns, it can 

be seen t b a t  t h e  length of t h e  junction d i s l o c a t i o n  may shr ink  t o  ze ro  

because it would then cause too  much increase  i n  t h e  t o t a l  length  of 

d )  'Finally, if t h e  pr ismat ic  loop has h3 or XC or t h e i r  opposites 

as Burgers vector ,  t h e  i n t e r s e c t i o n  of t h e  d i d e  plane of t h e  moving 

d i s loca t ion  w i t h  t h e  g l i d e  cyl inder  of t h e  loop i s  an e l l i p s e .  It can 

be seen from PY&. 5 t h a t  t h e  junction reac t ion  can occur. 



It a l s o  seems l i k e l y  t h a t  i n  some' cases t h e  pr ismat ic  loop can 

be pushed by t h e  moving d i s loca t ion  s o  a s  t o  r o t a t e  t o  plene a. If 

t h i s  happens o r  if the loop l i e s  o r i g i n a l l y  i n  plane a and near enough* 

t o  t h e  g l i d e  plane of the  maving d i s loca t ion ,  then t h e  reac t ion  shown 

i n  Fig. 6 w i l l  ocCu. when the re  i s  a t t r a c t i o n .  The r e s u l t  i s  a change 

i n  t h e  Burgers vector  of t h e  loop. It can be seen t h a t  t h e  energy 

gained by t h i s  process can be very large ,  of the  order of p b 2 ~ ,  where 

R i s  t h e  radius  of the  loop. 

3.2 In te rac t ion  of a Moving Dislocation with Stacking Fau l t  Loops 

a)  Two d i f f e r e n t  cases e x i s t .  F i r s t ,  assume t h a t  the  loop l i e s  

i n  plane .a  or plane d  having A n  o r  D6 a s  i t s  Burgers vector  r espec t ive iy .  

If t h e  moving d i s loca t ion  comes i n  contact ,  e i t h e r  by i n t e r s e c t i n g  a 

loop on plane d  o r  by c r o s s - s l i p  contacts  a  loop,on plane a, then it 

i s  poss ib le  f o r  t h e  p a r t i a l s  t o  recombine and s p l i t  i n t o  two new Shoclcley 

p a r t i a l s  i n  t h e  plane of t h e . s t a c k i n g  f a u l t  t h a t  t r i l l  sweep away t h e  

f a u l t .  The f i n a l  r e s u l t  i s  t h e  same as t h a t  shown i n  Flg.  6 ;  two nodes. 

on the  moving d i s loca t ion  l i n e  connected by curved d i s l o c a t i o n  segments 

t h a t  do not  l i e  i n  the '  g l i d e  plane. For a loop lyilig i n  plane d  the  

two opposite s i d e s  o f  t h e  loop become segments having Bclrgers vectors  

ED and DC. This configurat ion should a c t  as a s t rong anchor po in t  on 

t h e  moving d i s loca t ion .  

b )  The second case occurs when t h e  l o o p  has Cy or  Bp as i t s  

Burgers vec to r . and  l i e s  i n  plane c  o r  b respect ively .  I n  t h i s  case t h e  

moving d i s loca t ion  can a l s o  d i s s o c i a t e  i n  t h e  plane of the  s tacking f a u l t  

b u t  t h e  r e s u l t  is a Frank s e s s i l e  d i s loca t ion  and a Shoclcley p a r t i a l .  (2) 



The loop- i s  then separated i n t o  two p a r t s .  The s tecking f a u l t .  i s  

swept away i n  only one of the  p e t s  a d  t h e  d i s loca t ion  l i n e  e c q ~ i r ? s  

a curved segment t h a t  does not l i e  on t h e  o r i g i n a l  g l ide  plane.  This 

l a r g e  jog may g l i d e  away conservatively i n  t h e  d i r e c t i o n  of the  Bnrgers 

vector .  Therefore, both pe r fec t  and imperfect loops can be swept away 

by moving d i s loca t ions .  

If t h e  s tacking f a u l t  loop is  s ~ a l l e r  'than a c r i t i c a l  s i z e ,  

ne i the r  of these  i n t e r e c t i o n s  can ozcur bzcause t h e  incrzase  i n  l i n e  

energy of t h e  Shockley p a r t i a l  associa ted  w:th sweeping away t h e  s tacking 
. . 

f a u l t  is g r e a t e r , t h a n  the  energy of t h e  f a u l t .  (16, 17, 18) The 

radius  t o  trhich a Shockley p a r t i a l  can be bent by t h e  fo rce  exerted by . 

the  s tacking f a u l t  i s  given approximately by: 

where G, a, and y a r e  the  shear modulus, t h e  l a t t i c e  constant, and t h e  

s tacking f a u l t  energy r s spec t ive ly .  ' 

If i s  taken as 150 ergs/cm2 f o r  aluminwn, then R nlln . is  25 i .  

