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IRRADIATION BEHAVIOUR OF SOLID AND HOLLOX 'U3Si FUEL ELEMENTS: 

RESULTS TO 15,000 MWd/tonne U 

M.A. Feraday, G.H.  Chalder and K.D.  Cotnam 

ABSTRACT 

U3Si f u e l  e lements  c l a d  i n  zirconium a l l o y  shea ths  have 
been i r r a d i a t e d  t o  burnups close t o  15,000 MWd/tonne U 
i n  p re s su r i zed  water a t  220°C, 98 b a r s .  The r e s u l t s  show 
t h a t  t he  e x t e r n a l  swel l ing  can be c o n t r o l l e d  by incorpora- 
t i n g  f r e e  volume i n  the  element. The dimensional s t a b i l i t y  
of such elements i s  adequate t o  permit  t h e i r  use i n  power 
r e a c t o r  f u e l  bundles.  

A diameter  i nc rease  of 1 . 2 %  had occurred i n  an element  
i n i t i a l l y  conta in ing  12.8% t o t a l  f r e e  volume, a f t e r  a 
burnup of 14,700 MWd/tonne U. There was no change i n  
diameter between burnups of 5200 and 14,700 MWd/tonne U. 
Elements  conta in ing  3% t o t a l  free volume had inc reased  
i n  diameter  about 2.5% a t  2000 MWd,/tonne U compared t o  
0.2% a t  9500 MWd/tonne U f o r  e lements  con ta in ing  22% t o t a l  
f r e e  volume. 

The observed sw2ll ing i n  t h e  U3Si i s  d iscussed  i n  t e r m s  
of p o s s i b l e  mechanisms. 

Chalk River Nuclear Labor a t o r  i e  s 
Fuel  Ma te r i a l s  Branch 

June, 1969 ff f ' R 4 l T U V  
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ComDortement sous i r r a d i a t i o n  d 'e lements  combustibles en U3Si,  

mass i f s  e t  creux: r e s u l t a t s  jusqu 'h  1 5  0 0 0  MWdltonne U 

pa r  M.A.  Feraday, G . H .  Chalder e t  K . D .  Cotnam 

R 6  sum6 

Des 616ments combustibles en U3Si enferm6s dans des 
ga ines  en a l l i a g e  de z i r c o n i u m  o n t  6t6 i r r a d i 6 s  ju squ '8  des 
taux de combustion d 'envi ron  1 5  0 0 0  MWd/tonne U dans de l ' e a u  
p res su r i s6e  'a 220°C,  9 8  ba r s .  Les r 6 s u l t a t s  montrent que l e  
gonflement e x t 6 r i e u r  peut  2 t r e  contrGl6 en incorporant  un 
volume l i b r e  dans l 'El6ment.  La s t a b i l i t 6  dimensionnel le  de 
ces  elements permet l e u r  u t i l i s a t i o n  dans l e s  fa i sceaux de 
combustible des t in6s  aux r eac t eu r s  de c e n t r a l e .  

Une augmentation de diamktre de 1 . 2 %  s ' e s t  p rodu i t e  
dans un 616ment contenant  i n i t i a l e m e n t  un t o t a l  de 1 2 . 8 %  de 
volume l i b r e ,  aprks  un taux de combustion de 1 4  7 0 0  MWdltonne U .  
Le diamktre n ' a  pas chang6 e n t r e  l e s  taux de combustion de 
5 200 e t  1 4  7 0 0  MWd/tonne U .  Des 6lements contenant  un t o t a l  
de 3 %  de volume l i b r e  on t  eu des augmentations de diamktre 
d 'envi ron  2 . 5 %  'a 2 0 0 0  MWd/tonne U compare 'a 0 . 2 %  'a 9 5 0 0  MWd/tonne U 
pour des 6lEments contenant  un t o t a l  de 2 2 %  de volume l i b r e .  

Le gonflement observe dans l 'U3Si  e s t  6 tudi6  en vue de 
determiner  l e s  mecanismes q u i  l e  provoquent. 

L'Energie Atomique du Canada, Limit6e 

Centre  de Chalk River 

J u i n  1 9 6 9  

AECL- 3 1 11 
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1. 

I R R A D I A T I O N  BEHAVIOUR OF S O L I D  AND HOLLOW U 3 S i  FUEL ELEMENTS: 

RESULTS TO 15,000 MWd/tonne U 

INTRODUCTION 

I n  1965, a series of i r r a d i a t i o n  tests was s t a r t e d  t o  
determine i f  the  swel l ing previous ly  observed( l ,  2 ,  3 ,  a t  
low burnup i n  U3Si could be con t ro l l ed  by s u i t a b l e  f u e l  
element design. The ob jec t ive  was t o  provide economic 
burnup (-10,000 MWd/tonne U )  w i t h  acceptable  e x t e r n a l  
dimensional changes ( ~ 1 %  on diameter and l eng th )  f o r  use  
i n  CANDU-type power r eac to r s .  Experimental f u e l  elements,  
c o n s i s t i n g  of c y l i n d r i c a l  rods of U 3 S i  c lad  i n  Zircaloy-2,  
were i r r a d i a t e d  i n  a pressur ized  water loop i n  t h e  NRX 
r e a c t o r .  

R e s u l t s  a l ready  r e p o r t e d ( 4 )  from t h i s  series of tes ts  
shawed t h a t :  

p rovis ion  of an i n t e r n a l  void along the  a x i s  of t h e  
U3Si was effective i n  l i m i t i n g  inc reases  i n  the 
e x t e r n a l  diameter of the f u e l  elements compared t o  
e a r l i e r  tes ts(1)  i n  which the f u e l  had no void 
(Figure l), 

the  r a t e  of swel l ing of t he  U3Si i t s e l f  appeared t o  
decrease w i t h  i nc reas ing  burnup (Figure 2 )  : ex t r a -  
p o l a t i o n  of the curve for  15 mm diameter elements 
c l a d  i n  0.7 mm t h i c k  Zi rca loy  shea ths  ind ica t ed  a 
f u e l  volume increase  of 13% a f t e r  a burnup of 
10 ,000  MWd/tonne U, 

t h e  r a t e  of swel l ing  observed i n  U 3 S i  a t  low burnup 
was no t  c o n s i s t e n t  w i t h  t he  growth of f i s s i o n  gas  
bubbles alone; s t r u c t u r a l  d i sorder ing ,  c a v i t a t i o n  and 
the accumulation of s o l i d  f i s s i o n  products  w e r e  
suggested a s  o the r  poss ib l e  mechanisms, 

f u e l  pawer output  d i d  n o t  appear t o  have an e f fec t  on 
the swel l ing of U 3 S i ,  a t  l e a s t  i n  the range s tudied ,  and 
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5 )  a d e f i n i t e  e f f e c t  of sheath th ickness  on swel l ing was 
no t  e s t a b l i s h e d  because t h e  elements c l a d  i n  th inne r  
(0.45 mm) Z i rca loy  shea ths  had n o t  a t t a i n e d  s u f f i c i e n t  
burnup f o r  an accura te  comparison t o  be made with 
those c l ad  i n  0.7 mm shea ths .  

When these same r e s u l t s  w e r e  pub l i shed(5 ) ,  the  values of 
power output  and burnup, prev ious ly  r epor t ed  from loop 
ca lor imet ry ,  w e r e  r ev i sed  downwards t o  correspond t o  more 
accura te  measurements from chemical ana lys i s ,  which had 
become ava i l ab le  (see Sec t ion  5.1 f o r  d e t a i l s ) .  

