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COSTS OF STRIKES BETWEEN VULNERABLE MISSILE FORCES 

Gregory H. Canavan 

This note derives the first and second strike magnitudes and costs for 
strikes between vulnerable missile forces with multiple warheads. The extension 
to mixes with invulnerable missiles is performed in a companion note. Stability 
increases as the number of weapons per missile is reduced. The optimal allocation 
of weapons between missiles and value is significant in predicting the stability 
impact of the reduction of the number of weapons per missile at large numbers of 
missiles, less significant in reducing the number of missiles for fixed weapons per 
missile. At low numbers of missiles, the stability indices for singlet and triplet 
configurations are comparable, as are the number of weapons each would deliver 
on value targets. 

This note derives the first and second strike magnitudes and costs for strikes between 
vulnerable missile forces with multiple warheads. The extension to mixes with invulnerable 
missiles is performed in a companion note. The model's exchange equations are derived in 
companion papers, which are reviewed. The costs of striking first and second are measured in 
terms of the physical damage. The two main objectives in those exchanges are to minimize the 
damage inflicted on oneself and to retain the ability to inflict damage on the other. It is assumed 
that the offensive forces of each side are comparable in size and capability. Costs to self and 
other are combined into costs for striking first and second, whose ratio is the overall stability 
metric. Stability is predicted to increase as the number of weapons per missile or the kill 
probability per weapon is reduced. It is relatively insensitive to the relative preference for 
inflicting damage to the other and reducing damage to self. The optimal allocation of weapons 
between missiles and value is significant in predicting the stability impact of the reduction of the 
number of weapons per missile at large numbers of missiles, less of an issue in reductions of the 
number of missiles for fixed numbers of weapons per missile. At 100 missiles, the stability 
indices for singlet and triplet configurations are comparable, as are the number of weapons each 
would deliver on value targets. 

Review of earlier results. It is possible to model exchanges between symmetric, 
vulnerable missiles forces in terms of the first, F, and second, S, strikes that either side could 
deliver. For a force of M missiles with m weapons each, of which a fraction fare directed at the 

- 

opponent's missiles, the first strike on value targets is 

Thus, the average number of weapons delivered on each missile is 
F =  (1 - f)mM. 

r = fmM/M = fm. 
Interest here is on r large, so that the average probability of survival can be approximated by1 
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Q = qr, (3) 

S = mMQ = mMqr, (4) 
where q = 1 - p and p is the attacking missile's single shot probability of kill. The second strike is 

all of which is delivered on value targets, because missiles remaining at the end of the exchange 
are taken to have no value-although that assumption is simple to remove.* 

Costs. Earlier notes have used linearized costs to simplify analytic discussions. This 
section derives appropriate first and second strike costs for large forces. The costs of striking first 
or second are measured in terms of the physical damage done to one's opponent and self in such 
strikes. The two main objectives in those exchanges are to minimize the damage inflicted on 
oneself and to retain the ability to inflict damaging on the other, in order to deter his action. In 
the former, the relevant cost is the imperfect denial of damage to self. For the latter, the cost is 
the portion of one's damage objectives one is unable to achieve. Costs are thus measured by the 
adequacy of delivered first and second strikes relative to cumulative value functions. 

capability, so the same set of parameters apply to both. Current offensive forces and target sets 
are not completely symmetric, but earlier calculations have shown that the trends from 
calculations that ignore the modest current asymmetries correctly retain the major trends and 
results seen in more detailed calculations.3 Thus, this assumption retains the main structure of 
the full exchange while making the calculations and results simpler to explain and explore. The 
extension of the forces and stability metrics to non symmetrical forces is derived in the 
companion paper.4 

First strike. Let k be a constant that is numerically about equal to the inverse of the size 
of the value target sets held at risk. Then the normalized cost to self (s) for the side that strikes 
first (1) can be approximated by 

because the first striker only has to absorb the other side's second strike, S .  This form of C i s  is 
simple, but not unique. Its variation with S and k is plausible, and it exhibits diminishing returns, 
being perhaps the simplest form that does so. MOE detailed specification of the cost would 
require details about preferences, priorities, and deterrents that are not known or knowable. For S 
small relative to the size of the target set, lk, the cost for damage to self is = kS, as assumed in 
earlier notes.5 For S large, Le., a small or ineffective first strike, C 1s rises to unity, although its 
normalization is arbitrary. The cost of incomplete realization of one's damage objectives on the 

It is assumed below that the offensive forces of each side are comparable in size and 

C l s = l - e  -kS , (5) 

other can be approximated by 
C l o = e -  kF . 

