



BALTIMORE 3, MARYLAND

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

This work was done under Contract  
AT(30-3)-217, sponsored by the  
Division of Reactor Development,  
U. S. Atomic Energy Commission.

MND-P-2707

FEB 23 1962

Strontium-90 Fueled Thermoelectric  
Generator Power Source

Five-Watt U. S. Navy Weather Station

MASTER

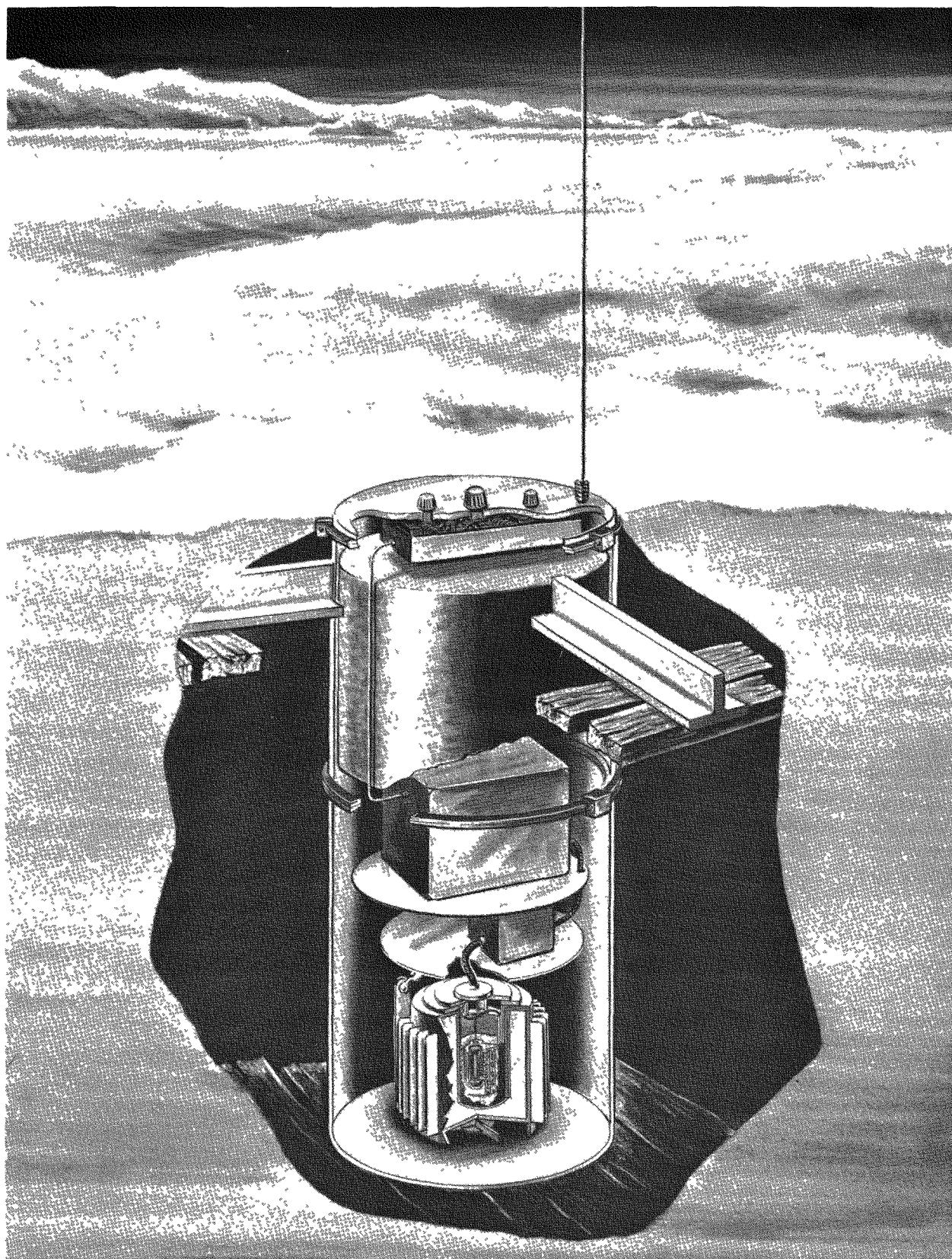
Final Report

MND-P-2707



Approved by:

*James J. Keenan*  
Asst Project Engineer


MND-P-2707

## LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.



Artist's Concept of SNAP 7C

MND-P-2707

DISTRIBUTION LIST

|                                                | <u>No. of Copies</u> |
|------------------------------------------------|----------------------|
| 1. Atomic Energy Commission                    |                      |
| a. Washington                                  |                      |
| For: Mr. G. M. Anderson, DRD                   | 10                   |
| Lt. Col. C. M. Barnes, DRD                     | 1                    |
| Capt. T. L. Jackson, DRD                       | 1                    |
| R. G. Oehl, DRD                                | 1                    |
| E. F. Miller, Jr., Prod                        | 1                    |
| R. A. Anderson, Patents                        | 1                    |
| Technical Library                              | 1                    |
| Lt. Cdr. J. P. Culwell                         | 1                    |
| Capt. R. Carpenter                             | 1                    |
| b. Canoga Park Area Office                     |                      |
| For: J. V. Levy, Area Manager                  | 1                    |
| c. Chicago Operations Office                   |                      |
| For: T. A. Kemmek                              | 2                    |
| d. New York Operations Office                  |                      |
| For: J. Cline                                  | 2                    |
| J. E. McLaughlin                               | 1                    |
| e. Hanford Operations Office                   |                      |
| For: J. T. Christie                            | 1                    |
| f. Division of Technical Information Extension | 35                   |
| 2. Convair, San Diego                          |                      |
| For: K. G. Blair                               | 1                    |
| 3. Defense Atomic Support Agency, Sandia       | 1                    |
| 4. Department of the Air Force                 |                      |
| a. Space Systems Division                      |                      |
| For: Capt. W. W. Hoover                        | 1                    |
| b. Aeronautical Systems Division               | 3                    |

DISTRIBUTION LIST (continued)

|                                                                                                                  | <u>No. of Copies</u> |
|------------------------------------------------------------------------------------------------------------------|----------------------|
| c. Special Weapons Center (SWOI)                                                                                 | 2                    |
| d. Rome Air Development Center<br>For: RCSG, J. L. Briggs                                                        | 1                    |
| e. School of Aviation Medicine                                                                                   | 1                    |
| f. Air University Library, Maxwell AFB<br>For: Maj. L. C. Free                                                   | 1                    |
| g. Advanced Research Projects Agency<br>For: F. A. Koether<br>Dr. J. Huth                                        | 1<br>1               |
| h. Air Technical Intelligence Center                                                                             | 1                    |
| 5. Department of the Army                                                                                        |                      |
| a. Atomic Division                                                                                               | 1                    |
| b. Diamond Ordnance Fuze Laboratories<br>Office of the Chief of Ordnance<br>For: ORDTL 0/2<br>Mrs. E. W. Channel | 2<br>1               |
| c. Ballistic Missile Agency<br>For: ORDAB-RSI                                                                    | 2                    |
| 6. Department of the Navy                                                                                        |                      |
| a. Bureau of Naval Weapons<br>For: Code RR-12<br>Code RA-8<br>R. W. Pinnes, RR-24                                | 2<br>1<br>1          |
| b. Bureau of Ships<br>For: Lt. Cdr. F. W. Anders, Code 353                                                       | 1                    |
| c. Chief of Naval Operations                                                                                     | 1                    |

DISTRIBUTION LIST (continued)

|                                          | <u>No. of Copies</u> |
|------------------------------------------|----------------------|
| d. Naval Ordnance Laboratory             | 1                    |
| e. Naval Research Laboratory             | 1                    |
| f. Office of Naval Research              |                      |
| For: Code 429                            | 1                    |
| g. Naval Radiological Defense Laboratory | 1                    |
| 7. Lawrence Radiation Laboratory         |                      |
| For: T. C. Merkle                        | 1                    |
| Dr. R. W. Hoff                           | 1                    |
| 8. Los Alamos Scientific Laboratory      |                      |
| For: Dr. R. D. Baker                     | 1                    |
| Dr. W. Maraman                           | 1                    |
| 9. Rand Corporation                      | 1                    |
| 10. Oak Ridge National Laboratory        |                      |
| For: E. Lamb                             | 1                    |
| Dr. K. Z. Morgan                         | 1                    |
| 11. University of Pennsylvania           |                      |
| For: Dr. D. S. Murray                    | 1                    |
| 12. University of Washington, APL        | 1                    |



### FOREWORD

This is the final report on the five-watt system for the U.S. Navy Weather Station. It has been prepared for the U.S. Atomic Energy Commission in compliance with Contract AT(30-3)217. The work was completed by the Martin Marietta Corporation.



CONTENTS

|                                                       | Page |
|-------------------------------------------------------|------|
| Legal Notice .....                                    | ii   |
| Distribution List .....                               | iii  |
| Foreword .....                                        | vii  |
| Contents .....                                        | ix   |
| Summary .....                                         | xi   |
| Nomenclature .....                                    | xiii |
| I. Introduction .....                                 | 1    |
| II. Physical Description .....                        | 3    |
| A. System Installation .....                          | 3    |
| B. Thermoelectric Generator .....                     | 3    |
| C. Battery and Converter Compartment .....            | 11   |
| III. Thermoelectric Analysis .....                    | 15   |
| A. Material Section .....                             | 15   |
| B. Thermoelectric Efficiency and Element Sizing ..... | 17   |
| IV. Thermal Analysis .....                            | 21   |
| A. Insulation Heat Losses .....                       | 24   |
| B. Excessive Thermal Power in Fuel .....              | 25   |
| C. Analysis of Buried System .....                    | 27   |
| V. Fuel Form and Shielding Requirements .....         | 29   |
| A. Fuel Form .....                                    | 29   |
| B. Shielding Requirements .....                       | 31   |
| VI. Generator Assembly .....                          | 35   |

CONTENTS (continued)

|                                                                                         | Page |
|-----------------------------------------------------------------------------------------|------|
| VII. Electrical System . . . . .                                                        | 45   |
| A. Battery . . . . .                                                                    | 45   |
| B. DC-to-DC Converter . . . . .                                                         | 47   |
| VIII. SNAP 7C Operational Tests . . . . .                                               | 53   |
| A. SNAP 7C Generator . . . . .                                                          | 53   |
| B. Converter and Battery . . . . .                                                      | 54   |
| C. SNAP 7C System Tests . . . . .                                                       | 54   |
| IX. Environmental Testing of SNAP 7C Electrical Generating and Storage System . . . . . | 61   |
| A. Description of Test Specimens . . . . .                                              | 61   |
| B. Test Conditions . . . . .                                                            | 61   |
| C. Test Methods and Results . . . . .                                                   | 66   |
| References . . . . .                                                                    | 99   |
| Appendix A--Thermal Analysis of Buried Container SNAP 7C Emplacement . . . . .          | A-1  |
| Appendix B--Shielding Kilocurie Amounts of Strontium-90 . . . . .                       | B-1  |
| Appendix C--SNAP 7C Engineering Drawings, Weights and Dimensions . . . . .              | C-1  |

## SUMMARY

The objectives of the SNAP 7C program were to design, manufacture, test, and deliver a five-watt electric generating system for a U.S. Navy Weather Station in Antarctica. This report describes the 10-watt Sr-90 thermoelectric generator, the dc-dc converter, batteries and weather station housing that were delivered to Antarctica in December 1961. Subsequent checkout tests at McMurdo Sound in January 1962 indicated satisfactory performance of the weather station power supply.

In addition to delivering the power supply, many tests were required for the SNAP 7C system to demonstrate its qualifications for conformance to the contract statement of work. Such tests as electrical performance, shock and vibration, environmental temperature extremes and many others are explained in detail. This program was initiated in October 1960, and delivery of the complete SNAP 7C system was made to Davisville, Rhode Island for overseas shipment in October 1961.



### NOMENCLATURE

#### Chapter III

|              |                                                                                 |
|--------------|---------------------------------------------------------------------------------|
| $A_n$        | cross-sectional area of N element ( $\text{cm}^2$ )                             |
| $A_p$        | cross-sectional area of P element ( $\text{cm}^2$ )                             |
| $C$          | contact resistivity ( $\mu\text{-ohm}\cdot\text{cm}^2$ )                        |
| $D_n$        | N element diameter (cm)                                                         |
| $D_p$        | P element diameter (cm)                                                         |
| $e$          | open circuit voltage (volts)                                                    |
| $K$          | thermal conductivity of element pair (watts/ $^\circ\text{C}$ )                 |
| $k_n$        | thermal conductivity of N element (watts/cm/ $^\circ\text{C}$ )                 |
| $k_p$        | thermal conductivity of P element (watts/cm/ $^\circ\text{C}$ )                 |
| $l$          | thermoelement length                                                            |
| $N$          | number of thermoelements                                                        |
| $R_c$        | hot junction contact resistance (ohms)                                          |
| $R_i$        | thermoelement internal resistance (ohms)                                        |
| $R_l$        | load resistance (ohms)                                                          |
| $\alpha_n$   | N element Seebeck coefficient ( $\mu\text{volts}/^\circ\text{C}$ )              |
| $\alpha_p$   | P element Seebeck coefficient ( $\mu\text{volts}/^\circ\text{C}$ )              |
| $T_I$        | hot junction temperature ( $^\circ\text{K}$ )                                   |
| $\Delta T_t$ | thermoelement temperature difference ( $^\circ\text{K}$ )                       |
| $v$          | voltage                                                                         |
| $Z$          | Figure of Merit ( $^\circ\text{C}^{-1}$ )                                       |
| $\alpha$     | total Seebeck coefficient for element pair ( $\mu\text{volts}/^\circ\text{C}$ ) |
| $\eta$       | thermoelectric conversion efficiency                                            |

$\mu$  Prefix meaning  $10^{-6}$

Chapter IV

|                   |                                                                                                          |
|-------------------|----------------------------------------------------------------------------------------------------------|
| $A_c$             | area available for heat transfer by convection ( $\text{ft}^2$ )                                         |
| $A_r$             | area available for heat transfer by radiation ( $\text{ft}^2$ )                                          |
| $A$               | profile area of fin ( $\text{ft}^2$ )                                                                    |
| $e_s$             | fin efficiency                                                                                           |
| $h_c$             | heat transfer coefficient for convection ( $\text{Btu}/\text{hr}\cdot\text{ft}^2\cdot{}^\circ\text{F}$ ) |
| $h_r$             | heat transfer coefficient for radiation ( $\text{Btu}/\text{hr}\cdot\text{ft}^2\cdot{}^\circ\text{F}$ )  |
| $k$               | thermal conductivity ( $\text{Btu}/\text{hr}\cdot\text{ft}\cdot{}^\circ\text{F}$ )                       |
| $N$               | number of fins on generator shield surface                                                               |
| $r_1$             | inner radius of insulation (ft)                                                                          |
| $r_2$             | outer radius of insulation (ft)                                                                          |
| $q$               | rate of heat flow ( $\text{Btu}/\text{hr}\cdot\text{watts}$ )                                            |
| $q_{\text{conv}}$ | rate of heat flow by convection ( $\text{Btu}/\text{hr}\cdot\text{watts}$ )                              |
| $q_{\text{rad}}$  | rate of heat flow by radiation ( $\text{Btu}/\text{hr}\cdot\text{watts}$ )                               |
| $\Delta T_i$      | temperature difference between inner and outer insulation surfaces                                       |
| $W$               | fin length (ft)                                                                                          |
| $W_c$             | fin length plus one-half fin thickness (ft)                                                              |
| $\delta$          | one-half fin thickness (ft)                                                                              |
| $\epsilon$        | variable used in calculation of fin efficiency (dimensionless)                                           |
| $\epsilon_s$      | surface emissivity (dimensionless)                                                                       |

Chapter IX

|     |                   |
|-----|-------------------|
| $a$ | amperes           |
| cps | cycles per second |

DA double amplitude displacement  
MS millisecond  
Tc thermocouple  
v volts  
W watts

## I. INTRODUCTION

A radioisotope fueled thermoelectric generator system has been developed by the Martin Marietta Corporation for the Atomic Energy Commission/U. S. Navy (Contract AT(30-3)-217, SNAP 7 Program). This system will provide electrical power for a five-watt remote weather station which will automatically broadcast local weather conditions at regular intervals from Little America V, Antarctica.

The system was designed to operate in the environmental extremes of the Antarctic Continent without attendance or maintenance for periods of two years, and to have a useful life of 10 years when maintained in accordance with Contractor Instructions (Ref. 4). It will transmit weather data to the base at McMurdo Sound.

The SNAP 7C System consists of a thermoelectric generator, a dc-dc voltage converter, and a battery pack to serve as a reservoir for the storage of electrical energy.



## II. PHYSICAL DESCRIPTION

The generator, battery-converter package, and U.S. Navy weather station acquisition and radio transmission equipment are enclosed in a water tight, two-piece cylindrical container 36 inches in diameter and 96 inches high. The system is installed as shown in Figs. II-1 and II-2.

### A. SYSTEM INSTALLATION

The system enclosure container is buried in the ice so only the antenna-instrument mast and its bushing are exposed. This arrangement allows the waste heat from the generator to be used to protect the converter battery package and weather station equipment from the environmental temperature extremes. The container air temperature ranges between  $\sim 20^\circ$  and  $60^\circ$  F during the year. In addition, the dampening of the generator external temperature fluctuations yields more uniform generator output.

The container rests on a wooden platform of 2 by 8-inch planks buried in the ice. Additional planks are employed to support the outriggers at the top of the container. The two sets of planks will keep the container from sinking into or tipping on the ice.

The thermoelectric generator is located at the bottom of the system container. The watertight battery-converter enclosure is mounted on a removable panel immediately above the generator. Weather station equipment is mounted on a separate panel above the battery-converter pack. A styrofoam thermal insulation plug fills the top of the container.

### B. THERMOELECTRIC GENERATOR

The SNAP 7C thermoelectric generator consists of a Sr-90 heat source, a thermoelectric conversion circuit, a heat rejection system and a biological shield. Figures II-3 and II-4 show the configuration of the generator.

The Sr-90 heat source, 250 watts thermal at start of life, will power the generator for 10 years. The isotope fuel is formed into flat disks and sealed within Hastelloy C cylindrical containers. Four fuel containers are installed in a Hastelloy C fuel block which is used to conduct the heat energy to the thermoelement hot junctions. The flat surfaces of the fuel block that contact the thermoelements are coated with aluminum oxide to electrically insulate the thermoelements and allow the heat to be transferred.

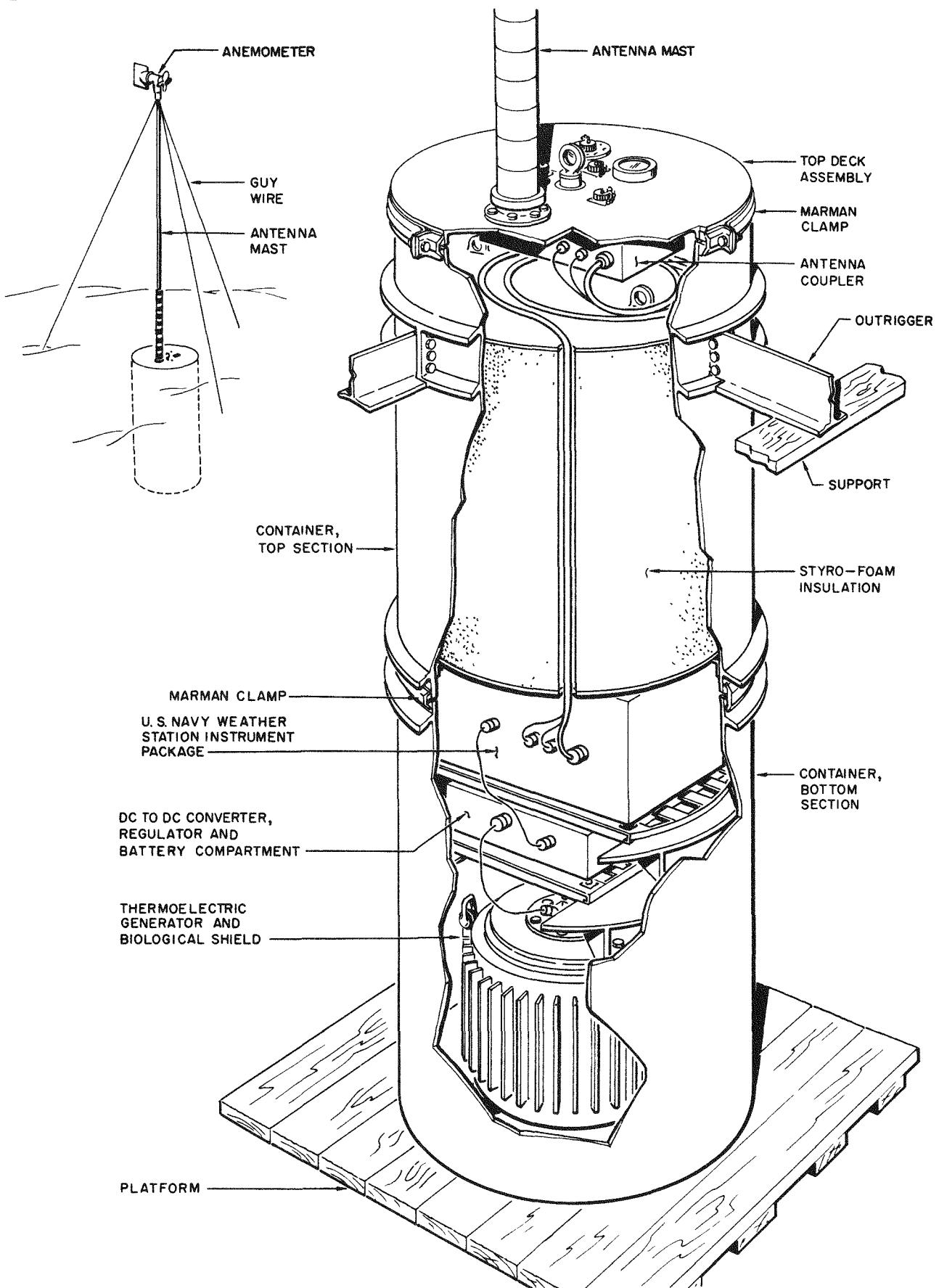



Fig. II-1. SNAP-7C Electric Generation System Installation

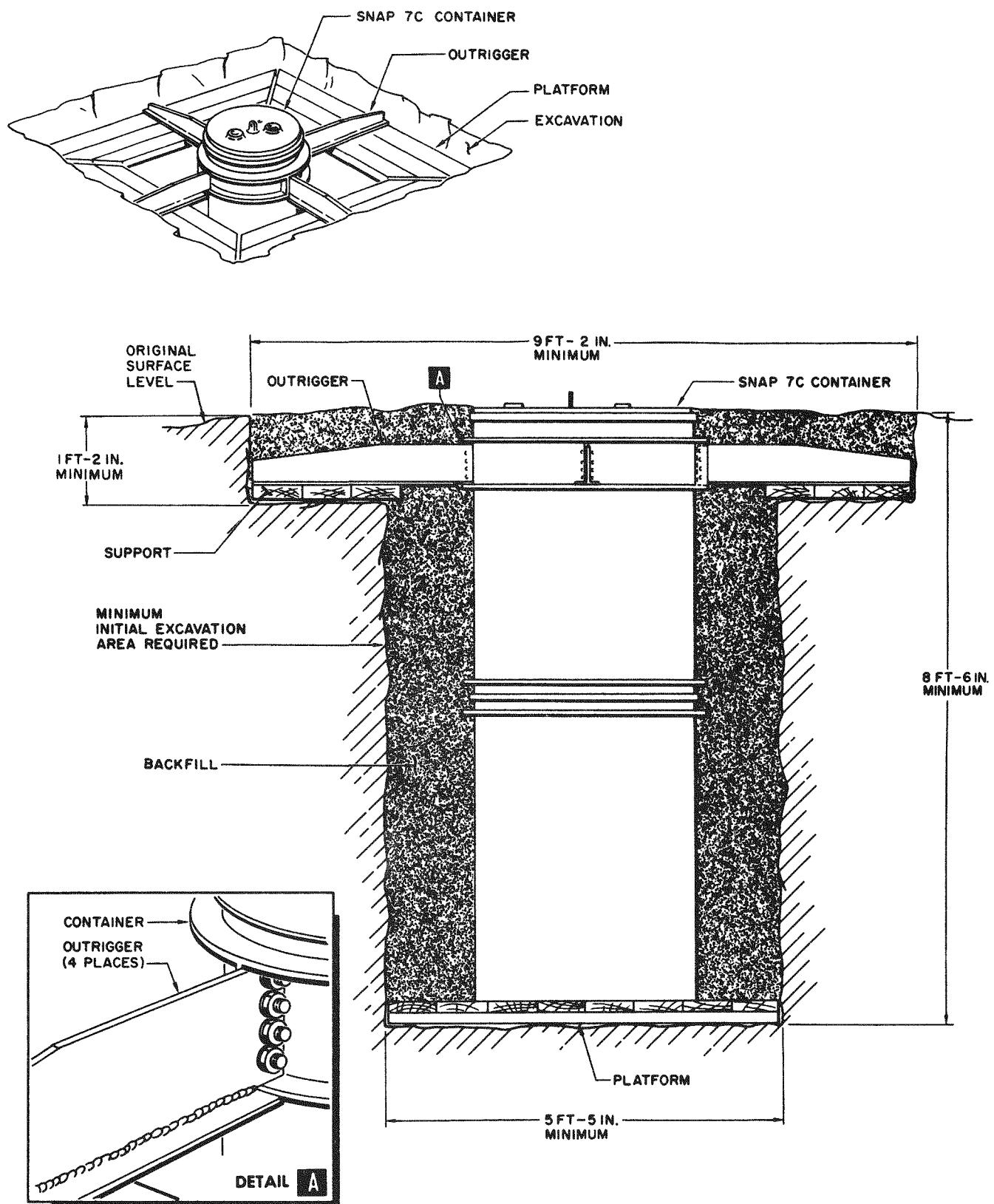



Fig. II-2. Installed Container and Platforms

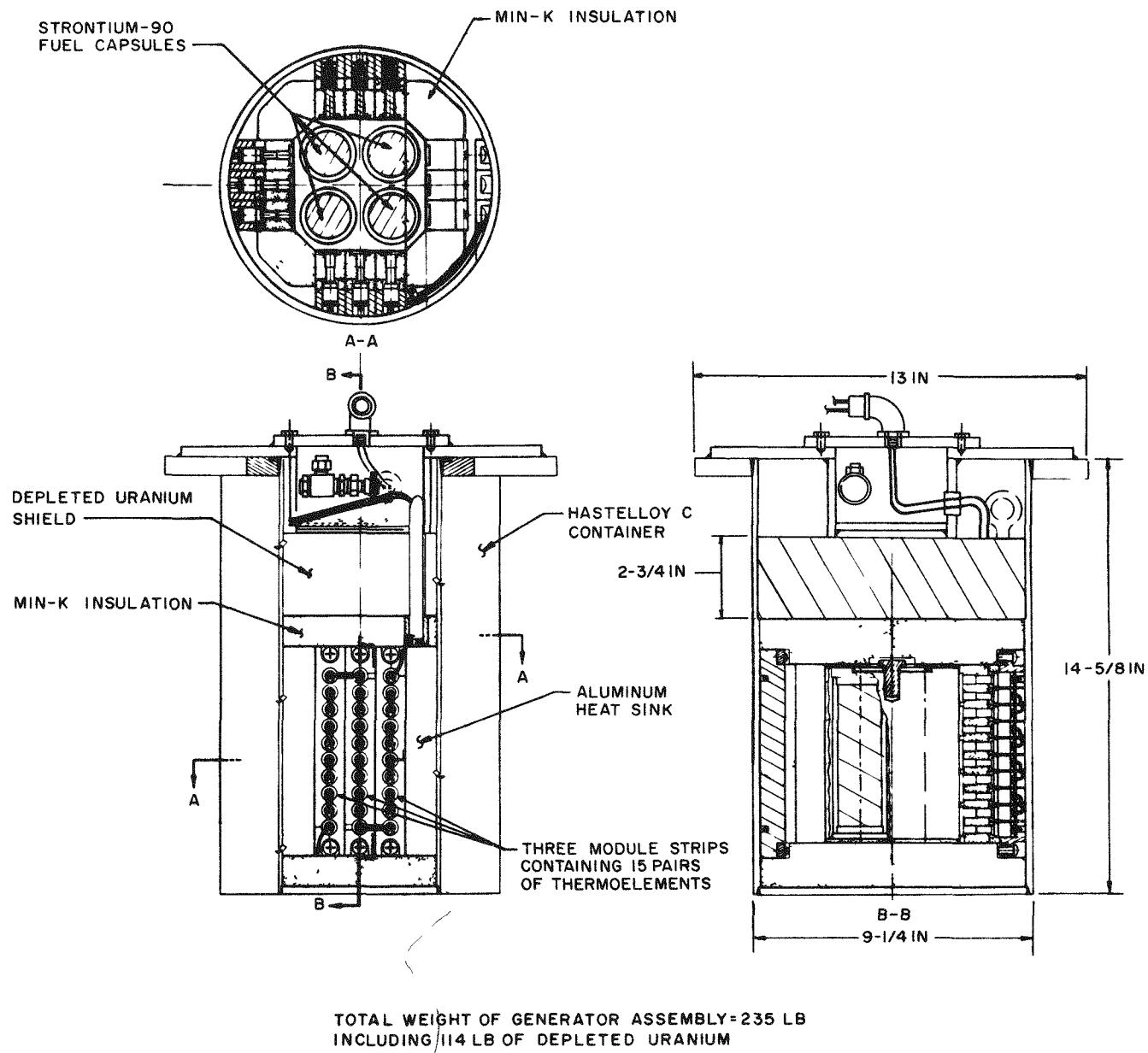



Fig. II-3. Generator Details

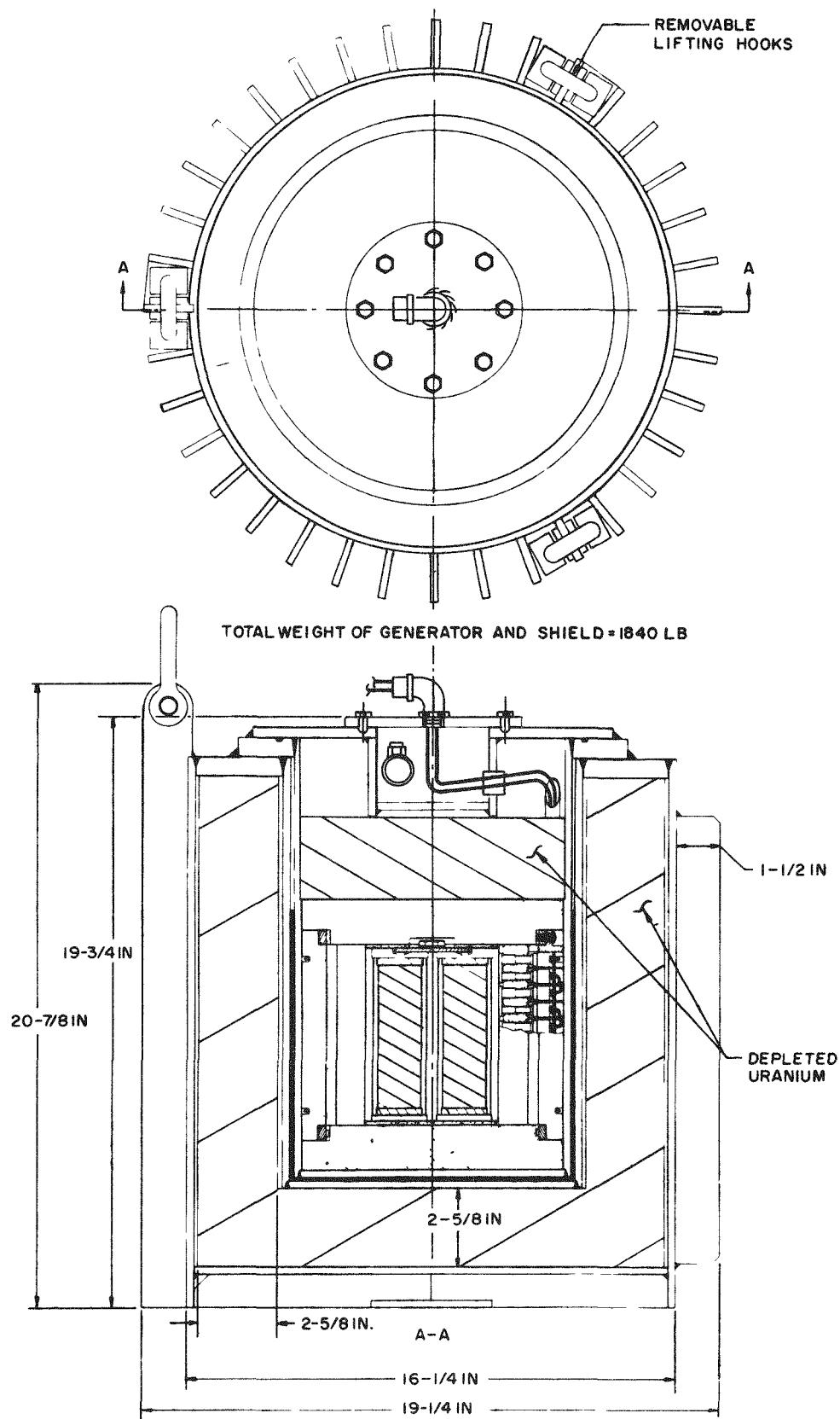



Fig. II-4. Biological Shield

A pair of thermoelements are attached to an iron shoe that serves as a hot junction connection and transfers heat from the fuel block to the lead telluride thermoelectric elements (see Figs. II-5 and II-6). A copper cap is soldered to the cold end of each element to conduct heat from the element and to serve as an electrical connection. Martin Hard Coat aluminum hardware is used to conduct heat from the copper cap to the heat sink. The hard coat serves as an electrical insulation.

Sixty pairs of lead telluride thermoelements are used to convert a part of the decay heat to 10 watts of electrical power.\* Five pairs are assembled into module strips. Three module strips are assembled on each of the four sides of the fuel block. The remaining volume around the fuel block is filled with Johns-Manville Min-K insulation. The fuel, fuel block, thermoelectric elements and associated hardware are contained within a Hastelloy C can.

The generator housing is flushed and backfilled with one atmosphere of an inert gas. The flushing and backfilling removes the oxygen that acts as poison to the thermoelectric elements. By changing the gas at maintenance periods and replacing it with a gas that is a poorer thermal conductor, it is possible to obtain a stepwise power flattening method. This method alleviates the thermal output reduction from the isotope as it decays and allows the generator to meet design power requirements for a 10-year period.

When the generator is operating in a 70° F ambient environment, the hot junction temperature at the beginning of life is approximately 920° F. At the end of service life, this will decrease to about 820° F under the same ambient conditions.

The generator container is installed in the biological shield container. Mercury between the containers serves as a heat conducting medium. The heat rejected at the cold junction is then conducted through the biological shield to the 36 fins mounted on the outside of the shield container. This rejected heat is utilized to maintain a temperature of 20° to 60° F in the system container enclosure.

Depleted uranium metal is used for radiation shielding. The top portion of the shield is contained in the same can as the generator. The shielding on the sides and bottom consists of a separate assembly contained in a Hastelloy C shell. The shielding thickness is sufficient to safely meet Interstate Commerce Commission (ICC) shipping and handling requirements.

---

\*Five watts are lost in the converter and battery resulting in five watts total system output.