Resu l t s  a r e  now ava i l ab le  f o r  those o r i g i n a l  elements 
a f t e r  higher  burnup, and f o r  a d d i t i o n a l  elements which have 
been included i n  the  experiment more r ecen t ly .  Major 
v a r i a b l e s  i n  a l l  elements a re  l i s t e d  i n  Table 1, and 
r e s u l t s  repor ted  here  include: 

i) The e f f e c t s  of higher  burnup on the  o r i g i n a l  15 mm 
diameter e lements  conta in ing  9.6 t o  12.8% t o t a l  f r e e  
volume and c l a d  i n  0.45 mm and 0.7 mm t h i c k  
Zi rca loy  shea ths .  (Types 1 and 2 i n  Table 1) 

ii) The e f f e c t  of d i f f e r e n t  l e v e l s  of f r e e  volume, 
approximately 3 ,  11 and 22%, on the swel l ing  of 
15 mm diameter elements c l a d  i n  0.7 mm t h i c k  
zirconium-2.5 w t %  niobium. (Types 3 ,  4 and 5, 
Table 1) 

iii) The e f f e c t  of sheath s t r eng th  on swel l ing  i n  
elements conta in ing  approximately 15% f r e e  volume. 
Elements 15  mm i n  diameter w e r e  c l a d  i n  0.46 and 
0.66 mm t h i c k  Zi rca loy  and d u p l i c a t e  elements of each 
type had an induct ion  annealed zone i n  the  co ld  
worked sheath.  (Types 7 and 8, Table 1) 

i v )  The e f f e c t  on swel l ing  of minor a l loy ing  add i t ions  
t o  U3Si. 
s i l i c o n ,  with and without  the  add i t ion  of -350 ppm 
i r o n  and 1500 ppm aluminum. (Types 2 and ,9 ,  Table 1) 

Alloys w e r e  i r r a d i a t e d  conta in ing  4 wt% 

2 .  FABRICATION OF FUEL ELEMENTS 

F u e l  rods  w e r e  prepared by vacuum induct ion  melt ing and 
c a s t i n g  i n t o  cored molds(6) .  The c a s t  rods  w e r e  decored, 
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Gd then h e a t  t r e a t e d  f o r  7 2  hours a t  8 O O O C  i n  vacuum t o  transform 
the  as -cas t  s t r u c t u r e  of uranium and U3Si2 t o  one of U3Si 
conta in ing  sane r e s i d u a l  U 3 S i 2 .  
c e n t r e l e s s  ground t o  the requi red  diameter and machined t o  
length .  Fue l  elements w e r e  assembled by s l i p  f i t t i n g  U3Si 
rods  i n t o  Zi rca loy  o r  Zr-2.5 wt% N b  sheaths  which w e r e  then 
sea l ed  by r e s i s t a n c e  welding end caps i n  place.  

The hea t - t r ea t ed  rods  w e r e  

I n  elements AWY, AWZ, AYN, and AYP, a s e c t i o n  of t he  Zi rca loy  
sheath was beta-annealed by induct ion  hea t ing  i n  vacuum p r i o r  
t o  element assembly. The f u e l  element da t a  a r e  sunmarized 
i n  Table 2 and d e t a i l e d  chemical analyses  of t h e  f u e l  i n  
Table 3. 

3. IRRADIATIOH OF ELEMENTS 

The f u e l  was i r r a d i a t e d  i n  t h e  X-5 pressur ized  water loop 
of the NRX r e a c t o r .  The loop condi t ions  w e r e  approximately 
a s  fol laws:  

loop pressure  - 98 b a r s  

i n l e t  temperature - 22OOC 

coolan t  f low ( H 2 0 ) -  0.5 h/sec. 

Table 4 summarizes t h e  i r r a d i a t i o n  h i s t o r y  of each of the 
elements during the  per iod September 1965 t o  Ju ly  1968. 

4. POST-IRRADIATION EXAMINATION 

The techniques used i n  underwater and i n - c e l l  examinations 
have a l ready  been desc r ibed (4 ) .  Underwater examination 
i n  t h e  NRX r e a c t o r  bay cons is ted  of a v i s u a l  i n spec t ion  
followed by measurement of f u e l  element volume by water 
displacement.  I n - c e l l  examination included more d e t a i l e d  
v i s u a l  examination of elements followed by length ,  
diameter and bow measurements. Elements MJC, MJL and AWE 
w e r e  sec t ioned  f o r  metallography and f o r  d e n s i t y  measure- 
mlznts on the  U 3 S i  f u e l .  
a l s o  taken on the  c u t  s ec t ions .  

Beta/gamma autoradiographs w e r e  
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5. RESULTS 

5.1 Power Outputs 

The power outputs  and burnups shown i n  Table 4 a re  lower 
than  those repor ted  p rev ious ly (4 )  f o r  these elements,  which 
had been der ived from loop calor imetry.  The r ev i sed  va lues  
a r e  based on more r e c e n t  chemical burnup analyses  of two 
specimens i r r a d i a t e d  to-6000 MWd/tonne U and have been 
proport ioned according t o  the known f l u x  d i s t r i b u t i o n  i n  
t h e  loop. 

The power outputs  and burnups a re  both  now quoted i n  terms 
of 185 MeV/fission, t he  h e a t  r e l eased  by the  f u e l  t o  t h e  
coolan t ,  whereas 5 )  they  were quoted i n  t e r m s  
of 199 MeV/fission - t h e  t o t a l  h e a t  r e l eased  by the f u e l .  
The 185 MeV/fission values  more c l o s e l y  r ep resen t  t he  
usable power outputs  of f u e l  elements i n  a power r e a c t o r .  
The c h e m i c a l  burnup m e a s u r e m e n t s  w e r e  taken on s a m p l e s  
from the  mid-plane of the  elements.  

I n  genera l ,  t he  specimens experienced maximum poNer outputs  
e a r l y  i n  t h e i r  i r r a d i a t i o n .  Table 4 l i s t s  the  range of 
power outputs  and t h e  t i m e  average power output  of each 
element.  

5.2 Temperature D i s t r i b u t i o n  i n  the  Fuel 

I n  c a l c u l a t i n g  temperature d i s t r i b u t i o n  i n  the f u e l  (Table 4) 
we used: 

i)  a cons tan t  fue l / shea th  h e a t  t r a n s f e r  c o e f f i c i e n t  of 
5 W/cm20C which i s  considerably higher  than the  
1 . 2  W/cm2"C used p r e ~ i o u s l y ( ~ ~ 5 ) .  P o s t - i r r a d i a t i o n  
mstallography has  ind ica t ed  t h a t  t he  U3Si s w e l l s  i n t o  
in t ima te  c o n t a c t  w i th  the  Zi rca loy  cladding f a i r l y  
e a r l y  i n  an i r r a d i a t i o n  (<lo00 MWd/tonne U )  and 
even before  the  c e n t r a l  void i s  closed up. Based 
on t h i s  information and on o t h e r  out-reactor  work(71, 
we  have es t imated  t h a t  the  i n t e r f a c e  c o e f f i c i e n t  f o r  
U3Si/Zircaloy would range from 0.8 W/cmaoC f o r  new 
f u e l  t o  6 W/cm20C f o r  h igh ly  i r r a d i a t e d  f u e l ,  

A 

ii) an average thermal conduct iv i ty  of 0.2 W/cm°C, based 
CII a value of 0.15 W/cm°C measured on un i r r ad ia t ed  

conduct iv i ty  wi th  temperature occurs i n  U 3 S i  s i m i l a r  
t o  t h a t  repor ted  f o r  uranium(9),  

T T .  wjoL r+.: a t  3 0 " C c 8 j  and assuming t h a t  an inc rease  i n  
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crs 

5.3 

5.4 

u 

iii) the  maximum 
adjus ted  t o  
the  f u e l .  

power output  of the  f u e l  (Table 4 )  
1 8 2  MeV/fission, the h e a t  generated & 

The maximum f u e l  temperature determined i n  t h i s  way was 520OC. 

Dimensional Chanqes 
-I__--I 

Diameter p r o f i l e s  of each element w e r e  measured i n - c e l l  
a t  var ious s t a g e s  during the i r r a d i a t i o n .  Average 
diameter i n c r e a s e s  w e r e  a l s o  c a l c u l a t e d  from more f r equen t  
underwater volume measurements by assuming t h a t  the volume 
change represented  a uniform diameter increase  of t he  
element and t h a t  no length  change had occurred. Measured 
length  changes w e r e  small  i n  a l l  elements a f t e r  i r r a d i a t i o n  
(Table  4) .  The average diameter increase  has been p l o t t e d  
a g a i n s t  burnup f o r  a l l  elements i n  Figure 3 ,  b u t  f o r  
c l a r i t y ,  curves have been drawn only f o r  elements of 
Types 1 and 2 (Table 1). I n  Figure 4, these  two curves 
have been reproduced (without  d a t a  p o i n t s )  along w i t h  the 
curves f o r  each of the o ther  element types.  

