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FRANTIC PROGRAM FOR ANALYSIS OF

EXPONENTIAL GROWTH AND DECAY CURVES
1, GENERAL DESCRIPTION

A computer program called FRANTIC has been written to process
raw counting data and fit to these data, by the least-squares
techniques, equations for multiple exponential growth and decay.
This program, written in FORTRAN for IBM computers, is sufficiently
general to be used for almost any sum of exponentials with positive,
negative, or zero exponents and positive or negative coefficients.
FRANTIC is designed so that each independent group of operations such
as data processing, matrix inversion, and input-output routines may
be removed and modified or replaced without disturbing the rest of the

program.

The least-squares best fit of a calculated curve to actual data
is defined as that fit in which the sum of the weighted squares of the
résiduals (differences between the calculated values and the observed
values) is a minimum. This sum, divided by the number of degrees of
freedom, is known as the "variance of fit". In order for a least-
squares analysis to be applicable, there must exist a set of
simultaneous equations which are linear in the parameters whose wvalues
are to be determined, The number of equations in the set must be at
least as large as the number of parameters. When these conditions are
met, a unique solution exists and the values of the parameters can be

determined by a Unigue Least-Squares Analvsis.l

If the equations to be used are non-linear in the parameters to
be determined, the least-squares method is not directly applicable as

there may exist a series of minima in the variance of fit. In order

1. D.S. Harmer, Brookhaven National Laboratory Report BNL-544 (T-141),
March 1959.
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to use the least-squares method the equations must be made linear.
One means of accomplishing linearization is credited to Gauss and
Sidel or, alternatively, to Newton. It consists of expanding each
expression in a first-order Taylor series about the point defined by
the previous estimates of the parameters. By neglecting all terms
of the series beyond first order, there results a set of simultaneous
equations which are linear in the first power of the A terms
(differences between the estimates of the parameters and the actual
values) but not necessarily linear in the original parameters
themselves., With this new set of simultaneous linear equations the
conditions for least-squares analysis may be met and, if so, a

unique solution for the A terms exists.

In order to determine the values of the parameters of the non-
linear equations, it is necessary only to evaluate the A terms and
correct the previous estimates for these differences. Since all
higher-order terms of the expansion are neglected some error is
introduced and it is necessary to repeat the process with the corrected
estimates. Each repetition is known as an iteration., Several
iterations are often required to meet the given convergence criterion.

This process is known as an Iterative Least-Sguares Analvsis.2

The parameters in FRANTIC are the AO coefficients (activities
at time T = 0) and )\ values (decay constants) of the exact equations
describing a sum of first-order reactions (see subroutine LESFIT
description below). If only the AO coefficients are to be determined
(i.e. decay constants all known) then these equations are linear and
a unique analysis is sufficient. If, however, one or more of the
decay constants are to be determined, the equations are non-linear

and an iterative analysis must be made.

2. R.H. Moore and R.K. Zeigler, Los Alamos Scientific Laboratory
‘Report LA-2367, March 4, 1960,
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2. FRANTIC OPERATION

The FRANTIC program is presently designed to accommodate up to
400 data points and to analyze for a maximum of 10 components., It
is also arranged so that several runs (analyses) may be made on a
given set of data and several sets of data, each with several runs,
may be analyzed consecutively. A run is defined as a single
analysis or series of analyses resulting from one group of con-
trolling input information. A set is the group of runs (analyses)
on one given set of data. For each set the data need to be read
into the computer only once, at the beginning of the first run.
For subsequent runs only the controlling information need by

entered,

In the processing of a set of data each raw count is corrected
for the scale factor used and remainder (if any), dead time, background,
and finally the whole set of data may be normalized, In order for
this processing to be carried out correctly all input constants and

data must be inserted in the same units of time.

In the main scheme of operation the FRANTIC program, for the
first iteration, holds the values of all the N\ parameters and their
signs fixed. This makes the equations linear in the unknown AO coef-
ficients (those not held fixed)., These coefficients, which correspond
to the initial combination of decay constants, are evaluated by a

Unique Least-Squares Analysis. These evaluated Ao coefficients, the

AO coefficients that were held fixed, and the initial )\ values are

the "Original Estimates" seen in the printed results.

If one or more of the decay constants are to be determined the
unique analysis is not sufficient and, in subsequent iterations, the
values of the unknown AO and A\ parameters are determined by an

Iterative Least~Squares Analysis. In each iteration the A terms

corresponding to the unknown parameters are evaluated and correction
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to the previous estimates made. For the second through fifth
iterations a maximum of 70% of each A term is added to the previous
estimate of its parameter in order to minimize large swings,

In subsequent iterations a maximum of 98% of the A term is used.
This value was chosen to prevent occurrence of a nonconverging

cyclic process,

In the iterative mode it is possible to predetermine the sign
of each parameter while allowing its value to be determined. This
is done by initially assigning to the value of each original
estimate the sign of its input estimate. During each iteration the
sign of each parameter is prevented from changing by progressively
dividing its corrected A term by two until the new A term does not
change the sign of the previous estimate of that parameter. If the
signs are allowed to vary, the original estimates and corrected A

terms are used directly.

In order for convergence to occur the value of each parameter
and the variance of fit must not deviate from their values in the
preceeding iteration by more than one part in 106. When convergence
occurs, the results are printed out before the next analysis is
begun., If convergence has not occured by 25 iterations the results

at that time are printed out,

The main scheme of FRANTIC operation (i.e. a unique analysis
followed by an iterative analysis) may be modified depending upon
which parameters are held fixed. If all of the A values are held
fixed the unique analysis is sufficient to determine the best values
of the unknown Ao parameters., If any A values are to be determined
an iterative analysis must be made. When all Ao and A parameters
are fixed FRANTIC merely calculates the value of the curve at each
point and compares these values with the data. In one special case
(see Case 3) the unique analysis is omitted and an iterative
analysis is made regardless of which parameters are held fixed

(except where all are fixed).



2.1 Operating Cases

Case 1. No A.o or \ estimates are entered. One analysis is made for
each value of the number of components (JCALC) consecutively from
one through the maximum number of components (JMAX). At the begin-
ning of each analysis one new positive A value is estimated. This
new estimate and the absolute values of the decay constants from the
previous analysis are used as the next original estimates. The
signs and values of all parameters are allowed to vary (see GUESS

discussion below).

Cése 2. MA11 A original estimates are inserted as well as the AO values
to be held fixed. None, any, or all of the Ao and A parameters may

be held fixed. One analysis is made for JCALC = JMAX. If no A para-
meters are allowed to vary the unique analysis is sufficient; other-
wise, the unknown AO and A values are determined by an iterative

analysis.

Case 3, A1l AO and N\ original estimates are inserted. None, any, or
all may be held fixed. One analysis is made for JCALC = JMAX, The
unique analysis is omitted and an iterative analysis is made regard-

less of which parameters are held fixed (except when all are fixed).

2.2 Input Options

a, 1IC - Case control factor

i. One may choose any one of the three operating cases

described above (IC =1, 2, or 3).

ii, Many runs of one (Cases 2 or 3) or more (Case 1)
analyses may be made consecutively on a givén set of input data,
Each set of data need be entered only once by making IC positive
(IC = +1, +2, or +3 = read in new data) in the first run of that set
and IC negative (IC = -1, -2, or -3 — use previously read data) in
all subsequent runs of the set. Several sets of data (each with

several runs) may be stacked to be analyzed consecutively.
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b. ID - Data control factor

i. One of three types of weight factors may be chosen
for each run: all data points weighted equally (ID = 1); statistical
weight factors (calculated internally) which depend on uncertainty
in count rate, background, dead time, and counting interval

(ID = 2); or special weight factors calculated externally (ID = 3).

ii, The input data may be either simple input data points
(ID = +1, 42, or 43) or accumulative data points (ID = -1, -2, or

-3) where the scaler was not set back to zero between counts.

c. I8(1) - Decay constant estimate control

When using Case 1 (IC = +1 or -1) one may choose the
relative magnitude of each new A original estimate. The new
estimate may be either 10 times the largest absolute A value from

the previous analysis (IS(1) = 0) or 3 times this value (IS(1) # 0).

d. I8(2) - Parameter sign control

In a Case 2 or Case 3 iterative analysis, one may pre-
determine the sign of each parameter while allowing its value to
vary., By setting IS(2) = 0 each original estimate is given the sign
of its input estimate and this sign is prevented from changing in
subsequent iterations. If IS(2) # 0, the original estimates are

used directly and the signs may change at will,

In Case 2, the original estimates include the unknown AO
values determined in the unique analysis. In the input estimates
for these parameters, blank or zero values are considered positive.
Therefore a dummy negative value must be inserted for each negative

AO, otherwise these estimates may be left blank.

e. 1I8(3) = Iterative printout control

The current values of the parameters and their corrected
A terms are printed out at the end of each iteration if IS(3) # O.
This step is omitted if IS(3) = 0.
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£f. IS{4) - Matrix printout control

The final least-squares matrix and transformation ﬁector
as well as the inverse of the matrix and resultant transformed
vector (solutions to the least-squares equations) are printed out
if IS(4) # 0, This step is omitted if IS(4) = 0.

g, IX(I) - Parameter fixing controls

The input estimate of any parameter may be held constant
by setting the corresponding IX(I) # O. The parameter will be
allowed to vary if IX(I) = 0. Each consecutive pair of IX values
IX(1) and IX(2), IX(3) and IX(4), etc., corresponds respectively to
the Ao and A values of one component. The components are in the

order dictated by the estimate cards. Thus:

Term Corresponds to

1X(1) Ao(l) }. Estimate card 1.
1X(2) A (1)

IX(3) Ao(2) }. Estimate card 2.
IX(4) A (2)

ete, ete. etec,

In addition to the above options, all of which appear on the

control card, certain other options are available in the form of

a choice of values for the data prdcessing parameters appearing on

the data control card. These parameters are:

(a) TAU - any arbitrary time before (+) or after (-) T =0
used to calculate N(ORIGINAL) (see OUTPUT),

(b) TAUD - dead-time factor (Td) in time units,

(¢) DTAU - standard deviation of dead-time factor Ej(Td)] in
time units,

(d) B - background in counts per unit time,
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(e) EB - uncertainty in each counting interval DT in time

units,

(f) S - data scale factor (multiplier) usually 1, 64, 128,

etc. (must not be zero),

(g) XNORM - data normalization factor (multiplier) usually

1 (must not be zero),

(n) TIME - time scale factor (divisor) for changing units of
T and DT (INPUT-C only, see INPUT subroutine),

Further information on the input format is given in Section 5

and sample input data are given in Section 6.