If F is small, an ineffective first strike, the cost is roughly unity, because it achieves little of the 
first striker's objectives. If F is large compared to lk, Clo drops to = 0. 
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The cost of damage to self and of incomplete damage to the other are incommensurate, 
because they are fall on different parties. Thus, they are not formally a sound basis for decisions 
by either. Theoreticians have worked with partial success on how to combine them. A simple 
prescription is to take their weighted sum6 

where L is a constant. Choosing L small means C1= Cis, so the first striker is primarily 
concerned about denying damage to self. Choosing L large means C 1 = C 10, so he is more 
interested in inflicting damage on the other. It is generally assumed that L I 1, although there is 
no fundamental reason that has to be so. 

This construction of C 1 as a weighted averages of the cost to self and other is plausible, 
but not unique. The costs could instead be based on the product or powers of the costs to self and 
other. The advantage of the weighted average is that it is simple and that it reduces all of these 
complications to the choice of L. The sensitivity of results to L has been examined separately.7 

striker, who must ride out the undiminished first strike F, is 

which is = 1 for F large, when his loss is near total, and = kF for F << lk. The cost of the second 
striker's partial pursuit of his damage objectives with his diminished force S is 

which is small for S large and = 1 for S << lk. If these two types of costs are weighted with the 

CI = (Cis + LCiO)/(l+ L) = (1 - e-ks + ~ e - S ) / ( 1 +  L), (7) 

Second strike costs are evaluated similarly. The normalized cost to self for the second 

~ 2 s  = 1 - e-E, 

C20=e- kS , (9) 

(8) 

same constant L used above, the total cost of striking second is 
~2 = (1 - e-w -t ~ e - k s  )/(I + L). (10) 
Stability Indices. To summarize, the exchange calculations determine the F and S of 

Eqs. (1) and (4). They in turn determine the C1 and C2, of Eqs. (7) and (lo), which must be 
converted into an index of stability. There is additional arbitrariness in converting C 1 and C2 
into stability indices. Three current choices of indices are the ratio of C 1/C2, the difference C2 
C1, and C2 alone. It is shown elsewhere that the first two, which are the primary ones used in 
U.S. analyses, generally give similar results, but that the third, which is used mutual assured 
destruction (MAD) and some Russian analyses, gives results which disagree strongly with the 
first two and have logical inconsistencies for important combinations of F and S.8 The reasons 
for and consequences of these differences have been explored adequately elsewhere and are not 
essential to the discussion of stability issues below. For small forces the ratio and difference of 
cost give similar trends, while the latter are simpler to investigate analytically, so the difference 
of cost was used in some earlier discussions of metric issues. For large forces, the ratio of costs 
gives interesting new insights, so the ratio metric is discussed here. 
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The ratio of costs usually considered is C1/C2. If the cost of striking first, C1, is large, the 
first striker should be deterred from initiating an exchange. Similarly, if the cost of striking 
second, C2, is small, both sides should see little penalty in riding out a crisis. Thus, the ratio 
C1/C2 captures both of these influences in a single number or stability index 

For F and S small, the stability index reduces to 

For L large, Le., aggressive competitors, this reduces to (1 - kF)/[ 1 - kS) = 1- k(F - S). F is 
generally larger than S, so the index is less than unity in proportion to their difference. For L 
small, conservative competitors, this reduces to kS/L / k F L  = S/F, which again gives an index is 
less than unity and proportional to the ratio of S to F. For S and F large, I approaches unity. 

Results. The above equations constitute a closed model that can be solved to predict the 
variation of C1, C2, and I with the principal model parameters, which are M, m, p, L, and f. 

