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Magnetoelast ic e f f e c t s  i n  t e r b i  and dysprosium 

Denni s Thomas Vigren , 

A d e t a i l e d  t h e o r e t i c a l  study has been made o f  the magnetoelast ic  

p e r t u r b a t i o n  o f  the spectra of  elementary s p i n  and l a t t i c e  excitations i n  
I 

Tb and Dy metals. The theory was formulated on the bas is  o f  an i n t e r -  

a c t i o n  formed f rom b i l i n e a r  products of  l oca l  s p i n  and s t r a i n  funct ions.  

Previous ad hoc models appear i n  c e r t a i n  1 i m i  t s  o f  the theory, g i v i n g  a 

coherence t o  the t h e o r e t i c a l  p i c t u r e  o f  magnetoel a s t i  c coup1 i ng. I t  i s  

found t h a t  un i fo rm magne tos t r i c t i on  causes a smooth t r a n s i t i o n  f rom " f r e e  

l a t t i c e "  t o  I1f rozen l a t t i c e "  p e r t u r b a t i o n  o f  the magnon spectrum depending 

on the wavevector o f  the state, 

The microwave absorp t ion  versus magnetic f i e l d  app l i ed  along the hard 

p lanar  a x i s  o f  Tb and Dy i s  ca l cu la tedo  I t  i s  found t h a t  f r e e  l a t t i c e  

magnons are p r i m a r i l y  respons ib le  fo r .  low frequency absorp t ion  i n  Tb below 

140 K, and f o r  both low and h igh  frequency absorp t ion  i n  Dy below the Curie 

temperature o f  t ha t  metal. It i s  shown t h a t  the t r a n s i t i o n  f rom f r e e  t o  

f rozen l a t t i c e  behavior of the magnon spectrum i s  essen t i a l  t o  the explana- 

t i o n  of e x i s t i n g  data on the temperature dependence o f  absorp t ion  peak 

p o s i t i o n s  i n  Tb. 

4 - 
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The dynamic i n t e r a c t i o n  between s p i n  and l a t t i c e  waves i s  derived, 

and used t o  c a l c u l a t e  the mixed-mode sp l  i t t i n g s  i n  regions o f  t h e '  

B r i l l i o u n  zone o f  Tb where phonon and.magnon d i spe rs ion  curves cross. 

The theory p r e d i c t s  we1 1 the sp l  i t t i n g  which occurs where the acoust i 'cal  

mkgnon and phonon branches touch, b u t  f a i  1 s t o  account f o r  the sp l  / t t i  ng 

between the acous t i ca l  magnon and o p t i c a l  phonon branches. 



'I NTRODUCTI ON 

The r a r e  e a r t h  metals, p a r t i c u l a r l y  Tb and Dy, a re  found t o  s t r a i n  

cons iderab ly  i n  the ferromagnet ic  s tate.  This  d i s t o r t i o n  i s  rough1 y two.  

o r d e r s ' o f  magni tude l a r g e r  than t h a t  induced i n  t r a n s i t i o n  metal f e r r o -  

magnets, S t r a i n i n g  causes changes i n  the c r y s t a l l i n e  f.te1.d and i n  the 

c r y s t a l  p o t e n t i a l  as seen by the conduct ion e lect rons.  These i n  t u r n  cause 

changes i n  the magnetic an iso t ropy  and exchange coup l ing  experienced by 

the s p i n  system. For a p a r t i c u l a r  ordered c o n f i g u r a t i o n  o f  the spins, 

the c r y s t a l  tends t o  d i s t o r t  so as t o  minimize t h e . f r e e  energy. Magneti- 

c a l l y  induced s t r a i n  i s  c a l l e d  magnetostr ic t ion,  and the coup l ing  between 
_--. ---q 1-- - -- . 

spins and s t r a i n s  i s  c a l l e d  the magnetoelast ic  i n te rac t i on .  - _ -1---- 
- .  

The magnetoelast ic  i n t e r a c t i o n  p lays  an important  r o l e  i n  determin ing 

the order  o f  .the magnetic ground s t a t e  o f  Dy metal. I t  i s  a1 so respons ib le  

, f o r  o the r  ground s t a t e  phenomena, such as anomalous thermal expansion, 

and.changes. i n  the e l a s t i c  constants when magnetic o r d e r i n g  occurs. The 

i n t e r a c t i o n . a l s o  has a profound e f f e c t  on, the elementary e x c i t a t i o n s  o f  

the s p i n  . . and l a t t i c e  systems. 

Two adhoc models have been proposed f o r  the way i n  which ferromagnet ic  

sp in  waves o f  Tb and Dy metals  a re  i n f  luehced by magnetostr ic t ion.  One 

presupposes t h a t  f o r  long wavelength exc i  t a t  ions o f  the spin. sys tem the 

macroscop:,i c  s t r a i n  can f o l  low a t  each. ins tan- t  o f  t ime .the mot ion o f  the 

nea r l y  uniform s p i n  o s c i l l a t i o n s ;  i t  i s  termed the " f r e e  l a t t i c e "  model. 

The o t h e r ,  presupposes t h a t  such s t r a i n s  cannot f o l l o w  the s p l n  o s c i l l a -  

t i ons  a t  a l l  and t h a t  the spins v i b r a t e  aga ins t  the s t r a i n  f i e l d  produced 

by the ground s t a t e  ferromagnet; i t i s termed the I1 f rozen '1 a t t i c e l l  model. 



The ca l cu la ted  f i e l d  dependence o f  .the long wavelength energy gap i n  

the magnori spectrum o f  ferromagnet ic  Tb and Dy i s  s t r i k i n g l y  . d i f f e r e n t  f o r  , , 

the two model so , For . the f r e e  l a t t i c e  'model, fhe gap can be reduced t o  

zero by an a p p l i c a t i o n  o f  a  magnetic f i e l d  o f  s u i t a b l e  s i z e  along the hard , 

p l a n a r . a x i s ;  f o r . t h e  f rozen l a t t i c e  model, the gap i s  reduced t o . a  minimum . 

value which i s  rough1 y  p ropo r t i ona l  t o  the square r o o t  o f  the magneto- 

e l a s t i c  i n te rac t i on .  The two model s  have been tes ted  experimental l y  us ing  

neutron d i f f r a c t i o n  and microwave absorp t ion  techniques. The neutron 

d i f f r a c t i o n  work and h i g h  frequency FMR subs tan t i a te  the f rozen ,  1 a t t i c e  

model ; whereas, the low frequency microwave work can on1 y  be exp la ined on 

the basis.  o f ,  a  f r e e  l a t t i c e  modelo 

I t  i s  the main purpose of  t h i s  work t o  c a l c u l a t e  the magnetoelast ic  
_Cu-B*---.-' ".'"c.. A - - -  . -  . 

c o n t r i b u t i o n  t o  the magnon spectrum, beginning f rom f i r s t  p r i nc ip les ,  w i t h  
-- - --.---- - = - -  .- 

a  r e a l i s t i c  microscopic p i c t u r e  o f  the magnetoelast ic coupl ing. I t  i s  

shown t h a t  the magnon s ta tes  vary .  smoothly f rom f r e e  t o  f rozen  l a t t i c e  

behavior depending upon the wavelength o f  the e x c i t a t i o n .  By l ook ing  

c a r e f u l l y . i n t o  the way i n  which the  neutrons and microwaves e x c i t e  the 

magnetic system, a  cons i s ten t  exp lana t i on  o f  a l l  experimental  r e s u l t s  i s  

a t ta ined.  . . 

As a  f u r t h e r  appl i c a t i o n  of  the microscopic model o f  the .magneto- 

e l a s t i c  coup1 ing, a  c a l c u l a t i o n  o f  magnon-phonon mix ing  i s  made. The re-  
** -.-..- . . - 

" . i r  c . -- > .--L-=U-- 

su l  t s  a re  compared w i  t h  spectrum sp l  i t t i n g s  observed i n  Tb metal. The 

mix ing  o f  .acoust ica l  o r  o p t i c a l  e x c i t a t i o n s  i s  we1 1 expla ined by the 

theory;  bu t  the theory does n o t  account f o r  the mix ing  o f  u n l i k e  modes 



(eo go, acoust ical  magnons w i  t h  o p t i c a l  p h o n o n ~ ) ~  An a1 t e r n a t e  mechani sm 

which may cause t h i s  mixing i s  given i n  the Appendix- 



E a r l y  s tud ies  o f  the magnetic p rope r t i es  o f  so l  i d s  ,were made on the 

t r a n s i t i o n  metals  of the i r o n  group as they e x h i b i t  s t rong  ferromagnetism 

a t  i-oom temperature. The microscopic model o f  such metals', however, i s  

q u i t e  compl i c a t e d  because the wave f u n c t i o n s  o f  the 3d e lec t rons  which are 

responsib le f o r  magneti sm are n e i t h e r  completely l o c a l  i zed  on atomic s i t e s  

nor are they w e l l  described by   loch waves. Rare e a r t h  metals, on the 

o the r  hand, can be t rea ted  as Heisenberg ferromagnets t o  a f i r s t  approxi -  

mationo This f a c t  has mot iva ted  ex ten? ive  experimental  i n v e s t i g a t i o n  o f  

these metal s, . despi t e  the; r t y p i c a l  1 y  low order ;  ng temperatures. 

A good model f o r  r a r e  e a r t h  me'tals cons i s t s  o f  a l a t t i c e  o f  t r i -  

posi  t i v e  ions immersed i n  a sea o f  6s and 5d conduct ion e lect rons.  The 

t r i - p o s i t i v e  ions have an u n f i l l e d  4f s h e l l  which g ives  r i s e  t o  a ne t  

magnetic moment l o c a l  i zed  on the ions. The magneti c  moments approx.irnate 

c l o s e l y  the f r e e  i o n  value p red i c ted  by Hund's ru le .  This i s  due t o  the 

f a c t  t h a t  4 f  wavefunctions on neighbor ing i o n  s i t e s  do not  ove r lap  because 

the 4 f  e lec t rons  are  bu r ied  deep i n  the atomic core and are  shie lded from 

neighbor ing ions by f i l l e d  5s and 5p shel ls ,  Since there i s  n e g l i g i b l e  4 f  

over 1 ap be tween ions, d i  r e c t  exchange coup1 i ng o f  the l o c a l  moments i s  

i n s i g n i f i c a n t .  Rather, ordered s ta tes  are produced by an i n d i r e c t  exchange 

process. The 4 f  e lec t rons  couple t o  the conduct ion electrons. by Coulombic 

exchange. T rea t i ng  t h i  s  exchange i n t e r a c t i o n  as a per tubat  ion, a 

Heisenberg exchange i n t e r a c t i o n  between l o c a l  moments i s  ob ta ined i n  

second ordero  



An improvement on t h i s  bas ic  model o f  r a r e  e a r t h  magnetism takes 

account of  the magnetic an iso t ropy  experienced by the l oca l  moments, Such 

an iso t ropy  a r i s e s  f rom the i n t e r a c t i o n  o f  the moments w i t h  the c r y s t a l  1 ine  

e l e c t r i c  f i e l d ,  o r w i t h  l o c a l  s t r a i . n , f i e l d s .  The l a t t e r  t y p e o f  coup l ing  . . '  

i s  c a l l e d  the magnetoelast ic in te rac t ion ,  and the bul'k o f  t h i s  t r e a t i s e  

w i  11 be concerned w i  t h  i t s  d e s c r i p t i o n  and consequences. 

The heavy r a r e  ear ths  (i .e., those whose 4f she1 1 i s  ha1 f o r  more than 

ha1 f f u l  1 ) possess the hexagonal close-pack s t ruc ture .  A1  though the hcp 

s t r u c t u r e  i s  no t  simple, i t  i s  f a r  s impler  than symmetries e x h i b i t e d  by  

the 1 i ght  r a r e  earths. A1 so, a compari son o f  magnetic behavior among the 
. . 

heavy r a r e  ear ths  i s , f a c i l i t a . t e d  by the f a c t  t h a t  they have the same 

l a t t i c e  p o i n t  group symmetry. These f a c t s  have made them the pr imary 

o b j e c t .  o f  i nves t i  gat iono An i ntensi.ve study o f  the ground s t a t e  m a g n e t i , ~  

s t r ,ucture o f  the heavy r a r e  ear ths  was made i n  1961 by the Oak Ridge 

Nat ional  Laboratory by neutron d i f f r a c t i o n  methods i n  which sp i ra l ,  cone, 

as we l l  as. o the r  e x o t i c  .spin s t r u c t u r e s  were discovered (l)o 
. . 

Tb and D y  were found t o  have a p a r t i c u l a r l y  simple p lanar  s p i r a l  

p e r i o d i c i t y  along the hexagonal axis. The i o n i c  moments, con,f ined t o  the 

basal , p lane , by s t rong a x i a l  c r y s t a l  f i e l d  anisotropy, are a1 igned f e r r o -  

magnet ica l l y  w i t h i n  a g iven hexagonal planeo The d i r e c t i o n  o f  p lanar  

alignment r o t a t e s  as a f u n c t i o n  o f  p o s i t i o n  a long the hexagonal a x i s  pro- 

ducing a s p i r a l  s t ruc ture .  I n  a d d i t i o n  t o  the s i m p l i . c i t y  o f  the p e r i o d i c  

order, ,these metals e x h i b i t  a  t r a n s i t i o n  t o  simple ferromabnetism which 

make them very usefu l  i n  the study o f  the mechanisms which s t a b i l i z e  a 

p a r t i c u l a r  s p i n  s t ruc tu re .  



. . . . 

p e r i o d i c  magneti c s t r u c t u r e s  a r i s e  because the i ndi r e c t  exchange 
' 

* 
coup1 i n g  J.. between spins Si and 3 i s  a long-range, osc i  l l a t o r y  f u n c t i o n  ' 

. I J  j . . 
, . 

o f  the sp in  separat ion (2). The s t a b l e  s p i n  c o n f i g u r a t i o n  i s  t h a t  .which ' . 

minimizes the f r e e  energy. I n  temperature regions where the exchange 
. . 

energy i s  the dominant term i n  the f r e e  energy, i t  may be shown (3)  t ha t  

4 
the energy o f  a magnetic s t r u c t u r e  w i t h  p e r i o d i c i t y  q i s  p ropo r t i ona l  t o  

-x(<), the general i zed  suscept ib i  1 i ty. The q u a n t i t y  )((?() rep resen ts  the 

l i n e a r  response o f  the conduct ion e lec t rons  t o  the e f f e c t i v e  magnetic 

f i e l d  o f  the i o n i c  moments, and can be expressed i n  terms o f  the con- 

duc t i on  e l e c t r o n  energy bands, E . ~ ,  n, i n  a Bravais l a t t i c e  as f o l l o w s  (4) :  

where n and nt are band indices, k i s  the reduced wavevector o f  the 

e l e c t r o n s ,  $1 i s  a r e c i p r o c a l  l a t t i c e  vector  necessary t o  pu t  P + 3 i n t o  

t h e  f i r s t  B r i  11  ioun 'zone, fpn are  the Fermi-Di r a s  d i s t r i b u t i o n  funct ions, 

and N i s  the n,umber o f  .atoms i n  the l a t t i c e .  Real i s t i c  band c a l c u l a t i o n s  

have been performed on the heavy r a r e  earths, and wavevectors which' maxi - 
. . 

m i  ze the general ized susceptabi 1 i t y  a re  shown t o  correspond t o  the  wave- 

v,ectors o f  the observed ground s t a t e m a g n e t i c  order  i n  Gd, ~ y ,  Er, and 

Lu (510  . 