2.3 Description of the Results

In order to render the following description more under-
standable a sample set of output results is given (Section 6). These
results were obtained from the sample input data immediately pre-

ceding themn.

The general output results begin a new page with the date and
time the analysis was made, a one-line title consisting of the
information punched on the input header card, and 12 lines of
information divided into two columns. Quantities in the first column

requiring further explanation are:

Line 1. ten column identification from the control card,

Line 5. number of degrees of freedom (data points minus parameters

allowed to vary),

Line 7. type of weight factors used and the absolute value of the

data control factor,

Line 9, the determinant of the final least-squares matrix (should

never be negative, if so special notice is given),



Line 10,

Line 12.

the absolute differsnce between the variance of fit in
the final iteration and its value in the preceding

iteration in parts per lO6 of its final value,

the X2 (chi square) value for use in "goodness-of-fitt

tests,

Next, the following values and their standard deviations are

given for

Col. 1.
Col. 3

Col. 5

Col. 7

It should

(2)
(b)

()

each component of the calculated decay curve, These are:

A(ZERO) - activity at time T = O in counts per unit time,
LAMBDA - decay constant in reciprocal time units,

N(ORIGINAL) - number of active atoms at time TAU from
T =0 and its ¢ (including uncertainty in both A and
N

HALF LIFE - half life in time units.
be noted that:

the ¢ value for each parameter held fixed is set to 0.0,

when a \ value is 0.0 the corresponding N(ORIGINAL),
HALF LIFE, and their ¢ values are set to 0.0,
N(ORIGINAL), its J, and the o for the half 1life are set
to -1.0 when the o of one of the AO or \ values is e37
times the corresponding Ao or \ value or if the product

of N x TAU is greater than 80.0 (see OUTPUT).

For each iterative analysis the original AO and A\ estimates

are given,

(a)
(b)

These "Original Estimates" are composed of the following:

A and )\ values held fixed (Caeses 2 or 3),

unknown A values - input estimates (Cases 2 or 3) or

estimated values (Case 1),
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(¢) unknown A values - input estimates (Case 3) or values

from the unique analysis (Cases 1 or 2).

Next, a histogram of the distribution of deviations of the
final calculated points from the data points is given., The number
above each value of ¢ is the number of data points whose weighted
residuals lie between that value and the next larger absolute

value.

Several quantities are given for each data point used in the

analysis, The columns requiring further comment are:

Col. 4. raw counts corrected for scale factor, remainder,

and change of accumulative data to simple data,

Col. 5 column 4 corrected for counting interval, dead time,
background, and normalization factor; in counts per unit

time,
Col. 6 value of the calculated curve used in the analysis, AC,

Col., 7 value of the curve calculated at the midpoint of the

counting interval, AINST,

Col. 9. residual (corrected data minus calculated curve) in counts
per unit time, each residual greater than 2 ¢ units

denoted by an asterisk,

If requested (IS(4) # 0) the least-squares matrix, transforma-
tion vector, inverted matrix, and transformed vector are printed

out in normal row and column form.

The intermediate results, if requested (IS(3) # 0), are
printed out at the end of each iteration (before the general

results). The first line printed for each iteration is composed of':

Col. 1. identification (as above),

Col. 2. number of the iteration,
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Col. 3. number of components,
Col. 4. sum of weighted squares of residuals,

Col. 5 delta variance of fit X 106 (as above),
In subsequent lines of each group are given the AO and its corrected

A term and the \ and its corrected A term for each component (in that

order - two components per line).
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3. EVALUATION OF RESULTS

When using a computer for mathematical analyses it is well
to remember that computers are by no means magic. They should be
expected to do nothing that you could not do better with a desk
calculation or, for that matter, by longhand. The main reasons
for using computers are the speed with which they carry out
mathematical operations and their exceedingly small probability of

making an error,

In the final analysis, each set of calculated results must be
scrutinized in the light of human judgment. One must attempt to
answer the following three questions: How good is the fit? How
does the calculated curve compare with the data? What significance
have the parameters? Certain guidelines can be given for answering

these questions,

How good is the fit?

This question 1s answered mainly by the calculated values of
the weighted variance of fit (VAR) and X2 (CHISQ). The variance of
fit is the sum of the weighted squares of the residuals divided by
the degrees of freedom (DF), where each weighted residual is
expressed in units of its individuwal o. The o values include
uncertainty in the observed count rate, background, dead-time, and

counting interval,

The value of VAR is also the square of the standard deviation
of the distribution of residuals about zero. The value of VAR for
a fit to data having only statistical deviations (i.e., the
expectation value of VAR) is unity and the value corresponding to
the 2 ¢ level of confidence (i.e. value where an identical measure-

ment has 97.73% chance of having a smaller VAR) is approximately
(1+ 3/ JVTF).
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Chi square (X2) is similar to VAR except that in computing
the former quantity the sum of the weighted squares of the
residuals is not divided by DF and the weighting factors include
only uncertainty in the calculated count rates (not observed count
rates)., Thus, when the dead-time and counting interval errors and
background are negligibly small or zero (VAR x DF) = XZ; otherwise
(VAR x.DF) < X°. 1In the usual X~ vs DF tables VAR x DF will give a
more realistic measure than X2 of the probability of performing a

better experiment or finding a better fit with different parameters,

How does the calculated curve compare with the data?

To answer this question one must look at the "Analysis of the
Deviations" and the actual residuals themselves, The printed
histogram of residuals should be Gaussian with standard deviation
equal to (VAR). 1In the histogram, 31.7% of the residuals would be
expected to be outside o, 4.55% outside 20, and 0.272% outside 3¢,

The column containing the actual residuals, if placed in order
of time of observation, should show statistical variations in the
signs of the residuals (i.e. alternate positive and negative values
with no long series of residuals having the same sign). Such non-
statistical variations may indicate a missing component or change

in the counting equipment.

No significance can be attached to VAR and the residuals
histogram in an analysis with unit weight factors or to X2 in an
analysis with special weight factors. In the latter case VAR and
the residuals histogram are significant only if the special weight
factors used correspond, in the proper units, to the reciprocal

squares of some assumed standard deviations,

Large values for VAR and X2/DF and wide dispersion of the
residuals histogram may indicate the presence of components not
considered in the analysis or experimental counting errors larger

than the assumed statistical deviations,
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What significance have the parameters?

Decay Constants. For any radiocactive decay these should be

positive, indicating a decreasing exponential curve. The decay
constants may have any combination of values with the single
restriction that the partial derivatives of the functions with
respect to the AO parameters over the time covered in the experi-
ment must vary appreciably from one component to another

(i.e. no two components may have nearly identical half lives).

In actual practice it is difficult to determine the decay constants

for components which:

(a) have half lives very long or very short compared with the

time covered in the experiment,

(b) are very similar in half life to other components
(considerable difficulty occurs when one is < 1.5 times

another),

(¢c) contribute only a very small portion to the total decay

curve,

If a decay curve is analyzed for more components than are actually
present, the extra components may be thrown out of the analysis
entirely. This is indicated by a A value which becomes very large
or very small (with a large o) or approaches the A\ of one of the

actual components.

Ao Coefficients. The Ao values determined in a decay-curve
analysis should always be positive unless real parent-daughter
relationships exist. If so, the parent (1) and daughter (2) should

be entered as only two components where the AO values determined in
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!
the analysis are related to the actual initial activities, Ao’ by

Q

! 2 2
Ao(l) = Ao(l) [l + E%I% A2) - N1 ] ’

— ! c(2) A (2) !
0(2) - Ao(z) T c(1) a2) - K(iijo(l)’

=

=

1 1
o(1) +4,(2) =4 (1) +4(2),
where the C(i) values are the counting efficiencies. For an assumed
component not actually present, whose A\ is held fixed, the resulting
AO will be a small value with a large d. A better result for the
other components may be obtained by omitting the absent component,
An AO value that becomes negative or, when its sign is held fixed,
approaches zero may indicate improper dead-time correction or

instrumental gain shift.

It should be pointed out that the ¢ for a parameter from any
one analysis is often smaller than the actual standard deviation
computed on the basis of a series of identical analyses (i.e. the
value of the parameter is not as reproducible as would be expected

on the basis of the quoted o),

Notes on Possible Applications

a. An unknown amount of background and/br a long-lived com-
ponent that does not decay appreciably during the time of the
counting measurements may be included as a component with A =0
(fixed).

b. Individually measured background values (e.g. those
measured from day to day over a long-term experiment) may be
included as a negative remainder (_Rh) with S =1, The value of
each background must correspond to the same DT as the count (Gﬁ).
However, when used in this manner the statistical weight factors

are computed improperly.



c. In any run but the first of a set the value of N may be
smaller than the initial number of data points inserted (i.e. the
last data points may be dropped in subsequent runs without reading

in the lesser nmumber of data points as a new set).

de In addition to analyzing decay-curves, FRANTIC may be used
to determine the weighted best value of a series of measurements
of the same quantity., The measured values are inserted as counts
with T = 0 and DT =1, weight factors are inserted as special
weights, and the analysis is made for JMAX = 1 with A = 0 (fixed).

If unit weight factors are used the simple average is computed.
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4, DESCRIPTION OF THE FRANTIC PROGRAM

4.1 General Discussion

The FRANTIC program consists of 8 semi-independent sub-

programs written in FORTRAN.3

Bach subprogram performs one
specific set of operations and may be replaced or modified without
recompiling the remaining subprograms., There are no program stops
in FRANTIC although normal FORTRAN stops may occur. For FRANTIC
in its present form (up to 10 components and 400 data points)
values used in the analysis require 8,143 storage locations and the

8 subprograms require approximately 3,687 locations.

This FRANTIC program, except for the FR-II master subprogram,
may be used directly in its compiled (column binary) form at most
IBM 709 or 7090 computer installations., For other types of
computers it may be necessary to recompile the entire program from
the FORTRAN deck,

4.2 FR-II (MAIN) Subprogram

This master subprogram is designed to direct the continuity of
each analysis by calling upon the subroutines in the appropriate
order, It must be specifically designed for use at each installa-
tion. In particular, there are included three FORTRAN statements

which must be made compatible with the given installation,
ITAPE = 4

JTAPE =2

CALL CLOCK (JTAPE),

3. Reference Manual 709/7090 FORTRAN Programming System,
International Business Machines Corp. (1961)..
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ITAPE and JTAPE must be given the input- and output-tape-unit
numbers respectively. CLOCK causes printout of the date and
time, and may be left out entirely if not available at the instal-

lation.