Examination of the  F u e l  

Measurements of void f i l l i n g ,  by d e s t r u c t i v e  examination 
of low burnup elements,  w e r e  confined t o  three elements of 
type l ( 4 )  and showed t h a t  a 7 vol% void was e n t i r e l y  
f i l l e d  a t  a burnup of about 1500 MWd/tonne U ( co r rec t ed  
v a l u e ) ,  i . e .  a t  about the s t age  a t  w h i c h  s i g n i f i c a n t  diameter 
i n c r e a s e s  began t o  occur i n  t h a t  type of element.  The 
va lues  of U 3 S i  volume increase  i n  F igures  5 and 6 w e r e  
p l o t t e d  on the assumption t h a t  the t o t a l  free volume i n  
each type of element had been taken up by the t i m e  e x t e r n a l  
diameter i nc reases  w e r e  measured. T h i s  method of c a l c u l a t i n g  
the volume change i n  U3Si ( A V l )  i s  explained i n  more 
d e t a i l  i n  Appendix A. 

The volume change i n  t h e  U 3 S i  was a l s o  determined from 
d e n s i t y  measurements 'on samples o f .  the i r r a d i a t e d  f u e l  
( A V 2 ) .  T h i s  method a l s o  i s  d e t a i l e d  i n  Appendix A, and 
the  r e s u l t s  a r e  given i n  Table 5 and Figure 6 (da t a  
p o i n t s ) .  A s  i n  an e a r l i e r  t e s t ( l O ) ,  t he  values  obtained 
w e r e  i n  genera l  higher than those obtained by dimensional 
measurements on complete elements ( ~ v l ) .  



- 6 -  

The values  of U 3 S i  volume increase  versus  burnup p l o t t e d  
i n  Figures  5 and 6 bear  the  same r e l a t i o n s h i p  t o  one 
another a s  do those f o r  diameter increase  versus  burnup 
shown i n  F igures  3 and 4, v iz :  

- Figure 5 shows a l l  p o i n t s  b u t  curves f o r  
elements of types 1 and 2 only,  

- Figure 6 shows curves f o r  a l l  element types and 
the  da t a  p o i n t s  obtained from d i r ec t  dens i ty  
measurements (see above) . 

Elements MJL, MJC and AWE were d e s t r u c t i v e l y  examined 
a f t e r  higher  burnup (5490, 8435 and 9455 MWd/tonne U 
r e s p e c t i v e l y )  and examined as-sectioned, and a f t e r  
po l i sh ing  and e tch ing .  
sEct ions from each element and from un i r r ad ia t ed  c o n t r o l s  
a r e  shown i n  Figures  7-18. 

Photographs of r e p r e s e n t a t i v e  

The o r i g i n a l  a x i a l  void was found t o  be f i l l e d  i n  a l l  
t h r e e  elements (F igures  7 - 1 1 ) .  Micro-examination of t he  
f u e l  i n  genera l  confirmed the  r e s u l t s  obtained e a r l i e r  
on s i m i l a r  specimens i r r a d i a t e d  t o  lower burnup($) .  
Although the d i s t r i b u t i o n  of the U3Si and U3Si2 phases 
appeared t o  be unchanged by i r r a d i a t i o n  (F igures  14 and 1 5 ) ,  
i t  was no t  poss ib l e  t o  d e l i n e a t e  g r a i n  boundaries i n  
i r r a d i a t e d  U 3 S i ,  us ing  the  e t c h a n t  which i s  e f f e c t i v e  on 
u n i r r a d i a t e d  mater ia l* .  Fine pores or i nc lus ions  i n  
the  i r r a d i a t e d  U3Si phase appeared more num3rous than 
before  i r r a d i a t i o n .  The f u e l  and sheath w e r e  i n  in t imate  
c o n t a c t  i n  a l l  t h r e e  i r r a d i a t e d  elements b u t  t h e r e  was 
no evidence of m e t a l l u r g i c a l  r e a c t i o n  (Figure 18 ) .  

M3cro-examination of e tched cross -sec t ions  (F igures  9-11) 
revea led  dark bands a t  the per iphery  and c e n t r a l  reg ions  
of the  f u e l  which were not  v i s i b l e  on pol ished sec t ions .  
Be ta/gamma autoradiographs of th'p s ams cross-sec t ions  
showed a uniform darkening over the  whole of the f u e l  
cross-sect ion,  i n d i c a t i n g  t h a t  t he  dark bands a re  a 
s t r u c t u r a l  e f f e c t  r a t h e r  than a concent ra t ion  of f i s s i o n  
products.  N o  c o n s i s t e n t  d i f f e rence  i n  micros t ruc ture  
could be found t o  correspond t o  these dark bands although 
s i m i l a r  a r e a s  have been observed on both  f r a c t u r e d  and 
etched s e c t i o n s  of f u e l  i n  another t e s t ( l 0 ) .  

~ 

* 3.4 grams C i t r i c  Acid, 72  cm3 N i t r i c  Acid, 170  cm3 Water 
and 1 cm3 48% Hydrofluoric Acid. 
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@ 6. DISCUSSION 

The p r i n c i p a l  ob jec t ive  of the  experiment was t o  determine 
whether e x t e r n a l  swel l ing of U 3 S i  f u e l  elements could be 
c o n t r o l l e d  adequately a t  terminal  burnup t o  permit  
a p p l i c a t i o n  of t h i s  ma te r i a l  i n  power r e a c t o r  f u e l  bundles.  
The l i m i t s  t e n t a t i v e l y  se t  f o r  t h i s  app l i ca t ion  w e r e  a 
diameter increase  of less than 1% a t  a burnup of 
10,000 MWd/tonne U .  

A secondary ob jec t ive  was t o  determine the  mechanism of 
t h e  i r rad ia t ion- induced  swel l ing  observed i n  U 3 S i ;  
methods might then be developed f o r  reducing t h i s  swel l ing 
and t h u s  t he  amount of free volume requ i r ed  t o  accommodate 
it, wi th  consequent increase  i n  e f f e c t i v e  uranium dens i ty  
i n  the f u e l  element. The r e s u l t s  of the  experiment a re  
discussed below w i t h  r e s p e c t  t o  these ob jec t ives .  

6.1 Dimensional S t a b i l i t y  

W e  have considered t h e  observed swsl l ing  behaviour of t h e  
d i f f e r e n t  f u e l  element types tested w i t h  r e s p e c t  t o  the 
e f fec ts  of :  

- f r e e  volume i n  the element 

- shea th  r e s t r a i n t  

- power output  

- f u e l  composition. 

Because of uncontrol led and co inc ident  v a r i a t i o n s  i n  these 
parameters i n  the specimens used i n  t h i s  test ,  it i s  no t  
poss ib l e  t o  e s t a b l i s h  with c e r t a i n t y  the  e f f e c t s  of each 
alone. 

