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FRANTIC PROGRAM FOR ANALYSIS OF

EXPONENTIAL GROWTH AND DECAY CURVES

1. GENERAL DESCRIPTION

A computer program called FRANTIC has been written to process 

raw counting data and fit to these data, by the least-squares 

techniques, equations for multiple exponential growth and decay.

This program, written in FORTRAN for IBM computers, is sufficiently 

general to be used for almost any sum of exponentials with positive, 

negative, or zero exponents and positive or negative coefficients. 

FRANTIC is designed so that each independent group of operations such 

as data processing, matrix inversion, and input-output routines may 

be removed and modified or replaced without disturbing the rest of the 

program.

The least-squares best fit of a calculated curve to actual data 

is defined as that fit in which the sum of the weighted squares of the 

residuals (differences between the calculated values and the observed 

values) is a minimum. This sum, divided by the number of degrees of 

freedom, is known as the ’’variance of fit". In order for a least- 

squares analysis to be applicable, there must exist a set of 

simultaneous equations which are linear in the parameters whose values 

are to be determined. The number of equations in the set must be at 

least as large as the number of parameters. When these conditions are 

met, a unique solution exists and the values of the parameters can be 
determined by a Unique Least-Squares Analysis.'*'

If the equations to be used are non-linear in the parameters to 

be determined, the least-squares method is not directly applicable as 

there may exist a series of minima in the variance of fit. In order

1. D.S. Harmer, Brookhaven National Laboratory Report BNL-544 (T-l4l), 
March 1959.
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to.use the least-squares method the equations must be made linear.

One means of accomplishing linearization is credited to Gauss and 

Sidel or, alternatively, to Newton. It consists of expanding each 

expression in a first-order Taylor series about the point defined by 

the previous estimates of the parameters. By neglecting all terms 

of the series beyond first order, there results a set of simultaneous 

equations which are linear in the first power of the A terms 

(differences between the estimates of the parameters and the actual 

values) but not necessarily linear in the original parameters 

themselves. With this new set of simultaneous linear equations the 

conditions for least-squares analysis may be met and, if so, a 

unique solution for the A terms exists.

In order to determine the values of the parameters of the non­

linear equations, it is necessary only to evaluate the A terns and 

correct the previous estimates for these differences. Since all 

higher-order terms of the expansion are neglected some error is 

introduced and it is necessary to repeat the process with the corrected 

estimates. Each repetition is known as an iteration. Several

iterations are often required to meet the given convergence criterion.
2

This process is known as an Iterative Least-Squares Analysis.

The parameters in FRANTIC are the Aq coefficients (activities 

at time T = 0) and \ values (decay constants) of the exact equations 

describing a sum of first-order reactions (see subroutine LESFIT 

description below). If only the Aq coefficients are to be determined 

(i.e. decay constants all known) then these equations are linear and 

a unique analysis is sufficient. If, however, one or more of the 

decay constants are to be determined, the equations are non-linear 

and an iterative analysis must be made.

2. R.H. Moore and R.K. Zeigler, Los Alamos Scientific Laboratory 
Report LA-2367, March 4, I960.
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2. FRANTIC OPERATION

The FRANTIC program is presently designed to accommodate up to 

400 data points and to analyze for a maximum of 10 components. It 

is also arranged so that several runs (analyses) may be made on a 

given set of data and several sets of data, each with several runs, 

may be analyzed consecutively. A run is defined as a single 

analysis or series of analyses resulting from one group of con­

trolling input information. A set is the group of runs (analyses) 

on one given set of data. For each set the data need to be read 

into the computer only once, at the beginning of the first run.

For subsequent runs only the controlling information need by 

entered.

In the processing of a set of data each raw count is corrected 

for the scale factor used and remainder (if any), dead time, background, 

and finally the whole set of data may be normalized. In order for 

this processing to be carried out correctly all input constants and 

data must be inserted in the same units of time.

In the main scheme of operation the FRANTIC program, for the 

first iteration, holds the values of all the \ parameters and their 

signs fixed. This makes the equations linear in the unknown A^ coef­

ficients (those not held fixed). These coefficients, which correspond 

to the initial combination of decay constants, are evaluated by a 

Unique Least-Squares Analysis. These evaluated Aq coefficients, the 

Aq coefficients that were held fixed, and the initial X values are 

the "Original Estimates" seen in the printed results.

If one or more of the decay constants are to be determined the 

unique analysis is not sufficient and, in subsequent iterations, the 

values of the unknown Aq and X parameters are determined by an 

Iterative Least-Squares Analysis. In each iteration the A terms 

corresponding to the unknown parameters are evaluated and correction
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to the previous estimates made. For the second through fifth 

iterations a maximum of 70% of each A term is added to the previous 

estimate of its parameter in order to minimize large swings.

In subsequent iterations a maximum of 98% of the A term is used.

This value was chosen to prevent occurrence of a nonconverging 

cyclic process.

In the iterative mode it is possible to predetermine the sign 

of each parameter while allowing its value to be determined. This 

is done by initially assigning to the value of each original 

estimate the sign of its input estimate. During each iteration the 

sign of each parameter is prevented from changing by progressively 

dividing its corrected A term by two until the new A term does not 

change the sign of the previous estimate of that parameter. If the 

signs are allowed to vary, the original estimates and corrected A 

terms are used directly.

In order for convergence to occur the value of each parameter 

and the variance of fit must not deviate from their values in the 
preceeding iteration by more than one part in 10^. When convergence 

occurs, the results are printed out before the next analysis is 

begun. If convergence has not occured by 25 iterations the results 

at that time are printed out.

The main scheme of FRANTIC operation (i.e. a unique analysis 

followed by an iterative analysis) may be modified depending upon 

which parameters are held fixed. If all of the \ values are held 

fixed the unique analysis is sufficient to determine the best values 

of the unknown Aq parameters. If any \ values are to be determined 

an iterative analysis must be made. When all Aq and X parameters 

are fixed FRANTIC merely calculates the value of the curve at each 

point and compares these values with the data. In one special case 

(see Case 3) the unique analysis is omitted and an iterative 

analysis is made regardless of which parameters are held fixed 

(except where all are fixed).
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2.1 Operating Gases

Case 1. No Aq or X estimates are entered. One analysis is made for 

each value of the number of components (JCALC) consecutively from 

one through the maximum number of components (JMAX). At the begin­

ning of each analysis one new positive X value is estimated. This 

new estimate and the absolute values of the decay constants from the 

previous analysis are used as the next original estimates. The

signs and values of all parameters are allowed to vary (see GUESS 

discussion below).

Case 2. All X original estimates are inserted as well as the Aq values 

to be held fixed. None, any, or all of the Aq and X parameters may 

be held fixed. One analysis is made for JGALC = JMAX. If no X para­

meters are allowed to vary the unique analysis is sufficient; other­

wise, the unknown Aq and X values are determined by an iterative 

analysis.

Case 3. All Aq and X original estimates are inserted. None, any, or 

all may be held fixed. One analysis is made for JCALC = JMAX. The 

unique analysis is omitted and an iterative analysis is made regard­

less of which parameters are held fixed (except when all are fixed).

2.2 Input Options

a. 10 - Case control factor

i. One may choose any one of the three operating cases 

described above (IC = 1, 2, or 3).

ii. Many runs of one (Cases 2 or 3) or more (Case l) 

analyses may be made consecutively on a given set of input data.

Each set of data need be entered only once by making IC positive 

(IC = +1, +2, or +3 — read in new data) in the first run of that set 

and IC negative (IC = -1, -2, or -3 — use previously read data) in 

all subsequent runs of the set. Several sets of data (each with 

several runs) may be stacked to be analyzed consecutively.
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b. ID - Data control factor

i. One of three types of weight factors may be chosen 

for each run: all data points weighted equally (ID =1)} statistical 

weight factors (calculated internally) which depend on uncertainty 

in count rate, background, dead time, and counting interval 

(ID = 2)j or special weight factors calculated externally (ID =3).

ii. The input data may be either simple input data points 

(ID = +1, +2, or +3) or accumulative data points (ID = -1, -2, or 

-3) where the scaler was not set back to zero between counts.

c. IS(l) - Decay constant estimate control

When using Case 1 (IC = +1 or -l) one may choose the 

relative magnitude of each new \ original estimate. The new 

estimate may be either 10 times the largest absolute X value from 

the previous analysis (tS(l) = 0) or 3 times this value (lS(l) 0).

d. IS(2) - Parameter sign control

In a Case 2 or Case 3 iterative analysis, one may pre­

determine the sign of each parameter while allowing its value to 

vary. By setting IS(2) = 0 each original estimate is given the sign 

of its input estimate and this sign is prevented from changing in 

subsequent iterations. If IS(2) / 0, the original estimates are 

used directly and the signs may change at will.

In Case 2, the original estimates include the unknown Aq 

values determined in the unique analysis. In the input estimates 

for these parameters, blank or zero values are considered positive. 

Therefore a dummy negative value must be inserted for each negative 

A , otherwise these estimates may be left blank.

e. IS(3) - Iterative printout control

The current values of the parameters and their corrected 

A terms are printed out at the end of each iteration if IS(3) / 0. 
This step is omitted if IS(3) = 0.
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f, IS(4) - Matrix printout control

The final least-squares matrix and transformation vector 

as well as the inverse of the matrix and resultant transformed 

vector (solutions to the least-squares equations) are printed out 

if IS(4) / 0. This step is omitted if IS(4) = 0.

g. IX(l) - Parameter fixing controls

The input estimate of any parameter may be held constant 

by setting the corresponding IX(l) / 0. The parameter will be 

allowed to vary if IX(l) = 0. Each consecutive pair of IX values 

IX(l) and IX(2), IX(3) and IX(4), etc., corresponds respectively to 

the Aq and X values of one component. The components are in the 

order dictated by the estimate cards. Thus:

Term Corresponds to

ix(i) Ao(l> 1
Estimate card 1.

IX(2) MD ;

IX(3) A0(2) l
Estimate card 2.

IX (4) M2) J

etc. etc. etc.

In addition to the above options, all of which appear on the 

control card, certain other options are available in the form of 

a choice of values for the data processing parameters appearing on 

the data control card. These parameters are:

(a) TAU - any arbitrary time before (+) or after (-) T = 0 

used to calculate N(ORIGINAL) (see OUTPUT),

(b)

(c)

(d)

TAUD - dead-time factor (x^) in time units,

DTAU - standard deviation of dead-time factor 

time units,

B - background in counts per unit time.

in
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(e) EB - uncertainty in each counting interval DT in time 

units,

(f) S - data scale factor (multiplier) usually 1, 64, 128, 

etc. (must not be zero),

(g) XNOEM - data normalization factor (multiplier) usually 

1 (must not be zero),

(h) TIME - time scale factor (divisor) for changing units of 

T and DT (INPUT-C only, see INPUT subroutine).

