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Magnetoelastic effects in terbium and dysprosium

Dennis Thomas Vigren

A detailed theoretical study has been made of the maénetoelastic
perturbation of th? spect}a of elementaéy spin and lattice excltations in
Tb and Dy metals. The theory was formulated on the basis of an inter-
action formed from bilinear products of local spin and strain functionso
Previous ad hoc models appear in certain limits of the theory, giving a
coherence to the theoretical picture of magnefoelastic.coupling° It is
found that uniform magnetostriction causes a smooth transition from '"free
lattice" to '"frozen lattice" perturbation of the magnon spectrum depending
on the wavevectof of the state.

The microwave absorption versus magnetic fieid‘épplied éloﬁg the hard
planar axis of Tb and Dy is calculated. It is found that free lattice
magnons are primérily responsible for. low frequency absorption in Th below
140 K, and'for both low and high'frequency absorption in Dy below the Curie
temperature of that r}xetél° It is shoﬁn that the transition from free to
frozen lattice behavior of the magnon spectrum is essential to the explana-

tion of existing data on the temperature dependence of absorption peak

posi tions in Tbe
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The dynamic interaction between spin.and lattice waves is defiVed,
and used to calculate the mixed-mode splittings in regions of the
Brillioun zone of TB where phonon and magnon dispersibn curves cross.
The theory predicts well'the‘splitting.which occurs where the acoustical
mégnpnland phonon branches touch, but fails to account for the sblitting

between the acoustical magnon and optical phonon branches.



‘INTRODUCTION

The rare earth metals, particularly Tb and Dy, are found to strain
considerably in the ferromagneﬁic state. ‘This distortion is roughly fwo.
orders of magnifude larger than that induced in transition metal ferro-
magnets. Straining causes changes in the cfystalliﬁé field and in the
crystal potential as seen by the éonduction electrons. These in turn cause
changes in the magnetic anisotropy and exchange coupling experienced by
the sbin system. For a particular ordered‘configuration of the spins,
the crystal tends to distort so as to minimize the free energy. Magneti-

cally induced strain is called magnetostriction, and the coupling between
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spins and strains is called the magnetoelastic interaction.

T T s

" The magnetoelastic interactién plays an }hsﬁffa;f role in determining
the order of the magnetic ground state of Dy metal. It fs also responsible
for other ground state phenomena, such as‘anomalousvthermal expansion,
and. changes in the‘elastic constants when magnetic ordering occurs. _The
interaction also has a profound effecf on the elementary exci tations of
the spin and lattice systems.
| Two adhoc models have been proposed for the way in which ferromagnetic
spin waves of Tb and Dy metals are influenced by magnetoétrictiono One
presupposes that for long wavelength excitations of the spin system the
macroscopic strain can follow at each instant of tfme the motion of the
nearly uniform spin oscillations; it is termed the ''free lattice'' model.
The other presupposes that such strains cannof follow the spin oscilla-
tions at all and that the spins Qibrate against the strain field produced

by the ground state ferromagnet; it is termed the "frozen lattice" model.



The calculeted field dependence of the long wavelength energy gap in
the magnon spectrum of ferromagnetic Tb and Dy is strikingly different for
the two models. _For the feee ]attice'moeel, the gap -can be reduced to
zero by an application of a magnetic field of suitable size aloﬁg fhe hard
planar.axis; for the frozen lattice model, the gapAis reduced to.a minimum
value which is roughly proportional to.fhevsquare reot ef the magneto-
elastic interaction. The two models have been tested experimentally using
neutron diffraction and microwave abéorption techniques. The-heutron
diffraction work and high frequency FMR substantiate the frozen lattice
model ; whereas, the low frequency microwave work can only be explained on
the basis of a free lattice model.

It is the main purpose of- thns work to calculate the magnetoelastlc
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contrlbutlon to the magnon 5pectrum, beglnnnng from first prlnC|ples, wi th
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a realistic mferoscopic pncture of the magnetoelastlc coupllngo It is
shown that the magnon states vary smoothly from free to frozen lattice
behavior depending upon the wavelength of the excitation. By lookiﬁg
carefully. into the way in which the neutrons and microwaves excite the
magnetic system, a consistent explanation of all experimental results is
attained. .