6.1.1 Free volume 

I n  previous w o r d 4 )  we found t h a t  t o t a l  free volume i .e.  
inc luding  po ros i ty  i n  t h e  f u e l  and assembly c learances ,  
r a t h e r  than  j u s t  the a x i a l  void, appeared t o  be the  
important  parameter i n  de f in ing  e x t e r n a l  swel l ing  of 
the  elements.  The t o t a l  f r e e  volume i n  each type of 
element was gene ra l ly  3-5% g r e a t e r  than t h e  nominal a x i a l  
void volumz (see Table 1). 

k3 
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One element of the o r i g i n a l  design used i n  t h i s  experiment 
(MJD, of type 2 and containing 12.8% t o t a l  f r e e  volume) 
a t t a i n e d  an exposure of 14,700 MWd/tonne U 
wi th  a diamater increase  of 1.2%. N o  n e t  increase  i n  
diameter occurred s ince  t h i s  element was repor ted  on 
e a r l i e r ( 5 )  a t  an exposure of 5200 MWd/tonne U. Five o ther  
elements of t h i s  type a t t a i n e d  exposures ranging from 
5500 t o  8500 MWd/tonne U and, a f t e r  c o r r e c t i o n  f o r  small  
d i f f e r e n c e s  i n  i n i t i a l  f r e e  v o l u m ~ ,  t h e i r  behaviour confirms 
t h a t  of MJD. Since i t  i s  known t h a t  the  a x i a l  void i n  
these elements i s  f i l l e d  a t  an exposure beloN 5500 MWd/tonne U 
(Figures  7 and 9 )  it appears t h a t  there  i s  no s i g n i f i c a n t  

' volume change i n  U 3 S i ,  i r r a d i a t e d  under these condi t ions ,  
between burnups of 5200 and 14,700 MWd/tonne U .  

Resul t s  i n  Figure 4 show t h a t  f o r  elements of o ther  types,  
having widely d i f f e r e n t  amounts of f r e e  volume, the  
inc rease  i n  diameter v a r i e s  a t  a given burnup. For elements 
of type 7 containing a total free volume of 14-15%, a 
diameter increase  of 0.7% was observed a f t e r  a burnup of 
6700 MWd/tonne, while f o r  elements of type 5,  conta in ing  
22% f r e e  volume, the diameter increase  was 0.2% a f t e r  
9400 MWd/tonne U.  Based on the  behaviour of element MJD 
we do n o t  expect  f u r t h e r  s i g n i f i c a n t  diameter i n c r e a s e s  
i n  e i t h e r  of these  element types t o  a burnup of a t  l e a s t  
14,700 MWd/tonne U. Thus, although the diameter increase  
can be reduced f u r t h s r  by using g r e a t e r  f r e e  volume, it 
appears t h a t  a t o t a l  of 15 vol% w i l l  be s u f f i c i e n t  t o  
maintain diameter i n c r e a s e s  below 1% i n  a burnup of a t  
l e a s t  10 ,000  MWd/tonne U, under the  condi t ions  of t h i s  t es t .  

The der ived curves of U3Si volume increase  versus  burnup 
(F igures  5 and 6 )  i n  genera l  provide be t te r  agreement, 
between ind iv idua l  e l e m r n t s  of each type,  than  t h a t  
o3tained with d i r e c t  diamrter  measurem?nts. This  confirms 
e a r l i e r  obse rva t ions (4 )  and i s  a t t r i b u t e d  t o  small  d i f f e rences  
i n  p o r o s i t y  i n  t he  f u e l  which a re  allowed f o r  i n  der iv ing  
f u e l  volumce changes. 

Figure 6 suggests  t h e r e  i s  a g r e a t e r  volume increase  i n  
the U 3 S i  a t  a given burnup when the i n i t i a l  f r e e  volume 
i n  the element i s  g r e a t e r .  One element of type 5 (AWE) 
was sect ioned a f t e r  a burnup of 9400 MWd/tonne U and t h e  
a x i a l  void found t o  be f i l l e d ,  confirming the assumptions 
made i n  de r iv ing  the  f u e l  volume change. 
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G6.1.2 Sheath r e s t r a i n t  

The r e s t r a i n t  i n  our specimlens i s  the  sum of 

- s e l f - r e s t r a i n t  i n  the f u e l ,  

- shea th  r e s t r a i n t ,  and 

- coolant  pressure .  

To a f i r s t  approximation, f u e l  s e l f - r e s t r a i n t  and coolan t  
pressure  would be the same f o r  a l l  specimens i n  t h e  
p re sen t  tes t ;  we have observed d i f f e r e n c e s  i n  e x t e r n a l  
swel l ing  of t he  specimens which a re  a t t r i b u t e d  t o  d i f f e rences  
i n  shea th  r e s t r a i n t .  The sheathing v a r i a b l e s  s tud ied  
were: 

- sheath ma te r i a l ;  Z i rca loy  vs Zr-2.5 wt% .Nb 

- sheath th ickness ;  i n  the  range 0.45-0.7 mi 

- sheath condi t ion ;  cold worked vs f3-annealed. 

Comparison of the e f f e c t  of shea th  ma te r i a l ,  under otherwise 
s i m i l a r  condi t ions  i s  poss ib l e  between elements of types 3 
and 6 (conta in ing  3.0-3.8% f r e e  volume) and types  2 and 4 
(conta in ing  10.0-12.8”/0 f r e e  volume). Elements c l a d  i n  
Zr-2.5 wt% Nb ( type 3 )  s w e l l e d  less than those c lad  i n  Zi rca loy  
( type  6 ) ,  both  on diameter (Figure 4 )  and i n  f u e l  volume 
(Figure 6 ) ,  when the ava i l ab le  free volume i n  the element 

was low. However, because of the  l a r g e  s t r a i n  developed 
i n  the  shea ths  of these elements,  t h e i r  i r r a d i a t i o n  was 
terminated a t  low burnup and the comparison i s  based on 
only  two measurements. A t  h igher  l e v e l s  of f r e e  volume, 
t h e  diameter increase  (Figure 4 )  i n  zirconium-niobium c l a d  
elements ( type  4 )  was g r e a t e r  than those c l a d  i n  Zi rca loy  
( type  2 )  b u t  a f t e r  c o r r e c t i o n  f o r  i n i t i a l  f r e e  volume, f u e l  
swel l ing  was n o t - s i g n i f i c a n t l y  d i f f e r e n t  (Figure 6 )  a t  
corresponding burnup. 

The e f f e c t  of d i f f e r e n t  th icknesses  of Zi rca loy  sheathing 
i s  compared between elements of types 1 and 2 (9.6-12.8% 
free volume) and types  7 and 8 (14.1-17.7% f r e e  volume). 
There i s  about 2% g r e a t e r  diameter increase  a t  corresponding 
burnup i n  type 1 elements compared t o  type 2 which p e r s i s t s ,  

0 
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a f t e r  co r rec t ion  f o r  d i f f e rences  i n  i n i t i a l  f r e e  volume, 
i n  a 2% g r e a t e r  increase  i n  f u e l  volume (Figure 6 ) .  For 
higher  values of i n i t i a l  f r e e  volume ( types  7 and 8) the  
e f f e c t  of the shea th  th ickness  i s  less: although the 
diameter increase  i s  s l i g h t l y  g r e a t e r  f o r  the th inner  
sheath (Figure 4 )  the  apparent f u e l  volume increase  i s  
lower (Figure 6 ) .  There was an inadve r t en t  d i f f e rence  
i n  s i l i c o n  concent ra t ion  between f u e l  i n  type 7 (4 .0  w t %  S i )  

conta in ing  4.3 w t %  s i l i c o n  was found t o  have increased i n  
diameter before  void f i l l i n g  was complete. S imi la r  behaviour 
i n  f u e l  of type 8 elements of the p re sen t  t es t  could account 
f o r  the  apparent ly  h igher  c a l c u l a t e d  f u e l  volume increases ,  
compared wi th  type 7 ma te r i a l .  

and type 8 (4 .3  w t %  S i )  elements.  I n  another  t es t  (I0) f u e l  

The e f f e c t  of sheath condi t ion  was examined wi th in  ind iv idua l  
spscimens by induct ion  hea t ing  a 4 cm long s e c t i o n  of the 
cold-worked Zi rca loy  sheath i n t o  the  f3 range p r i o r  t o  
e l e m e n t  assembly. E l e m e n t s  having t h i s  f e a t u r e  w e r e  
included i n  types  7 and 8 toge ther  with o the r  elements 
having e n t i r e l y  cold-worked sheaths .  A s  shown i n  Figure 19A, 
f o r  elements of type 8 a f t e r  a burnup of 7965 MWd/tonne U ,  
no d i f f e rence  i n  diameter was de t ec t ab le  between s e c t i o n s  
of 0.7 mm t h i c k  shea th  i n  the  two condi t ions ,  and the  
diamzter increase  was comparable w i t h  t h a t  i n  otherwise 
s i m i l a r  elements having a completely cold-worked sheath.  
A t  a lower (0.46 m..) sheath th ickness  however, elements 
of type 7 exh ib i t ed  enhanced swel l ing i n  the  p annealed zones 
a f t e r  a burnup of 6740 MWd/tonne U (Figure 19B) compared 
t o  otherwise s i m i l a r  elements having a completely cold- 
worked sheath (Figure 19C). 