4.3 Subroutines

INPUT

This subroutine is the first one called by FR-II, In it the
controls and data for each run are read and stored in the computer
memory. At present, three different INPUT subroutines have been
written, called INPUT - A, INPUT - B, and INPUT - C. Each one has
been designed for a certain type of available input data. The
requirements for the header card, control card, and estimate cards

are the same in each one,

INPUT - A. This is a general input subroutine requiring one card

per observation,

INPUT -~ B. This subroutine is designed for data in groups of equally-
spaced, consecutive values with no intervals between
observations (as from a multiscaler). Twelve data points
per card are entered and no remainders or special weight

factors are allowed.

INPUT - C. This subroutine is designed especially for use with the
data cards (one observation per card) from the automatic
counting arrangement of the Los Alamos Scientific
Laboratory P-12 group. No special weight factors are
allowed.

Only one of these subroutines may be included with the
FRANTIC binary deck at a time.
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DATA

In this subroutine the corrected counts per unit time are

calculated from the raw data points. Each raw count (cn) is

corrected for the scale factor (S) and remainder (Rn)x
1
C =CS+R.
n n n
Accumulative data are changed to simple data:

1
Cp = (CnS + Rn) - <Cn—lS + Rh—l)’

The raw count rate is calculated (and stored in Rn):
1
R, = /DT .

This rate is corrected for the dead-time factor (TAUD) and back-
ground (B) and each point is normalized (XNORM) to yield the

corrected data:

R

[ m
An—l:l_Rn IG5 - B XNORd.

The unit (ID = 1) or statistical (ID = 2) weight factors are

calculated in this subroutine if they are to be used:

W =—————=1.0 (unit weight factors),
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or

W= b (statistical weight factors),

n O'(T)i XNORM

where
2 _ 2 2 2 R
o(1); = O(C), + O(B); + Olry), + O(DT)
and
5 Nan 2 R, _
G(C)n =\ 5T = ﬁ; (uncertainty in count rate),
2 _ B . R
o (B)n = I (uncertainty in background),
n
2 _ .2 . .
O(t d) = AAD [from uncertainty in dead-
n time factor o (ty)l,
2 _ .2 . . .
(o (DT)n = MM (from uncertainty in counting

interval EB).

The value of O(t d)121 is evaluated in the following manner:

Rn
TR
Rn
M TR - R Oy
R
A - AA

_ n
- 2
n”"n  (1-Rzy) tR Ol7,)

Rn[an O'(Td)—l
(1 - an:d)z - [Rn cr(fcd)}?“

2 _ AaR
O-(Td)n —A-An -

similarly

R_(EB/DT )
c)'(DT)f1 = AAi =| —=n n

2
1 - (EB/DTn)
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The square of the total standard deviation for each point

is given by

2
o1 = Ry . B, Rn[:RnO' (’Ed):l . Rn(EB/DTn)
n DT, DI, (1-R_t )2 - [R O(t )]2 1-(EB/DT )2
n'd n d n
GUESS

In this subroutine, used in Case 1 only, the necessary A\
original estimates for each analysis of the run are calculated,
When using Case 1 and this subroutine, the analysis is limited to
decaying exponentials (positive \ values). The first and last data
points inserted must correspond to the first and last observations

made, The first \ estimate made (one component, JCALC = 1) is

ta(a, /ay)

N .
1 TN - Tl

Following each analysis, the previous decay constants are made

positive and a new A\ value estimated:

xn+1 =10 X (maximm previous |\]) (1s(1) =0),

or

A 3 X (maximum previous |\|) (1s(1) # 0).

nt+l

This new \ estimate and the previous values (which were made positive)
are placed in order of decreasing value (increasing half life) and

then used as original estimates for the next analysis.

In this subroutine the IX(I) values are all set to zero and
IS(2) is set to unity allowing the signs and values of all parameters

to vary during each analysis,
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LESFIT

In this subroutine, with the aid of MATRIX and MATINV, the
least-squares analysis is performed on the N corrected data points
and AO and \ parameters for I components. In subroutine MATRIX the
least-squares matrix and transformation vector are calculated and,
in MATINV, this matrix is inverted and the transformed vector is
obtained. In subroutine LESFIT the required AO and \ parameters
as determined, the curve is calculated, and the residuals and the
sum of the weighted squares of these residuals (called VAR) are
computed. Then, three tests are made for criteria for exit to the
OUTPUT subroutine.

In the following discussion {A} denotes a matrix, {A} the

- .
transform of {A}, and B a column vector,

The usual equation describing a sum of first-order reactions

(e.g. multiple radioactive decay) is

This expression is valid only for the case of an instantaneous
observation interval (DTn-+ 0). For use with finite intervals it is

necessary to integrate this expression over the observation interval:

T + DT T + DT I
n n n n —X.Tn
[ ao, ar = Y A e *Par
n n 0. n

T T i 7

n n

or, as used in LESFIT,
1 -A\.T —xiDTn
AC. = E: A e 1 1-e
o} A DT *
. i i n
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This expression, although mathematically rigorous, is not adequate
for small values of xiDTn. When evaluated by a computer, the

portion in parentheses tends toward zero instead of the proper value
of unity for xiDTn values approaching zero, This situation may ‘
introduce substantial error into the final result. However, the

equation can also be expressed:

1 i
- Z . e-xi(TI1 + DTn/z) Sinh (}\iDTn/Z)
n o \.DT /2 ’
:l 1 n

or expanding,

o
>4

~

oI Ov

W
[P
N

T
. (T + DT _/2)
AC = Z A e TR n
n O:.L
i=1

where

X = xiDTn/z.

This series expansion, truncated after the fourth term, is
adequate in the region where the original expression is inapplicable,
but becomes inaccurate for large values of xiDTn. Therefore, in
LESFIT the series approximation is used for )\iDTn up to 1,0 and the

original expression above that.

In the Unigque Least-Squares Analysis all xi values are held
fixed and the above expressions are linear in the AO coefficients,
i
Thus, the set of simultaneous linear equations describing the values

-
of the corrected data (4) are given by,

where PU contains the I values of A, and {AE} the (N x I) partial
i

derivatives of the N expressions with respect to the I values of AO .
i
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Thus the elements of the {AE} matrix are

aac, NI, [ M
A =2 =e L=t ) for (D1, >1.0)
Oi 1 n

and
oo ror /2y [ Guor /2)2 (Lo /2)* (h,Dr /20
AR — e i‘"n n 1+ i "n + i n + i~ n
ni 3! 51 7!
for

(\;DT_ < 1.0).

—p
In order to solve for PC it is necessary to make the following

transformations:

{AB}{(w} T = {4E}{w}{aE} P

and redefining

where,
{Aﬁ}{W}'K = BM (transformation vector)
{Aﬁ}{W}{AE} = {av} (least-squares matrix)
and

FC = {AM}—l BM (transformed vector) .

ym



In the actual analysis the I index is replaced by XK, the number of

unknown A values., Thus, {aM} is the (X X K) least-squares matrix,

i
BM the transformation vector of length K, and {W} the (N x N)

diagonal matrix of the weight factors.

The residuals are given by

— -

-
DA = A - AC
and

3 —+
VAR = DA {W} DA.

In the Iterative Least-Sguares Analysis the exact expression

given above is expanded in a first-order Taylor series about the

point defined by the previous estimates of the Ao and A\ parameters:

MA 8AC_ ML BAC_
A, = AC 4+ Z 0A AAo. + Z oA N\l’
i= oi i=

where

DP contains the K unknown AA ~ and Aki values, where K = IMA + IML
i
(the number of unknown A and unknown A values, respectively) and

{PART} contains the (N X K) corresponding partial derivatives., The
partial derivatives with respect to AO are the same AEni values

i
as in the unique analysis, Those with respect to Ki are defined in

the MATRIX discussion.
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The evaluation of ﬁ? is the same as the evaluation of 56

in the unique analysis:

—

DA = {paRT} DP ,

—

{PART}{w} DA = {PART}{w}{PART} DP.

Redefining, as above,

-

BM = {aM} DP

and
= -1 =
DP = {AM} " BM .

The corrected A term is added to each previous Ao and Xi estimatey
the columns of {AE} are recalculated for any new * N\ values; and the

calculated curve, residuals, and VAR are evaluated as before,

Before beginning the unique analysis IMA, IML, {AE}, and
K (= JCALC - IMA) are evaluated. If a unique analysis is necessary
(K # 0 and IC # 3) MATRIX and MATINV are called, yielding the
unknown AO values. If all A values are held fixed (IML = JCALC) or
if X = 0, senselight 1 is turned on. The curve, residuals, and VAR
are calculated and the tests for the exit criteria are made. Any
one of these tests, if positive, will stop the further operation
of the LESFIT subroutine and send control back to the (MAIN)

subprogram. These exit tests are:

l. senselight 1 turned on (K =0 or all A values fixed - after

the unique analysis),
2. number of iterations, IT = 25,

3. convergence occurred (i.e. all parameters as well as VAR
differ from their values in the preceding iteration by less than

one part in 106).
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If none of these exit tests is positive after the first
iteration (only the first is applicable) a test of IS(2) is
made to see if the signs of the parameters are to be held as
initially specified during the subsequent iterative analysis.
If so, the original estimates of the Ao values are given the signs
of their input estimates before becoming the initial estimates

for the second iteration.,

For each subsequent iteration MATRIX and MATINV return the values
of the A terms., These A terms are multiplied by the scale correction
factor (0.70 for IT < 5 and 0.98 for IT > 5) and added to the
previous estimates., If the signs are to be held fixed the new
estimate of each parameter is tested for a change of sign. If the
sign has changed the corrected A term is progressively divided by
2 until this no longer occurs. The columns of {AE} are re-evaluated
for any new A estimates and the curve, residuals, and VAR calculated.
Finally, the tests for exit criteria are made (only 2 and 3 are

applicable) before another iteration is begun.