Enz (6) o r i g i n a l  1 y proposed an exp lanat ion  o f  the s p i r a l  t o  f e r r o -  

magne t i .~  o rder  t r a n s i t i o n  observed i n  Dy a t  87 K on the bas is  o f  an energy 

balance between the t o t a l  exchange energy which favors a s p i r a l  s p i n  



s t r u c t u r e '  and o the r  mechani sms which favor  ferromagnet i sm. . Such ,mechan,i sms . . 

are the r a t h e r  ,small, p lanar  an i s t ropy  i n  Dy and Tb (7) wh.ich f a v o r s . a l  ign- 
ment o f  moments along a p re fe r red  o r  "easy" ax i s  i n  the basal plane, and 

the magnetoelast ic i n t e r a c t i o n '  which a l so  favors ferromagnetism. The 

t r a n s i t i o n  should then occur a t  a temperature where the competing energies 
. . 

a re  equal The temperature dependence o f  the p lanar  ani sot ropy,and o f  the .. . . 

. magnetoelast ic energy was f i r s t  p r e d i c t e d .  t h e o r e t i c a l  1  y  (819) and subse- 

q u e n t l y  measured (7,10,11). Ana lys is  o f  these r e s u l t s  shows c l e e r l y  t ha t  

i t  i s  the magnetoelas t i c  energy which competes e f f e c t ;  v e l y  w i  t h  the  ex- 

change i n t e r a c t i o n  i n  Dy i n  the reg ion  o f  the Curie temperature, and which 
. . 

. . 
p rec i  p i  t a tes  the t r a n s i  t i o n  t o  ferromagnetism (5). 

Thus., f r p m  a decade o f  experimental. and t h e o r e t i c a l  'e f fo r t ,  .a r a t h e r  

c l e a r  p i c t u r e  o f  the ground s t a t e  magnetism o f  the heavy r a r e  ear ths  has 

emerged, The next  l o g i c a l  s tep  was t o  s tudy the exc i  ted s ta tes  (sp in  

waves) o f  these ordered systems. A sp in  wave e x c i t a t i o n  i s  j u s t  a na tu ra l  

mode df v j b r a t i o n  . . o f  the s p i n  sys tem about  i t s  equi 1 i b r i u m  . . con f igura t ion .  

The term I1magnonI1 denotes a quantum o f  the sp in  wave f i e l d .  

Cooper, E l  1 i o t t ,  ~ e t t e l ,  and ~ u h l  (12) der ived t h e  spectrum, E G ) ,  

o f  fer romagnet ic  magnons us ing  a model i n  which the ipi ns were coupled by 

exchange, and i n t e r a c t e d  i n d i v i d u a l l y  w i th .  the c r y s t a l  f i e l d  and an ex-. 

t e r n a l  l y  appl i e d  magnetic f i e l d ,  H. . For Tb and Dy metals w i t h  Ft appl i,ed 

i n ' t he  "hardl1 p lanar  d i rec t ion ,  they p red i c ted  that .  the exchange i n t e r -  

act. ion was responsib le f o r  the d i spe rs ion  o f  E, and t h a t  a magnetic 

an iso t ropy  o f  c r y s t a l  f i e l d  o r i g i n -  gave r i s e  t o  a gap a t  zero wavevector 

which cou1.d be 'reduced t o  zero upon appl i c a t i o "  o f  a magnetic f i e l d  o f  



a p p r o p r i a t e  s t reng th .  

The t heo ry  o f  Cooper & d. neg lec t s  any e f f e c t s  o f  the magnetoel as'- 

t i c  i n t e r a c t i o n  which was found t o  be so impor tan t  i n  the  understanding 

o f  ground s t a t e  magnet ic o rder ing .  I f  one assumes a " f r e e  l a t t i  cell model 

f o r  the  s p i  n - s t r a i  n  coupl ing, n e g l e c t  o f  the lowes t  o rde r  magnetoe las t i c  

terms (i "e., those terms q u a d r a t i c  i n  t he  components o f  magnet ic moment) 

i s  j u s t i f i a b l e ,  Such terms a r e  i n v a r i a n t  t o  a  r o t a t i o n ' o f  the magnet i -  

z a t i o n  i n  the basal  plane. I n  Tb and Dy the s p i n  o s c i  1  l a t i o n s  a re  con f i ned  

t o  t h i s  p lane by s t r o n g  a x i a l  an isot ropy.  Therefore, i n  t he  even t  t h a t  

the macroscopic s t r a i n  f i e l d  can a d j u s t  f r e e l y  t o  the s p i n  mot ion  (i.ee, 

f r e e  l a t t i c e  model), no magnetoe las t i c  energy a r i s i n g  f r om lowes t  o r d e r  

coupl i n g  i s  spent t o  e x c i t e  the s p i n  system. Cooper (13) l a t e r  c a l c u l a t e d  

the  e f f e c t s  o f  second o r d e r  magnetoe las t i c  terms i n  the f r e e  l a t t i c e  

model (i.e., terms o f  f o u r t h  power' i n  t he  components o f  magne t i za t i on  and 

possessing hexagonal symmetry). He aga in  found th .a t  magnet ic a n i s o t r o p y  

gave r i s e  t o  a  zero f i e l d  gap which c o u l d  be reduced t o  zero  by the  

a p p l i c a t i o n . o f . a n  a p p r o p r i a t e  magnet ic f i e l d ,  I n  t h i s  case, however, the 

magnet ic an i so t ropy  i n  the basal  p lane  arose f rom a combinat ion o f  c r y s t a l  

f i e l d  and second o r d e r  magnetoe las t i c  e f f e c t s .  

I n  1966 Turov and Shavrov (14) p r e d i c t e d  t h a t  a  l a r g e  c q n t r i  bu t . ion  

t o  the magnon gap was p o s s i b l e  f rom the  lowest  o r d e r  magnetoe las t i c  

coupl  i n g  t,erms under t he  assumption o f  a  " f rozen 1 a t t i ce . I1  A f r o z e n  

l a t t i c e  i s  one which cannot respond a t  a l l  t o  the  s p i n  o s c i l l a t i o n s  i n  an 

e x c i t e d  s ta te .  I n  t h i s  case, t he  sp ins  v i b r a t e  a g a i n s t  t h e  macroscopic 

s t r a i n  f i e l d  produced by the ground s t a t e  ferromagnetism, c r e a t i n g  
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magnetoelast ic energy, and g i v i n g  r i s e  t o  a gap o f  magnetoelast ic or ig i ,n . '  

Cooper (13) c a l c u l a t e d  the magnon spectrum under . the  assumption o f  

such a f r o z e n  l a t t i c e ,  and appl i e d  the r e s u l t s  t o  Tb and Dy. He found 

tha t  the magnetoelast i  c i n t e r a c t i o n  made a s i zab le  c o n t r i b u t i o n  to  the gap. 

He c a l c u l a t e d  the behavior  o f  the gap i n  an appl i e d  f i e ld ,  and found tha t  

the  gap cou ld  no t  be reduced t o  zero by. a p p l i c a t i o n  o f  a f i e l d  i n  ,the hard 

p lanar  d i rec t i on ,  Instead, the gap d ips t o  a minimum value which . i s  

rough ly  p ropo r t i ona l  t o  the square r o o t  o f  the magnetoelast ic energy.. 

Thus,, Cooper's c a l c u l a t i o n s  p red i c ted  a r a d i c a l  d i f f e r e n c e  i n  the app l i ed  . 

f i e l d  behavior o f  the magnon gap between the f rozen  and the  f r e e  l a t t i c e  

models. 

Much experimental  i n t e r e s t  was c rea ted by the t h e o r e t i c a l  speculat ions 

and ca lcu la t ions ,  and numerous microwave ferromagnetic resonance s tud ies  

were performed on Tb and Dy t o  a s c e r t a i n  whether the f rozen  o r  f r e e  l a t t i c e  

model was cor rec t .  One method was t o  measure the temperature dependence 

o f  the gap i n  zero f i e l d ,  s i  nce the temperature dependence o f  the c r y s t a l  

anisotropy, and magnetoelast ic  terms are  we l l  known. This was done by 

Marsh, and Sievers (15) who found t h a t  both the f r e e  and f rozen l a t t i c e  

models f i t  t h e i r .  data well, al though the f rozen  l a t t i c e  model f i t s  

s l  i g h t l y  be t te r .  

A measurement o f  the app l i ed  f i e l d  behavior o f  the gap i s  a much more 

conclus ive t e s t  of  the proposed models. Such. measurements on Tb and Dy 

metals were performed by Bagguley and Liesegang (16), Ross01 (1 7,18), Wagner 

and Stanford (19,20) and Har t  and Stanford  (21) us ing ferromagnet ic  resonance 

techniques.. A v a r i a b l e  dc ' f i e l d  i s  app l i ed  i n  the hard  p lanar  d i r e c t i o n  



and. a f i x e d  microwave' frequency photon beam i s  . i nc iden t  normal t o  the . 

sur face o f  the metal. As the appl. ied f i e l d  i s  increased, the un i fo rm 

mode s p i n  wave d ips  and then increases. Strong coup l ing  o f  the photons 
. . 

t o  - t h e  sp in  waves occurs when the frequencies are  equal. Microwave 

energies f a r  below the zero f i e l d  sp in  wave gap are used so t h a t  i f. E (0)  
. . . . 

. . 

d ips, t o  zero, and the  f r e e  l a t t i c e  model i s  va l  id, then s t rong on-resonance 

absorp t ion  o f  .the photons, should . . occur at'some f ' i e l d ;  . . whereas, i f  the gap 
. . .  . . . . .  

cannot be reduced t o  the very  low microwave energies, and the f rozen  
. , 

' l a t t i c e  model i s  val id,  one should see o n l y  broad off-resonance absorp t ion  
. . 

. . 

over  a considerable range o f  the app l i ed  f i e l d .  This  of f - resonance ab- 

s o r p t i o n  i s  poss ib le  o n l y  because the magnon spectrum i s  broadened a l low- 
. . 

i n g  sp in  waves i n  the t a i l  o f  the energy d i s t r i b u t i o n  t o  couple t o  th.e 
. . 

m i  crowaves. 

. . . . 
: ~ a g g u l e y  and Liesegang measure s t rong absorptioi, o f  1.8 K and 4.45 K 

microwaves i n  Tb and Dye The absorp t ion  i s  charac ter ized '  by a sharp i n -  
' 

crease which might  be expected i n  the case o f  ,on-resonanck absorption, 

f o l l owed  by  a long t a i l  spanning many k i lo -Oers teds  o f  f i e l d .  The t a i 1 . i ~  

c h a r a c t e r i s t i c  o f  broad off-resonance absorpt ion. Rnssol d i d  a very de- 
. . 

t a i l e d  i n v e s t i g a t i o n  o f  Dy w i t h  1.8 K microwaves. Wagner s tud ied  both Tb 

and Dy us ing  0.45 K and'k.5 K rad ia t i on .  The observat ions o f  these workers 

'agreed essent i 'a l  1 y w i  t h  those o f  Bagguley and .Liesegang. The observa t ion  

o f  s t rong and sudden absorp t ion  o f  0.45 K and 1.8 K photons cannot be 

understood'us ihg a f rdzdn  l a t t i c e  model which imp l i es  o n l y  off-resonance . 

absorp t ion  a t  these low d r i v i n g  frequencies. The p r o f i  l e  o f  such ab-' 

s o r p t i o n  would be very  ,broad. a n d l f l a t w i  t h  no ~ u d d e i  change i n  slope, . 



q u i t e  unl i ke the observed p r o f i l e s  (16,17,20,21), Thus, low frequency 

FMR r e s u l t s  seem t o  argue aga ins t  the a p p l i c a b i l i t y  o f  a f rozen  l a t t i c e .  

Other microwave experiments (19) a t  h igher  f requencies (4.5 K )  show a 

temperature dependence o f  the resonance f i e l d  i n  agreement w i t h  the f rozen 

l a t t i c e  model A t  these h igher  frequencies, on-resonance absorp t ion  i 's 

poss ib le  even i f  the l a t t i c e  i s  frozen. 

Recently, Mackintosh (22) i n  a neutron d i f f r a c t i o n  study o f  the 

mainon gap o f  Tb i n  an app l i ed  f i e l d  ob ta ins  e x c e l l e n t  agreement w i t h  the 

p r e d i c t i o n s  o f  the f rozen l a t t i c e  model. He not  o n l y  r e p o r t s  t h a t  the ' 

energy gap could no t  be reduced t o  zero upon a p p l i c a t i o n  o f  a s'trong f i e l d  

i n  ' t h e  hard  . p lanar  . ' d i r e c t i o n  o f  ferror i lagnet ic Tb, bu t  a l s o  t h a t  the . f i e l d  

dependence o f  the gap agrees w i t h  the  frozen l a t t i c e  theory  over a l a r g e  

temperature range. 

,nus, one i s confronted wj t h  experimental  observati6:ns which appear 

to.  be cont rad ic to ry .  ' Neutron d i f f r a c t i o n  r e s u l t s  c1,early conclude t h a t  

the 1 a t t i  ce, i s  frozen. High.  f requency resonance absorp t ion  a1 so i nd i ca tes  

a f rozen  l a t t i c e ;  b u t  low frequency.resonance absorp t ion  cannot be ex-. 

p l a i n e d  unless the l a t t i c e  i.s f ree.  I t  i sun reasonab le  t o  be l i eve  t h a t  a '  

c r y s t a l  can respond t o t a l  1 y t o  a frequency o f  40 GHz (1.8 K), b u t  no t  a t  

a1 1 t o  a frequency tw ice  as great. 

I n  t h i s  work the spin-wave spectrum i s  studied, assuming t h a t  sp ins 

. are coupled . l o c a l l y  t o  t h e i r  s t r a i n  environments. Thus, no a p r i o r i  

assumption i s  made a s  t o  whether the macroscopic s t r a i n s  are  f r e e  o r  

frozen. The resu l  t.i ng spectrum"i s shown t o  vary c o n t i  nously f rom f r e e  

t o  f rozen.  l a t t i c e  behavior depend; ng on the. wavevector o f  the magnon. A 



A cons i s ten t  understanding o f  a l l  e .x is t ing  spin-wave data can be ' 

a t t a i n e d  by co'nsidering i n  d e t a i l  the s p i n  d is turbance created i n  a 

p a r t i c u l a r  experiment, and t o  what ex ten t  the  var ious  magnon s ta tes  are 

popul ated. 



THE MAGNETOELASTI C l NTERACTI ON 

S p i n - l a t t i c e  coup l ing  a r i s e s  because the magnetic i n t e r a c t i o n s  are 

s e n s i t i v e  t o  the i o n i c  posi t ions,  and so are modulated by d i s t o r t i o n s  o f .  

the c r y s t a l .  For a g iven ordered sp in  s t a t e  the.  energy d i f f e r e n c e  between 

the s t r a i n e d  and uns t r a i  ned l a t t i c e  i s  c a l  l e d  the magnetoel as t i  c energy. 