6.1.3 - P m e r  output  

When ind iv idua l  elements underwent a s t e p  change i n  power 
output  a r e v e r s i b l e  change was noted i n  diameter.  This  
e f f e c t  i s  most c l e a r l y  i l l u s t r a t e d  by elements of types 1 
and 2 (Figure 3 )  between burnups of 3000 and 7000 MWd/tonne U .  
A decrease i n  l i n e a r  power output  of element MJA from 
500 W/cm t o  350 W/cm near 4000 MWd/tonne U r e s u l t e d  i n  a 
diameter decrease of about 0.2%: s i m i l a r  e f f e c t s  can be 
noted f o r  elements MJH, MJP and MJS. 
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666.1.4 --- Fuel  composition 

F u e l  conta in ing  350 ppm i r o n  and 1500 ppm aluminum ( type  9 )  
exh ib i t ed  s i m i l a r  diameter changes (Figure 4)  t o  m a t e r i a l  
of low i r o n  and aluminum concentrat ion (type 2 )  under 
otherwise s i m i l a r  condi t ions.  Af te r  co r rec t ion  f o r  
d i f f e r e n c e s  i n  i n i t i a l  f r e e  volume however, the volume 
inc rease  (Figure 6 )  i n  the m a t e r i a l  conta in ing  higher 
i r o n  and aluminum concent ra t ions  appears t o  be s i g n i f i c a n t l y  
less;  about 2 vol% a t  burnups between 4000 and 10 ,000  
MWd/tonne U. 

The higher ca l cu la t ed  volume increase  i n  f u e l  containing 
4.3 w t %  S i  (see s e c t i o n  6.1.2),  compared with m a t e r i a l  
conta in ing  4.0 wt% S i ,  has  a l ready  been a t t r i b u t e d ( l O )  t o  
a h igher  flow stress i n  the  high s i l i c o n  m a t e r i a l .  At ten t ion  
should be given i n  f u t u r e  tes ts  t o  s i l i c o n  concent ra t ion  
of the  f u e l ,  s ince  4.0 w t %  S i  may n o t  be the  optimum. 

6.2 Swe 1l ingMechanism - 

F r a n  an ana l  s is  of e a r l i e r  r e s u l t s  from t h i s  experiment 
we c o n ~ l u d e d Y ~ , ~ )  t h a t  t he  growth of f i s s i o n  gas  bubbles 
alone could no t  account f o r  the r a p i d  swel l ing  observed 
i n  U3Si a t  low burnup. 
MacEwan and Bethune(l1)  have shown t h a t  U3Si, i r r a d i a t e d  t o  
l o w  exposures a t  a temperature of 60"C, transformed from a 
body centred t e t r agona l  (b.c. t .)  t o  a d i sordered  face  
cent red  cubic  s t r u c t u r e  ( f  .c.c.) . Displacement d e n s i t y  
measurements revealed an accompanying volume increase  of 
about 3%. Complete recovery of the b.c. t .  s t r u c t u r e  was 
obtained by anneal ing a f t e r  i r r a d i a t i o n ,  a t  250-5OOOC. 
Samples  of i r r a d i a t e d  f u e l  from elements M J B ,  M J E  and M J L  
of the  p re sen t  t e s t  w e r e  examined by  X-ray d i f f r a c t i o n  and 
no change from the  p re - i r r ad ia t ed  (b.c. t .)  s t r u c t u r e  was 
d e t e c t e d ( 1 2 )  . 
induced s t r u c t u r a l  changes of the  type observed by MacEwan 
and Bethune w 2 r e  simultaneously recovered a t  the  higher  
i r r a d i a t i o n  temperature (300-520°C) i n  our work. 

X-ray d i f f r a c t i o n  s t u d i e s  by 

Thus  we conclude t h a t  any i r r a d i a t i o n -  

The b.c.t.  t o  f . c .c .  t ransformation,  and the  accompanying 3% 
volume increase  cannot d i r e c t l y  exp la in  the  13-22 vol% 
swel l ing  observed i n  our specimens. MacEwan and Bethune (11) 
have however suggested a mechanism whereby l a r g e  volume 
i n c r e a s e s  might be caused by the  s t r u c t u r a l  t ransformat ion  63 
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b.c.t. f .c .c .  b.c.t. Within a f i s s i o n  spike,  m a t e r i a l  
would be transformed t o  the  f .c .c .  s t r u c t u r e  wi th  a volume 
inc rease  of about 3% which could be accommodated l o c a l l y  
by p l a s t i c  deformation of the  surrounding U 3 3 i .  When the 
m a t e r i a l  r eve r t ed  t o  the  b.c.t. s t r u c t u r e ,  a void might be 
formsd a s  a consequence of t h e  a s soc ia t ed  volume decrease.  
Voids formed i n  t h i s  way*could give r ise t o  bulk volume 
changes i n  the f u e l  s eve ra l  t imes t h a t  a s soc ia t ed  with a 
s ing le ' t r ans fo rma t ion .  

I n  add i t ion  t o  the  s t r u c t u r a l  changes found by MacEwan and 
Bethune, t he re  a r e  a t  l e a s t  t h r e e  other  poss ib l e  mechanisms 
by which voids  could be formed i n  U 3 S i .  The p e r i t e c t o i d  
r e a c t i o n ,  by which U3Si transforms t o  uranium and U 3 S i 2  above 
93OoC, involves  a volume increase  of -4%. I f ,  w i t h i n  the  
a rea  a f f e c t e d  by a f i s s i o n  spike,  t h i s  r e a c t i o n  went i n  the  
forward d i r e c t i o n ,  and i f  the reverse  r e a c t i o n  t o  reform 
U3Si followed, then s i m i l a r  voids  t o  those proposed by 
MacEwan and Bethune could be produced. A l t e rna t ive ly ,  t he  
s l i g h t  an iso t ropy  of t he  t e t r a g o n a l  l a t t i c e  of U3Si might 
give r ise  t o  c a v i t a t i o n  t e a r s  of t he  type observed(13) i n  
uranium metal i r r a d i a t e d  a t  400-500OC. A s  a f u r t h e r  
a l t e r n a t i v e ,  micro tears  might be developed i n  U3Si of the 
type observed i n  uranium metal i r r a d i a t e d  between 500 and 
6OO0C, which have been a t t r i b u t e d ( 1 4 )  t o  agglomeration of 
l a t t i c e  d e f e c t s  formed by f i s s i o n  events .  

Observations of the  U3Si used i n  t h i s  experimsnt a r e  
q u a l i t a t i v e l y  i n  agreement wi th  a swel l ing  mechanism which 
involves  the  developmsnt of micro-voids i n  t h e  f u e l  m a t e r i a l .  
Opt ica l  micrographs ( f o r  example, Figure 1 7 )  of i r r a d i a t e d  
U3Si e x h i b i t  small  dark spots ,  near the l i m i t  of r e s o l u t i o n ,  
which might be pores  of diameter <1 p m .  More d e t a i l e d  
o p t i c a l ( l 5 )  and e l e c t r o n  microscopy(16) of samples of f u e l  
from t h i s  t es t ,  a r e  i n  progress  and w i l l  be repor ted  a t  a 
l a t e r  da t e .  