Further information on the input format is given in Section 5 

and sample input data are given in Section 6.

2.3 Description of the Results

In order to render the following description more under­

standable a sample set of output results is given (Section 6). These 

results were obtained from the sample input data immediately pre­

ceding them.

The general output results begin a new page with the date and 

time the analysis was made, a one-line title consisting of the 

information punched on the input header card, and 12 lines of 

information divided into two columns. Quantities in the first column 

requiring further explanation are:

Line 1. ten column identification from the control card.

Line 5. number of degrees of freedom (data points minus parameters 

allowed to vary).

Line 7. type of weight factors used and the absolute value of the 

data control factor.

Line 9. the determinant of the final least-squares matrix (should 

never be negative, if so special notice is given).
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Line 10. the absolute difference between the variance of fit in 

the final iteration and its value in the preceding 
iteration in parts per 10^ of its final value,

2
Line 12. the X (chi square) value for use in "goodness-of-fit" 

tests.

Next, the following values and their standard deviations are 

given for each component of the calculated decay curve. These are;

Col. 1. A(ZERO) - activity at time T = 0 in counts per unit time.

Col. 3 LAMBDA - decay constant in reciprocal time units.

Col. 5 N(ORIGINAL) - number of active atoms at time TAU from 

T = 0 and its d (including uncertainty in both A and 

X),

Col. 7 HALF LIFE - half life in time units.

It should be noted that:

(a) the d value for each parameter held fixed is set to 0.0,

(b) when a X value is 0.0 the corresponding N(ORIGINAL),

HALF LIFE, and their d values are set to 0.0,

(c) N(ORIGINAL), its d, and the d for the half life are set
37to -1.0 when the d of one of the A or X values is eo

times the corresponding Aq or X value or if the product 

of X x TAU is greater than 80.0 (see OUTPUT).

For each iterative analysis the original Aq and X estimates 

are given. These "Original Estimates" are composed of the following:

(a) Aq and X values held fixed (Cases 2 or 3)»

(b) unknown X values - input estimates (Cases 2 or 3) or 

estimated values (Case l).
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(c) unknown Aq values - input estimates (Case 3) or values 

from the unique analysis (Cases 1 or 2).

Next, a histogram of the distribution of deviations of the 

final calculated points from the data points is given. The number 

above each value of <3 is the number of data points whose weighted 

residuals lie between that value and the next larger absolute 

value.

Several quantities are given for each data point used in the 

analysis. The columns requiring further comment are:

raw counts corrected for scale factor, remainder, 

and change of accumulative data to simple data,

column 4 corrected for counting interval, dead time, 

background, and normalization factor; in counts per unit 

time,

value of the calculated curve used in the analysis, AC,

value of the curve calculated at the midpoint of the 

counting interval, AINST,

residual (corrected data minus calculated curve) in' counts 

per unit time, each residual greater than 2 3 units 

denoted by an asterisk.

If requested (IS(4) ^ 0) the least-squares matrix, transforma­

tion vector, inverted matrix, and transformed vector are printed 

out in normal row and column form.

The intermediate results, if requested (IS(3) / 0), are 

printed out at the end of each iteration (before the general 

results). The first line printed for each iteration is composed of:

Col. 1. identification (as above).

Col. 2. number of the iteration,

Col. 4.

Col. 5

Col. 6 

Col. 7

Col. 9.
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Col. 3. number of components.

Col. 4. sum of weighted squares of residuals,
£

Col. 5 delta variance of fit x 10 (as above).

In subsequent lines of each group are given the and its corrected 

A term and the X and its corrected A term for each component (in that 

order - two components per line).
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3. EVALUATION OF RESULTS

When using a computer for mathematical analyses it is well 

to remember that computers are by no means magic. They should be 

expected to do nothing that you could not do better with a desk 

calculation or, for that matter, by longhand. The main reasons 

for using computers are the speed with which they carry out 

mathematical operations and their exceedingly small probability of 

making an error.

In the final analysis, each set of calculated results must be 

scrutinized in the light of human judgment. One must attempt to 

answer the following three questions: How good is the fit? How 

does the calculated curve compare with the data? What significance 

have the parameters? Certain guidelines can be given for answering 

these questions.

How good is the fit?

This question is answered mainly by the calculated values of
p

the weighted variance of fit (VAR) and X (CHISQ). The variance of 

fit is the sum of the weighted squares of the residuals divided by 

the degrees of freedom (DF), where each weighted residual is 

expressed in units of its individual d. The d values include 

uncertainty in the observed count rate, background, dead-time, and 

counting interval.

The value of VAR is also the square of the standard deviation 

of the distribution of residuals about zero. The value of VAR for 

a fit to data having only statistical deviations (i.e., the 

expectation value of VAR) is unity and the value corresponding to 

the 2 d level of confidence (i.e. value where an identical measure­

ment has 97.12>% chance of having a smaller VAR) is approximately 

(1+ 3/JW).
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2
Chi square (X ) is similar to VAR except that in computing

the former quantity the sum of the weighted squares of the

residuals is not divided by DF and the weighting factors include

only uncertainty in the calculated count rates (not observed count

rates). Thus, when the dead-time and counting interval errors and

background are negligibly small or zero (VAR x DF) ~ X $ otherwise
(VAR x.DF) < In the usual X^ vs DF tables VAR x DF will give a

2
more realistic measure than X of the probability of performing a 

better experiment or finding a better fit with different parameters.

How does the calculated curve compare with the data?

To answer this question one must look at the "Analysis of the 

Deviations" and the actual residuals themselves. The printed 

histogram of residuals should be Gaussian with standard deviation 
equal to (VAR). In the histogram, 31.7$ of the residuals would be 

expected to be outside d, 4.55$ outside 2d, and 0.272$ outside 3d.

The column containing the actual residuals, if placed in order 

of time of observation, should show statistical variations in the 

signs of the residuals (i.e. alternate positive and negative values 

with no long series of residuals having the same sign). Such non- 

statistical variations may indicate a missing component or change 

in the counting equipment.

No significance can be attached to VAR and the residuals
2

histogram in an analysis with unit weight factors or to X in an 

analysis with special weight factors. In the latter case VAR and 

the residuals histogram are significant only if the special weight 

factors used correspond, in the proper units, to the reciprocal 

squares of some assumed standard deviations.

Large values for VAR and X $DF and wide dispersion of the 

residuals histogram may indicate the presence of components not 

considered in the analysis or experimental counting errors larger 

than the assumed statistical deviations.
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What significance have the parameters?

Decay Constants. For any radioactive decay these should be 

positive, indicating a decreasing exponential curve. The decay 

constants may have any combination of values with the single 

restriction that the partial derivatives of the functions with 

respect to the Aq parameters over the time covered in the experi­

ment must vary appreciably from one component to another 

(i.e. no two components may have nearly identical half lives).

In actual practice it is difficult to determine the decay constants 

for components which:

(a) have half lives very long or very short compared with the 

time covered in the experiment,

(b) are very similar in half life to other components 

(considerable difficulty occurs when one is < 1.5 times 

another),

(c) contribute only a very small portion to the total decay 

curve.

If a decay curve is analyzed for more components than are actually 

present, the extra components may be thrown out of the analysis 

entirely. This is indicated by a X value which becomes very large 

or very small (with a large cs) or approaches the X of one of the 

actual components.

A Coefficients. The A values determined in a decav-curve—o------------------------- o J
analysis should always be positive unless real parent-daughter 

relationships exist. If so, the parent (l) and daughter (2) should 

be entered as only two components where the Aq values determined in
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the analysis are related to the actual initial activities, by 

Ao(X) =/(l) [l+gjf} X(2)M^(1)] -

V2> =<<2) X'(2l^l) Ao(l)’
A (l) + A (2) = A.' (l) + a'(2) ,

O 0 o o

where the C(i) values are the coiinting efficiencies. For an assumed 

component not actually present, whose X is held fixed, the resulting 

Aq will be a small value with a large <3. A better result for the 

other components may be obtained by omitting the absent component.

An Aq value that becomes negative or, when its sign is held fixed, 

approaches zero may indicate improper dead-time correction or 

instrumental gain shift.

It should be pointed out that the <3 for a parameter from any 

one analysis is often smaller than the actual standard deviation 

computed on the basis of a series of identical analyses (i.e. the 

value of the parameter is not as reproducible as would be ejected 

on the basis of the quoted cj).

Notes on Possible Applications

a. An unknown amount of background and/or a long-lived com­

ponent that does not decay appreciably during the time of the 

counting measurements may be included as a component with X = 0 

(fixed).

b. Individually measured background values (e.g. those 

measured from day to day over a long-term experiment) may be 

included as a negative remainder (-Rn) with S = 1. The value of 

each background must correspond to the same DTn as the count (CX-). 

However, when used in this manner the statistical weight factors 

are computed improperly.
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c. In any run but the first of a set the value of N may be 

smaller than the initial number of data points inserted (i.e. the 

last data points may be dropped in subsequent runs without reading 

in the lesser number of data points as a new set).

d. In addition to analyzing decay-curves, FRANTIC may be used 

to determine the weighted best value of a series of measurements

of the same quantity. The measured values are inserted as counts 

with T = 0 and DT = 1, weight factors are inserted as special 

weights, and the analysis is made for JMAX = 1 with X = 0 (fixed). 

If unit weight factors are used the simple average is computed.
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4. DESCRIPTION OF THE FRANTIC PROGRAM

4.1 General Discussion

The FRANTIC program consists of 8 semi-independent sub-
3

programs written in FORTRAN. Each subprogram performs one 

specific set of operations and may be replaced or modified without 

recompiling the remaining subprograms. There are no program stops 

in FRANTIC although normal FORTRAN stops may occur. For FRANTIC 

in its present form (up to 10 components and 400 data points) 

values used in the analysis require 8,143 storage locations and the 

8 subprograms require approximately 3,68? locations.

This FRANTIC program, except for the FR-II master subprogram, 

may be used directly in its compiled (column binary) form at most 

IBM 709 or 7090 computer installations. For other types of 

computers it may be necessary to recompile the entire program from 

the FORTRAN deck.