A net  s t r a i n  (magnetos t r i c t ion)  w i l l  always r e s u l t  i f  the magnetic system 

i s  ordered, Since the s p i n - l a t t i c e  coup l ing  mechanisms are  va r ied  and 

complex, a phenomenological appraach i s  used i n  which the general form o f  

the i n t e r a c t i o n  i s  w r i t t e n  down w i t h  coup l ing  c o e f f i c i e n t s  t o  be determined 

experimental  1 y. 

Cal len and Cal len. (9) imposed symmetry and. s i m p 1 i c i . t ~  cond i t i ons  on 

the form o f  such an in teract i ,on,  They requ i red  i t  t o  be l i n e a r  i n  the 
. . . . 

s t r a i n  components s ince the magne. tost r ic t ion i s  q u i t e  small compared. t o  . 

c r y s t a l  dimensions. Since terms ' l i n e a r  i n  the sp in  components would no t  

be t i  me reve rsa l  i nvar ' i  ant, they coup1 ed the s t r a i n  components t o  sp in  

func t i ons  quadra t i c  i n  the s p i n  components. Sirice the Hami 1 ton ian  must be . . . . 

i n v a r i a n t  under opera t ions  o f  . the c r y s t a l  p o i n t  group, . l i n e a r  combinations 
. . 

o f  the Cartes ian components o f  sp in  and s t r a i n  are taken i n  o rder  t o  form 

bas is  f unc t i ons  o f  the i r r e d u c i b l e  representa t ions  o f  the c r y s t a l  p o i n t  

group. Cal l e n  and Cal l e n  t r e a t  the s t r a i n s  as c l a s s i c a l  quan t i  t , ies  

and assume, them t o  be uniform. The s p i n  funct ions i nvo l ve  sp in  components 

on e i  ther  one ,or two s i  tes and are termed '1-ion o r  2 - ion  s p i n  functions, 

respect ive ly ,  The 1- ion i n t e r a c t i o n s  descr ibe s t r a i n  modulat ion o f  the 

i n t e r a c t i o n  o f  i n d i v i d u a l  sp i  ns w i t h  t h e i r  la a1 environments (e. g., the 
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c r y s t a l l i n e  e l e c t r i c  f i e l d  o r  app l i ed  magnetic f i e l d ) ;  the 2- ion '  i n t e r -  

ac t i ons  describe s t r a i n  modulat ion o f  the i n t e r a c t i o n  between sp in  p a i r s  

(eQ go, Hei senberg exchange o r  d i  pole-d i  po le  'coupl i ngS. The phenomenologi - 
c a l  magnetoelast ic  Hami l tonian may then be w r i t t e n  as a sum o f  1 - i on  and 

2- ion  terms (9): 

Here f;g a re  p o s i t i o n  indices, r l a b e l s  the i r r e d u c i b l e  representa t ions  o f  

the c r y s t a l  p o i n t  group, i s p e c i f i e s  the bas is  se t  o f  the representat ion, 

j and j '  are used i f  more than one bas i s  se t  c a r r i e s  the  representat ion, 

E s are  1 i near combinat ions o f  un i fo rm s t r a i n  components, S ( f )  ' and S (f, g) 
. . 

a re  the 1- ion  and 2 - i on  sp in  funct ions, and ~ ( f )  and ~ ( f , g )  are the 1- ion 

and 2- ion 'magnetoe las t ic  coup l ing  coe f f i c i en ts . '  Note t h a t  o the r  terms o f  

h igher  degree i n  the s p i n  components may be included, bu t  they are  o f  

h igher  o rder  than those w r i t t e n  i n  Equatidn (1) (23,24), The t o t a l  e l a s t i c  

Hami 1 t on i  an i s  then : 

. . 
where the c ' s  are the e l a s t i c  constants. 

The coupl i n g  c o e f f i c i e n t s  and a re  determined experimental  1 y. 
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Suppose - i s  the f r a c t i o n a l  change i n  length  o f  the c r y s t a l  measured 

do . . . . 

i n  a d i r e c t i o n  s p e c i f i e d  b y .  d i r e c t i o n  cosines (p p ) Then' if.: are 
x $2 P v 

the equi 1 i b r i  um Cartesian components o f  s t r a i n  i n the presence o f  magnetic 

order, i t  can be shown (25) t h a t :  

The equi 1 i b r i  um s t r a i n s  : a re  determined by min imiz ing  the quantum 
P v 

s t a t i s t i c a l  average o f  the t o t a l  e l a s t i c  Hami l t o n i a n  H w i t h  respect  t o  
e 

the s t r a i n  components. For the case o f  hexagonal .symmetry, subs . t i t u t i on  

o f  the e q u i l i b r i u m  s t r a i n s  i n t o  Equation (3) y i e l d s  (9) 

r 
The A ' s a re  c a l  l e d  magnetos t r i c t  i o n  constants and con ta in  t h e ,  tempera- 

jj ' 
t u r e  independent magnetoel a s t i  c coup1 i ng c o e f f i c i e n t s  % and % (1 i near1 y ) ,  

the e l a s t i c  constants, and the  temperature dependent quantum s t a t i s t i c a l  

sp inaverages.  The vec tor  (ax,a a )  def ines the d i r e c t i o n o f  the 
Y' z 

magnet izat ion and should no t  be confused w i  t h  the a- representa t ions  o f  the 

hexagonal p o i n t  group, The i r r e d u c i b l e  representa t ions  o f  the hexagonal 
, 



group, t h e i r  dimensions, and t h e i r  bas is  f unc t i ons  are summarized i n  

Table 1.. 

Table I. I r r e d u c i b l e  representa t ions  o f '  the hexagonal group, t he i  r 
. dimensions, and t h e i r  bas is  f unc t i ons  

l r r e p  Dimension , Bas i s  Funct ions 

2  XZ, yz 

The magne tos t r i c t i on  constants are measured exper imenta l l y  by repeated use 

o f  Equation (4) w i t h  d i f f e r e n t  se ts  (2, p) .  T y p i c a l l y  d i s  v a r i e d  by 

. a p p l i c a t i o n  o f  an ex te rna l  f i e l d  and @) by the use o f  s t r a i n  gauges 

a f f i x e d  t o  the sample a t  d i f f e r e n t  o r i e n t a t i o n s  r e l a t i v e  t o  the c r y s t a l  

axes. The c ~ u p l i n g  c o e f f i c i e A t s  can be ex t rac ted  from the zero tempera- 

t u r e  l i m i t  o f  the magna tns t r i c t i on  constants, and the temperature 

dependence o f  the magnetoelast i  c  energy i s  conta i  ned i n  them: 

Cal l e n  and Cal l.en (26) have der ived an e s s e n t i a l  1 y  model independent 

temperature and f i e l d  renormal iza t ion  f o r  s p i n  averages o f  the I - i o n  type. 

I f  one l e t s  4 denote the degree o f  the sp in  opera tor  t o  be averaged, then 

the' r a t i o  of the average a t  temperature T and f i e l d  fl t o  t h a t  a t  z e r o  tem- 
A A 

pera tu re 'and  f i e l d  i s  equal t o  I 1 ( x )  where I 1 ( x )  i s  the r a t i o  o f  the 
5 .eq 



hyperbo l i c  Bessel f u n c t i o n  o f  o rder  4 + $ t o  tha t  o f  o rder  $, and x  i s  
. . 

the inverse Langevin f u n c t i o n  o f  the reduced magnet izat ion CJ. .That is, 

(T, H) = co th  x  - I /x.  Experimentally, i n  Tb and Dy the behavior o f  the 

magnetos tr i c t i o n  constants a re  p red i c ted  we1 1 by the 1 - i o n  temperature 

a a 
theory w i t h  the except ion o f  and hZI which are q u i t e  small (27). The 

11 

temperature dependence o f  2 - ion  averages has been worked o u t  us ing  a  two- 

sp in  c l u s t e r  theory w i t h  nearest  and next-nearest neighbor exchange (28). 

This theory appl i es  we1 1  t o  europi  urn chalcogenides (e, g. EuO and EUS) i n  

which the exchange coup l ing  i s  sho r t  ranged, bu t  i s n o t  app l i cab le  t o  

r a r e  e a r t h  ferromagnets i n  which the exchange i s  long ranged. I n  a p p l i -  

ca t i ons  w i t h  Tb and Dy below, i t  i s  assumed t h a t  the magnetoelast ic  energy 

i s  described we1 1 by the I - i o n  temperature theory, 

The formal ism o f  Ca l len  and Callen, successful  as i t  was i n  t r e a t i n g  

the thermal 1 y  averaged aspects o f '  magnetoel a s t i  c  coupl i ng i n  ferromagnets, 

i s  n o t  s u f f j c i e n t l y  general t o  descr ibe such coup l ing  i n  ant i fer romagnets 

where the  .magnetos t r i c t ion  i s  non-uniform. I n  the descr i  p t i p n  o f  dynami c  

s p i  n - l a t t i c e  coupl i ng t h e i r  formal ism i s  a1 so t o t a l  l y  inadequate because 

i t  t r e a t s  the s t r a i n s  as c l a s s i c a l  and spac ia l  l y  uniYorm, and t h e r e f o r e .  

precludes a  c a l c u l a t i o n  o f  the magnon-phonon m i  x i  ng. 

Evenson and L i u  (5) genera l i zed the formal ism o f  Cal len and Ca l len  

by coup l ing  the l o c a l  sp in  func t i ons  t o  lo.cal  s t r a i n  funct ions,  The 

Cartes ian components o f  these l o c a l  s t r a i n s  are def ined as f o l l o w s :  



-b 

and s imi  l a r l y  f o r  the o the r  2 - ion  Cartes ian components. Here R f  = 

t h  
( X  Y Z ) ' i s  the posi  ti on vector  o f  the f- i o n  i 'n the uns t ra i  ned fJ fJ f 

4 

c r y s t a l  ; t h  r f  = (xf, yf,zf) i s  the displacement o f  the f- i o n  from i t s  

uns t r a i  ned posi  t i  on, I n  appl i c a t  i ons t o  Dy and Tb, the z-ax is  o f  the 

Cartes ian coordinates i s  taken .along the c r y s t a l  c-ax i  s, and the x-axi  s  

i s  taken a long the easy p lanar  d i rec t i on .  The. 1 - ion  s t r a i n s  are  de f ined 

s imply by c o n t r a c t i o n  on one o f  the p o s i t i o n  i nd i ces :  e ( f )  = C F. (f,g). 
9 

The s t r a i n  func t i ons  a re  def ined according t o  cond i t i ons  o f  symmetry and 

simp1 i c i  ty. They are chosen t o  .he 1 inear  i n  the  components o f  d isp lace-  

ment, symmetric under interchange o f . s i t e  labels, and t o  form a  3 x  3 

symmetric matr' ix. 

The l o c a l  magnetoel a s t i  c  i nteract i .0"  i s  then represented by the 

f o l l o w i n g  Hami l tonian:  

r -c z D: (f, g)  z e y  (f, g) s y  (f,g) . 
(f,g) r jj' ~j ' i 

This Hami l t o n i a n  a1 lows f o r  the coupl i n g  o f  spins t o  the l o c a l  d i s t o r t i o n s  

o f  the crystal . ,  I t  reduces t o  the Hamil t o n i a n  of Cal l e n  and Ca l len  when 

the spins are fe r romagne t i ca l l y  a l igned;  and such a  reduc t i on  es tab l i shes  

the r e l a t i o n  between the coupl i n g  c o e f f i c i e n t  o f  the two theo r ies  (5). 

Evenson and L iu 'used  the l o c a l  magnetoelast ic coup l ing  theory t o  

compute the way i n  which a  l a t t i c e  d i s t o r t s  i n  the presence o f  a  h e l i c a l  

s p i n  s t ruc ture .  They found t h a t  the b u l k  o f  the l a t t i c e  remains uns t ra ined 



and tha t  local,  p e r i o d i c  d i s t o r t i o n  o f  the l a t t i c e .  p e r s i s t s  o n l y  w i  th',in 

a  sur face l aye r  o f  the c r y s t a l ,  This e f f e c t  i s  termed " l a t t i c e  clamping" 

and was f i r s t  recognized by Cooper (29). The th ickness o f ,  the sur face 

l aye r .  i n  which l oca l  l a t t i c e  d i s t o r t i o n  i s  poss ib le  i s  p ropo r t i ona l  t o  

the spac ia l  p e r i o d i c i t y  o f  the sp in  alignment. The clamping e f f e c t  was 

exper imenta l l y  v e r i f i e d  i n  Dy which shows an orthorhombic d i s t o r t i o n  i n  

the ferromagnet ic  phase (30), b u t  no such d i s t o r t i o n  i n  the he1 i c a l  phase, 

I t  a l s o  reduces the negat ive e l a s t i c  f r e e  energy i n - t h e  h e l i c a l  phase o f  

Dy, making the ferromagnet ic  s t a t e  e l a s t i c a l l y  more stable, and f i n a l l y  . .  

p r e c i  p i  t a t i  ng a  t r a n s i  t i o n  a t  the Cur,ie temperature (5).  
. . 



  he Long Wavelength Spectrum a t  Zero Temperature and F i e l d  
. . 

The d isp lacements 7 which appear i n  t he  l o c a l  s t r a i n  f u n c t i o n s  con- f 

s i s t  o f  two par ts .  One g i ves  r i s e  t o  m a g n e t o s t r i c t i o n  produced by  t he  . . 

s p i n  o rde r ;  the o t h e r  g i ves  r i s e  t o  normal modes o f  v i b r a t i o n  about the' 

s t r a i n e d  e q u i l i b r i u m  pos i t i ons .  I n  t h i s  s e c t i o n  we t r e a t  the  e f f e c t  o f  

the magnetos t r i c t ion ,  which s h i f t s  . t h e  magnon energy spectrum. I n  a 

l a t e r  s e c t i o n  we t r e a t  t he  coup l i ng  o f  s p i n  and l a t t i c e  v i b r a t i o n a l  modes 

i n  the  p roduc t i on  o f  mixed mode s ta tes.  I n  t r e a t i n g  the e f f e c t s  o f  

m a g n e t o s t r i c t i o n w e  i n i t i a l l y a s s u r n e  t h a t  t he  l a t t i c e  i s  i n f i n i t e ,  and 

t h a t  the  c r y s t a l  i s  capable o f  responding so as t o  produce macroscopic 

s ' t r a i ns  t h a t  m in im ize  the  e l a s t i c  -energy. L a t e r  we r e f i n e  the, t heo ry  so 

as t o  account f o r  f i n i t e  c r y s t a l  dimensions and a l imi  t ed  response time. 

