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ABSTRACT 

C . I .  - . . . . ,,# --'::: Magnetic moment measurements have been made 
? - , - '-- 

. . , . 
- on holmium single crystals (hcp) over the range 1. 3 to 300°K 

- -.,,:.:, ..- ' ., .Jy. 

, $ l $ d - . ~ ' '  in magnetic fields from 250 to 18,000 oe with the field applied " .  & .!-,) 

along the c-axis, the a-axis, and a <lorn> direction. The 

<10T0> direction is the direction of easy magnetJzation with 
. . " y  . 4 -  

I;. :J1$L4 ,;;; an extrapolated effective moment per  atom at  saturaiion of 
' . -p - . , .k - :  5;' , 

*l 1Q. >,,. .-- 34 <--,-= B o h ~ , ~ ~ a g n e t o n s .  - Basal plane measurements showed 
-,1 - < . .'-';- . '  - 

a ~ t i ~ i r r o 4 ' h ~ e t i . m  below the Ndel temperature of 132 O K  with 
\ - 

basal plane anisotropy occurring below 80°K. Below the ~ d e l  

point an anomalous type of transition to ferromagnetic behavior 

upon application of sufficient field was observed. Magnetization 

curves for the c-axis a r e  linear down to 60°K, while meaeuye- 

ments below 20 "K',show an initial magnetization of approximately 

1.7 Bohr magnetone followed by nearly linear magnetization - .' I 
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cu rves .  - Elec t r i c a l  res i s t iv i ty  m e a s u r e m e n t s  we re  made  

, f r o m  4.'2 to 300°K. F o r  the  a -ax i s ,  the res i s t iv i ty  changes  

slope slightly a t  20°K. A l a r g e r  change i n  s lope o c c u r s  a t  

the ~ d e l  t empe ra tu r e  of 132°K. F o r  the c -ax i s ,  the  r e -  .. 

s is t iv i ty  changes  s lope slightly a t  20°K, r eaches  a peak a t  

lZO°K, goes through a min imum a t  1 3 2 ' ~ ,  and ' r emains  

constant  until approximately  150°K, a f t e r  which i t  i n c r e a s e s  

l inear ly  with increas ing  te ,mperature .  

INTRODUCTION 

The magnet ic  p rope r t i e s  of meta l l i c  polycrysta l l ine  holmium have 

been investigated by Rhodes, -- e t  al. f rom 4. 2 to  300°K. P a r a m a g -  

netic and ant i ferromagnet ic  behavior w e r e  observed ,  and the  ~ s e l  

. t empera ture  was  es t imated  to  be 133 * 2°K. A paramagne t ic  Cur i e  

t empe ra tu r e  of 85 OK and an  effective .moment p e r  a tom 

of 10 .9  Bohr magnetons  w e r e  de te rmined .  Remanance and magnet ic  

hys t e r e s i s  we re  observed  a t  4. 2°K. The approach  of the  magnet ic  

momen t  to  sa tu ra t ion  was observed  to  follow a T3/2 law, and an 

absolute  sa tu ra t ion  moment  of 310 c g s  units/g was  obtained. 

Colvin, -- e t  a l .  m e a s u r e d  the  e l ec t r i c a l  res i s t iv i ty  of polycrysta l -  

l ine  hcllmiuni f r o . ~ ~  1. 4 to 300°K. The. res i s t iv i ty  v s  t e m p e r a t u r e  

curve of t he i r  data  which a r e  plotted in  Fig.  10 shows a change of 

s lope a t  19 OK and a. s,mall peak a t  127 OK. 

Specific heat  m e a s u r e m e n t s  f r o m  12 to 300°K m a d e . o n  po lycrys ta l -  
. . 

l ine  holmium b y ~ e r s t e i n ,  -- e t  al .  r evea led  two anomalous  regions .  A . 



small  peak occurred a t  19.4OK and a much l a rge r  one occurred a t  

131.6"K. The details of the curve just below the peak a t  131.6"K 

have not been completely determined, and some irregulari ty exists 

in  thi R region. 