As a fﬁrther application of the microscopic model of the . magneto-

elastic coupllng, a calculatlon of magnon phonon mixing is made. The re-

PEEPERS : . N .
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sults are compared with spectrum splittings observed in Tb metal. The
mixing of acoustical or optical excitations is well explained by the

theory; but the theory does not account for the mixing of unlike modes



(eogo,. acoustical magnons with optical phonons). An alternate mechani sm

which may cause this mixing is given in the Appendix.



SURVEY OF .PAST RESEARCH ON RARE EARTH MAGNETISM

Eariy studies of the magnetic properties of solids,werevmade'on the

transition métals of the iron group as they exhibit strong ferfomagnetism
af room témperatqre. The microscopic model 6f such metals, howevér, is
qui te 66mpliCated because the wave fdnctions of4the:3d electrons which are
responsible for magnetism are neither.completely;localized on atomic sites
nor are they well deséribed by Blbéh waves. Rare earth metals,»op the
other hand, can be treated as Heisenberg ferromagnets to a first approxi-
matfono This fact has motivated extensive exﬁerimental investigation of
these metals, -despite their typically low ordering tempérétures.

A géod model for rare earth metals consists of a lattice of tri-
posifive ions immersed in a sea of 6s and 5d conduction electrons. The
tri-positive iéns have an unfilled 4f shefl which gives rise té a net
magnetic moment localized on the ions. The magnetic moments approximate
closely the free ion value predicted by Hund's rule. This is due to the
fact that:4f wavefunctions on neighboring ion sites do not overlap because
the 4f electrons are buried deep in .the atomic core and are shielded from
neighboring ions by filled 5s and 5p shells. “Since there is negligible Lf
overlap between ions, direct exchange coup]ing‘of the local moments is
insignificant. Rather, pfdered states are produced by an indirect exchange
process. The Lf electrons couple to the conduction electrons by Coulombic
exchange. . Treating this exchange‘interaction as a pertubation, a’
Heisenberg exchange interaction between local moments is obtained in

second order.



An improvement on this basic model of ra?é earth magﬁetism takes
accduné ofltﬁelmagnetic anisotropy experienced by the local moments. Such
anisotropy ariﬁes from the interaction of the momenfs with-tﬁe crystalline
electric field, or with local strai»n‘fielldso The latter type of coupling
is called the magnetoelastic interaction, and the bulk of this treatise |
will be concerned with its description and consequences.

The heavy rare‘earths (ioe;, those whose Lf shell is half or more tﬁan
half full) possess the hexagonal close-pack structure. Although the hecp
structure is not simple, it is far simpler than symmetries:exhibifed by
the Iight rare earths. Aiso,.g comparisoh of magnetfc behavior among the
heavy raré'earths is facilitated by the fact that they have the same
lattice point group symmetry. These facts havevmade them the prfmary
object. of investigation. An intensive study of the ground state magnetic
sfructure of the heavy rare earths was made in 1961 by the Oék Ridgev
Nationai Labératory by neutron dfffraction methods in which spiral, cone,
as wéll as other exotic spin structures were discovered (M.

Tb and Dy were found to have a particularly%;%mple planar spiral -
periodicity along the hexagonal axis. The ionic momenfs, confined to the
basal plane by strong axial crystal field anisotropy, are»aliéned ferro--
magnetically within a given hexagonal plane. The diréction.of planar
alignment rotates as a function of position along the hexagonal axf; pro-
ducing a spiral structure. .In addition to the simplicity of the periodic
order, ‘these metals exhibip a traﬁsition té simple ferromagne;ism which
make them very useful in the study of the mechanisms which stabilize a

particular spin structure.



‘Periodic magnéficlstructureg arise because the'indfrect‘éxchange
coupling Jij between spins §i and §} is a long-range,‘qscillatory'functioﬁ
6f‘the spin separation (2). TheAstable gbin cénfighration is fhat~whiéh |
minimizes the free energy. In température regions wheré the exéhaﬁge
energy_fs the dominant term in the freé énergy, it may be'shown (3) tha;
the energy of a magnetfc structure with periodicity'a is proportional fév
-x(d), the generalized susceptibility. The quanfity x(a) représents_thé
linear respoﬁse of the conductién électroﬁs to the effective Magnetic
field of the ionic moments, and can be expressed in. terms of the con-

duction .electron energy bands, €1 in a Bravais lattice as follows (4):

1 fﬁnj(l - fE + g+ n;)
x@) =y z [

K,nn' SR+3+3 n - CSkn o

Qberevn.ana n' afe band indices,.E is theAreduced wavevector of the
-électrbﬁs; d' is a-reciprocal lattice vector necessary to put R + @ into
the'fifﬁt Brillioun zone, fen are the Fermi-Dirac distribution functions,
aqd N is the number of.atohs in‘the‘lattice. Realistic band calculations
have beenfperformed on the heavy rare earths, and wavevectors which'maxf-
mfze the generalized susceptability are shown to correspond fo the wave-
vectors of the observed ground state-magnetic order in Gd, DQ, Er, and'.
Lu (5).