The c lamping e f f e c t  descr ibed  i n  the  l a s t  s e c t i o n  i s  e s s e n t i a l  ' t o  

understanding t he  way i n  which m a g n e t o s t r i c t i o n  a f f e c t s  the s p i n  wave 

energies. When ' a  s p i n  precesses about i t s  equi  1 i b r i  urn. pos i  ti.on, i t tends 

t o  d rag  t he  l a t t i c e  d i s t o r t i o n  w i t h  it. . For a s p i n  wave o'f . i n f i n i t e  wave- . . . , 

. . . .  

length, the  l a t ' t i c e  d l s t o r t l o n s  O f  41 1 uri i  t c e l l s  move i n  phase, So t h a t  
. ' 

' they  add up t o  a macroscopic s t r a i n  which f o l l o w s  the p recess ion  o f  t h e  

magnet izat ion.  Clear ly ,  the  s t r a i n  c o n f i g u r a t i o n  r e l a t i v e  t o  the  magnet i -  . ,  ' 

z a t i o n  d i r e c t i o n  i s  i d e n t i c a l  a t  each i n s t a n t  o f  t ime t o  t h a t  o f  the 

ground s t a t e  ferromagnet. That i s  t o  say, i t  cos t s  no magnetoe las t i c  

e n e r g y ' t o  e x c i t e  the. s p i n  system, and t he  energy $ap a t  ze ro  wavevector 

, i s  due s o l e l y  t o  t he  magnet ic an i so t ropy  .produced b y  the  c r y s t a l  f i e l d .  



This s i t u a t i o n  corresponds t o  a f r e e  l a t t i c e  model f o r  the magnetoelast ic 

coup1 ing. I n  the event t h a t  a s p i n  wave o f  f i n i t e  wavelength i s  exc i  ted, 

the p e r i o d i c  s p i n  component induces o n l y  a p e r i o d i c  d i s t o r t i o n  a t  the 

surface o f  the c r y s t a l .  For a wavelength equal t o  the th ickness o f  the 

c rys ta l ,  the pene t ra t i on  o f  the d i s t o r t i o n  i s  complete. For some shor te r  

wavelength, however, the d i s t o r t i o n  i s  s u f f i c i e n t l y  conf ined t o  the sur-  

face o f  the c r y s t a l  so tha t  the b u l k  s t r a i n  i s  . induced by the ferromagnet ic  

sp in  component. This  volume s t r a i n  i s  e s s e n t i a l l y  the. same as t h a t  pro-  

duced by the ground. s t a t e  magnetization, and i s  constant  i n  time. The 

sp.ins now osc i  1 l a t e  about t h i s  f i x e d  s t r a i n  ax i  s c r e a t i n g  magnetoelast ic  

f r e e  energy and g i v i n g  r i s e  t o  a magnetoelast ic c o n t r i b u t i o n  t o  the energy 

gap. This  s i t u a t i o n  corresponds t o  the f rozen  l a t t i c e  model. Thus, the 

l a t t i c e  behavior var ies  from f r e e  t o  f rozen l a t t i c e  wi th i .n  a very  smal l  

range of..g, where i s  the wavevector o f  the magnons. 'under the assumption 

o f  an i n f i n i t e l y  l a rge  specimen, t h i s  r a p i d  v a r i a t i o n  r e s u l t s  i n  a d i s -  

+ + 
c o n t i n u i t y  i n  the m'agnon, spectrum f rom = 0 t o  a = 0 ,  where = 0 i s  

taken t o  mean the sho r tes t  f i n i t e  magnon wavevector as determined by the 

inverse dimensions o f  the specimen. 

  his d i s c o n t i n u i t y  i s  now ca l cu la ted  q u a n t i t a t i v e l y  f o r  Tb and. Dy 

which have the hexagonal close-packed s t r u c t u r e  (hcp). Since the mag- 

n e t o s t r i c t i o n  a r i s e s  f rom the fe r romagne t i ca l l y  a l i gned  components o f  the 

spins, we, have the f o l l o w i n g  reduc t i on  o f  the l o c a l  s t r a i n s  (5 ) :  

r 2 e ( f )  = 4 a  E ,, B~ ( f ) = % ! ' . , / 4 a  
jj ' JJ .  



where E~ i s  the usual un i fo rm s t r a i n  tensor, a i s  the hcp l a t t i c e  param- 

eter, and Er i s  the coup l ing  c o e f f i c i e n t  i n  Ca l len  and Ca l len  notaticin. 

The 1- ion p a r t  o f  H i s  appl i e d  t o  the y, E, and a 2  i r r e d u c i b l e  representa- 
me 

t i o n s  o f  the.hcp p o i n t  group, and the 2- ion  p a r t  i s  appl i ,ed t o  a1 (10). The 

r sum on g i s  taken over '  nearest neighbors on1 y, and the c o e f f i c i e n t s  B and 

r D are assumed t o  be independent o f  atomic s i t e .  From the quadra t i c  form . 

o f  the e l a s t i c  energy dens i t y  and the general form o f  Equation (6), the 

y-terms i n  the  s t r a i  n  dependent Hami 1 t on ian  a re :  

M i  n irnizing, t h i s  wi.th respect  t o  the s t r a i n  components, we o b t a i n  : 

The s p i n  func t i ons  are transformed t o  a coord ina te  system ( s ; ~ ,  5 )  i n  which 

6 i s  along the 'eq i i l i h ' t - i un i  sp in  d i . r e c t i o n i  . . 

Appl.yi ng the Hol s  t e i  n-Pr imakoff  t ransformat ion i n  t he  small sp i  n  d e v i a t i o n  

approxi mat i on, we f i nd': 



Now Four ie r  t ransforming the magnon opera tors  and summing over l a t t i c e  

si tes, we o b t a i n :  

Z Si2 = - f i S  i (ag'- a d ) ,  where 
f 

+ 
n-. I a+' a ,  and q i s  the wavevec t o r  o f  the magnon. 
4 . 4  4 

I n  the l a s t  s tep we con f i ne  t o  the f i r s t  B r i l l o u i n  zone. Here N i s  the 

number o f  atoms i n  the c r y s t a l ,  Then .we have: 

where we keep o n l y  second order  magnon terms. I n  an e x a c t l y  s i m i l a r  manner 

we ob ta in :  

I n  t r e a t i n g  the a - rep resen ta t i on  cle l e t  (6 2 6y' 6,) be the nearest  neigh- 

bor  p o s i t i o n  vector. Then the uniform p a r t  o f  the  l o c a l  s t r a i n  i s :  



Here we used the un i fb rm s t r a i n '  p a r t  o f  the l oca l  d i  splacement.. Now we 

transform from Cartes ian components t o . b a s i s  f unc t i ons  o f  the a repre-  

sen ta t i on :  

Here we use the n o t a t i o n :  

The a2 term i s  of .  the "one-ionu type so summation over the nearest  nei gh- 

bors us ing  the hcp geometry g ives  the expected reduct ion :  

Computing the sp ln  func t i ons  we o b t a i n :  ' 

S u b s t i t u t i o n  o f  the sp in  and s t r a i n  func t i ons  i n t o  t h e - e l a s t i c  Hami 1 tonian, 

summation over nearest neighbors i n  the two-ion Hami 1 tonian, and 



m i n i i n i z a t i o n w i t h  respect  t o  the s t r a i n  components y i e l d  t o  second brder  

i n  the boson opera tors :  

where 

x (1 - cos 1, 

where c i s  the hcp l a t t i c e  parameter, and the subscr ip ted  c a s  r e f e r  t o  the 
A 

e l a s t i c  constants o f  the a representat ion.  Here we have assumed = qc, 

and w i  1 1  consi der on1 y magnon .propagation i n  t h i s  d i r e c t i o n  throughout the 

remai nder o f  t h i s  manuscript, The' cosine dependent term i.s a d i  r e c t  conse- 

quence o f  the two-ion nature o f  the a1 representat ion.  I t a r i s e s  f rom 

the f u l  l y  symmetric magnetoel a s t i c  term, . and so c o n t r i  b !~ tes  a term i n  the 

t o t a l  Hami 1 t on ian  i den t i  ca l  i n form t o  the Hei senberg exchange term. We 

have c a l c u l a t e d  the numerical value of the term us ing  the data o f  Rhyne 

and Legvol d (3 1 ), and f i n d  t h a t  i t  accounts f o r  l ess  than 10% o f  the 

magni tude of  (J - JO) deduced f rom the sp i  n wave data i n  the reg ion  of  
q 

small q. Here J r e f e r s  t o  the  Four ie r  t rans form o f  the exchange energy. 
q 



I n s u f f i c i e n t  magnetos t r i c t ion  data were a v a i l a b l e  on Dy metal t o  do a '  

s imi  l a r  analysis, bu t  one would expect a r e s u l t  s i m i l a r  to. t h a t  o f  Tb. 

Thus, i t seems safe t o  neg lec t  the two-'ion magnetoel as t i c  i n t e r a c t i o n  
. . 

i n  the e x t r a c t i o n  o f  J  f rom the sp in  wave spectrum o f  these m t a i  s. 
. . 

Using the Equations (7), (8), and (9) and the re.sul t s  o f .  Cooper (13) 

i n  t r e a t i n g  the magnetic an iso t ropy  terms i n  the sp in  Hami 1 tonia'n, we may 

w r i t e  a p a r t i a l  Hami l tonian f o r  magnons propagating along the c -ax i s  as 

where the sum i s  over  wavevectors a long the hexagonal a x i s  i n  rec ip roca l  

space, and 
A = ~ S ( J ~  - Jq) - P2S - 21 P6 6 5 5 + Aq me ,, 

4  

6 
Here P6 and P2 are the s i x - f o l d  and two- fo ld  anisotropy.constants,  respec- 

t i v e l y .  The magnetoelast ic terms are :  

where h r  are the convent ional temperature dependent magne tos t r i c t i on  

constants de f ined by Ca l len  and Ca l len  (9). The Kroneker d e l t a  i s  w r i t t e n  

t o  i n d i c a t e  tha t  these terms appear o n l y  when q 1s i d e n t i c a l l y  zero. 

The Hami l tonian H may be d iagona l ized by a t rans format ion  t o  new 
m 



boson operators and the energy spectrum o f  magnons wi th  wavevectors 

4 
.. 

q = qc i s  given by: 

Let  

I n  the l i m i t  o f  long wavelengths we must d is t inguish  two cases: 

The y terms. i n  case 2 a r e  i d e n t i c a l l y  the r e s u l t s  o f  Cooper's f rozen 

l a t t i c e  c a l c u l a t i o n  (13). (Cooper's expression f o r  2' i n  terms of A 
Y 



shoul'd be m u l t i p l i e d  by f a c t o r . 2 / 3 - )  I n  case 1, A - i s  i d e n t i c a l l y  zero so 

t h a t  the magnetoelast ic coup1 i n g  has 1 i t t l e  e f f e c t  on the s p i n  wave 

spectrum except through A which appears i n  the f a c t o r  w i t h  a x i a l  aniso- + 
tropy. So case 1 agrees w i t h  the f r e e  l a t t i c e  model which p r e d i c t s  ' 

n e g l i g i b l e  magnetoelast ic  p e r t u r b a t i o n  o f  the magnon energies. 

Table 2, Energy gaps f o r  Tb a t  T = 0 K and Dy a t  T = 78 K 

Metal E (0) E (o+ 

The numerical values o f  E(0) and ~ ( 0 ' )  a re  g iven i n  Table 2 f o r  Tb 

and Dyo I n  c a l c u l a t i n g  these values, the data o f  F isher  and ,[)ever (32) 

were used f o r  the e l a s t i c  constants, and the data o f  DeSavage and C lark  

(10) and Rhyne and Legvold (31 ) were used f o r  the magne tos t r i c t i on  con- 

s tan ts  of Tb0 The magne tos t r i c t i on  constants o f  Dy were taken f.rom the 

data of  C la rk  e t  al .  (11). The f r e e  l a t t i c e  gap i s  smal ler  than the 

frozen l a t t i c e  gap as expected, and the d i s c o n t i n u i t y  i s  q u i t e  s i g n i f i c a n t  

i n  both metals. I t  should be remembered t h a t  t h i s  d i s c o n t i n u i t y  i s  a r t i ' -  

f i c i a l  due t o  the assumption o f  an i n f i n i t e  l a t t i c e ;  and t h a t  f o r  a l a t t i c e  

o f  f i n i t e  dimension there i s  a smooth t r a n s i t i o n  from f r e e  t o  f rozen  

l a t t i c e  behavior as the  magnon wavevector increases f rom zero. 

I n  ana lyz ing  the data o f  neutron d i f f r a c t i o n  and ferromagnet ic  reso- 

nance, i t  i s  important  t o  see which way the l a t t i c e  behaves i n  the presence 



o f  the magnetic d is turbance created by the neutron o r  photon probes. An 

important  cons ide ra t i on  i s  over  what macroscopic distance. the uniform 

magnetos tr i c t  ion, whi ch m i  n imi  zes the i ns tantaneous e l  a s t  i c energy, can be ' 

r e a l  i zed  by  the c r y s t a l .  Since s t r a i n  i s  a d i f f e r e n t i a l  quant i ty ,  the 

deformation a t  any i n t e r i o r  p o i n t  ? depends on the deformation o f  the 

sur face atoms and i t s  d is tance from the surface. Such i n fo rma t ion  i s  

6 
car . r ied from the sur face w i  t h  a v e l o c i  t y  o f  10 c d s e c  i n  Tb (the speed 

o f  sound). Microwave and neutron d i f f r a c t i o n  experiments t y p i c a l l y  e x c i t e  

10 
magnons o f  frequency 10 cyc,les/sec so t h a t  o n l y  atoms wi t 'h i  n a d is tance 

o f  1 0+4 8 o f  the sur face can rece ive  t h i s  i n fo rma t ion  and can d i s t o r t  i n  

accordance w i t h  the equi 1 i b r i  urn s t ra ins .  Thus, i f  the probe which creates 

the sp in  d i  sturbance penetrates deeply i n t o  the c rys ta l ,  as i n  the case o f  

neutron d i f f r a c t i o n ,  the b u l k  o f  the 1 a t t i c e  cannot respond and. remai ns 

frozen. Thus, one e x c i t e s  f rozen  l a t t i c e  magnons i n  a neutron d i f f r a c t i o n  

exper irnento I n ferrornagnet i c resonance on metal s, however, the photons 

can o n l y  penet ra te  the sur face a d is tance d c a l l e d  the r a d i a t i o n  s k i n  

depth. I n  Tb and lly t h i  t i s  about 1 o4 8 f o r  10 GHz r a d i a t i o n  so t h a t  

macroscopic s t r a i n s  a re  e a s i l y  formed i n  the reg ion  where the microwaves 

couple t o  the s p i n  system, making f r e e  l a t t i c e  behavior possible.. I t  w i  1 1  

be shown i n  a - l a t e r  sec t i on  t h a t  the f r e e  l a t t i c e  magnons ar'e essen t i a l  i n  

the i n t e r p r e t a t i o n  o f  microwave absorp t ion  experiments i n  which a l a r g e  

dc magnetic f i e l d  i s  app l i ed  alo.ng the  hard  a x i s  i n  the basal plane o f  a 

hexagonal close-packed metal. 