~ e r r n a n n ~  has  determined the crys ta l  s t ructure and latt ice con- 

stants for  holmium a t  room temperature.  He found that the metal  

has the hexagonal close-packed structure.  Neutron diffrac'tion 

5 measurements  of Koehler have shown no change of crys ta l  structur,e 

down to liquid helium temperatures.  

6 ' Koehler has interpreted neutron diffraction measurements  on 

a single crys ta l  of holmium in the temperature region f rom 120 to 

35 OK a s  resulting from an antiferromagnetic helical spin arrange-  

ment where the magnetic moments a r e  parallel  within each hexagonal 

layer  but rotate by an  angle w per  layer  in successive planes along 

the c-axis.  The angle is temperature dependent and is 50" pe r  

layer  a t  120 OK and decreases  with decreasing temperature.  

EXPERIMENTAL PROCEDURE 

In order  that the electrical and magnetic properties of holmium , 

might be investigated with respect  to the principal directions of the 

crystal ,  i t  was necessary to prepare single crys ta ls  oriented along 
> . ' I, 

4 the c-axis,  along an a-axis,  and along a direction halfway between 

.' two a-axes in the basal .plane which is designated a s  the <10+0> r' 
i 

direction. The samples were cut in the form of rectangular 
7 
% 

parallelepipeds with dimensions of 1 m m  x 1 rnm x 10 mm.  

. . 



The dis t i l led holmium m.etal f r o m  which the single c r y s t a l s  we re  

grown was p repa red  by methods previously  reported.  7p Single c r y s t a l s  

we re  grown f r o m  the dis t i l led .metal using a modified .form of a s t r a in -  

anneal  rneJhod which has  been descr ibed  by Hall, -- e t  a1. spectrographi ;  . . , .. .. . , , 

ana lys i s  of p ieces  of the single c r y s t a l  f r o m  which the s amples  were  cu t  

showed the  following impuri t ies :  Y < 0. 0 1%; Dy < 0. 0470; E r ,  0. 06%; 

Tm, 0.02%; Ca < 0.03%; Cr < 0. 005%; M g  < 0. 005%; ~ e ,  0. 005%; Cu < 500 
, I  

' ppm; Al, B, Mg, Nd, Ni, Pb ,  P r , ,  Sc, Si, Sm,  Ta,  Tb, w,' [Yb, not ' . ,... .I' 

detected; 

Magnetic measu remen t s  we re  made  using a s tandard  vers ion  of the 

Faraday  method in which the magnet ic  moment  i s  de te rmined  f r o m  m e a s u r e -  
( .  

ment s  of the force  exer ted  on a sample  which has  been placed in  a non- 

uniform magnet ic  .field. Magnetic f ie lds  up to  18 koe were  obtained with 

a n  e lectromagnet  which has  been descr ibed  in a previous  paper .  10 

A modified, f o r m  of the heat  leak chamber  descr ibed  by ~ n d e r i o n ,  

e t  a l .  l1 and Colvin, e t  al .  was  used to  obtain t empera tu re s  f r o m  1. 3 t o  -- -- 
? 

300°K. Temperatu ' res  below 4. 2 ° K  w e r e  determined f rom the t empera tu re  

of the liquid helium bath. A 51 o h m  carbon  r e s i s t o r  t he rmomete r  and a 

copper  constantan thermocouple which were  cal ibrated during each  s e r i e s  

of measu remen t s  were  used for t empera tu re  measu remen t  in the region 

f r o m  4. 2 to EO°K, and the copper  constantan thermocouple was used f o r  

a l l  t empera tu re s  above 20°K. Absolute t empera tu re  values  wese ' de t e r -  

{ s .. .i mined  to  *O. 5 °K  while the t empera tu re  var ia t ion during each  s e r i e s  o.f 

measu remen t s  was controlled to *O. 05" K. 
, 

:iL., 
I 

.y ' 



, Elec t r ica l  res is t iv i ty  measu remen t s  fr0.m 4. 2 to  300°K were  a l so  

.made on the t h r ee  holmium single c rys t a l s .  The exper imenta l  p rocedure  

and the apparatus  used f o r  these  measu remen t s  have been descr ibed  by I 

2 
Colvin, e t  a l .  -- 

EXPERIMENTAL. RESULTS ~ 

The data  fo r  the a - ax i s  c r y s t a l  a r e  p resen ted  a s  i so the rms  in Fig. 1. 