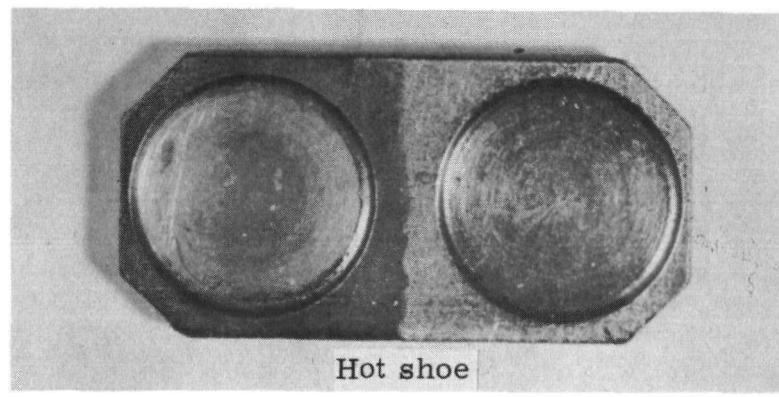
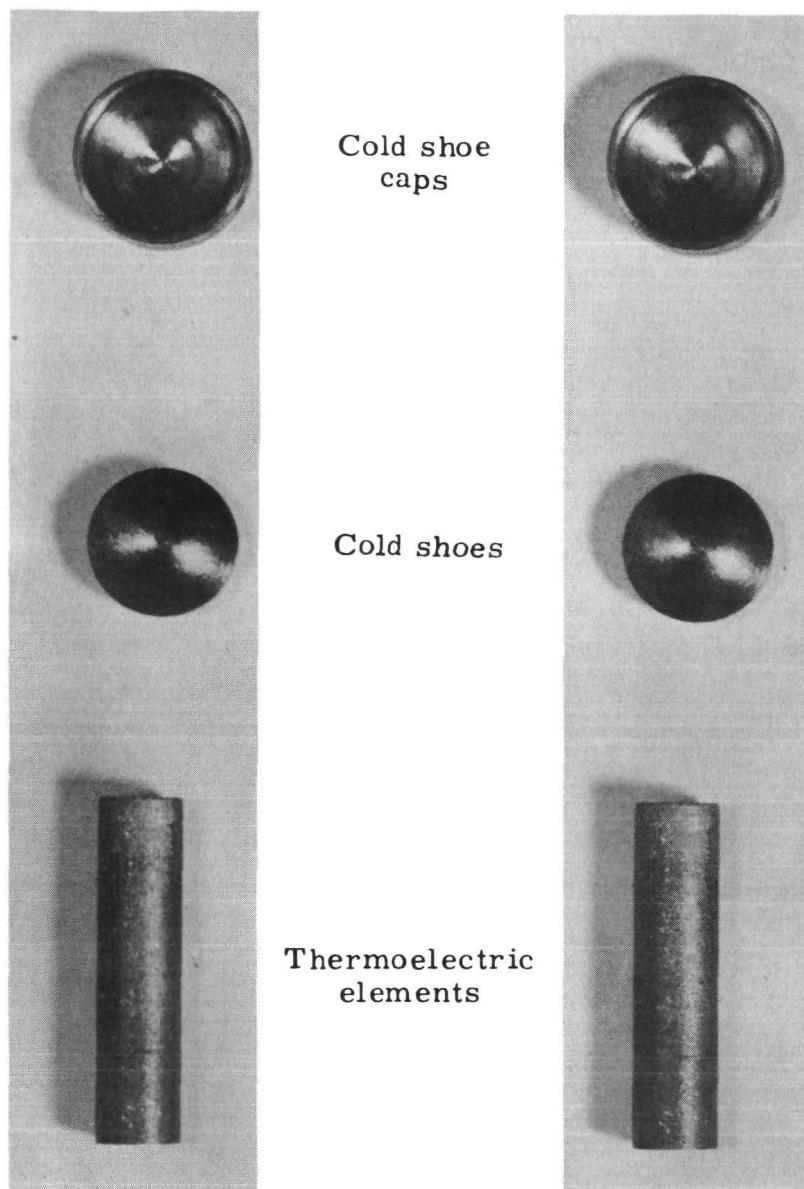




Fig. II-5. Components of Thermoelectric Couple

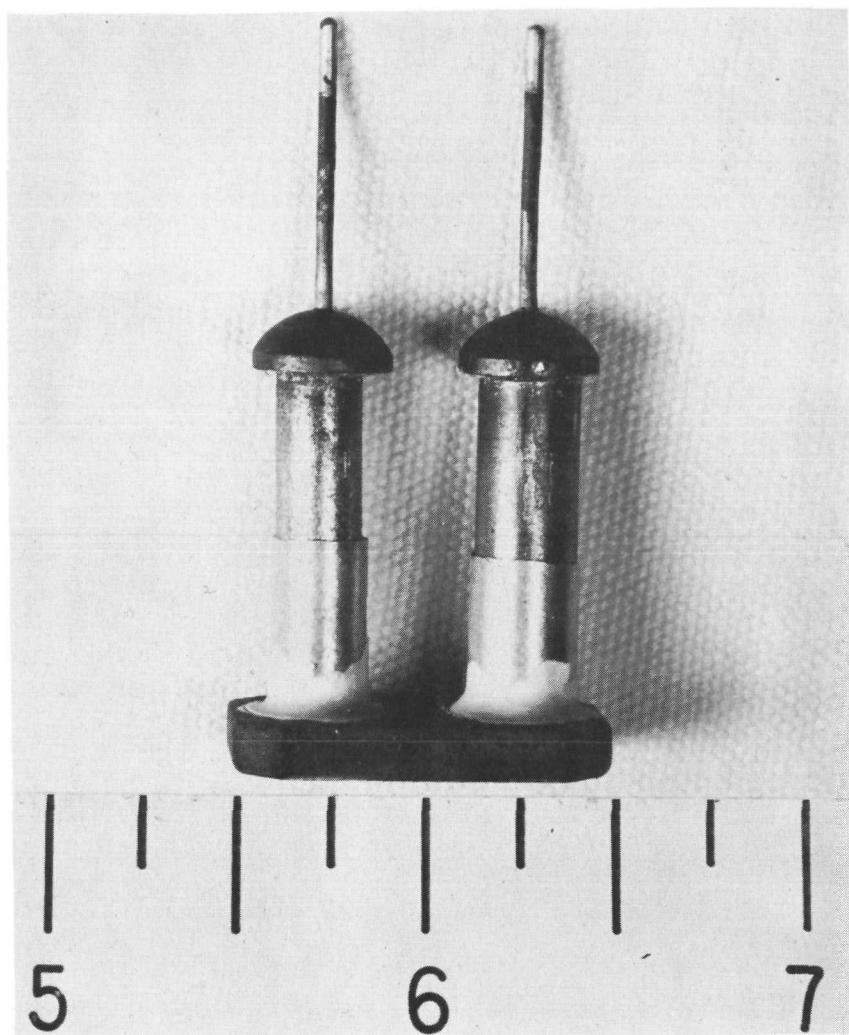



Fig. II-6. SNAP 7C Thermoelectric Couple

Due to the possible hazards associated with the use of a radio-isotope, very stringent requirements were placed on isotope containment. The Sr-90 isotope, used in the titanate form, is virtually insoluble. Disks of the compacted and sintered isotope were sealed in Hastelloy C containers. This material was chosen because of its very good structural qualities and its excellent corrosion resistance. It was calculated that the fuel container would retain the Sr-90 titanate for over 1000 years if submerged in sea water. This would be true even if the corrosion rate was double that found through tests at the Wrightsville Beach Corrosion Center, N.C. The Hastelloy C fuel container, in conjunction with the generator housing and the system container, provides triple containment for the radioisotope.

### C. BATTERY AND CONVERTER COMPARTMENT (see Fig. II-7)

The battery and converter compartment is a steel container that houses the battery and converter. It contains the input and output electrical connectors in addition to the interconnecting wiring and test circuits as illustrated in Fig. II-8. A pressure relief valve prevents pressure buildup due to possible battery gassing. A calorimeter is installed to monitor the generator output voltage and transmit the data to the remote receiving station.

#### 1. Battery

The battery is a 10-ampere-hour, sintered plate, nickel-cadmium type (Sonotone 24-1-H120) which provides high current service and cold temperature operation to -65° F. The battery is made up of 22 cells which are connected in electrical series and tapped to provide -4, -8, -12, and -28 volts.

All cells have plastic cases and are housed together in a steel battery case. The assembly of the cells within the steel case is such that a cell may be removed and replaced if it is accidentally damaged during assembly. The cells contain a built-in venting system that prevents spilling when the battery is operated in any position, but permits the escape of the small amount of gas that may form while the battery is being charged. The battery does not form gas during discharge.

#### 2. DC-to-DC Converter

The dc-to-dc converter is an epoxy resin potted unit with two input terminals and eight output terminals. The low voltage d-c output from the thermoelectric generator is connected to the converter which changes the direct current to an alternating voltage and then by means

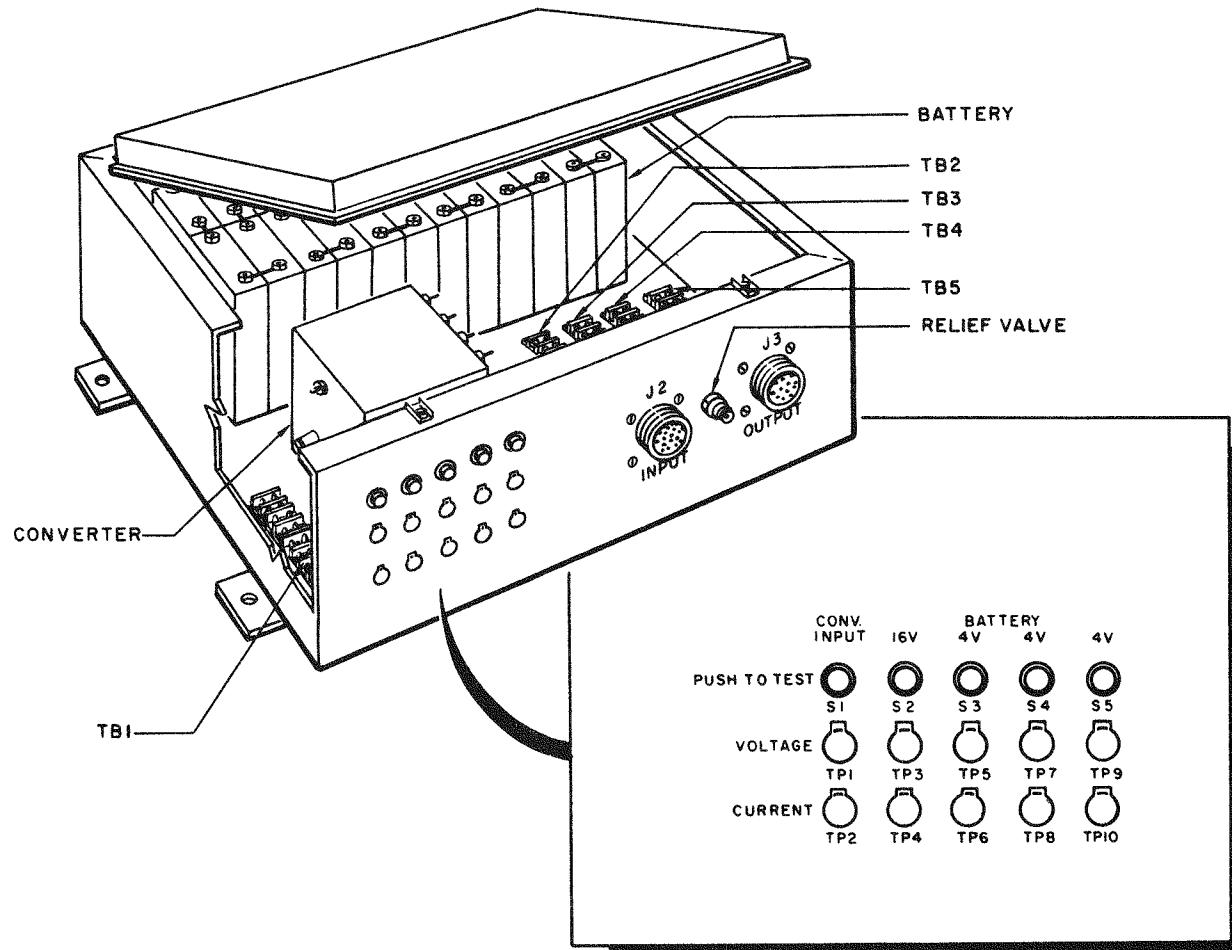



Fig. II-7. Battery and Converter Compartment

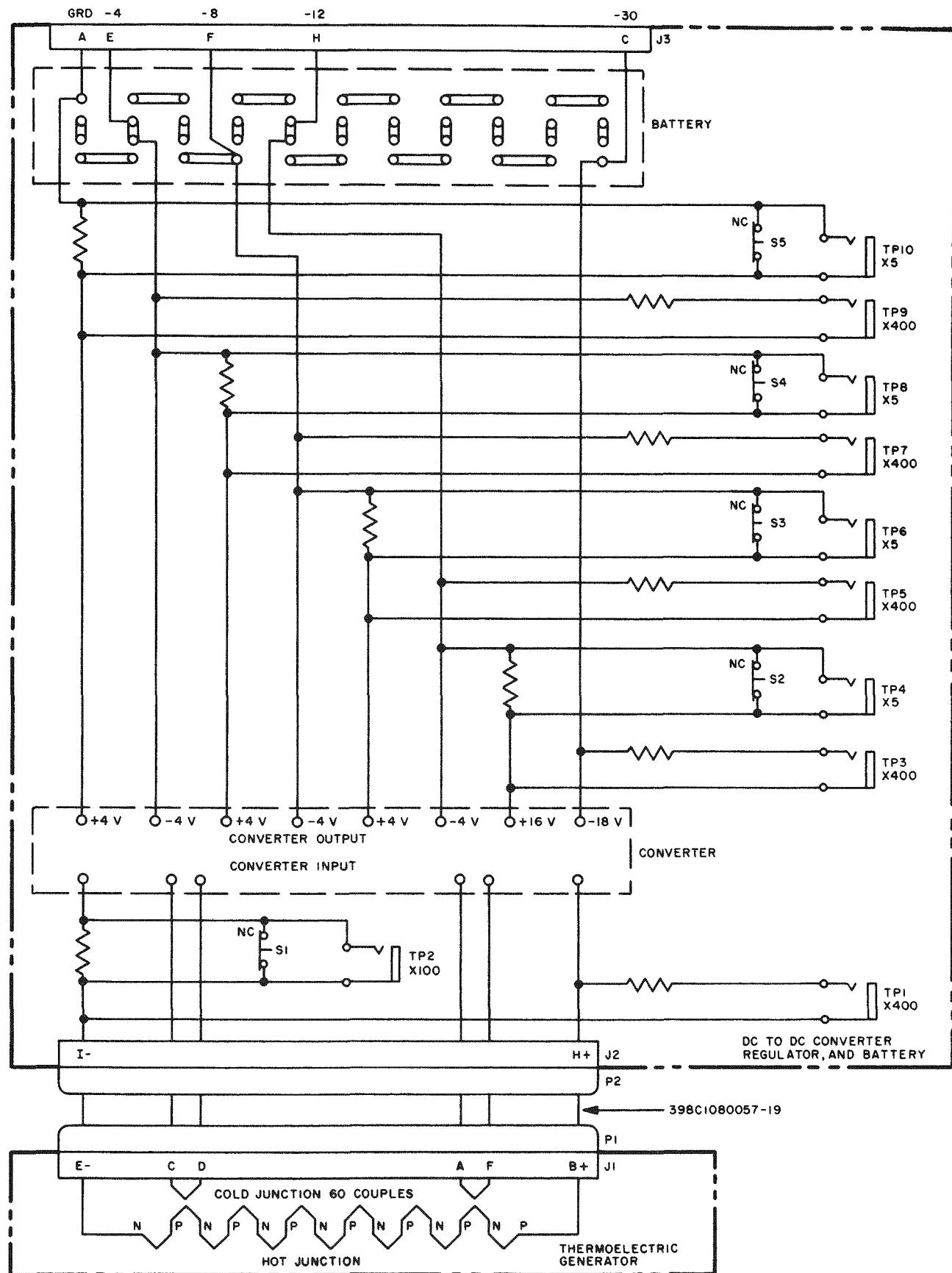



Fig. II-8. Battery and Converter Compartment Schematic

of a transformer, steps up the voltage. There are three 4-volt output sections and one 18-volt output section, each output being rectified and independently applied to cells of the battery. The voltage of each output circuit is closely regulated to provide a fixed potential charging system for each section of the battery. The converter provides a fixed load on the thermoelectric generator, regardless of output load, to maintain stable operation.

### III. THERMOELECTRIC ANALYSIS

#### A. MATERIAL SELECTION

The basic parameter involved in the choice of a thermoelectric material to operate over a given temperature range is the figure of merit,  $Z$ . Materials exhibiting high figures of merit will give higher heat to electrical conversion efficiencies than those with low values. This is especially important in radioisotope fueled thermoelectric generators because of the high cost of the isotope. The figure of merit is defined by:

$$Z = \frac{\alpha^2}{k\rho}$$

where

$\alpha$  = Seebeck coefficient

$k$  = thermal conductivity

$\rho$  = electrical resistivity.

The figure of merit, however, is not the sole basis for thermoelectric material selection. Other factors which must be taken into consideration are the structural stability and bonding characteristics of the material. If a thermoelement is brittle and should happen to crack while within the generator, an open circuit will result. Or, if low electrical resistance bonds cannot be made between the thermoelement and its hot and cold shoes, large electrical losses will occur at these junctions, thus resulting in lowered heat to electricity conversion efficiencies.

Lead telluride is the thermoelectric material which has the highest figure of merit over the temperature range considered for this generator. Even though it is a brittle material, it still possesses enough structural stability to be usable in a properly designed generator and relatively low junction resistances can be obtained. Further, this material is readily available from several manufacturers.

The lead telluride that is used as a thermoelectric material is a semiconductor that is doped with carefully controlled, minute concentrations of impurities in much the same manner as a transistor. Also, like a transistor, the properties of lead telluride thermoelectric material will vary radially with the type and concentration of doping and the method of manufacture. Therefore, a further choice of the type

of lead telluride material to be used must also be made. This choice is based on the same considerations that were given previously in the basic selection of a material.

Samples of lead telluride materials were obtained from Transitron, Incorporated, located in Wakefield, Massachusetts, for comparison with the Martin Marietta produced material. These samples were bonded to simulate the hot and cold shoe installation in the generator (Figs. II-5 and II-6) and operated over the anticipated temperature differential expected to be the end of life condition (700° to 320° K). Measurements made during these tests were used to calculate the Seebeck coefficient, electrical resistivity and electrical contact resistivity of the element. The properties of the test samples were statistically averaged and are shown with independently measured values of thermal conductivity in Table III-1.

TABLE III-1  
Summary of Module Test Thermoelectric Properties\*

|                                                     | Average Properties |                   |                   |                   |
|-----------------------------------------------------|--------------------|-------------------|-------------------|-------------------|
|                                                     | Martin N           | Transitron N      | Martin P          | Transitron P      |
| Seebeck voltage ( $\mu$ v/ $^{\circ}$ C)            | 204                | 257               | 177               | 213               |
| Resistivity ( $\mu$ ohm-cm)                         | 1310               | 2870              | 2675              | 4300              |
| Contact resistivity ( $\mu$ ohm-cm $^2$ )           | 386                | 575               | 830               | 760               |
| Thermal conductivity (watts/cm $^2$ / $^{\circ}$ C) | 0.0199             | 0.0180            | 0.0208            | 0.0196            |
| Figure of merit ( $^{\circ}$ C $^{-1}$ )            | 1.585 x $10^{-3}$  | 1.325 x $10^{-3}$ | 0.564 x $10^{-3}$ | 0.538 x $10^{-3}$ |

\*Based on a hot end temperature of 700° K and a cold end of 320° K.

The N and P designations given in Table III-1 simply represent the two legs of materials used in a thermoelectric couple. The N

material develops a plus to minus potential in going from the hot to cold end, while P material develops a minus to plus potential. In this manner, N and P materials may be connected in series to form a couple, and an additive rather than a bucking voltage output is obtained.

Based on the figures of merit determined from the measured properties, the best combination of thermoelements would be the Martin Marietta N and P types. Operation over long periods of time showed these materials to be durable and to experience only slight degradation in performance.

## B. THERMOELECTRIC EFFICIENCY AND ELEMENT SIZING

Once a thermoelectric material has been selected, based on a specified temperature range, the number and size of the thermoelements and their conversion efficiency must be determined. These values may be obtained from the desired voltage and power output of the generator to be produced. The thermoelement properties listed in Table III-1 were used in these determinations.

The maximum heat to electricity conversion efficiency of a thermoelement operating over a specified temperature range is given by:

$$\eta = \frac{\Delta T_t}{T_I} \cdot \frac{\left( \frac{R_1}{R_i + R_c} \right)}{\left( \frac{R_1}{R_i + R_c} + 1 \right) + \frac{K(R_c + R_i) \left( \frac{R_1}{R_i + R_c} + 1 \right)^2}{\alpha^2 T_I} - \frac{\Delta T_t \left( \frac{R_i}{2} + R_c \right)}{T_I (R_i + R_c)}}$$

where

$\alpha = \alpha_n + \alpha_p$  = combined Seebeck coefficient (v/°C)

$\alpha_n$  = Seebeck coefficient of N element (v/°C)

$\alpha_p$  = Seebeck coefficient of P element (v/°C)

$R_1$  = load resistance

$$R_i = \frac{\rho l}{A} = \text{thermoelement resistance (ohms)}$$

$\rho$  = thermoelement resistivity (ohm-cm)

$l$  = thermoelement length (cm)

$A$  = thermoelement cross sectional area ( $\text{cm}^2$ )

$$R_c = \frac{C}{A} = \text{contact resistance (ohms)}$$

$C$  = contact resistivity ( $\text{ohm-cm}^2$ )

$\Delta T_t$  = thermoelement temperature difference ( $^{\circ}\text{K}$ )

$T_I$  = thermoelement hot junction temperature ( $^{\circ}\text{K}$ )

$K = \frac{kA}{l} = \text{thermal conductance (watts/}^{\circ}\text{C)}$

$k$  = thermoelement thermal conductivity (watts/ $\text{cm} \cdot ^{\circ}\text{C}$ ).

The origin of this expression will not be clarified in this report. For the means of deriving this equation and a complete explanation of thermoelectric theory, reference is made to "Semiconductor Thermoelements and Thermoelectric Cooling," by Ioffe.

Other expressions required for the optimum sizing of the thermoelements are:

$$e = N\alpha\Delta T_t$$

and

$$\frac{R_1}{R_i + R_c} = \left[ 1 + \frac{\alpha^2 T_I}{K(R_c + R_i)} - \frac{\alpha^2 \Delta T_t \left( \frac{R_i}{2} + R_c \right)}{K(R_c + R_i)^2} \right]^{1/2}$$

where

$e$  = open circuit voltage of the generator (volts)

$N$  = thermoelement pairs (No.)

An iterative balance may now be performed between the previous three equations and the insulation losses, given in Chapter IV, and all the thermal and electrical characteristics of the generator may be determined. In this procedure the generator system is treated as though it is a simple d-c electrical circuit. Either the thermoelement length or diameter must be arbitrarily specified. The thermoelement length was chosen to be 2.54 centimeters for the design of this particular generator and the material properties used were those listed in Table III-1 for the Martin N and P thermoelements. Based on these inputs, the generator characteristics listed in Table III-2 were determined.

TABLE III-2  
Generator Physical and Operational Characteristics

|                                            | <u>N-Type</u>                       | <u>P-Type</u> |
|--------------------------------------------|-------------------------------------|---------------|
| <b>Thermoelement</b>                       |                                     |               |
| Length (cm)                                | 2.54                                | 2.54          |
| Diameter (cm)                              | 0.585                               | 0.705         |
| End of life thermal power (watts)          | 200 (based on initial fuel loading) |               |
| Insulation losses (see Chapter IV) (watts) | 50.75                               |               |
| Thermoelement efficiency (%)               | 6.23 (end of life)                  |               |
| Generator efficiency (%)                   | 4.65 (end of life)                  |               |
| Power output (watts(e))                    | 9.3 (end of life)                   |               |
| Element pairs (No.)                        | 60                                  |               |
| Open circuit voltage (volts)               | 8.70 (end of life)                  |               |
| Load voltage (volts)                       | 4.71 (end of life)                  |               |

It may be noted that the end of life power output is given as 9.3 watts(e) which is slightly lower than the design goal of 10 watts(e). The design goal will be achieved by altering the thermal losses through the generator insulation. This will be accomplished by changing the insulation gas fill at each maintenance period with successively poorer conducting gases. The range of gases to be used will vary from

highly conductive helium at the beginning of life when excess thermal power is available to a poorer conductor such as xenon at the end of life. A thorough discussion of this method of varying the thermal conductivity of Johns-Manville Min-K insulation may be found in Chapter IV.

#### IV. THERMAL ANALYSIS

The analysis of heat flow and temperatures within the SNAP 7C system was divided into two general areas: thermal analysis of the outer shell of the generator and thermal analysis of the SNAP 7C system with the generator as a heat source. The outer shell analysis was necessary to determine the temperature difference between the thermoelement hot and cold junctions and the heat losses through the Min-K 1301 thermal insulation. The thermal analysis of the system with the generator as a heat source was required to determine the actual operating temperature of the generator and other temperature-sensitive system components.

The most critical temperature in the thermal analysis is the hot junction temperature. Lead telluride thermoelectric elements deteriorate rapidly by sublimation at temperatures greater than 1000° F. For an extended period of life such as is desired in the SNAP 7C generator, the maximum tolerable hot junction temperature was chosen as 980° F. This fixes the maximum beginning of life temperature and, assuming no change in the thermal properties of the generator, enables calculation of the end of life hot junction temperature as 800° F.

The initial step in the thermal analysis of the generator was to determine the ambient conditions in which the generator will operate. Given a rough configuration of the generator, the outer heat rejecting surface can be designed to maintain the inner temperatures at desired levels. The outer shell of the generator acts as the heat rejection surface. The design of the fuel block, thermoelements, inner container shield and outer container fixes the minimum dimensions of the outer generator silhouette. Additional surface in the form of thermal fins could be added if they are required for an additional heat rejection capability.

A thermal study was made to determine the best location for the generator radiation shielding. The choice of location included either completely enclosing the heat source, thus requiring a shield of smaller volume, or completely enclosing the generator. The study indicated that the shield should be located on the outside of the generator. The increase in the fuel block surface area, resulting from incorporation of the shield into the fuel block, results in lower hot junction temperatures and higher insulation heat losses, thus reducing generator efficiency.

The generator must be adaptable to operation in two different environments:

- (1) During shipment, when the air temperature may go as high as 125° F in an enclosed space. (However, the generator

terminals may be short-circuited during shipment producing lower hot junction temperatures due to the Peltier effect.)

(2) Installed in its container that is buried in the ice in the Antarctic.

Condition (2) poses no problem to cooling the generator surface. The generator design point is for operation in the temperature range resulting from this condition.

Since there is a possibility of high ambient temperature and lack of circulating air during shipment, the surface of the generator had to be designed so that it operated at temperatures no higher than 175° F to prevent the excessively high temperatures damaging the thermoelements. This was accomplished in the following manner.

The maximum heat input to the generator was anticipated to be 256.5 watts. The heat lost from the generator surface is given by:

$$q_{\text{total}} = q_{\text{conv}} + q_{\text{rad}} = 256.5 \text{ watts} \quad (1)$$

where

$$q_{\text{conv}} = h_c A_c \Delta T \text{ (heat rejected by convection)} \quad (2)$$

$$q_{\text{rad}} = h_r A_r \Delta T \text{ (heat rejected by radiation)} \quad (3)$$

The generator surface was considered to consist of a cylinder 16.25 inches in diameter and 17 inches high with a number of 1.5-inch long fins running longitudinally along the cylindrical surface. The 1.5-inch fin length represents an optimum for Hastelloy C, a poor conductor of heat, but which is desirable for its corrosion resistance. The number of fins required was determined as follows.

The surface area available for radiant heat transfer is approximately the area of the cylinder taken over the edge of the fins, including the top of the cylinder, but excluding the bottom (refer to "Heat Transmission," McAdams).

$$A_r = 8.59 \text{ ft}^2$$

The convective heat transfer area is approximately the area of the cylinder excluding the bottom plus the effective fin area. The effective fin area is the total fin surface area multiplied by the fin efficiency. The fin efficiency accounts for the reduced heat rejection capability of the fin that results from the temperature gradient along its length. The fin efficiency is given by (Ref. 3, p 72):

$$e_s = \left( \frac{1}{\sqrt{2\epsilon}} \right) (\tanh \sqrt{2\epsilon}) \quad (4)$$

where

$$\epsilon = \frac{W_c^{3/2}}{\sqrt{h_c/kA}} \quad (5)$$

W = fin length

$W_c = W + \delta$

$\delta$  = one-half of fin thickness (0.125 inch)

$$h_c = 0.27 (\Delta T)^{0.25} \quad (\text{Ref. 3, p 474}) \quad (6)$$

The resulting fin efficiency is then:

$$e_s = 0.826$$

Therefore:

$$A_c = 7.46 + 0.291 N \text{ ft}^2$$

where

N = number of fins required

The radiant heat transfer coefficient was determined by:

$$h_r = \sigma \epsilon_s \frac{[(T_s/100)^4 - (T_r/100)^4]}{T_s - T_r} \quad (7)$$

where

$\epsilon_s$  = surface emissivity = 0.50

$\sigma$  = Stefan-Boltzmann constant = 0.173 (Btu/ft<sup>2</sup>-hr-°R<sup>4</sup>)

$T_s$  = generator surface temperature (°R)

$T_r$  = ambient temperature (°R)

The heat rejected by the outer surface is thus given by (Eqs (1), (2) and (3)):

$$q_{\text{total}} = (0.718)(7.46 + 0.291N)(50) + (0.692)(8.59)(50)$$

which must equal the total design input of 877 Btu/hr. From this consideration

$$N = 29.9 \text{ fins.}$$

It was thus shown that a minimum of 30 fins was required on the outer surface. To supply a margin of safety to the calculation, the number of fins actually used was 36.

#### A. INSULATION HEAT LOSSES

A limited test program was conducted to determine the thermal conductivity of the Min-K insulation filled with various gases. The gas serves a twofold purpose, preventing sublimation of the thermoelements and changing the thermal conductivity of the insulation to reduce heat losses as the heat input to the generator is reduced by isotopic decay. (A less conductive gas is used to fill the generator at each biennial maintenance.)

The following values of insulation thermal conductivity were obtained for various gas fills at a pressure of one atmosphere.

| <u>Gas Fill</u> | <u>Thermal Conductivity<br/>(Btu-in./hr-ft<sup>2</sup>-°F)</u> |
|-----------------|----------------------------------------------------------------|
| Air             | 0.2865                                                         |
| Argon           | 0.2285                                                         |
| Hydrogen        | 0.597                                                          |
| Vacuum          | 0.118                                                          |

The fuel block is separated from the cold portions of the generator by a layer of Min-K 1301 insulation chosen for its low thermal conductivity, good structural qualities and machinability. The insulation fits between the fuel block and cold junction heat sink snugly enough to provide support for the block. Powdered Min-K is packed around the thermoelements to further reduce heat losses. The mean insulation thickness is 1.38 inches.

For the generator design calculation, a nominal value of thermal conductivity of 0.0175 Btu/hr-ft-°F was selected. This corresponds roughly to a mixture of approximately 90% argon, 10% hydrogen in the Min-K insulation.

Heat losses through the insulation were calculated by the following relationship which holds for cylinders with a length-to-diameter ratio of one, surrounded by a constant thickness of insulation.

$$q = \frac{6\pi r_1 r_2 k \Delta T_i}{r_2 - r_1}$$

where:

$q$  = insulation heat loss (Btu/hr)

$r_1$  = inner radius of insulation (ft)

$r_2$  = outer radius of insulation (ft)

$k$  = thermal conductivity of insulation (Btu/ft-hr-°F)

$\Delta T_i$  = temperature drop across insulation (°F)

The total heat loss at the end of life was calculated as 50.75 watts including an estimated 2.75 watts lost through the mica sleeves surrounding the thermoelements. The mica insulator loss was estimated by treating it and the thermoelement heat flow by analogy with current flow through resistors connected in parallel.

## B. EXCESSIVE THERMAL POWER IN FUEL

In the fission product waste obtained by processing spent reactor fuel elements, Strontium-90 is accompanied by the shorter lived Strontium-89 which may produce as much as 80 times the heat of the heavier isotope when discharged from the reactor. Although the half life of Strontium-89 is only 51 days, production schedules indicate that appreciable quantities could be present when the generator was loaded, causing temporary overheating and consequent damage to the thermoelectric elements. However, because of its short duration, the heat supplied by the absorption of Strontium-89 beta emissions cannot be considered part of the thermal power requirement.

Figure IV-1 illustrates the combined thermal output of the two strontium isotopes for 47 kilocuries of the heavier isotope as a function of months after discharge from the reactor. Atomic ratios of Sr-89 to

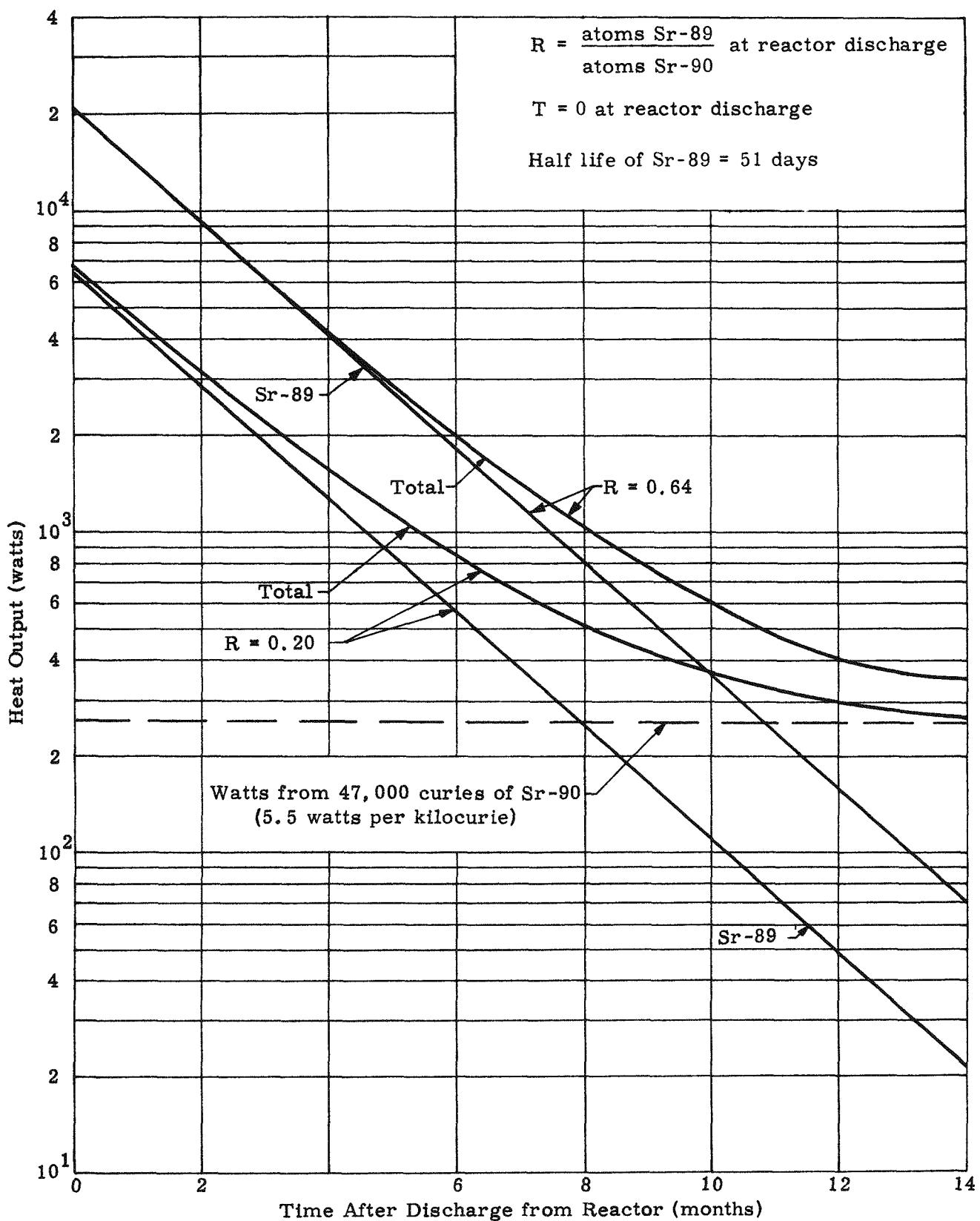



Fig. IV-1. Effect of Strontium-89 on Heat Output of SNAP 7C 10-Watt Generator

SR-90 were estimated to be 0.20 and 0.64. Analysis showed that with the proper conducting gas in the insulation, the excess heat can be accommodated without seriously affecting generator performance over its design lifetime.

This analysis takes into account the SNAP 7C fuel specification permitting a thermal overload of 40 watts due to Sr-89 content.

### C. ANALYSIS OF BURIED SYSTEM

A temperature analysis of the SNAP 7C power supply as installed was performed to determine the wall temperature of the U.S. Navy weather station housing during its operation in Antarctica.

Basically, it is undesirable to expose the generator to the Antarctic environmental temperature variations because of the effect on generator performance. Further, the weather station batteries and electronic gear are not designed to withstand the Antarctic environment. A suitable environment for the batteries and electronic gear can be provided and temperature excursions minimized by packing all weather station components, including the generator system, within a single container and burying it in permanent ice.

At depths below approximately four feet, the ice temperature responds slowly to variations in local air temperature. The maximum variation in ice temperature at a depth below four feet has been measured to be about 50° F when the local air temperature variation is in excess of 100° F.

The generator and equipment are located at the bottom of a cylindrical container and covered with a plug of styrofoam insulation which completely fills the upper end of the cylinder (see Fig. II-1). An exact thermal analysis of this container is difficult because of the geometry and temperature gradient in the ice itself. An approximate analysis was performed to determine roughly the temperature which may be expected within the buried container. The results of this analysis indicate that the air temperature within the steel container housing will range from a maximum of 60° F to a minimum of 20° F, under the extremes of a yearly temperature cycle.

This analysis is described in detail in Appendix A.



## V. FUEL FORM AND SHIELDING REQUIREMENTS

### A. FUEL FORM

Strontium-90, with its relatively long half life (27.7 year) was selected as the radioisotope to provide the thermal energy for the SNAP 7C system. The form selected was the titanate ( $\text{SrTiO}_3$ ), a stable ceramic compound with extremely low solubility in sea water. In the original design of the generator the specific thermal power of the prepared fuel form was estimated at 0.5 watt/cm<sup>3</sup>.

Because of the long lead time required for chemical processing of the fuel, it was necessary to fix the fuel volume prior to the detailed design of the generator. Assuming a 5% overall conversion efficiency, producing 10 watts after 10 years, the end of life thermal power was 200 watts. From the decay rate of the isotope, an initial requirement of 256.5 watts was calculated. This resulted in a design volume of 513 cm<sup>3</sup>.

The fuel is distributed into four capsules as shown in Figs. II-3 and II-4. The total loading was estimated as 47 kilocuries of Sr-90 based on a conservative estimate of 0.0055 watt per curie. Considerations in the fuel capsule design were minimum heat loss, i.e., maximum heat flow to thermoelectric elements, ceramic fuel pellet diameter of two inches or less and the use of an existing remote control welder at Oak Ridge National Laboratory for capsule sealing.

Each fuel capsule (see Fig. V-1) has a button protruding from its top surface to facilitate remote handling in the hot cells and loading into the fuel block. The fuel container is made of Hastelloy C, chosen for its excellent structural properties and high resistance to corrosion. Results of a 10-year corrosion test in sea water at Wrightsville Beach, N. C., show that Hastelloy C has an average corrosion rate of 0.1 mil/yr with no tendency toward pitting. This ensures safe cladding for over 1000 years, even if the corrosion rate is double that experienced in the test.