The Long Wavelength ~ a ~ n o n  Spectrum a t  F i n i t e  Temperature and F i e l d  

The temperature r e n o r m a l i z a t i o n  o f  the spin-wave spectrum i s  e a s i l y  

accompl i shed us i ng the "one- ion" t heo ry  o f  Cal.1 en and. Ca l l  en (9,26) 

descr ibed  above. The magnetoe las t i c  terms a re  renorma l i zed  accord ing  t o  

where t h e  f u n c t i o n  
5/2 

i s  a  reduced hyperbol . i  c  Bessel functi,on, 

whose argument i s  the i nve rse  Langevi n  f u n c t i o n  . o f  the  re1  a t i  ve magneti - 
zat ion.  Th is  r e n o r m a l i z a t i o n  i s  n o t  q u i t e  c o r r e c t  s i nce  t h e a l  representa-  

t i o n  shoul d  be renormal i zed accord ing  t o  a  two- i  on" scheme. However, 

the  a1 r e p r e s e n t a t i o n  c o n t r i b u t e s  on1 y  a  smal l  term t o  the f a c t o r  i n 

Equat ion (1 0) c o n t a i n i n g  the  l a r g e  a x i a l  an i  so t ropy  term, -2P2S, so t h a t  

the  r e s u l t  i s  n e g l i g i b l y  a f f e c t e d  by  t h i s  e r r o r .  The temperature re -  

n o r m a l i z a t i o n  o f  the p l ana r  a n i s o t r o p y  depends on the  o r i g i n  o f  t h i s  

an isot ropy.  Recent neu t ron  d i f f r a c t i o n  work by  Mackintosh (22) showed 

t h a t  v i r t u a l  l y . a l 1  the  p l ana r  an i  so t ropy  o f  Tb meta l  a r i s e s  f rom hexa- 

gonal 1 y  symmetric second o r d e r '  magnetos t r i  c t ion .  Thus t he  renormal i z a t i o n  
A A 

should be I 
9/2 '5/2 ( 13,9,26). I n  Dy metal, however, one migh t  expec t  

t h a t  the c r y s t a l  f i e l d  i s  more impo r tan t  i n  p roduc ing  the  a n i s o t r o p y  s i nce  

By i ons  have a h i g h e r  o r b i t a l  angu la r  momentum than Tb ions, and hence 

a re  capable o f  s t r onge r  i n t e r a c t i o n  w i t h  t he  c r y s t a l  f i e l d .  We assume 

t h a t  the p l a n a r  a n i s o t r o p y  o f  Dy a r i s e s  s o l e l y  f rom the  c r y s t a l  f i e l d  
A 

i n t e r a c t i o n ,  and use t he  renormal i z a t i o n  I 
13/2 

(9,26), Then us ing  an 

o b l a t e  sphero id  geometry f o r  the samples, we can genera l  i z e  Equat ion  (1 0 )  

t o  t he  case o f  f i n i  t e  f i e l d  and temperature (13 ) : 



A - 1 6 5 - 1 
E ( q ' ' '  0 )  = [ [ -2p2s CJ - 6p6 S cos 6 8 ;l.j/2 CJ 

+ gpB (H + 4 n ~  - D ~ M )  cos (t - 8 )  

The equa t i on  i s  w r i  t t e n  f o r  Dy metal. I n  the  case o f  Tb we make the re -  
A A n 

placement I i n  Equat ion (1 1 ) and a1 1 re ' l a t ed  formulae. 
13/2 ' '9/2 '5/2 

D . i s - a  demagnet izat ion fac to r ;  R ' i s  the  n e t  magnet izat ion, 0 i s  the r e l a -  x 

t i  ve magnet izat ion, and 8 i s  t he  angle between f l  and t h e  easy a x i s  i n  the  

basal  plane. The ang le  8 i s  i m p l i c i t l y  a f u n c t i o n  o f  the a p p l i e d  f i e l d ,  

and i s ,  g i v e n  as a s o l u t i o n  t o  the  t ranscendenta l  equa t i on  (17) :  

s i n  6 8 gp, H 
- - 

6u5A 6 s i n  (t - 8 )  
- 1 

36P6 '13/2 cr 

The H t h a t  appears here  and i n  Equat ion  (1 1)  i s  t he  e x t e r n a l  f i e l d ,  The 

r e l e v a n t  h y p e r b o l i c  Bessel f u n c t i o n s  were e3a lua ted  i n  c l osed  f o rm  us ing  

the  r e c u r s i o n  formulae found i n  t he  NBS Table o f  Funct ions. The f i n a l  

express ions used were: 



Here ~ ( z )  = 0 where i s the Langevi n  func t ion ,  

The values o f  ~(FI,T) were taken from the isothermal magnet izat ion 

curves o f  Behrendt and Legvol d  (33)  f o r  Dy, and o f  Hegland e t  a l .  (34) . 

fo r  Tb. These curves were p l o t t e d  aga ins t  the i n t e r n a l  f i e l d  so care was 

taken t o  conver t  t o  the ex te rna l  f i e l d ,  us ing  the demagnetizing f a c t o r s '  

o f  an ob l  a te  spheroid. 

The s p i n  wave energies a re  p l o t t e d  aga ins t  the ex te rna l  f i e l d  i n  

F igures 1 and 2 f o r  Dy and Tb, respect ive ly .  The curves are drawn f o r  

f i e l d s  above- the domain a1 ignment f i e l d  only, A s t rong d i p  i n  the f r e e  
. , 

l a t t i c e  mode, E(O), occurs when the ex te rna l  f i e l d  approaches the e f f e c t i v e  

p lanar  an iso t ropy  f i e l d .  Th i s  e f f e c t i v e  f i e l d  a r i s e s  f rom magnetoelast ic 

and.c rys ta1  f i e l d  an iso t ropy  i n  the basal plane, and i s  represented by the 

appl i ed f i e l  d  independent terms i n the  second f a c t o r  under the. r a d i c a l  

s i g n  i n  Equation (11); As the temperature increases, t h i s  e f f e c t i v e  f i e l d  

decreases u n t i l .  i t  , f a l l s  below the domain al ignment f i e l d  o f  the sample, 

 hi; occurs a t  110 K f o r  Dy, and a t  140 K f o r  Tbo The f rozen  l a t t i c e  

+ 
mode, E(0 ), i s  r a t h e r  f l a t  over most o f  the f i e l d  sweep i n  the low 

.temperature fe r royagne t i  c  regimes o f  these metal so A 1  so, t h i s  mode 1  i e s  

f a r  above the appl i e d  microwave energies, which are  . ind ica ted  by hor izon-  

t a l  l i n e s  i n  the Figures, w i t h  the except ion  o f  a  sharp drop near the 

domain al ignment f i e l d  i n  Tbo Thus, a t  low temperatures one expects 

f rozen 1 a t t i  ce exc i  t a t i o n s  t o  cause a  broad off-resonance absorp t ion  
' 

spanning most o f  the f i e l d  range . w i  t h  no sharp increase a t  the e f f e c t i v e  

p lanar  an iso t ropy  f i e l d .  On the  o the r  hand one expects s t rong on- 

resonance coup1 i ng o f  the f r e e  1 a t  t i  ce modes t o  the microwaves near the 



. . 
. . '  : EXTERNAL .MAGNETIC FIELD ( k O e )  

F i g u r e  1. Magnon energy versus e x t e r n a l  magnetic f i e l d  f o r  dysprosium metal  
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'Figure 2. Magnoa energy versus external  magnetic f i e l d  f o r  terbium k t a l  



p lanar  a i l i  sot ropy f i e 1  do Ross01 (1 7) observes s t rong absorp.t i 'on.of 3 7  , . ' 

. . 
. . 

GHz r a d i a t i o n  a t  78 K, 86 K, arid 91 K near the p lanar  an iso t ropy  f i e l d  i n  . . 

Dy metal. I n  a recent  microwave study a t  24 GHz, Har t  and Stanford  (21) 

observe sharp absorp t ion  peaks near the p lana r .  an iso t ropy  . f i e l d  between 
. . 

70 K and 140 K. i n  Tb metal. ~hese .expe r imen ts  suggest s t r o n g l y  t h a t  the 

f r e e  l a t t i c e  magnons are  responsib le f o r  low f requency ' ferromagnet ic  

resonance absorpti'on. I n  the next  section, .a de ta i  l e d  c a l c u l a t i o n  o f  

microwave absorp t ion  i s  made f o r  Dy and Tb, and the r e l a t i v e  importance 

o f  the f r e e  and f rozen  l a t t i c e  magnons t o  t h i s  process a t , v a r i o u s  f r e -  

quenci es, temperatures, and appl i e d  . f  i.e 1,ds i s determined. 



CALCULATION OF FERROMAGNETIC RESONANCE ABSORPTION PEAKS 

. . 

I n  t h i s  sec t i on  we c a l c u l a t e  i n  d e t a i l  the microwave absorp t ion  ex- 

pected i n  resonance experiments i n  which a l a rge  dc magnetic f i e l d  i s  

.appl i e d  'a iong the hard' a x i s  i n  the basal 61aFe o f  a hex i i ona l  close-pack , . . 

metal. Typical  1 y, these are the experiments o f  ~ a g g u l  ey,' Rossol, . Wagner, 

and Hart  (16-21). 

. . 
The exper imenta l  c o n f i g u r a t i o n  . . i s  as shown i n  F igure  3. The c r y s t a l  

. . 
. . i s  c u t  so t h a t  t h e  2 d i r e c t i o n  i s  .perpendicular t o  the metal surface. The. 

photon beam i s  i n c i d e n t  a long t h i s  d i rec t i on .  The r a d i a t i o n  i s  l i n e a r l y  

p o l a r i z e d  i n .  the plane o f  the metal surface, and the amp1 i tude o f  the wave 

i s  damped o u t  i n  a s'ki n depth do A dc magnetic f i e l d  i s  appl i e d  a long .the 

hard  c r y s t a l  d i r e c t i o n  i n  the basal plane, i n  a d i r e c t i o n  perpendicular  t o  

the p o l a r i z a t i o n  o f  the photon beam (which i s  t a k e n t o  be i n  the .; . 

d i r e c t i o n  f o r  t h i s  c a l c u l a t i o n ) .  . .. The sp in  system i s  assumed t o  be a1 igned 

f u l l y  a long the app l i ed  f i e l d  i n  the ground state. 

Le t  W = p r o b a b i l i t y / t i m e  o f  t r a n s i t i o n  from s t a t e  p t o  P', where 
BPI 

' 2 l l  
B and p1 are s ta tes  o f  the sp in  system. Then W = - \ < B1 IV,IB> I 2 

BPI 8 

6 (Ep - E ,+A w )  as i s  g iven by the I1golden r u l e t 1  f o r  the absorp t ion  o f  P 
quantum h w  f rom a time-dependent e lect romagnet ic  p e r t u r b a t i o n  f i e l d .  We 

ca l  cu l  a.te W f o r  the photon-magnon i n t e r a c t  i o n  i n an op t  i c a l  pumpi ng 
BB1 

experiment. The microwave magnetic f i e l d  i n t e n s i t y  i n s i d e  the metal i s :  

and the p e r t u r b a t i o n  p o t e n t i a l  i s :  



Figure 3. The geometry o f  a t y p i c a l  ferromagnetic resonance 
experiment. The c r y s t a l  i s  cut  so t h a t  the basal 
plane l i e s  p a r a l l e l  t o  the metal surface 



. . . . 
4  ere uf i s the magnet ic moment o n  the  f&' s i  te. W e  assume t h a t  o t h e r  prdc- 

es'ses a r e  more f a v o r a b l e  t o  magnon decay than t he  photon-magnon. i n t e r -  

act ion, so we o n l y  cons ider  abso rp t i on  proce.sses. There fo re  we o m i t  the  
. . . .  . 

c o i p l ' e x  c d n j u g a t ~  term and b b t a i n :  . .. . .  . .  

H e r e  g i s  gyromagnet i c  r a t i o ,  uB i s  Bohr magneton, and a i s  a  bogon s p i n  f 
t h 

a n n i h i l a t i o n  ope ra to r  on  the f- s i t e .  S u b s t i t u t i o n  o f  s p i n  d e v i a t i o n  

o p e r a t o r s  f o r  ufx y i e l d s :  

Now F o u r i e r  t r ans fo rm  the boson ope ra to r s :  

+ 4 

-Z f  (I + i ) / d  - -+o  I q  R f  
V = Ho c C . e  [a, e  + .adt e  

q - 4 f q  
/ /  

sunhi ng f i r s t  over  the X and Y components o f  itf, then over  .q and q f f X Y 



. .  ere NZ i s  the number o f  u n i t  c e l l s  i n  the z d i rec t ion ,  and N = N x N y  N z  . 
. . 

The suppressed n o t a t i o n  qZ s q and a - 
q = ao, 0,q 

i s  a1 so used. 

Now the damping d is tance,  d <c LZ the th ickness o f  the c rys ta l .  S o  

one may take the upper l i m i  t of the sum on Z 'as m w i t h  negl i g i  b l e  error ,  
f 

, and conver t  the sum t o  an i n t e g r a l  : 

c  being the hcp l a t t i c e  parameter. Then us ing Nzc = Lz, we can w r i  t e :  

Now we make a Bogo l iubov ' t rans format ion  f rom the boson operators .a t o  the 
9 

magnon opera tors  a : 
9 

a = u a  - v a  t 
9 9 4  4 -9 

(13 

Here u and v are c-numbers and s a t i s f y :  
q  9 

S u b s t i t u t i o n  of  Equation (13) in ' to the-commutation r e l a t i o n  [ a  a t~ = 1, 
9' q  

and requi  rement t h a t  a s a t i s f y  the boson commutation r u l e s  g ives the 
9 

r e l a t i o n :  



  he requirement t h a t  the Hami l tonian o f  Equation (10) be diagonal i n  a! : 
9 

w i t h  

g ives  f u r t h e r  re.1 a t  i ons among the c-numbers : 

2u v .  = B / ~ ( q )  . . . 

q q  q 
(1.5 1 

Then under the t rans format ion  o f  Equation (13), Equat ion -(12) becomes: 

Using the Equations (14) and (IS), the square o f  the m a t r i x  element f o r  

the absorp t ion  o f  one photon, and the c r e a t i o n  o f  one magnon o f  wavenumber 

Here n = [ e  BE(q) - I]", and E(q) = (E - E ) i s  the magnon energy w i t h  
q B'  B 

wavevector q. We assume t h a t  n m - kT >> 1 i n  a1 1 regions o f  tempera- 
s E(q) 

t u re  and wavevector o f  i n t e r e s t .  Then the t r a n s i t i o n  p r o b a b i l i t y  W (q) i s  
U) 



g i ven by : 
2 2 

NSn kT 6 r h m  - E (q)] ' 

. w  (q) =h 0 

1 
(16) 

11) ( A +  B. ) (i -q) 2 + ~ 2  1 
q q 

. . . . 

Neutron d i f f r a c t  i o n  .s tudies show t h a t  the -magnon spectrum i s broadened 

somewhat a t  q = 0, so we w i  1 1  assume a Lorentz ian  broadening o f  the energy 

a t  f i x e d  wavevector. To account f o r  t h i s  i n  Equation . ( l 6 )  we make the 

rep1 acement : . . . , 

-# 

Here ym i s  the w id th  o f  the magnon spectrum. Since H i s  para1 l e l  t o  the 

metal surface, i t  i s  cont inuous across i to Thus Ho i s  the ampli tude o f  

2 
the i n c i d e n t  rad ia t ion ,  and 1 ~ ~ 1  i s  r e l a t e d  t o  the element o f  area under . 

. . 

the i n t e n s i t y  d i s t r i b u t i o n  o f  the photons i n  the f o l l o w i n g  way: 
. . 