4.2 FR-II (MAIN) Subprogram

This master subprogram is designed to direct the continuity of 

each analysis by calling upon the subroutines in the appropriate 

order. It must be specifically designed for use at each installa­

tion. In particular, there are included three FORTRAN statements 

which must be made compatible with the given installation,

ITAPE = 4

JTAPE = 2

CALL CLOCK (JTAPE). 3

3. Reference Manual 709/7090 FORTRAN Programming System.
International Business Machines Corp. (l96l)._
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ITAPE and JTAPE must be given the input- and output-tape-unit 

numbers respectively. CLOCK causes printout of the date and 

time* and may be left out entirely if not available at the instal­

lation.

4.3 Subroutines

INPUT

This subroutine is the first one called by FR-II. In it the 

controls and data for each run are read and stored in the computer 

memory. At present, three different INPUT subroutines have been 

written, called INPUT - A, INPUT - B, and INPUT - C. Each one has 

been designed for a certain type of available input data. The 

requirements for the header card, control card, and estimate cards 

are the same in each one.

INPUT - A. This is a general input subroutine requiring one card 

per observation.

INPUT - B. This subroutine is designed for data in groups of equally- 

spaced, consecutive values with no intervals between 

observations (as from a multiscaler). Twelve data points 

per card are entered and no remainders or special weight 

factors are allowed.

INPUT - C. This subroutine is designed especially for use with the 

data cards (one observation per card) from the automatic 

counting arrangement of the Los Alamos Scientific 

Laboratory P-12 group. No special weight factors are 

allowed.

Only one of these subroutines may be included with the 

FRANTIC binary deck at a time.
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DATA

In this subroutine the corrected counts per unit time are 

calculated from the raw data points. Each raw count (Cn) is 

corrected for the scale factor (S) and remainder (^n)1

Cn = C S + n Rn

Accumulative data are changed to simple data:

C = (C S + R ) - (C , S + R J. 
n ' n n' n-1 n-1

The raw count rate is calculated (and stored in R ):

Rn
c'/dt
n n*

This rate is corrected for the dead-time factor (TAUD) and back­

ground (B) and each point is normalized (XNORM) to yield the 

corrected data:

A
n

R
n

1 - Rn TAUD XNORM.

The unit (ID = l) or statistical (ID = 2) weight factors are 

calculated in this subroutine if they are to be used:

Wn
1.0 (unit weight factors).
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or

W =n (T(T)2 XNORM2 
n

(statistical weight factors),

where

and

O-(T)2 = CT(C)2 + O-(B)2 + a(Td)^ + O-(DT)2

V DT

^0X2 R
n

n

n
DTn

(•uncertainty in count rate).

n
(uncertainty in background).

COO2 = aa2
v dyn n

[from uncertainty in dead­
time factor cOj)]*

(T (DT)2 = AA2 
' 'a n

(from uncertainty in counting 
interval EB).

2
The value of C(Td)n is evaluated in the following manner:

R
A = ----- --------
n 1 - R Tj ' n d

R
An + Mn = (1 - R t.) - R O’ (T,) * 

' n d7 n ' d

Rn
An AAn (1 - R t,) + R (J(t) * 

' n d n ' d

= *! n R C (t ,). n d.

2

f1 - w - o-^jj

similarly

CT(DT)2 = AA2 = 
x yn n

R (EB/dT ) 
n n7

1 - (eb/dt )2
h -i
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The square of the total standard deviation for each point 

is given by

cr(T) 2
n

R nn , E ,
"i 2

R [r cr (t ,)~| 
nL n d J l

~R (EB/dT ) n' ' n'
DT DT >n n (l-R t,)2 - 

v n d'
>naM2j l-(EB/DTn)2

GUESS

In this subroutine, used in Case 1 only, the necessary X 

original estimates for each analysis of the run are calculated.

When using Case 1 and this subroutine, the analysis is limited to 

decaying exponentials (positive X values). The first and last data 

points inserted must correspond to the first and last observations 

made. The first X estimate made (one component, JCALC = l) is

-MW

A.n T _ T* #
N 1

Following each analysis, the previous decay constants are made 

positive and a new X value estimated:

Xn+1 = 10 x (maximum previous |X|) (lS(l) = 0),

or

Xn+1 =3 x (maximum previous |X|) (lS(l) / 0).

This new X estimate and the previous values (which were made positive) 

are placed in order of decreasing value (increasing half life) and 

then used as original estimates for the next analysis.

In this subroutine the IX(l) values are all set to zero and 

IS (2) is set to unity allowing the signs and values of all parameters 

to vary during each analysis.
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LESFIT

In this subroutine, with the aid of MATRIX and MATINV, the 

least-squares analysis is performed on the N corrected data points 

and Aq and X parameters for I components. In subroutine MATRIX the 

least-squares matrix and transformation vector are calculated and, 

in MATINV, this matrix is inverted and the transformed vector is 

obtained. In subroutine LESFIT the required Aq and X parameters 

as determined, the curve is calculated, and the residuals and the 

sum of the weighted squares of these residuals (called VAR) are 

computed. Then, three tests are made for criteria for exit to the 

OUTPUT subroutine.

In the following discussion [a] denotes a matrix, {a} the 

transform of [a], and B a column vector.

The usual equation describing a sum of first-order reactions 

(e.g. multiple radioactive decay) is

ACn
= I -Vn

i=l

This expression is valid only for the case of an instantaneous 

observation interval (BTn 0). For use with finite intervals it is 

necessary to integrate this expression over the observation interval

T + DT „ n n
AC dT = n n J

n

T + DT I . „n n -X.T
A e dTo. n

P i=l 1
n

E

or, as used in LESFIT,

AC-n = E
i=l

A e
o.i

\ t / -X.ET-X.T / n inin II - e______
X. DT i n
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This expression, although mathematically rigorous, is not adequate

for small values of \.DT . When evaluated by a computer, the
in

portion in parentheses tends toward zero instead of the proper value 

of unity for X^DTn values approaching zero. This situation may 

introduce substantial error into the final result. However, the 

equation can also be expressed:

AC : y A e 
n Aj o.

i=l 1

-X. (T + DT /2) 
i n n

Sinh (XiDTn/2)

xTdt~72
i n

or expanding.

AC = V A e 
n Li o.

i=l 1

-X. (T + DT /2) A 6n + + 2C + +
IT3, f 3, ' y, T ..

x2

where

X =

This series expansion, truncated after the fourth term, is 

adequate in the region where the original expression is inapplicable, 

but becomes inaccurate for large values of X.DT . Therefore, in 

LESFIT the series approximation is used for XJ3Tn up to 1.0 and the 

original expression above that.

In the Unique Least-Squares Analysis all X^ values are held

fixed and the above expressions are linear in the A coefficients.
1

Thus, the set of simultaneous linear equations describing the values
—^

of the corrected data (A) are given by,

A = {AS} PC

where ft) contains the I values of A , and [ae] the (N x I) partial
i

derivatives of the N expressions with respect to the I values of Aq .
1
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Thus the elements of the [ae] matrix are

3AC
AE . = n

ni 3A = e
o.i

-X.T /n -XiDTn 
i n ( 1 - e

^iDTn
for (X.DT > 1.0) 

in

and

AE . = e 
m

-X.(T +DT /2) 
i n n

(X.DT /2)2 (X.DT /2)4 (X.DT /2)

1+ i n
31

i n
51

i n
71

for

(XiDTn i 1*0)-

—b
In order to solve for PC it is necessary to make the following 

transformations:

{ae}{w} a = {ae}{w}{ae} PC

and redefining

BM = {AM} PC ,

where.

and

{ae}{w} tsm (transformation vector)

{ae}{w}{ae} = [am] (least-squares matrix)

PC = {AM}-1 BM (transformed vector) .
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In the actual analysis the I index is replaced by K, the number of 
unknown A values. Thus, {am} is the (K x K) least-squares matrix,

BM the transformation vector of length K, and [w] the (N x N) 

diagonal matrix of the weight factors.

The residuals are given by

DA = A - AC

and

^ -*■VAR = DA {w} DA.

In the Iterative Least-Squares Analysis the exact expression 

given above is expanded in a first-order Taylor series about the 

point defined by the previous estimates of the Aq and X parameters:

An AC + n

IMA

I
sac

n
9A Mo. + L ax. 

i=l °i 1 i=l 1

TML

AX.,

where

A - AC = DA = [PART] DP .

DP contains the K unknown AA and AX. values, where K = IMA + IML
i

(the number of unknown Aq and unknown X values, respectively) and

[PART] contains the (N X K) corresponding partial derivatives. The

partial derivatives with respect to A are the same AE . values
i

as in the unique analysis. Those with respect to X^ are defined in 

the MATRIX discussion.
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The evaluation of DP is the same as the evaluation of PC 

in the unique analysis:

DA = [PART] DP ,

{part}{w} d! = {part}[w] {part} dK

Redefining, as above.

BM = {AM} DP

and

DP = {AM}-1 BM .

The corrected A term is added to each previous Aq and estimate; 
the columns of {AE} are recalculated for any new 1 X values; and the 

calculated curve, residuals, and VAR are evaluated as before.

Before beginning the unique analysis IMA, IML, {AE}, and

K (= JCALC - IMA) are evaluated. If a unique analysis is necessary

(K / 0 and IC / 3) MATRIX and MATINV are called, yielding the
unknown A values. If all X values are held fixed (IML = JCALC) or 

o
if K = 0, senselight 1 is turned on. The curve, residuals, and VAR 

are calculated and the tests for the exit criteria are made. Any 

one of these tests, if positive, will stop the further operation 

of the LESFIT subroutine and send control back to the (MAIN) 

subprogram. These exit tests are: 1 2 3

1. senselight 1 turned on (K = 0 or all X values fixed - after 
the unique analysis),

2. number of iterations, IT =25,

3. convergence occurred (i.e. all parameters as well as VAR 

differ from their values in the preceding iteration by less than 
one part in 10^).
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If none of these exit tests is positive after the first 

iteration (only the first is applicable) a test of IS(2) is 

made to see if the signs of the parameters are to be held as 

initially specified during the subsequent iterative analysis.

If so, the original estimates of the Aq values are given the signs 

of their input estimates before becoming the initial estimates 

for the second iteration.

For each subsequent iteration MATRIX and MATINV return the values 

of the A terns. These A terms are multiplied by the scale correction 

factor (0.70 for IT < 5 and 0.98 for IT > 5) and added to the 

previous estimates. If the signs are to be held fixed the new 

estimate of each parameter is tested for a change of sign. If the 

sign has changed the corrected A term is progressively divided by 
2 until this no longer occurs. The columns of [AE] are re-evaluated 

for any new \ estimates and the curve, residuals, and VAR calculated. 

Finally, the tests for exit criteria are made (only 2 and 3 are 

applicable) before another iteration is begun.