Enz (6) originally proposed an e*planation of the spiral to ferro-
magnetic order transition observed in Dy at 87 K on thé basis of an energy

balance between the total exchange energy which favors a spiral spin



structure:and other mechanisms which favor ferromagnetism. 'Such_mechanfsﬁs-,_
are the rather small planar anistropy in Dy and Tb (7) which.favorélalféh%
ment of moments along a preferred ér "easy'' axis in ghe basal plane, and
the magnetoelaétic interaction which also favors ferromagﬁetismo THe
' transition should then occur at a temperature where the compefing enérgies
are equai° TheAtemperature dependence of tHe planar ahisotroby:and of ;He
magnetoelastic energy was first predicted theoretically (8;9) and subseél
quently measurgd (7,10,11). Analysis of these results shows clearly that
it is the magnetoelastic energy which competes effectively with the §x¢
changé interaction in Dy in the region of the Curié temperatufe, and which
'precfpifates the transition to %erromagnetism (5). |

Thus, from a decade of experimental and theoretfcal effort, a ratﬁer
'clear picture of the ground stéte magnetism of the heavy raré earths'has_l
" emerged. Tﬁe next logical step was to study the excited states (spiH‘ 
waQe;) of tﬁése pfdered gyétémé;' A sﬁfﬁ.wave éxcitatidh is juét a nafufal
mode of wibratidﬁ,of the Sbin sYétem‘éEéﬁt 7ts equiiibridm.éonfigurétiOn,
The term !'magnon'' denotes a quantum of the spin wave field..

Cooper, Elliott, Nettef, and Suhl (12) éeriyéa'the'Spectrum,AE(a);‘
‘éf ferromagnetic magnons using a model ih_which the spins were codple& by
exchange, and interacted indiVEQUally with the crystal field and an ex-.
ternally applied magnetic field, H. - For Tb and Dy metals with H applied
.in the '*hard" planar direction; they predicted that,thé exchange inter-
action was responsible for the.dispersion of E, énd that a magnetic
anisotropy qf érystql field origin gave ri;e to a gap at zero wavevector

A which éou[d be»feduced to zeré'upon apbliéation of a magnetfc field of



appropriate sfrength.
The theory of C(ooper et al. neglects any effects of the magnetoelaﬁ?

tic interaction which was found to be so important in the understanding

of groﬁnd state magnetic ordering. |If one assumes a ''free lattice' model
~for the spin-strain coupling, neglect of thé.lowest order magnetoelastic
terms (i.e., those terms quadratic in the components of magnetic moment)

is justifiable. Such terms are invariant to a rétatfoh'of tHe hagneti-
zation in the basal blane° In Tb and Dy the spin oscillations are confiﬁed
;o this plane by strong axial anisotropy. 'Therefére, in the event that

the macrdscopic strain field can adjust freely to the spin motion (i.e.,
free lattice model), no magnetoelastic eneréy arising from lowest order
coupling js sbent to exéite_the spin system. - Cooper (lé) later calculated
the effects of second order maénetoelastic terms in the frée lattice

model (i.ce., terms of fourth power in the components of magnetization and
possessing hexagonal symmetry). He again fouhd thag magnetic anisotropy
gave rise to a zero field gap which could be reduced to zero by the
application.of "an appropriate magnetic field. |In this case, however, the
magnetic anisotropy in the basal plane arosé from a combination of crystal
field and second order magnetoelastic effects. ,