Here Tav i s  the time-averaged Poynt ing vec tor  a t  the metal surface, and 

"0 
i s the speed o f  1 i ghtn Thus : 

Now assume a Lorentz ian  shape f o r  the photon spectrum: 

Here y i s  the w id th  of  the spectrum and Zrf i s  the center  frequency o f  
ph 



the  i nc i  dent rad ia t i on .  Making the above replacements and subs t i  t u t  ions 

i n  Eq,uation (16) and i n t e g r a t i n g  over a l l  photon frequencies we o b t a i n :  

. . 

The photon beam i s .  usual 1 y generated i n  a k l y s t r o n .  tube and has a 

narrow 1 i newi dth. So we assume y >> ypho Then the  t r a n s i t i o n  r a t e  f rom 
m 

s t a t e  w i  t h  n .magnons t o  n + i magnons becomes : 
q q 

2 2 
8NSg PB 

- Here No - 
2 

and i s  independent o f  L bq  v i r t u e  o f  N i n  
Z 

c0L; fi 

the numerator. 

The t rans;  t i o n  r a t e  t o  the q = 0 s t a t e  i s  then: 

The t o t a l  t r a n s i t i o n  r a t e  t o  the s ta tes  q + 0 i s  g iven by:  



where 

Equation (18) represents t h e , t o t a l  absorp t ion  by f rozen  l a t t i c e  magnons; 

whereas, 'Equat ion (1 7 )  i s  o n l y  p ropo r t i ona l  t o  the absorp t ion  by f r e e  

l a t t i c e  magnons. To o b t a i n  the t o t a l  c o n t r i b u t i o n  one must m u l t i p l y  

Equation (17) by the number o f  f r c e  l a t t i c e  s ta teso  Using the formula 

f o r  the s k i n  depth o f  p e r i o d i c  t r y g t a l  d i s t o r t i o n  der ived b y  Evenson and 

L i  u (51, one can est imate the  number o f  such states. Taking the r a d i a t i o n  

4  
s k i n  depth o f  the metal t o  be 10 8, clamping i s  found t o  be i n e f f e c t i v e  

- 4 8  -1  w i  t h i n  t h i s  s k i n  depth- f o r  magnons o f  wavenumber l ess  than 10 O 

This corresponds t o  about 1 d magnon s ta tes  a long the hexagonal a x i s  o f  

the  B r i  11 ioun zone o f  Tb o r  Dy metal '  (us ing sample dimensions t y p i c a l  o f  

pub l ished FMR woi-k). The t o t a l  absorp t ion  by f r e e  l a t t i c e  magnons i s  

then W!,. . = ld w (0). The i n t e g r a l  Id was computed numerical ly, and 

+ 
E (q) = E (0 ) + cq2 was assumed i n  the i n teg ra t i on .  The microwave 

absorp t ion  versus ex terna l  f i e l d  i s  p l o t t e d  f o r  a v a r l e t y  o f  temperatures 

i n  F igures 4  through 8 f o r  Dy and Tb. These absorp t ion  curves were 

normal ized by tak ing  the maximum absorp t ion  a t  each temperature equal t o  

un i ty .  .The curves a re  drawn o n l y  f o r  f i e l d  values above the domain a l i g n -  

ment f i e - l d -  (i.e., t h a t  f i e l d  necessary t o  a l i g n  a l l  the magnetic moments 

ferromagnetIca1 ly ) .  Such a domain a1 ignment f i e l d  i.s f i n i t e  even below 

the Curie temperature s ince ferromagnet ica l  l y  a1 igned domains, tend t o  
7 

a1 i g n  i n  a random fash ion  a long the th ree  easy axes i n  the basal plane. 

. . 



The abso rp t i on  o f  10 GHz microwaves i s  shown i n F igu re  4 f o r  Dy 

metal. The abso rp t i on  p r o f i l e  below the Cu,r ie , .po in t  (85 K )  i s  charac te r -  

i z e d  by  a sharp r ise,  f o l l o w e d  b y  a l ong  asymmetric t a i l  which p e r s i s t s  t o  

. ve r y  h i g h  f i e l d  values.. V i r t u a l l y  a l l  t h e  abso rp t i on  i n  the  reg ion , .  

i s  due t o  f r e e  l a t t i c e  magnon processes.,. The r a t i o ,  w#W; i s  l e s s  , . ' 

than 0.2 near the  peak a t  t he  t h r e e  temperatures shown. Abso rp t i on  pro-  

f i l e s  above the  Cur ie  temperature have the same c h a r a c t e r i s t i c s  as the  

90 K curve  shown i n  t he  Figure. I n  t h l s  cu rve  the  s t r onges t  microwave 

abso rp t i on  occurs a t  t he  l l c r i t i c a l  f i e l d " ,  t h a t  f i e l d  a t  which t he  a n t i -  
. . 

f e r romagnet i ca ! l y  a l i g n e d  domains f l i p  i n t o  a f a n  o r  fe r romagnet i c .con-  

, f i g u r a t i o n .  Thus, i n t he  h i g h  : tempe:rature.' region, ' the  spim wave' - . ' 

. . 

- abso rp t i on  i s  masked by  s t r o n g  domain a1,ignmcnt e f f e c t s .  The l ong  t a i l  

i n ' t he  observed a b i o r p t  i o n  (20) i s due - t o  o f f - resonance absorp t  i d n  by 

b o t h  f r e e  and f r o z e n  l a t t i c e  s ta tes ,  the f r o z e n  l i t t i c e  Stc i tes con-' . , 

t r i b u t i n g .  most s t rong ly .  A t  15O.K, f o r  example, the r a t i o  W W; 
T' 

i s 

4.5 ove r  t he  w h o l e  f i e l  d sweep. One should'  n o t e  a tendency f o r .  the 1 i ne- 

w i d t h  o f  the  abso rp t i on  t o  narrow wi t h  i ni3reasi1ng .temperature be low t h e  

Cur ie  po in t .  , Th i s  tendency was observed by  ~ a g g u l e y  (16), and l a t e r  by  

Rossol (1 7). 

The a b s o i p t i o n  o f  20 GHz microwaves i s  shown i n  F igu re  5 f o r  Tb 

metal.. The genera l  c h a r a c t e r i s t i c s  o f  the  a b s o r p t i o n  a r e  t h e  same as f o r .  

Dy. ' A t  l ow  temperatures t h e r e  i s  a r a t h e r .  sharp h i g h  f i e l d  peak. The 

pos i  t i o n  o f  t h i s  peak s h i f t s ,  . . t o  lower  f i e l d s  as temperature i ?creases, 

u n t i l  i t  f a l l s  below the  domain a l ignment  f l e l d  a t  140 KO The maximum 
. . , . 

i n  the  abso rp t i on  i s  aga in  masked a t  h i g h  temper..atures by domain a1 ignment 
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Figure 4. Microwave ab'sorption versus external  f i e l d  i n  Dy metal a t  10 GHz 
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Figure  5. Microwave absorption versus external  f i e l d  i n  Tb metal a t  20 GHz 



. . 

e f fects ,  b u t  the  long  t a i l  should s t i l l  be observable, and i s  due p r i m a r i l y  

t o  o f f - resonance,  abso rp t i on  b y  ' the f r o z e n  l a t t i c e  s ta tes.  The abso rp t i on  

below 120 K i s  due ma in l y  t o  4 r e e  l a t t i c e  magnon prockkses, W{W; be ing  

l e s s  than 0.2 i n  the  peak reg iono  Th i s  r a t i o  increases t o  about l o o  a t  

140 K, and f r o z e n  1 a t t i c e  magnon processes dominate the, a b s o r p t i o n  above 

160 KO The c h a r a c t e r i s t i c s  o f  t he  abso rp t i on  p r o f  i 1 es shown i n  F igu res  

4 and 5 (i.e,, general  shape and peak p o s i ' t i o n s )  a r e  observed e x p e r i -  

mental 1 y (16,20,21 ). 

The abso rp t i on  o f  40  GHz r a d i a t i o n  below the  Cur ie  temperature i s  

shown versus . f i e l d  i n  F igu re  6. A b a r e l y  r e s o l v a b l e  .doub le  peak occurs  

below 85 K.. Experimental  l y  t he  .double peal< i s  n o t  observed (1 7), a f a c t  

which i s  n o t  s u r p r i s i n g  because t he  peaks a r e  so close, ove r l app ing  a lmost  

e n t i r e l y .  A s t r ong  s i n g l e  peak i s  observed, however, and occurs  .near  the 

cen te r  o f  the c a l c u l a t e d  double peak (1 7). The r a t i o  W # W 1  i s  about 0.2 
T 

i n  the  .peak region, so t h a t  on-resonance a b s o r p t i o n  by  f r e e  l : ,a t t i  ce s t a t e s  

i s the  . impor tan t  . abso rp t i on  mechani sm i n the '  p r o d u c t i o n  o f  the  peak. 

The a b s o r p t i o n  o f  100 GHz r a d i a t ' i o n  i n  fe r romagnet i c  Tb i s  shown i n  

F igu re  7. Below 200 K, t he  p r i m a r y  abso rp t i on  occurs  a t  the  ,domain a l  i gn -  

ment f i e l d  due t o  the  sharp low f i e l d  d i p  i n  the  f r o z e n  l a t t i ~ e  magnon gap 

(see F i  gure 2 )  which makes the  off-resonance abso rp t i on  by  f r o z e n  1 a t t i  ce 

s t a t e s  q u i t e  strong. A t  h i g h e r  f i e l d s  i n  the  low'  temperature, re'gion, 

weak s t r u c t u r e  appears due to .on-resonance a b s o r p t i o n  by f r e e  l a t t i c e  

rnagnons. Th is  s t ruc tu re ,  however, i s  n o t  r e s o l v a b l e  exper imenta l  1 y (1 7) 

p robab ly  because o f  the  espec ia l  1 y low sensi  ti v i  t y  o f  h i g h  frequency mic ro -  

wave experiments. Th i s  weak a b s o r p t i o n  s t r u c t u r e  i s  a l s o  masked by  the  
I 

I 
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v e r y  s t r o n g  abso rp t i on  near domain al ignment.  Above 200 K, on-resonance 

abso rp t i on  by t he  f r o z e n  l a t t i c e  s t a t e s  becomes poss ib le .  The f i e l d  a t  

which t h i s  resonance occurs inc reases  w i t h  i n c r e a s i n g  temperature, 

s h i f t i n g  t he  peak t o  h i ghe r  f i e l d s .  
. . 

The abso rp t i on  o f  100 GHz r a d i a t i o n  f o r  Dy metal  i s  shown i n  F igu re  

8. A. s t r ong  double peak appears below 80 K, and i s  due a lmost  e n t i r e l y  t o  

on-resonance abso rp t i on  by f r e e  l a t t i c e  s ta tes.  Above 85 K, the  low ' f i e l d  

peak i s  l o s t  below the  domain a l ignment  f i e l d ;  and a t . 1 1 0  K t he  h i g h  

f i e l d  peak i s  . l o s t .  The curve  shown a t  110 K i s  r e p r e s e n t a t i v e  o f  curves 

a t  h i g h e r  temperatures. I n  t h i s  cu rve  maximum absorp t ion '  .occurs ' a t  the 

c r i t i c a l  f i e l d ,  and i s  f o l l o w e d  by a l o n g  abso rp t i on  t a i l .  Off-resonance 

. f r o z e n  1 a t t i c e . p r o c e s s e s  a r e  responsib l 'e  f o r .  most o f  t h i s  absorpt.ion. 

The p r o f i l e s  shown i n  F igu re  8 have been observed i n  Dy f o r  temperatures 

above t h e  ~ u r i . e  temperature (35). Accord ing to ,  our  ca l cu la t i on ,  the 

double peak should be c l e a r 1  y observab le  a t  70 K, a1 though no accura te  

. . s tudy  o f  fe r romagnet i c  Dy has been made t o  date. ~ u t u k e  observa . t ion  o f  

. t h i  s double peak would subs tan t i  a t e  f u r t h e r  t he  evidence - t h a t  f r e e  

l a t t i c e  magnons p l a y  an impor tan t  r o l e  i n  low temperature microwave 

absorpt ion. I 

The resonance f i e l d  i s  de f i ned  as t h a t  f i e l d  a t  which maximum ab- 

s o r p t i o n  occurs. The resonance f i e l d  versus temperature f o r  Dy meta l  i s  

shown i n  F igu re  9 f o r  microwave f . requencies o f  4 0  GHz and 100 GHz a long  

wi t h  exper jmenta l  p o i n t s  ( 1  7,35). . The t h e o r e t i c a l  curves a r e  ob ta i ned  

,by t a k i n g  the  f i e l d  va lues a t  which t he  c a l c u l a t e d  microwave a b s o r p t i o n  

i s ,  a maximum. The average p o s i t i o n  i s  taken i n  the  case o f  b a r e l y  
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Figure  8. Microwave absorpt ion versus ex terna l  f i e l d  i n  Dy metal a t  100 GHz 



Figure 9. Resonance f i e l d  versus temperature f o r  dysprosium metal 

25 - 25 

FREQ = 40 GHz 

- 

FREQ = 100 GHz 

20 

15 

- 

0 

- 
0 

vl 
lu 

0 
v, 

u" 

0 - 1. 1 1 I 1 I 0 I I I I I 
70 80 90 100110 120 130 100' '110 120 130 140 . 150: 

TEMPERATURE ( O K )  

0 . . 

5 -  ' Q 5-  



r e s o l v a b l e  double.  peakso A t  40  GHz, t he  resonance f i e l d  increases 

d r a m a t i c a l l y  as temperature : i s  reduced i n , t h e  . fe r romagnet i c  regime. Th is  

i s  due t o  the on-resonance a b s o r p t i o n  by  f r e e  l a t t i c e  magnons, which 
. . 

. occurs  most s t rong1  y,.nea,r the  p l ana r  a.ni so t ropy  f i e l d  where E (0) d i p s  . t o  

zero  .(see F igu re  1 ). The p lana r  an i  so t ropy  f i e l d  i n c k a s e s  w i t h  decreas- 

i ng , temperature, p roduc ing  t he  sharp r i s e  i n  the  resonance f i e l d .  The 

da ta  of  Ross01 v e r i f y  t h i s  p r e d i c t e d  r i s e  q u i t e  conc lus ive ly ,  Above the 

Cur ie  temperature, the 100 GHz . a b s o r p t i o n  peaks occur  a t  t he  c r i  t i c a l  

f i e l  d so t h a t  t he  da ta  o f  Wagner f o l  lows t he  c r i  t i c a l  f i e l d  curve  qu i  t e  

we1 1, excep t  f o r  a smal l  d e v i a t i o n  toward h i g h e r  f i e l d s  above 140 K. 

Below the  Cur ie  temperature o f  Dy f r e e  l a t t i c e  magnon abso rp t i on  i s  

the dominant process a t  bo th  40  GHz and 100 GHzo Above the Cur ie  tempera- 

ture, f r o z e n  l a t t i c e  a b s o r p t i o n  i s  t he  dominant process a t  b o t h  4 0  GHz 

and 100 GHz. Thus, one expects  t he  temperature dependence o f  t he  resonance 

f i e l d  t o  be.  s i m i l a r  a t  b o t h  40  GHz and 100 GHz over  the complete o rdered  

regime o f  Dye I n  fe r romagnet i c  Tb, below 140 K, f rozen  l a t t i , c e  magnon 

processes dominate 100 GHz a b s o r p t i o n  p roduc ing  a peak a t  the  domai n 

a1 i gnment. f i e l d ;  whereas, f r e e  1 a t t i c e  magnon processes dominate 2 0  GHz 

abso rp t i on  p roduc ing  a peak a t  the  e f f e c t i v e  p l a n a r ' a n i s o t r o p y  f i e l d .  