MATRIX

In this subroutine the least-squares matrix {m} and transformed 

vector EM are calculated. For the unique analysis only previously 
calculated quantities are necessary ({AE}, {w}, and A). However, for 

the iterative analysis, where DA replaces A, the partial derivatives 

of the functions with respect to the unknown parameters must be 

calculated. These are given by

As in the case of LESFIT, this expression is inapplicable for 

small values of \jDTn. In the region where it is inapplicable
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this equation may be expanded:

6AC -X.T
= A e 1 r

exi o±
-T -DT /2+X. (DT /2) (T + DT ) 

n n' i' n y v n n'

S-- + T + DT n n

(X.DT )2 (X.DT )3 (X.DT )4 (X.DT )5
i n

31 41
in' + ' i n i n

51 61

In MATRIX the series approximation is used for ^CT^ up to 0.2 and 

the original expression above that.

MATINV

This subroutine is a modified version of share subroutine 

number 664 ANF402. The least-squares matrix is inverted and the 

least-squares solutions (transformed vector) are evaluated. This 

inversion and concurrent solution is accomplished by a transformation 

of rows and columns. The inverted matrix and solution vector are 

stored in the original {am} and EM* respectively.

OUTPUT

In this subroutine, the results from the LESFIT analysis are 

used to calculate the quantities appearing in the printed output 

which were not a direct result of the basic analysis. Following 

these calcinations the general output results are recorded on 

magnetic tape for future printout off line.

The standard deviation of each parameter evaluated in the 

least-squares analysis is given by

and, for each parameter held fixed, is set equal to zero. VAR 

is the actual variance of fit (the VAR value calculated in LESFIT
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divided by the number of degrees of freedom, DF = N-K). In 

addition, for each component, the following quantities are 

calculated:

N(ORIGINAL) = y- X ™ ,

CN(OEIGINAL) = N(ORIGINAL)
oA \ 2

+ x
dx \2

HALF LIFE = f

and

a(HALF LIFE) HALF LIFE

In the following two situations special values are given these four 

quantities: 1 2

1. when X = 0.0, all are set to 0.0,

372. when aA or d-> is e times the corresponding A or X valueo A o
or when X x TAU is > 80.0 all except half life are set 

to -1.0.
2

Next, X (CHISQ) and the instantaneous rate at each point 

(AINSTn) are evaluated and an analysis is made of the number versus 

value of the weighted residuals. These quantities are:

AINSTn

N

I
i=l

-X. (T i' n
DT /2) 

n '
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and each residual in tf(T) units is given by

DAn
Ftrj; = DA

*. fw 1 .
n L nJ

This program was written in cooperation with the M.I.T. 

Computation Center.
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5 NOTES ON THE INPUT FORMATS AND QUANTITIES APPEARING IN FRANTIC

INPUT QUANTITIES

CONTROL CARD
X I D 
N
UMAX
IC

ID

IDENTIFICATION (ANY 10 CHARACTERS) 
NUMBER OF OBSERVATIONS 
MAXIMUM NUMBER OF COMPONENTS
CASE CONTROL FACTOR CASE NUMBER (1.2* OR 3)

DATA CONTROL FACTOR

IS( 1)
NOT

I S ( 2 )
NOT

15(3)
NOT

IS (4 )
NOT

IS< 5)
I S ( 6 )
IX ( I )

NOT

= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
NOT 
NOT 
= 0 
= 0

= + READ IN NEW DATA 
= - USE PREVIOUS DATA 
= 1 UNIT WEIGHT FACTORS 
= 2 STATISTICAL WEIGHT FACTORS 
= 3 SPECIAL WEIGHT FACTORS 
= + SIMPLE DATA POINTS 
= - ACCUMULATIVE DATA POINTS 

NEW LAMBDA ESTIMATE 10X LARGEST PREVIOUS VALUE (CASE 
NEW LAMBDA ESTIMATE 3X LARGEST PREVIOUS VALUE 
DO NOT PERMIT PARAMETERS TO CHANGE SIGN 
PERMIT PARAMETERS TO CHANGE SIGN 
DO NOT PRINT OUT RESULTS EACH ITERATION 
PRINT OUT RESULTS EACH ITERATION 
DO NOT PRINT OUT LEAST-SQUARES MATRICES 
PRINT OUT LEAST-SQUARES MATRICES 

USED 
USED
DO NOT HOLD CORRESPONDING PARAMETER FIXED 
HOLD CORRESPONDING PARAMETER FIXED

1)

ESTIMATE CARDS
PG ESTIMATES OF THE LAMBDA AND A(0) PARAMETERS FOR EACH COMPONENT

DATA CONTROL CARD
TAU TIME BEFORE OR AFTER TIME T = 0
TAUD DEAD-TIME FACTOR
DTAU STANDARD DEVIATION OF THE DEAD-TIME FACTOR 
B BACKGROUND COUNTS PER UNIT TIME
EB UNCERTAINTY IN COUNTING INTERVAL IN TIME UNITS
S DATA SCALE FACTOR (MUST NOT BE 0)
XNORM DATA NORMALIZATION FACTOR (MUST NOT BE 0)
TIME TIME SCALE FACTOR (INPUT-C ONLY)

DATA CARDS
T TIME AT THE BEGINNING OF AN OBSERVATION
DT LENGTH OF AN OBSERVATION
C RAW COUNTS OBSERVED
R REMAINDER (MAY BE LEFT BLANK)
W WEIGHT FACTORS (MAY BE BLANK UNLESS SPECIAL WEIGHTS ARE USED)
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QUANTITIES APPEARING ELSEWHERE IN FRANTIC

ITAPE
JTAPE
JMAX2
JCALC
JCALC2
IMA
IML
K
KP
IT
H
A
AC
AE
DA
P
PC
DP
PART
PIVOT
IPIVOT
INDEX
AM
BM
AMO
BMO
VAR2
DVAR
IDF
DET
SP
XNORIG
ENORIG
HL
EHL
AINST
I DEV
CHISQ
NP2S

INPUT TAPE-UNIT NUMBER 
OUTPUT TAPE-UNIT NUMBER 
TWICE UMAX
NUMBER OF COMPONENTS FOR WHICH THE ANALYSIS IS MADE 
TWICE JCALC
NUMBER OF A(O) VALUES HELD FIXED

OF LAMBDA VALUES HELD FIXED 
OF VARIABLES NOT HELD FIXED

NUMBER 
NUMBER 
K + 1 
NUMBER OF ITERATIONS 
LEAST-SQUARES SCALE CORRECTION FACTOR 
CORRECTED DATA 
CALCULATED CURVE
VALUES OF THE PARTIAL DERIVATIVES WITH RESPECT TO A(0) 
RESIDUALS
VALUES OF THE PARAMETERS at T.HE BEGINNING OF AN ITERATION 
CORRECTED PARAMETERS AT THE END OF THE ITERATION 
CORRECTED DELTA TERMS FOR ITERATIVE ANALYSIS
partial derivatives
values used in matrix inversion
PIVOT TERM USED IN MATRIX INVERSION 
INDEXING TERMS USED IN MATRIX INVERSION 
LEAST-SQUARES MATRIX AND LATER THE INVERSE 
TRANSFORMATION VECTOR AND LATER THE TRANSFORMED VECTOR 
LEAST-SQUARES MATRIX 
TRANSFORMATION VECTOR
SUM OF THE WEIGHTED SQUARES OF RESIDUALS,
DELTA VARIANCE OF FIT BETWEEN CONSECUTIVE 
DEGREES OF FREEDOM 
LEAST-SQUARES DETERMINANT 
STANDARD DEVIATION OF EACJH PARAMETER 
N(ORIGINAL) VALUE AT TIME TAU FROM TIME T = 0 
STANDARD DEVIATION OF N(ORIGINAL)
HALF LIFE OF A COMPONENT
STANDARD DEVIATION OF THE HALF LIFE
INSTANTANEOUS RATE
SIGMA ANALYSIS OF THE RESIDUALS
CHI SQUARE VALUE
NUMBER OF POINTS DEVIATING MORE THAN 2 SIGMA UNITS

LATER VARIANCE OF FIT 
ITERATIONS
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FORMATS FOR INPUT OF DATA INTO FRANTIC

NOTE - ALL QUANTITIES INVOLVING TIME MUST BE ENTERED IN THE SAME TIME UNITS.

HEADER CARD - ONE CARD OF ANY DESIRED INFORMATION •

CONTROL CARD - CONTROL VALUES PUNCHED IN INTEGER 1FORM.
COL. COL. FOR

X I D 1-10 IX( 1) 33-34 A ( 1 )
N 11-14 IX< 2 ) 35-36 LAMBDA(1)

UMAX 15-16 IX ( 3 ) 37-38 A ( 2)
IC 17-18 IX ( 4 ) 39-40 LAMBDA(2)
ID 19-20 IX ( 5 ) 41-42 A( 3)

IS( 1 ) 21-22 I X ( 6 ) 43-44 LAMBDAO)
IS ( 2) 23-24 IX ( 7 ) 45-46 A( 4)
ISO) 25-26 I X ( 8 ) 47-48 LAMBDA(4)
IS ( 4 ) 27-28 IX( 9) 49-50 A ( 5 )
ISO) 29-30 IX(10) 51-52 LAMBDA(5)
ISO) 31-32 ETC. ETC. ETC.

ESTIMATE CARDS - ESTIMATES OF LAMBDA AND A(0) FOR EACH COMPONENT PUNCHED
PAIRWISE IN EXPONENTIAL FORM ONE COMPONENT PER: CARD.
( UMAX CARDS FOR CASE 2 OR CASE 3 AND NONE FOR CASE 1)

FORMAT (1PE12.7)
COL.

CARD 1
PG( 2) 1-12 LAMBDA!1)
PG( 1) 13-24 A(1) (MAY BE BLANK FOR CASE 2 )

CARD 2
PG( 4) 1-12 LAMBDA(2)
PG( 3) 13-24 A(2) (MAY BE BLANK FOR CASE 2 )

ETC.

DATA
INCLUDE THESE CARDS IN THE FIRST RUN OF A SET (IC = +) AND OMIT THEM
ALL OTHER RUNS OF THAT SET (IC = -).

D. DATA CONTROL CARD - DATA PROCESSING CONTROLS PUNCHED IN EXPONENTIAL FORM.
INPUT-A INPUT-B INPUT-C

FORMAT (1P7E10.5 > (1P7E10.5) (1P8E9.4)
COL. COL. COL.