MATRIX

In this subroutine the least-squares matrix {AM} and transformed
vector BM are calculated. For the unique analysis only previously
calculated quantities are necessary ({AE}, {k@, and ED. However, for
the iterative analysis, where DA replaces E; the partial derivatives
of the functions with respect to the unknown Xi parameters must be

calculated, These are given by

aACn o iTn 1 -)xiDTn 1
—a>\. = Ao. ———K.DT <>\— + Tn + DTrD e - <>\—- + TID .
1 1 1 n 1 1

As in the case of LESFIT, this expression is inapplicable for

small values of KiDTn. In the region where it is inapplicable
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this equation may be expanded:

T
_ in
A e -Tn-DTn/2+xi(DTn/é)(Tn + DT )

i
A, 3! 41 54

1

3 4 5
(\.DT )2 (\.DT_) (\.DT.) (\.DT.)
- <:?a +T_+ DT£> i e

In MATRIX the series approximation is used for ?\iDTn up to 0.2 and

the original expression above that,

MATINV

This subroutine is a modified version of share subroutine
number 664 ANFA02. The least-squares matrix is inverted and the
least-squares solutions (transformed vector) are evaluated. This
inversion and concurrent solution is accomplished by a transformation
of rows and columns., The inverted matrix and solution vector are

stored in the original {AM} and ﬁﬁ, respectively.

QUTPUT

In this subroutine, the results from the LESFIT analysis are
used to calculate the quantities appearing in the printed output
which were not a direct result of the basic analysis. Following
these calculations the general output results are recorded on

magnetic tape for future printout off line,

The standard deviation of each parameter evaluated in the

least—squares analysis is given by

-1 1
0. = VAR X AM.. 2
1 11

and, for each parameter held fixed, s is set equal to zero., VAR
is the actual variance of fit (the VAR value calculated in LESFIT
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divided by the number of degrees of freedom, DF = N-K), In
addition, for each component, the following quantities are
calculated:

A

N(ORIGINAL) = =2 M X TAU

2

s

cA 2 N 2 |3
O N(ORIGINAL) = |N(ORIGINAL) <K—O_> + (Tl- >
o)

HALF LIFE = (e823147

3

and
A
O (HALF LIFE) = [HALF LIFE (-3\—>’ .

In the following two situations special values are given these four

quantities:

1. when A = 0,0, all are set to 0,0,

2. when A or g, is e37
o A

or when A X TAU is > 80,0 all except half life are set
tO _1000

times the corresponding A or A\ value

Next, X2 (CHISQ) and the instantaneous rate at each point
(AINSTn) are evaluated and an analysis is made of the number versus

value of the weighted residuals. These quantities ares
N
N ZDAQ, bT,
~ XNORM n ACn ’
n=l

N A (T, + DI _/2)
AINST = Z A e 7 ,
n Q.
=] 1
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and each residual in O(T)n units is given by

DA

1
E;T%T; - DAn [whjg *

This program was written in cooperation with the M.I,T.

Computation Center.
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5¢ NOTES ON THE INPUT FORMATS AND QUANTITIES APPEARING IN FRANTIC

XID
JMAX
IC

ID

IS(1)
Is(2)
15(3)
IS(4)
[S(5)

IS(6)
IX(I)

PG

TAU
TAUD
DTAU

EB

XNORM
TIME

EOVNT

INPUT QUANTITIES

CONTROL CARD

IDENTIFICATION (ANY 10 CHARACTERS)

NUMBER OF OBSERVATIONS

MAXIMUM NUMBER OF COMPONENTS

CASE CONTROL FACTOR CASE NUMBER (1+2s OR 3)

+ READ IN NEW DATA

USE PREVIOUS DATA

UNIT WEIGHT FACTORS
STATISTICAL WEIGHT FACTORS
SPECIAL WEIGHT FACTORS
SIMPLE DATA POINTS
ACCUMULATIVE DATA POINTS

DATA CONTROL FACTOR

[ L | B | R R I B 1}

I + W |

= 0 NEW LAMBDA ESTIMATE 10X LARGEST PREVIOQOUS VALUE (CASE 1)
NOT = 0 NEW LAMBDA ESTIMATE 3X LARGEST PREVIOUS VALUE
= 0 DO NOT PERMIT PARAMETERS TO CHANGE SIGN
NOT = 0 PERMIT PARAMETERS TO CHANGE SIGN
= 0 DO NOT PRINT OUT RESULTS EACH ITERATION
NOT = 0 PRINT OUT RESULTS EACH ITERATION
= 0 DO NOT PRINT OUT LEAST-SQUARES MATRICES
NOT = 0 PRINT OUT LEAST-SQUARES MATRICES
NOT USED
NOT USED
= 0 DO NOT HOLD CORRESPONDING PARAMETER FIXED
NOT = 0 HOLD CORRESPONDING PARAMETER FIXED

ESTIMATE CARDS
ESTIMATES OF THE LAMBDA AND A(O) PARAMETERS FOR EACH COMPONENT
DATA CONTROL CARD

TIME BEFORE OR AFTER TIME T = O

DEAD-TIME FACTOR

STANDARD DEVIATION OF THE DEAD-TIME FACTOR
BACKGROUND COUNTS PER UNIT TIME

UNCERTAINTY IN COUNTING INTERVAL IN TIME UNITS
DATA SCALE FACTOR (MUST NOT BE 0)

DATA NORMALIZATION FACTOR (MUST NOT BE O)

TIME SCALE FACTOR ( INPUT=C ONLY)

DATA CARDS

TIME AT THE BEGINNING OF AN OBSERVATION

LENGTH OF AN OBSERVATION

RAW COUNTS OBSERVED

REMAINDER (MAY BE LEFT BLANK)

WEIGHT FACTORS (MAY BE BLANK UNLESS SPECIAL WEIGHTS ARE USED)
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QUANTITIES APPEARING ELSEWHERE IN FRANTIC

ITAPE INPUT TAPE-UNIT NUMBER

JTAPE OUTPUT TAPE-UNIT NUMBER

JMAX2 TWICE JMAX

JCALC NUMBER OF COMPONENTS FOR WHICH THE ANALYSIS IS MADE
JCALC2 TWICE JCALC

IMA NUMBER OF A(0) VALUES HELD FIXED

IML NUMBER OF LAMBDA VALUES HELD FIXED

K NUMBER OF VARIABLES NOT HELD FIXED

KP K+ 1

IT NUMBER OF ITERATIONS

H LEAST-SQUARES SCALE CORRECTION FACTOR

A CORRECTED DATA

AC CALCULATED CURVE

AE VALUES OF THE PARTIAL DERIVATIVES WITH RESPECT TO A(O)
DA RESIDUALS

P VALUES OF THE PARAMETERS AT THE BEGINNING OF AN ITERATION
PC CORRECTED PARAMETERS AT THE END OF THE ITERATION

DP CORRECTED DELTA TERMS FOR ITERATIVE ANALYSIS

PART PARTIAL DERIVATIVES

PIVOT VALUES USED IN MATRIX INVERSION
IPIVOT PIVOT TERM USED IN MATRIX INVERSION
INDEX INDEXING TERMS USED IN MATRIX INVERSION

AM LEAST-SQUARES MATRIX AND LATER THE INVERSE

8M TRANSFORMATION VECTOR AND LATER THE TRANSFORMED VECTOR

AMO LEAST-SQUARES MATRIX

BMO TRANSFORMATION VECTOR

VAR2 SUM OF THE WEIGHTED SQUARES OF RESIDUALS, LATER VARIANCE OF FIT
DVAR DELTA VARIANCE OF FIT BETWEEN CONSECUTIVE ITERATIONS

IDF DEGREES OF FREEDOM

DET LEAST-SQUARES DETERMINANT

SP STANDARD DEVIATION OF EACH PARAMETER

XNORIG N(ORIGINAL) VALUE AT TIME TAU FROM TIME T = O
ENORIG STANDARD DEVIATION OF N(ORIGINAL)

HL HALF LIFE OF A COMPONENT

EHL STANDARD DEVIATION OF THE HALF LIFE

AINST INSTANTANEOUS RATE
- IDEV SIGMA ANALYSIS OF THE RESIDUALS

CHISAQ CHI SQUARE VALUE

NP2S NUMBER OF POINTS DEVIATING MORE THAN 2 SIGMA UNITS
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FORMATS FOR INPUT OF DATA INTO FRANTIC

NOTE - ALL QUANTITIES INVOLVING TIME MUST BE ENTERED IN THE SAME TIME UNITSe

A. HEADER CARD - ONE CARD OF ANY DESIRED INFORMATIONe

Be CONTROL CARD - CONTROL VALUES PUNCHED IN INTEGER FORMe

COL. COL. FOR
XID 1-10 IX(1) 33-34 A(l)
N 11-14 IX(2) 35=-36 LAMBDA(1)
JMAX 15-16 IX(3) 37-38 A(2)
IC 17-18 IX(4) 39-40 LAMBDA( 2)
ID 19-20 IX(5) 41-42 A(3)
I1S(1) 21-22 IX(6) 43-44 LAMBDA(3)
IS(2) 23-24 IX{7) 45-46 Al4)
IS(3) 25-26 IX(8) 47-48 LAMBDA(4)
IS{4) 27-28 IX(9) 49-50 A(5)
IS(5) 29-30 IX{(10) 51-52 LAMBDA(5)
IS(6) 31-32 ETCo. ETCe ETCe

Ce ESTIMATE CARDS - ESTIMATES OF LAMBDA AND A{0) FOR EACH COMPONENT PUNCHED
PAIRWISE IN EXPONENTIAL FORM ONE COMPONENT PER CARDe
{ JMAX CARDS FOR CASE 2 OR CASE 3 AND NONE FOR CASE 1)
FORMAT (1PEl2.7)

COLe.
CARD 1
PG(2) 1-12 LAMBDA(1)
PG(1) 13-24 A(l) {MAY BE BLANK FOR CASE 2)
CARD 2
PG(4) 1-12 LAMBDA(2)
PG(3) 13-24 A(2) (MAY BE BLANK FOR CASE 2)
ETC.
DATA
INCLUDE THESE CARDS IN THE FIRST RUN OF A SET (IC = +) AND OMIT THEM
FOR ALL OTHER RUNS OF THAT SET (IC = —=}e

De DATA CONTROL CARD — DATA PROCESSING CONTROLS PUNCHED IN EXPONENTIAL FORMe

INPUT-A INPUT-B INPUT-C

FORMAT {1P7E10.5) (1P7E10Qe5} (1P8ES«4)
COL. COL. COL.

TAU 1-10 1-10 1l =9

TAUD 11-20 11-20 10-18

DTAU 21-30 21-30 19-27

8 31-40 31-40 28-36

EB 41-50 41-50 37-45

S 51-60 51-60 46-54

XNORM 61-70 61-70 55=-63

TIME 64-72
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E« DATA CARDS - THE RAW DATA.