Therefore, the  t heo ry  p r e d i c t s  a s t r i k i n g  d i f f e r e n c e  i n  the behav io r  o f  

the  resonance f i e l d  curves a t  the  two f requencies.  The resonance f i e l d  

versus temperature' f o r  Tb metal  a t  20 GHz and a t  100 GHz i s  shown i n  

F i g u r e  10 a long  w i t h  t h e  exper imenta l  p o i n t s  (21, 19)0  There , i s  a dramat ic  

inc rease  qf 8kOe i n  the  20 GHz curve  betw.een 140 K and 100 KS Over the  
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sa,me temperature i n te rva l ,  the 100 GHz curve changes l e s s ,  than 1 kOe, 

The experimental  p o i n t s  f a l l  almost e x a c t l y  on the t h e o r e t i c a l  curves, 

p rov i  d i  ng an extreme1 s t rong conf i rmat i o n  o f  the theory. 

One notes t h a t  good experimental  agreement i s  a t t a i n e d  i n  both metals  

using: the  s t i i t i c a l l y  measured planac an iso t ropy  constants w i t h  a tempera-' 
h h A 

t u r e  renormal iza t ion  o f  I 
. . 13/2 f o r  Dy and I 

9/2 '5/2 
f o r  Tb. A neutron 

d i f f r a c t i o n  study o f .  Tb (5) has v e r i f i e d  t h a t  t he .p lana r  an iso t ropy  o f  

t h a t  metal i s  o f  magnetoelast ic  o r i g in ,  so t h a t  the temperature renormal i- 
A CL A 

z a t i o n  I 9/2 1512 i s  we1 1 j u s t i f i e d .  The renormal i z a t i o n  1 13/2 f o r  Dy 

assumes. t h a t  the p lanar  an iso t ropy  a r i s e s  f rom c r y s t a l  f i e l d  symmetry i n  

t h i s  metal. Such an assumption seems t o  be w e l l  j u s t i f i e d  by the e x c e l l e n t  

agreement o f  the theory  w i t h  microwave absorp t ion  data. A neutron 

d i f f r a c t i o n  study o f  Dy, s i m i l a r  t o  t h a t  done f o r  Tb, seems appropr ia te  

a t , t h i s  t ime t o  see if there i s  indeed a d i f f e r e n c e  i n  the o r i g i n  o f  the 
' 

p lanar  an iso t ropy  i n  these metal so The microwave exper i .mnts  p o i n t  very 

strong1 y t o  t h i s  conclusion. 



I n  the preceding chapter  we.computed the e f f e c t s  o f  un i fo rm rnagneto- 

s t r i c t i o n  on the sp in  wave energieso I n  t h i s  chapter, we c a l c u l a t e  the 

e f f e c t  o f  a r b i  t r a r y  v i b r a t i o n s  o f  the c r y s t a l -  ion: about the uni form1 y 

s t r a i n e d  c o n f i g u r a t i o n  produced by the s p i n  order. I n  general, the v ib ra -  

t i o n s  produce non-uniform s t r a i n s  which couple l o c a l l y  t o  the sp in  system 
. .  . 

through the l o c a l  rnagnetoelast ic i n t e r a c t i o n  o f  Evenson and L i  u  [see . 
. ' 

Equat ion ( 6 ) l .  Normal modes . . . . o f  l a t t i c e  and sp in  vib&tion-s'  couple . . s t i o n g l y  

when v i b r a t i o n a l  f reque'ncies . . a re  . . 'near l.y equal, producing mixed spi n-1 a t  t i  ce 

modes (36). 

Figure  11 shows the experimenta.1 rnagnon and phonon d i spe rs ion  curves 

a long the  c -ax is  o f  pure Tb -metal  a t  79 . K  i n  the reduced zone ,,scheme (37) .  

The dashed 1 i nes i n d i c a t e  - the d i  spersion'  curves ekpected w i  thout  sp in-  

1 a t t i c e  coupl ing. The so l  i d  1 ines  are drawn. through the experimental  

points.  I n  the reg ion  where the t ransverse o p t i c a l  phonon branch (TO) 

crosses the acoust ica l  magnon branch (MA), a  l a rge  spl i t t i ng ,  l a b e l l e d  A ~ ,  

i s  observed. I n  the reg ion  where the t ransverse acoust ica l  phonon branch 

(TA) I1kissesl1 the acous t i ca l  magnon branch (MA), a  smal ler  s p l i t t i n g ,  hl, 

i s  observed. The rnagnetoel a s t i c  coupl i ng removes the degeneracy o f  the 

sp in  and l a t t i c e  modes, and the s i z e  o f  the branch spl i t t i n g  i s  a measure 

o f  the coup l ing  strength. The s t a t e s  i n  the reg ion  o f  s t rong s p i n - l a t t i c e  

coup l ing  are magnon-phonon q u a s i - p a r t i c l e  states. I t  i s  the purpose o f  

t h i s  chapter t o  c a l c u l a t e  the sp l  i t t i n g s  expected on the bas is  o f  

Equation (6). 



BOUNDA 

~ i ~ u r e  11: The magnon (MA, MO) and transverse phonon (TA, TO) dispersion curves f o r  
t e r b i  urn i n  the c-di r e c t i o n  a t  79 K. The magnon-phonon i n teract ion  causes 
a  mixing 05 modes and spl i t t i n g s  a t  the' crossing points.  o f  the unperturbed 
dispersion curves ( indicated by dashed' 1 i nes) 
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F i r s t , w e  compute the  €- representa t ion  terms o f  the magnetoelast ic 

i n te rac t i on .  The l o c a l  s t r a i n  func t i ons  f o r  t h i s  representa t ion  are :  

. . 
t h  > . 

Here f = (4, s )  1 abel s  the p o s i t i o n  o f  the f- atom i n  the c rys ta l ,  and.6 

1abel.s the p o s i t i o n s  o f  i t s  twelve nearest  neighbors. 

From l a t t i c e  v i b r a t i o n  theory, the second quant ized form o f  the 

components o f  d i  sp l  ;cement f ram the u n s t r a i  ned equi 1 i b r i  um posi  t i o n s  i s 

g iven by:  

~ b r e  i = (x,y,'z), and s = (O,c/2) l a b e l s  the  two atoms of the uni t . c e l l  ; p 

l a b e l s  the mode o f  v i b r a t i o n ,  and 4 l a b e l s  the uni  t ' c e l  1. The quant i . t y  
. . 

R 4 = ( A / N ~  w +)1/2, where N i s  the number o f  uni t ce l - l  s, m i s  the mass of 
P q pq 

an ion, and to , i s  the frequency o f  a normal mode o f '  c r y s t a l  v i b ra t i on ,  
pq -. 

The q u a n t i t i e s  v q p  are the components o f  the p o l a r i z a t i o n  vec tor  o f  the 1 s 
+ 

l a t t i c e  wave, and 0 and 0 are the ann ih i  l a t i o n  and c r e a t i o n  opera tors  f o r  

the pho~onso The components o f  the p o l a r i z a t i o n  vec tor  must s a t i s f y  t he '  

f o l l o w i n g  o r thonorma l i t y  c o n d i t i o n :  



I n  o rder  t o  compare the r e s u l t s  o f  the c a l c u l a t i o n  w i t h  measurements on Tb; 
A 

we assume the l a t t i c e  modes t o  be propagat ing along the  c-ax is  o f  a hcp 

c rys ta l ,  and t o  be transverse p o l a r i z e d  along the $-ax is  i n  the basal plane. 

The Cartes ian coordinates appearing i n  Equations (19) a re  def ined w; t h  2 
A 

along ^a and ; along c. For such l a t t i c e  waves, the s o l u t i o n  t o  Equation 

(21) f o r  the p o l a r i z a t i o n  vectors i s :  

Then, us ing  Equations (22) i n  Equation (20), we f i n d  the l o c a l  s t r a i n s  o f  

Equations (19) t o  be: 

where 

T f l  = Tf2 = 1 i f f  = (LO); and'qf l  = -vf2 = 1 i f f  = (&,c /~)o  



. . . 
:   he summation on q i s  take"  along- .the c-axis '  of. the ~ ' r i  11 iou'n zone' i n  the  . . 

. . . . 

s i  ngl e zone scheme. The hcp s t r u c t u r e  i s cons idered to be made o f  two' 
' . 

. . . . . . 
. . .  

ident.ica1'. i n te rpene t ra t i  ng hexagonal - .sub la t t i ces .  .Two k inds o f  s p i n  . . 

dev ia t ion .  operators, af a n d  b are i ntroduced correspondi ng t o  each o f  the f .  

two s u b l a t t i c e s  (38). Then the  s p i n  funct ions o f  the E-reeresentat ion 
. . . . 

. . 
are t r a h s f o k d  t o  spi.n devi d t  i o n  opefators .as f o l  lows : . 

. . 

Using Equations (23) and (24) i n  the ' local  magnetoelast ic Hamil t on ian  o f  

Equation (6) and summing over l a t t i c e  s i t e s  we o b t a i n :  

where A = 1 i.f p = 1; a n d h  = -1 i f  p = 2. 
P P 

Here a and b are the Four ie r  transforms o f  the s p i n  d e v i a t i o n  operators 
9 9 

a and bf. 
f 

The terms i n  the magnetoel as t i c Hami 1 ton i  an t h a t  t ransform accordi ng 

tn the y and m: represen t a t  ions are salcul afed i n an exact1 y s i  m i  1,ar way. 

Y 
A s u r p r i s i n g  r e s u l t  i s  t h a t  H m =  0. The l o c a l  s t r a i n s  are zero i n  t h i s  

case, due t o  the choice = q2 and the hcp symmetry o f  the c r y s t a l .  The 



s p i n  func t i ons  o f  the a representa t ion  a1 1 invo lve  b i  1 inear  combinations 

o f  the magnon operators, so ~i~ conta i  ns o n l y  processes t h a t  do not  con- 

serve p a r t i c l e  number, and which c o n t r i b u t e  o n l y  t o  broadening e f fec ts .  

A time dependent. pe r tu rba t ion  c a l c u l a t i o n  was done t o  determine the 

amount o f  broadening caused by t h i r d  order  processes i n  the magnetoel a s t i c  

Hami 1 ton i  an. I n the mixed-mode region, the .Tb spectrum was found t o  be 

broadened by 0.04 meV by the magnetoelast ic i n te rac t i on .  .This i s  q u i t e  

small compared t o  the broadening caused by magnon-magnon processes i n  t h i s  

p a r t  o f  the B r i l l i o u n  zone. 

Le t  H denote the  t o t a l  second-quantized Hamil tonian re levan t  t o  
m- P 

mode-mi x i  ng : 

1 t 1 H = - [ A  .(a ta + b b ) + B~~ t t + a a -  + b t b  t 
(aq a-q . q q q -q m-p 2 

q j  P 
9J 4 9 . 4 .  q 

' i i~ JNS' i . A  = - s i n  gS R . 
q~ 2J2 c pq 

The q u a n t i t y  h~ i s  the unperturbed phonon energy, and A an'd B are 
IN q j q j 

the c o e f f i c i e n t s  t h a t  appear i n  Equation (10) w i t h  a subsc r ip t  j = 1,2 

added t o  denote acoust ica l  o r  o p t i c a l  magnon branches respect ive ly .  (The 

e a r l i e r  d iscussion was i n  the double zone scheme using a Bravais l a t t i c e . )  



The f a c t o r  1/2 i n  Eq.uation (26) i s  i n s e r t e d  t o  p reven t  double count ing.  

The boson ope ra to r s  a  and b  a re  a  m i x t u r e  o f  a c o u s t i c a l  and o p t i c a l  
9  4 

macjnon i n n i h i  l a t i o n  operatqrs .  We d e f i n e  ope ra to r s  c  and d by  t h e  
9  . 4  

f o l l o w i n g  t r ans fo rma t i on :  

Express ing H i n  terms o f  these new boson ope ra to r s  we o b t a i n :  
m- P  

.Here 6 and 6 ' a re  ~ r o n e c k e r  de l tas.  F i na l l y ,  w.? make a  Bogol iubov  
PI ~7 

t r ans fo rma t i on  o f  the ope ra to r s  c and d  t o  rnagnon c r e a t i o n  and a n n i h i l a -  
4 .4 

t i o n  ope ra to r s :  

Here a and a are the  anni h i  l a t i o n  ope ra to r s  f o r  a c o u s t i c a l  and opt . ica1 
1  4 2q 



magnons respect ive ly .  The c o e f f i c i e n t s  o f  the t rans format ion  s a t i s f y  

r e l a t i o n s  analogous t o  Equations (15)- S u b s t i t u t i o n  o f  Equations (29) 

i n t o   quat ti on (28)  y i e l d s :  

. . t ' 

. H :,=, E , E. (q) a jq a +...x P t e  
"%q q p  q p  .. ."'-? j, J : jq . p,q 

By v i r t u e  o f  the Kronecker d e l t a  6 t h a t  appears i n  Equation (30), 
j P 

the magnetoelast ic i n t e r a c t i o n  o f  Evenson and Liu, Equation ( 6 ) ,  f a i  1s t o  

account f o r  the coup l ing  of acous t i ca l  and o p t i c a l  modes. This i n t e r a c t i o n  

was o r i g i n a l l y  devised i n  order  t o  descr ibe s t a t i c  e f fec ts ,  and so couples 

o n l y '  l o c a l  displacements' t o  the s p i n  system. I n  the e x c i t e d  s ta tes  o f  the 

l a t t i c e ,  however, dynamic 'quant i t ies ,  such as l a t t i c e  angular momentum, 

may couple t o  the spins. I n  the Appendix, i t i s  shown t h a t  a  k ind  o f  

"L-S coupl ing" does i n  f a c t  couple the acoust ica l  magnons t o  the  o p t i c a l  

phonons, g i v i n g  r i s e  t o  a  sp l  i t t ing .  This mechanism, however, does' 

not  1 ead t o  any coupl i ng o f  acoust ica l  modes, so 1 e  t us use the mode- 

mix ing  Hami l ton ian H t o  c a l c u l a t e  the spl  i t t i  ng between the TA and MA 
m- P 

branches shown i n  F igure  11. 

For the mix ing  o f  these s p e c i f i c  modes H .reduces t o :  
m- P  



-1 /2 
- r L] Here A '  - 

Aq' 
and the mode l a b e l s  p and j are suppressed. 

4 .  2 (Aq + B ~ .  . . 