In 1966 Turov and Shavrov (lhj predfcted thatAa large contribution

to the magnon gap was possible from the lowest order magnetoelastic
coupling terms under the assumption of a ''frozen lattice.'" A frozen
lattice is one which cannot respond at all to the spin oscillations in an
excited state. In this case, the spins vibrate against the macroscopic

strain field produced by the ground state ferromagnetism, creating



magnetoelastic e%ergy, and giving rise to a gap of magnétoela#tic‘origin.‘

| Cooper (13) calculated the magnon spectrum under -the assumptioﬁ of
such a frozen lattice, and applied the results to Tb and Dy. He found
that the magnetoelastic interactionvméde a sizable contribution to the gap.
He calculated the behavior of the gap in an applied field, and féund that
the.gap could not be reduced to zero by application of a field.in,the hard
planar diréction° Instead, the gap dips to a minimum value which ‘is
-roughly propor tional to the squaré root of the magnetoelastic energye
Thus,. Cooper's calculations predicted a radical difference in the applied .
field behavior of the magnon gap befween'the frozen and the free latgice
models. ' |

Much experimental interest wa§ creéted by the theoretical speculations

and calculations, and numerous(microwave ferromagnetic resonance. studies
were performed on Tb and Dy to ascertain whether the frozen or free Iattice
model was correct. One method was to measure the temperature‘dependence
of the gap in zero field, since the temperature dependence of the crystal
‘anisotropy. and magnetoelastic terms are well known. This was done by
Marsh and Sievers (15) who found that both'the free and frozen lattice
ﬁodels fit thefr:data well, although the frozen lattice model fits

slightly better.

A measurement of the applied field behavior of the gap is a much more
conclusive test of the proposed models. Suchﬁmeasureﬁents on Tb and Dy
metals were performed by Bagguley and Liesegang (16), Rossol (17,18), Wagner
and étanford (19,20) and Hart ana Stanford (21) using ferromagnetic resonance

techniques, A variable dc field is applied in the hard planar direction
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and a fixed miérowéve'frequency phéton beam is ‘incident normal to the .
surface of the metal. As the applied field is increased, the uniform

mode spin wave dips and then increase_s° Sfréng coupling of the photons
:to-the spin waves océurs wheﬁ the frequencies.are eduai. Microwave
energies %ar below the zeré field spin waQe gap are used so ;hat if,E(O)A
dfps‘to iérb; aﬁd thé %ree lattice model is valid,lihen~§trong'§nfre$§ﬁaﬁce
absorption of the photdnsAshqulg océur.at‘some ffeld; whereas? if»;he 9ap
cannot be reduced to the verf low microwave energies, and fhe'frozen |
‘lattice model is valid, one should see only bfoad off—resqngnce absorption
over a cohéiderable range of the applied field. This off—regonanée ab-
sorption is possible only because the‘magnon spectrum is broadened'allow-
ihg spin waves in the tail of tHe.éﬁergy dist(iﬁﬁtion‘tp-;ogpie'to the

“microwaves.

‘Bagguley énd Liesegaﬁg measuré stfbng absorption of 1.8 K and Q.§S>K
miérowaves inTb and Dy. The absorption is charactérized’by a sharp in-
creaée which might be expected in the case of on-resonance absorption,

. foilowed by a long tail spanning many kilo-Oersteds of field. The tail is
.chéracteristic of broad off=resonance absorption. Rossol did aAVer de-
'tailed ihvestigatfoh oF-Dy‘wfth 1.8 K microwaves. Wégner studied bofh Tb
and Dy using 0.45 K and 4.5 K>radiafion. ‘Thé 6bsefvations of these wofkers
‘agreed essentfallyAwith those of Bagguley and Liesegang. Théloﬁéervation
~of strong and sudden absorption of 0.45 K and 1.8 K photons cannot be
understood using a frozen lafticé model which ihplies only of f-resonance
absorption at these low driving frequencies. THe profile of such ab-

sorption would be very_broéd'andﬁflat'with no SUddenAcﬁange in slope,
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quite unlike the observed profiles (16,17,20,21). Thus, low frequency

FMR results seem to argue against the applicability of a frozen lattice.
Other microwave experiments (f9) at ﬁigher frequencies (4.5 K) éhow a
temperature dependence of the resonance field in agfeement.with the frozen
tattice modelo. At theée higher frequencies, on-resonance absorption is
possible even if the lattice is frozen.