N u d e r  of weaponsper missile (MIRV ratio). Figure 1 shows C1, C2, and I as functions 
of the number of weapons per missile for M = 1OOO missiles with p = 0.6,60% of which are 
allocated to value, ant l/k = 1,OOO value targets. For large MIRV ratios, C2 is large because few 
missiles survive to retaliate, C1, is small because little retaliation is met, and the index I is very 
small. As the number of MIRVs decreases, C2 decreases and C1 increases, so I increases, 
reaching unity at about 2 weapons per missile. For smaller MIRV ratios, there are too few RVs to 
cover the attacked missiles, so S, C1, and I increase rapidly. 

Allocation of weapons to missiles. Figure 2 shows the variation of C1, C2, and I with the 
fraction of the strike on value, f, for 1,OOO 3-MIRV missiles with p = 0.6 on 1,OOO value targets. 
In contrast to the solution to the linearized equations for low force levels,g C1 and C2 have 
extrema in the interior of the interval rather than at f = 0 or 1. C2 has a maximum of about 0.65 
at f = 0.5, and C1 has a minimum of about 0.4 at f = 0.7. Their ratio gives an index with a 
minimum of about 0.6 at about 0.6. As discussed elsewhere, if he decided to initiate an exchange, 
the first striker would attempt to minimize the damage to himself, C1. Thus, he should operate at 
f = 0.7, at which the cost to the attacked side would be C2 = 0.7, and the overall index would be 
about 0.6. Note that the value of the index that results from the attacker's optimization off  does 
not correspond to a minimum or maximum of C2 or I. Note also that f = 0.7 is optimum for the 
MIRV ratio = 3 point of Fig. 1, but is not optimal for other values, as discussed elsewhere. 

Relative preference for damage to other. Figure 3 shows the variation of costs and indices 
with the relative preference for inflicting damage on others and denying it to oneself, L, for 1,OOO 
p = 0.6 3 MIRV missiles. There is little variation of costs or indices with L for these conditions. 
C1 is about 0.6 C2 and I is about 0.6 throughout. There is a stronger variation for fewer or 
singlets missiles, which is better discussed in conjunction with survivable forces. 

I = C I / C ~  = (1 - e-kS + ~ e - H ) / ( l -  e-kF + LC~S) (1 1) 

(12) I(smal1 F,S) [ 1 - k(F - S L ) ] / [  1 - k(S - FL)]. 
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Weapon kill probability. Figure 4 shows the variation of the costs and indices with kill 
probability p for 1 ,OOO triplet missiles. For large p, C2 = 0.7, C 1 = 0.2, and the index is = 0.25. 
As p falls, C2 falls, C1 increases, and the index reaches unity at p = 0.4. For smaller p, I is well 
above 1. However, the current range is probably about p = 0.6 to 0.8, which would be in a region 
with I well below unity. It is useful to note, however, that the range p = 0.6 to 0.8, the costs and 
indices are not strongly dependent on p. 

the costs and indices with the MIRV ratio for allocations of weapons to value that minimize C1 
at each value of the ratio. It is useful to compare this result, which treats the same number of 
missiles and MIRVs with a constant value off = 0.7. Optimizing the attack increases C2 and 
decreases C1 slightly, so that the stability index only reaches unity for singlets rather than the 
doublets of Fig. 1. The component cost of C1 and C2 are shown in Fig. 6. The bottom two curves 
are the costs for damage to self C i s  and incomplete damage to other C lo  of Eqs. (8) and (9). 
They start out at low levels at large MIRV ratios, where the attacker can thoroughly suppress the 
other side's retaliatory force. The top two curves are for the attacked sides damage to self C2s 
and other C20 from Eqs. (8) and (9). They start at relatively high levels due to the large damage 
on the attackee's value and weak retaliation. As the MIRV ratio decreases, the two costs join at 
singlets, where the damage to self from striking first is about equal to that from striking second 
(Cis = C ~ S )  and the cost of damage not done to the other is about the same whether one strikes 
first of second (Clo = C ~ O ) .  