We d iagona l ize  t h i s  ~ a m i l t o n i a n  by d e f i n i n g  a new a n n i h i l a t i o n  ope ra to r :  

The irnposi t i o n  o f  the condi t i o n  r7q, Hi-p] = $yq f o u r  homogeneous 

equat ions i n  the c o e f f i c i e n t s  tl, t2, t3, t4. The q u a n t i t y  0 i s  the 
=I 

, 
energy o f  the mixed phonon-magnon mode. The s o l u t i o n  o f  the ' ~ e i s e n b e r ~  

equat ion  o f  mot ion i s  n o n - t r i v i a l .  i f  the  fo l l ow ing .  c o n d i t i o n  on the .secu la r  

determinant i s  met: 

-.- 
I n  w r i t i n g  Equation (32) we use A '  

= A;"* 
The determinant may be s i m p l i -  - 'l 

f i e d  easi  ly, and reduces t o  the f o l  l 'owing equat ion  f o r  the eigenvalues o f  

the m i  xed-mode s t a t e  : 

One observes s t rong mix ing  when E(Q) = Q being the wavenumber a t  which 
4-2' I . .  



the branches. Hkiss.ll  .. 1.n t h i s  case Equation ,.(33) . 
. 

has the , s o l u t i o n :  . . 

Then the energy s p l i t t i n g  a t ' Q  i s :  

1/2 . 

r B fi2s3 ( A ~  + eQ) 
A, = 2 ( ~ h l  = - [ s i n  (34) 

. c m [E(Q) j2  

Taking E(Q) t o  be 2.0meV a n d Q = 0 . 2 5 8  ' ' w e  f i n d :  " . . '  . . 

. . .  . . 

This. compares w e l l  w i t h  the s p l l t t l n g  shown in ' :F igure  11. 
. : . . 

. .  . . '. . . . . . . 



The development o f  the f o rma l i sm  o f  Evenson and L i u  t o  t r e a t  the  

magnetoe las t i c  p e r t u r b a t i o n  o f  the dynamic t i e s  o f  a c r y s t a l  has'  

been a major aspect  o f  t h i  s work. .P rev ious .  ad hoc model s appear i n . c e r -  

t a i n  1 im i  t s  o f  the  theory, g i v i n g  a coherence t o  t he  t h e o r e t i c a l  p ' i c t u r e  

o f  magnetoel a s t i c  coupl  ing. I n  general, t he  l o c a l  coupl  i n g  t heo ry  has 

been success fu l  i n  account ing  f o r  a i a r g e  number o f  exper iments  performed 

o n  Tb and Dy meta l  so 

The Hami l ton ian  o f  Evenson and L i u  was used as a s t a r t i n g  po in t ,  as 

i t i s  a s imple and p h y s i c a l l y  p l a u s i b l e  k d e l  fdr t h i s  i n t e r a c t i o n .  I t  

assumes t h a t  the atomic sp ins  couple l o c a l l y  t o  the s t r a i n  f i e l d .  I t  i s  

found t h a t  u n i f o r m  m a g n e t o s t r i c t i o n  causes a smooth t r a n s i t i o n  f r om " f r ee  

1 a t t  i cell t o  " f r o z e n  1 a t t i  ceu p e r t u r b a t i o n  o f  the magnon spectrum depending 

on the  wavevector o f  the s ta te .  M a n i f e s t a t i o n  o f  the  f r e e  l a t t i c e  per-  

t u r b a t i o n  i s  a l s o  l i m i t e d  by t h e  f i n i t e  response t ime o f  the l a t t i c e .  I t  

i s  found t h a t  neu t ron  d i f f r a c t i o n  can, o n l y  e x c i  t e  f r o z e n  l a t t i c e  rnagnons, 

because the  l a t t i c e  i s  unable t o  respond to  s p i n  e x c i t a t i o n s  spread 

s p a c i a l l y  <hroughout t he  c r y s t a l .  I n  fe r romagnet i c  resonance s t u d i e s  o f  a 

metal, however, sp ins  coup le  t o  the microwave f i e l d s  w i t h i n  the  r a d i a t i o n  

s k i n  depth; and t h i s  s k i n  depth i s  o f  t he  same magnitude as t he  l a t t i c e  

response d i s tance  f o r  a t y p i c a l  s p i n  v i b r a t i o n  frequency. Therefore, i n 

these microwave experiments, the  f r e e  1 a t t i  ce response i s poss i  ble.  

The microwave abso rp t i on  versus magnet ic f i e l d  a p p l i e d  a long  the  ha rd  

p l  anar a x i  s. o f  Tb and Dy i s ca lcu la ted .  I t i s found t h a t  f r e e  1 a t  t i  ce 



magnons are  p r i m a r i l y  respons ib le  f o r  low frequency absorp t ion  i n  Tb 

below 140 K, and f o r  bo th  low and h igh '  frequency .absorpt ion i n  Dy below 

the Curie temperature o f  t ha t -  metal. I t  i s  shown t h a t  . the  t r a n s i  t i o n  

from f ree t o  f rozen  l a t t i c e  behavior o f  the magnon spectrum i s  e s s e n t i a l  

t o  the exp1,anation o f  e x i s t i n g  data on the  temperature dependence o f  

absorp t ion  peak p o s i t i o n s  i n  Tb. 

The formal ism o f  Evenson and L i u  i s  a l s o  used t o  c a l c u l a t e  the dy- 

namic i n t e r a c t i o n  between sp in  and l a t t i z e  waves. The use o f  l o c a l  s t r a i n  

func t ions  was p a r t i c u l a r l y  sui  t e d  t o  t h i s  s ince l a t t i c e  waves 

c rea te  non-uni form l o c a l  s t r a i n s  which, a re  ,'superposed on a background o f  

un i fo rm magnetos tr i c t i o n  induced by the spi n order. M i  xed-mode energy 

spl  i t t i n g s  are  ca1.culated i n  regions o f  the B r i  1 I ioun zone where phonon 

and magnon d i spe rs ion -  curves cross. The theory f a i  1 s .  t o  account f o r  the 

l a r g e  s p l i t t i n g  ,which occurs a t  the c ross ing  . p o i n t  o f  . t h e  acous t i ca l  

magnon and t ransverse o p t i c a l  phonon branches i n  Tb metal, b u t  p r e d i c t s  

we1 1 a smal l e r  sp l  i t t i  ng which occurs where the acous t i ca l  magnon and 

t ransverse acoust ica l .  branches touch. An a1 terna' te rnechani sm which may 

.account f o r  the former sp l  i t t i n g  i s  g iven i n  the Appendix. 
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APPEND.1 X: A MECHANI SM FOR THE COUPLl NG OF 

MA AND TO MODES I N Tb 

I n  t h i s  Appendix a mechanism i s  proposed which couples acoust ica l  

'rnagnons ' t o  o p t i c a l  phonons along the E-axi s . o f  a hcp.c rys ta1 near the 

edge o f  the B r  i 1 1 i oun zone, such coup1 i ng resu l  t s  .i n a spl i t t i  ng o f  the 

d i s p e r s i o n  r e l a t i o n s  o f  these modes as observed i n  Tb metal, and cannot be 

expla ined using a fo rmu la t i on  o f  magnetoelast ic i  t y  which couples the s p i n  

system t o  l o c a l  s t r a i n  f i e l d s .  

I n  order  t o  see how the l a t t i c e  couples t o  the sp in  system, one must 

l ook  i n  de ta i  1 a t  the .way the ions v i b r a t e  when a TO mode i s  e x c i t e d  along 

the c-axis  near the B r i  11 ioun zone edge. One s u b l a t t i c e  o f  atoms, say 

f = (&, O), remains near l y  s ta t i ona ry ;  whereas, the o ther  sub la t t i ce ,  

f = (&,c/2), v ib ra tes  w i t h  nearest neighbor planes on the s u b l a t t i c e  being 

near l y  180° o u t  o f  phase. Thus, a k i n d  o f  angular motion about the  

s t a t i o n a r y  s i t e s  i s  generated by the nearest neighbor ions. This ne t  

angular motion produces a magnetic f i e l d  which i n t e r a c t s  w i t h  the  spins on 

the s t a t i o n a r y  s i  tes. The f i e l d  wi 11 be propor t iona l  t o  the i nstantaneous 

cu r ren t  created b y ,  the nearest n.ei ghbor ions movi ng i n opposi t-i on, and w i  l l 

be d i r e c t e d  :perpendicular t o  the plane o f  t h i s  motion. Note. t h a t  no such 

net  f ' i e l d  i s  c reated i n  a TA mode s i  nce the nearest neighbor planes are 

then moving i n  phase and no net  angular moment i s  produced about any s p i n  

s i te. 

The i n t e r a c t i o n  c reated i n  the o p t i c a l  mode o f  v i b r a t i o n  may be forrnu- 

l a t e d  as f o l l o w s :  

I 



Here, and i n  a l l  f o l l o w i n g  'equations, the sum on f i s  r e s t r i c t e d  t o  the 

f 
s u b l a t t i c e  (4,O). The q u a n t i t y  Hf6 i s  the e f f e c t i v e  magnetic f i e l d  

generated a t  s i t e  f by the mot ion o f  nearest neighbors l a b e l l e d  by 6, and 

ff i s  the sp in  on the fz si te .  I t  i s  e a s i l y  seen t h a t  the f i e l d  f l  
f€iJ 

being p ropo r t i ona l  t o  the cu r ren t  o f  the moving ions, i s  p r o ~ o r t i o n a l  t o  

t h 
the vec tor  angular ve loc i ' t y  o f . t h e  nearest neighbors about the f-- s i te .  

Therefore, Equation ( ~ 1 , )  may b e w r i t t e n :  . .  

+ t h 4 

Here Rf  i s  the p o s i t i o n  vector  o f  the f- s i te ,  vf i s  the v e l o c i t y  o f  the 

We have assumed the charge on i o n  = 3e-, and c o  i s  the v e l o c i t y  o f  l i g h t .  

We app ly  Equation (A2) t o  Tb metal, assuming t h a t  the net  magnet iza t ion  i s  

A 

conf i ned t o  the basal plane a long the easy a-axi s. We take the po l  a r i  za- 

t i o n  of the TO phonons t o  be i n  an a r b i t r a r y  p lanar  d i rec t ion ,  s p e c i f i e d  

by angle 0 t o  the ^a-axi s. Then, assumi ng ? - 0, the p a r t  of Equation (A2) 
f "  

which- leads t o  magnon-phonon mix ing  i s  g iven by: 

, . . . Ac H = C ' ( z ) ' ~  sy  cos 0 . 
m-p f 6  f+6 f 

. . - ' upper 
Here ( +  ) i s  used when' summing o n  atoms i n  the (iower) nearest neighbor 

. . 



t h 
planes of the f- atom. The quant i  t y  c i s  a l a t t i c e  constant. The . .  

qua& i t y  sfY i s the component o f  the sp in  ,perpendicular t o  the 2-axi s, 
and may be expressed as a l i n e a r  combination o f  Four ie r  transformed sp in  

devi -at ion operators o f  the s u b l a t t i c e  , f = '(4,O): 

4 

Then n o t i n g  t h a t  the Four ie r  components o f .  thk displacement r depend 
f+8 

on time according t o  the f a c t o r  eif'qt, we use Equation (20) t o .  t ransform 

d 4 
v - - (F ' -) t o  phonon operators. .Then a f t e r  summation over f and, 
f+6 - d t  . f+&j 

6, Equation. (A3 ) becomes : 

Here the o p t i c a l  phonon index,. p = 2, i s  suppressed. The spi'n operators 

o f  Equation (Ah) may be transformed t o  a 1 i near combi n a t i o n  of' acoust ica l  

and o p t i c a l ;  magnon operators by us ing Equations (27) and (29): Then the 

p a r t  o f  Equation (A4) which couples TO phonons t o  MA magnons becomes: 

Here, the acoust ica l  magnon index, j = 1, i s  suppressed.. The s t reng th  o f  

the in terac t ion ,  A i n  the reg ion o f  s t rong coup1 i ng i s  w r i  t t e n  ex- 
q' 

~ l l c l t l v  as :  

s (AQ + B ) 1 /2 
lAci[ 

/'Q = 4 m I s i n  (cos e l  , (A6) 



where Q i s  the wavenumber a t  which the acoust ica l  and o p t i c a l  branches 

cross.  he unperturbed TO phonons are degenerate w i t h .  respect t o  pol a r i za -  

t i o n  d i rec t ion ,  so we consider 8 as un i fo rm ly  d i s t r i b u t e d  between zero and 

n/2 w i t h  probabi 1 i t y  dens i t y  P(8) = ($-)-I., Then the spl  i t t i n g s  A are 
Q. 

d i s t r i b u t e d  w i t h  dens i ty  ~ ( l c o s  8 ) )  = 2/n s i n  8. This i s  r e f l e c t e d  i n  

the energy absorp t ion  p r o f i l e s  o f  a neutron d i f f r a c t i o n  experiment which 

shou ld  show sharp peaks i n  the neutron s c a t t e r i n g  by quas i -pa r t i c les  i n  

the reg ion  o f  maximum sp l  i t t i n g  (i.e., f o r  8 = 0). The peak should be 

asymmetric, dropping sharp ly  t o  zero  f o r  energies greater  than t h a t  g iven 

.by maximum spl  i t t ing ,  and more g radua l l y  t o  a small minimum a t ,  the un- 

per turbed energy o f  the phonon and magnon exc i  ta t ions.  

One may. account f o r  the natura l  1 i newid th  o f  the q u a s i p a r t i c l e  s ta tes  

by a1 lowing the d e l t a  f u n c t i o n  d i s t r i b u t i o n  o f  each value (cos 81 t o  

broaden i n t o  a Lorentz ian  d i s t r i b u t i o n .  L e t t i n g  x = lcos 81, the probab i l -  

i t y  d e n s i t y  f o r  the unbroadened spectrum i s  P(x) = [ dr  6 ( x - r )  P(r).  I n  

2 2 
th is ,  expres!sion we make the replacement 8 -  4 ( y /n ) [ ( x -X I )  . + y /41", 

where 7 i s  :the l i n e w i d t h  o f  the spectrum. The d i s t r i b u t i o n  which,a l lows 

f o r  broadeni ng then may be w r i  t t e n  as: 

Theaintegral i n  Equation (A7) has been computed numer ica l ly  and shows a 

strong,' asymmetric peak i n  the reg ion  o f  maximum spl i t t i  ng (8 = 0) (39). . . 

I f  the model proposed here has any Val i d i  ty, t h i s  1 ineshape should be a 

c h a r a c t e r i s t i c  o f  the neutron energy absorp t ion  p r o f i l e s .  



A1 though the in terac t ion ,  Equation (A1 ), exp la ins  i n  some qua1 i t a t i v e  

ways the acoust ica l  and o p t i c a l  mode coupling, the value o f  -the s p l i t t i n g  

computed f rOm ~ ~ u a t ' i o n  (A6) i s  much too  small t o  account f o r  the observed 

s p l i t t i n g  i n  Tb'. This i s  probably due t o  our s i m p l i f i e d  quas i - c lass i ca l  

f o rmu la t i on  which couples the l o c a l  sp ins t o  an e f f e c t i v e  f i e l d  produced 

by the l a t t i c e  v ib ra t ions .  A much st ronger i n t e r a c t i o n  might be produced 

i f  the conduct ion e lec t rons  mediate the i n t e r a c t i o n  between the l a t t i c e  

and the. loca.1 spins, i n  analogy t o  the s t rong i n d i r e c t  exchange i n t e r a c t i o n  

which couples the l o c a l  spins together i.n Tb. Mediat ion by i t i  nerant 5d 
. . 

e lec t rons  i s  p lausib le,  since t h e i r  l a rge  o r b i t a l  &ments can couple 

e f f e c t i v e l y  w i t h  the f i e l d  produced by the v i b r a t i n g  l a t t i c e .  