0 

Therefore, loops smaller  than 50A i n  diameter w i l l  be . e f fec t ive  b a r r i e r s  

t o  moving d i s loca t ions .  I n  order t o  psss  through, the  maving d i s l o ~ a t i o n  

must produce a s t e p  i n  t h e  s t sck ing  f a u l t  a s  previously described by 

Th omps on. ( I 5 )  It is of s p e c i a l  i n t e r e s t  t o  t h e  theory of s t r a i n  hardening 

"and quench hardening t h a t  pr ismat ic  loops t h a t  a r e  poss ib ly  too  s m l l - t o  

be e a s i l y  observed by transmission e l e c t r o n  microscopy may s t i l l  be impor- 

t a n t  b a r r i e r s  t o  t h e  motion of dislocation-. 



4. Application t o '  Quench Hzrdening of Alminun 

The t yp i ca l  substructure shown i n  Fig. 1 contains both im2erfect 

and porfect  loops of various s i ze s .  It i s  a l s o  rade conplex by t he  g r o u p  

ing of loops i n t o  colonies (19' with loop-free regions between. For t h i s  

reason, an accurate analysis  of the  hardening e f f e c t  of the  subs t r i c tu r e  

would be d i f f i c u l t .  However, an order of msgnitude estim.3te can be made. 

It has been shown t h a t  ha l f  of t'ne l a rge  imperfect locps and a l l  

imperfect loops t h a t  a r e  smaller  than about 501 i n  diameter w i l l  be s t rong 

ba r r i e r s  and t h a t  two-thirds of t he  perfect  loops w i l l  a l s o  i n t e r a c t  wlth 

a given moving dis locat ion t o  produce strong locking paints .  

Fr iedel(7)  has analyzed i n  somede t a i l  t i e  way i n  which a moving 

d i s loca t ion  behaves by zig-zagging through randomly d i s t r i bu t ed  loops. 

( ~ i g .  7) The s t r e s s  required t o  mave t he  dis locat ion is  given by a 

formula of the  type: 

.'where.P is about 4, N is  t he  number of loops per u n i t  volume and R i s  

the  average radius of the  loops. This s t r e s s  w i l l  be temperature inde- 

pendent. 

For a sample quenched from 600°c, N i s  of the  order of 1015 and 

t he  average value of R is  of the  order of 200i. Tnerefore, o 2 370 2; mrn-" 

which is  of the  order of magnitude of the  experimental r z s u l t s  of Maddin 
1 .. 

(5) and Co t t r e l l .  

A temperature dependent s t r e s s  a r i s e s  from the  creat ion of jogs 

and we expect t he  t o t a l  flow s t r e s s  t o  vary i n  the  same way a s  f o r  work- 

hardening. These two f a c t s  a r e  i n  good agreement with the  experimental 

(20) r e s u l t s  of Maddin and C ~ t t r e l l ( ~ )  and Tanner e n d ~ a d d i n .  . 
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The hardening due t o  loops must gradually disappear during plas- 

t i c  deformation as  loops are  destroyed by the interactions described i n  

sections 3.1 b and 3.2 b. 

The analysis has been applied specif ical ly t o  the 1oop.substruc- 

ture  produced by quenching and aging. However, elongated prismatic loops 

or dislocation dipoles a re  formed x i th in  an.act ive s l i p  band. Therefore ' 

the same interactfons may be more g'enerally Important t o  the  theory of 

s t r a i n  hardening; part icular ly whentwo or more s l i p  systems are  sirmrl- 

5 .  Application t o  other FCC. metals 

A l l  other quenched and aged FCC metals tha t  have been investi-  

gated experimentally contain stacking fault tetrahedra. (2) ~ h e s e  should 

be even stronger barr iers  t o  movlng dislocations than stacking f a u l t  

loops. It is possible tha t  defects of t h i s  type can a lso  be created by 

irradiation, or even by p las t i c  deformation, tha t  are  too small t o  be 

eas i ly  detected by transmission electron microscopy and yet  large enough 

t o  be strong 'barrier0 t o  moving dislocations~. 

This work was supported by the United States  Atomic Energy 

, . Cammission through the Inorganic Materials Divlsion of the Lawrence 
1 

Radiation Laboratory. 
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Figure Captions , 

Fig.  1 Typical loop substructure i n  a quenched and aged pure alumir.um 

c r y s t a l  . (19) 

(15) Fig. 2 ~ h o m ~ s o n  tetrahedron. 

Fig. 3 Intersect ion of a' prismatic d i s loca t ion  with a moving d i s loca t ion  

of .the same or  of opposite Burgers vector.  , 

Fig. 4 Junction react ion a t  the  in te r sec t ion  of a dis locat ion moving i n  

i t s  g l ide  plane and a per fec t  prismatic d i s loca t ion  (g l i de  plane 

p a r a l l e l  t o  ax i s  of g l ide  cyl inder) . .  

Fig. 5 Junction react ion a t  t he  in te r sec t ion  of a  d is locat ion moving i n  

i t s  g l ide  plane and a  per fec t  prismatic dis locat ion (g l ide  plane 

a t  an angle t o  ax i s  of g l ide  cy l inder ) .  

' -  Fig. 6 Change i n  the  Burgers vector of a prismatic loop due t o  i n t e r -  

ac t ion with a moving dis locat ion.  

Fig. 7 Zig-zagging dis locat ion (f o l lo f ihg .  Fri idel(8) ) . 


