We can develop a q u a l i t a t i v e  hypothes is  of the  swel l ing  
behaviour of f u e l  elements conta in ing  U 3 S i  based on the  
observat ions from t h i s  tes t  and assuming t h a t  t he  p r i n c i p a l  
swel l ing  mechanism i s  one involv ing  void formation. During 
t h e  e a r l y  p a r t  of t he  i r r a d i a t i o n ,  swel l ing  of t he  f u e l  
can be accommodated by flow of m a t e r i a l  i n t o  any voids 
p re sen t  i n  t h e  element under the  inf luence  of a combination 
of f u e l  s e l f - r e s t r a i n t  and e x t e r n a l  r e s t r a i n t .  Provided 
these  r e s t r a i n t s  a r e  s u f f i c i e n t l y  high t o  overcome the  flow 
stress of the f u e l  ma te r i a l ,  e x t e r n a l  dimensional changes t o  
the  element w i l l  be l i m i t e d  t o  those produced by creep 
under the n e t  stress developed i n  the  sheath.  Although new 
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0 voids a re  con t inua l ly  be ing  produced a s  a consequence of 
f r e s h  f i s s i o n  events ,  s i n t e r i n g  f o r c e s  w i l l  be a c t i n g  t o  
e l imina te  those a l ready  present ,  and w i l l  be augmented by 
the  e x t e r n a l  r e s t r a i n t  of the  system, p a r t i c u l a r l y  a f t e r  
l a r g e  voids  i n i t i a l l y  p re sen t  i n  the  f u e l  a r e  f i l l e d .  The 
t o t a l  volume increase  i n  the  f u e l  w i l l  r ep resen t  an equi l -  
ibrium between the  instantaneous void volums produced i n  
the  f u e l  by the f i s s i o n  process,  and the  r a t e  a t  which voids,  
formed by previous events ,  a r e  e l imina ted .  

The impl ica t ions  of such a mechanism, which a re  i n  genera l  
confirmed by our observat ions,  a r e  

1) t he  volume inc rease  of t he  U3Si a t  a given 
burnup i s  n o t  a f ixed  q u a n t i t y  b u t  depends 
on f i s s i o n  r a t e ,  r e s t r a i n t ,  e t c . ,  

2 )  t he  volums increase  of t he  U3Si a t  a given 
burnup w i l l  be g r e a t e r  a t  h igher  f i s s i o n  r a t e s  
under otherwise s imi l a r  condi t ions ,  

3 )  t he  volume increase  of the U 3 S i  w i l l  be 
g r e a t e r  a t  a given burnup i n  elements which 
i n i t i a l l y  contained g r e a t e r  f r e e  volume, 

4 )  t he  i n i t i a l  f r e e  volume necessary t o  maintain 
dimensional s t a b i l i t y  of the  element t o  high 
burnup i s  less, under otherwise s i m i l a r  
condi t ions ,  when the  e x t e r n a l  r e s t r a i n t  i s  
g r e a t e r ,  

5 )  conversely,  the  r e s t r a i n t  r equ i r ed  t o  maintain 
dimensional s t a b i l i t y  of t h e  element t o  high 
burnup i s  less, under otherwise s i m i l a r  
condi t ions,  when the  i n i t i a l  f r e e  volume i n  
the  element i s  greater- ,  and 

when an equi l ibr ium has been e s t a b l i s h e d  
between void formation ,and e l imina t ion ,  no 
f u r t h e r  volume increase  i n  the-U3Si wi th  
burnup w i l l  occur,  except  a s  a consequence 
of othe,r mechanisms .such a s  the  bui ldup  of 
s o l i d  f i s s i o n  products.  

6 )  
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A t  t he  f i s s i o n  r a t e  and coolan t  condi t ions  of the  p re sen t  
t es t ,  dimensional s t a b i l i t y  ( i .e.  1% increase  i n  diameter 
a f t e r  10,000 MLNd/tonne U)  i s  obtained f o r  a f u e l  element 
c l a d  i n  0.7 mm t h i c k  Zircaloy by the  use of about 13% 
i n i t i a l  free volume. For a f u e l  element c l ad  i n  0.45 m;n 
t h i c k  Zircaloy, about 15% i n i t i a l  f r e e  volume appears 
nece s s a r y  . 
Other l i m i t i n g  combinations of shea th  r e s t r a i n t  and f r e e  
volume obviously e x i s t .  I n s u f f i c i e n t  information i s  y e t  
a v a i l a b l e  t o  develop a q u a n t i t a t i v e  r e l a t i o n s h i p  between 
them or t o  der ive corresponding r e l a t i o n s h i p s  f o r  o the r  
f i s s i o n  r a t e s  and coolan t  condi t ions .  

7 .  SUMMARY AND ,2ONCLUSIONS 

1. Externa l  swel l ing of f u e l  elements conta in ing  U 3 S i  
can be c o n t r o l l e d  by the p rov i s ion  of f r e e  volume 
wi th in  t h e  e lement .  Under thz  condi t ions  of t h i s  
t es t ,  an element conta in ing  12.8"/0 i n i t i a l  f r e e  
volume (type 2 )  increased  1.2% i n  diameter a f t e r  a 
burnup of 14,700 MWd/tonne U. 
a t  a given burnup can be reduced by provis ion  of 
g r e a t e r  i n i t i a l  f r e e  volume. 

The diameter increase  

2. The volume increase  i n  U3Si under i r r a d i a t i o n  i s  
g r e a t e r ,  under otherwise s i m i l a r  condi t ions,  when 
f r e e  volume wi th in  the  f u e l  element i s  g r e a t e r .  
Af te r  a burnup of 10,000 MMd/tonne U i n  t h i s  tes t ,  
th2 U 3 S i  i n  an element conta in ing  1 2 . 8 %  i n i t i a l  
f r e e  volumz had swelled 16.2%, whereas U3Si i n  an 
element conta in ing  22% i n i t i a l  f r e e  volume, had 
swelled 22.6%. 

3. The r a t e  of volume increase  of U 3 S i  on i r r a d i a t i o n  
decreases  a t  h igher  burnup. N o  change i n  f u e l  volume 
was observed i n  an element i n i t i a l l y  conta in ing  12.&% 
f r e e  volume between burnups of 5200 and 14,700 
MWd/tonne U .  

4. Externa l  diameter i nc reases  i n  U3Si f u e l  elements a r e  
g r e a t e r ,  under otherwise s imi l a r  condi t ions ,  when 
the  sheath r e s t r a i n t  i s  lower. T h i s  e f f e c t  i s  more 
apparent  f o r  elements conta in ing  less i n i t i a l  f r e e  
volume. 
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/ \  

5. Externa l  diameter i nc reases  a r e  g r e a t e r ,  f o r  othsrwise 
s i m i l a r  elements, operated a t  higher  power. 

6. Small add i t ions  of i r o n  and aluminum appear t o  reduce 
the  swel l ing of U3Si. 

7 .  The observed behaviour of U 3 S i  i n  t h i s  t e s t  i s  
c o n s i s t e n t  w i th  a swel l ing mechanism involving the 
formation of micro-voids r e s u l t i n g  from f i s s i o n  
events which even tua l ly  reach an equi l ibr ium concen- 
t r a t i o n  depending on f i s s i o n  r a t e  and e x t e r n a l  
r e s t r a i n t .  
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APPENDIX A 

A COMPARISON OF TWO METHODS FOR CALCULATING THE 
VOLUME CHANGE I N  U3Si D’JRING IRRADIATION 

If we assume t h a t  the  t h e o r e t i c a l  d e n s i t y  ( P T D )  of U3Si 
i s  a func t ion  of s i l i c o n  concentrat ion*,  t he  i r r a d i a t i o n  
induced volume change i n  U3Si can be c a l c u l a t e d  from the  
fo l lowing  measurable paramsters .  For t h i s  method and f o r  
method I1 ( b e l o w ) ,  the  volume change i s  expressed a s  a 
percentage of t he  volume of t h e o r e t i c a l l y  dense U3Si r a t h e r  
than  a s  a percentage of the  volume of porous f u e l  i n  the  
rod  a s  was done p r e v i o u s l y ( 4 , 5 ) .  