TAU 1-10 1-10 1 -9
TAUD 11-20 11-20 10-18
DT AU 21-30 21-30 19-27

B 31-40 31-40 28-36
EB 41-50 41-50 37-45
S 51-60 51-60 46-54

XNORM 61-70 61-70 55-63
TIME 64-72
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E. DATA CARDS THE RAW DATA

INPUT-A COL. GENERAL CASE OF ONE CARD PER OBSERVATION PUNCHED
FORMAT <1P5E12.7) IN EXPONENTIAL FORM.
T ( I ) 1-12

DTI I ) 13-24
C( I ) 25-36
R( I ) 37-48 (MAY BE BLANK)
W ( I ) 49-60 (MAY BE- BLANK)

INPUT-B COL. SPECIAL CASE OF ALL DT THE SAME AND T VALUES 
CONSECUTIVE IN EACH SUBGROUP.
NO REMAINDERS OR SPECIAL WEIGHTS ALLOWED.

FORMAT (I3.1P2E12.7) FIRST CARD OF THE SUBGROUP.
N 1-3 INTEGER NUMBER OF DATA POINTS IN SUBGROUP.

T( 1) 4-15 TIME OF FIRST OBSERVATION IN EXPONENTIAL FORM.
DT< 1) 16-27 STANDARD OBSERVATION LENGTH IN EXPONENTIAL FORM.
FORMAT (12F6.0) REMAINING CARDS OF THE SUBGROUP.
C( 1) 1-6 DATA CONSECUTIVE FROM 1 THROUGH N PUNCHED IN
C ( 2 ) 7-12 DECIMAL 12 WORDS PER CARD AND 6 SPACES PER WORD.
ETC. ETC.

SEVERAL SUBGROUPS MAY BE STACKED CONSECUTIVELY

INPUT-C COL. SPECIAL INPUT FOR LASL P-12 GROUP.
FORMAT (2F6.0.13X.F5.0 .1X.10F1.0)
T ( I ) 1-6

DT ( I ) 7-12
C( I ) 26-30
X( 1) 32 2(9) (BINARY REPRESENTATION OF REMAINDER)
X< 2) 33 2(8)
X ( 3) 34 2(7)
ETC. ETC. ETC.

X( 10) 41 2(0)
THE THREE TYPES OF FORMAT SPECIFICATIONS USED IN FRANTIC ARE (IW). (FW.D).

AND (1PEW.D). IN EACH OF THESE SPECIFICATIONS W IS THE FIELD WIDTH (NUMBER OF
SPACES FOR THE WORD) AND D IS THE NUMBER OF DIGITS TO THE RIGHT OF THE DECIMAL.
INTEGER VALUES (IW) .

THESE QUANTITIES ARE PUNCHED AT THE FAR RIGHT OF THEIR ALLOTED FIELD.
DECIMAL VALUES (FW.D).

THESE ARE PUNCHED AT THE RIGHT OF THEIR FIELD AS THOUGH THEY WERE INTEGERS. 
THE DECIMAL POINT IS ASSUMED TO THE RIGHT OF THE EXTREME-RIGHT FIELD POSITION.
EXPONENTIAL VALUES (1PEW.D).

THESE ARE TREATED IN THE FORM V X 10(K) WHERE V IS A DECIMAL VALUE (1.00 TO 
10.00) AND K IS AN INTEGER (+37 TO -39). EACH WORD IS DIVIDED INTO

A. SIGN OF THE WORD (FIRST SPACE).
B. (D + 1) DIGITS DESCRIBING V.
C. SIGN AND VALUE OF K (LAST THREE SPACES).

THE DECIMAL POINT IN V NEED NOT BE PUNCHED AS IT IS ASSUMED TO LIE BETWEEN 
THE SECOND AND THIRD SPACES OF THE WORD (AFTER THE UNITS VALUE OF V).
THUS* THE VALUE +1234.5678 WOULD BE PUNCHED

FORMAT (1PE12.7) (1PE10.5)
+12345678+03 +123457+03

-34-



FRANTIC INPUT CARD ARRANGEMENT
FORMAT FOR INPUT CARDS FOR SEVERAL SETS OF DATA EACH WITH SEVERAL RUNS.

FRANTIC BINARY DECK

SET

RUN
HEADER CARD
CONTROL CARD (IC = +)

< ESTIMATE CARDS (IF IC = 2 OR 3) 
DATA CONTROL CARD 

» DATA CARDS
f HEADER CARD

RUN - 2 CONTROL CARD (IC = -)^ ESTIMATE CARDS (IF IC = 2 OR 3)

f HEADER CARD
RUN - 3 < CONTROL CARD (IC = -)L ESTIMATE CARDS (IF IC = 2 OR 3)

ETC.
ETC.
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6. SAMPLE DATA AND RESULTS
THESE DATA ARE FOR ANALYSIS OF THE HALF LIVES OF F-18 (110.3 ± 0.5 MIN.) 
AND NA-2A (900 ± b MIN.) PUNCHED FOR USE WITH INPUT-A.

SAMPLE ANALYSIS OF F(18) AND NA(24) HALF LIVES IN MINUTES 
F-18 NA-24 24 2 2 2
+62445900-03 
+77068000-04
+100000+02+400000-08+200000-08+128000+02+300000-03+100000+00+100000+00
+00000000+00+10000000+00+60842000+04
+30000000+00+10000000+00+60575000+04
+47000000+01+10000000+00+55209000+04
+12250000+02+10000000+00+48443000+04
+17700000+02+10000000+00+43840000+04
+21350000+02+10000000+00+41606000+04
+21650000+02+10000000+00+41549000+04
+26650000+02+10000000+00+39366000+04
+43500000+02+10000000+00+33192000+04
+54750000+02+91666667-01+27342000+04
+56200000+02+10000000+00+29492000+04
+12260000+03+10000000+00+17556000+04
+13600000+03+10000000+00+15656000+04
+15360000+03+10000000+00+13715000+04
+16570000+03+10000000+00+12727000+04
+16600000+03+10000000+00+12503000+04
+26910000+03+20000000+00+11207000+04
+26955000+03+20000000+00+11190000+04
+27505000+03+20000000+00+10870000+04 -
+28965000+03+20000000+00+96900000+03
+30145000+03+20000000+00+90940000+03
+40980000+03+50000000+00+99910000+03
+43720000+03+70000000+00+11559000+04
+45660000+03+50000000+00+73500000+03
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THE DATE IS JUNE 28, 1962.
THE TIME IS 1044•1

SAMPLE ANALYSIS OF F(18) AND NA(24) HALF LIVES IN MINUTES

F-18 NA-24 
2 
0 

24 
20 
8 
2 
0

07967181.00000
0.10781
1.32690

32.68209

TAU (TIME TO COUNTING)
TAUD (DEAD TIME FACTOR IN MICRO TIME UNITS) 
ERROR IN DEAD TIME FACTOR (MICRO TIME UNITS) 
BACKGROUND
UNCERTAINTY IN TIMING INTERVAL IN TIME UNITS 
DATA SCALE FACTOR 
NORMALIZATION FACTOR

LEAST SQUARES DETERMINANT 
DELTA VARIANCE OF FIT X 10(6)
WEIGHTED VARIANCE OF FIT 
CHI SQUARE

FRANTIC IDENTIFICATION
NUMBER OF COMPONENTS
NUMBER OF PARAMETERS HELD FIXED
NUMBER OF DATA POINTS
DEGREES OF FREEDOM
ITERATIONS
STATISTICAL WEIGHTS

100.00000
0.04000
0.02000

128.00000
0.00300
1.00000
1.00000

NUMBER OF POINTS («) DEVIATING MORE THAN 2 SIGMA

A(ZERO) sigma LAMBDA SIGMA N(ORIGINAL) SIGMA HALF LIFE SIGMA

16341.443 332.882 0.006638639 0.000261754 4781055. 212184. 104.4110 4.1168
44749.806 267.309 0.000773363 0.000002451 62516273. 422810. 896.2732 2.8426

ORIGINAL ESTIMATES

16510.036 0.006244585
44410.143 0.000770673

ANALYSIS OF THE DEVIATIONS

C 0 0 0 0 0 0 2 14 6 4 2 1 4 0 0 0 0 0 0 0
SIGMA -XS -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 -0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 XS

BEGINNING INTERVAL original CORRECTED CALCULATED INSTANTANEOUS WEIGHTS DELTA
TIME TIME COUNTS DATA RATE RATE X 10(3) RATE

1 0. 1.000 60842.0 60862.431 61019.826 61019.795 0.01002 -157.395
2 3.000 1.000 60575.0 60594.130 60594.994 60594.964 0.01008 -0.864
3 47.000 1.000 55209.0 55203.191 55057.582 55057.559 0.01156 145.610
4 122.500 1.000 48443.0 48409.051 47911.374 47911.360 0.01391 497.678
5 177.000 1.000 43840.0 43789.013 44039.507 44039.497 0.01594 -250.494
6 213.500 1.000 41606.0 41547.358 41871.424 41871.417 0.01709 -324.066
7 216.500 1.000 41549.0 41490.167 41705.702 41705.694 0.01712 -215.534
8 266.500 1.000 39366.0 39300.085 39177.577 39177.571 0.01838 122.508
9 435.000 1.000 33192.0 33108.127 32860.822 32860.820 0.02287 247.305
10 547.500 0.917 27342.0 29735.266 29722.005 29722.004 0.02351 13.261
11 562.000 1.000 29492.0 29398.832 29354.863 29354.862 0.02649 43.969
12 1226.000 1.000 17556.0 17440.337 17336.747 17336.747 0.04879 103.590
13 1360.000 1.000 15656.0 15537.811 15627.749 15627.748 0.05551 -89.938
14 1536.000 1.000 13715.0 13594.528 13637.935 13637.934 0.06431 -43.407
15 1657.000 1.000 12727.0 12605.482 12419.345 12419.345 0.06982 186.137
16 1660.000 1.000 12503.0 12381.256 12390.560 12390.559 0.07119 -9.304
17 2691.000 2.000 11207.0 5476.756 5579.989 5579.988 0.34051 -103.233
IS 2695.500 2.000 11190.0 5468.252 5560.603 5560.603 0.34103 -92.351
19 2750.500 2.000 10870.0 5308.182 5329.042 5329.041 0.35109 -20.860
20 2896.500 2.000 9690.0 4717.939 4760.059 4760.059 0.39377 -42.120
21 3014.500 2.000 9094.0 4419.827 4344.901 4344.900 0.41943 74.926
22 4098.000 5.000 9991.0 1870.360 1877.426 1877.425 2.34366 -7.066
23 4372.000 7.000 11559.0 1523.395 1517.746 1517.745 3.92638 5.648
24 4566.000 5.000 7350.0 1342.086 1307.303 1307.303 3.12130 34.783



n 
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7 FRANTIC FORTRAN LISTING