Isofield cu rves  obtained f r o m  these  i so the rms  a r e  given in Figs .  2 and 3.  

Figure .  3 shows the deta i ls  of magnetization cu rves  n e a r  the  gel point. 

The position o.f the peak in the cu rves  i s  s een  to be field dependent, and 

the. extrapolation to  CHI = 0 give's a  gel point of 132" K. Values of the 

1 rec iproca l  o.f the magnetic susceptibil i ty,  -, obtained f r o m  m e a s u r e m e n t s  X 

in  the paramagnet ic  region a r e  plotted vs t empera tu re  in Fig: 4. 
I 

The anomalous behavior o.f the magnetic moment  in the an t i fe r ro-  

. magnetic t empera tu re  region i s  shown in  Fig.  1. The "knee" which 

appea r s  a t  a magnetic moment  of about 100 cgs  units/g for a l l  i so the rms  

' 12 above 30°K was not observed  in the measu remen t s  of Green ,  -- e t  a l .  on 

13 single c r y s t a l s  of e rb ium and Behrendt,  -- et a l .  on single c r y s t a l s  of 

dysprosium.  They observed  a n  a lmos t  discontinuous r i s e  followed by 

4 
rap id  saturat ion o.l the magnetic morncnt. 

The "knee" a l so  appea r s  in the iso.field plot of Fig.% 2 in  which the 

c i r c l e s  indicate points taken f r o m  exper imental  i so the rms .  The deta i ls  

of the cu rves  in the regions of the knees  were  es tabl ished by drawing 

e x t r a  i so the rms  a t  one deg ree ' t empera tu re  in te rva l s  between those 

actually measu red ,  using the exper imental  ,curves  as guides.  
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Measurements' o.f magnetic moment a s  a function of decreasing 

fi.el.ds were  made a t  severa l  tempera tures  to check for  the hys teres is  

reported by ~ h o d e s ,  -- i t  al .  for  polycrystalline holmium. Curves fo r  

decreasing .fields a r e  indicated by dashed lines in Fig. 1. The uncer- 

tainty of calibration of the magnet for decreasing fields resu l t s  in an  

e r r o r  estimation of about 2% in the value o.f magnetic moment and 

0. 2 koe in the value of the magnetic field. The hysteresis .  in the 
! 

antiferromagnetic range, a s  shown at 45 and 6 1.8"K, occurs  a t  the 

"knee" descr ibed previously. The decreasing curve runs para l le l  to 

the increasing curve. below this  knee and merges  with the l inear  portion 

of the increasing curve *at a lower value of applied field. The width o.f 
. . 

the hystere,sis loop thus formed is approximately the same.  a s  the width 

of the "knee" on the increasing 'curve. 

A smal l  peak in the magnetic moment vs temperature isofield 

curve which occurs  a t  20°K .for smal l  magnetic fields i s  shown in the 

inset of Fig. 2. The peak i s  not present  .for magnetic fields g rea te r  

than three  koe. 

The isotherm data for the <1010> crys ta l  a r e  displayed in k'ig. 5, 

and' isofield curves obtained f rom the isotherm data a r e  given in Fig. 6. 

The data for  the a-axis  c rys ta l  and the <10i0> crys ta l  coincide above 

1 
R O O K ,  so that the ~ d e l  point data of Fig. 3 and the vs T data of Fig. 4 

for the a-axis  c rys ta l  a r e  also representative of the <10T0> c rys t a l  

behavior. At lower tempera tures ,  anisotropy exis ts  in the basal plane, 

and the <10'r0> direction is the direction of easy magnetization. 



An anomalous behavior m o r e  complicated than that  of the a - ax i s  

c rys t a l  i s  exhibited in  Fig. 5 by the <10T0> c rys t a l  i n  the an t i fe r ro-  

magnetic t empera tu re  range.  Two "knees" appear  i n  the i sb therm 

, - data.above 45°K. T h e f i r ~ t I ~ k p e e ~ ~  appea r s  a t  a magnet ic  moment  of , 

approximately 100 cgs  units/g, and the second "knee" appea r s  a t  

approximately 200 c g s  units/g. The widths of the "knees" i nc rea se  

.' with increasing t empera tu re ,  but the values of magnetic moment  a t  

which they appear  s e e m  to be constant.  