INPUT-A COLe. GENERAL CASE OF ONE CARD PER OBSERVATION PUNCHED
FORMAT (1P5E12.7) TN EXPONENTIAL FORM.
TCI) 1-12
DT(I} 13-24
c(Iy) 25-36
R(I) 37-48 (MAY BE BLANK)
W(I) 49-60 {MAY BE BLANK)
INPUT-B COL . SPECIAL CASE OF ALL DT THE SAME AND T VALUES

CONSECUTIVE IN EACH SUBGROUP.
NO REMAINDERS OR SPECIAL WEIGHTS ALLOWED.

FORMAT (13,1P2E12.7) FIRST CARD OF THE SUBGROUP.
N 1-3 INTEGER NUMBER OF DATA POINTS IN SUBGROUP.

T(L) 4-15 TIME OF FIRST OBSERVATION IN EXPONENTIAL FORMe.
DT(1) 16-27 STANDARD OBSERVATION LENGTH IN EXPONENTIAL FORM.
FORMAT (12F6.0) REMAINING CARDS OF THE SUBGROUP.

c(l) 1-6 DATA CONSECUTIVE FROM 1 THROUGH N PUNCHED IN
c2) 7-12 DECIMAL 12 WORDS PER CARD AND 6 SPACES PER WORDe
ETC. ETCe.

SEVERAL SUBGROUPS MAY BE STACKED CONSECUTIVELY

INPUT-C COL. SPECIAL INPUT FOR LASL P-12 GROUP.

FORMAT (2F640513XsF5¢051X3s10F1e0)}
T(I) 1-6

DT(I) 7-12
Iy 26-30

X{1) 32 2(9) {BINARY REPRESENTATION OF REMAINDER)
X{2) 33 2(8)

X(3) 34 2(7)
ETCe. ETCe ETCe.

X(10) 41 2(0)

THE THREE TYPES OF FORMAT SPECIFICATIONS USED IN FRANTIC ARE (IW)s (FWeD)>s
AND (1PEWeD)e IN EACH OF THESE SPECIFICATIONS W IS THE FIELD WIDTH (NUMBER OF
SPACES FOR THE WORD) AND D IS THE NUMBER OF DIGITS TO THE RIGHT OF THE DECIMAL.

INTEGER VALUES (IW)e
THESE QUANTITIES ARE PUNCHED AT THE FAR RIGHT OF THEIR ALLOTED FIELD.

DECIMAL VALUES (FWeD)e
THESE ARE PUNCHED AT THE RIGHT OF THEIR FIELD AS THOUGH THEY WERE INTEGERS.
THE DECIMAL POINT IS ASSUMED TO THE RIGHT OF THE EXTREME-RIGHT FIELD POSITION.

EXPONENTIAL VALUES (1PEWeD)e

THESE ARE TREATED IN THE FORM V X 10(K) WHERE Vv IS A DECIMAL VALUE (1.00 TO
10.00) AND K IS AN INTEGER (+37 TO -39)e EACH WORD IS DIVIDED INTO

Ae SIGN OF THE WORD (FIRST SPACE),

Be (D + 1) DIGITS DESCRIBING V,

Ce SIGN AND VALUE OF K (LAST THREE SPACES).
THE DECIMAL POINT IN VvV NEED NOT BE PUNCHED AS IT 1S ASSUMED TO LIE BETWEEN
THE SECOND AND THIRD SPACES OF THE WORD (AFTER THE UNITS VALUE OF V)e
THUSs THE VALUE +1234¢5678 WOULD BE PUNCHED

FORMAT (1PE12.7) {1PE10.5)
+12345678+03 +1236457+03 .
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FRANTIC INPUT CARD ARRANGEMENT

FORMAT FOR INPUT CARDS FOR SEVERAL SETS OF DATA EACH WITH SEVERAL RUNS.

FRANTIC BINARY DECK

4 HEADER CARD
CONTROL CARD (IC = +)
RUN - 1 ESTIMATE CARDS (IF IC
DATA CONTROL CARD
DATA CARDS

2 OR 3)

HEADER CARD
SET - 1 RUN - 2 CONTROL CARD (IC = =)
ESTIMATE CARDS (IF 1IC

2 OR 3)

HEADER CARD
RUN - 3 CONTROL CARD (IC = =)
ESTIMATE CARDS (IF IC

I

2 OR 3)

~ ETC.

ETCe
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6e¢ SAMPLE DATA AND RESULTS

THESE DATA ARE FOR ANALYSIS OF THE HALF LIVES OF F-18
AND NA-24 (900 + 4 MINe) PUNCHED FOR USE WITH INPUT-A.

SAMPLE ANALYSIS OF F{18) AND NA(24)

F-18 NA-24 24 2 2 2
+62445900-03
+77068000-04

{110e3 + 0e5 MINe)

HALF LIVES IN MINUTES

+100000+02+400000-08+200000~-08+128000+02+300000-03+100000+00+100000+00

+00000000+00+10000000+00+60842000+04
+30000000+00+10000000+00+60575000404
+47000000+01+100000004+00+55209000+04
+12250000+02+10000000+00+48443000+04
+17700000402+10000000+00+43840000+04
+213500004+02+10000000+00+41606000+04
+21650000+02+10000000+00+41549000+04
+26650000+02+10000000+00+39366000+04
+43500000+402+100000004+00+33192000+04
+54750000+02491666667-01+27342000+04
+56200000+02+10000000+00429492000+04
+12260000403+1C000000400+17556000+04
+13600000+03+10000000+00+15656000+04
+15360000+03+10000000+400+13715000+04
+16570000+03+10000000+00+12727000+04
+16600000+403+10000000+00+12503000+04
+26910000+03+20000000+00+11207000+04
+26955000+03+20000000+00+11190000+04

+27505000+03+20000000+00+10870000+04 -

+28965000+03+20000000+00+96900000+03
+30145000+03+20000000+00+90940000+03
+40980000+03+50000000+00+99910000+03
+437200004+03+70000000+00+11559000+04
+456600004+03+50000000+00+73500000+03
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_LE_

THE CATE IS

JUNE 28,

1962.

THE TIME IS 1044.1

07967181.00000

SIGMA -XS

VOO HWN—~

F-18 NA-24
2

(o}

24

20

8

2

0

0.10781
1.32690
32.68209

L O I T T T B S S I 1]

A(ZERO)

16341.443
44749.806

ORIGINAL

16510.036
44410.143

C 0

BEGINNING
TIME

0.
3.000
47.000
122.500
177.000
213.500
216.500
266.500
435.000
547.500
562.000
1226.000
1360.060
1536.000
1657.060
1660.000
2691.000
2695.500
2750.500
2896.500
3014.500
4098.000
4372.000
4566.000

SAMPLE ANALYSIS OF F(18) AND NA(24) HALF LIVES IN MINUTES

FRANTIC IDENTIFICATION
NUMBER OF COMPONENTS

NUMBER OF PARAMETERS HELD FIXED

NUMBER OF DATA POINTS
DEGREES OF FREEDOM

ITERATIONS

STATISTICAL WEIGHTS

NUMBER OF POINTS (+#)

LEAST SQUARES DETERMINANT

DELTA VARIANCE OF FIT X 10(6)

WEIGHTED VARIANCE OF FIT

CHI SQUARE
SIGMA
332.882
267.309

ESTIMATES

0 0 0

INTERVAL
TIME

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.917
1.000
1.000
1.000
1.000
1.000
1.000
2.000
2.00¢C
2.000
2.000
2.000
5.000
7.000
5.000

LAMBDA

0.006638639
0.000773363

0.006244585
0.000770673

SIGMA

0.000261754
0.000002451

100.0
0.0
.0

128.0
0.0
1.0
1.0

0000
4G00
2000
0000
0300
0000
0000

HoHw o wn N

DEVIATING MOURE THAN 2 SIGMA

N(ORIGINAL)

4781055.
62516273,

ANALYSIS OF THE DEVIATIONS

] 0 2

ORIGINAL
COUNTS

60842.0
60575.0
55209.0
48443.0
43840.0
41606.0
41549.0
39366.0
33192.0
27342.0
29492.0
17556.0
15656.0
13715.0
12727.0
12503.0
11207.0
11190,0
10870.0

9690.0

9094.0

9991.0
11559.0

7350.0

1 4 6

CORRECTED
DATA

60862.431
60594.130
55203.191
48409.051
43789.013
41547.358
41490.167
39300.085
33108.127
29735.266
29398.832
17440.337
15537.811
13594.528
12605.482
12381.256
5476.756
5468.252
5308.182
4717.939
4419.827
1870.360
1523.395
1342.086

4

2 1

-4.5 =4.0 -3.5 -3.0 -2.5 -2.0 -1.5 ~1.0 -0.5 -0.0 0.0 0.5 1.0

CALCULATED
RATE

61019.826
60594.994
55057.582
47911.374
44039.507
41871.424
41705.702
39177.577
32860.822
29722.005
29354.863
17336.747
15627.749
13637.935
12419.345
12390.560
5579.989
5560.603
5329.042
4760.059
4344.901
1877.426
1517.746
1307.303

SIGMA

212184,
422810.