* LIST
* LABEL 
CFR-II

FRANTIC II PROGRAM FOR DECAY CURVE ANALYSIS P.C.ROGERS 3/6/62 
FRANTIC II MASTER PROGRAM

DIMENSION T (400) » DTUOO)* C(AOO)» R(AOO)* W(400)» A(400)> AC(400) 
1. AE ( 10*400)» DA(400)* I X ( 20) ♦ IS(6)» PC(20)» PG(20)» BMI20)*
2BM0(20) » AM(20 »20) » AMO(20»20>» FMT114), XlD(2)
COMMON K.DET»AM»BM*AMO,BMO*FMT»ITAPE*JTAPE.XID»N*JMAX»IC*ID*ISfIX* 
1JCALC,JCALC2»IT*TAU»TAUD»B,EB,S»XN0RM*VAR2»DVAR»SUM»DTAU»T»DT»C.R. 
2W,A,AC»DA,AE,PG,PC 

1 FORMAT (1H1)
ITAPE = 4 
JTAPE = 2

10 SENSELIGHT 0 
CALL INPUT 
JCALC = JMAX 
JCALC2 = JMAX + JMAX 
CALL DATA
IF <IC - 1) 10*11*13

11 JCALC = 0
12 CALL GUESS
13 WRITE OUTPUT TAPE JTAPE, 1 

CALL LESFIT
WRITE OUTPUT TAPE JTAPE, 1 
CALL CLOCK (JTAPE)
CALL OUTPUT
IF (JCALC - JMAX) 12,10,10 
END
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* LIST
* LABEL 
CINPUTA

SUBROUTINE INPUT
DIMENSION T(400) ♦ DT(400)» C(400)» R(400 ) » W(400)» A(400)» AC(400) 

1» AE(10*400)♦ DAI 400)» IXI20)* IS(6)» PC(2C)» PG(20)» BMI20)*
2BMO(20)» AM(20 »20 ) » AMO(20»20)» FMT(14). XIDI2)
COMMON K » DET > AM » BM *AMO * BMO » FM T * I TAPE *JTAPE»X ID»N»UMAX *IC»ID*IS*IX» 

1JCALC>JCALC2»IT »TAU*TAUD*B»EB»S» XNORM *VAR2*DVAR* SUM *DTAU»T »DT »C*R» 
2W»A*AC*DA,AE.PG,PC

10 FORMAT (13A6»A2)
11 FORMAT (A6»A4*14*2912)
12 FORMAT (1P6E12.7)
13 FORMAT (1P7E10.5)

READ INPUT TAPE ITAPE* 10* IFMT(I)» I = 1.14)
READ INPUT TAPE ITAPE ,11* XID(l). XID(2)» N» JMAX* IC* ID.
IIISII) , I = 1.6) , (I X I I)* I = 1.20)
IF ( XABSFI 10-2 ) 103,101*101

101 DO 102 I = 1, JMAX
102 READ INPUT TAPE ITAPE, 12* PG(2*I), PG(2*I-1)
103 IF (IC) 110*110,104
104 READ INPUT TAPE ITAPE, 13, TAU*TAUD,DTAU , B»EB,S.XNORM 

DO 105 I = 1»N
105 READ INPUT TAPE ITAPE, 12* T(I), DT ( I ) * CII), RID* W(I)
110 RETURN

END
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* LIST
* LABEL 
CINPUTB

SUBROUTINE INPUT
DIMENSION T(400)» DT(A00)» C(A00)» R(A00)» W(400)* A(400)» AC(400) 

1, AE(10 »400)* DA(400)» IX(20>» IS(6)» PC(20), PG(20)» BM(20)*
2BMO(20)» AM(20 »20)* AMO{20»20)» FMT(14). XID(2)
COMMON K»DET»AM*BM»AMO,BMO»FMT»ITAPE »JTAPE»XID»N»JMAX»IC*ID*IS*IX* 
1JCALC,JCALC2,1T *TAU>TAUD*B,EB»S*XNORM,VAR2*DVAR,SUM,DTAU»T,DT.C,R,
2W»A*AC»DA*AE»PG»PC

10 FORMAT (13A6,A2)
11 FORMAT (A6*A4*14,2912)
12 FORMAT (1P6E12.7)
13 FORMAT < I 3* 1P2E12.7)
14 FORMAT (12F6.0)
15 FORMAT (1P7E10.5)

READ INPUT TAPE ITAPE, 
READ INPUT TAPE ITAPE

101
102
103
104
105

10, (FMT(I), I = 1,14) 
,11 , X ID(1) , X ID(2)» N » 

1( IS(I) , I = 1,6), (I X( I), I = 1,20)
IF (XABSF( 10-2) J.03,101,101 
DO 102 1=1, JMAX

JMAX, IC, ID,

106
110

READ INPUT TAPE ITAPE, 
IF (IC) 110,110,104 
READ INPUT TAPE ITAPE, 
IT = 0 
K = IT + 1 
READ INPUT TAPE 
IT = IT + J 
READ INPUT TAPE 
R(K) = 0.0 
K = K + 1 
DO 106 I = K.»IT 
R( I ) = 0.0
T(I) = T(I-1) + DT(I-1) 
DT(I) = DT(I-1)
IF (N-IT) 110,110,105
RETURN
END

12, PG(2*I)» PG(2*1-1)
15, TAU,TAUD,DTAU,B,EB,S,XNORM

ITAPE, 13, J, T ( K.) , DT ( K.)
ITAPE, 14, (C(I), I = K»IT)
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* LIST
* LABEL 
CINPUTC

SUBROUTINE INPUT
DIMENSION T(400)* "DT(AOO)» C(AOO)> R(400), W(400)» A(400)> AC(400) 

1, AE(10 »400)> DA(400)» IX(20)» IS(6)> PC(20), PG(20)» BM(20).
2BMO(20)* AM(20*20)» AMO(20*20)* FMT(14), XlD<2)
COMMON K»DET»AM,BM*AMO,BMO,FMT*I TAPE»JTAPE* X ID»N»JMAX»IC»ID»IS,IX» 
1JCALC»JCALC2,IT»TAU»TAUD,d,E6,S»XNORM,VAR2*DVAR,SUM»DTAU»T»DT»C,R» 
2W»A»AC»DA,AE»PG,PC

10 FORMAT (13A6,A2)
11 FORMAT (A6»A4,14,2912)
12 FORMAT (1P6E12.7)
13 FORMAT (1P8E9.4)
14 FORMAT (2F6.0,13X,F5.0,1X,10F1.0)

READ INPUT TAPE ITAPE, 10, (FMT( I ) , I = 1,14)
READ INPUT TAPE ITAPE ,11, XID(l), XID(2), N, JMAX, IC, ID,

1(IS(I), I = 1,6), (I X(I) , I = 1,20)
IF (XABSFtIC)-2) 103,101,101

101 DO 102 1=1, JMAX
102 READ INPUT TAPE ITAPE, 12, PG(2*I)» PG(2*I-1)
103 IF (IC) 110,110,104
104 READ INPUT TAPE ITAPE, 13, TAU ,TAUD, DTAU ,.B ,EB ,S,XNORM , TI ME 

DO 105 I = 1,N
READ INPUT TAPE ITAPE, 14, T( I) , DT( I) ,C( I),(X(J ) , J = 1,10)
T ( I ) = T ( I ) / T I M E 
DT(I) = DT( I ) /TIME 
R(I) = 0.0 
DO 105 J = 1,10

105 R(I) = R(I) + X(J)*2.0**(10-J)
110 RETURN

END
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* LIST
* LABEL 
C DATA

SUBROUTINE DATA
DIMENSION T(400) » DT(400)» C(400)» R(400)» W(400)» A(400)* AC(400) 

1, AE(10 *400)* DA(400) » IX<20)» IS(6)» PC(20)» PG(20)» BM(20)»
2BMO(20)» AM(20*20)» AM0(20»20). FMT(14)» XlD(2)
COMMON K»DET*AM»BM».AMO»BMO»FMT» ITAPE»JTAPE»XID»N» JMAX* IC»ID»IS»IX* 
1JCALC»JCALC2*IT»TAU»TAUD»B»EB»S»XN0RM*VAR2»DVAR»SUM*DTAU»T»DT»C*R» 
2W»A»AC» DA »AE * PG »PC 
IF (IC) 210.210*201 

201 DO 203 I = l.N
203 C(I) = C(I)*S + R(I)

IF (ID) 204.204.206
204 ID = -ID 

SUM = 0.0
DO 205 I = l.N 
C(I) = C(I) - SUM

205 SUM = SUM + C(I )
206 DO 207 I = l.N

R(I) = C(I)/DT(I)
207 A(I) = (R(I)/(1•0 - R(I)*TAUD) - B) * XNORM
210 IC = XABSF(IC)

IF (ID-2) 211,213,215
211 DO 212 I = l.N
212 W(I) = 1.0

RETURN
213 DO 214 I = l.N

R(I) = C(I)/DT(I)
X = (R(I)*DTAU) / (( 1.0-R(I>*TAUD)**2 - (R(1)*DTAU)**2)
Y = (EB/DT( I) ) / (1.0 - (EB/DT( I ) )**2 )

214 W(I) = 1.0 / (((R(I)+B)/DT(I) + R(I)**2 * (X**2+Y**2)) * XNORM**2)
215 RETURN 

END
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* LIST
* LABEL 
C GUESS

SUBROUTINE GUESS
DIMENSION T (400) » DT(AOO)* C(AOO)*, R(AOO)» W(400)» A(400)» AC(400) 

1» AE(10 »400)* DA(400) » IX(20>» IS(6)» PC(20)» PG(20)» BM(20),
2BM0(20)* AM(20 » 20)» AMO(20»20)> FMT(14)» XlD(2)
COMMON K »DET » AM * BM tAMO » BMO * FMT »I TAPE »JTAPE* X ID.N»JMAX»IC*ID»IS*IX» 
UCALC.JCALC2*lT*TAU»TAUD»b»EB*S»XNORM»VAR2»DVAR»SUM*DTAU*T»DT*C»R* 
2W»A»AC»DA»AE *PG*PC 
IF (JCALC) 400*400*402