The Sr-90 titanate received from Oak Ridge National Laboratory produced a higher specific power than the 0.5 watt/cm<sup>3</sup> anticipated in the design. The pellets received for loading had specific powers of 0.7 to 0.9 watt/cm<sup>3</sup> so that excess volume was available. The total thermal output of the four capsules was 250 watts from the Sr-90 at the time of installation as compared to the design input of 256.5 watts. The actual amount of isotope fuel was 40,000 curies at about 6.25

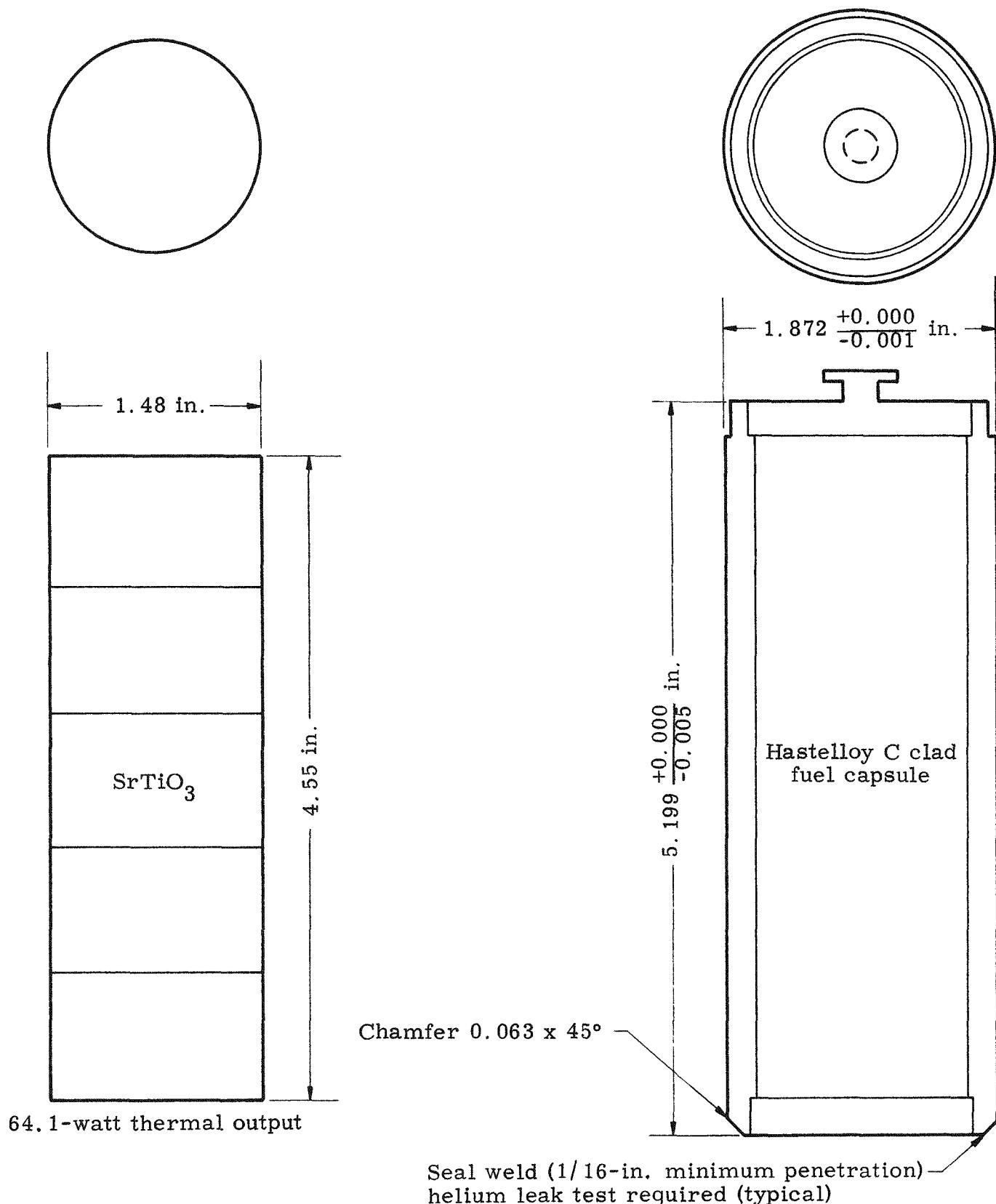



Fig. V-1. Fuel Capsule Assembly of Strontium-90 Generator

watts/kc. The excess capsule volume was filled with Hastelloy C spacers by Oak Ridge National Laboratory.

## B. SHIELDING REQUIREMENTS

Radiation dose rates from the unshielded capsules of the 10-watt thermoelectric generator were calculated by means of an IBM 709 digital computer. Each capsule was assumed to contain one-fourth of the total 47,000 curies of Sr-90 in the geometrical configuration of the fuel block. On this basis the dose from one bare capsule was as follows.

|                              | <u>Dose at Side<br/>(r/hr)</u> | <u>Dose at Top<br/>and Bottom<br/>(r/hr)</u> |
|------------------------------|--------------------------------|----------------------------------------------|
| At surface                   | 89,000                         | 62,000                                       |
| At one meter<br>from surface | 136                            | 59                                           |

From the four capsules loaded into the fuel block without shielding, the total dose rate was calculated as follows.

|                                            |                  |                               |
|--------------------------------------------|------------------|-------------------------------|
| At one meter from<br>surface of fuel block | 500 r/hr at side | 235 r/hr at top<br>and bottom |
|--------------------------------------------|------------------|-------------------------------|

Shielding values were computed for depleted uranium to reduce the dose rate from 47 kilocuries of Sr-90 to 100 mr/hr at one meter from the center of the generator, in accordance with the specifications established at the inception of the program. Uranium is employed as the shield material because its use results in a generator of smaller size and weight. The minimum thicknesses of uranium required are as follows.

| <u>Shield</u> | <u>Thickness<br/>(in.)</u> |
|---------------|----------------------------|
| Top           | 1.87                       |
| Side          | 1.54                       |
| Bottom        | 1.67                       |

However, the biological shield for the 10-watt generator was designed with a thickness greater than the minimum to permit the use of

the shield as a shipping container for transportation by common carriers in interstate commerce. The designed thicknesses and the resulting dose rates are as follows.

| <u>Shield</u> | <u>Thickness<br/>(in.)</u> | <u>Dose Rate at One Meter<br/>(mr/hr)</u> |
|---------------|----------------------------|-------------------------------------------|
| Top           | 2.75                       | 1.92                                      |
| Side          | 2.625                      | 3.61                                      |
| Bottom        | 2.625                      | 2.88                                      |

A comparison of calculated and measured dose rates was made for the SNAP 7A and SNAP 7C generator and is shown in Table V-1.

TABLE V-1

|                 |      | <u>SNAP 7A</u><br><u>40,800 Curies</u> | <u>SNAP 7C</u><br><u>40,000 Curies</u> |                   |                   |
|-----------------|------|----------------------------------------|----------------------------------------|-------------------|-------------------|
|                 |      | <u>Calculated</u>                      | <u>Measured*</u>                       | <u>Calculated</u> | <u>Measured**</u> |
| At one<br>meter | Top  | 1.89                                   | 2.5                                    | 1.86              | 3                 |
|                 | Side | 1.87                                   | 1.0                                    | 1.84              | 1.5               |
| At<br>surface   | Top  | 29.9                                   | 30                                     | 29.4              | 50                |
|                 | Side | 31.3                                   | 15                                     | 30.8              | 20                |

\*Letter dated November 28, 1961 (Ref. No. p 1404) to Commander Culwell from J. J. Keenan.

\*\*Letter dated September 19, 1961 (Ref. No. p 1313) to Commander Culwell from J. J. Keenan.

The shielding is adequate to meet ICC regulations for unescorted shipments (10 mr/hr maximum at one meter and 200 mr/hr maximum at the surface).

Calculated dose rates were originally based upon 47,000 curies of Sr-90 and have been adjusted to conform to the estimated curie loading of the generators.

The measured and calculated dose rates agree within a factor of about two, which is considered good in shielding.

Note that the measured dose rates are higher for the SNAP 7C generator even though this generator contains less curies.

This is possibly due to the differences in instruments used for measuring, uncertainty in the location at which readings were taken, differences between design and actual generator construction or by a combination of several of these items. It is concluded that the shielding for the 10-watt generator is conservative.

A complete safety analysis report concerning the use of strontium-fueled thermoelectric generators has been prepared and is given in Ref. 5.

Subsequent to the original calculation of the shield thickness, it was found that the strontium isotope produced by spent element processing at Hanford would contain 2.5 millicuries of Ce-144 per curie of Sr-90. Cerium-144 is a beta emitter which also emits a hard gamma photon at each disintegration. Examination of the results reveals that even with the additional radiation contributed by the cerium, the total dose rate is still well below the 10 mr/hr at one meter that is the ICC shipping requirement.

|                                              |                   |
|----------------------------------------------|-------------------|
| Power (thermal watts)                        | 250               |
| Sr-90 (curies)                               | $4.0 \times 10^4$ |
| Ce-144 (curies)                              | 100               |
| Dose rate for Ce-144<br>at one meter (mr/hr) | 1.7               |
| Dose rate for Sr-90<br>at one meter (mr/hr)  | 2.5               |
| Total dose rate at<br>one meter (mr/hr)      | 4.2               |

The calculations and comparison of the calculated values with experimental results were carried out as described in Appendix B.



## VI. GENERATOR ASSEMBLY

The SNAP 7C generator was custom assembled with special precautionary measures to ensure integrity, reliability and nonhazardous conditions.

Thermoelectric couples were assembled by bonding lead telluride elements (one N type and one P type) to a common iron shoe as shown in Fig. VI-1. Five couples, a block of Min-K insulation and copper caps (one soldered to each element) were assembled to form a module as depicted in Fig. VI-2.

The Hastelloy C fuel block was centrally located within the aluminum heat sink frame and held in position by corner blocks of Min-K insulation. A base plate of Min-K insulation supports the aluminum heat sink and provides vertical positioning of the fuel block.

Twelve thermoelectric modules, positioned in groups of three against each of the four flat surfaces of the fuel block, were held in position by means of Min-K filler strips and aluminum heat sink bars. Each bar was attached to the aluminum frame with screws as shown in Fig. VI-5.

The thermoelectric module components (see Fig. VI-4) were inserted through each heat sink bar after individual module installations.

Couples and modules were electrically interconnected with copper straps and each group of three modules interconnected to the next with Ceramatemp wire (Fig. VI-5). This series-type connection terminated in a single output lead.

Instrumentation at two locations within the generator provides measurement of hot junction temperature. Thermocouples were attached at the center of the hot shoe on the upper and lower couple of a particular module.

The assembled generator was then inserted in a Hastelloy C container and subjected to test to provide verification of the thermal and electrical characteristics. Electrical heaters were substituted for the isotope heat source.

Upon completion of the tests, the Hastelloy C shell containing the assembled generator was inserted into the biological shield that contained 18 pounds of mercury. After positioning, the generator container was welded in place. The mercury level was at a position above the top of the heat sink as shown in Fig. II-4. The generator-biological shield assembly was then placed in the hot cell at the Quehanna Facility.

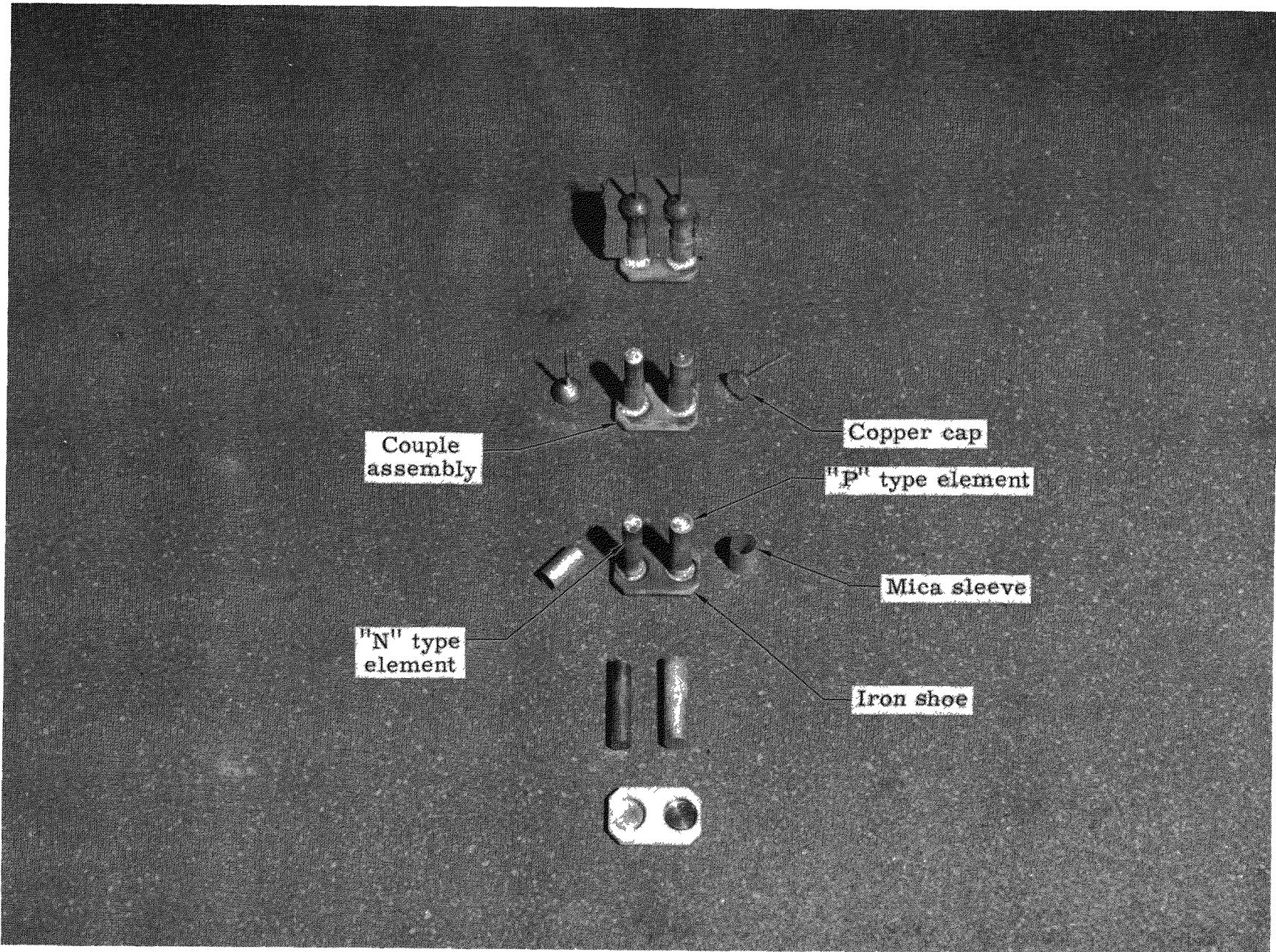



Fig. VI-1. Thermoelectric Couple

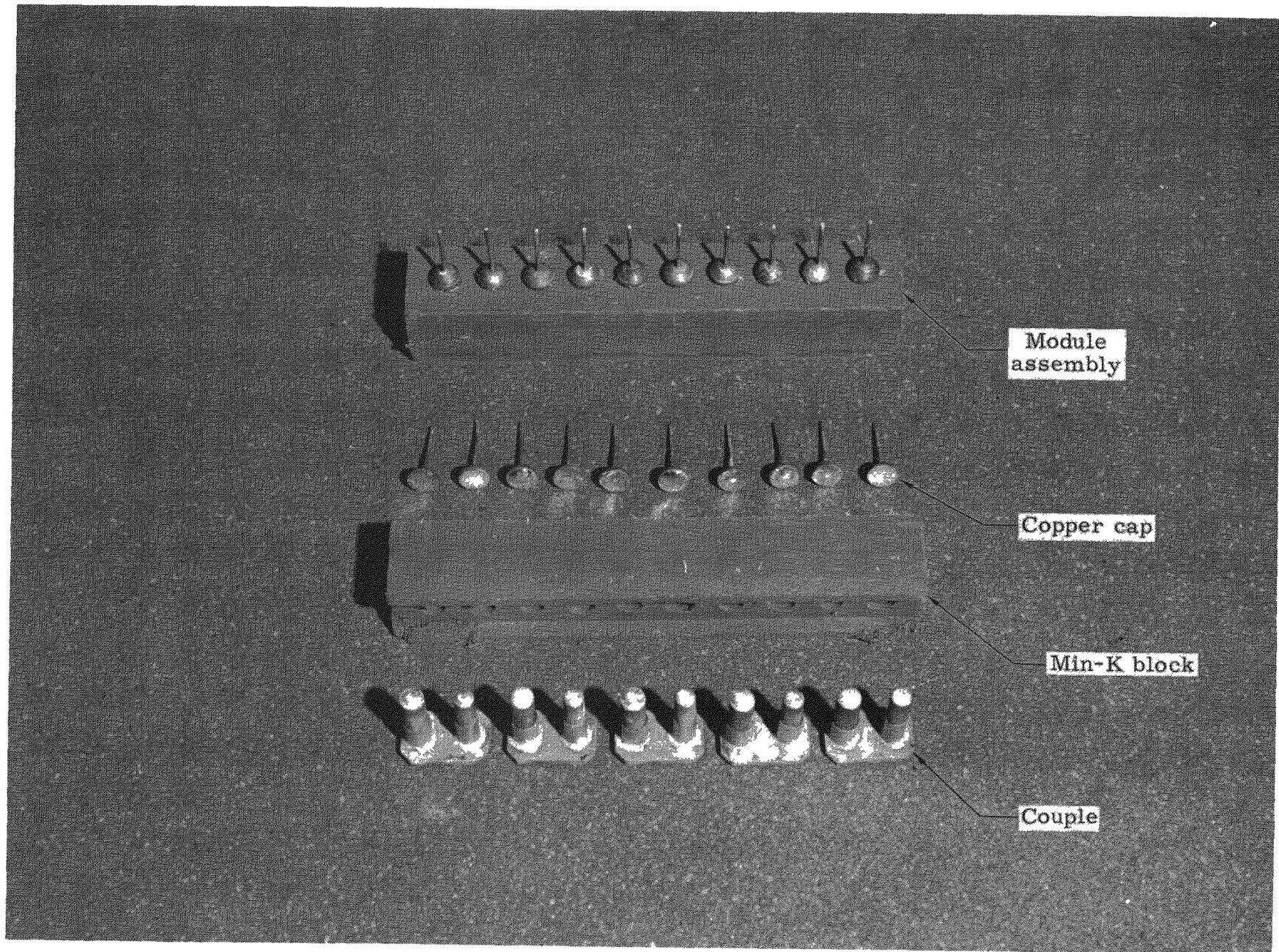



Fig. VI-2. Thermoelectric Module



Fig. VI-3. Depleted-Uranium Shield Being Positioned for Insertion into Outer Hastelloy-C Shell

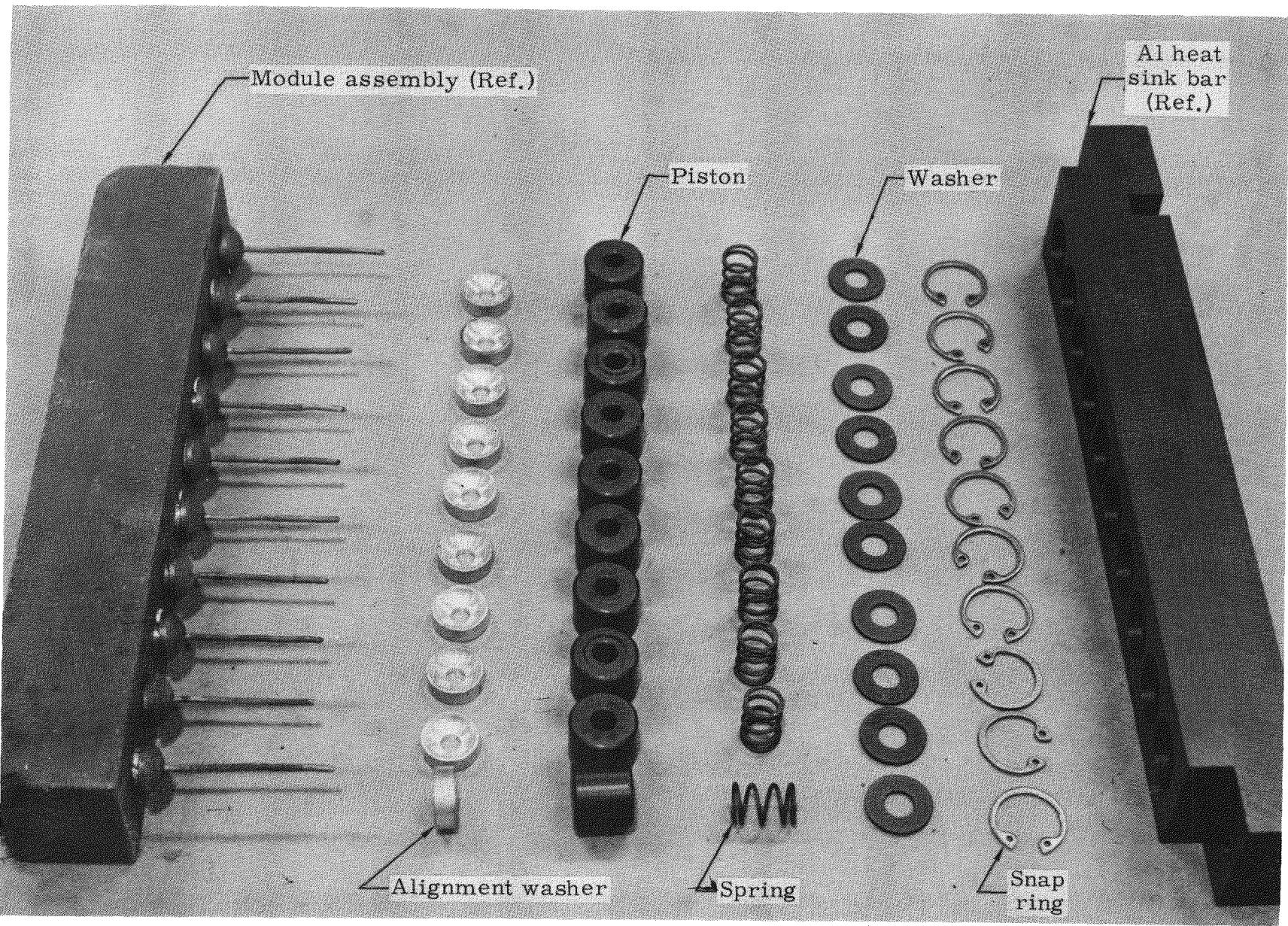



Fig. VI-4. Thermoelectric Module Components

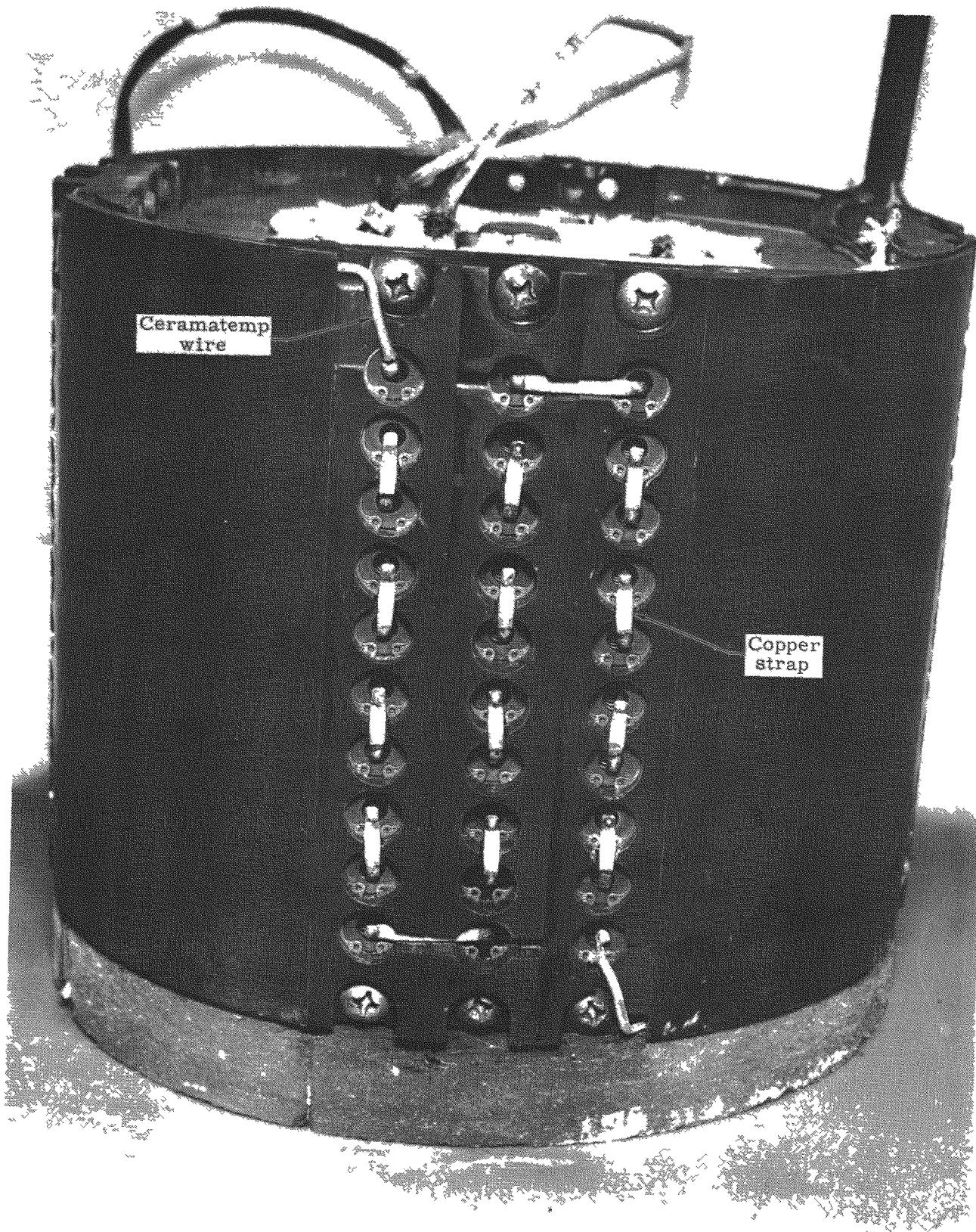



Fig. VI-5. Thermocouples and Modules

Generator fueling included the installation of four fuel capsules in their respective holes located in the fuel block, installation of the fuel block cover plate, Min-K insulation plate and uranium shield block and attachment of generator closure. Figure VI-6. illustrates this. The generator electrical output leads and hot junction thermocouples were terminated at the hermetically sealed electrical connector located in the generator closure (Fig. II-4).

After the electrical test to verify generator operation was completed, the closure was welded in place and the generator delivered for operation. This is shown in Fig. VI-7.

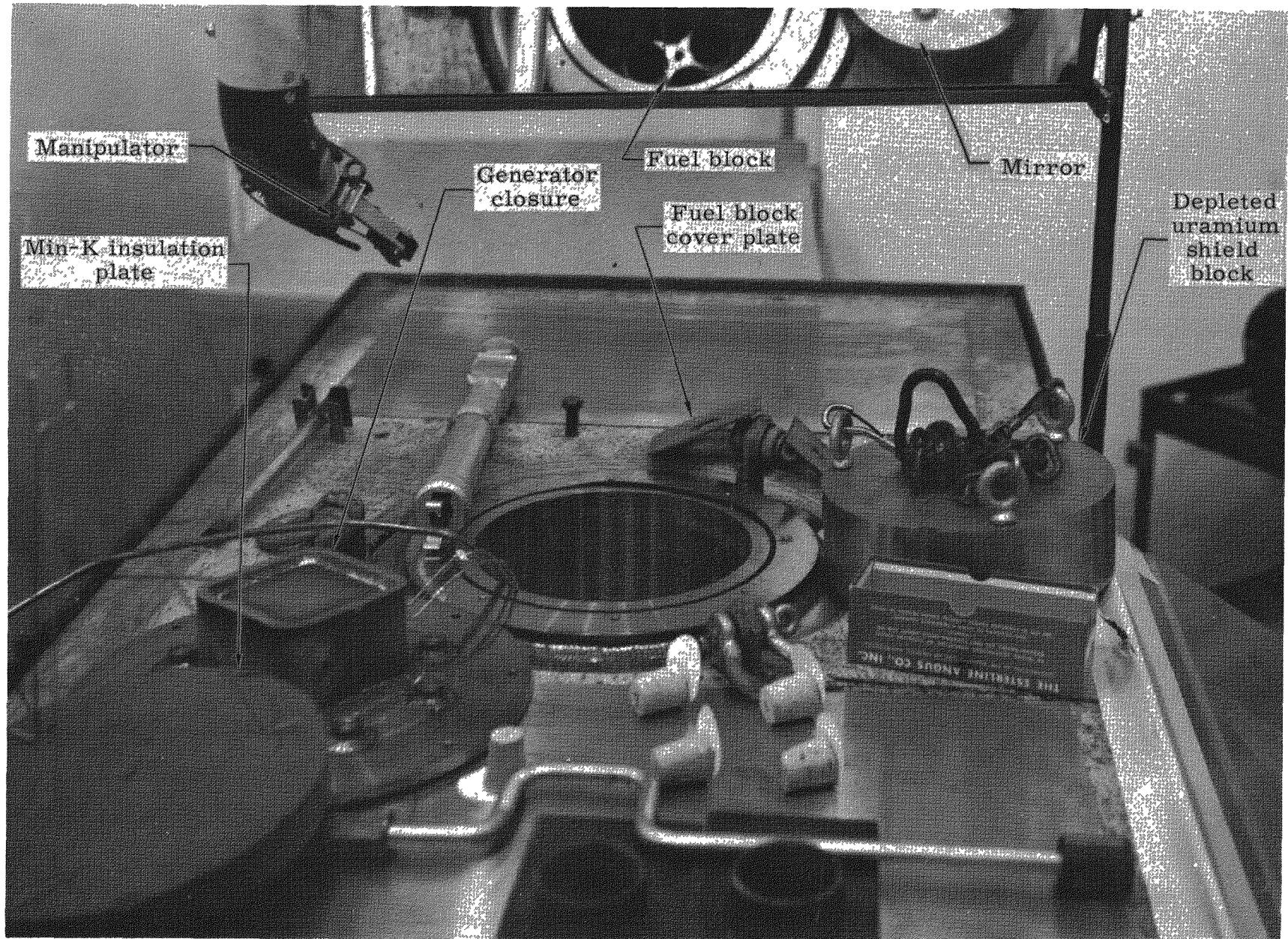



Fig. VI-6. SNAP 7C Generator and Accessories Used in Remote Fueling Operations  
(photo taken looking through three-foot thick leaded glass window)

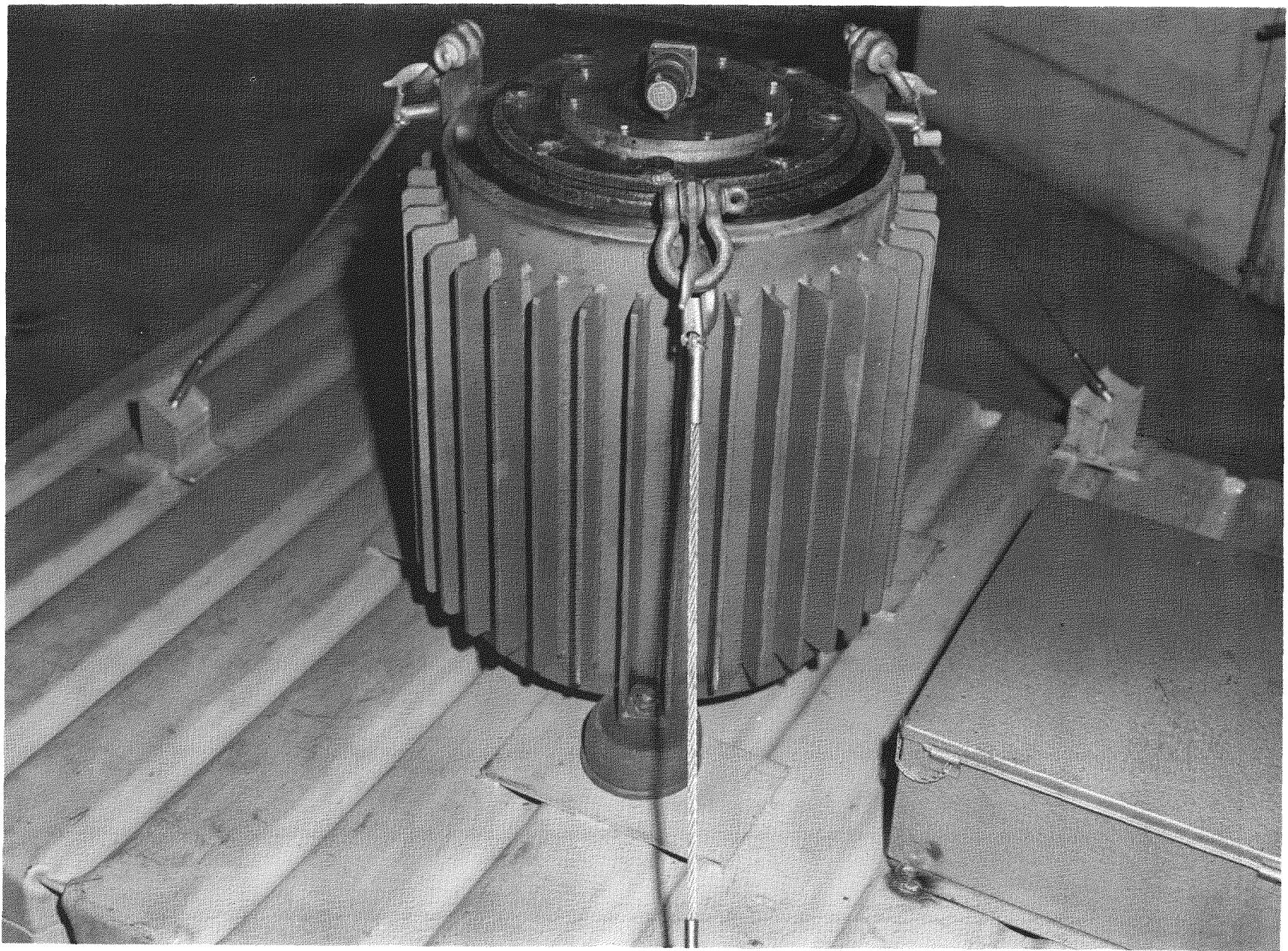



Fig. VI-7. Operational SNAP 7C Thermoelectric Generator



## VII. ELECTRICAL SYSTEM

The SNAP 7C electrical system is designed to convert the electrical energy supplied by the nuclear powered thermoelectric generator into the proper operating voltages required by the weather station. The thermoelectric generator supplies a nominal 10 watts of electrical power. This power is converted by a dc-to-dc converter to the voltages used by the weather station. Since the weather station power requirements are not all continuous, batteries store the excess energy supplied by the generator during minimum load conditions. This stored energy is used during the intermittent transmitting cycles of the weather station when the power demands are in excess of that delivered by the generator. Since the generator is designed for end of life operating conditions, the generator power output will always exceed the integrated power demands and will normally maintain the battery in a fully charged condition.

### A. BATTERY

The electrical storage system is a nickel-cadmium, rechargeable battery capable of supplying a high rate of discharge during short periods of time. The battery consists of 24 cells of which two are spares. The remaining 22 cells are divided into four sections to equalize the current drain from the various cells as much as possible and to supply the voltages used by the weather station as shown in Fig. VII-1.

The cell blocks are as follow:

- (1) Cell Block A consists of 13 cells in series with a nominal voltage of 18 volts.
- (2) Cell Block B consists of three cells in series with a nominal voltage of four volts.
- (3) Cell Block C consists of three cells in series with a nominal voltage of four volts.
- (4) Cell Block D consists of three cells in series and a nominal voltage of four volts.

The positive terminal of Cell D is grounded to form the system ground. All voltages supplied to the system are negative.



Fig. VII-1. Battery Block Diagram

## B. DC-TO-DC CONVERTER

The SNAP 7C dc-to-dc converter is a transistorized electric component that converts the SNAP 7C generator voltage into the charging voltages required by the nickel-cadmium storage battery of the system. The power supplied to the converter by the generator is a function of the isotope life. The SNAP 7C generator was optimized to supply a nominal 10 watts of electrical power at the end of life with an operating voltage of approximately five volts (see Chapter III). The converter transforms this power into three voltage regulated output sections of  $4.065 \pm 0.075$  volts and one voltage regulated output section of  $17.615 \pm 0.325$  volts. The regulators are designed to function with a load current variation of 30 to 150 milliamperes and an ambient temperature range of  $20^\circ$  to  $60^\circ$  F.

The converter schematic is shown in Fig. VII-2. The first section of the converter operates as a voltage regulator and an over-driven, push-pull, transformer coupled oscillator. The voltage regulator consists of a Zener diode  $Z_1$  and a variable resistor  $VR_1$ . The Zener diode was selected to maintain the converter input voltage at a maximum of 5.6 volts in the event the generator produced a higher operating voltage. If the output voltage is in excess of 5.6 volts at beginning of life, the Zener diode will break down and conduct a current. The additional current flow will reduce the generator output voltage and cause it to stabilize at the desired voltage. During the lifetime of the generator, the output voltage will normally decay to the 5.6-volt maximum value at which time the regulator circuit would cease to operate. The resistor  $R_1$  serves as a current limiter for the Zener diode.

The over-driven, push-pull, transformer coupled oscillator consists of two transistors,  $Q_2$  and  $Q_3$ , two resistors,  $R_2$  and  $R_3$  and a toroidal transformer. The transformer is wound and connected to provide a positive feedback from the collector to the emitter of each transistor. When  $Q_2$  starts to conduct, a voltage is developed across the primary winding, inducing a voltage in the feedback windings that drives the emitter of  $Q_2$  positive and causes increased conduction. The current increases rapidly until the collector of  $Q_2$  is driven into the saturation region of its characteristics. When this occurs, the primary voltage can no longer increase and a condition of quasistable equilibrium is attained. During this equilibrium period, the voltage drop in the transistor from collector to emitter is very small, and essentially the full generator voltage appears across that half of the transformer primary.

With a constant voltage applied across the transformer primary, the magnetic flux begins to increase with time. Eventually the transformer core reaches saturation and the required exciting current

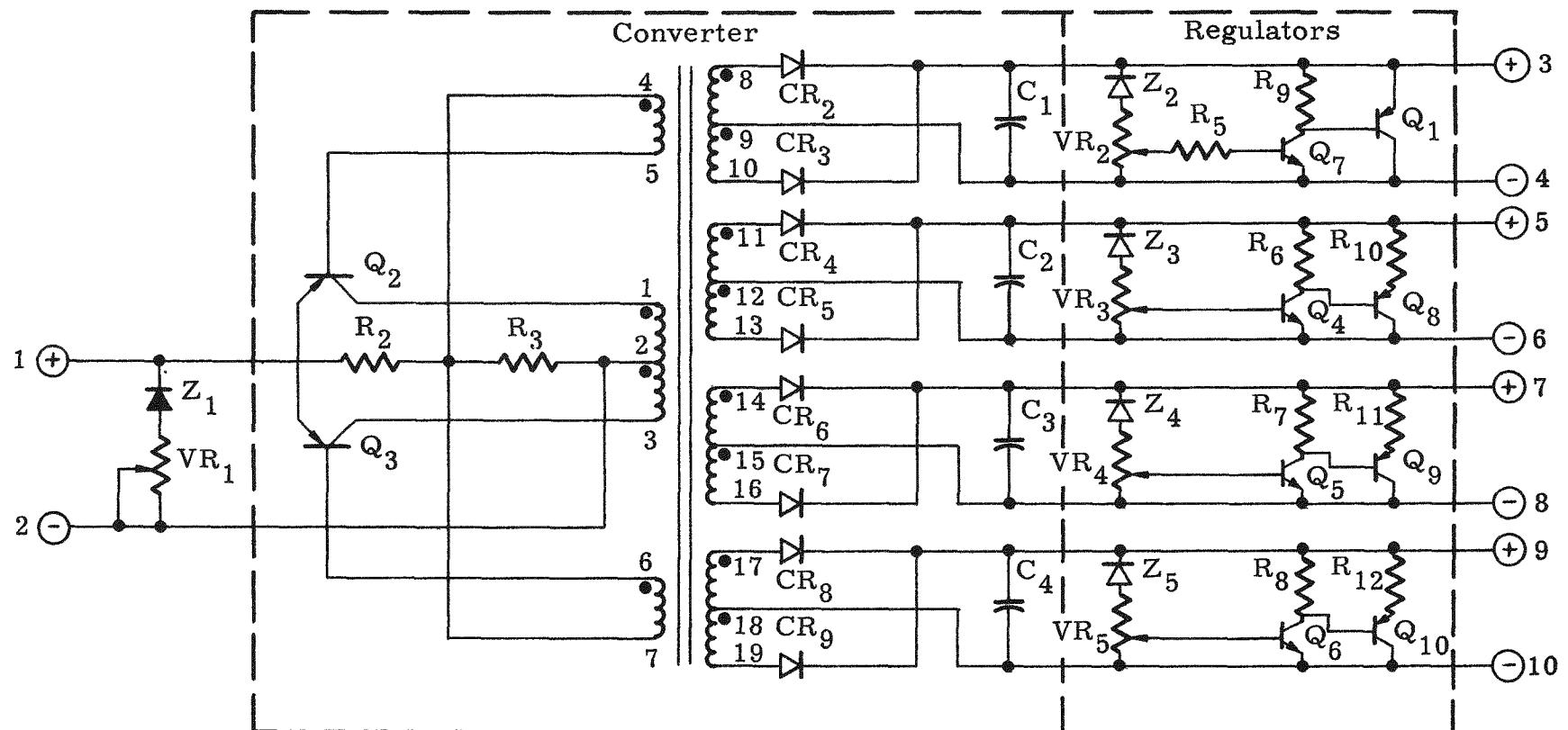



Fig. VII-2. SNAP 7C Schematic

increases rapidly to a value greater than can be supplied. As a result, the primary voltage decreases, reducing the emitter voltage and decreasing the collector current. Thus, transistor  $Q_2$  turns off regeneratively, ending the half cycle. As the flux collapses, voltage is induced in the winding which biases transistor  $Q_3$  to conduction, thereby initiating the next half cycle.