Recently, Mackintosh (22) in a neutron diffraction study of the
magnon gap of Tb in an appliéd field obtains excellent agreement with the
predictions of the frozen lattice model. He not only reports that the
energy gap ;ould not be reduced to zero'upon application of a strong field
ih‘the hard planar direction of ferromagnetic Tb, but a]so that the field
dependence of tHe gap agreés with_the‘frozen'lattfée theory over a large‘
temperature range. | |

‘Thus, one is confrontéd wi th éXperimental obéeryatidh; whicﬁ éppeér
tO'belcgntradfctory. ‘Neﬁtroh diffraction reéults cléarly eonclude_that
the Iafticé,js frozen. High frequency regonancé absorption also indicates
a frozen lattice; but Iow‘frequency'resohance absorption cannot be ex-
pléined unless the lattice is free. It is'un?easoﬁablé to believe that a
crystal can respond totally to a frequency of 40 GHz (1.8 K), but nét at
all to a frequency tWicg as_greate |

in thfs work the spin-wave spectrum i; studied, assuming that spins
aré.céupled1localfy to their strain environﬁentso Thus, 60 a priori
assumption is made as to whether the macroscopic strains are free or
frozen. The rgsulting spectrum is showntto vary. continousiy from free

to frozen lattice behavior depending on the wavevector of the magnon. A



A consistent understanding of all existing spin-wave data can be
attained by considering in detail the spin disturbance created in a

particular experiment, and to what extent the various magnon states are .

popul ated.
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THE MAGNETOELASTIC INTERACTION

Spin-latti;e coupling arises because the magnetic interactions are
sensi tive to the ionic poéitions, and so are modulated by distortions of
the crystal. for a given ordered spin state the energy difference between
the strained and ungtrained Iattice.islcalléd the magnétoelastic energyf‘

A net stfain (magnetostriction) will always result ff the magnetic system
is orderedo. Since the spin-lattice coupling méchanisms are varied and
complex, a phenomenological approach is used in which the general form of
fhe iﬁteraction is written down with coupling‘coefficienté to be determined
experimental)y; |

Callen and Callen. (9) imposed symmetry and simplicity conditions on
the form of such an interaction. They required i; to be linear in the’

. Straiﬁ §ompdnents since the ﬁagﬁetostrictionAfs quite small qompared:to
crystal dimensions. Since terms linear in the spin combonents woﬁld not
be time reversal invariant, they coupled the str;in components to spin
functions quadratic in the spip‘;omponénts. Siﬁce the Hamiltonian must be
invariant under operations of_thé'crystal point group, linear combinations
of fhe Cartesian components of spin and strain are taken in order to form
basis functions of the irreducible representations of the crystal point
group. Callen and Callen treat the ;trains as classical quantities
andvassyme:them to be uniform. The spin functions involve spin componenfs
on either one or two sites and are térmed 1-ion or 2-ion spin functions,
respectively. The l-iop interactions describe strain modulation of the

interaction of individual spins with their local environments (e.g., the
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crystalline electric field or applied magnetic field); the 2-ion inter-
actions describe strain modulation of the interaction between spin pairs
(e« go, Heisenberg exchange or.dipole-dipole‘couplihg). The phenomenologi-

cal magnetoelastic Hamiltonian may then be written as a sum of l-ion and

2-ion terms (9):

s H ..
Ho=-tx z Bzl s
fr gt |
o o
-5 D Dr., (f,9) § E?J S?J (f,9) . - m
(f,q) T jj' i ' :

Here f,qg afe position indices, T Iasels thé irreduciblé repregentationé of
the crystal point gréup, i specifies the basis set of the representation,
j-and J' are used if more than bne'baSisvset'carries the rebresentation,
€'s are linear combinations of uniform strain tompénents, S(f) and S(f,g)
are the 1-ion and 2-ion spin functions, and B(f) and D(f,g) are the I-ion
and 2-ion magnetoelastic coupling coefficients. Note that other terms of
higHer degree in the spin components may be included, but they are of
higher order than those written in Eqﬁatidn (1) (23,24). The tdtal elastic

Hami l tonian is then:

. -
Cr ' 1?', E]:‘J ’ (2)

where the c's are the elastic constants.

The coupling coefficients B and D are determined experimentally.
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82,

LO

in a direction specified by direction cosines (Bxﬁyﬁz). Thenfif‘gu\jare

~ Suppose is the fractional change in length of the crystal measured

the equilibrium Cartesian components of strain in the presence of magnetic

~order, it can be shown (25) that:

= = € _BHB' ° T 3)

The equilibrium strains Eu\; are determined by minimizing the quantum -
statistical average of the total elastic Hamiltonian He with respect to
the strain components. For the case of hexagonal symmetry, substitution

of the equilibrium strains into Equation (3) yields (9):

54 ' )
o l.a 1 o .2 1 2 1 a2 _1
% x” s 35 M @ - 3) +ay 6 3)-+f3x22 @, - 3)

2 l y ol 2 2.2 2 ‘
B, -3)+ 27 L5 @ -c)6, -8+ aappl +

zhe(aaafz ao BB, ). | (4)
The xgj,’s are called magnetostriction constants and contain the}tempera-
ture independent magnetoelastic coupling coefficients B and D (Tinearly),
the elastic constants, and the temperathe dependentAquantum statistical
spin averages. The vector «xx,ay,az) defines the direction of the
magnetization and should not be confused with the Q-representations of the

hexagonal point group. The irreducible representations of the hexégonal

[y
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group, their dimensions, and their basis functions are summarized in

Table 1.