In Fig.  7 values of (r and (r a r e  shown plotted vs T 3/2 
CQ, 'I' 0, T 

2 
and a l so  T to obtain values for  the saturat ion magnetization,  C 

M, o1 
and the spontaneous magnetization,  

0 sfor the <10T0> c rys t a l .  

F igu re s  8 and 9 show the i so the rms  and the iso.fielcle for the 

c -ax is  c rys t a l .  The i so the rms  below 20°K show an  init ial  magnet-  

ization of about 60 cgs  units/g. The sma l l  posit ive s lopes  of the  cu rves  

up to  18 koe indicate that  holmium i s  ve ry  ha rd  magnetically in the di-  

rect ion of the c -ax is .  At t empera tu re s  below 50°K the s ample  tended 

to  twis t  s o  a s  to al ign a m o r e  favorable c r y s t a l  ax i s  with the  field 

direction.  To overcome this  di.f.ficulty a sys tem of center ing chains  

which held the c -ax is  pa ra l l e l  to the field while allowing ver t ica l  

motion was used. .The  s ca t t e r  of the data a t  .fields below 1 koe m a y  

be a t t r ibu ted ' to  a dec rease  in wcigb.j.ng sensit ivity because of these  

chains  and to the i nc rea sed  un.certa.inty o.f the field gradient  cal ibrat ion 

a t  these  low fields.  

In Fig. 4 the 5: vs  T plot f o r  the c -ax is  c r y s t a l  paramagnet ic  data 

is shown. Al.so shown a r e  the exper imenta l  data  points for  polycrysta l -  



1 l ine holmium repor ted  by Rho,des, e t  a l .  Calculated values of mag-  -- 
netic susceptibil i ty fo r  a polycrystall ine sample ,  X 

~ 0 1 ~ '  
we re  ob- 

tained f r o m  single c rys t a l  r e su l t s  by use of the relat ionship 

where  Xa i s  the 'susceptibil i ty of the a - ax i s  c r y s t a l  and X i s  the 
C 

susceptibil i ty of the c -ax is  c rys t a l .  The s t ra igh t  line between the 

1 a - ax i s  and c-axis  l ines  i s  a plot of - X v s  T. The data o.f Rhodes,  
P O ~ Y  

e t  a l .  a r e  seen  to fal l  quite c lose  to  th i s  l ine.  -- 
The e lec t r ica l  res i s t iv i t i es  (minus res idua l  res is t iv i ty)  of the  

a - ax i s  c rys t a l  and the c -ax is  i=r.ystal a r e  displayed in Fig. 10 as 

functions ol t empera ture .  Since the data  .for the a-ax.is and the<10T0> 

c rys t a l s  coincided within exper imental  e r r o r  l imi t s ,  only the a - ax i s  

data a r e  plotted. 

At 132°K the curve  for the  a - ax i s  c r y s t a l  exhibits a change in  slope.  

This  is taken a s  the N i e l  point. Measurements  made a t  increas ing  and 

decreas ing  t empera tu re s  revea led  no t h e r m a l  hys t e r e s i s  a t  the ~ d e l  

point. A very  sl ight change of 'slope occu r r ed  a t  approximately 20°K. 

F igure  10 shows the m a r k e d  minimu.m in res i s t iv i ty  which occu r r ed  

at the ~ A e l  point for  the c -ax is  c rys t a l .  A t empera tu re  of 132°K i s  

taken as the Ndel point, although the  essent ia l ly  t empera tu re -  inde- 

pendent nature  of the curve  .from 132 to 150°K indicates that  the effects 

of magnet ic  o rder ing  may  extend well above the ~ k e l  t empera tu re .  
1.. 