The operation of  $Q_3$  during the next half cycle is identical with the operation of  $Q_2$  during the first half cycle with the exception that  $Q_3$  conducts until the core of the transformer is driven into negative saturation. After the core saturates, the flux collapses, and the cycle is complete. The starting circuit of the oscillator consists of two resistors which make up a low impedance bleeder circuit. This circuit will bias the transistors to conduction before oscillations start.

The second section consists of four separate full wave, center-tapped capacitor input filter circuits. They are coupled to the first section by the toroidal transformer. Since the operation of each of these circuits is identical, only the 18-volt output section will be functionally described. The full wave rectifier of the 18-volt section consists of two diodes,  $CR_2$  and  $CR_3$ . When  $CR_2$  is conducting current,  $CR_3$  is biased negative and does not conduct. When the polarity of the transformer secondary changes,  $CR_3$  will conduct current and  $CR_2$  will be biased negative.

The center tap of the secondary winding provides the ground for this circuit. The capacitor  $C_1$  acts as a filter to any a-c component that is presented.

The last section of the converter consists of a voltage regulator attached to each of the input filter circuits. The operation of the regulators is identical and only the 18-volt section will be functionally described. The 18-volt regulator is a voltage dropping network consisting of a Zener diode  $Z_2$  and a potentiometer  $VR_2$ . Parallel to this circuit are two transistors, a switching transistor,  $Q_7$  and a current dumping transistor,  $Q_1$ . As the voltage across the Zener diode and potentiometer  $VR_2$  increases due to a fully charged battery, it causes an increasing current to flow through the circuit. This current causes a higher voltage drop across  $VR_2$  which biases the switching transistor  $Q_7$  into high conduction. The switching transistor in turn biases the current dumping transistor  $Q_1$  into high conduction. This increased current flow through transistor  $Q_1$  loads the converter and slightly

reduces its output voltage. This action prevents the batteries from being overcharged and keeps a constant load on the generator. The output voltage regulation can be adjusted by varying the potentiometer  $VR_2$ .

This changes the bias voltage swing on the switching transistor and determines its operational parameters.

Losses in the converter unit were minimized by component selection and design criteria. The 2N 1360 switching transistors used in the oscillator were chosen because of their low saturation voltage (typically 0.3 volt at two-ampere collector current). They have a typical current gain of 40 at a two-ampere collector current. The base drive voltage is typically 0.6 volt at a collector current of two amperes. A switching frequency of approximately 500 cycles per second was chosen to optimize the core and copper losses in the transformer.

The voltage regulators present the largest single power loss in the circuit. Since the thermoelectric generator supplies more power at the beginning of life than is required by the system, the regulator must detect and dump this excess energy to keep from overcharging the batteries. In addition, the regulator must present a constant load to the generator during the fully charged condition of the batteries. This requires complex circuitry which increases the power losses. As a result, the overall efficiency of the converter (including regulators) during normal operating conditions is approximately 54%.

Schematic representation of the converter enclosure is shown in Fig. VII-2 and the parts listed in Table VII-1. The complete unit was enclosed as a module with the variable resistors mounted for external adjustment. This permits final matching of the converter to the system during installation and subsequent servicing. Figure VII-3 shows the converter operating in the environmental test chamber.

TABLE VII-1  
SNAP 7C Parts List

| Schematic Part No.                                  | Manufacturer's Part No. | Description                      | Manufacturer |
|-----------------------------------------------------|-------------------------|----------------------------------|--------------|
| Z <sub>1</sub>                                      | 1N1600                  | Zener diode, 4.7 v               | IRC          |
| Z <sub>2</sub>                                      | 1N2982B                 | Zener diode, 18 v                | Motorola     |
| Z <sub>3</sub> , Z <sub>4</sub> , Z <sub>5</sub>    | 1N748A                  | Zener diode, 3.9 v               | Motorola     |
| CR <sub>2</sub> through CR <sub>9</sub>             | 1N538                   | Rectifier diode                  | GE           |
| Q <sub>1</sub> , Q <sub>2</sub> , Q <sub>3</sub>    | 2N1360                  | Transistor, PNP                  | Motorola     |
| Q <sub>4</sub> , Q <sub>5</sub> , Q <sub>6</sub>    | 2N358                   | Transistor, NPN                  | GT           |
| Q <sub>7</sub>                                      | 2N697                   | Transistor, NPN                  | FC           |
| Q <sub>8</sub> , Q <sub>9</sub> , Q <sub>10</sub>   | 2N1039                  | Transistor, PNP                  | TI           |
| VR <sub>1</sub>                                     |                         | 0-6Ω, 2-w WW potentiometer       | Clarostat    |
| VR <sub>2</sub> through VR <sub>5</sub>             |                         | 0-250Ω, 2-w carbon potentiometer | Ohmite       |
| R <sub>2</sub>                                      |                         | 12.1Ω, 1/2-w resistor, 1%        | Mepco        |
| R <sub>3</sub>                                      |                         | 220Ω, 1/2-w resistor, 5%         | Ohmite       |
| R <sub>5</sub>                                      |                         | 820Ω, 1/2-w resistor, 5%         | Ohmite       |
| R <sub>6</sub> , R <sub>7</sub> , R <sub>8</sub>    |                         | 1200Ω, 1/2-w resistor, 5%        | Ohmite       |
| R <sub>9</sub>                                      |                         | 680Ω, 1/2-w resistor, 5%         | Ohmite       |
| R <sub>10</sub> , R <sub>11</sub> , R <sub>12</sub> |                         | 22Ω, 1-w resistor, 5%            | Ohmite       |

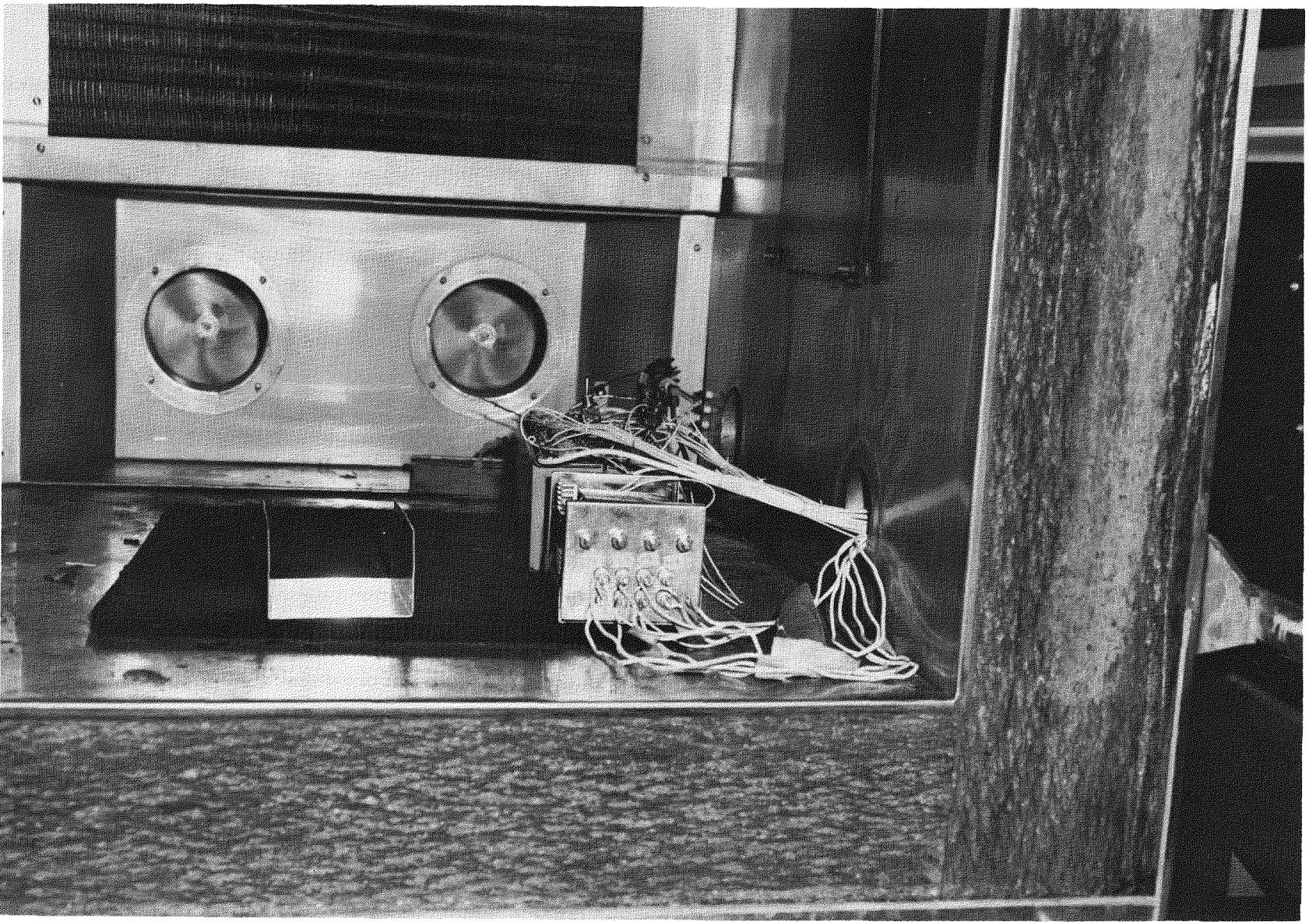



Fig. VII-3. Converter in Environmental Test Chamber

## VIII. SNAP 7C OPERATIONAL TESTS

### A. SNAP 7C GENERATOR

An initial series of high temperature tests, conducted using electrical heaters, was undertaken to determine beginning and end of life parametric data. The SNAP 7A-C test generator was then environmentally tested as described in Chapter IX. After environmental testing, a series of tests was performed to obtain the fill gas composition necessary to maintain the hot junction temperature within acceptable limits. These tests consisted of operating the generator with four different argon-hydrogen (A-H<sub>2</sub>) gas mixtures. Several power inputs were used for each gas mixture.

The deliverable generator initially was filled with 25% A--75% H<sub>2</sub>. After fueling, the hot junction temperature was 893° F which was below the desired initial value of 930° F. The fill gas was changed to 35% A--65% H<sub>2</sub> to increase the hot junction temperature. Twelve hours later the hot junction temperature was 921° F. Although it was anticipated that this would be a steady state value, the temperature continued to increase and 48 hours after changing the fill gas, it reached 963° F. The fill gas was then changed to the original composition. However, a continual increase in hot junction temperature was again observed.

Fill gas pressure was noted to be decreasing to negative values during this period. This was compensated for by adding pure H<sub>2</sub> to return the pressure to the design value. When this failed to correct the situation, the fill gas was replaced with 100% He. This gas fill stabilized the pressure and hot junction temperature.

It was concluded that the uranium metal shield on top of the generator was absorbing H<sub>2</sub> from the fill gases and causing a decrease in fill gas pressure. Initial operation with He as a fill gas and the use of other inert gases later in the generator life will provide the desired variation in the insulation thermal conductivity. Thus, the generator can be successfully operated for the 10-year lifetime.

When shipped, the fill gas composition was 1.6% H<sub>2</sub>, the remainder He. No further variation in gas pressures is anticipated.

Since the fill gas composition no longer was consistent with the A-H<sub>2</sub> parametric study, several tests were repeated using fill gases

of He or A-He compositions. These data are presented in Figs. VIII-1 through VIII-6. Although some of the data were obtained using the SNAP 7A generator, it is applicable to the 7C program since the generators are identical. The generator labeled "SNAP 7A-C Operating Model" No. is the test generator used earlier for the electrically heated parametric studies.

### B. CONVERTER AND BATTERY

The SNAP 7C converter and battery were tested to ensure the specifications outlined in the statement of work (Ref. 4) were met. Voltage requirements were 4, 8, 12 and 28 volts, each at a different power level. After some changes in the original design, the shunt-regulated converter with the manual voltage control as described in Chapter VII met all design requirements while operating with the actual generator, battery and weather station transmitter.

Testing of the battery showed three defective cells which were replaced prior to testing the complete SNAP 7C system.

### C. SNAP 7C SYSTEM TESTS

A seven-day system test was initiated September 29, 1961 and utilized the SNAP 7C generator, converter, battery and simulated transmitter. A six-hour transmitter cycle was used instead of the three-hour cycle under which the system will actually operate. This was to evaluate the battery electrolyte loss. The six-hour cycle is more severe in this respect since the battery is in a fully charged condition for a greater percentage of the time. The average electrolyte loss for the seven-day period was 0.104 gram per cell. With a three-hour transmitter cycle, the estimated electrolyte loss for a two-year period will be 8.8 grams per cell. A loss of 13 grams per cell can occur before cell operation is affected.

Acceptance tests were successfully conducted for the generator-converter-battery system on October 18, 1961. The resistive loads specified in the statement of work were applied to the respective battery voltages and an oscilloscope was connected across the total battery output to verify that the ripple voltage was within limits. During acceptance tests, the transmitter was cycled three times in succession. The battery voltage dropped to 28.3 volts which compares favorably with the minimum acceptable battery voltage of 26.0 volts.

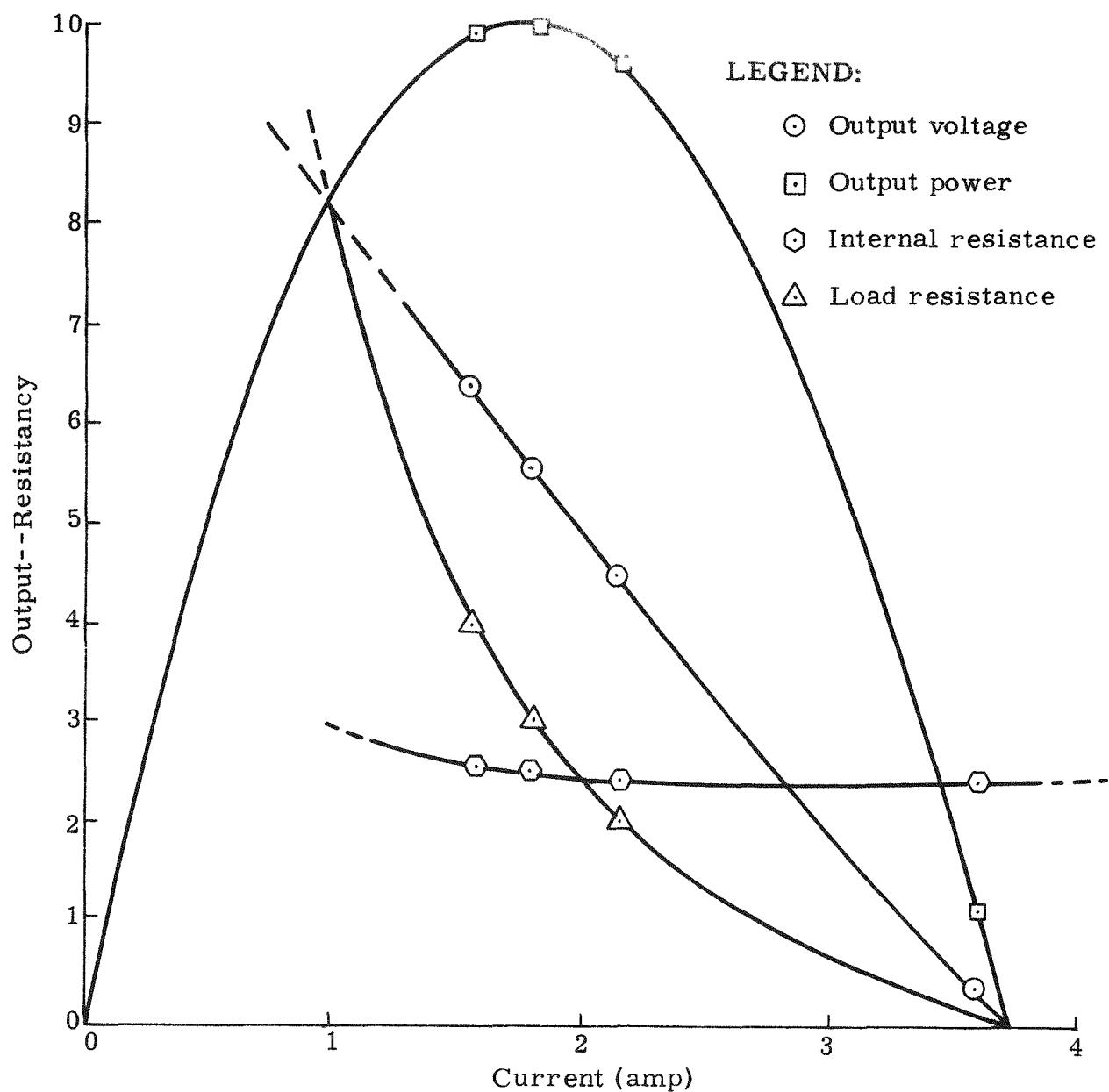



Fig. VIII-1. Plot of Parametric Data for SNAP 7 A-C Operating Model, Where Power Input Was 266. Electrical Watts and Internal Gas Composition Was 100% Helium (1.05 atm)

## LEGEND:

|                          |                              |
|--------------------------|------------------------------|
| □ Output power (watts)   | △ Load resistance (ohms)     |
| ○ Output voltage (volts) | ○ Internal resistance (ohms) |

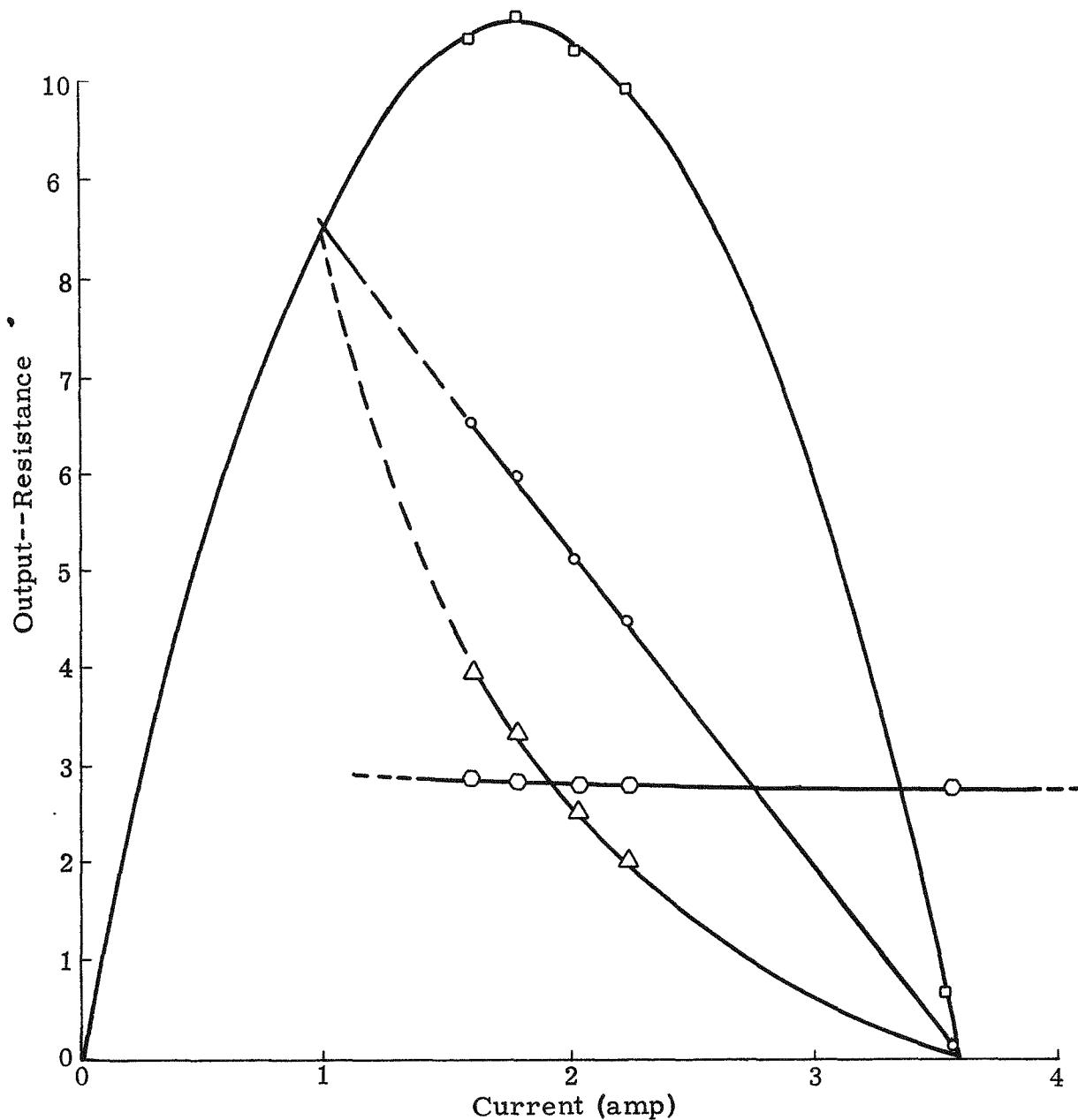



Fig. VIII-2. Plot of Parametric Data for SNAP 7A Generator, Where Power Input Was 266 Electrical Watts and Internal Gas Composition Was 100% Helium (1.05 atm)

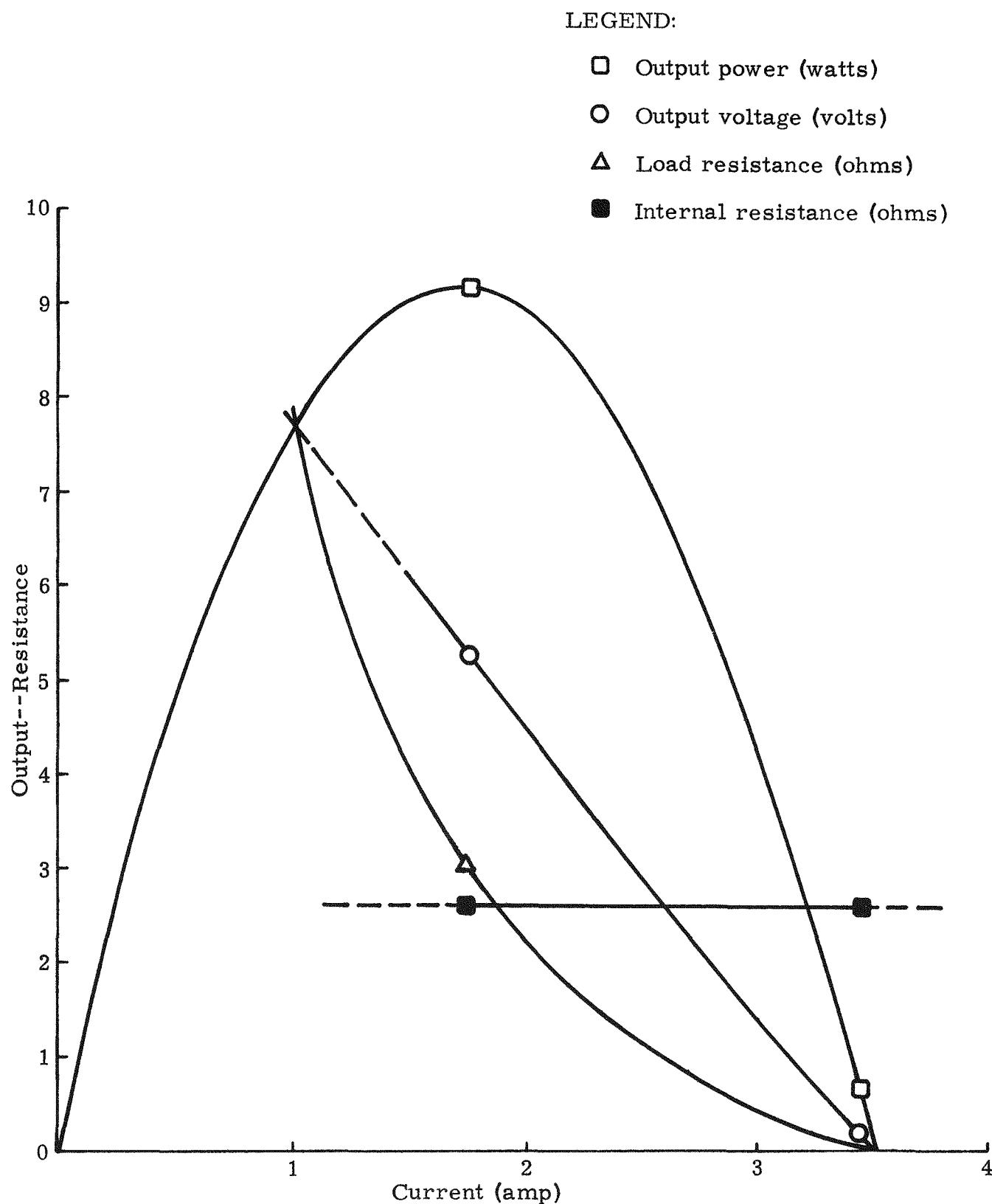



Fig. VIII-3. Plot of Parametric Data for SNAP 7A Generator, Where Power Input Was 248 Electrical Watts and Internal Gas Composition Was 100% Helium (1.05 atm)

## LEGEND:

- Output power (watts)
- Output voltage (volts)

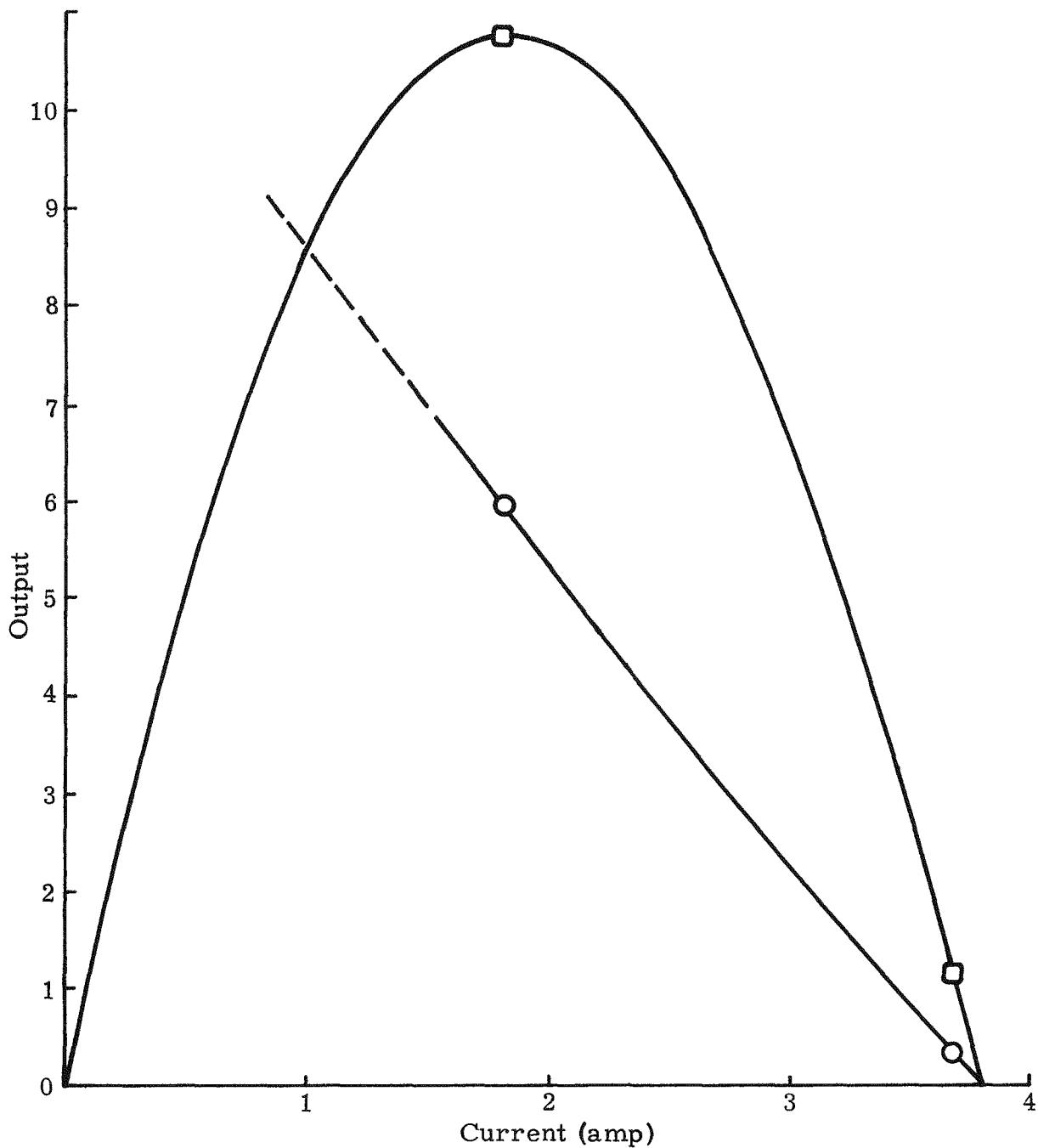



Fig. VIII-4. Plot of Parametric Data for SNAP 7A and SNAP 7C Test Generator (operating model), Where Power Input Was 278 Electrical Watts and Internal Gas Composition Was 100% Helium (1.05 atm)

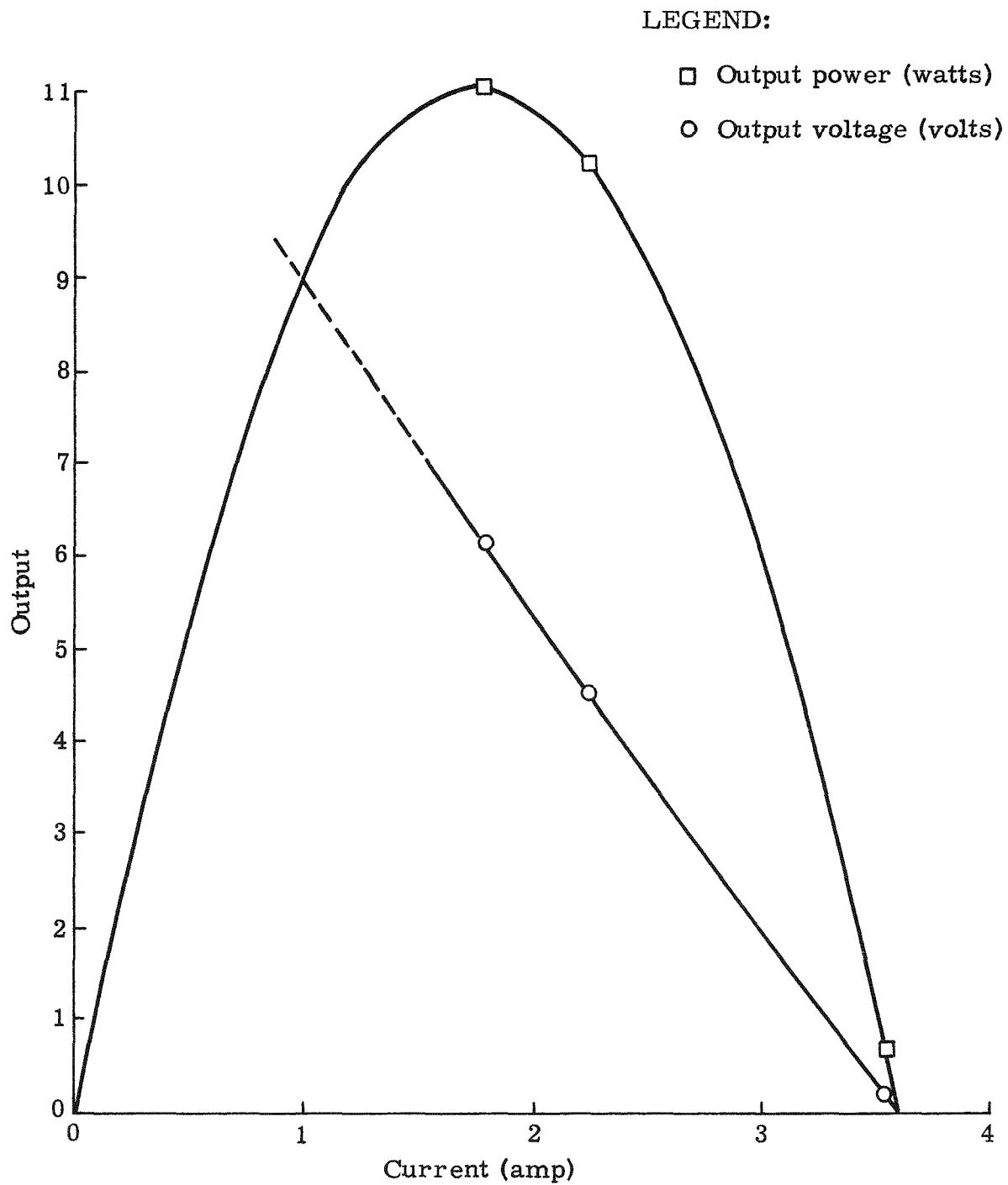



Fig. VIII-5. Plot of Parametric Data for SNAP 7A Generator, Where Power Input Was 240 Electrical Watts and Internal Gas Composition Was 75% Argon and 25% Helium (1.05 atm)

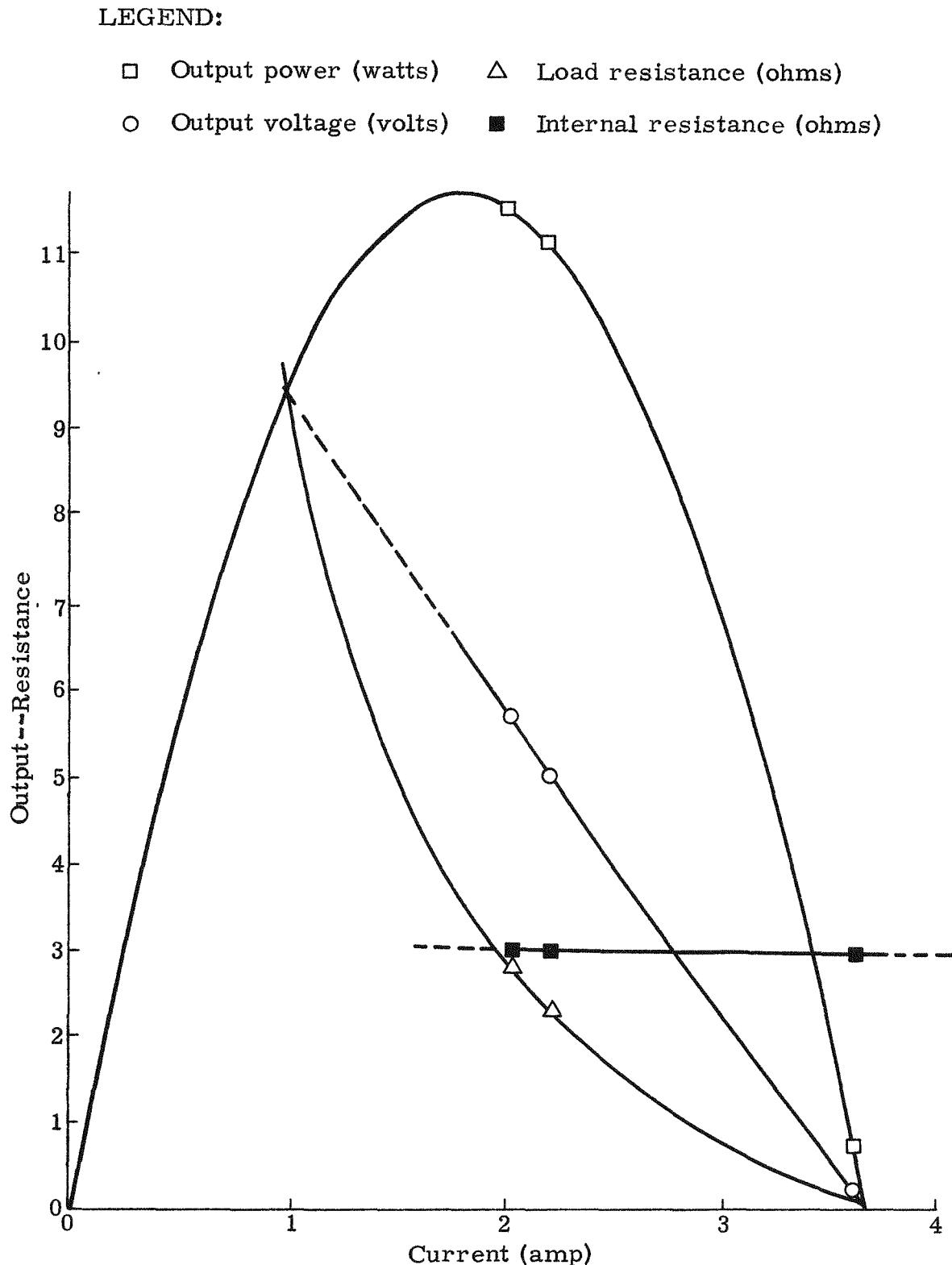



Fig. VIII-6. Plot of Parametric Data for SNAP 7A Generator, Where Power Input Was 252 Electrical Watts and Internal Gas Composition Was 75% Argon and 25% Helium (1.05 atm)

## IX. ENVIRONMENTAL TESTING OF SNAP 7C ELECTRICAL GENERATING AND STORAGE SYSTEM

Environmental qualification of the major system components is necessary because:

- (1) The equipment, after exposure to normal accelerations and vibrations, must be operable and must sustain no major damage from induced shock or vibration loads.
- (2) The equipment must be capable of operating under the environmental conditions encountered at the installation site.