Table 1. Irreducible representations of the hexagonal group, their
dimensions, and their basis functions '

Irrep Dimension ' Basis Functions

. . 2 2 2

al : 1 X +y +z

‘az | ‘| s Jj ,(ZZ i lrz)
2 3
[ 2 2

7 2 7 (X7 = y7), xy
€ 2 Xz, YyzZ

The magnetostriction constants are measured experimentally by repeated use
of Equation (4) with aifferent sets @, B). Typically @ is varied by
.application of an external field and (B) by the use of strain gauges
affixed.to the sample at different orientafidns relative tQ the crys;al
axes. The coupling coefficients can be extracted from the zero tempera-
ture limit of the magnetostriction constants, and the témperature
dependence of'the'magnetoelastic energy is contained in fhem;

Callen and Callen (26) have derived an essentially model independent
temperature and field renormalization for spin averages of the l-ion f?pe.
If one lets ¢ denote the degree of the spin operator to be averaged, then

thé'ratio of the average at temperature T and field H to that at zero tem-

- A

perature and field is equal to l&+l (x) where | is the ratio of the

1 (x)
2 Ly



hyperbolic Bessel function of order ¢ + % to that of order 3, and x is

29
the inverse Langevin function of the reduced magnetization g. ‘That is,

o (T,H) = coth_x - f/x. Experimentally, in Tb and Dy the behavior of the
magnetostrfction constants are predicted well by the l-ion temperature
theory with the exception of t?l and fgl which are quite small (27). .The
temﬁerature dependence of 2-ion averages has been worked out using a two-
spin cluster theory with nearest and next-nearest neighbor exchange (28).
This theory applies well to euroéium chalcogenides (eog._Euo and EuS) in
which the exchange coupling is short ranged, but is . not applicable to

rare earth ferromagnets in which the exchange is long ranged. In appli-
cations with Tb and.Dy below, it is assumed that the magnetoelastic energy
isldescribed well by the l-ion temperature theory.

The formalism of Callen and Cgllen, successful as it was in treating
the thermélly averaged aspects of magnetoelastic coupliﬁg in ferromagnets,
is not'sufficiently general to describe such céupling in antiferromagnets
where the .maghetostriction is non-uniform. |n the description of dynamic
épin-lattice coupling their formalism is also totally iﬁadequate because
it treats the strains as classical and spacially uniform, and therefore-
precludes a calculation of the magnon-phonoﬁ mi xing.

Evenson and Liu (5) generalized the formalism of Callen and Callen
by coupling the local spin functions to local strain function§° The

Cartesian components of these local strains are defined as follows:

)(xf - X ):

g

eXX (f:g) = (Xf - xg

By (F28) =3 L0 = XD (yg = v ) + (Ve = Y0) bxg = x))], (5)
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and similariy for the other 2-ion Cartesian components. Here ﬁf =
(Xf,Yf,Zf)‘is the position vector of the fﬁh jon in the unstrained A
crystal; Ff = (xf,yf,zf) is the displacement of the f£h ion from its
unstrained position. In applicatibns to Dy and Tb, the z-axis of the
Cartesian coordinates is taken -along the crystal c;axis, and the x-axis
'ié takgn along the easy planar direction. The:l-ion strains are defined
simply by contraction on one of the position indices: €(f) = & (f,q).
lThe strain functions are defined according to conditions of sgmmetry and
simplicity. They are chosen to .be lipear in the compoﬁents of displace-
ment, symmetric under interchange of site labels, and to form a 3 x 3
symmetric matrix.
Thevlocal magnetoelastic fntéractioh is then represented by the

followihg Hami 1 tonian:

. ; it
H o =-x ¢ 5 8L, (f) &3 (f) st (f)
me f T Jj ;o i
- " . .
T Tz 0T (F,0) £ & (f,9) sP) (Fa) . (6)
-At,9) T JJ !