'.\ Also plotted in Fig.  ' 10 i s  a curve  of polycrystall ine holmium data  

de te rmined  by Colvin, e t  a l .  and a curve  of calculated p o l y c r y s t a l l i ~ e  -- 
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data  which were  obtained f r o m  the single c r y s t a l  da ta  by the  u se  of 

where  pa is the a - ax i s  res is t iv i ty ,  pc is the c -ax is  res is t iv i ty ,  and 

P ~ o l ~  . 
is the calculated res is t iv i ty  of a polycrystall ine sample .  This  

relat ionship has  been verif ied for the hexagonal m e t a l  y t t r ium by 

14 
I 

Alstad, e t  al. -- 

~Iscussro~ 
> : 

The magnetic p rope r t i e s  of holmium were  found to  be anisotropic  

over  the en t i re  t empera tu re  range covered  in  th is  investigation. The 

exis tence o.f magnetic anisotropy in the para.magnetic region has  been 

shownexperimental ly  in  e rb ium by Green ,  -- e t  a l .  l 2  and in dysprosium 
1 

by Behrendt,  e t  a l .  l3  The anisotropy fo r  the c a s e  of holmium i s  d i s -  -- 
played in  Fig. 4. No anisotropy was observed  in  the basa l  plane a t  

t empera tu re s  above 80°K, and the c - ax i s  i s  the  direct ion of h a r d  

magnetization.  

At very  low t empera tu re s ,  the <10T0> direct ion i s  the direct ion 

o.f easy  magnetization.  The determinat ion of the saturat ion moment ,  

u 
m,OJ 

fo r  the < ~ o T o >  c rys t a l  i s  shown in Fig. 7 ,  where  the T ~ ' ~  plot 

i s  seen  to  give a somewhat bet ter  f i t .  This  i s  in ag reemen t  with the  

. theoret ical  r e su l t s  of ISasuya15 and Bloch, l b  but not with those of 

2 
Ni i ra ,  l7 who obtained a T dependence for single c r y s t a l s  of dys-  

p ros ium.  However, i.f only t empera tu re s  o.f 20°K and under a r e  con- 

. s idered ,  the plots a r e  about equally good. Measurements  a t  higher 

magnetic .fields a r e  needed to reso lve  this  point. 



F o r  the <10i0> c rys ta l ,  (r = 350. 2 i 3. 5 cgs  units/g, and 
m, 0 

, Neff = 10. 34 + 0.10. Bohr magnetons.  F o r  the a -ax is  c rys t a l ,  

U = 306. 0 * 3.  1 cgs  units/g, a i d  Neff = 9. 00 * 0. 09 Bohr  mag-  
m, 0 . . 

netons.. A theore t ica l  determinat ion o.f the saturat ion mo.ment gives . 

Neff = gJ = 10 Bohr  magnetons,  s o  that',sl.ightly m o r e  than the total  

moment  predicted by this  t r ea tmen t  i s  obtained in  the  <10i0> direction.  

The additional moment  may  a r i s e  f r o m  the contributiori of polar ized 

18 
conduction e lec t rons  which has  been d i scussed  by Liu. 

If the satura.tian moment  o,f the  < 1 0 n >  c rys t a l  i s  multiplied by 

the cosine of 30°,  a value of 8. 95 Bohr  magnetons .is obtained. This  

i.e equal, within the  l imi t s  of .exper imental  e r r o r ,  to  the saturat'iori 

moment  of the a -ax is  c rys ta l .  Since the a - ax i s  and the <10i0> di-  

rect ions  a r e  30" a p a r t  in  the  basa l  plane,  a reasonable  interpreta t ion 

of th is  r e su l t  i s  that  although the  external  magnetic f ield i s  d i rec ted  

along a n  a-axis ,  the magnetic moments  a t  the maximum .fields avai la-  

ble i n  th is  investigation l ie along the  ea sy  <10f0> direct ions  and' only 

the i r  components in the direct ion o.f the field contribute to the magnet-  

ization. 

The a -ax is  and the <10YO> c r y s t a l  magnetization cu rves  a t  lo.west 

t empera tu re s  have .the cha rac t e r i s t i c  shape of cu rves  fo r  ferromagnet ic  

m a t e r i a l s ,  and the decreas ing  field measu remen t s  show hys t e r e s i s .  