The tests were conducted under the conditions set forth in applicable portions of the statement of work (Ref. 4).

### A. DESCRIPTION OF TEST SPECIMENS

The SNAP 7A-C test generator was used for the environmental tests. The biological shield was not used in the mechanical tests since it had no effect on the mechanical properties of the generator, and to include it would complicate the tests considerably. The simulated decay heat was removed by circulating water through an aluminum cooling jacket as shown in Fig. IX-1. The temperature tests, on the other hand, were conducted with the unit assembled in the biological shield so that the heat transfer properties were duplicated as indicated by Fig. IX-2. The battery and converter were tested at the same time as the generator. Typical test configurations are shown in Figs. IX-3 and IX-4.

### B. TEST CONDITIONS

The thermoelectric generator, converter and battery were subjected to vibration, shock and temperature tests as described in this subsection.

#### 1. Vibration Tests

Since the SNAP 7A and 7C generators are identical, one model was subjected to a composite environment consisting of the following:

- (1) Vertical plane.
  - (a) 5 to 33 cps in discrete frequency intervals of one cps, dwell for 3 minutes at each frequency, 3-g level or  $0.060 \pm 0.006$ -inch displacement, whichever is less.
  - (b) 5 to 300 to 5 cps sweep in 15 minutes at a 3-g level or  $0.050 \pm 0.006$ -inch displacement, whichever is less.




Fig. IX-1. SNAP 7A-7C Thermoelectric Generator and Test Fixture Positioned on MB-C25 Electrodynamic Shaker for Vertical Excitation



Fig. IX-2. SNAP 7A-7C Thermoelectric Generator with Biological Shield  
Positioned in Temperature Chamber for Temperature Output Tests

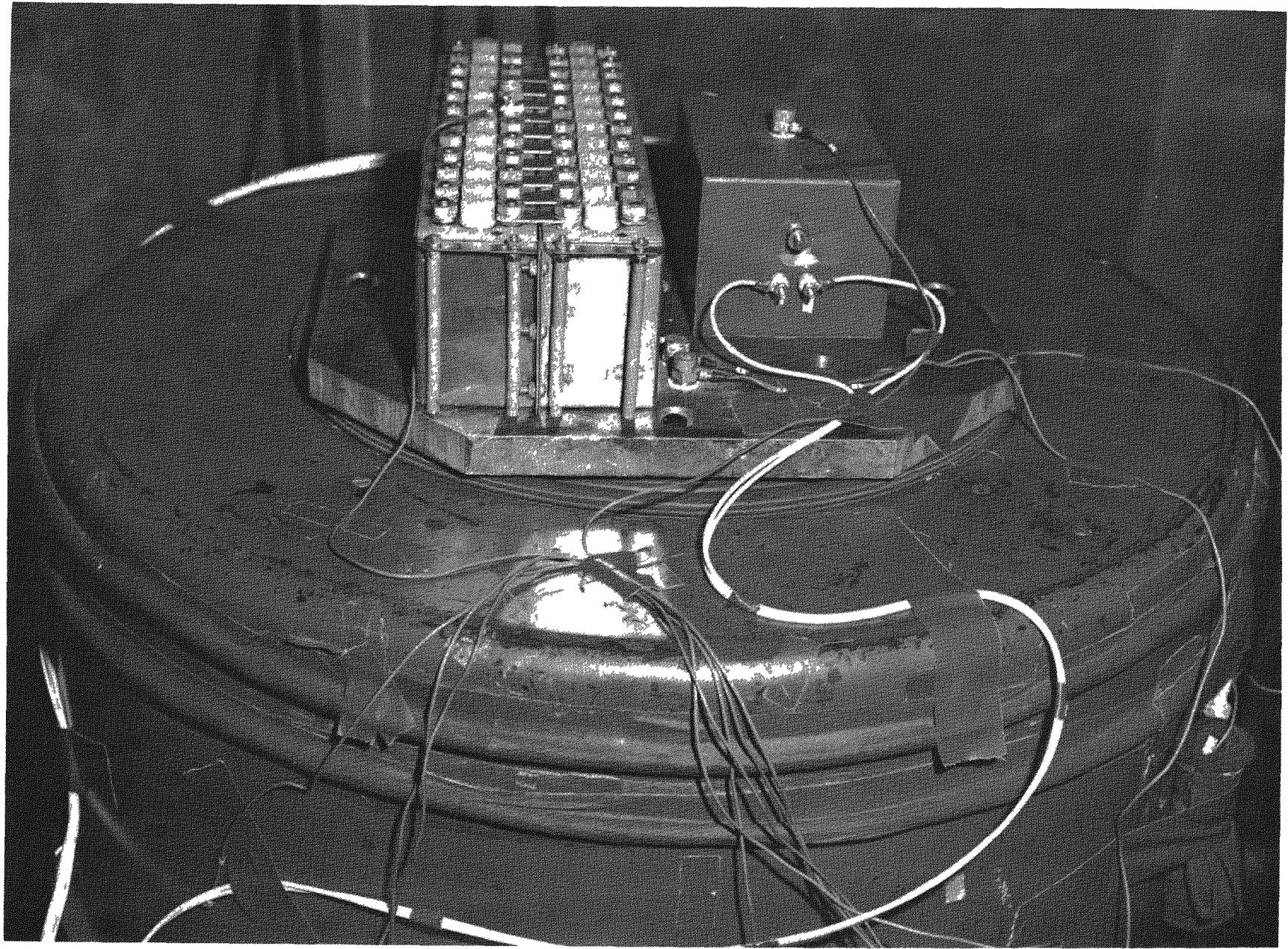



Fig. IX-3. SNAP 7C Battery and Converter Positioned on MB-C25  
Electrodynamic Shaker for Vertical Excitation

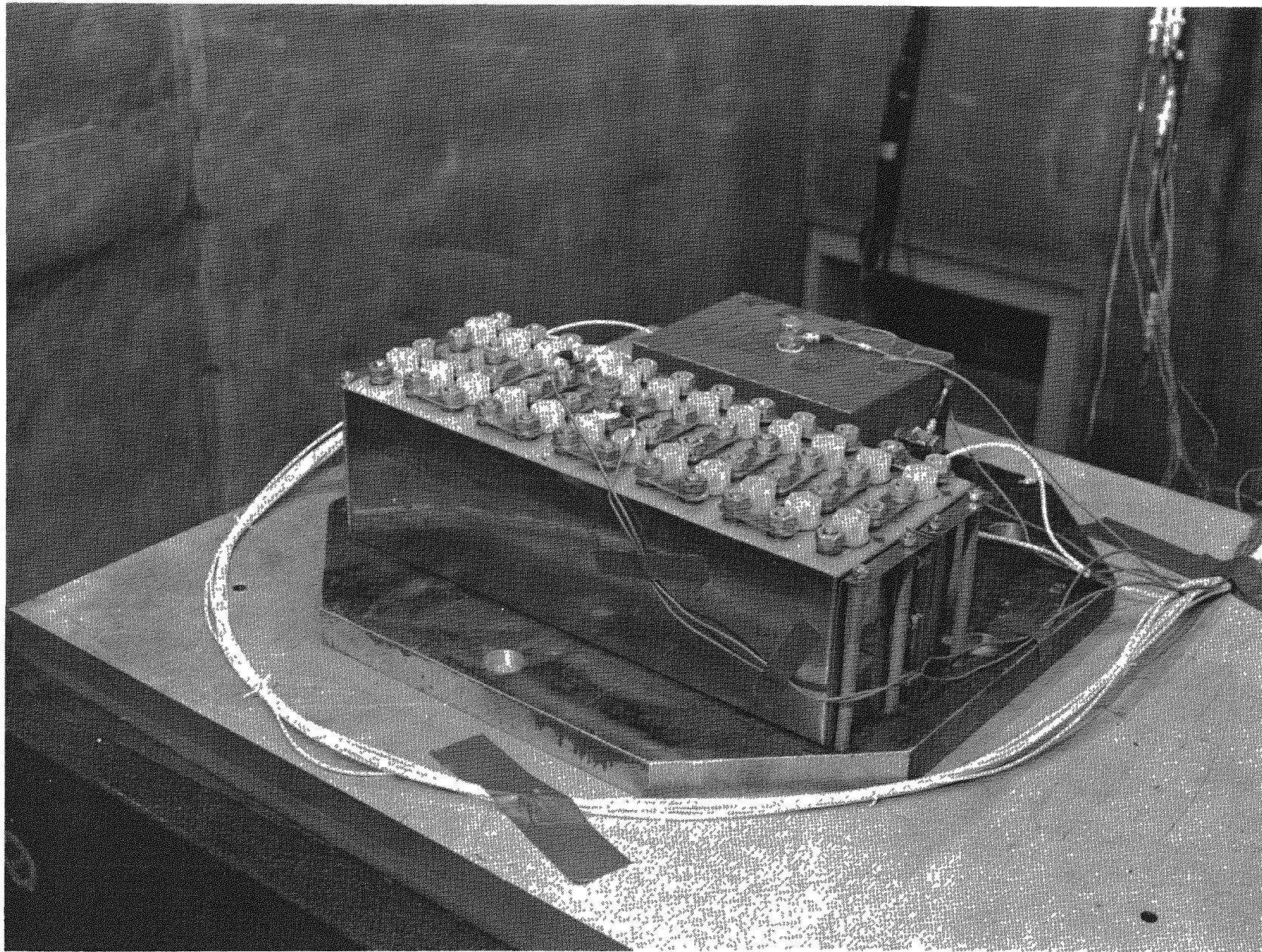



Fig. IX-4. SNAP 7C Battery and Converter Positioned on Vibration Slide Table for Excitation in Horizontal Axes

- (2) Repeats (1) for the two remaining principal orthogonal axes.
- (3) Dwell at the most severe resonant condition, at the input level consistent with the frequency, for a period of two hours.

The battery and converter were subjected to Parts (1)(a), (2) and (3) only, since this is the SNAP 7C requirement.

## 2. Shock Tests

The following requirement is identical for the SNAP 7A and 7C system:

- (1) Subject the specimen to two 6-g shocks, having a 6-millisecond half sine wave pulse, in each of the three principal orthogonal axes.

## 3. Temperature

- (1) Generator--Record performance and specimen temperature after stabilization at the following ambient conditions:

0° F--sea level pressure\*  
 +28° F--sea level pressure  
 +70° F--sea level pressure\*  
 +125° F--sea level pressure\*\*

- (2) Battery and converter--Record performance and specimen temperature after stabilization at the following ambient conditions:

+20° F--sea level pressure  
 +60° F--sea level pressure

## C. TEST METHOD AND RESULTS

### 1. Generator Vibration

The thermoelectric generator was attached to a test fixture and positioned on an MB-C25 electrodynamic shaker for excitation in the vertical plane (Figs. IX-1 and IX-5).\*\*\* After testing, the generator and fixture

\*Anticipated extremes of ambient temperature during operation--  
 composite of SNAP 7A and 7C.

\*\*Maximum anticipated ambient temperature during shipment with generator output short circuited to take advantage of the Peltier cooling effect.

\*\*\*Circuitry for performance measurements was connected as shown in Fig. IX-6.

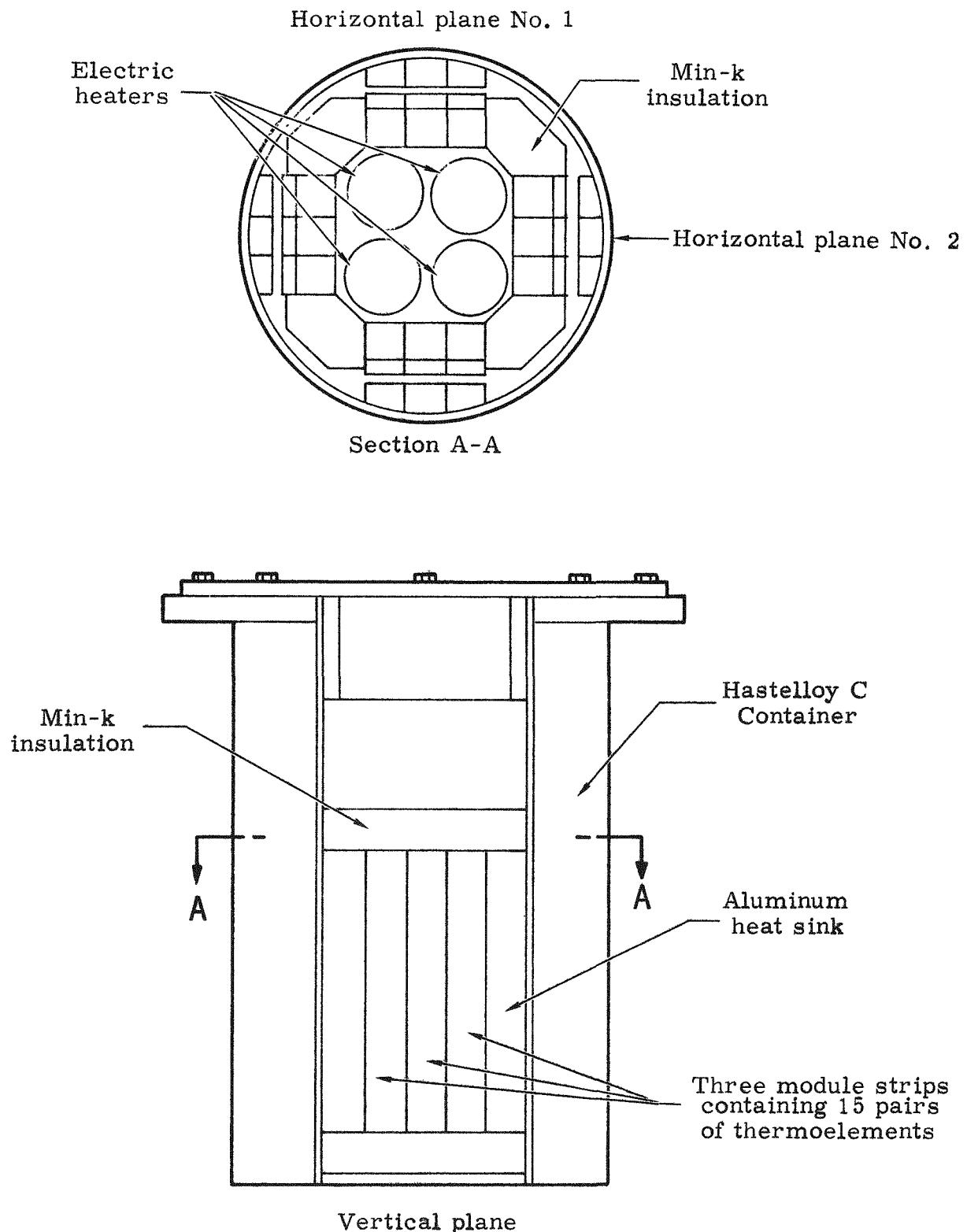



Fig. IX-5. Reference Axis for Vibration and Shock Testing

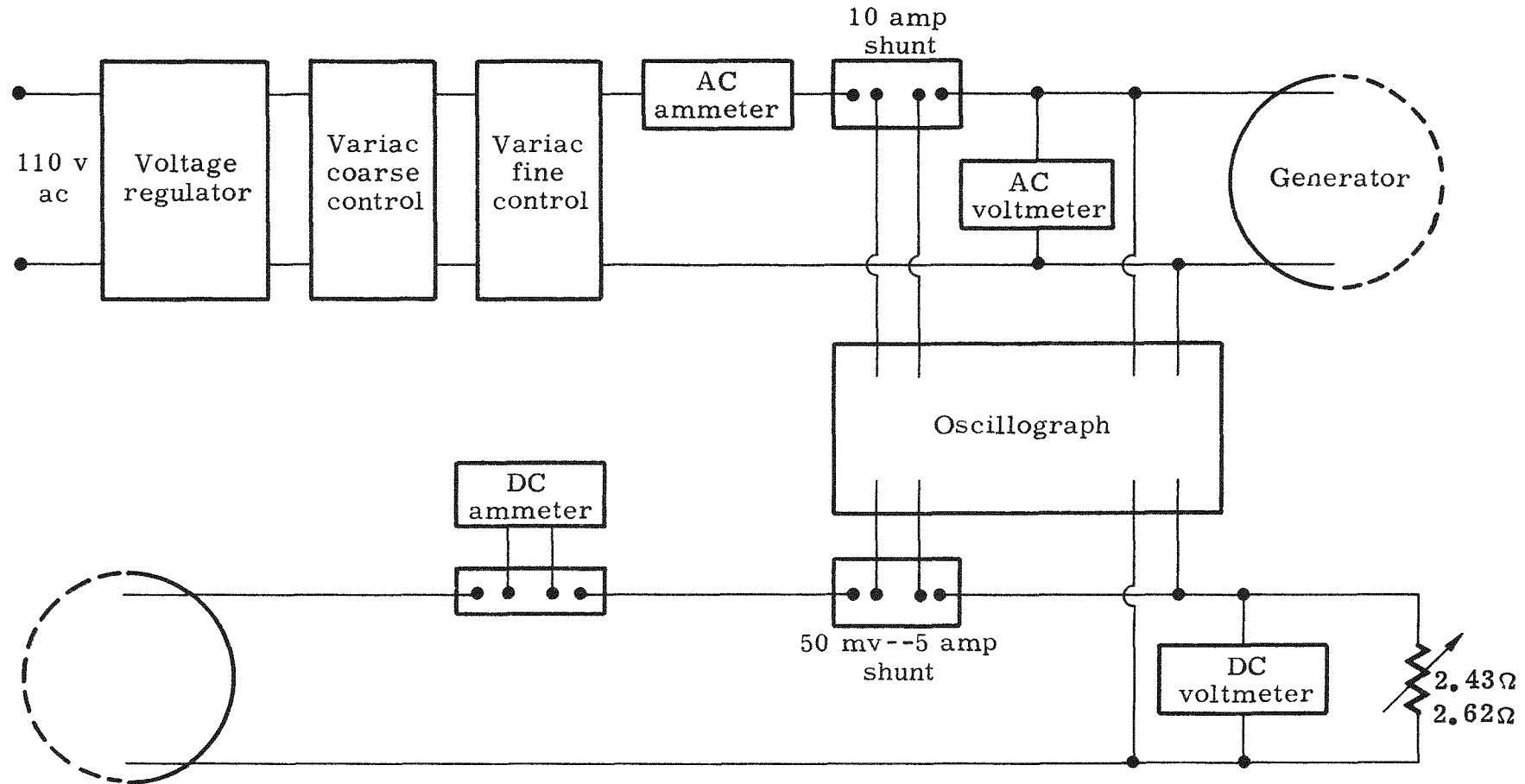



Fig. IX-6. Instrumentation Circuitry for Generator Test

were attached to a slide plate resting on an oil table for excitation in the horizontal planes as illustrated in Fig. IX-7.

The generator functioned properly throughout its exposure to vibration. During the test in horizontal plane No. 1, discontinuities in generator output occurred at approximately 90 and 250 cycles per second. This is shown in Figs. IX-8 through IX-11.

The 250-cycles per second frequency was selected for the vibration dwell in horizontal plane No. 1 because of the broad output response characteristic in that particular frequency range. The vibration dwell caused an increase in generator output, continuing for six hours after the dwell was completed. Table IX-1 summarizes the generator vibration data.

## 2. Battery and Converter Vibration

The battery and converter were attached to a flat fixture plate and tested simultaneously. Figure IX-12 illustrates the battery and converter positions for vertical and horizontal excitation. Figures IX-3 and IX-4 are pictures of the test apparatus. The converter and battery behavior were monitored throughout the test with the circuitry illustrated in Fig. IX-13.

Individual cell voltage checks and checks of converter output with simulated generator input prior to and after all vibration tests indicated satisfactory performance.

The major vibration resonance was detected at 284 cycles per second in the vertical plane at the top center of the converter. The specimens were subjected to the two-hour vibration dwell at this frequency with no adverse effects noted. Table IX-2 tabulates the functional data obtained for these tests.

## 3. Generator Shock

The generator and fixture were mounted on the table of the Barry Medium Impact Shock Machine (Fig. IX-14) for the 6-g, 6-millisecond impacts in the vertical plane. Generator functions were monitored in the same fashion as during vibration testing.

The generator was then repositioned as shown in Fig. IX-15 for shock impacts in the two horizontal planes.

The generator functioned properly throughout two drops in the vertical and horizontal axes. A typical effect on output is shown in Fig. IX-16 and a summary of the test results is given in Table IX-3.



Fig. IX-7. SNAP 7A-7C Thermoelectric Generator and Test Fixture Positioned on Vibration Slide Table for Horizontal Excitation

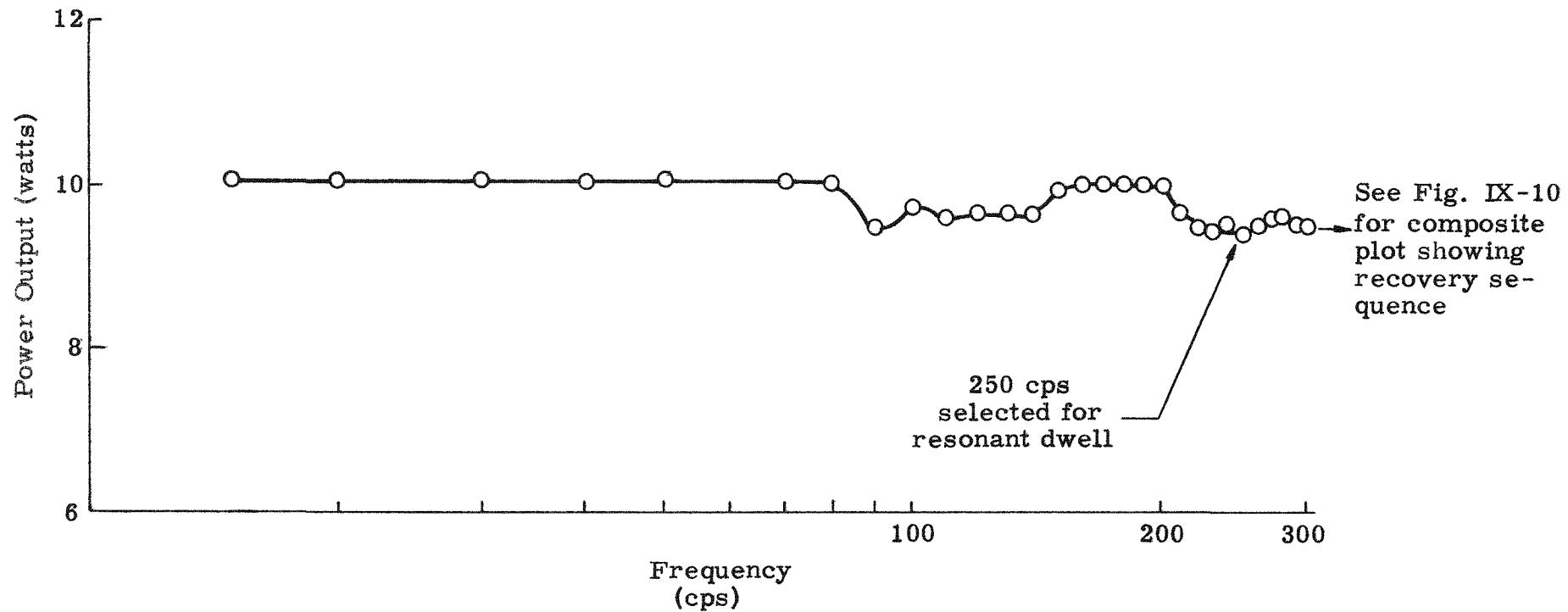



Fig. IX-8. Power Output Versus Frequency in Horizontal Plane No. 1

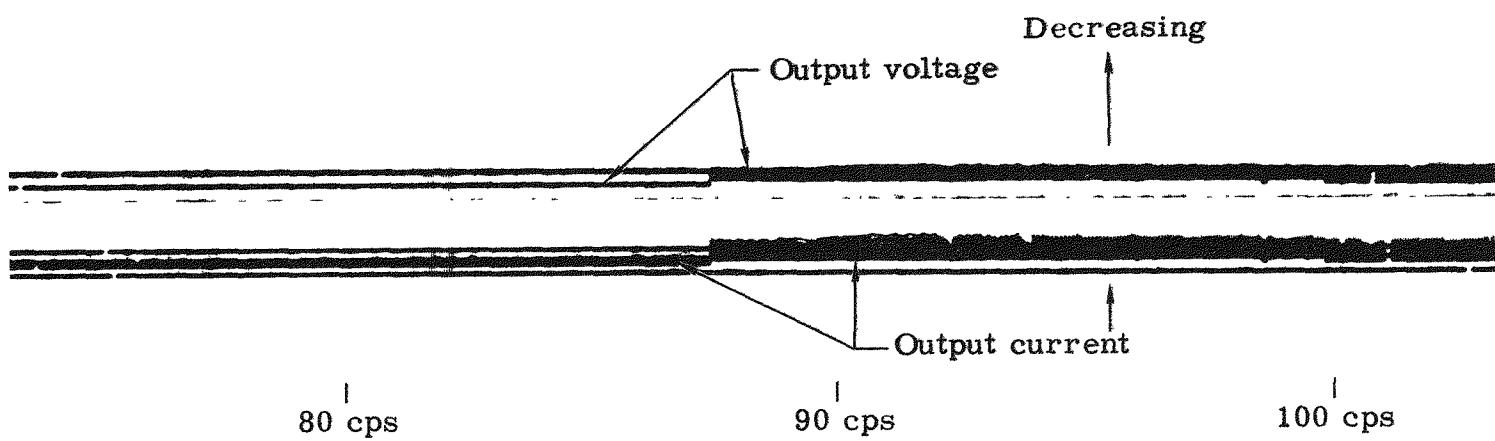



Fig. IX-9. Oscillograph Reproduction of Generator Output Response at 90 cps

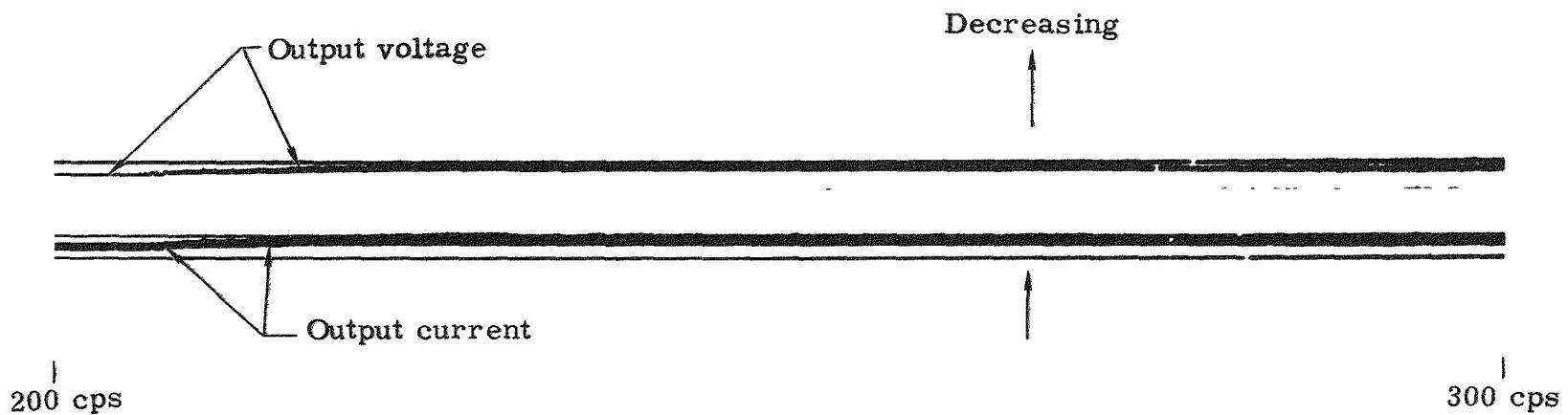



Fig. IX-10. Oscillograph Reproduction for Generator Output Response at 250 cps

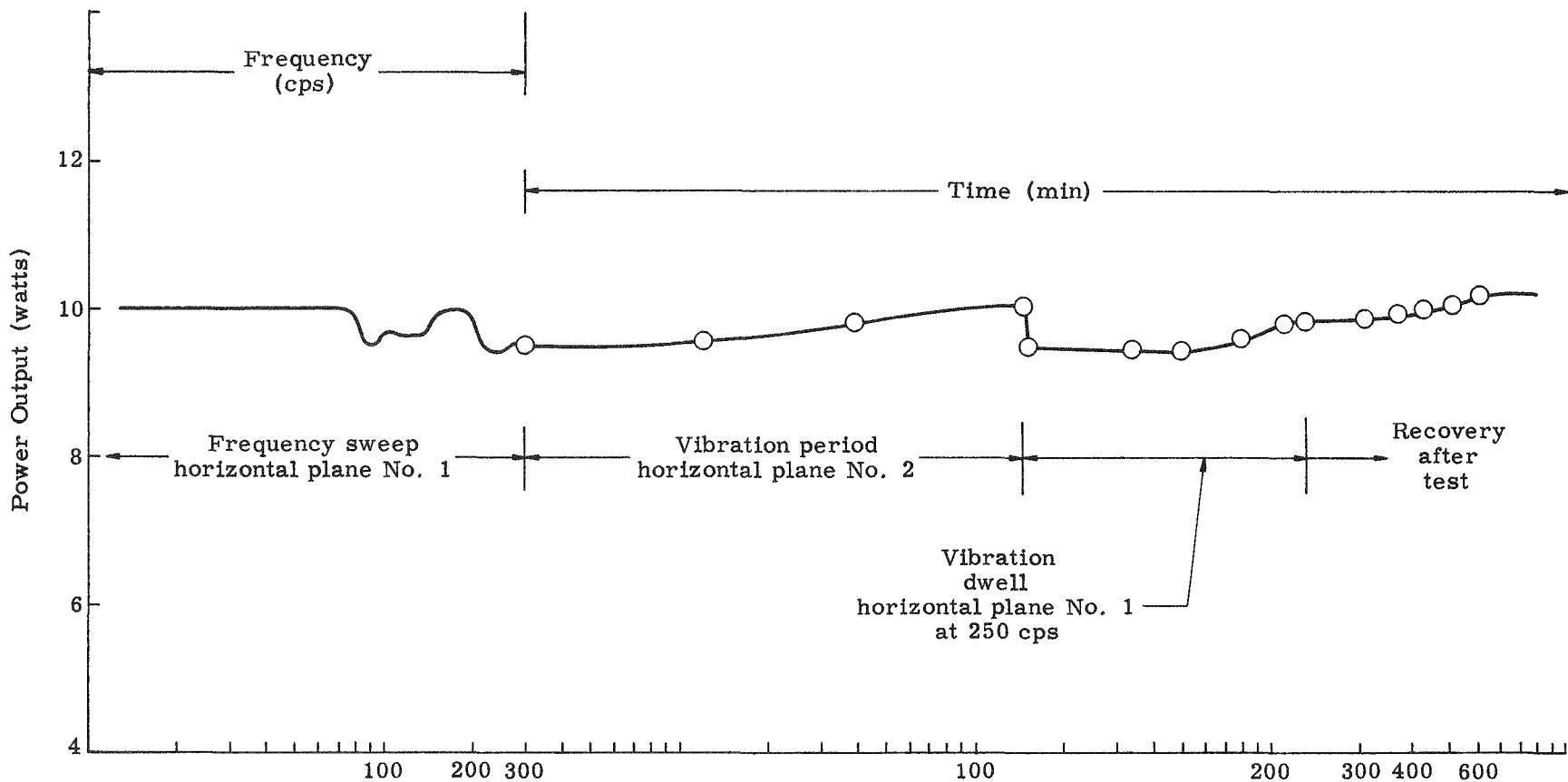



Fig. IX-11. Time History of Generator Output During and After Horizontal Vibration

TABLE IX-1  
Snap 7A-7C Thermoelectric Generator Vibration Test Data

| Reference Plane | Environment                        | Exposure Time (min) | Power Input    |               | Power Output   |               | Remarks                                                                                                                                                            |
|-----------------|------------------------------------|---------------------|----------------|---------------|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                    |                     | Before (watts) | After (watts) | Before (watts) | After (watts) |                                                                                                                                                                    |
| Vertical        | 5 to 300 cps at 0.06 DA & 1/2 g    | 7-1/2               | 240            | 240           | 10.05          | 10.05         | Investigation for major resonant conditions--none noted                                                                                                            |
| Vertical        | 5 to 33 cps at 0.06 DA & 3 g       | 87                  | 240            | 240           | 10.05          | 10.05         | Satisfactory                                                                                                                                                       |
| Vertical        | 5 to 300 to 5 cps at 0.06 DA & 3 g | 15                  | 240            | 240           | 10.05          | 10.05         | Satisfactory                                                                                                                                                       |
| Horizontal 1    | 5 to 300 cps at 0.06 DA & 1/2 g    | 7-1/2               | 238            | 239           | 10.02          | 10.02         | No resonances noted                                                                                                                                                |
| Horizontal 1    | 5 to 33 cps at 0.06 DA & 3 g       | 87                  | 238            | 238           | 10.02          | 10.02         | Satisfactory                                                                                                                                                       |
| Horizontal 1    | 5 to 300 to 5 cps at 0.06 DA & 3 g | 15                  | 238            | 238           | 10.05          | 9.51          | Discontinuity in output and ripple at 90 cps and decrease at 250 cps with ripple                                                                                   |
| Horizontal 2    | 5 to 300 cps at 0.06 DA & 1/2 g    | 7-1/2               | 238            | 238           | 9.51           | 9.82          | No resonances noted                                                                                                                                                |
| Horizontal 2    | 5 to 33 cps at 0.06 DA & 3 g       | 87                  | 238            | 238           | 9.89           | 9.94          | Satisfactory                                                                                                                                                       |
| Horizontal 2    | 5 to 300 to 5 cps at 0.06 DA & 3 g | 15                  | 238            | 238           | 9.94           | 10.05         | Satisfactory                                                                                                                                                       |
| Horizontal 1    | 250 cps at 3 g dwell               | 120                 | 238            | 238           | 10.05          | 9.80          | At start of vibration output decreased to 9.43 watts. Ripple on output ceased after 90 min and output increased to 10.2 watts 6 hours after vibration was complete |

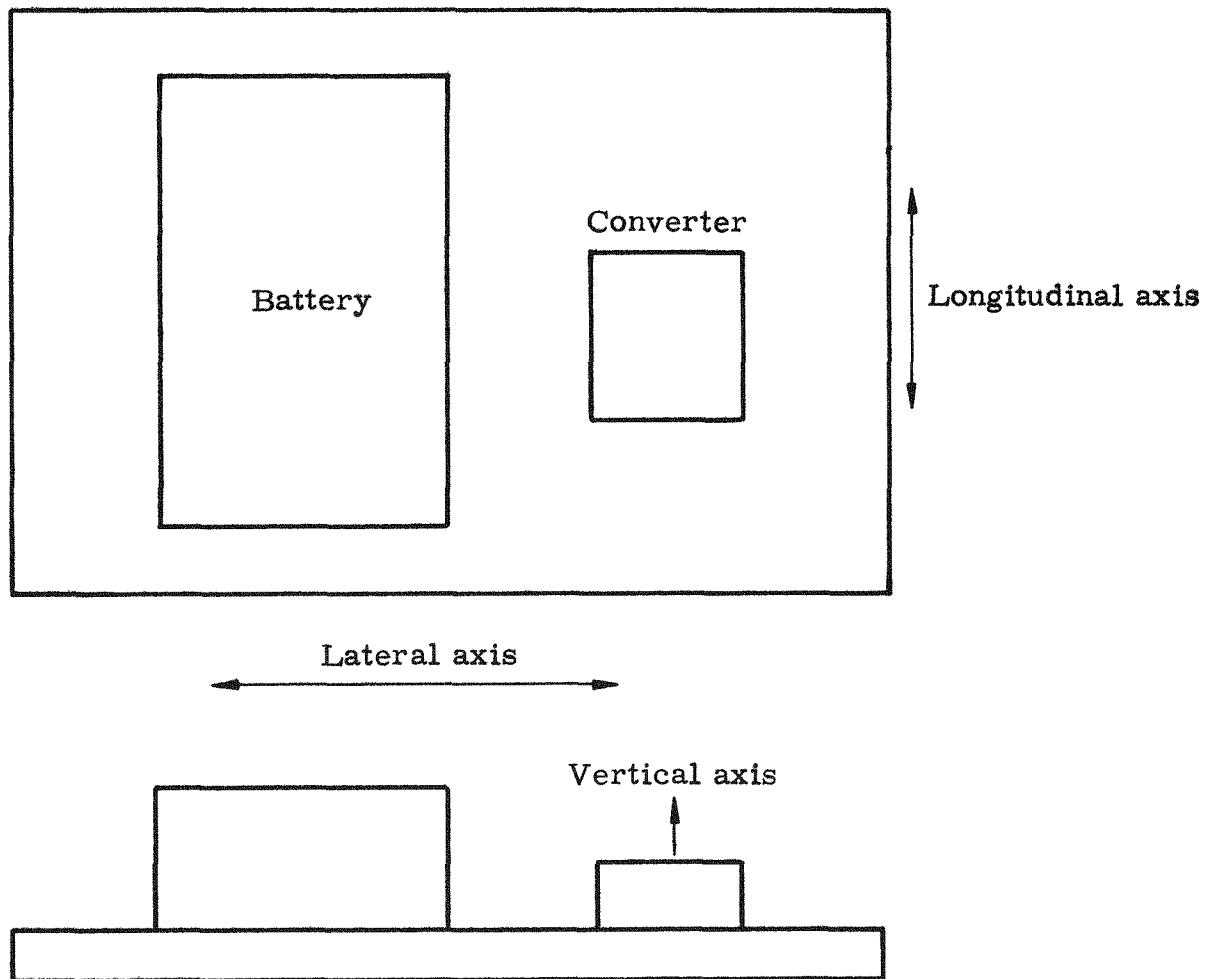



Fig. IX-12. Reference Axes for Vibration and Shock Testing of SNAP 7C Battery and Converter

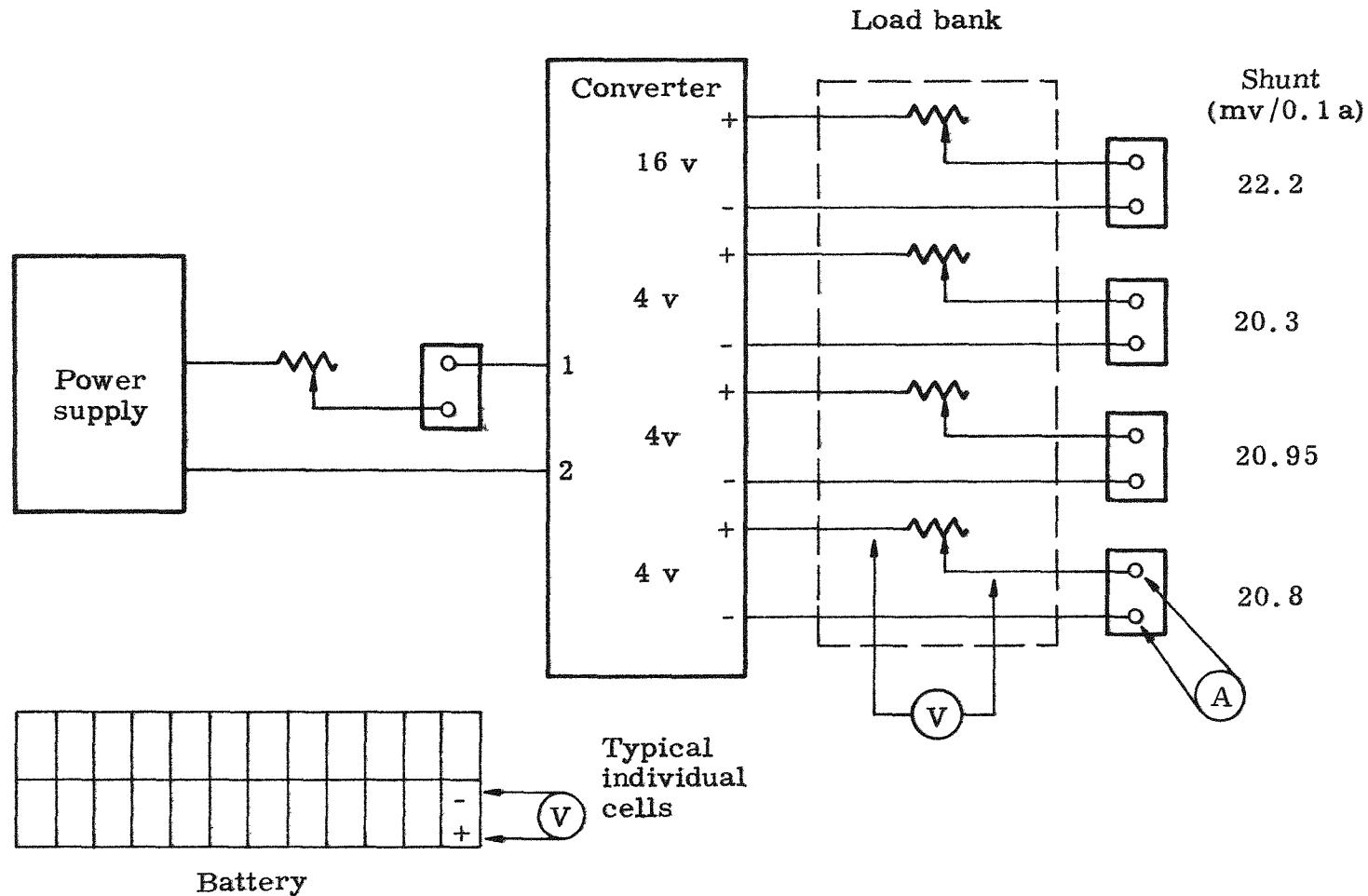



Fig. IX-13. Instrumentation Circuitry for SNAP 7C Battery and Converter Test

TABLE IX-2  
Snap 7C Battery and Converter Vibration Test Data

| Item                                                                       | Vertical Vibrations |       | Lateral Vibrations |       | Longitudinal       | Vibration<br>Dwell at<br>284 cps<br>After |
|----------------------------------------------------------------------------|---------------------|-------|--------------------|-------|--------------------|-------------------------------------------|
|                                                                            | Before              | After | Before             | After | Vibration<br>After |                                           |
| Battery cell<br>voltages (volts)*<br>Cells 1 through 22<br>(all identical) | 1.28                | 1.28  | 1.28               | 1.28  | 1.28               | 1.28                                      |
| Converter input                                                            |                     |       |                    |       |                    |                                           |
| Voltage (volts)                                                            | 5.1                 | 5.1   | 5.1                | 5.0   | 5.1                | 5.1                                       |
| Current (amperes)                                                          | 1.74                | 1.78  | 1.70               | 1.74  | 1.78               | 1.78                                      |
| Converter output                                                           |                     |       |                    |       |                    |                                           |
| Section 1                                                                  |                     |       |                    |       |                    |                                           |
| Voltage (volts)                                                            | 16.0                | 16.0  | 16.0               | 16.1  | 16.3               | 16.3                                      |
| Current (milliamperes)                                                     | 99                  | 99.3  | 98.6               | 99    | 99.3               | 100                                       |
| Section 2                                                                  |                     |       |                    |       |                    |                                           |
| Voltage (volts)                                                            | 3.68                | 3.64  | 3.65               | 3.68  | 3.75               | 3.72                                      |
| Current (milliamperes)                                                     | 98.5                | 102   | 98.5               | 98.5  | 100                | 101                                       |
| Section 3                                                                  |                     |       |                    |       |                    |                                           |
| Voltage (volts)                                                            | 3.35                | 3.35  | 3.30               | 3.32  | 3.38               | 3.37                                      |
| Current (milliamperes)                                                     | 100                 | 103   | 99.5               | 100   | 101                | 102                                       |
| Section 4                                                                  |                     |       |                    |       |                    |                                           |
| Voltage (volts)                                                            | 4.00                | 4.09  | 3.98               | 4.03  | 4.10               | 4.11                                      |
| Current (milliamperes)                                                     | 101                 | 105   | 108                | 110   | 112                | 113                                       |

\*Battery was not in fully charged condition.