Figure 7 shows the optimal allocation of 1,OOO triplet first strike missiles on 1,OOO silos 
and 1,OOO value targets. For large MIRV ratios, the optimal value is about 0.65. For intermediate 
m it rises to about 0.7, the value used in some calculations above. However, for MIRV ratios 
below triplets, the fraction allocated to missiles begins to fall, reaching about 0.25 for singlets. 
For large ratios, the attacker can suppress the retaliatory strike with a modest fraction of his 
force. For small ratios, the retaliatory missiles are no longer strongly covered, their survival 
probability begins to rise, and the attacker is forced to shift weapons from value to missiles, 
leading to the decrease in f. Fig. 6 shows that the first striker's cost of damage self increases most 
sharply as m decreases in the range of MIRV ratios from 3 to 2, which is why the decrease in f is 
sharpest there to destroy missiles and minimize damage to self. Capturing this sharp decrease in f 
is an essential part of the analysis of the benefits of de-MIRVing. 

Number of missiles. Figure 8 shows the optimal allocation of weapons to missiles as each 
side's total number of missiles is decreased from 900 to 100. The top curve is for triplet missiles. 
If falls from f = 0.7 at 900 missiles to f = 0.55 at 100 missiles. The drop is sharp, but not as 
pronounced as the decrease from 3 to 1 weapon per missile at 1,OOO missiles. The bottom curve 
is for singlets. It increases from about 0.25 to 0.3. At 100 missiles, these allocations would give = 

Optimization of weapon allocation (minimization of C 1). Figure 5 shows the variation of 
' 
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0.5 x 3 x 100 = 150 weapons on value for triplets and = 0.7 x 1 x 100 = 70 weapons on value for 
singlets. Thus, to the extent that the value targets contain other than purely military targets, the 
two configurations only lead to a factor of two difference in the number of weapons on them. 

stability index for singlets, which is about unity throughout. The next curve down is the stability 
index for triplets, which is about a factor of two lower at large M, but is with about 10% of the 
index for singlets at 100 missiles. The lower curves are for costs. For singlets, the first and 
second strikes are about the same, which is why their index is near unity. For triplets, they differ 
significantly for large M, but converge with each other-and with the costs for the singlets-by 
about M = 100, which is why the triplet index climbs rapidly towards unity there. That the 
singlets' index approaches unity is just a specific example of the generally believed result that 
symmetric singlet configurations are crisis stable. That the triplets' index also approaches unity is 
a result of the optimal allocation of weapons away from missiles. 

The one other parameter in this model is k, which characterizes the size of the value 
target set. However, F and S and both proportional to M, and the costs depend on kF and kS; 
thus, decreasing M has the same effect as decreasing k, i.e., increasing the size of the value target 
set, so it is not mathematically necessary to vary k separately. However, since offensive forces 
are strategic weapons and the value targets are largely non-strategic targets, this interpretation 
would appear to couple reductions in strategic and non-strategic forces. 

Figure 9 shows the costs and stability indices for singlets and triplets. The top curve is the 

Summary and conclusions. This note derives the first and second strike levels and costs 
for exchanges between vulnerable, multiple warhead missile forces. The extension to mixes with 
invulnerable missiles is performed in a companion note. The model's exchange equations are 
derived in companion papers, the results of which are reviewed. The costs of striking first and 
second are measured in terms of the physical damage done to one's opponent and self in such 
strikes. The two main objectives in those exchanges are to minimize the damage inflicted to 
oneself and to retain the ability to inflict damage on the other, in order to deter his action. In the 
former, the relevant cost is the imperfect denial of damage to self; in the latter it is the cost of 
imperfect achievement of damage objectives to the other. It is assumed below that the offensive 
forces of each side are comparable in size and capability. 

the overall stability metric. Stability is predicted to increase with a reduction in the number of 
weapons per missile or the kill probability per weapon. Stability is relatively insensitive to the 
two sides' relative preference for inflicting damage to the other and reducing damage to self. The 
optimal allocation of weapons between missiles and value is a key feature in predicting the 
impact on stability of the reduction of the number of weapons per missile at large numbers of 
missiles. It is somewhat less of an issue in strong reductions of the number of missiles for fixed 

Costs to self and other are combined into costs for striking first and second, whose ratio is 
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numbers of weapons per missile. At about 100 missiles, the stability indices for singlet and triplet 
configurations are comparable, as are the number of weapons each would deliver on value 
targets. 
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