6 Neutron diffraction r e su l t s  of Koehler a l s o  showed that  f e r ro  - 

magnet ism could be induced in ho lmium-a t  t empera tu re s  below 20°K 

by the application of a magnetic field in the basal '  plane. 



. . 
F o r  the c-axis  c r y s t a l ,  the spontaneous magnetization of about 

' 

60 cgs units/g, o r  1. 7 Bohr magnetons/atom, followed by a very 

.flat .magnetization curve ag rees  quite well with the neutron di.ffrac- 
.' I 

tipn resu l t s  o i  ~ o ~ h l e r .  His resu l t s  indicate that below 20°K in 
' 

zero  magnetic field a smal l  component (about 2 Bohr magnetons) of 

the magnetic moment i s  directed along the c-axis  i n , a  ferromagnetic 

alignment, while the basal' plane orientation remains a sp i ra l .  It i s  

extremely difficult to turn  the .mome-nts fur ther  away f rom the basal 

plane by the application of a magnetic field along the c-axis  

The e.ffective .moment, eff' in the paramagnetic region which 

1 
, .is obtained from the - vs T plot o.f Fig. 4 i s  11. 2 Bohr magnetons X. 

fo r  a l l  three crystal l ine directions.  The data r e p 0 r t e d . b ~  Rhodes, 

1 
./' ,et  al .  for  polycrystalline holmium give an effective .moment .of 10. 9 -- 

Bohr magnetons, while a theoretical value of 10. 6 Bohr magnetons 

5 .is obtained when a gound s tate  of I i s  assumed.  It should be noted 8 

that the resu l t s  of Green, e t  a l .  l 2  for erbium gave a resu l t  which was -- 
142 

approximately 3% h i g h e r  than that predicted by p e f f , =  g J(J  + 1) . 

The a-axis  and the <10TO> crys ta l  data show the existence of a 

~ 4 e l  point at 132°K. It can be seen in Fig. 3 that the ~ i e l  ternpera- 

tu re  i s f i e l d  dependent and dec reases  with increasing magnetic field. 
. . 

Below 132"K, the a-axis  and the <10T0> crys ta l  data indicate that the 

sample i s  in an.antiferromagnetic state.  However, there  is no i ~ d i -  

cation of antiferromagnetism in the c -axis  data plotted in Figi.;.8. TheSe' 

" resu l t s  ag ree  with the neutron diffraction studies of ~ o r h l a r ~  who 

. . suggested that below 132 OK the magnetic moments had in the absence 



of an  external field a n  antiferromagnetic h e l k a l  sp in  a r r ange  - 
' 

ment with the magnetic moments  lying in the basal  plane. 

The anisotropy in electr ical  resis t ivi ty  a t  room tempera ture  is 

Pa 
, 

indicatbd by the rat io  - = 1. 70.   he slopes of the plots df res i s t iv i ty  
P C  * 

vs temperature -in the paramagnetic region a r e  also indicative of the 

degree of anisotropy. The slope of the p c  curve is 0 .099 pohm-cm/o K ' 

while the slope of the pa curve i s  0. 176 pohm-cm/oK. 

The slope of the curve for  the calculated polycrystalline holmium 

data is 0. 147 pohm-cm/oK, while the slope of the curve .for the ex- 

perimentally determin.ed data o f ~ o l v i n ,  -- e t  al. for  polycrystall ine 

holmium is 0. 144 pohm-cm/oK. The two curves  a l so  show the s a m e  

. shape in the vicinity of the ~ d e l  point. s i n c e  ffpolycrystall ineff samples  

of r a re -ea r th  meta ls  often have some degree of p r e f e r r e d  orientation, 

perfect  agreement ,  i s  not e,xpected. 

The magnetic measurements  indicate that the specific heat anomaly 

nea r  1320K a r i s e s  f rom the paramagnetic to  antiferromagnetic t ransi t ion 

a t  t h e ~ g e l  temperature.  A "kneetf occurs  in the curve of p at this  I a 

temperature.  