This Hamiltonian allows for the.coupling of spins to thé local distortions
of the crystal. It reduces to the Hamilfonian of Callen ahd‘Callen when
the spins a}e ferromagnetically aligned; and such a reduction establishes
the relat}on betwéen the coupling coefficientiof the two theories (5).
Evenson and Liu used the local magnetoelastic coupling theory to
compute the Way'in which a lattice distorts in the presence of a helical

spin structure. They found that the bulk of the lattice remains unstrained
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aﬁd that iocai,‘periodic Histortion of the Iattice;peksists only withfn
‘a surface layer of the crystal. This effect is termed ''lattice clamping"
and wés first recogniied by Cooper-(29)°' The.thickﬁess of the surface |
layer- in which local IatticeAdistorfion is possible is proportional to -
the spacial periodicity of the spin alignment. The clamping effectAQas
'e%periﬁental]yvverified in_Dy which shows an orthorhombic distortion in
the ferromagnetic phase (30), but no such distortion in the helicalvphaseo
It é]sq reduces the negative elastic free energy ih‘the helical phase of
Dy, making the ferromagnetic state elastically more stable, and finally

precipitating a transition at the Curie temperature (5).
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FERROMAGNETIC SPIN WAVES IN Tb AND Dy METALS

The Lonngavelengfh Spectrum at Zero Temperature and Field

The displacements Ff which appear in the local strain functions con-
sist of two parts. One gives rise to magnetostriction produced by the
spin order;'ﬁﬁe other gives rise to normal modes of'vibration about the
strained equilibrium positions. In this section we treat the effect bf
' the magnetostriction, which shifts the magnon energy spectrum.' In a
later section we £reat the coupling of spin and lattice vibrational modes
in the production of mixed mode states. lnAtreating the effects of
magnetostriction we initially assume that the létticé is'infinite, and
fhat the crystal is capable of responding so as to produce macroscopic
strains‘that minimize theAelastic'energy. ‘Later we refine the theory so
as to account for.finite crystal dimensions and a limited response time.

The clamping effect described in the last section is éssential‘to
understanding the way in which magnetostriction affects the spin wave
energies. When a spin precesses about its equilibrium~posit{on, it tends
to drag the lattice distortion with it. . For a spin wave of,{nfinite wave-
Iéngth, the i;ftice distortlons OfAéii ﬁnit cel|§ move.fn-phaée; So that
they add up to a macroscopic sfrain which follows the precession'of the
magnetization. Clearly, the strain configuratioh relative to the magneti-
zation directipn is identical at each instant of time to that of the
ground state ferromagnet. That isuto say, it costs no magnetoelastic
energy to excite the spin system, and the energy gap athzerp wavevector:

is due solely to the magnetic anfsotropy‘produted by the crystal field.

8
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This situation corresponds to a free lattice model for the maénetoelastic
coupling. In the event that a spin wave of finite wavelengfh is excited,
the periodic spin component induces only a periodic distortion at the
surface of the crystal. For a wavelength equal to the thickness of the
crystal, ;he penetration of the distortion is complete. For some shorter
wavelgngth; however, the distortion is suffic}ently confined to the sur-
face of the crystal so.that the bulk strain is . induced by the ferroﬁagnetic
spin component. This volume sfrain is esgentially the same as that pfo-
duced by the ground'state magnetization, and is constant ih.time. The
spins nbw oscillate about this fixed strain éxié creating magnetoelastic
free energy and giving rise to a magnetoelastic contribution to the energy
gape This situation corresponds to the frozen lattice model. Thus, the
lattice behévior varies from free to frozen lattice within a very small
range of;ﬁ; where g is the wavevector of the magnons. Under the assumption
of éﬁ infinitely large specimen, this rapid variation results in a dis-
continuity fn the mégnon.spectruﬁ from g = 0 to a = 0+, where § = 0 is
 taken to mean the shortest finite magnon wavevector as determined by the
inverse dimensions of the specimen.

This discontinuity is now calculated quantitatively for. Tb and Dy
which have the hexagonal close;packed structure (hcp). Since the mag-
netostrictfon arises from the ferromagnetically aligned components'of the

spins, we have the following reduction of the local strains (5):

r _ 2 T r _xr 2
e (f) = 4a e , BJ.J..l (f) Bjj,/ha o
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where el is the usual uniform strain teﬁsor, a is the hcb lattice parém-
eter, and B is the coupling ééefficient in Callén and-Callen notation.