400 DO 401 I = 1*20 
I X ( I ) = 0

401 PG(I) = 0.0
PG(2) = ABSF{LOGF(A(1)/AtN))/(TIN) - Til)))
IS ( 2 ) = 1 
JCALC = 1 
JCALC2 = 2 
RETURN

402 DO 403 I = 1»JCALC2 * 2 
PG(I) = 0.0

403 PC(I+1) = ABSF(PC(I+1))
X=MAX1F(PC(2)*PC(4)*PC(6)*PC(8)>PC(10)»PC(12)»PC(14)»PC(16)»PC(18) 

1)
IF (IS(1)) 405,404*405

404 PC(JCALC2 + 2) = X*10.0 
GO TO 406

405 PC(JCALC2 + 2) = X*3.0
406 J = 0

DO 409 1=2, JCALC 2* 2 
IF(PC( I) - PCI I + 2)) 407*407,408

407 X = PCI I )
PCI I) = PCI I + 2)
PCI I + 2) = X 
GO TO 409

408 J = J + 1
409 CONTINUE

IF IJ-JCALC) 406,410*410
410 JCALC = JCALC + 1 

JCALC2 = JCALC2 + 2
DO 411 I = 2* JCALC2» 2

411 PGI I) = PCI I )
RETURN
END
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* LIST
* LABEL 
CLESFIT

SUBROUTINE LESFIT
DIMENSION T(400)» DT(AOO)* C(AOO)» R(AOO)* W(400)» A(400)» AC(400) 

1* AE(10 »400)» DA(400)» IX(20)» IS(6)» PC(20)» PG(20)» BM(20),
2 BMO ( 20 ) » AM (. 20*20-) » AMO(20*20), FMT(14)* XlD(2)
COMMON K»DET♦AM»BM*AMO,BMO,FMT»I TAPE »JTAPE»XID»N,UMAX.IC.ID»IS»IX» 1JCALC. JCALC2»'l T * TAU » TAUD ,B , EB ,S , XNORM *VAR2 * DVAR ,SUM , DTAU » T » DT »C , R * 
2W»A»AC»DA,AE »PG*PC 
DIMENSION DP(20)» P(20)

501 FORMAT (//1X»A6»A4»F18.4*6PF18.2/(1P8E15.7) )
EXPPF(X) = 1.0 + X/6.0 + X**2/120.0 + X**3/5040.0
IT = 0
IMA = 0
IML = 0
VAR 1 = 0.0
DO 514 I = 1* JCALC2» 2 
IF (I X(I ) ) 510*511*510

510 IMA = IMA + 1
511 IF (IX( I + 1) ) 512*513*512
512 IML = IML + 1
513 IX(I + 1) = IX( I + 1) + 100 

DP(I) = 0.0
DP(1+1) = 0.0 
PC(I) = PG(I)

514 PCI I + 1) = PG(I + 1)
DO 520 L = 1 »N
DO 520 I = 1* JCALC 
J = 2*1
X = PC(J)*DT(L)
Y = PCIJ)*T(L)
IF (X-1.0) 519,519,518

518 AE I I »L ) = EXPFI-Y)* I 1.0 - EXPF(-X))/X 
GO TO 520

519 AEI I»L ) = EXPFl-Y-X/2.0)*EXPPFI IX/2.0)**2)
520 CONTINUE

K = JCALC - IMA 
IF IK) 526,526,521

521 IT = 1
IF I IC-2) 523,523,550

523 CALL MATRIX 
CALL MATINV 
J = 1
DO 525 I = 1, JCALC2, 2 
IF I I X I I ) ) 525,524,525

524 PCI I) = BMIJ)
J = J + 1

525 CONTINUE
526 IF (JCALC - IML) 527,527,550
527 SENSELIGHT 1 

GO TO 550
ITERATIVE SECTION

535 IT = IT + 1 
CALL MATRIX 
CALL MATINV 
J = 1 -44 -
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536

5) 536,536*537IF (IT - 
H = 0.7 
GO TO 538

537 H = 0.98
538 DO 545 I = 1 *JCALC2

IF ( I X( I ) ) 545,540,545
540 DP(I) = H*BM(J)
541 PC(I ) = P(I) + DP(I)

IF (IS(2)) 544,542,544
542 IF (PCm*P(I)) 543,543,544
543 DP(I ) = DP(I )/2.0 

GO TO 541
544 J = J + 1
545 CONTINUE

CALCULATION OF FIT
550 VAR2 = 0.0

DO 563,L = 1,N 
AC(L) ' = 0.0 
DO 562 I = 1,JCALC 
J = 2*1
IF (IX(J)) 562,559,562

559 X = PC(J)*DT(L)
Y = PC ( J)*T(L)
IF (X - 1.0) 561,561,560

560 AE(I ,L) = EXPF(-Y)*(1.0 - EXPF(-X))/X 
GO TO 562

561 AE(I ,L) = EXPF(-Y-X/2.0)*EXPPF( (X/2.0)**2)
562 AC(L) = AC(L> + PC(J - 1)*AE(I,L>

DA(L) = AIL) - AC(L)
563 VAR2 = VAR2 + DA(L)**2*W(L)

TEST FIT
DVAR = ABSF ( (VAR2 - VARD/VAR2)
IF ( IS(3)) 564,565,564

564 WRITE OUTPUT TAPE JTAPE, 501, XID(l), XID(2), IT, JCALC, VAR2» 
1DVAR , (PC(I) ,DP(I), I = 1,JCALC2)

565 IF (SENSELIGHT 1) 575,566
566 IF (IT - 25) 567,575,575
567 DO 569 I = 1,JCALC2

IF (IX(I)) 569,568,569
568 IF (ABSF(DP(I)/PC(I)) - 0.000001) 569,569,570
569 CONTINUE

IF (DVAR - 0.000001) 575,575,570
570 DO 571 I = 1,JCALC2
571 P(I) = PC(I)

VAR 1 = VAR2
IF (IT - 1) 572,572,535

572 DO 574 I = 1,JCALC2»2 
IX(I + 1) = IX(I + 1) - 100 
IF (ISI2)) 574,573,574

573 P(I) = ABSF(P(I))
IF (PG(I)) 576,574,574

576 P(I) = -P(I)
574 PG( I ) = PC( I )

K = JCALC2 - IMA - IML 
GO TO 535

575 RETURN 
END -45-



* LIST
* LABEL 
CMATRIX

SUBROUTINE MATRIX
DIMENSION T(400)* DT(400)» G(400)» R(400), W(400J* A(400)» AC(400) 

1* AE(10 »400)♦ DA(400)» IX(20)» IS(6)» PC(20)» PG(20)» BM(20)»
2BM0(20) » AM(20 * 20)> AMO(20,20), FMT(14>* XID(2)
COMMON K»DET♦AM*BM»AMO»BMO*FMT»I TAPE »JTAPE* X ID»N»UMAX,IC»ID*IS.IX» 
1JCALC»JCALC2»IT»TAU»TAUD»B»E3»S»XN0RM*VAR2»DVAR»SUM»DTAU»T»DT*C»R* 
2W»A*AC»DA*AE»PG»PC 
DIMENSION PART(20)
DO 606 I = 1 * K 
DO 605 J = l.K

605 AM( I * J) = 0.0
606 BM(I) = 0.0

DO 625 L = l.N 
J = 1
DO 613 I = l.JCALC 
JA = 2*1
IF (IX(JA-l)) 608*607,608

607 PART( J ) = AEU »L)
J = J + 1

608 IF (I X(JA) ) 613*609,613
609 X = PC(JA)*DT(L)

IF (X-0.2) 611*611*610
610 PART(J) =((l.O/PCtJA)+T(L)+DT(L))*EXPF(-X)-1.0/PC<JA)-T(L))/X 

GO TO 612
611 PART(J) = -TIL)-DT(L)/2.0+X/2.0*!T(L)+DT(L>)-(1.0/PC(JA)+T(L)+

1DT(L))*((X**2)/6.0-(X**3)/24.0+(X**2)**2/120.0-(X**2)*(X**3)/720.)
612 PART(J) = PARTIJ)*PC<JA-1)*EXPF(-PC(JA)*T(L))

J = J + 1
613 CONTINUE

DO 620 I = 1»K 
DO 620 J = 1♦K

620 AMI I»J) = AMI I»J) + PARTI I)*PART(J)*W(L)
IF (IT-1) 621*621*623

621 DO 622 I = l.K
622 BMII) = BMI I) + PART I I)*WIL)*AIL)

GO TO 625
623 DO 624 I = l.K
624 BMII) = BMII) + PART I I)*WIL)*DAIL)
625 CONTINUE

DO 627 I = 1»K 
DO 626 J = l.K

626 AMO I I,J) = AMI I,J)
627 BMOI I) = BMII)

RETURN
END
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*
*

CMATI

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

711*714.714

LIST
LABEL

NV
SUBROUTINE MAT INV 
COMMON K»DET »AM♦BM
DIMENSION AM(20 * 20)» BM(20)» PIVOT<20)» IPIVOT(20)»
EQUIVALENCE (IROW.JROW), (ICOLUM»JCOLUM)* (AMAX. TA
DET = 1.0
DO 703 J = l.K
IPIVOT (J) = 0
DO 741 I = l.K
AMAX = 0.0
DO 715 J = l.K
IF(IPIVOT(J)—1) 708,715.708
DO 714 M = l.K
IF < IPIVOT(M)-l) 710,714,753 
IF (ABSF(AMAX)-ABSF(AM(J »M)> )
I ROW = J 
ICOLUM = M 
AMAX = AM(J.M)
CONTINUE 
CONTINUE
IPIVOT (ICOLUM) = IPIVOT (ICOLUM) + 1 
IF (IROW-ICOLUM) 718,726,718 
DET = -DET 
DO 722 L = l.K 
SWAP = AM(I ROW»L)
AM(I ROW,L) = AM(ICOLUM,L)
AM(ICOLUM,L) = SWAP 
SWAP = BM(IROW)
BM(IROW) = BM(ICOLUM)
BM(ICOLUM) = SWAP 
INDEX(1,1) = IROW 
INDEX!1,2) = ICOLUM 
PIVOT!I) = AM!ICOLUM,ICOLUM)
DET = DET*PIVOT<I)
AM!ICOLUM,ICOLUM) = 1.0 
DO 732 L =1»K
AM!ICOLUM,L) = AM(ICOLUM,L)/PIVOT(I)
BM(ICOLUM) = BM(ICOLUM)/PIVOT(I)
DO 741 LI = l.K 
IF!Ll-ICOLUM) 736,741,736 
TA = AM(LI,ICOLUM)
AM(L1,ICOLUM) = 0.0 
DO 739 L = l.K
AM(LI,L) = AM(L1,L)-AM(ICOLUM,L)*TA 
BM!LI) = BM(L1)-BM(ICOLUM)*TA 
CONTINUE 
DO 752 I = l.K
L = K+l-I
IF!INDEX(L,1)-INDEX(L,2)) 745,752,745 
JROW = INDEX(L , 1)
JCOLUM = INDEX < L,2)
DO 751 M = l.K 
SWAP = AM(M,JROW)
AM(M,JROW) = AM(M,JCOLUM)
AM(M,JCOLUM) = SWAP 
CONTINUE 
CONTINUE 
RETURN 
END