Fig. IX-14. SNAP 7A-7C Thermoelectric Generator Positioned on Barry Medium Impact Shock Machine for Vertical Shock Tests

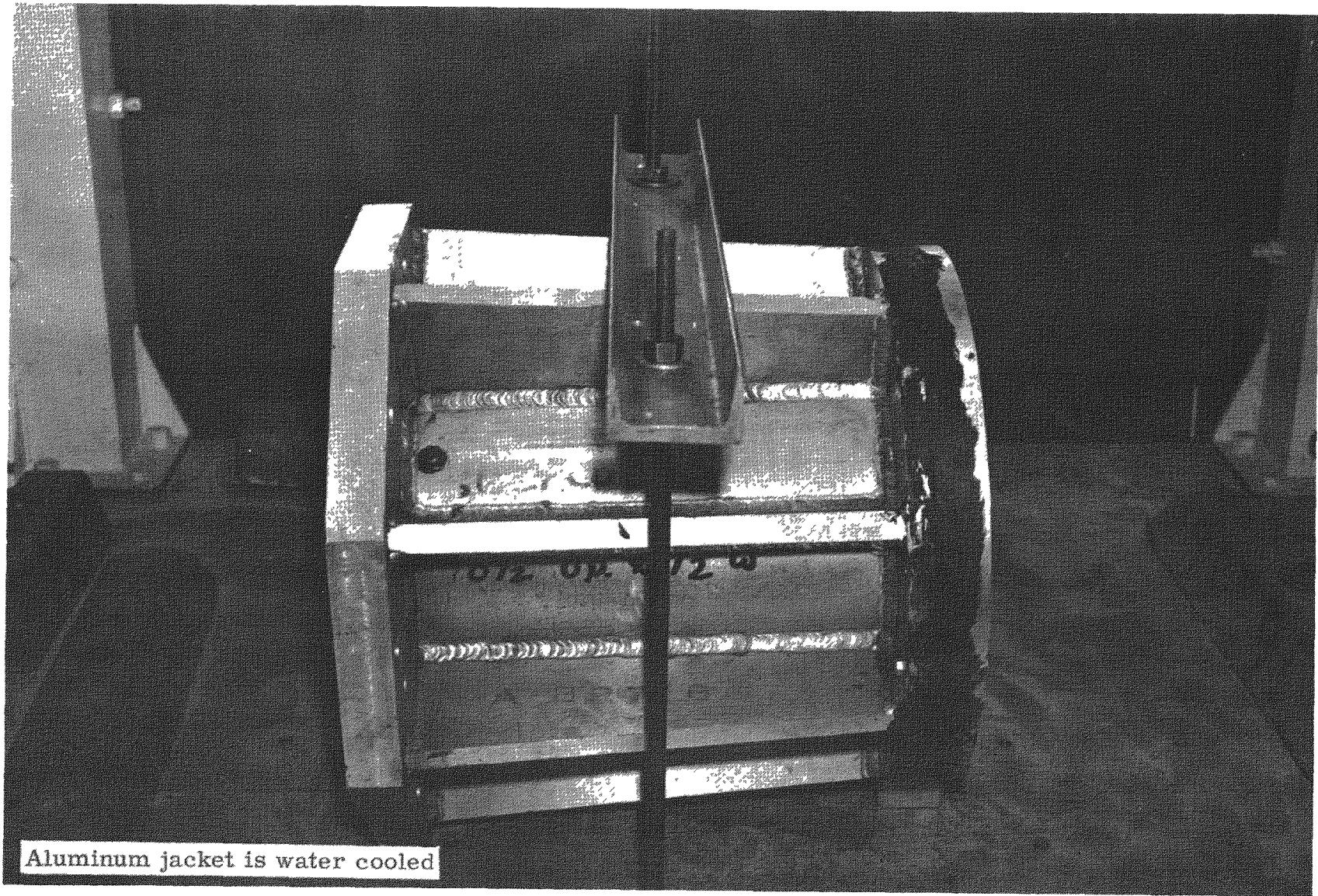



Fig. IX-15. SNAP 7A, 7C Thermoelectric Generator and Test Fixture Positioned on Barry Medium Impact Shock Machine for Horizontal Shock Tests

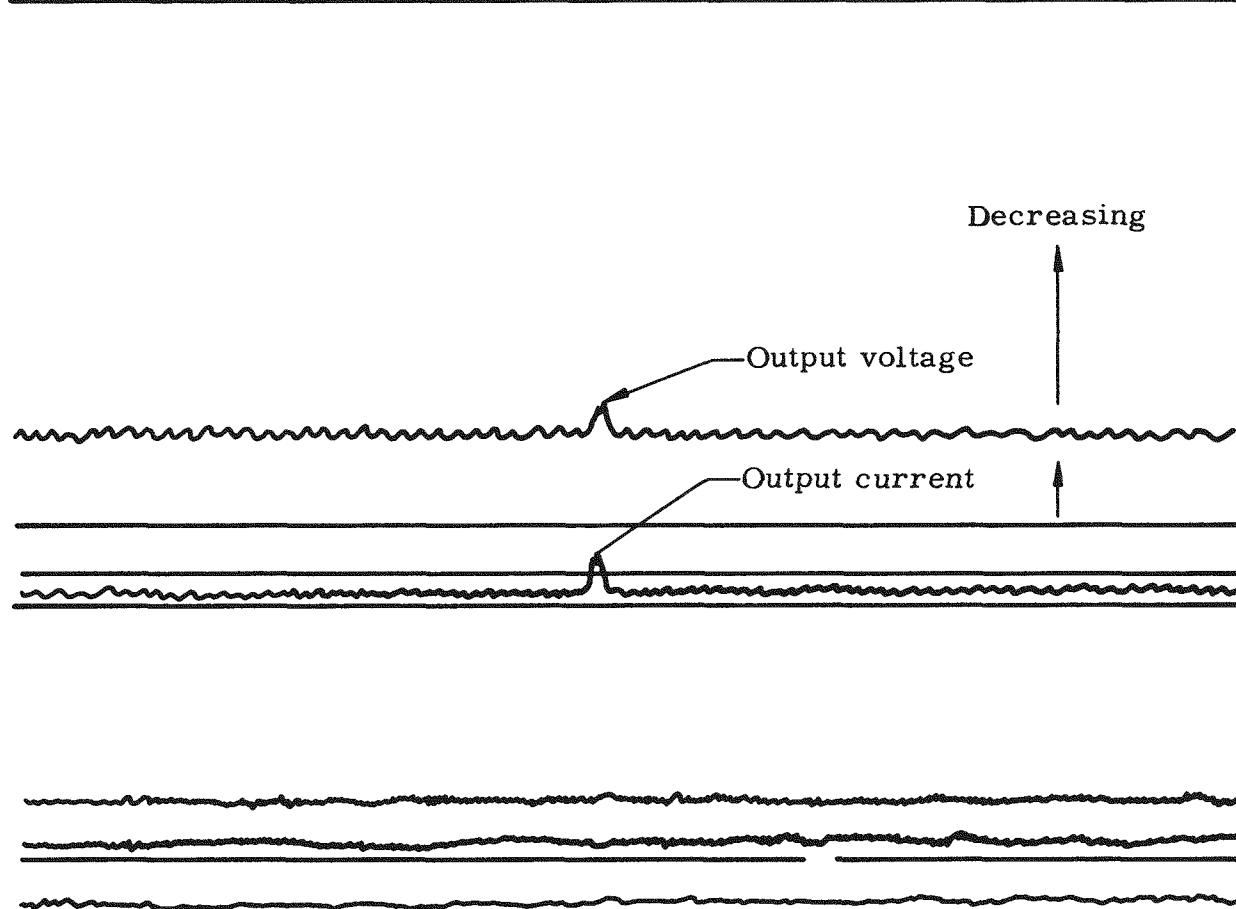



Fig. IX-16. Oscillograph Reproduction of Generator Output Effect of Horizontal Shock

TABLE IX-3  
SNAP 7A-7C Thermoelectric Generator Shock Test Data

| Reference Plane    | Required Environment |                | Power Input |       | Power Output |       | Results                                                                      |
|--------------------|----------------------|----------------|-------------|-------|--------------|-------|------------------------------------------------------------------------------|
|                    | (g)                  | (**ms)         | Before      | After | Before       | After |                                                                              |
| Vertical No. 1     | 6                    | 6<br>Half sine | 238         | 238   | 9.92         | 9.92  | Satisfactory.                                                                |
| Vertical No. 2     | 6                    | 6<br>Half sine | 238         | 238   | 9.92         | 9.92  | Satisfactory.                                                                |
| Horizontal 1 No. 1 | 6                    | 6<br>Half sine | 238         | 238   | 9.92         | 9.92  | Satisfactory.                                                                |
| Horizontal 1 No. 2 | 6                    | 6<br>Half sine | 238         | 238   | 9.92         | 9.92  | Approximately 5 min after drop, output noted to have decreased to 8.3 watts. |
| Horizontal 2 No. 1 | 6                    | 6<br>Half sine | 238         | 238   | 8.3          | 8.3   | Impulse caused momentary increase to normal output.                          |
| Horizontal 2 No. 2 | 6                    | 6<br>Half sine | 238         | 238   | 8.3          | 8.3   | Impulse caused momentary increase to normal output.                          |

\*\*Actual shock environment was approximately 18-g, 6-ms half sine.

About five minutes after the second shock in horizontal plane No. 1, the output suddenly dropped approximately 15%. Testing was continued in horizontal plane No. 2. The output during both shock pulses momentarily returned to the maximum output as recorded in Fig. IX-17. After testing was complete, another slight shock in the vertical plane restored continuous, near maximum output (deficiency corrected). It was then noted that handling of the input-output plug on the generator produced the same 15% decrease in output. The decrease can be attributed to this plug and not the basic thermoelectric generator.

After the shock tests were completed, discrepancies in the shock machine were noted and a check was made of the actual shock loads. It was found that the generator had been subjected to 18-g, 6-millisecond, half-sine shock pulses. This represented a shock value three times greater than required by the statement of work.

#### 4. Battery and Converter Shock

The battery and converter were secured to the table of the Barry Medium Impact Shock Machine shown in Fig. IX-18 for the 6-g, 6-millisecond impacts in the vertical plane. Battery and converter performance were monitored throughout the test.

The units were then positioned for shock impulses in the two remaining principal orthogonal axes shown in Fig. IX-19. The battery and converter functional checks made before and after each plane of shock show no structural damage or effects on the operation of the battery and converter. Table IX-4 tabulates the data obtained from the shock tests.

#### 5. Temperature Tests

The generator assembly was placed in the finned biological shield using a glycol-water solution to conduct heat from the generator to the shield, and the complete unit was positioned in the Bowser temperature chamber shown in Fig. IX-2. Generator functions and temperatures were monitored throughout the temperature cycles and for a stabilization period at each temperature step. Figures IX-20 through IX-23 present the effect of ambient temperatures on the generator output. Tables IX-5 through IX-8 contain all data taken during the temperature-output tests.

The battery and converter positioned for the temperature test are shown in Fig. IX-24. The requirements for operation and performance of these components at temperatures of +20° and +60° F were substantiated.

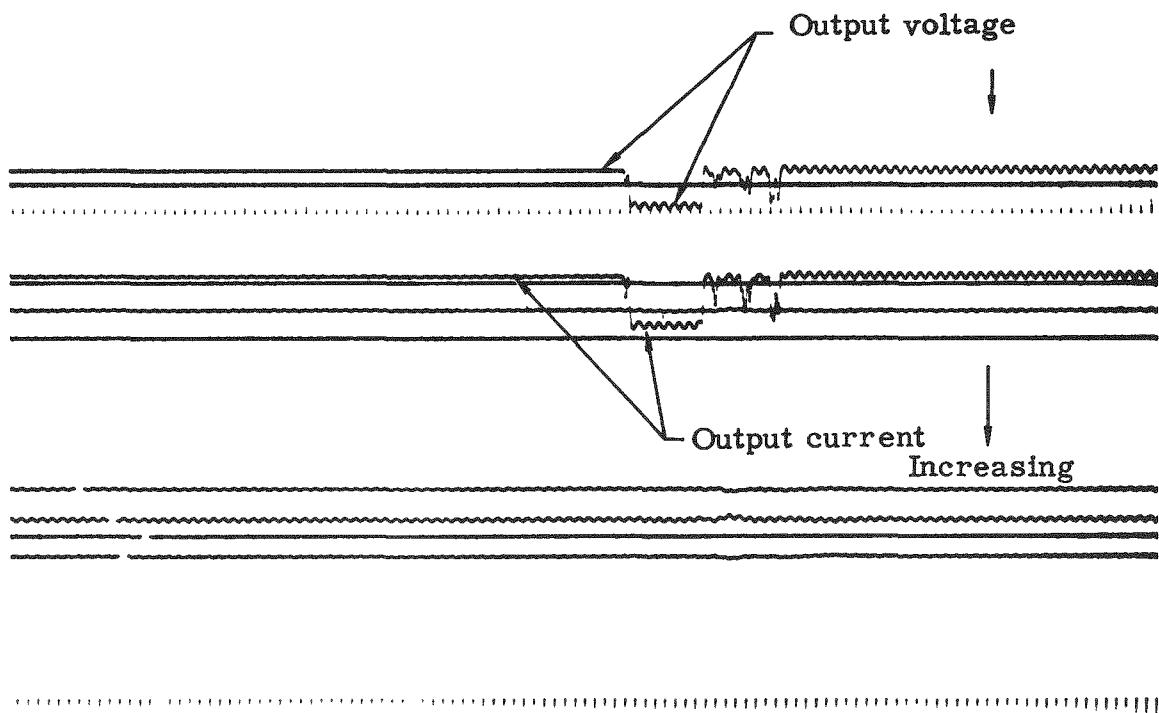



Fig. IX-17. Oscillograph Reproduction of Effect on Output from Horizontal Shock After Discrepancy in Output

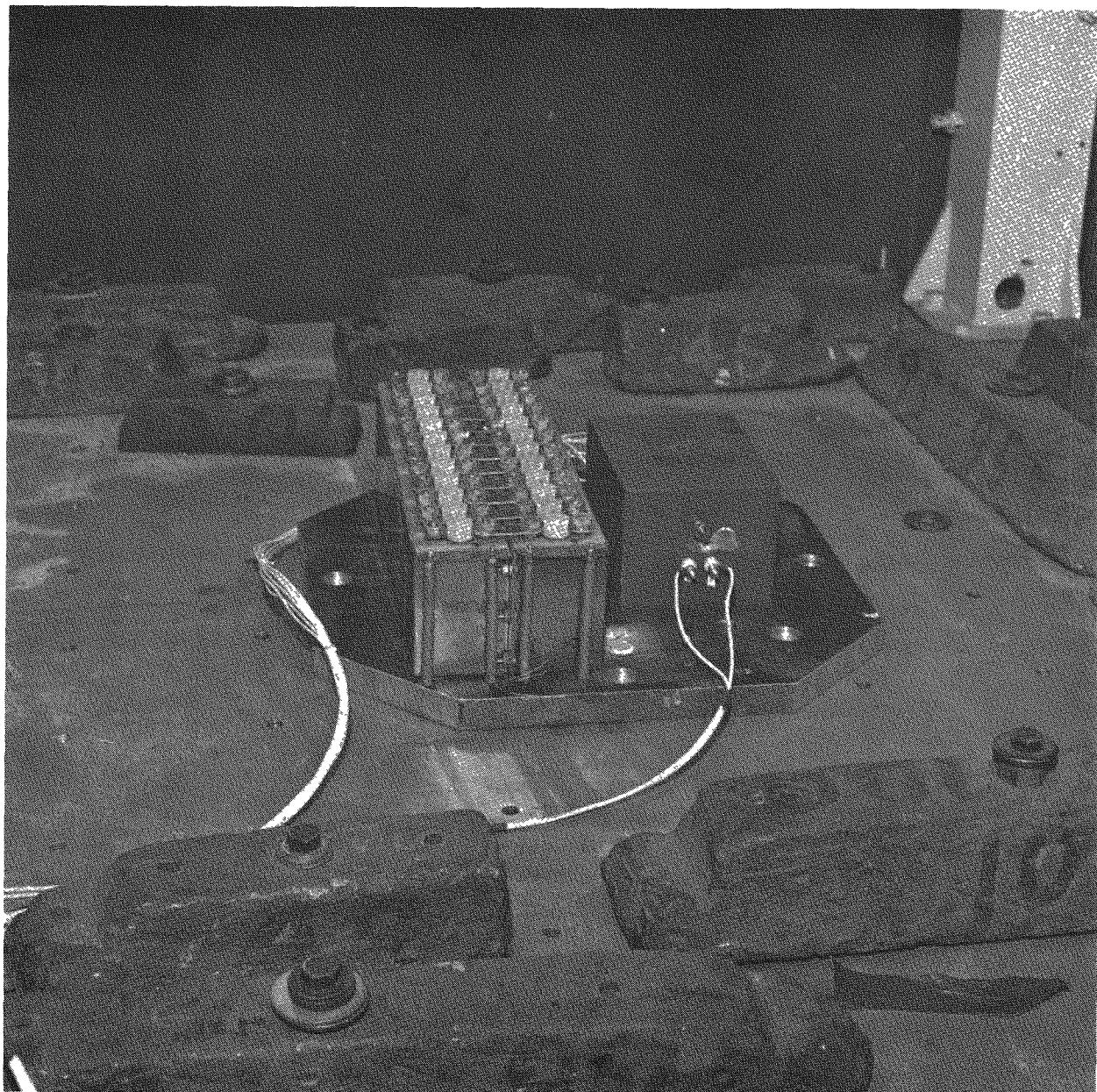



Fig. IX-18. Snap 7C Battery and Converter Positioned on Barry Medium Impact Shock Machine for Vertical Shock Tests

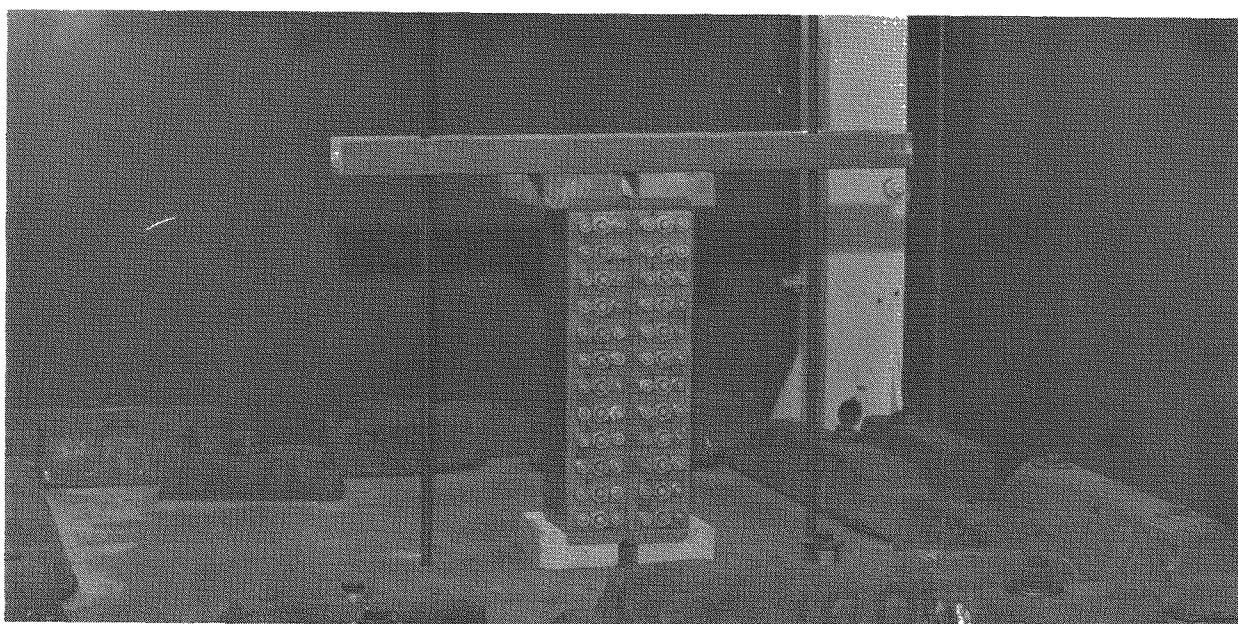
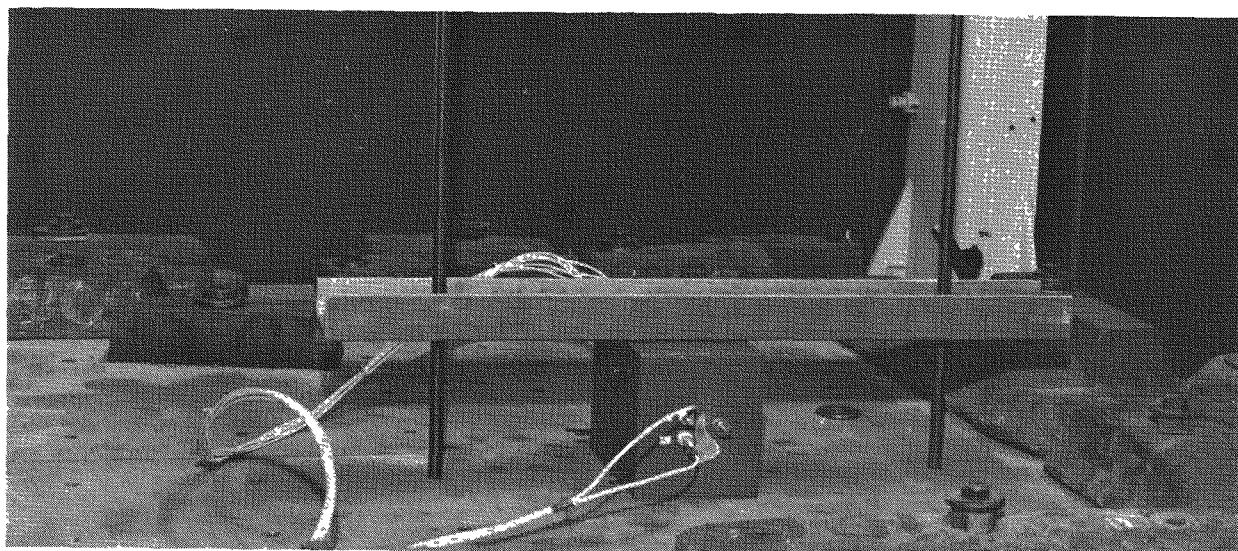




Fig. IX-19. SNAP 7C Battery and Converter Positioned on Barry Medium Impact Shock Machine for Horizontal Shock Tests

TABLE IX-4  
SNAP 7C Battery and Converter Shock Test Data

| <u>Item</u>                          | <u>Vertical Shock</u> |              | <u>Lateral</u>               | <u>Longitudinal</u>          |
|--------------------------------------|-----------------------|--------------|------------------------------|------------------------------|
|                                      | <u>Before</u>         | <u>After</u> | <u>Shock</u><br><u>After</u> | <u>Shock</u><br><u>After</u> |
| Battery cell                         |                       |              |                              |                              |
| Voltages* (volts)                    | 1.28                  | 1.28         | 1.28                         | 1.28                         |
| Cell 1 through 22<br>(all identical) |                       |              |                              |                              |
| Converter input                      |                       |              |                              |                              |
| Voltage (volts)                      | 5.1                   | 5.1          | 5.2                          | 5.1                          |
| Current (amperes)                    | 1.78                  | 1.78         | 1.81                         | 1.81                         |
| Converter output                     |                       |              |                              |                              |
| Section 1                            |                       |              |                              |                              |
| Voltage (volts)                      | 16.3                  | 16.3         | 16.5                         | 16.5                         |
| Current (milliamperes)               | 101                   | 103          | 103                          | 103                          |
| Section 2                            |                       |              |                              |                              |
| Voltage (volts)                      | 3.75                  | 3.76         | 3.77                         | 3.77                         |
| Current (milliamperes)               | 99                    | 101          | 103                          | 101                          |
| Section 3                            |                       |              |                              |                              |
| Voltage (volts)                      | 3.37                  | 3.37         | 3.37                         | 3.38                         |
| Current (milliamperes)               | 101                   | 101          | 101                          | 101                          |
| Section 4                            |                       |              |                              |                              |
| Voltage (volts)                      | 4.10                  | 4.11         | 4.12                         | 4.12                         |
| Current (milliamperes)               | 114                   | 115          | 115                          | 114                          |

\*Battery was not in fully charged condition.

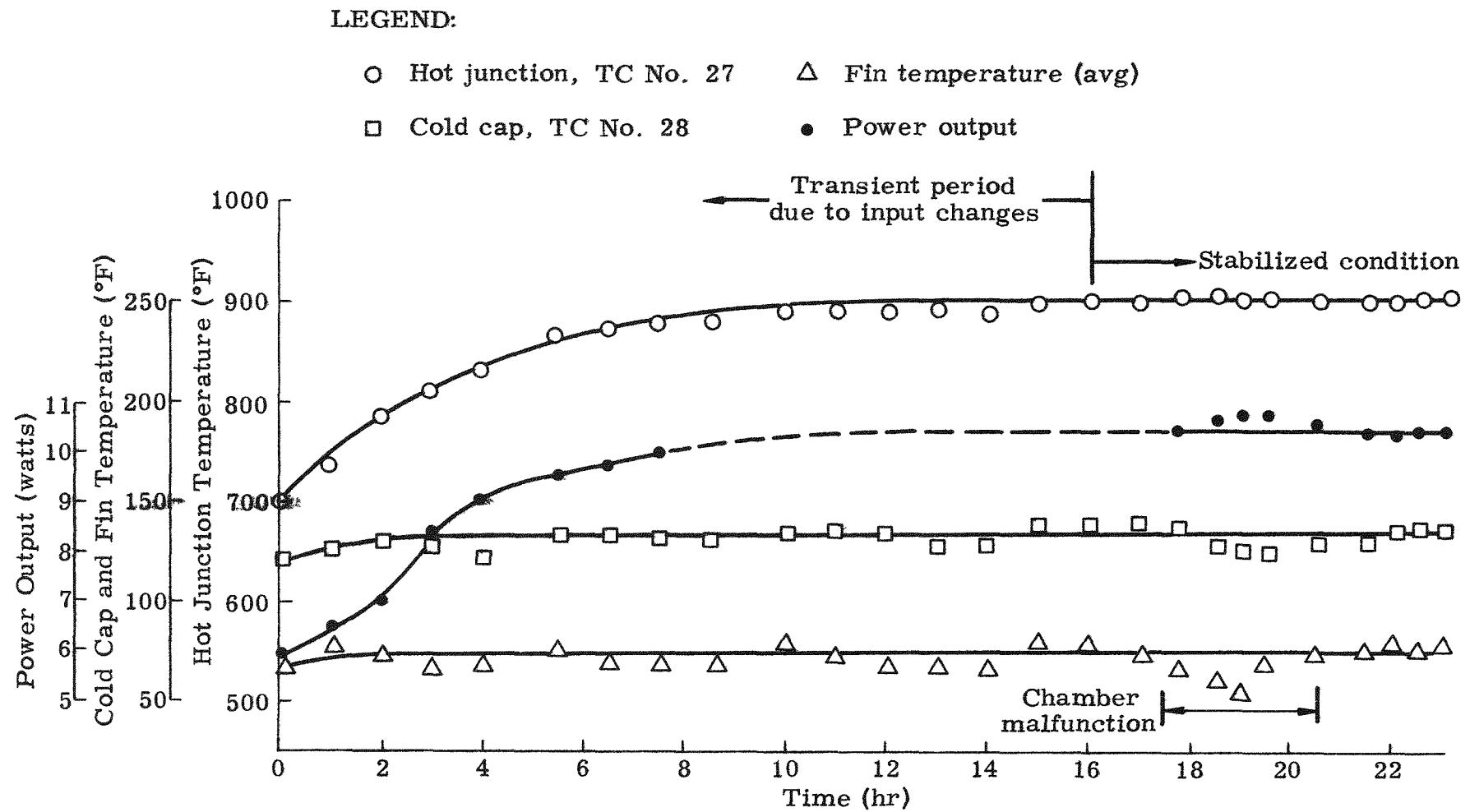



Fig. IX-20. Results of SNAP 7A and SNAP 7C Generator Temperature Chamber Tests, Where Nominal Power Input Was 257 Watts, Ambient Air Temperature Was 70° F, and Generator Atmosphere was 50% Argon and 50% Hydrogen

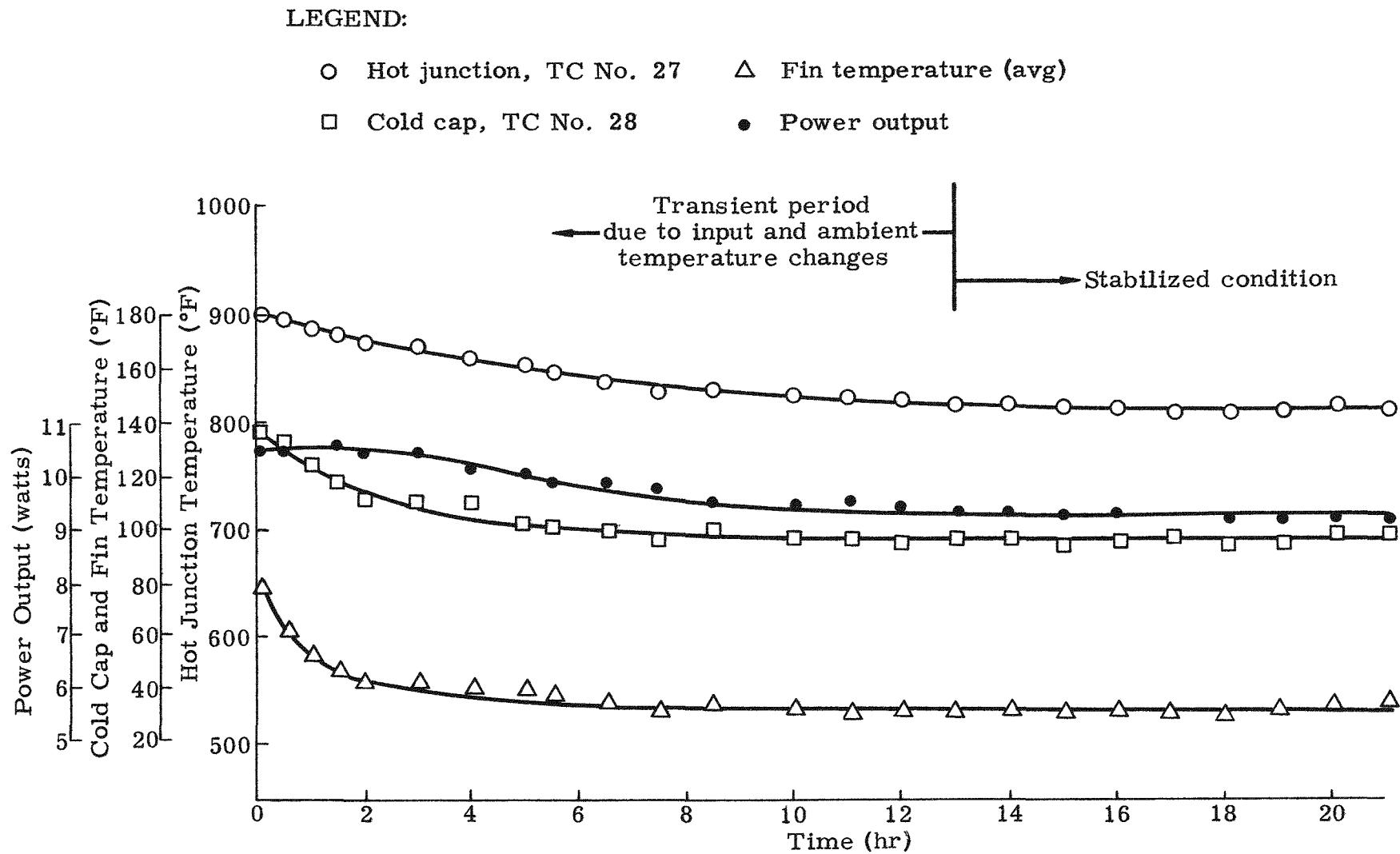



Fig. IX-21. Results of SNAP 7A and SNAP 7C Generator Temperature Chamber Tests, Where Nominal Power Input Was 247.5 Watts, Ambient Air Temperature Was 28° F, and Generator Atmosphere Was 50% Argon and 50% Hydrogen