4 0 0
1.5 2.0 2.5

INSTANTANEQUS
RATE

61019.795
60594.964
55057.559
47911.360
44039.497
41871.417
41705.694
39177.571
32860.820
29722.004
29354.862
17336.747
15627.748
13637.934
12419.345
12390.559

5579.988

5560.603

5329.041
4760.059
4344.900
1877.425
1517.745
1307.303

TAU (TIME TO COUNTING)
TAUD (DEAD TIME FACTOR IN MICRO TIME UNITS)
ERROR IN DEAD TIME FACTOR
BACKGROUND
UNCERTAINTY IN TIMING INTERVAL IN TIME UNITS
DATA SCALE FACTOR

NORMALIZATION FACTOR

0
3.0

HALF LIFE

104.4110
896.2732

0 0
3.5 4.0

WEIGHTS
X 10(3)

0.01002
0.01008
0.01156
0.01391
0.01594
0.01709
0.01712
0.01838
0.02287
0.02351
0.02649
0.04879
0.05551
0.06431
0.06982
0.07119
0.34051
0.34103
0.35109
0.39377
0.41943
2434366
3.92638
3.12130

(MICRD TIME UNITS)

SIGMA

4.1168
2.8426

DELTA
RATE

-157.395
-0.864
145.610
497.678
-250.494
-324.066
~215.534
122.508
247.305
13.261
43.969
103.590
~-89.938
=43.407
186.137
~-9.304
-103.233
-92.351
~20.860
-42.120
T4.926
~-7.066
5.648
34.783



Te FRANTIC FORTRAN LISTING

* LIST

* LABEL

CFR-11

C FRANTIC 11 PROGRAM FOR DECAY CURVE ANALYSIS PeCeROGERS 3/6/62
C FRANTIC Il MASTER PROGRAM

1

10

11
12
13

DIMENSION T(400)s DT(400)s C(400)s R(400)s W(400)s A(400)s AC(400)
1s AE(1D0s400)s DA(400)s IX{20)s IS(6)s PC(20)s PG(20)s BM(20)
2BMO(20)s AM(20+20) s AMO(20920)s FMT(14)s XID(2)

COMMON KsDET sAMsBMsAMO sBMOsFMT s ITAPE s JTAPE s XIDsNs IJMAX s ICsIDsISsIXy
1JCALC s JCALC2sIToTAUSTAUDsBsEBsS9sXNORMIVARZ2 sDVARsSUMsDTAUSTsDTsCeR
2WesAsACsDASAESPGHPC

FORMAT (1H1)

ITAPE = 4

JTAPE = 2

SENSELIGHT ©

CALL INPUT

JCALC = JMAX

JCALC2 = JMAX + JMAX

CALL DATA

IF (IC - 1) 10s11513

JCALC = O

CALL GUESS

WRITE OUTPUT TAPE JTAPE, 1

CALL LESFIT

WRITE OUTPUT TAPE JTAPEs 1

CALL CLOCK (JTAPE)

CALL OUTPUT

IF (JCALC - JUMAX) 1251010

END
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*
*

CINPU

10
11
12
13

101
102
103
104

105
110

LIST

LABEL
TA

SUBRQUTINE INPUT

DIMENSION T{(400)s DT{(400)s C(400)s R(400)s W{400)s A(400)s AC(400)
1s AE(10s400)s DA(400)s IX(20)s IS(6)s PC(2C)s PG(20)s BM(20)
2BMO(20)s AM(20s20)s AMO(20920)s FMT(14)s XID(2)

COMMON KsDETsAMsBMsAMO sBMOsFMT s ITAPE s JTAPE s XIDsNsJMAX s ICoIDsISsIXo
1JCALC s JCALC2sITsTAUSTAUD sBsEB s S e XNORMsVARZ2sDVARsSUMIDTAUsTsDTsCsRs
2WsAsACIDASAE yPGSPC

FORMAT (13A65A2)

FORMAT (A6sA4s14+2912)

FORMAT (1P6El12.7)

FORMAT (1P7E1045)

READ INPUT TAPE ITAPEs 10s (FMT(I)s I = 1s14)

READ INPUT TAPE ITAPE 911ls XID(1)s XID(2)s Ns IUMAXs ICs ID>»
1(IS(I)s I = 196)s (IX(I)s I = 1,20)

IF (XABSF(IC)-2) 103,101.101

DO 102 I = 1, JMAX

READ INPUT TAPE ITAPEs 12s PG(2¥%])s PG(2%]-1)

IF (IC) 110+1105104

READ INPUT TAPE ITAPEs 13s TAUsTAUDsDTAUsBEB»SsXNORM

DC 105 I = 1N

READ INPUT TAPE ITAPEs 12s T(I1)s DT(I)s C(I)s R(I})s W(I)

RETURN

END

-39-



*
¥*

CINPU

10
11
12
13
14
15

101
102
103
104

105

106

110

LIST

LABEL
T8

SUBROUTINE INPUT

DIMENSION T(400)s DT(400)s C(400)s R{400)s W(400)s A(400)s AC(400)
1y AE(109s400)s DA(400)s IX(20)s IS(6)s PC(20)s PG(20)s BM(20)»
2BMO(20)s AM(20s20)s AMO(20+20)s FMT(14)s XID(2)

COMMON KsDETsAMsBMsAMC sBMO sFMT s ITAPE s JTAPE s XIDsNos UMAX s ICsID»ISsIXo
1JCALCsJCALC2 3 ITsTAUsTAUDSBsEB»SsXNORMsVAR29sDVARsSUMsDTAUSTsDTsCsRs
2WesAsACSsDASAESPGsPC

FORMAT (13A69A2)

FORMAT (A6sA4514,4,2912)

FORMAT (1P6E12.7)

FORMAT (I3s1P2E12.7)

FORMAT (12F640)

FORMAT (1P7E1045)

READ INPUT TAPE ITAPEs 10s (FMT(I)s I = 1s14)

READ INPUT TAPE ITAPE s11s XID(1)s XID(2)s Ns JUMAXs ICs ID»
1(IS(CI)s I = 196)s (IX(I)s 1 = 1420)

IFF (XABSF(IC)—-2) 40351015101

DO 102 I = 1, JUMAX

READ IMNPUT TAPE ITAPEs 12y PG(2%I}y PG(2%]I-1)

IF (IC) 11051105104

READ INPUT TAPE ITAPEs 15s TAUsTAUDsDTAUBsEBsSesXNORM

IT =0

K = IT + 1

READ INPUT TAPE ITAPE»s 13s Js T(K)s DT(K)

IT = IT + J

READ INPUT TAPE ITAPEs 14s (C(I)s I = KslIT)

R{K} = 0«0

K = K + 1

DO 106

R(IY =
T(l) = -1) + DT(I-1)
DT(1) = DT(I-1)

IF (N-IT) 11051105105
RETURN
END

I =
0e0
TOI



*
*

CINPU

10
11
12
13
14

101
102
103
104

105
110

LIST

LABEL
TC

SUBRCUTINE INPUT

DIMENSION T(400)s DT(400)s C(400)s R{400)s W{400)s A(400)s AC{400)
1ls AE(105400)s DA(400)s IX{20)s IS(6)s PC(20)s PG(20)s BM(20),
2BMO(20) s AM(20920)s AMO(20920)s FMT(1l4)s XID(2)

COMMON KsDETsAMsBMaAMO sBMOsFMT o ITAPEsJTAPE s XIDsNs UJMAX s ICsIDsISsIXo
1JCALC s JCALCZ2 s I TsTAUSTAUD 90 sEB 9 SsXNORMIVARZ29sDVARsSUMsDTAUSTsDTsCHR
2WsAsACIDASAESPGsPC

FORMAT (13A645A2)

FORMAT (A6sA4s14452912)

FORMAT (1P6E1247)

FORMAT (1P8E9e4)

FORMAT (2F6e¢0913XsF56091Xs10F1e0)

READ INPUT TAPE ITAPEs 10s (FMT(I)s I = 1,14)

READ INPUT TAPE ITAPE 11 XID(1)s XID(2)s Ns» JMAXs ICs ID»
1(IStI)s I = 1s6)s (IX(I)s I = 14520)

IF {(XABSF(IC)-2) 10351015101

DO 102 I = 1s JMAX

READ INPUT TAPE ITAPEs 129 PG(2%])s PG(2%¥]~1)}

IF (IC) 110+110+104

READ INPUT TAPE ITAPEs 13s TAUsSTAUDsDTAUBIEBsSsXNORMs TIME

DO 105 I = 1sN

READ INPUT TAPE ITAPEs 1l4s TH{I)sDTU(I)sC(I)s(X(J)s J = 1,10)

T(I) = T(I)Y/TIME

DT(I) = DT(1)/TIME

R{I) = 00

DO 105 J = 1,10

R{I} = R{I) + X(J)¥2.0%*¥(10-J)
RETURN

END
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¥*
*

LIST
LABEL

C DATA

201
203

204

205
206

207
210

211
212

213

214
215

SUBROUTINE DATA

DIMENSION T(400)s DT(400)s C(400)s R(400)s W(400)s A(400)s AC(400)
1s AE(109400)s DA(40OO0)s IX(20)s IS(6)s PC(20)s PG(20)s BM{20)
2BMO(20)s AM(20920)s AMO(2020)s FMT{14)s XID(2)

COMMON KsDET9sAMsBMsAMO sBMO sFMT s ITAPE s JTAPE s XIDsNs UJMAX s ICoIDsISsIXo
1UCALCsJCALC29ITsTAUsTAUDSBsEBsSsXNORMsVARZ2sDVARsSUMsDTAUs TsDTsCeRs
2WsAsACsDASJAEWPGHPC ’

IF (IC) 21042105201

DO 203 I = 1N

C(I) = C(I)*S + R(I)

IF (ID) 20442045206

ID = -ID

SUM = 040

DO 205 1 = 1N

C(I)y = ClI) = SUM

SUM = SUM + C(1)

DO 207 I = 1N

R{I) = C(I)/DT(I)

A(I) = (R(I)/{1e0 — R(I)®*TAUD) - B) * XNORM

IC = XABSF(IC)

IF (ID-2) 211s2135215

DO 212 1 = 1N

W(I) = 140

RETURN

DO 214 I = 1N

R(IY = C(1)/DT(I)

X = (ROIY¥DTAU) / ((1e0-R(I)*TAUD)I*¥%2 ~ (R({I)*¥DTAU) *%2}

Y = (EB/DT(I))Y / (1«0 — (EB/DT(I))*%2)

WII) = 1¢0 /7 (((RII)+B)/DT(I) + R(I)*¥#2 3 (X#X24Y¥%2)})) % XNORM*%2)

RETURN

END
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*
*

C GUE

400

401

402

403

404

405
406

407

408
409

410

411

LIST

LABEL
SS

SUBROUTINE GUESS

DIMENSION T{(400)s DT(400)s C(400)s R(400)s W(400)s» A(400)s AC(400)
1s AE{10+400)s DA(40O0)s IX(20) s IS5(6)s PC(20)s PG(20)s BM(20),
2BMO(20)s AM(20520)s AMO(20+20)s FMT(14)s XID(2)

COMMON KsDET s AMsBMsAMO sBMOsFMT s ITAPE s JTAPE s XIDsNs JMAX s ICsIDsISsIXs
1JCALC»JCALC2 9 ITsTAUSTAUD sBIEB s S s XNORMIVARZ2 sDVARSSUMsDTAUsTsDTsCHsR
2WsAsACsDASAE sPGPC

IF (JUCALC) 40094009402

DO 401 I = 1,20

IXtIy = 0

PG(I) = 0«0

PG(2) = ABSF{LOGF(A{1)/AIN))/(T(N) - T(1)))
Is(2y = 1

JCALC = 1

JCALCZ = 2

RETURN

DO 403 I = 1sJCALCZ,2

PG(I) = 0.0

PC(I+1) = ABSF(PC(I+1))

X=MAXL1F (PC(2)sPC(4)sPC(6)sPC(8)sPC{L10)sPC(12)sPC(14)sPC(16),PC(18)
1)