NDEX(20,2) 
SWAP )
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* LIST
* LABEL 
COUTPUT

SUBROUTINE OUTPUT
DIMENSION T(400)» DT(AOO)* C(400>» R(400)» W(AOO)» A(AOO)» AC(AOO) 

1, AE(10 »400)* DA(400)> IX(20), IS(6)» PC(20), PG(20)» BM(20)»
2BM0(20) ♦ AM(20 » 20)* AMOI20»20)» FMT(IA). XlD(2)
COMMON K»DET *AM»BM *AMO »BMO »FMT,I TAPE»JTAPE»X ID»N»UMAX»IC*ID»IS*IX» 
1JCALC.JCALC2»IT*TAU»TAUD»B*EB*S»XN0RM»VAR2»DVAR»SUM*DTAU»T.DT»C»R» 
2W»A»AC»DA»AE»PG»PC
DIMENSION SP(20)» XN0RIG(10)» EN0RIG(10)» HL(10)» EHL(IO)* 
lAINST(AOO), NP(400)» Y(3)» IDEV(23)

801 F0RMAT(//5X»A6»A4»25H = FRANTIC I DENT IFI CAT I ON♦19X*F10.5,25H = TAU 
1 (TIME TO COUNTING))

COMPONENTS»21X»6PF10.5»46H = TAUD (DEA 
UNITS))
PARAMETERS HELD FIXED»10X♦6PF10.5»47H 
(MICRO TIME UNITS))
DATA P0INTS»20X»F10..5»13H = BACKGROUND

802 FORMAT (I15»23H = NUMBER OF 
ID TIME FACTOR IN MICRO TIME 

800 FORMAT <H5,34H = NUMBER OF 
1= ERROR IN DEAD TIME FACTOR

( I 15,24H803 FORMAT 
1 )

804 FORMAT ( I 15 »21H = 
IN TIMING INTERVAL

NUMBER OF
= UNCERTAINTY I

805 FORMAT
806 FORMAT
807 FORMAT
808 FORMAT
809 FORMAT
810 FORMAT
811 FORMAT
812 FORMAT
813 FORMAT
814 FORMAT
815 FORMAT

1 SIGMA
2 //)

816 FORMAT
817 FORMAT
818 FORMAT
819 FORMAT 

1CTED

(115,13H = 
(115,15H = 
(I15.22H = 
(115,18H =

DEGREES OF FREEDOM ,23X ,FI0.5,47H 
IN TIME UNITS)
ITERATIONS,31X,F10.5,20H = DATA SCALE FACTOR) 
UNIT WEIGHTS)
STATISTICAL WEIGHTS)
SPECIAL WEIGHTS)

(1X,F14.5,28H = LEAST SQUARES DETERMINANT)
(1H+,50X, 12H(LOUSY LUCK))
( 1X,F14.5»27H = WEIGHTED VARIANCE OF FIT)
(1X,F14.5,13H = CHI SQUARE)
(1H+,35X,26H(BEASTLY FIT - CHECK DATA))
<1H+,58X,F10.5,23H = NORMALIZATION FACTOR)
(///118H A(ZERO) SIGMA

N(ORIGINAL) SIGMA HALF
LAMBDA

LIFE SIGMA
(1X»F14.3»F15.3,2F15.9,2F15.0»2F15. 
(27H0 ORIGINAL ESTIMATES//)
(1X,F14.3,F30.9)
(///6X,111HBEGINNING INTERVAL 

CALCULATED INSTANTANEOUS

4)

ORIGINAL
WEIGHTS

CORRE 
DELTA/

29X,4HTIME,8X,4HTIME,10X,6HCOUNTS»11X»4HDATA,12X»4HRATE,12X,4HRATE» 
38X,7HX 10(3),10X,4HRATE//)

(I4,F11.3,F12.3,F15.1,3F16.3»3PF15.5,0PF14.3)
(///4H I ,39X,6HA( I,J) ,61X,4HB(I)//)
(14,lP5E17.7/(1PE21.7,1D4E17.7) )
(1H+,1PE119.7//)
(4H I ,35X,17HINVERSE OF A(I,J)//)
(6PF15.5,32H = DELTA VARIANCE OF FIT X 10(6))
(115,51H = NUMBER OF POINTS (*) DEVIATING MORE THAN 2 SIGMA

820 FORMAT
821 FORMAT
822 FORMAT
823 FORMAT
824 FORMAT
825 FORMAT
826 FORMAT 

1 )
827 FORMAT
828 FORMAT
829 FORMAT
830 FORMAT 

1.5 -1.0 
25 XS)
IDF = N-K
K = JCALC2 - K
I F(IDF) 832,832,831

(1H+ »118X,1H*) 
(20X,13A6,A2)
(///40X,26HANALYSIS OF THE 
<5X,22I5/1X,114HSIGMA -XS 
-0.5 -0.0 0.0 0.5 1.0

DEVIATIONS//)
-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1 
1.5 2.0 2.5 3.0 3.5 4.0 4.
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831 VAR2 = VAR2/FLOATF(IDF)
832 J = 1

DO 835 I = 1»JCALC2 
IF (IX(I)) 834»833>83A

833 SP(I) = SQRTF(ABSF(AM(J»J)*VAR2))
J = J + 1
GO TO 835

834 SP(I) = 0.0
835 CONTINUE

DO 841 I = l.JCALC 
J = 2*1
IF (PC(J)) 837,836.837

836 XNORIG(I) = 0.0 
ENORIGtI) = 0.0 
HL(I) = 0.0
EHL(I) = 0.0 
GO TO 841

837 HL(I) = 0.693147 / PC(J)
DO 839 JP = 1,2
JPP = J - 2 + JP 
Y(JP) = ABSF(SP(JPP)/PC(JPP))
IF (Y< JP) ) 839,839,838

838 IF (LOGF(Y(JP ) ) - 37.0) 839,840,840
839 CONTINUE

X = PC(J)*T AU 
IF (X - 80.0) 842,840,840

842 XNORIG(I) = PC<J-l)/PC(J)*EXPF<X)
ENORIG(I) = ABSF(XNORIGfI)*SQRTF(Y(1)**2 + Y(2)**2))
EHL(I) = ABSF(HL( I )*Y<2) )
GO TO 841

840 XNORIG(I) = -1.0 
ENORIGII) = -1.0 
EHL(I) = -1.0

841 CONTINUE 
NP2S = 0 
CHISQ = 0.0
DO 844 I = 1,23

844 I DEV(I) = 0
DO 847 L = l.N 
NP(L) = 0 
AINST(L ) = 0.0 
DO 845 I = 1,JCALC2,2

845 A INST(L) = AINST(L) + PC( I)*EXPF<-PC< I+ 1)*(T<L)+DT(L)/2.0) > 
X = DA(L)**2
CHISQ = CHISQ + DT(L)/AC(L)*X 
X = SQRTF(X*W(L))
I = 12.0 + SIGNFt2.0*X,DA(L))
IF (I) 850,850,851

850 I = 1
GO TO 853

851 IF (I - 22) 853,853,852
852 I = 22
853 IDEVII) = I DEV( I) + 1

IF (X - 2.0) 847,846,846
846 (MP2S = NP2S + 1 

NP(L) = 1
847 CONTINUE

CHISQ = CHISQ/XNORM
WRITE OUTPUT TAPE JTAPE, 828, (FMT(I), I = 1,14)
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859
861
863
864

866
867

875
876

881
880
882
883

884
885

WRITE OUTPUT TAPE JTAPE. 801*
WRITE OUTPUT TAPE JTAPE, 802,
WRITE OUTPUT TAPE JTAPE, 800,
WRITE OUTPUT TAPE JTAPE, 803,
WRITE OUTPUT TAPE JTAPE, 804,
WRITE OUTPUT TAPE JTAPE, 805,
IF (ID-2) 859,861,863 
WRITE OUTPUT TAPE JTAPE, 806, 
GO TO 864
WRITE OUTPUT TAPE JTAPE, 807, 
GO TO 864
WRITE OUTPUT TAPE JTAPE, 808,
WRITE OUTPUT TAPE JTAPE, 814,
WRITE OUTPUT TAPE JTAPE, 826,
WRITE OUTPUT TAPE JTAPE, 809,
IF (DET) 866,867,867 
WRITE OUTPUT TAPE JTAPE, 810
WRITE OUTPUT TAPE JTAPE, 825,
WRITE OUTPUT TAPE JTAPE, 811,
WRITE OUTPUT TAPE JTAPE, 812,
IF (CHISQ/FLOATF{IDF) - 16.0) 
WRITE OUTPUT TAPE JTAPE, 813
WRITE OUTPUT TAPE JTAPE, 815
WRITE OUTPUT TAPE JTAPE, 816,
1,XNORIG( I ) , ENORIG(I), HL(I)» 
IF (IT-1) 880,880,881
WRITE OUTPUT TAPE JTAPE, 817
WRITE OUTPUT TAPE JTAPE, 818,
IF (ID-1) 883,883,882
WRITE OUTPUT TAPE JTAPE, 829
WRITE OUTPUT TAPE JTAPE, 830,
WRITE OUTPUT TAPE JTAPE, 819
DO 885 L = l.N 
WRITE OUTPUT TAPE JTAPE 

1A INST(L),W(L),DA(L)
IF (NP(L)) 885,885,884 
WRITE OUTPUT TAPE JTAPE 
CONTINUE
IF (IS(4)) 887,895,887

XID(1), X ID(2), TAUJCALC, TAUD
K, DT AU
N, 6
IDF, EB
IT, S
ID
ID
ID
XNORM
NP2S
DET

DVAR
VAR2
CHISQ
876,875,875

827

(PC(2*I-1)»SP(2*1-1)»PC(2*1) 
EHL(I) , I = 1,JCALC)

(PG(I), I = 1, JCALC2)

(I DEV( I), I = 1,22)

820, L»T(L)»DT(L),C(L),A(L),AC(L)

887 WRITE OUTPUT TAPE JTAPE, 821
DO 890 I = 1 »K
WRITE OUTPUT TAPE JTAPE, 822, I , (AMO(I,J), J = l.K)

890 WRITE OUTPUT TAPE JTAPE, 823, BMO(I)
WRITE OUTPUT TAPE JTAPE, 824
DO 894 I = 1 , K
WRITE OUTPUT TAPE JTAPE, 822, I, (AM(I , J ) , J = 1 , K )

894 WRITE OUTPUT TAPE JTAPE, 823, BM ( I )
895 RETURN

END

, SP(2*I)
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