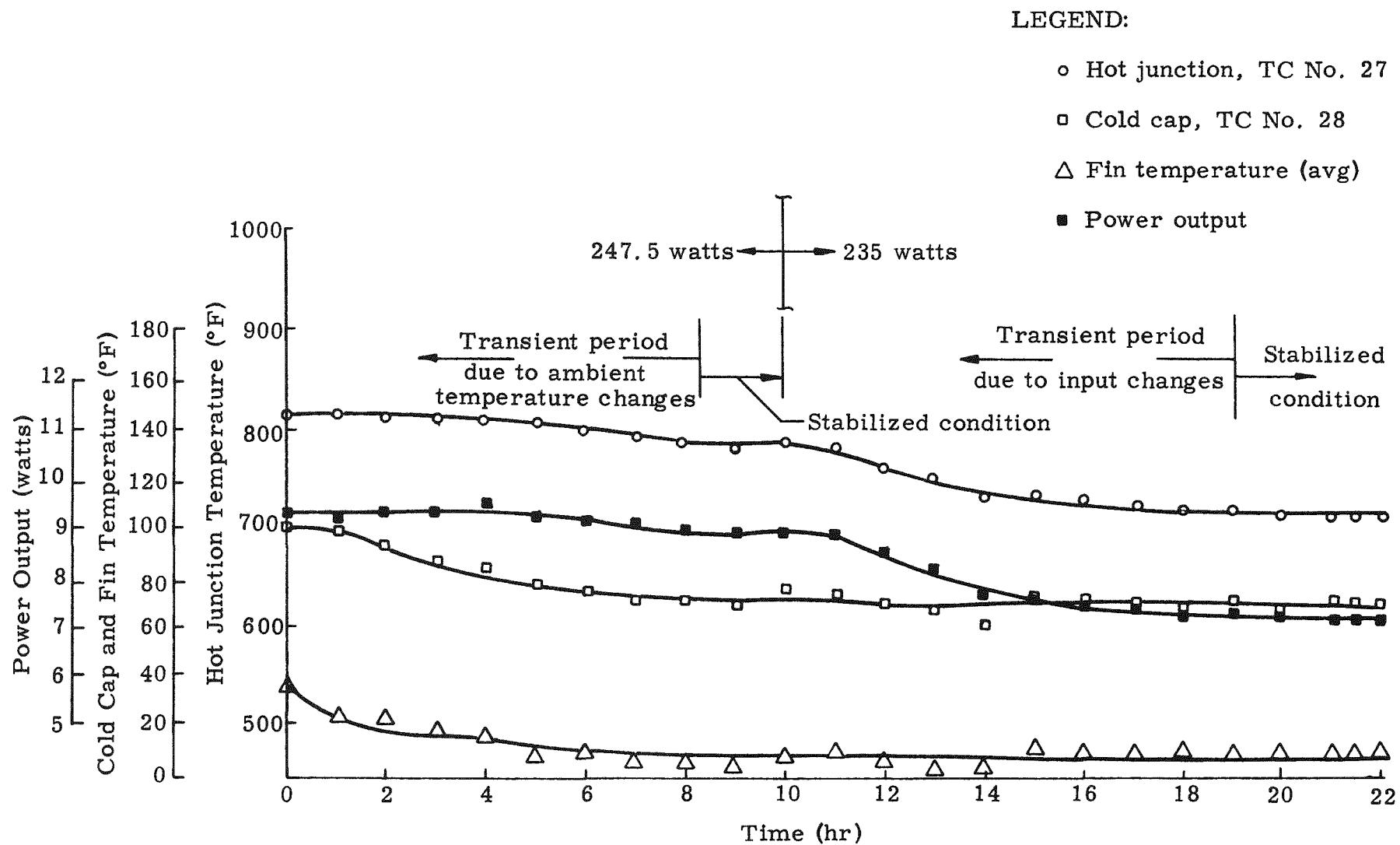



Fig. IX-22. Results of SNAP 7A and SNAP 7C Generator Temperature Chamber Tests, Where Nominal Power Input Was 247.5 and 235 Watts, Ambient Air Temperature Was 0° F, and Generator Atmosphere Was 50% Argon and 50% Hydrogen

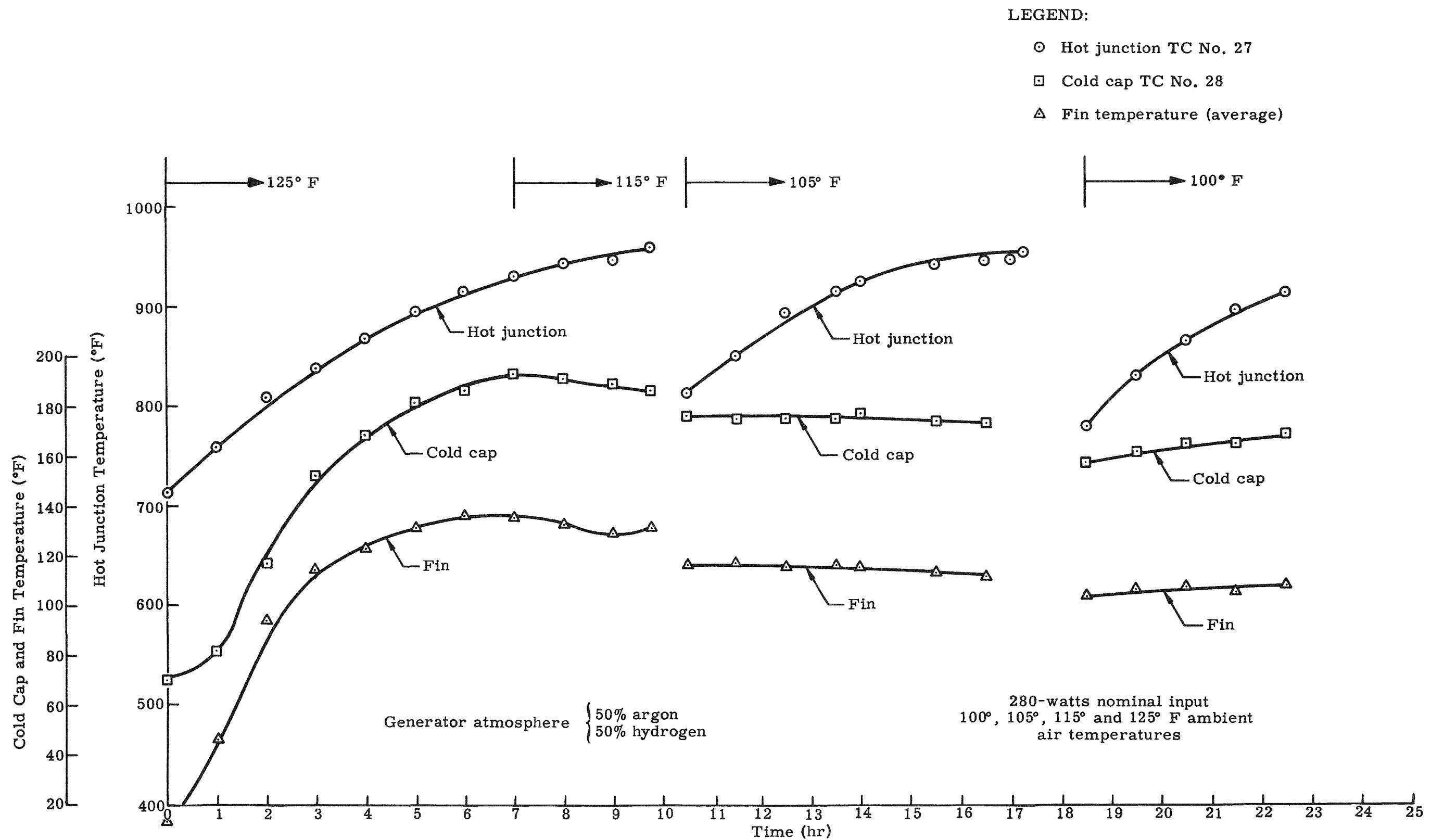



Fig. IX-23. SNAP 7A-7C Thermoelectric Generator Output Short-Circuit Shipping Condition

TABLE IX-5  
Snap 7A-7C Thermoelectric Generator Temperature Test Data

|      |          | Time | Power         |                |     | Thermocouple Number* |     |                           |     |     |    |     |
|------|----------|------|---------------|----------------|-----|----------------------|-----|---------------------------|-----|-----|----|-----|
|      |          |      | In<br>(watts) | Out<br>(watts) | 25  | 26                   | 27  | 28<br>Temperature<br>(°F) | 29  | 30  | 31 | Fin |
| 8/24 | 4:00 pm  | 240  | 5.91          | 726            | 649 | 702                  | 121 | 118                       | 108 | 101 | -- | 72  |
|      |          | 255  | 6.52          | 765            | 683 | 739                  | 126 | 124                       | 112 | 107 | -- | 77  |
|      |          | 255  | 7.07          | 813            | 730 | 785                  | 130 | 124                       | 113 | 105 | -- | 72  |
|      |          | 257  | 8.46          | 841            | 762 | 812                  | 127 | 122                       | 111 | 103 | -- | 67  |
|      |          | 257  | 9.12          | 859            | 786 | 831                  | 123 | 119                       | 108 | 101 | -- | 67  |
|      |          | 257  | 9.56          | 894            | 814 | 864                  | 133 | 127                       | 115 | 109 | -- | 75  |
|      |          | 257  | 9.75          | 899            | 822 | 871                  | 134 | 126                       | 115 | 106 | -- | 70  |
|      |          | 257  | 10.04         | 907            | 830 | 879                  | 132 | 126                       | 113 | 106 | -- | 69  |
| 8/25 | 12:30 am | 257  | --            | 907            | 836 | 878                  | 130 | 124                       | 112 | 102 | -- | 71  |
|      |          | 257  | --            | 919            | 842 | 890                  | 136 | 132                       | 119 | 112 | -- | 76  |
|      |          | 257  | --            | 920            | 842 | 891                  | 135 | 130                       | 119 | 110 | -- | 74  |
|      |          | 257  | --            | 920            | 844 | 891                  | 135 | 126                       | 119 | 106 | -- | 69  |
|      |          | 257  | --            | 921            | 845 | 892                  | 130 | 125                       | 114 | 106 | -- | 70  |
|      |          | 256  | --            | 917            | 845 | 888                  | 130 | 124                       | 112 | 104 | -- | 67  |
|      |          | 257  | --            | 926            | 853 | 899                  | 139 | 132                       | 112 | 113 | -- | 81  |
|      |          | 258  | --            | 926            | 852 | 900                  | 138 | 133                       | 119 | 114 | -- | 80  |
|      |          | 257  | --            | 928            | 851 | 899                  | 138 | 131                       | 119 | 112 | -- | 75  |
|      |          | 257  | 10.45         | 932            | 852 | 901                  | 136 | 130                       | 118 | 111 | -- | 67  |
|      |          | 257  | 10.65         | 934            | 855 | 906                  | 128 | 122                       | 111 | 103 | -- | 61  |
|      |          | 257  | 10.75         | 929            | 851 | 900                  | 124 | 120                       | 106 | 99  | -- | 57  |
|      |          | 257  | 10.75         | 935            | 853 | 902                  | 125 | 120                       | 108 | 99  | -- | 70  |
|      |          | 257  | 10.55         | 929            | 850 | 899                  | 131 | 125                       | 111 | 103 | -- | 74  |
|      |          | void |               |                |     |                      |     |                           |     |     |    |     |
|      |          | 258  | 10.40         | 931            | 853 | 899                  | 132 | 128                       | 114 | 107 | -- | 76  |
|      |          | 258  | 10.40         | 929            | 854 | 899                  | 136 | 130                       | 117 | 110 | 79 | 79  |
|      |          | 258  | 10.40         | 929            | 851 | 900                  | 136 | 130                       | 117 | 110 | 75 | 77  |
|      |          | 257  | 10.45         | 929            | 851 | 901                  | 137 | 131                       | 118 | 111 | 77 | 79  |

\*See Table IX-9 for TC locations.

TABLE IX-6  
Snap 7A-7C Thermoelectric Generator Temperature Test Data

|      | Time    | Power         |                | Thermocouple Number* |     |     |     |     |     | 31  | Fin | Fin |
|------|---------|---------------|----------------|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|
|      |         | In<br>(watts) | Out<br>(watts) | 25                   | 26  | 27  | 28  | 29  | 30  |     |     |     |
| 8/25 | 3:30 pm | 247.5         | 10.50          | 924                  | 848 | 895 | 132 | 128 | 114 | 108 | 59  | 64  |
|      | 4:00    | 247.5         | 10.40          | 918                  | 842 | 889 | 125 | 120 | 107 | 100 | 50  | 56  |
|      | 4:30    | 247.5         | 10.60          | 909                  | 836 | 881 | 117 | 102 | 99  | 93  | 45  | 49  |
|      | 5:00    | 248           | 10.45          | 904                  | 830 | 875 | 112 | 107 | 94  | 86  | 40  | 45  |
|      | 6:00    | 247.5         | 10.45          | 898                  | 827 | 870 | 111 | 106 | 93  | 86  | 42  | 45  |
|      | 7:00    | 246           | 10.15          | 890                  | 820 | 861 | 110 | 104 | 89  | 81  | 40  | 43  |
|      | 8:00    | 248           | 10.09          | 881                  | 811 | 851 | 104 | 101 | 87  | 80  | 40  | 42  |
|      | 8:30    | 247.5         | 9.875          | 873                  | 803 | 845 | 102 | 99  | 84  | 76  | 37  | 40  |
|      | 9:30    | 247.5         | 9.875          | 868                  | 799 | 839 | 100 | 95  | 80  | 73  | 35  | 37  |
|      | 10:30   | 248.5         | 9.80           | 860                  | 793 | 831 | 96  | 91  | 77  | 70  | 32  | 34  |
|      | 11:30   | 247.5         | 9.50           | 860                  | 787 | 830 | 101 | 96  | 81  | 74  | 36  | 36  |
| 8/26 | 1:00 am | 246           | 9.55           | 856                  | 786 | 826 | 97  | 91  | 80  | 72  | 34  | 34  |
|      | 2:00    | 245           | 9.55           | 853                  | 782 | 823 | 97  | 93  | 80  | 72  | 32  | 35  |
|      | 3:00    | 245           | 9.46           | 850                  | 781 | 821 | 96  | 92  | 79  | 71  | 34  | 35  |
|      | 4:00    | 245           | 9.36           | 848                  | 778 | 818 | 96  | 91  | 77  | 71  | 32  | 35  |
|      | 5:00    | 245           | 9.36           | 846                  | 778 | 818 | 97  | 91  | 77  | 69  | 34  | 35  |
|      | 6:00    | 245           | 9.36           | 846                  | 773 | 815 | 95  | 91  | 78  | 71  | 33  | 34  |
|      | 7:00    | 245           | 9.36           | 844                  | 772 | 815 | 95  | 91  | 77  | 72  | 33  | 33  |
|      | 8:00    | --            | --             | 842                  | 775 | 811 | 95  | 91  | 78  | 71  | 33  | 33  |
|      | 9:00    | 248           | 9.26           | 842                  | 773 | 813 | 94  | 89  | 76  | 69  | 32  | 32  |
|      | 10:00   | 248           | 9.24           | 844                  | 775 | 814 | 96  | 91  | 79  | 72  | 34  | 34  |
|      | 11:00   | 248           | 9.24           | 845                  | 776 | 816 | 99  | 93  | 80  | 73  | 36  | 36  |
|      | 12:00   | 248           | 9.24           | 845                  | 776 | 816 | 99  | 93  | 80  | 73  | 36  | 36  |

\*See Table IX-9 for TC locations.

TABLE IX-7  
Snap 7A-7C Thermoelectric Generator Temperature Test Data

|      | Time    | Power         |                | Thermocouple Number* |     |     |                           |    |    |    | Fin | Fin |
|------|---------|---------------|----------------|----------------------|-----|-----|---------------------------|----|----|----|-----|-----|
|      |         | In<br>(watts) | Out<br>(watts) | 25                   | 26  | 27  | 28<br>Temperature<br>(°F) | 29 | 30 | 31 |     |     |
| 8/26 | 1:00 pm | 248           | 9.24           | 844                  | 776 | 816 | 99                        | 95 | 81 | 74 | 26  | 20  |
|      | 2:00    | 248           | 9.30           | 843                  | 774 | 814 | 93                        | 88 | 75 | 67 | 21  | 25  |
|      | 3:00    | 248           | 9.36           | 842                  | 773 | 813 | 87                        | 82 | 69 | 60 | 15  | 19  |
|      | 4:00    | 248           | 9.40           | 841                  | 772 | 812 | 84                        | 79 | 65 | 58 | 14  | 17  |
|      | 5:00    | 247.5         | 9.24           | 834                  | 768 | 804 | 78                        | 74 | 53 | 51 | 8   | 9   |
|      | 6:00    | 248           | 9.12           | 828                  | 766 | 798 | 75                        | 72 | 57 | 50 | 8   | 10  |
|      | 7:00    | 247.5         | 9.08           | 823                  | 758 | 794 | 72                        | 67 | 54 | 45 | 5   | 8   |
|      | 8:00    | 247           | 8.93           | 816                  | 754 | 787 | 71                        | 68 | 54 | 45 | 5   | 7   |
|      | 9:00    | 248           | 8.88           | 811                  | 751 | 780 | 68                        | 65 | 50 | 42 | 3   | 5   |
|      | 10:00   | 248           | 8.88           | 817                  | 761 | 787 | 76                        | 72 | 57 | 50 | 6   | 11  |
|      | 11:00   | 235           | 8.83           | 812                  | 748 | 782 | 74                        | 70 | 55 | 47 | 8   | 11  |
|      | 12:00   | 234           | 8.46           | 792                  | 733 | 763 | 70                        | 67 | 53 | 44 | 4   | 8   |
| 8/27 | 1:00 am | 235           | 8.10           | 770                  | 720 | 747 | 67                        | 62 | 49 | 40 | 3   | 4   |
|      | 2:00    | 235           | 7.70           | 761                  | 710 | 734 | 61                        | 57 | 47 | 38 | 3   | 3   |
|      | 3:00    | 235           | 7.66           | 763                  | 700 | 735 | 73                        | 68 | 55 | 48 | 12  | 12  |
|      | 4:00    | 234           | 7.45           | 757                  | 690 | 729 | 71                        | 67 | 55 | 46 | 9   | 9   |
|      | 5:00    | 235           | 7.35           | 754                  | 687 | 723 | 70                        | 66 | 51 | 44 | 9   | 9   |
|      | 6:00    | 235           | 7.35           | 749                  | 684 | 720 | 70                        | 66 | 54 | 47 | 10  | 10  |
|      | 7:00    | 235           | 7.28           | 749                  | 682 | 718 | 70                        | 66 | 53 | 47 | 8   | 8   |
|      | 8:00    | 235           | 7.20           | 744                  | 680 | 715 | 67                        | 63 | 51 | 45 | 9   | 9   |
|      | 9:00    | 235           | 7.16           | 743                  | 675 | 714 | 71                        | 67 | 54 | 46 | 8   | 10  |
|      | 9:30    | 235           | 7.16           | 743                  | 676 | 714 | 71                        | 67 | 54 | 45 | 10  | 11  |
|      | 10:00   | 235           | 7.16           | 743                  | 675 | 714 | 70                        | 66 | 53 | 45 | 9   | 11  |

\*See Table IX-9 for TC locations.

TABLE IX-8  
Snap 7A-7C Thermoelectric Generator Temperature Test Data

|      | Time     | Power         |                | Thermocouple Number* |     |     |     |     |     |                     | 31  | Fin | Fin |
|------|----------|---------------|----------------|----------------------|-----|-----|-----|-----|-----|---------------------|-----|-----|-----|
|      |          | In<br>(watts) | Out<br>(watts) | 25                   | 26  | 27  | 28  | 29  | 30  | Temperature<br>(°F) |     |     |     |
| 8/27 | 11:00 am | 278           | 7.84           | 790                  | 718 | 758 | 81  | 78  | 64  | 57                  | 49  | 43  |     |
|      | 11:30    | 278           | 8.23           | 817                  | 748 | 786 | 98  | 95  | 82  | 74                  | 77  | 69  |     |
|      | 12:00    | 278           | 8.48           | 839                  | 768 | 808 | 117 | 114 | 101 | 93                  | 98  | 90  |     |
|      | 12:30    | 280           | --             | 853                  | 782 | 823 | 138 | 134 | 120 | 111                 | 112 | 102 |     |
|      | 12:45    | 280           | --             | 862                  | 791 | 833 | 147 | 143 | 127 | 120                 | 117 | 108 |     |
|      | 1:00 pm  | 280           | --             | 870                  | 798 | 839 | 152 | 147 | 134 | 126                 | 119 | 110 |     |
|      | 1:30     | 280           | --             | 883                  | 813 | 854 | 161 | 156 | 143 | 136                 | 124 | 117 |     |
|      | 2:00     | 280           | 8.80           | 897                  | 828 | 869 | 168 | 163 | 149 | 142                 | 125 | 122 |     |
|      | 2:30     | 280           | 9.09           | 914                  | 844 | 885 | 176 | 171 | 158 | 152                 | 133 | 129 |     |
|      | 3:00     | 280           | 9.12           | 925                  | 854 | 895 | 181 | 175 | 162 | 156                 | 132 | 131 |     |
|      | 3:30     | 280           | 9.35           | 934                  | 864 | 906 | 183 | 178 | 165 | 159                 | 134 | 133 |     |
|      | 4:00     | 280           | 9.56           | 944                  | 874 | 915 | 186 | 181 | 168 | 162                 | 136 | 136 |     |
|      | 4:30     | 279           | --             | 954                  | 884 | 923 | 192 | 185 | 172 | 165                 | 138 | 138 |     |
|      | 5:00     | 280           | --             | 960                  | 892 | 931 | 193 | 188 | 174 | 167                 | 134 | 136 |     |
|      | 5:30     | 280           | --             | 968                  | 898 | 938 | 192 | 186 | 173 | 166                 | 131 | 134 |     |
|      | 6:00     | 280           | --             | 970                  | 901 | 943 | 191 | 184 | 173 | 165                 | 131 | 134 |     |
|      | 6:30     | 279           | --             | 973                  | 908 | 947 | 189 | 182 | 169 | 162                 | 130 | 130 |     |
|      | 7:00     | 279           | --             | 978                  | 913 | 949 | 189 | 182 | 168 | 162                 | 129 | 129 |     |
|      | 7:30     | 279           | --             | 979                  | 918 | 950 | 186 | 179 | 165 | 158                 | 127 | 127 |     |
|      | 7:45     | 279           | --             | 984                  | 918 | 954 | 193 | 186 | 173 | 166                 | 131 | 131 |     |
|      | 8:30     | 279           | --             | 839                  | 781 | 814 | 176 | 170 | 157 | 150                 | 116 | 116 |     |
|      | 9:30     | 280           | --             | 891                  | 824 | 850 | 175 | 169 | 157 | 149                 | 117 | 117 |     |
|      | 10:30    | 280           | --             | 922                  | 849 | 895 | 174 | 167 | 153 | 146                 | 115 | 115 |     |
|      | 11:30 pm | 280           | --             | 945                  | 878 | 915 | 175 | 169 | 154 | 148                 | 116 | 116 |     |

\*See Table IX-9 for TC locations.

TABLE IX-8 (continued)

|      | Time     | Power         |                | Thermocouple Number* |     |     |     |     |     |     |     |     |
|------|----------|---------------|----------------|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|
|      |          | In<br>(watts) | Out<br>(watts) | 25                   | 26  | 27  | 28  | 29  | 30  | 31  | Fin | Fin |
| 8/28 | 12:00    | 280           | --             | 956                  | 890 | 926 | 177 | 170 | 156 | 148 | 115 | 115 |
|      | 12:40 am | 280           | --             | 963                  | 899 | 935 | 175 | 168 | 154 | 147 | 112 | 114 |
|      | 1:30     | 280           | --             | 973                  | 908 | 943 | 174 | 168 | 154 | 147 | 111 | 114 |
| 8/28 | 2:30 am  | 280           | --             | 976                  | 913 | 946 | 173 | 166 | 153 | 145 | 110 | 112 |
|      | 3:00     | 280           | --             | --                   | --  | 947 | --  | --  | --  | --  | --  | --  |
|      | 3:15     | 280           | --             | --                   | --  | 952 | --  | --  | --  | --  | --  | --  |
|      | 4:30     | 280           | --             | 808                  | 744 | 780 | 157 | 152 | 141 | 135 | 103 | 104 |
|      | 5:30     | 280           | --             | 861                  | 795 | 830 | 161 | 156 | 143 | 136 | 107 | 107 |
|      | 6:30     | 280           | --             | 896                  | 832 | 867 | 165 | 159 | 145 | 138 | 106 | 108 |
|      | 7:30     | 280           | --             | 925                  | 862 | 896 | 165 | 159 | 145 | 138 | 104 | 107 |
| 8/28 | 8:30 am  | 240           | --             | 944                  | 878 | 914 | 169 | 162 | 150 | 142 | 107 | 110 |
|      | 9:00     | 240           | 10.20          | 934                  | 869 | 906 | 165 | 161 | 148 | 141 | 108 | 110 |
|      | 9:30     | 240           | 10.00          | 922                  | 858 | 896 | 161 | 157 | 144 | 138 | 102 | 106 |
|      | 1:00 pm  | 240           | 8.79           | 880                  | 813 | 856 | 160 | 155 | 144 | 136 | 109 | 109 |

\*See Table IX-9 for TC locations.

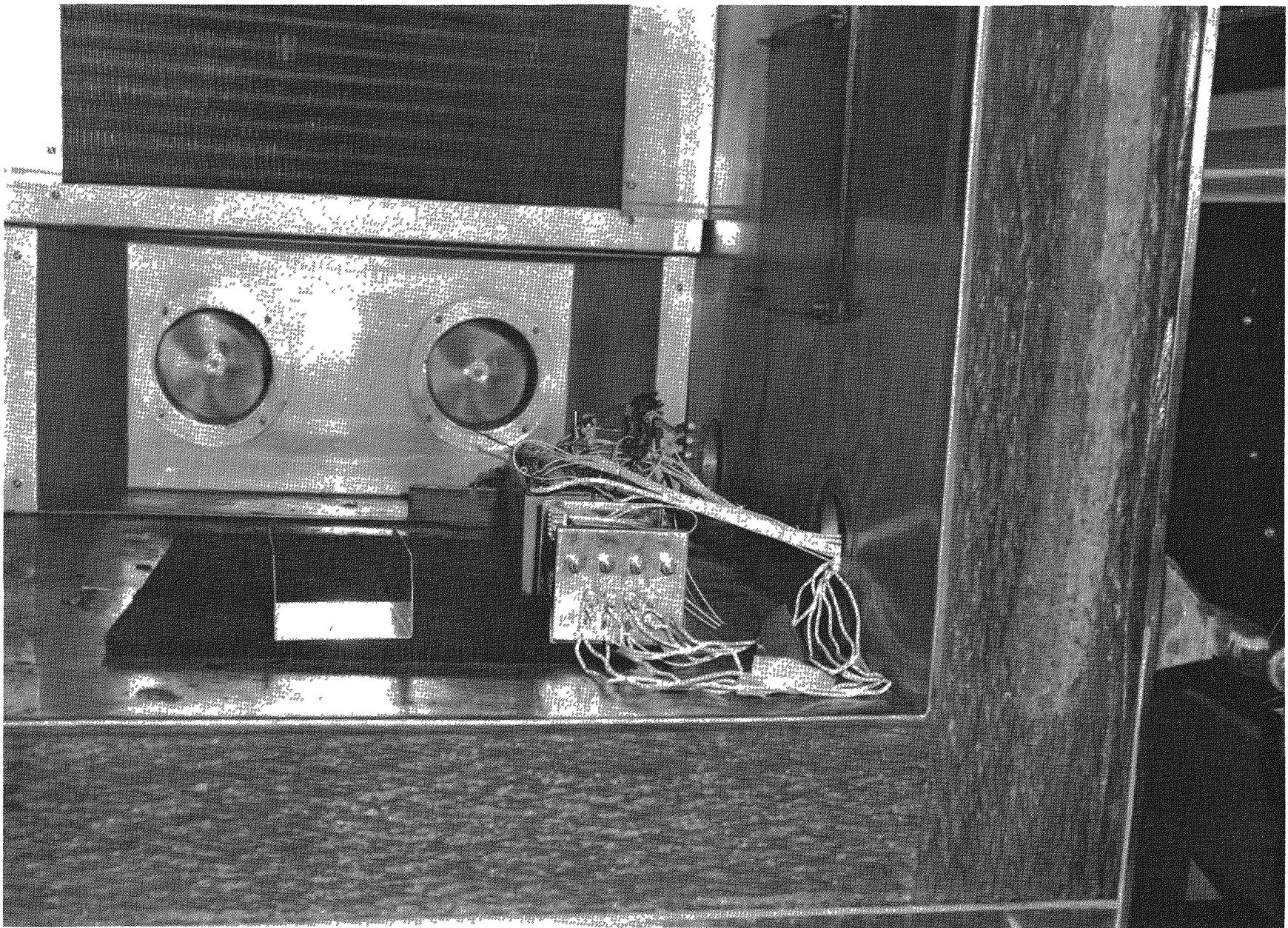



Fig. IX-24. SNAP 7C Battery and Converter Positioned in the Temperature Chamber for Temperature Output Tests

TABLE IX-9  
Snap 7A-7C Generator Thermocouple Locations

| <u>Thermocouple<br/>Number</u> | <u>Location</u>                                                         |
|--------------------------------|-------------------------------------------------------------------------|
| 25                             | Fuel Block No. 3 Couple, No. 5 Module, No. 2<br>Section Fuel Block      |
| 26                             | Hot Shoe, Center No. 1 Couple, No. 5 Module                             |
| 27                             | Hot Shoe, Center No. 5 Couple, No. 5 Module                             |
| 28                             | Cold Cap, No. 1 Couple, P Element, No. 5<br>Module                      |
| 29                             | Cold Cap, No. 5 Couple, N Element, No. 5<br>Module                      |
| 30                             | Heat Sink Bar L, No. 3 Couple, No. 5 Module                             |
| 31                             | Heat Sink Top, Between Heat Sink Bars A and M<br>Fin No. 1<br>Fin No. 2 |



REFERENCES

1. "Instruction Manual--SNAP 7C Electric Generation System," MND-P-2640, The Martin Company, October 1, 1961, changed October 25, 1961.
2. Schneider, P. J., "Conduction Heat Transfer," Addison-Wesley, Reading, Massachusetts, 1955.
3. Perry, J. H., "Chemical Engineers' Handbook," McGraw-Hill, New York, 1950.
4. MN-SW-1013, "Statement of Work for SNAP 7 Generators," Revision C, The Martin Company, September 27, 1961.
5. "Final Safety Analysis, SNAP 7C Generator," MND-P-2614, The Martin Company.
6. Giedt, W. H., "Principles of Engineering Heat Transfer," D. Van Nostrand, 1957.
7. "U. S. Navy Arctic Engineering Technical Publication," NAVDOCKS TP-PW-11, March 15, 1955.
8. Evans, R. D., "The Atomic Nucleus," McGraw-Hill Book Company, Incorporated, New York, 1955.
9. Marshall, J. H., "How to Figure Shapes of Beta Ray Spectra," Nucleonics, Vol 13, No. 8, p 34, August 1955.
10. Marinelli, L. O., Quimby, E. H. and Hine, G. J., Nucleonics, Vol. 2, No. 4, p 60, April 1948.
11. Haybittle, Phys. in Med. Biol. 1, 3:270, 1956.
12. ORNL-CF-61-1-25.

## APPENDIX A

THERMAL ANALYSIS OF BURIED CONTAINER  
SNAP 7C EMPLACEMENT

Figure A-1 is a sketch of the model to be analyzed.

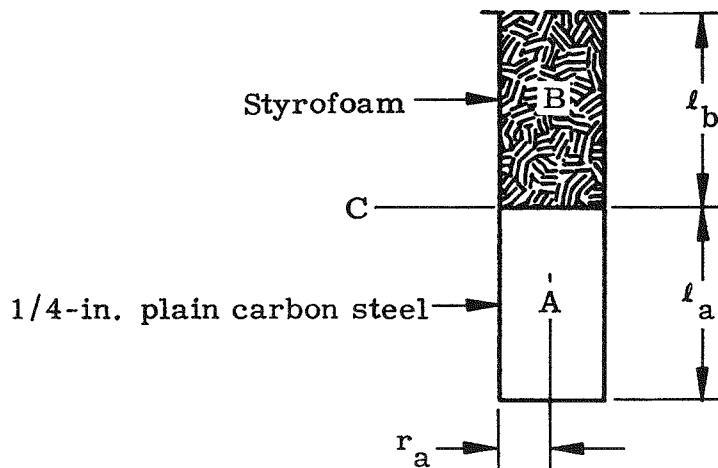



Fig. A-1. Buried Container Model

Section A will be treated as a constant-temperature ( $T_a$ ) surface, losing heat in all directions below Plane C by conduction through the ice. The ice temperature at infinite distance will be taken as a constant ( $T_\infty$ ) at any particular time.

The steady-state heat loss from Section A by this mechanism is then given by the equation

$$q_a = -k_e A(r) \frac{dT(r)}{dr} \quad (1)$$

where

$q_a$  = heat loss from Section A

$k_e$  = thermal conductivity of the ice

$A(r)$  = area of heat flow path at a distance  $r$  from equivalent center of heat source

$T(r)$  = temperature at distance  $r$ .

The shape of a constant-temperature surface at distance  $r$  will be taken as a hemisphere with center on the intersection of Plane C and the cylinder centerline. This implies that, for the purpose of analysis, Surface A will be treated as a hemisphere with area equal to the cylindrical Surface A.\* The variable area  $A(r)$  of the surface will then be given by

$$A(r) = 2\pi r^2. \quad (2)$$

Equation (1) then becomes

$$q_a = -2\pi k_e r^2 \frac{dT(r)}{dr}$$

which becomes, when integrated,

$$\frac{1}{r_2} - \frac{1}{r_1} = \frac{-2\pi k_e}{q_a} (T_2 - T_1). \quad (3)$$

It is desired to determine the temperature at the surface ( $T_a$ ) relative to the temperature  $T_\infty$  at  $r_1 = \infty$ . The radius  $r_2$  is chosen equal to the radius of a hemisphere whose surface area is equal to that of the cylindrical Section A, having a radius of  $r_a$  and length  $\ell_a$ .

$$r_2 = \sqrt{r_a \ell_a + \frac{r_a^2}{2}} \quad (4)$$

Substituting Eq (4) for  $r_2$ ,  $r_1 = \infty$ ,  $T_a$  for  $T_2$  and  $T_\infty$  for  $T_1$  gives

$$T_a - T_\infty = \frac{q_a}{2\pi k_e \sqrt{r_a \ell_a + \frac{r_a^2}{2}}} = \Delta T$$

---

\*This will become apparent later in the analysis.

$$q_a = 2\pi k_e \sqrt{r_a l_a + \frac{r_a^2}{2}} (\Delta T). \quad (5)$$

In Section B of the cylinder, the side wall will act as a fin losing heat to the surroundings according to the relation derived in Ref. 6.

$$q_b = \sqrt{UPkA} (T_b - T_{\infty}) \frac{\left( \frac{1 - pe}{1 + pe} \right)^{-2ml_b}}{\left( \frac{1 - pe}{1 + pe} \right)^{-2ml_b}} \quad (6)$$

where

$$p = \frac{km - U}{km + U}$$

$$m = \sqrt{\frac{UP}{kA}}$$

U = heat transfer coefficient from surface

P = perimeter =  $2\pi r_b$

A =  $2\pi r_b t$

t = thickness of side wall

k = thermal conductivity of side wall

$T_b$  = temperature on root of fin at Plane C.

According to the definition of the problem,  $T_b = T_a$ . Equation (6) may be rewritten

$$q_b = \sqrt{UPkA} \frac{\left( \frac{1 - pe}{1 + pe} \right)^{-2ml_b}}{\left( \frac{1 - pe}{1 + pe} \right)^{-2ml_b}} \Delta T. \quad (7)$$

All quantities in Eq (7) are defined and determinable except the effective surface heat transfer coefficient U. Such a coefficient would be expected to be the same in Sections B and A. U is defined in the heat conduction equation as follows.

$$q = UA\Delta T \quad (8)$$

Substituting into Eq (8) the heat loss for Section A given by Eq (5) and the area A for Section A given by

$$A = 2\pi r_a l_a + \pi r_a^2 \quad (8a)$$

and solving for U gives

$$U = \frac{k_e}{\sqrt{r_a l_a + \frac{r_a^2}{2}}} \quad (9)$$

The total heat production  $q_p$  must equal the heat loss  $q_a + q_b$

$$q_p = \left[ 2\pi k_e \sqrt{r_a l_a + \frac{r_a^2}{2}} + \sqrt{U P k A} \frac{\left( \frac{1 - p_e}{1 + p_e} \right)^{-2m l_b}}{\left( \frac{1 - p_e}{1 + p_e} \right)^{-2m l_b}} \right] \Delta T \quad (10)$$

In order to determine the container surface temperature, the temperature rise ( $\Delta T$ ) in the ice pack must be evaluated from Eq (10).

The following geometry is assumed:

$$r_a = 1.5 \text{ ft}$$

$$l_a = 4.1 \text{ ft}$$

$$l_b = 3.33 \text{ ft}$$

$$k_e = 1.3 \text{ Btu/hr-ft-}^{\circ}\text{F}$$

$$k = 28 \text{ Btu/hr-ft-}^{\circ}\text{F.}$$

The heat input to the system at the beginning of life is 256 watts, and the calculated temperature rise in the ice is  $33^{\circ}\text{ F}$ . At the end of life the heat input decays to 200 watts and the temperature rise becomes  $25.5^{\circ}\text{ F}$ . Reference 7 indicates a maximum ice temperature for Antarctica as follows :

|                    | Temperature<br>( $^{\circ}\text{F}$ ) |         |
|--------------------|---------------------------------------|---------|
|                    | Maximum                               | Minimum |
| At a 1-meter depth | 20                                    | -30     |

Based on these values and the above estimates, the minimum container wall temperature will be  $-4.5^{\circ}$  F. The maximum wall temperature is  $53^{\circ}$  F, but since this is above the ice freezing point, the above analysis does not hold. In this condition the problem reduces to that of a cylinder submerged in water at  $32^{\circ}$  F. In summary, the container wall temperature will range from  $-4.5^{\circ}$  F to  $+36^{\circ}$  F, depending on time of year and fuel age.

The generator will transfer heat to the container by both radiation and natural air convection.

$$q_{\text{total}} = q_{\text{rad}} + q_{\text{conv}}$$

$$q_{\text{rad}} = h_r A_r \Delta T_0$$

$$q_{\text{conv}} = h_{c_1} A_{\text{gen}} \Delta T_1 = h_{c_2} A_{\text{con}} \Delta T_2$$

$$\Delta T_1 + \Delta T_2 = \Delta T_0$$

where

$h_r$  = radiation heat transfer coefficient

$h_{c_1}$  = convection heat transfer coefficient for generator surface

$h_{c_2}$  = convection heat transfer coefficient for inside container walls

$A_r$  = effective radiation area, generator to container

$A_{\text{con}}$  = area of inside container wall

$A_{\text{gen}}$  = convective surface area of generator

$\Delta T_0$  = temperature difference between generator and container wall

$\Delta T_1$  = temperature difference between generator and surrounding air

$\Delta T_2$  = temperature difference between container wall and enclosed air.

$$q_{\text{conv}} = \frac{h_{c_1} h_{c_2} A_{\text{gen}} A_{\text{con}}}{h_{c_1} A_{\text{gen}} + h_{c_2} A_{\text{con}}} \Delta T_0$$

$$q_{\text{total}} = \left( h_r A_r + \frac{h_{c_1} h_{c_2} A_{\text{gen}} A_{\text{con}}}{h_{c_1} A_{\text{gen}} + h_{c_2} A_{\text{con}}} \right) \Delta T_0$$

Evaluating this equation for  $G = 874 \text{ Btu/hr}$  (maximum heat input) and for the appropriate geometry results in

$$\Delta T = 73.5^\circ \text{ F.}$$

The maximum surface temperature of the generator is then  $73.5^\circ + 36^\circ = 109.5^\circ \text{ F.}$  At the end of life the total temperature difference will be  $57.3^\circ \text{ F}$  and the minimum generator surface temperature will be approximately  $53^\circ \text{ F.}$

Air temperature within the steel container housing will range from a maximum of  $60^\circ \text{ F}$  to a minimum of  $20^\circ \text{ F.}$

## APPENDIX B

## SHIELDING KILOCURIE AMOUNTS OF STRONTIUM-90\*

I. INTRODUCTION

Strontium-90 is one of the radioactive isotopes used to generate heat for small auxiliary power systems. Kilocurie amounts of this isotope are required to produce several watts of heat. Since the decay sequence of Strontium-90 contains no nuclear gamma radiation, it would be easy to believe that no shielding is required. However, bremsstrahlung X-rays are present, and shielding must be provided for them. Most of the bremsstrahlung are generated when the beta rays are slowed down in the compound or mixture of which the fuel pellet is made. A smaller number are generated by the betas which escape the pellet and are slowed down in the cladding material.