IF (IS(1)) 40554045405
PC(JUCALCZ + 2) = X¥10.0
GO TO 406

PCIJUCALCZ2 + 2) = X¥3.0

J =20

DO 409 I = 2y JCALC 2 2
IF(PC(I) = PC(I + 2})) 4075407+408
X = PC(I)

PC(I) = PC(I + 2)

PC(I + 2) = X

GO 710 409

J=J+1

CONTINUE

IF (J=-JCALC) 40654105410
JCALC = JCALC + 1

JCALCZ2 = JCALC2 + 2

DO 411 I = 2y JCALCZ, 2
PG(I) = PC(I)

RETURN

END
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3

LIST

* LABEL
CLESFIT
SUBROUTINE LESFIT
DIMENSION T{(400)s DT(400)s C(400)s R(400)s W(400)s A(400)s AC(400)
1s AE(10+400)y DA(400)s IX(20)s 1S5(6)s PC{20)s PG(20)s BM(20),
2BMO(20)s AM(20920) s AMO(204+20)s FMT(14)s XID(2)
COMMON KsDET sAMsBMsAMO sBMO s FMT s ITAPE s JTAPE s XIDsNe UMAX s ICsIDsISsIXy
1JCALC» JCALC2 I TsTAUSTAUDSBSEB S s XNCRMsVAR2sDVAR sSUMSDTAUSTsDTsCsRy
2WesAsACsDALAE sPGSPC
DIMENSION DP{20)s P(20)
501 FORMAT (//1XsA6sAbsFlB8e4s6PF18642/(1P8BELS5e7))
EXPPF(X) = 160 + X/6e0 + X#%2/120e60 + X*¥¥3/50400
IT =0
IMA = O
IML = O
VARl = 0.0
DO 514 1 = 1s JCALCZ2s 2
IF (IX(I)) 510s511+510
510 IMA = IMA + 1
511 IF (IX(I + 1)) 51295134512
512 IML = IML + 1
513 IX(I + 1) = IX(I + 1) + 100
DP(I) = 0.0
DP(I+1) = Q.0
PC(I) = PGI(I])
514 PC(I + 1) = PG(I + 1)
DO 520 L = 1N
DO 520 I = 1y JCALC
J = 2%#]
X = PC(UY*DT(L)}
Y = PCOUY®T(L)
IF (X=140) 519+519+518
518 AE(IsL) = EXPF(=Y)¥({1e0QO — EXPF(=X))/X
GO TO 520
519 AE(IsL) = EXPF(=Y=X/2e0)¥EXPPF((X/2e0)%3%#2)
520 CONTINUE
K = JCALC - IMA
IF (K) 52655264521
521 IT =1
IF (IC-2) 52395234550
523 CALL MATRIX
CALL MATINYV
J =1
DO 525 1 = 1y JCALC2s 2
IF (IX(I)) 52545244525
524 PC(1) = BM(U)
J=J +1
525 CONTINUE
526 1F (JCALC = IML) 527527550
527 SENSELIGHT 1
GO TO 550
C
C ITERATIVE SECTION
C
535 IT = IT + 1

CALL MATRIX
CALL MATINV
J =1
-44 -



DO N

IF (IT = 5) 5369536+537
536 H = 0e7

GO TO 538
537 H = 098
538 DO 545 1 = 1sJCALCR2

IF (IX{I)) 54555409545
540 DP(I) = H*BM(J)
541 PC(I) = P(I) + DP(I)

IF (IS(2)) 54495425544
542 IF (PCUI)*P(I)) 543+5439544
543 DP(1) = DP(1)/2.0

GO TO 541
544 g = J + 1
545 CONTINUE

CALCULATION OF FIT

550 VARZ2 = Qs
DO 563.L
AC(L)*= 0.0
DO 562 I = 1sJCALC
J = 2%]

IF (IX(J)) 56295595562

n o

1sN

559 X = PCLUI*DT (L)
Y = PCOJI*T(L)
IF (X = 1le0) 56155615560
560 AE(IsL) = EXPF(-Y)*(1le0 — EXPF(=X))/X
GO TO 562
561 AE(IsL) = EXPF(—=Y=X/2e0)¥EXPPF((X/2s0)%%*2)
562 AC(L) = AC(L) + PC(J - 1)*¥AE(I,L)
DA(L) = A(L) - AC(L)

563 VAR2 = VAR2 + DA(L)**¥2%w(L)
TEST FIT

DVAR = ABSF((VAR2 - VAR1l)/VAR2)
IF (IS(3)) 56495659564
564 WRITE OUTPUT TAPE JTAPEs 501, XID(1l)s XID(2)s ITs JCALCs VAR2)
1DVARs (PC(I)sDP(I)s I = 1sJCALC2)
565 IF (SENSELIGHT 1) 5755566
566 IF (IT = 25) 56795755575
567 DO 569 I = 1,JCALC2
IF (IX{I)) 56945685569
568 IF (ABSF(DP(I}/PC(I)) - 0000001) 5695569570
569 CONTINUE
IF (DVAR - 04000001) 5759575,570
570 DO 571 I = 1,JCALC2
571 P(I) = PC(ID)
VAR1 = VAR2
IF (IT = 1) 57295729535
572 DO 574 I = 19sJCALC2s2

IXtI + 1) = IX(I + 1) = 100
IF (IS(2)) 5749573574
573 P(I) = ABSF(P(I))
IF (PG(I)) 57655749574
576 P(I}) = =P(I)
574 PG(I) = PC(I])
K = JCALC2 - IMA - IML
GO TO 535
575 RETURN

END .45-



¥*
*

CMATR

605
606

607

608
609

610

611

612

613

620

621
622

623
624
625

626
627

LIST

LABEL

IX

SUBRQUTINE MATRIX

DIMENSION T{(400)s DT(400)s C(400)s R(400)s W(400)» A{400)s AC(400)
1s AE(10,400)s DA(400)s IX(20)s IS(6)s PC(20)s PG(20)s BM(20)
2BMO(20) s AM(20920)s AMOD(2Cs20)s» FMT(14)s XID(2)

COMMON KsDET sAMsBMsAMO sBMO sFMT s ITAPE s JTAPE s XIDsNs IJMAX S ICsIDsISHIXs
1JCALCs»JCALC2sITsTAUSTAUDIBIERsSsXNORMsVARZ2sDVAR sSUMsDTAUTsDTsCsR

2WsAsACsDASAESPGHPC

DIMENSION PART(20)

DO 606 I = 19K

DO 605 J = 19K

AM(IsJ) = 0.0

BM(I) = Q60

DO 625 L = 1N

J =1

DO 613 1 = 1sJCALC

JA = 2%]

IF {(IX(JA=1)) 608s6075608

PART(J) = AE(IsL)

J=J+ 1

IF (IX(JA)) 613,6099613

X = PCLJAY*DT (L)

IF (X-0e2) 61196119610

PART(J) =((1e0/PCIJAY+TI(L)+DT(L))I*¥EXPF(=X)—1eO0/PC(JAY-=T(L))I/X
GO TO 612

PART(J) = =TUL)=DTHUL)/2e0+X/2e0%(T(L)+DT(L))=(1e0/PC{JAY+T(L)+

IDTUL) I ¥ ((X¥%2) /6o 0~ (X#%3) /24 40+ (X¥*#2)%%2/12040—(X¥%2)X(X*¥%3)}/7204)

PART(J) = PART(UY*¥PC(JA-1)*EXPF(~=PC(JA}*T(L))
J=J+1

CONTINUE

DO 620 I = 1sK

DO 620 J = 19K

AM(TsJ) = AM(IsJ) + PART(II*PARTU(J)*WI(L)

IF (IT=1) 6219621623

DO 622 1 = 15K
BM(I) = BM(I) + PART(I)*W(L)¥A(L)
GO TO 625

DO 624 I = 15K

BM(I) = BM(I) + PART(I)*W(L)*DA(L)
'CONTINUE

DO 627 I = 15K

DO 626 J = 1K

AMO(1sJ) = AM(IsJ)

BMO(I) = BM(I)

RE TURN

END
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* LIST
* LABEL
CMATINV
SUBROUTINE MATINV
COMMON KsDET»AMsBM
DIMENSION AM{20+20)s BM(20)s PIVOT(20)s IPIVOT(20)s INDEX(20,52)
EQUIVALENCE (IROWsJROW)s (ICOLUMSJCOLUM)s (AMAXs TAs SWAP)
701 DET = 1.0
702 DO 703 J
703 IPIVOT (J
704 DO 741 1
705 AMAX = Q.0
706 DO 715 J = 1K
707 IF(IPIVOT(J)=1) 708+715,708
708 DO 714 M = 1K
709 IF ( IPIVOT(M)-1) 710+7145753
710 IF (ABSF(AMAX)=ABSF(AM(JsM))) T11s714s714
711 IROW = J
712 ICOLUM = M
713 AMAX = AM(JsM)
714 CONTINUE
715 CONTINUE

1,K
= 0
1sK

-1

716 IPIVOT (ICOLUM) = IPIVOT (ICOLUM) + 1
717 IF (IROW~-ICOLUM) 71857265718
718 DET = -DET

719 DO 722 L = 1sK

720 SWAP = AM(IROWsL)

721 AMUIROWsL) = AM(ICOLUM»L)

722 AM(ICOLUMsL) = SWAP

723 SWAP = BM(IROW)

724 BM(IROW) = BM(ICOLUM)

725 BM(ICOLUM) SWAP

726 INDEX(Isl) IROW

727 INDEX(I1s2) = ICOLUM

728 PIVOT(I) = AM(ICOLUMsICOLUM)

729 DET = DET*PIVOT(I)

730 AM(ICOLUMsICOLUM) = 1le0

731 DO 732 L =15K

732 AMUICOLUMsL) = AM(ICOLUMSL)/PIVOTI(I)
733 BM(ICOLUM) = BM(ICOLUM)/PIVOT(I)
734 DO 741 L1 = 1K

735 IF(L1-ICOLUM) 73647415736

736 TA = AM(L1sICOLUM)

737 AM(L1sICOLUM) = 040

738 DO 739 L = 1K

739 AM({L1sL) = AM(L1sL)=AM(ICOLUMSL}*TA
740 BM(L1) = BM(L1)-BM(UICOLUM)*TA

741 CONTINUE
742 DO 752 I = 19K
743 L = K+1-1
744 TF(INDEX(Ls1)Y—INDEX(Ls2)) 74547525745
745 JROW = INDEX(L»s1l)
746 JCOLUM = INDEX{Ls2)
747 DO 751 M = 1K
748 SWAP = AM(MsJROW)
749 AM{MsJROW) = AM(MsJCOLUM)
750 AM(MsJCOLUM) = SWAP
751 CONTINUE
752 CONTINUE
753 RETURN
END 47 -