VI = vol .  of t h e o r e t i c a l l y  dense ( T . D . )  U3Si i n  - 

- (cm3) weight a f u e l  s l u g  = --- t h e o r e t i c a l  d e n s i t y  

V2 = e x t e r n a l  s l u g  volums c a l c u l a t e d  from the  
ou t s ide  diamzter and length  of a U3Si s l u g  
be fo re  i r r a d i a t i o n  ( c m 3 ) .  

v3 = apparent  volume of U3Si s l u g  by immersion i n  
a su i t ab le  l i q u i d  ( c m 3 ) .  

a x i a l  void volume i n  the  new f u e l  = V 2 - V 3  ( c m 3 ) .  V4 = 

V5 = volume of p o r o s i t y  and microcracks i n  the  new 
f u e l  = v3 - v1 (cm3). 

3 

3 

V6 = cold c l ea rances  i n  a new element ( c m  ) .  . 

V7 = h o t  c l ea rances  i n  a new elem5nt ( c m  ) .  

* Decreasing l i n e a r l y  from 15.51 g/cm3 f o r  m a t e r i a l  
conta in ing  3.8 wt% S i  t o  15.11 g/cm3 f o r  m a t e r i a l  
of 4.2 wt% S i .  
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= the  e x t e r n a l  volume change which occurs i n  
an element  during i r r a d i a t i o n  ( c m 3 ) .  

va 

= volume of cracks  i n  the U 3 S i  f u e l  element 
a f t e r  i r r a d i a t i o n  (cm ) es t imated  f o r  3 
dimensions from the  f u e l  c ross -sec t ions .  

3 v9 

Calcula t ion  of Fuel Volumo Chanqes 

1) Metallographic examination of f u e l  s ec t ions  a f t e r  
i r r a d i a t i o n  shows t h a t  t h e  f u e l  and sheath a re  
bonded, the f u e l  i s  cracked and none of the o r i g i n a l  
d iamet ra l  c learances  a re  v i s i b l e .  I n  c a l c u l a t i n g  
the  f u e l  volume change, it i s  poss ib le  t o  make e i t h e r  
of two assumptions: 

a )  assums t h a t  t he  fus l / shea th  bond causes the  
sheath t o  co l lapse  a s  t he  f u e l  cools  a f t e r  
i r r a d i a t i o n .  I n  t h i s  case it i s  necessary t o  
use  v6 and V9 i n  the c a l c u l a t i o n  o r  

b)  assume t h a t  a l l  t he  c learance  taken up by 
d i f f e r e n t i a l  thermal expansion of f u e l  and 
sheath reappears  a s  c racks  i n  the f u e l  a f t e r  
i r r a d i a t i o n .  I n  t h i s  case,  V7 i s  used in s t ead  
of v6 and V9. 

2 )  Assuming t h a t  l ( a )  above i s  c o r r e c t ,  then: 

a )  the  t o t a l  volume i n s i d e  a f u e l  can before  i r r a -  
d i a t i o n  i s  given by = VI + (V4 + V5 + V6) 

t h e  t o t a l  swel l ing  which occurs  i n  V1 ( c m 3 )  of 
U 3 S i  f u e l  i s  

b)  

AVa = v 1 + xv 4 + xv 5 + XV6 t V8 - v1 - vg 

nv = xv + xv + XV6 + V8 - vg a 4 5 

where x = f r a c t i o n  of c e n t r a l  void closed up, 
determined by mstallography a f t e r  i r r a d i a t i o n  
i n  s e v e r a l  c a s e s ( 4 )  and/or by assuming t h a t  no 
s i g n i f i c a n t  diameter i nc reases  occurred u n t i l  
a f t e r  the  c e n t r a l  void had f i l l e d  in .  I t  was 
a l s o  assum'zd t h a t  the  p o r o s i t y  and c learance  
f i l l e d  i n  the  sam'3 f r a c t i o n  a s  the  c e n t r a l  void.  

n 
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c)  i n  elements MJC and M J L  where the  voids  w e r e  c losed  
up, x = 1 and f rm neasurements: 

V4 ( c e n t r a l  vo id)  

v5 ( p o r o s i t y  e t c . )  

V6 (co ld  c l ea rance )  

M J L  - MJC - 
1.44 1.44 ( c m 3 )  

0.19 0.30 ( c m  

0.34 0.33 ( c m  

3 

3 

V3 ( e x t e r n a l  change) 1.23 0.63 ( c m 3 )  

V9 ( e s t ima te  of c racks  0.18 0.18 ( c m 3 )  
a f t e r  i r r a d i a t i o n )  

Ava 

v1 

x l o o ( % )  - “a 

v1 

3 

3 

3.02 2.52 ( c m  ) 

17.54 17.54 ( c m  ) 

1 7 . 2  14.4 (%) 

3)  Assuming t h a t  l ( b )  i s  correct then 

a )  t he  t o t a l  volume i n  the  element a t  the  s t a r t  of 
i r r a d i a t i o n  

5 + v7 AVb = V1 + V4 + V 

3 b)  t o t a l  swel l ing  i n  V ( c m  ) of U S i  f u e l  i s  1 3 

avb = v1 + xv4 + xv5 + xv7 + V8 - v1 

8 AVb = XV + xV5 + xV7 + V 4 
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c )  For elements MJC and M J L  w i th  x = 1 

( h o t  c learance  ) 
v7 

A Vb 

nvl = (nv /v ) 100 b 1  

MJC M J L  

0.13 0.13 ( c m  ) 

2.99 2.50 

3 

17.0 14.2 (%) 

4)  Since bo th  assumptions g ive  e s s e n t i a l l y  the same 
r e s u l t s ,  and s ince  i t  i s  d i f f i c u l t  t o  a c c u r a t e l y  
measure the  volume of c racks  i n  t h e  U3Si, it was 
decided t o  use the  method employing t h e  h o t  
c learances .  

B )  Method II 

- Volume Chanqe from Densi ty  M>gasurements 

Subsequent t o  i r r a d i a t i o n ,  d e n s i t y  de te rmina t ions  a r e  
done on s e c t i o n s  of t he  U3Si f u e l ,  
which occurs  i n  VI ( c m 3 )  of f u e l  i s  determined a s  follows 
us ing  MJC and M J L  a s  examples: 

and the volume change 

M J C  M J L  -- (2 - I) x 100 = 18.7 16.7 (%) 
A v2 

n 
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Figure  1 2  R-29-B4 

Typica l  micros t ruc ture  
of t h e  i r r a d i a t e d  f u e l  
shar ing  U3Si2 (whi te )  
i n  the  U3Si mat r ix  (g rey )  
wi th  some U 0 2  (b lack)  . 
Per iphery  of element M J L .  

(Etched) 

F igure  13 (Etched) 

Typica l  g r a i n  s i z e  of 
the  u n i r r a d i a t e d  U3Si. 
Two-tone p a r t i c l e s  a r e  
U3Si2. 

F igure  14 (Etched) 

Typica l  micros t ruc ture  
of u n i r r a d i a t e d  f u e l  
s h w i n g  U3Si ( g r e y ) ,  
U3Si2 ( w h i t e ) ,  U 0 2  (b lack)  
and u n i d e n t i f i e d  spo t s .  
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n 

Figure 15 R-62-A7 
(Etched) 

Typical  micros t ruc ture  
a t  t he  per iphery of t he  
i r r a d i a t e d  f u e l  showing 
u n i d e n t i f i e d  small  b lack  
s p o t s  and some U 0 2  ( l a r g e  
b l ack  s p o t s )  
Element MJC. 

Figure 16 R-62-Cll 
(Etched) 

Microstructure  a t  t he  
mid-radius of element 
MJC a f t e r  i r r a d i a t i o n  
showing U 3 S i 2  (white)  
and U 0 2  (b lack)  i n  a 
dark grey U 3 S i  matrix.  