Bremsstrahlung from Strontium-Yttrium-90 are usually measured by using small sources in the microcurie and millicurie range. These results invariably stress the large quantity of low energy gamma rays produced but do not give adequate distributions for the high energy end of the spectrum. These results are wholly inadequate for use in designing shields for high kilocurie amounts of Strontium-90. Calculated bremsstrahlung distributions indicate that heavier shielding is required than is indicated by experimental results obtained in measuring microcurie and millicurie amounts of Strontium-90.

To obtain a confirmation of the amount of shielding required for large Strontium-90 sources, Oak Ridge National Laboratory was requested to measure the attenuation by lead absorbers of the radiation from a 1000-curie source of strontium titanate. The purpose of this report is to compare the experimental results with calculated values.

II. BREMSSTRAHLUNG

The total intensity (number of photons times the photon energy) of bremsstrahlung from monoenergetic beta rays in thick targets is given by

$$I = kZE^2$$

---

\*A. M. Spamer

where

$I$  = bremsstrahlung intensity  
 $k$  = constant  
 $Z$  = atomic number of absorber  
 $E$  = beta energy (mev).

The spectral distribution of photons is a straight line function with the maximum photon energy equal to the beta ray energy (Ref. 8). The number of photons at the maximum energy is, however, zero. By equating the total intensity to the area of the triangle formed by the distribution curve and the coordinate axes, the number of photons at zero energy is easily found to be equivalent to  $2EkZ$ . If the photon distribution is divided into energy groups, the average number of photons in each group is equal to the area under the distribution curve bounded by the energy limits of the range, divided by the energy increment.

Beta rays from isotope decay are not emitted monoenergetically but in spectral distributions which vary greatly for different isotopes (Ref. 9).

If the distribution of betas is known for a particular isotope, it may be broken into energy groups and the photon production for each group found.

By use of the curves in Ref. 9, the beta distribution of the nominal 2.2-mev beta from the disintegration of Yttrium-90 was found. The results were normalized to have the area under the curve represent the distribution from one Yttrium-90 disintegration. As a check of these results, the average energy of the betas calculated from this curve was found to be 0.876 mev, which compares favorably with the value 0.90 mev given in Ref. 10.

The beta distribution was divided into 10 equal energy groups; the number of betas in each group per Yttrium-90 disintegration is given in Table B-1. This grouping of betas was then used to calculate bremsstrahlung distribution. The energy grouping for the bremsstrahlung was chosen to be the same as that for the betas. The number of gammas for each group and the number of gammas divided by  $kZ$  are listed in Table B-1.

**TABLE B-1**  
**Grouped Spectral Distribution of Betas and**  
**Bremsstrahlung from Yttrium-90**

| Energy Group | Number of Betas per Yttrium-90 Disintegration | Number of Gammas + kZ | Number of Gammas per Yttrium-90 Disintegration |                                    |
|--------------|-----------------------------------------------|-----------------------|------------------------------------------------|------------------------------------|
|              |                                               |                       | As Used<br>k = 0.0007<br>Z = 26                | Adjusted<br>k = 0.000175<br>Z = 26 |
| 2.2-1.98     | 0.0068                                        | 0.000157              | $2.97 \times 10^{-6}$                          | $7.42 \times 10^{-7}$              |
| 1.98-1.76    | 0.0349                                        | 0.00143               | $2.70 \times 10^{-5}$                          | $6.75 \times 10^{-6}$              |
| 1.76-1.54    | 0.0696                                        | 0.00611               | $1.155 \times 10^{-4}$                         | $2.89 \times 10^{-5}$              |
| 1.54-1.32    | 0.1013                                        | 0.0180                | $3.404 \times 10^{-4}$                         | $8.51 \times 10^{-5}$              |
| 1.32-1.10    | 0.1231                                        | 0.0425                | $8.035 \times 10^{-4}$                         | $2.09 \times 10^{-4}$              |
| 1.10-0.88    | 0.1389                                        | 0.0924                | $1.747 \times 10^{-3}$                         | $4.37 \times 10^{-4}$              |
| 0.88-0.66    | 0.1482                                        | 0.188                 | $3.550 \times 10^{-3}$                         | $8.87 \times 10^{-4}$              |
| 0.66-0.44    | 0.1469                                        | 0.385                 | $7.286 \times 10^{-3}$                         | $1.82 \times 10^{-3}$              |
| 0.44-0.22    | 0.1308                                        | 0.887                 | $1.677 \times 10^{-2}$                         | $4.19 \times 10^{-3}$              |
| 0.22-0       | 0.0993                                        | 3.50                  | $6.612 \times 10^{-2}$                         | $1.65 \times 10^{-2}$              |

Published values for the constant k vary widely from  $0.4 \times 10^{-3}$  to  $1.1 \times 10^{-3}$  (Ref. 8). One theoretical determination gives values one order of magnitude lower. The value  $0.7 \times 10^{-3}$  was used in the calculations presented here.

An effective value of Z = 26 was obtained for strontium titanate by using the following relation, found in Ref. 8:

$$Z_{\text{eff}} = \frac{N_1 Z_1^2 + N_2 Z_2^2 + N_3 Z_3^2 + \dots}{N_1 Z_1 + N_2 Z_2 + N_3 Z_3 + \dots}$$

where  $N_1, N_2, N_3, \dots$  are the atoms per  $\text{cm}^3$  of the mixture having atomic numbers  $Z_1, Z_2, Z_3, \dots$

The total intensity of bremsstrahlung from a distribution of beta energies is expressed by

$$I = kZ(E_{\text{rms}})^2 \doteq \sum_{\substack{\text{all} \\ \text{groups}}} N_i \bar{E}_i$$

or

$$(E_{\text{rms}})^2 \doteq \sum_{\substack{\text{all} \\ \text{groups}}} \frac{N_i}{kZ} E_i$$

$E_{\text{rms}}$  is the root mean square energy of the beta distribution;  $\bar{E}_i$  is the average group energy of the bremsstrahlung, and  $N_i$  is the number of bremsstrahlung in the group. The root mean square energy of the betas was calculated and found to be 1.015 mev. The sum of the number of gammas, divided by  $kZ$ , multiplied by the average energy, was calculated and found to have a value of 1.217 mev. This is about 18% higher than the calculated  $(E_{\text{rms}})^2$ .

Reference 11 states that the dose rate from one curie of Strontium-90 is about the same as that from 12 mgm of radium, and the average energy of the bremsstrahlung is about 300 kev. The dose rate at one meter from 12 mgm of radium is 12 mr/hr. Using the distribution of bremsstrahlung given in Table B-1, the bare (without self-absorption and shielding) dose rate at one meter from one curie of Strontium-Yttrium-90 was found to be 12.53 mr/hr, and the average energy of the bremsstrahlung was calculated to be 236 kev.

The bremsstrahlung from the 0.5-mev beta of Strontium-90 were not included since they will be in the low kilovolt range and will be attenuated rapidly in the first few mils of shielding.

### III. SHIELDING PROGRAM

Dose rates were calculated by means of a generalized shielding program coded for the IBM 709. The source is divided into a number of point sources, and the program calculates the dose rate from each of these points. The program was coded to accommodate up to 400 source points and a maximum of 10 initial source energies. Path lengths through the various materials, along a line joining a point source and the dose point, are found and used to calculate relaxation lengths and buildup for each of the materials between these two points. The individual relaxation lengths are added to obtain the total relaxation length. Buildup along the individual path segments is defined as the infinite medium buildup factor minus one. The total buildup factor along the path from the source to the dose point is assumed to be one plus the sum of the individual buildups. Infinite media buildup factors are approximated by the sum of two exponentials.

The direct energy flux at the dose point is evaluated for each source energy and source position and converted to dose rates by the appropriate flux-to-dose conversion factor. The total dose rate is, of course, equal to the sum of the dose rates from each individual source point.

### IV. DESCRIPTION OF EXPERIMENTS\*

Dose rates from a 1000-curie source of Strontium-Yttrium-90 were measured by ORNL personnel. The kilocurie of Strontium-90 was contained in 65 grams of titanate powder which had been compacted and sintered to a density of 4.5 grams per cubic centimeter. The only radioactive contamination in the pellet was 305 millicuries of Cerium-144 at the time the measurements were made.

Measurements were made with a Cutie Pie Model 740 (Vectoreen Instrument Company) and a survey meter No. 2610A (Nuclear Instrument and Chemical Company) which had been calibrated by the ORNL Health Physics Department, using standard radium gamma sources.

The physical arrangement used when the measurements were made is shown in Fig. B-1. Two sets of measurements were made. Case I was made with the detector located 16-3/8 inches above the pellet when the pellet was shielded with a 1/8-inch Hastelloy C plate and lead plates which varied in increments of 1/2 inch up to 6-1/2 inches. The measurements for Case II were made with the detector 19-1/4 inches above the

---

\*This information was drawn freely from an advance copy of Ref. 12.

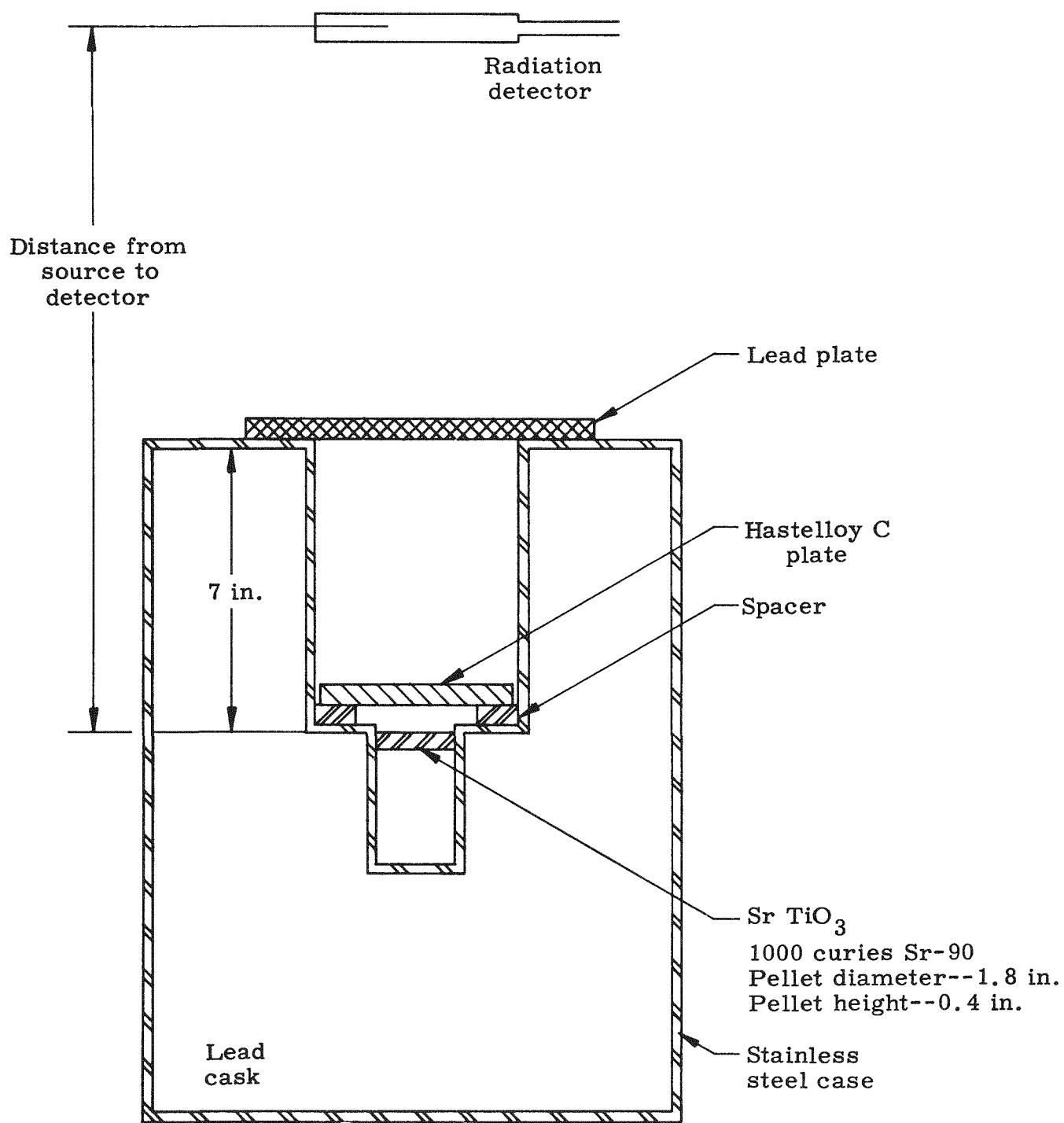



Fig. B-1. Physical Arrangement Used in Measuring Dose Rates

pellet when it was shielded with 1/2 inch of Hastelloy C and various thicknesses of lead. The results of these experiments are plotted in Fig. B-5 and B-6.

## V. RESULTS OF CALCULATIONS

The accuracy of point-by-point approximations to integrals depends upon the number of points used. To determine the number of points to use to obtain reasonably accurate results, several problems are run with different numbers of points. Experience has shown that comparatively few points are required to have the third and fourth significant figures in agreement with the results from a greater number of points. To determine the number of source points to use for the present problem, the source was divided into 5, 10, 20 and 40 points. The circular cross section of the fuel pellet was divided into 5 and 10 approximately equal areas, as shown in Fig. B-2 and B-3, and the height was divided into 1, 2 and 4 equal divisions. Calculated results are given in Table B-2. After examining these results, it was decided to run the remainder of the problems with 20 source points. Dose rates versus thickness of lead shielding are tabulated in Table B-3 and are plotted in Figs. B-5 and B-6. Table B-3 also contains the contribution to total dose rate from the 305 millicuries of Cerium-144 present in the strontium pellet. As with Strontium-90, most of the gamma radiation associated with Cerium-144 is bremsstrahlung radiation. The bremsstrahlung radiation from Cerium-144 results from the 2.97-mev beta of Praseodymium-144. The higher energy beta of Praseodymium-144 causes the bremsstrahlung to be more penetrating than the bremsstrahlung of Yttrium-90. If the contribution from Cerium-144 to Strontium-90 dose rates were limited to a percentage of the Strontium-90 dose rate, the allowable amount of cerium would vary with the shield thickness. To illustrate this point, it was assumed that a 10% increase in dose rate would be acceptable. The curies of Cerium-144 per curie of Strontium-90 were calculated for various thicknesses of lead shielding and are plotted in Fig. B-4.

## VI. COMPARISON OF RESULTS AND CONCLUSIONS

Examination of Figs. B-5 and B-6 shows that the calculated results are higher than the experimental results by an almost constant amount. Analysis of the data shows the calculated results are higher than the experimental results by a factor of about 4.

This could be caused by either of two items used in the calculations. One of these could be the curie strength, and the second, the product

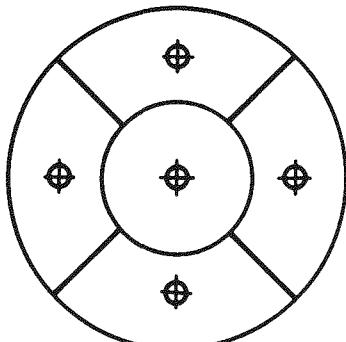



Fig. B-2.  
Source Point Configuration--  
Five Divisions

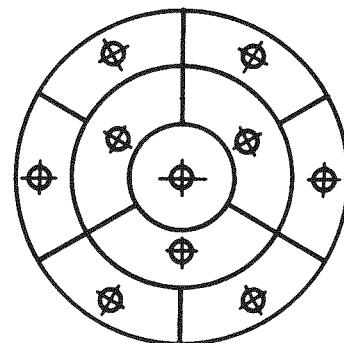



Fig. B-3.  
Source Point Configuration--  
10 Divisions

TABLE B-2  
Comparison of Dose Rates for Various Numbers of Source Points

| Number of Divisions<br>in Circular Area | Number of Divisions<br>in Height | Total Number<br>of Source<br>Points | Dose Rate*         |                                            |                       |
|-----------------------------------------|----------------------------------|-------------------------------------|--------------------|--------------------------------------------|-----------------------|
|                                         |                                  |                                     | No Lead<br>(mr/hr) | 1/2-in. Lead<br>(mr/hr x 10 <sup>4</sup> ) | 5-in. Lead<br>(mr/hr) |
| 5                                       | 1                                | 5                                   | 38.181             | 1.0144                                     | 6.6837                |
|                                         | 2                                | 10                                  | 38.318             | 1.0146                                     | 6.6937                |
|                                         | 4                                | 20                                  | 38.354             | 1.0146                                     | 6.6963                |
| 10                                      | 1                                | 10                                  | 38.175             | 1.0142                                     | 6.6787                |
|                                         | 2                                | 20                                  | 38.311             | 1.0143                                     | 6.6890                |
|                                         | 4                                | 40                                  | 38.347             | 1.0144                                     | 6.6914                |

\*Detector--16-3/8in. from pellet;  
Self absorption in pellet and 1/8-in. Hastelloy

**TABLE B-3**  
**Calculated Dose Rates Versus Thickness of Lead**  
**for Comparison with ORNL Data--**  
**Self Absorption + Hastelloy C + Lead**

| Thickness<br>of Lead<br>(in.) | Dose Rates<br>(mr/hr) |                 |                       |
|-------------------------------|-----------------------|-----------------|-----------------------|
|                               | Sr-Y-90*              | Ce-144*         | Sr-Y-90**             |
|                               | 1000 Curies           | 305 Millicuries | 1000 Curies           |
| 1/2                           | $1.015 \times 10^4$   | 23.6            | $5.61 \times 10^3$    |
| 1                             | $3.828 \times 10^3$   | 12.0            | $2.08 \times 10^3$    |
| 1-1/2                         | $1.575 \times 10^3$   | 6.4             | $8.47 \times 10^2$    |
| 2                             | $6.81 \times 10^2$    | 3.5             | $3.62 \times 10^2$    |
| 2-1/2                         | $3.03 \times 10^2$    | 1.9             | $1.60 \times 10^2$    |
| 3                             | $1.38 \times 10^2$    | 1.045           | $7.26 \times 10$      |
| 3-1/2                         | $6.38 \times 10$      | 0.575           | $3.34 \times 10$      |
| 4                             | $2.98 \times 10$      | 0.316           | $1.55 \times 10$      |
| 5                             | 6.70                  | 0.0952          | 3.47                  |
| 6                             | 1.54                  | 0.0285          | $8.00 \times 10^{-1}$ |
| 7                             | $3.64 \times 10^{-1}$ | 0.00851         | $1.87 \times 10^{-1}$ |

\*Distance, source to detector = 16-3/8 in.  
 Hastelloy C thickness = 1/8 in.

\*\*Distance, source to detector = 19-1/4 in.  
 Hastelloy C thickness = 1/2 in.

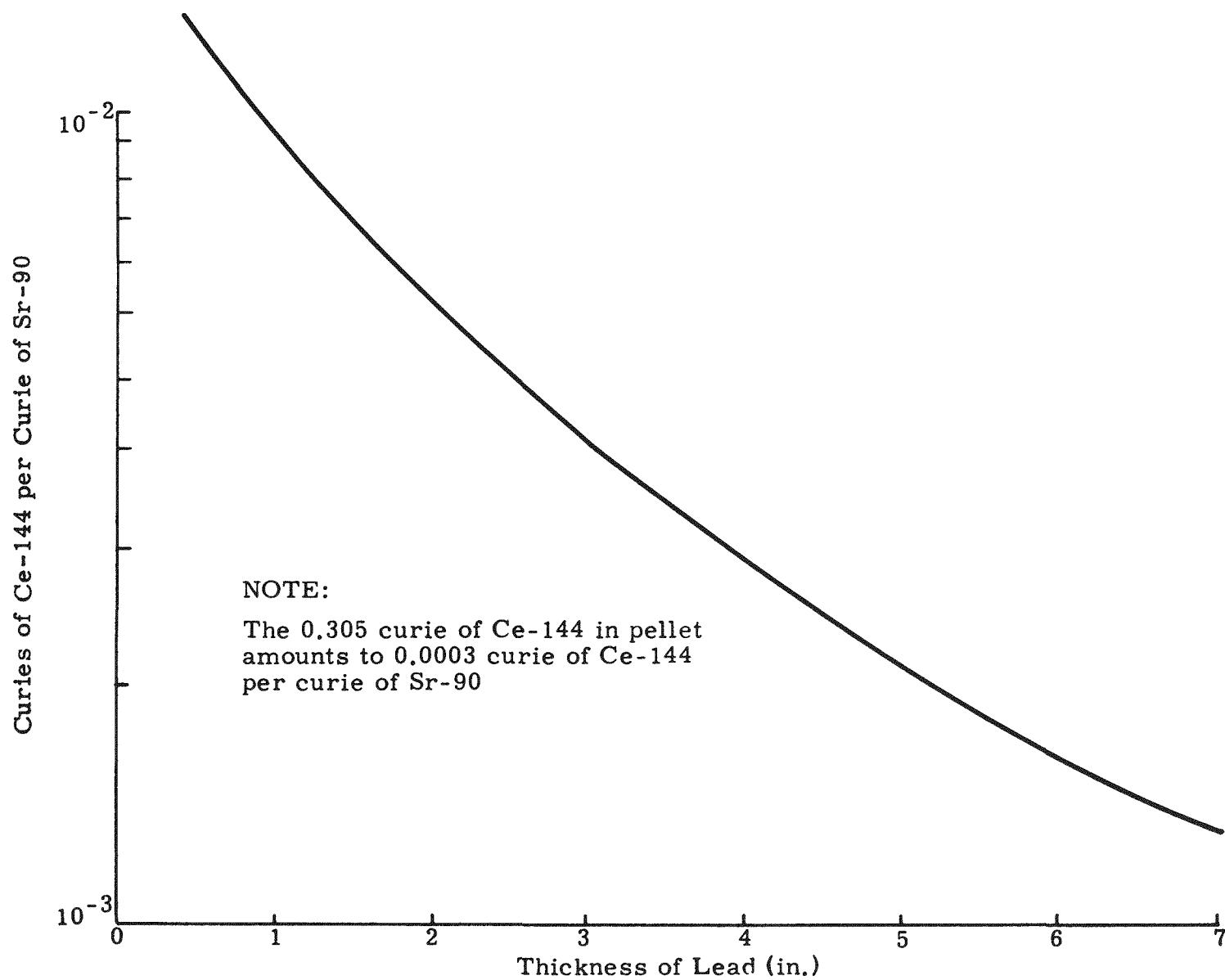



Fig. B-4. Curies of Ce-144 per Curie of Sr-90 Required to Increase Strontium-90 Dose Rate by 10%

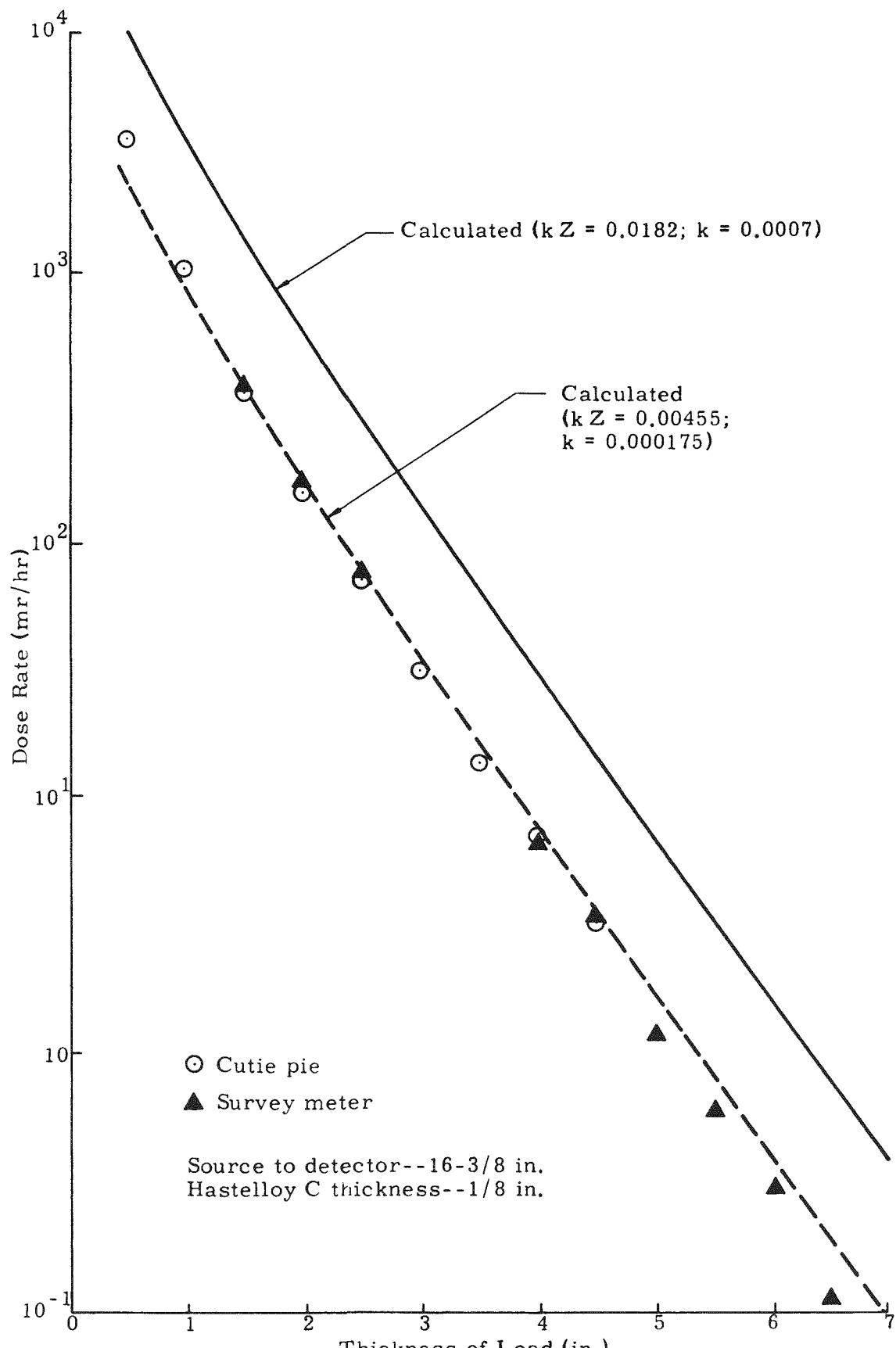



Fig. B-5. Measured and Calculated Dose Rates for Case 1

MND-P-2707

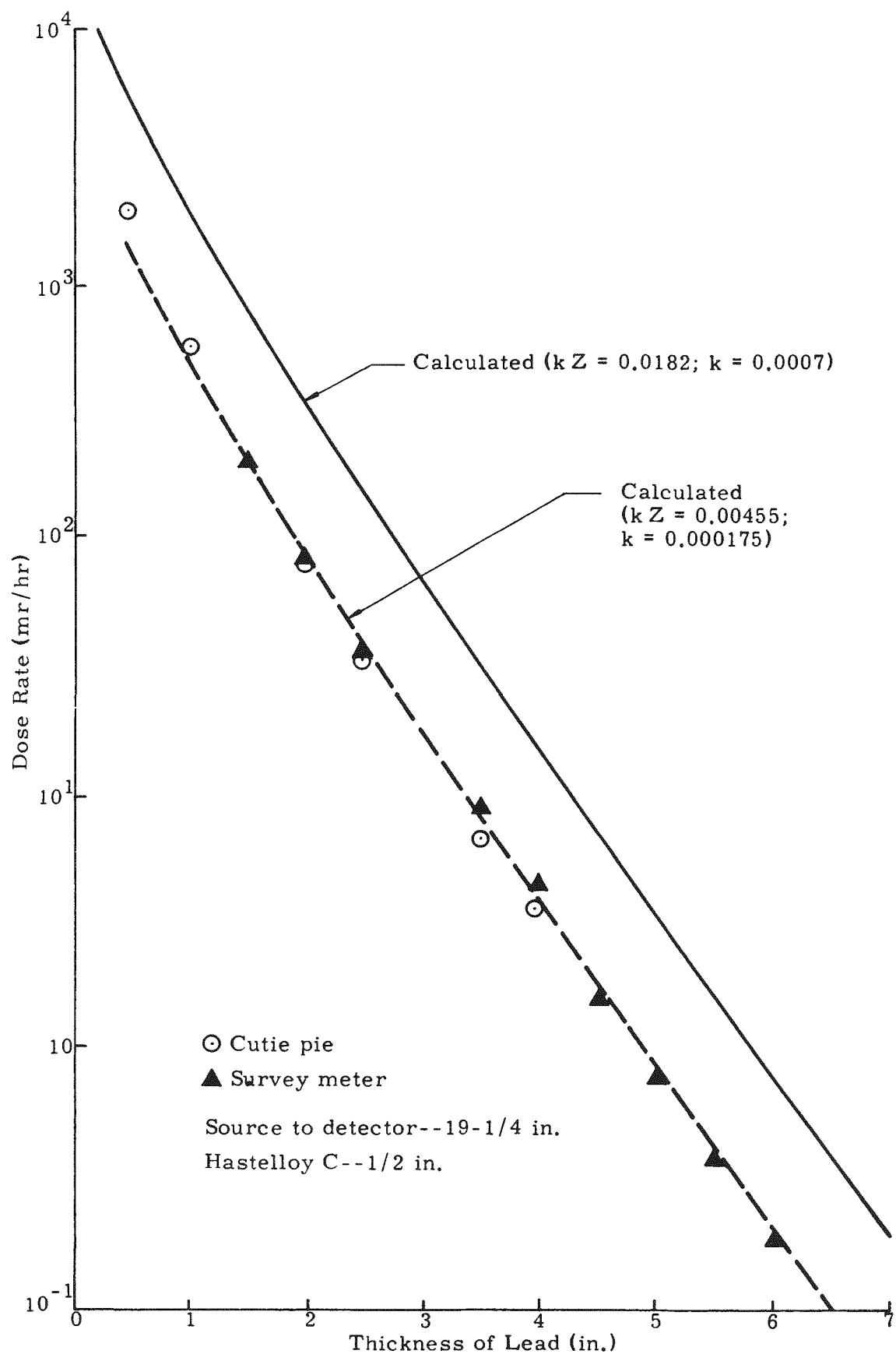



Fig. B-6. Measured and Calculated Dose Rates for Case 2

$kZ$  which enters into the bremsstrahlung calculation. The curie strength used should be close to the stated amount since care was exercised to determine the amount of Strontium-90 present in the pellet. When the spread of values given the  $k$  is considered (Ref. 8) it would be safe to assume that the factor  $kZ$  used in the calculations is incorrect. The factor  $kZ$  will be corrected to obtain agreement between calculated and experimental results.

The originally calculated values were divided by 4 and plotted as the dashed curves in Figs. B-5 and B-6. These curves are in close agreement with the experimental points.

The value of  $kZ$  used to make the original calculations is  $0.0007 \times 26 = 0.0182$ , and the value which gave the dashed curve is 0.00455. If it is assumed that the calculated effective  $Z$  of 26 is correct, the value of  $k$  would become  $1.75 \times 10^{-4}$ . The number of gammas per disintegration of Yttrium-90, using the adjusted value of  $kZ$ , is tabulated in Table B-1.

The Cerium-144 present in the pellet while the experiments were being performed did not contribute appreciably to the Strontium-90 dose rates. Depending upon the shield thickness, the amount of cerium present in the pellet could be increased by factors between 4 and 40 to have a 10% increase in dose rate.

## APPENDIX C

SNAP 7C ENGINEERING DRAWINGS, WEIGHTS  
AND DIMENSIONS

| <u>Title</u>                                               | <u>Number</u> |
|------------------------------------------------------------|---------------|
| <u>SNAP 7C--5-Watt Electric Generation System Drawings</u> |               |
| Installation--USN Weather Station                          | 398C1080052   |
| Container                                                  | 398C1080050   |
| Outrigger                                                  | 398C1080051   |
| Battery--Converter Enclosure Assembly                      | 398C1080053   |
| Generator Cover Assembly                                   | 398C1080054   |
| Thermoelectric Generator Assembly                          | 398C1080055   |
| Supports--SNAP 7C Container                                | 398C1080056   |
| Interconnection Block Diagram                              | 398C1080057   |
| Schematic--Battery and Converter Compartment               | 398C1080058   |
| Schematic--dc to dc Converter                              | 398C1080059   |
| Schematic--Antenna Coupler                                 | 398C1080060   |
| <u>SNAP 7C Thermoelectric Generator Drawings</u>           |               |
| Generator-- Biological Shield Assembly                     | 398-3021000   |
| Cylinder                                                   | 398-3021001   |
| End Plate                                                  | 398-3021002   |
| Fuel Capsule Assembly                                      | 398-3021003   |
| Fuel Block                                                 | 398-3021004   |
| Details--Fuel Block                                        | 398-3021005   |
| Shield                                                     | 398-3021006   |

| <u>Title</u>                                                 | <u>Number</u> |
|--------------------------------------------------------------|---------------|
| <u>SNAP 7C Thermoelectric Generator Drawings (continued)</u> |               |
| Shield Block                                                 | 398-3021007   |
| Insulation Strip                                             | 398-3021008   |
| Insulation Block                                             | 398-3021009   |
| Thermoelectric Elements                                      | 398-3021010   |
| Shoe--Hot Junction                                           | 398-3021011   |
| Details--Cold Junction                                       | 398-3021012   |
| Piston                                                       | 398-3021013   |
| Washer                                                       | 398-3021014   |
| Frame--Heat Sink                                             | 398-3021015   |
| Bars--Heat Sink                                              | 398-3021016   |
| Insulation--Corner Strip                                     | 398-3021017   |
| Insulation--Spacer                                           | 398-3021018   |
| Insulation--Plate                                            | 398-3021019   |
| Wire Guide                                                   | 398-3021020   |
| Plug                                                         | 398-3021021   |
| Electrical Connector                                         | 398-3021022   |
| Connector Mount                                              | 398-3021023   |
| Connecting Bar                                               | 398-3021025   |
| Shipping Pallet                                              | 398-3021026   |
| Nameplate                                                    | 398-3021027   |
| Cover, Generator Test                                        | 398-3021028   |
| Cap Screw                                                    | 398-3021029   |

| <u>Title</u>                                                 | <u>Number</u> |
|--------------------------------------------------------------|---------------|
| <u>SNAP 7C Thermoelectric Generator Drawings (continued)</u> |               |
| Fuel Capsule Shipping Cask                                   | 398-3021040   |
| Biological Shield Container                                  | 398-3021041   |
| Generator Assembly                                           | 398-3021042   |
| Generator Cover Assembly                                     | 398-3021043   |
| Details and Assembly--Fuel Shipping Cask                     | 398-3021044   |
| Hot Shoe--Element Assembly                                   | 398-3021045   |
| Cold Cap Assembly                                            | 398-3021046   |
| Thermoelectric Module Assembly                               | 398-3021047   |
| Heat Sink Assembly                                           | 398-3021048   |
| Generator Shell Assembly                                     | 398-3021049   |
| Generator--Pallet, Shipping Assembly                         | 398-3021050   |

## SNAP 7C Weights and Dimensions

| <u>Name</u>                                    | <u>Dimensions</u> |              |                                     | <u>Weight<br/>(lb approximate)</u> |
|------------------------------------------------|-------------------|--------------|-------------------------------------|------------------------------------|
|                                                | <u>Length</u>     | <u>Width</u> | <u>Height<br/>(in. approximate)</u> |                                    |
| Thermoelectric Generator and Biological Shield |                   | 19 (dia)     | 21                                  | 1840                               |
| Battery and Converter Compartment              | 20                | 16           | 6                                   | 100                                |
| Bottom Container Section                       | 49-1/2            | 36 (dia)     |                                     | 550                                |
| Top Container Section                          | 45-1/2            | 36 (dia)     |                                     | 550                                |
| Outriggers (4)                                 | 36                | 4            | 7-1/2                               | 40 each                            |
| Antenna Coupler and Top Deck Assembly          |                   | 36 (dia)     | 1/2                                 | 160                                |

SNAP 7C Weights and Dimensions (continued)

| <u>Name</u>                              | <u>Dimensions</u> |              |                                     | <u>Weight<br/>(lb approximate)</u> |
|------------------------------------------|-------------------|--------------|-------------------------------------|------------------------------------|
|                                          | <u>Length</u>     | <u>Width</u> | <u>Height<br/>(in. approximate)</u> |                                    |
| Marman Clamps and Gaskets (2 each)       |                   |              | 36 (dia)                            | 26 each                            |
| Shipping Pallet                          | 60                | 48           | 6                                   | 360                                |
| Electrical Cables                        |                   |              |                                     |                                    |
| 398C1080057-19                           | 36                |              |                                     |                                    |
| 398C1080057-29                           | 36                |              |                                     |                                    |
| Shorting Plug                            |                   |              |                                     |                                    |
| 398C1080055-1                            | 2-1/2             |              |                                     |                                    |
| Battery and Converter Compartment Shelf  | 24-1/2            | 15-1/2       | 1                                   |                                    |
| U. S. Navy PAWS Instrument Package Shelf | 29-1/2            | 22-1/2       | 1                                   |                                    |
| Styrofoam Insulation                     | 36                | 35 (dia)     |                                     |                                    |
| U. S. Navy PAWS (GFE)                    |                   |              |                                     |                                    |
| RF Cables (2) (GFE)                      | 72                |              |                                     |                                    |
| Control Cable (GFE)                      | 72                |              |                                     |                                    |
| Barometer Hose (GFE)                     | 72                |              |                                     |                                    |

Total system weight minus shipping pallet = 3412 pounds.