*
*

LIST
LABEL

COUTPUT

SUBROUTINE OUTPUT

DIMENSION T(400)s DT(400)s C(400)s R{400)s W(400)s A(400)s AC(400)
ls AE(10+400)s DA(G4OO)s IX(20), IS(6)s PC{20)s PG(20)s BM(20),
2BMO{(20)s AM(20520)s AMO{(20+20)s FMT(14)s XID(2)

COMMON KsDETsAMsBMsAMO sBMOsFMT s ITAPE s JTAPE s XIDsNs IJMAXSsICHIDsISsIXy
1JCALCsJCALC25ITosTAUSTAUDsBsEBsSsXNORMsVARZ29DVARISUMDTAUSTsDTsC Ry
2WsAsACsDASJAE sPGsPC

DIMENSION SP(20)s XNORIG(10)s ENCRIG(10)s HL({10)s EHL(10)»
1AINST(400)s NP(400)s Y(3)s IDEV(23)

801 FORMAT(//5XsA6sA4925H = FRANTIC IDENTIFICATIONs19X9sF10e5+25H = TAU
1 (TIME TO COUNTING))

802 FORMAT (I15+23H = NUMBER OF COMPONENTSs21Xs6PF10e5s46H = TAUD (DEA
1D TIME FACTOR IN MICRO TIME UNITS))

800 FORMAT (I115+34H = NUMBER OF PARAMETERS HELD FIXEDs10Xs6PF10e5s47H
1= ERROR IN DEAD TIME FACTOR (MICRO TIME UNITS)H))

803 FORMAT (I15424H = NUMBER OF DATA POINTSs20XsF10e5513H = BACKGROUND
1)

804 FORMAT (115,21H DEGREES OF FREEDOM»$23XsF1l0e5947H = UNCERTAINTY 1
IN TIMING INTERVAL IN TIME UNITS)

805 FORMAT (I115,13H ITERATIONSs31XsF10e5920H = DATA SCALE FACTOR)

806 FORMAT (I15,15H UNIT WEIGHTS)

807 FORMAT (I15,22H STATISTICAL WEIGHTS)

808 FORMAT (I15,18H SPECIAL WEIGHTS)

809 FORMAT (1XsFl4e5+428H = LEAST SQUARES DETERMINANT)

810 FORMAT (1lH+450Xs12H(LOUSY LUCK))

811 FORMAT (1XsFl4e5927H = WEIGHTED VARIANCE OF FIT)

812 FORMAT (1XsF1l4e5913H = CHI SQUARE)

813 FORMAT (1H++35Xs26H{BEASTLY FIT ~ CHECK DATA))

814 FORMAT (1H++58XsF10e5523H = NORMALIZATION FACTOR)

onouou

815 FORMAT (///118H A(ZERO) SIGMA LAMBDA
1 SIGMA M{ORIGINAL) SIGMA HALF LIFE SIGMA
2 /7)

816 FORMAT (1XsFl4e35F15e392F156992F156092F15e4)

817 FORMAT (27HO ORIGINAL ESTIMATES//)

818 FORMAT (1XsF1l4e35F30e9)

819 FORMAT (///6Xs111HBEGINNING INTERVAL ORIGINAL CORRE
1CTED CALCULATED INSTANTANEQUS WEIGHTS DELTA/

29X s 4HTIME 38X s 4HTIME 9 10X s 6HCOUNT S 11X s 4HDATA 12X 94HRATE s 12X s 4HRATE
38XsTHX 10(3)3s10Xs4HRATE//)
820 FORMAT (l44F11e39F12e¢33F15e6193F16a393PF15e590PF1443)
821 FORMAT (///4H I1939Xs6HA(IsJ) s61Xs4HB(I) /)
822 FORMAT (1431P5E17e7/(1PE21e791P4E1767))
823 FORMAT (1H++1PE119.777/)
824 FORMAT (4H 1935Xs17HINVERSE OF A(lsJ)//)
825 FORMAT (6PF15e54532H = DELTA VARIANCE OF FIT X 10(6))
826 FORMAT (115s51H = NUMBER OF POINTS (%) DEVIATING MORE THAN 2 SIGMA
1)
827 FORMAT (1H+45118Xs1H*)
828 FORMAT (20Xs13A63A2)
829 FORMAT (///740X+26HANALYSIS OF THE DEVIATIONS//)
830 FORMAT (5X92215/1X9114HSIGMA =XS =465 =40 =3e¢5 =360 =25 =20 -1
l1e5 =1e¢0 =0e5 =060 0«0 Oe¢d 1.0 le5 20 25 3e0 3e5 460 Lo
25 XS)
IDF = N=K
K = JCALC2 - K
IF(IDF) 832+832+831
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831
832

833

834
835

836

837

838

839

842

840

841

844

845

850
851
852
853
846

847

VAR2 = VAR2/FLOATF(IDF)
J =1

DO 835 1 = 1sJCALC2

IF (IX(I)) 834,833,834

SP(I)Y = SQRTF(ABSF{AM{JsJ)*¥VAR2))
J=J+1

GO TO 835

SP(I) = 0.0

CONTINUE

DO 841 I = 1sJCALC

J = 2%]

IF (PC{J)) 837+836+837
XNORIG(I) = 0.0
ENORIG(I) = 0.0

HL(I) = 0.0

EHL(I) = 040

GO TO 841

HL(I) = 04693147 / PC(J)

DO 839 JP = 152
JPP = J - 2 + Jp

Y(JP) = ABSF(SP(JPP)/PC(JIPP))

IF (Y(JP)) 839,839,838

IF (LOGF(Y(JP)) — 3740) 839+840,840
CONTINUE

X = PCLJ)*TAU
IF (X = 80e0) 84258405840

XNORIG(I) = PC(J=1)/PC(JI*¥EXPF(X)

ENORIG{I) = ABSF(XNORIG(I)I#SQRTF(Y(1)*#2 + Y(2)%%2))
EHL(I) = ABSF(HL(I)¥#Y(2))

GO TO 841

XNORIG(I) = =10

ENORIG(I) = =140

EHL(I) = -1.0

CONTINUE

NP2S = 0

CHISQ = 040

DO 844 I = 1423
IDEV(I) = O

DO 847 L
NP(L) = O
AINSTI(L) .
DO 845 1 ’
AINST(L) = A
X = DA(L)**2
CHISQ = CHISQ + DT(L)/AC(L)*X
X = SQRTF(X*¥W(L))

= 1240 + SIGNF({2e0%XsDA(L))
F (I} 85058509851

1sN

0
JCALC2s2
INSTI(L) + PCUIY*¥EXPF(=PC(I+1)*¥(T(L)+DT(L)/2401})

0
1

I
I
1
G
I

=1
O 7O 853
F (I - 22) 853,853,852
1 = 22
IDEV(I) = IDEV(I) + 1

IF (X = 240) 847+846+846

NP2S = NP2S + 1

NP(L) = 1

CONTINUE

CHISQ = CHISQ/XNORM

WRITE OQUTPUT TAPE JTAPEs 828y (FMT(I)s I = 1s14)
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859

861

863
864

866
867

875
876

881

880
882

883

884
885

887

890

894
895

JTAPES
JTAPE s
JTAPE s

JTAPE,

OUTPUT
OUTPUT
QUTPUT
OUTPUT
WRITE OUTPUT TAPE JTAPE,
WRITE OUTPUT TAPE JTAPE,
IF (ID-2) 859,861,863
WRITE OUTPUT TAPE JTAPE,
GO TO 864
WRITE OQUTPUT
GO TO 864
WRITE OUTPUT
WRITE OUTPUT
WRITE OUTPUT TAPE JTAPE,
WRITE OUTPUT TAPE JTAPE,
IF (DET) 8664+867,867
WRITE OUTPUT TAPE JTAPE,
WRITE OUTPUT TAPE JTAPE,
WRITE OQUTPUT TAPE JTAPE,
WRITE OQUTPUT TAPE JTAPE,
IF (CHISQ/FLOATF(IDF) -
WRITE QUTPUT TAPE JTAPE,
WRITE OUTPUT TAPE JTAPE,
WRITE OUTPUT TAPE JTAPE,
19 XNORIG(I)s ENORIGI(I))
IF (IT-1) 880588049881
WRITE OUTPUT TAPE JTAPE,
WRITE OUTPUT TAPE JTAPES
IF (ID-1) 883,883,882
WRITE OUTPUT TAPE JTAPE,
WRITE OUTPUT TAPE JTAPE,
WRITE OUTPUT TAPE JTAPE,
DO 885 L = 1N

WRITE OUTPUT TAPE JTAPE,
IAINST(L)sW(L)sDA(L)

IF (NP(L)) 885,885-884
WRITE OUTPUT TAPE JTAPE,
CONTINUE
IF (1S(4))
WRITE OUTPUT TAPE
DO 890 I = 1K
WRITE OUTPUT TAPE
WRITE OUTPUT TAPE
WRITE OUTPUT TAPE
DO 894 I = 1K
WRITE OUTPUT TAPE
WRITE OUTPUT TAPE
RETURN

END

WRITE
WRITE

WRITE
WRITE

TAPE
TAPE

TAPE
TAPE

TAPE JTAPE,

JTAPE
JTAPE »

TAPE
TAPE

88798955887
JTAPE s

JTAPE
JTAPE
JTAPE s

JTAPE,
JTAPE

801
802,

800
803,
804
805,

806
807

808
814,
826,
809,

810

825,
811,
812,

16.0)

813
815
816

HLOT)

817
818,

829
8305
819

820

827

821

822
823,
824

822,
823

XID(2)»
TAUD

XID(1)» TAU
JCALC

Ks DTAU
Ns B
IDF»

ITs S

EB

ID
ID

ID
XNORM
NP2S
DET

DVAR

VARZ2

CHISQ
87698754875

(PCU2%[—1) 9SP (2% —1) sPC(2%])sSP{2%])

EHL(I)s 1 = 1,JCALC)
(PGUtI)s I = 1,JCALC2)
(IDEV(I)s I = 14522)

LoT(L)YsDT(L)sCIL)sA(L)sAC(L)

Is (AMO(IsJ)s J = 1sK)
BMO(I)

Is (AM(IsJ)s J = 1sK)
BM(I) ’
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