Figure 17  R-62-B2 
(Etched) 

Microstructure  a t  t he  
centre of element MJC 
showing remains of 
c e n t r a l  void ( b l a c k ) ,  
(wh i t e ) ,  U 3 S i  matr ix  
(grey)  

U 3 S i 2  
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Zirca loy  shea th  

Figure 18  R-29-A4 
(Etched) 

Microstructure  a t  the  
per iphery of i r r a d i a t e d  
f u e l  i n  e lement  M J L  
showing U 3 S i 2  (white)  and 
U 0 2  (b lack)  i n  U 3 S i  matr ix  
(grey)  
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I ' 15.40 mm 
6 7 3 5 MWd&onSU __ 

\ /-- 
/ I 

Figure 19 

Diameter P r o f i l e s  of Elements AWZ, AWX and AYN 

O 0  

Top End Weld Bottom End Weld 

15.40 mm 

15.20 mm 
7965 MWd/tonne U 

/-- 
- 
1-- 

15.00 mm 

/- 

P r e - I r r a d i a t i o n  

F ig .  19A AYN (0.66 mm s h e a t h )  

Braze annealed s e c t i o n  i n  shea th  

n / \. I 15.40 mm 

< e - I r r a d i a  ,_ , 15.20 mm 

u I I I  
Fig .  19B AWZ (0.46 mm s h e a t h )  

15.00 mm Braze annealed s e c t i o n  i n  s h e a t h  

n 
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Type 

- 
1 

2 

3 

4 

5 

6 

7 

8 

9t  

-- 

TABLE 1 

SUMMARY OF FUEL** ELEMENT TYPES 

Sheath 

Mater ia l  

z i rc-2 

Z i r c - 2  

Zr-2.5% N b  

Zr-2.5% Nb 

Zr-2.5% N b  

Zirc-4 

Z i r c - 2  

Zirc-4 

Z i r c - 2  

Thickness (mm) 

0.45 

0 . 7 1  

0.67 

0.67 

0.67 

0.61 

0.46 

0.66 

0.72 

Void (~01%) 

Nominal 
Axial  

7 

--- 

7 

0 

7 

16 

0 

10 

10 

7 

- 
Tota l*  

9.6- 
11.2 

10.0- 
12.8 

3.1- 
3.8 

10.8- 
11.8 

22.0- 
22.4 

3.0-  
3 . 5  

14.1- 
14.9 

16.3- 
17.7 

10.6- 
11.4 

* Inc ludes  c a s t i n g  p o r o s i t y  and h o t  ( c a l c u l a t e d )  
c learances  i n  f u e l  element and i s  expressed a s  a’ 
percentage of t h e o r e t i c a l l y  dense U3Si p r e s e n t  
(see Appendix A ) .  

** Norninal 4 wt% S i  (see Table 3 ) .  

t Contained minor a l l o y i n g  a d d i t i o n s  (see Table 3 ) .  
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TABLE 4 

POST-IRRADIATION DATA ON THE U S i  FUEL ELEMENTS 
3 

Element 

Type 

1 
1 
2 
2 

1 
1 .  
2 
2 
1 
1 
2 
2 
9 
9 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
7 
7 
8 
8 
8 
8 
-- 

No 

MJA 
MJB 
MJC 
MJD 

M J H  
M J J  
M J K  
M J L  
MJM 
M J N  
MJP 
M J R  
M JS 
M J T  
AWA 
AWE 
AWC 
AWD 
AWE 
AWF 
AWH 
AW J 
AWW 

Awt 
AWZ 
AYL 
AYMt 

AY P 
AYNt 

~~~ ~ 

Equivalent  Full 
Power Days I r r a d i a t i o n  

a s  of J u l y  1968 

417 
63 
366 
639 

417 
162 
259 
259 
127 
1 9 1  
307 
336 
495 
480 
84 
84 
1 6 0  
1 6 0  
395 
395 
8 4  
84 
235 
296 
236 
296 
296 
296 
296 
296 

Pwder O u t  
(185 M e \  
Range 

349- 5 10 
500-510 
412-485 
407-485 

332-503 
334-468 
402-446 
402-446 
459-500 
424-479 
321-485 
318-497 
322-491 
318-497 
450-512 
45 0-5 1 2  
422-504 
422-5 0 4  
393-474 
393-474 
45 0-5 1 2  
450-512 
446-479 
463-490 
446-479 
463-490 
486-515 
447- 548 
486-515 
447-548 

I t s  (w/cm) 
' i s  s ion  ) 
Time Avg. 

450 
505 
455 
445 
425 
440 
42 0 
42 0 
475 
445 
410 
405 
430 
440 
500 
498 
47 0 
470 
435 
425 
500 
500 
47 0 
475 
47 0 
47 5 
495 
5 05 
495 
5 05 

Calcula ted  
T e m p e .  

TS 

305 
305 
320 
320 
305 
3 00 
315 
3 1 5  
305 
3 00 
320 
325 
320 
325 
320 
320 
320 
320 
3 15  
3 15  
3 15  
3 15  
300 
305 
300 
305 
310 
320 
310 
320 

* See s e c t i o n  5.2 
** Based on 185 MeV/fission h e a t  genera t ion  by the  f u e l .  
t These elements have an annealed zone i n  the  co ld  worked shea th  

( see  Sec t ion  2 ) .  

t u r e  * 

T c  

47 0 
470 
47 5 
475 
465 
4 5 0  
455 
455 
465 
455 
47 5 
480 
4 8 0  
4 8 0  
5 2 0  
520 
4 8 0  
480 
440 
4 4 0  
515 
515 
445 
4 6 0  
4 4  5 
4 6 0  
450 
4 5 0  
4 5 0  
450 

Length 
Change 

(%) 
-- 

-0.39 
NM 

+O. 05 
-0.04 
-0.33 
-0.32 
+0.01 
-0.05 
-0.36 
-0.30 
-0.05 
-0.06 
-0.02 
-0.02 
-0.20 
-0.20 
-0.02 
-0.09 
-0.12 
-0.07 
-0.16 
-0.16 
-0.16 
-0.24 
-0.18 
-0.13 
-0.11 
-0.12 
-0.08 
-0.09 

Bowing -2  
(mm x 1 0  ) 

4 1  
13 
32 
1 6  
8 9  
52 
2 
17 
1 7 0  
1 2 4  
11 
5 
20  
11 
34 
35 
13 
10 
8 
10 
85 
85 
9 
15  
8 
2 0  
3 
10 
7 
8 

Burnup a s  of 15 J u l y  1968 
(ma/ 

From 
Ca 1 or  i m e  t r y  

8740 
1505 
8435 
14,700 
8350 
3305 
5920 
5490 
2840 
3960 
6570 
7085 
10,950 
10,780 
1950 
1950 
3775 
3760 
9455 
9275 
1930 
1940 
5320 
6735 
5270 
6740 
8000 
8085 
7965 
8075 

! U)** 
'rom Chemical 

Analysis  

1820 
8980 

5990 
5480 

T, and TC a r e  the  c a l c u l a t e d  temperatures  a t  t h e  
f u e l  sur face  and c e n t r e  r e s p e c t i v e l y .  

NM - Not m,zasured 

I 

w 
a 

I 
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TABLE 5 

FUEL VOLUME CHANGES CALCULATED BY DIFFERENT METHODS 
-------- 

E l e m e n t  

MJF 

MJE 

MJB 

MJLI 

MJC 

Burnup 
(MWd/tonne U )  

840 

920 

1505 

5490 

8435 

* The da ta  p o i n t s  on Fig.  

--- -- --- -- 
% Volume Change (see App. A )  

AV1* 

--- 

4.5 

6.5 

12.4 

14.2 

17.0 

---I 

1 

Pos i t ion  of t S ample --------- 

TOP 

TOP 
Bottom 

B o t t o m  
TOP 
TOP 

TOP 
TOP 

Bottom 

Bottom 

J2** 
Values 

---- 
6 . 1  
5.9 
5.2 

11.7 
7 .0  
5.6 

18.6 
16.7 
11.7 

16.7 
16.7 

18.7 
18.7 

A v e r  age 

5.7 

8.1 

15.7 

16.7 

18 .7  

5 a r e  c a l c u l a t e d  using Method 1 (App. A )  

** The volume changes c a l c u l a t e d  using Method 2 (App. A ) ,  i . e .  
the  d e n s i t y  samples, a r e  p l o t t e d  on Fig.  6.  

t Top or bottom i n d i c a t e s  the  centre of the  t o p  or bottom f u e l  
s l u g  r e s p e c t i v e l y  . 
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