The curve of p has  a broad unsymmetrical peak with a maximum 
C 

a t  116°K followed by a minimum a t  13Z°K, the ~ d e l  tempera ture .  At 

and below this temperature,  magnetic ordering is observed. The mag- 
> 

netic moments a r e  aligned para l le l  to each other in atomic l aye r s  p e r -  

pendicular to the c-axis.  There  is a turn  angle for  the moment from 
I 

I l ayer  to layer  and this  give^ r i s e  to  a different magnetic periodicity 

from the latt icc pcriodicity. ~ a c k i n t o s h  l9 has proposed that ex t r a  



planes of energy discontinuity a r e  introduced into the Brillouin zone 

s t ruc ture  a s  a resu l t  o f  the helical spin s t ruc ture  present  in the I 
I 

\; 

antiferromagnetic phase of seve ra l  of the ra re :ear ths . -  This  causes  

a l a r g e  change in the component of the F e r m i  surface vector-in the 

c direction, while that in the basal  plane is reiatively unchanged. He 

has suggested that this  i s  the cause of the peak in the c-axis  ,resistivity 
, . .  . , 

'curve. 
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FIGURE CAPTIONS 

Fig. 1. Magnetic moment p e r  g ram vs field for  the a-axis  crystal .  

Dashed l ines  a r e  for  H decreasing. 

Fig. 2. Magrletic'moment per g ram vs  tempera ture  .for the a-axis  

crystal .  

Fig. 3. Magnetic moment p e r  g r a m  vs tempera ture  for  the a-axis 
. 7 

crys ta l  in the n e i g h b ~ ~ h o o d  df the ~ d e i  point. 
-i 

Fig. 4; The reciprocal  . . of th; susceptibility vs tempera ture  for  the 

a -axis  and the c-axis  c rys t a l s  and for  .a polycrystalline 

sample of.  holmium. 

Fig. 5. Magnetic moment p e r  g r a m  vs  field for the <10i0> crystal .  

Dashed l i n e s ' a r e  .for H decreasing. I 

Fig. 6 .  Magnetic moment p e r  g ram vs tempera ture  f o r  the <10TO>, 

c rys ta l .  

Fig. 7. Saturation and spontaneous magnetization of the <10i0> 

3/2 2 crys ta l  as a function of T and T . 

Fig. 8. Magnetic moment p e r  g r a m  vs field for  the c-axis  c rys ta l .  

Dashed lines a r e  for  H decreasing.  

Fig. 9 Magnetic moment p e r  g r a m  vs tempera ture  for  the c-axis  

. . .  crys ta l .  . . 

Fig. 10. = Elec t r ica l  resistivity,  residual  subtracted, a s  a function 

of tempera ture  for  the a-axis  and the c-axis  c rys t a l s  and . 

for  a polyc rystall ine sample,'. 
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- HO a -  AXIS CRYSTAL 
- 

Fig .  P: Magnetic m o m e n t  p e r  g r a m  vs f ie ld  f o r  the a - a x i s  crystal .  
Dashed l i n e s  are for H decreasin.g.  



Fig. 2 .  Magnetic moment per  gram. - ~ s  te:mperature for the a-axis 
crystal. 



HO 0-AXIS CRYSTAL 

Fig. 3.  Magnetic moment per gram vs temperature for the a-axis c rys+a l  
in the neighborhood s f  the ~ 6 e l  point. 



Fig. 4. 'The reciprocal of the susceptibility vs  temperature f,or the a-axis  
and the c-axis crystal-8. and for a polycrystalline sample of hclrnium. 
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Fig .  5. Magnetic moment per  g r a m  vs  field for  the <1070> crystal ,  
Dashed lines a r e  for  H decreasing. 



Fig. 6. Magnetic moment per  g r a m  vs temperature fo'r the <10+0> crys ta l .  



F i g .  7. Saturation and spont.aneous magnetization of the <10iO> crystal  
a s  a function of T3/2 and T2. 



H ( KILO - OERSTEDS) 

Fig .  8. Magnetic moment per gram v s  field f o s  the c -axis crystal .  Dashed 
l ines  are  for H decreasing. 
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Fig .  9. Magnetic moment  p e r  g r a m  vs tempera.ture fo r  the c-axis  
c rys ta l .  



Fig. 1,O. Electrical resistivity, residual subk:racted, a s  a .function of 
temperature for the a-axis and the c-zxis crystals  and for a 
polycrystalline sample. 