The 1-ion part of Hﬁe is applied to the 7, é, aﬁd a2 irreducible representa-
tions of the hcp point group, énd the‘Z-ion part is applied to al (10). The
sum on g is taken over‘ﬁearest neighbors only, and the coefficfents 8" and
Dr are assumed to be independent of atomic site. FEom the qﬁadratic form
of the elastic energy density and the general form of Equation (6), the

y-terms in the strain dependent Hami l tonian are:

Y
H = E [(617) + (627)2] + B b)) (ely S 7 +e.” s

Y4
. +e )
r OF1 2

f2 7 °
Minimizing this with respect to the strain components, we obtain :

Y (87) 4 4 4 4
H = - . (s Sevq/ + S Seen )
2_C7 e fl f l‘ fZ‘ .f 2
The ‘spin functions are transformed to a coordinate system (g;rbg) in which

¢ is along the equilibrium spin direction:

Y L eal »
St =7 (65657 - (57,
y _ 1 '
Sty = 3 (s%.sp + sp s%).

Applying the Holstein-Primakoff transformation in the small spin deviation

approximation, we find:

7

S |
sty=n @s-1+atatvaas C6ata),

y _Vis_ i
Sk = 7 S(ep - %
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Now Fourier transforming the magnon operators and summing over lattice

sites, we obtain:

y _ _S(2s - 1)N

S -
% Sf:] = L + 2 jqé (‘Ta' 6nao):

T 512 -SVNS i(aU.- aUT), where

f
T—oEa—oTa—OT'{"a—oa#

T3 - -8

na = aa.f aa, and g is the wavevector of the magnon.

In the last step'we confine § to the first Brillouin zone. Here N is the

number of atoms in the crystal. Then .we have:

2 .
Y 2 Ny 2 3 - -
H7 = M_ (25 - |) 5 (6n_' - Tﬁ) - M (zno - TO)’ (7)
8C7 a ) q q 2C7 |

where we keep only second order magnon terms. In an exactly similar manner

we obtain:

H = - (2ng + 7y)- o (8)

In treating the Q-representation we let (6§ , 6§ , 6_) be the nearest neigh-
x Ty’ Yz

bor position vector. Then the uniform part of the local strain is:

al 2 . 2 2
& fs 6x € xx * 6y eyy * 82 €22 * 26x‘syexy * 26xézexz * 26yézeyz’
a2 3. 2 1 ol
Prs = 2 (6y62€2y + 5yaz €y +6,€,, "3 8fa)‘
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Here we used the uniform strain part of the local displacement. Now we

. transform from Cartesian components to basis functions of the @ repre-

éeﬁtation:
al _ gfl - s €a2,
s~ %0 3 T
6 f5 - 62 6 6] 6/'3 °

Here we use the notation:

_ 2,62 g2
8g =8 * 6+ 6,

o
e
n

2 2 2
= 5, + 6y“— 262 »

o
i

2 2 2
6x + 6y + haz g
The @2 term is of the '‘one-ion'' type so summation over the nearest neigh-

bors using the hcp geometry gives the expected reduction:

.8'%2 - l+a2 eaz.

Computing the spin functions we obtain: -

al 2

E'S f5 = NS~ = 45v§ ng (1 - cosq ° %)
q .
| 2
a2 NS J3s
LS, =~ + T (2n, + 75)0
7% TTan T, FUTTe

Substitution of the spin and strain functions into the-elastic Hamiltonian,

summation over nearest neighbors in the two-ion Hamiltonian, and



- 25

minimization with fespect to the strain components yield to secbnd order

in the boson operators:

=A% l‘A o ' |
Ha"Aq”q*qu ¢ . C(9)
where
a 3 12 12 22 o~ 22y
A = -V [—— (Byy =T + (B,, - =)
+ NS [ @&, - b y (@8, + By1 )y G - B), VR + 23 B | '
: 27 11 2:73 g 11 ./3 S0y 21 —_2\/—3 21 -”

B B B B

a 3. 12~ 12 22 22

B = = \/— NS —-—=(B - + B -

q 3 ‘ [ C”. ( 11 2f3 ) C22 ( 21 2]3 )]:

‘where c is the hcp Iattice pérameter, and the subscripted c's refer to theA
elastic cénstants.of the o rgpresentatidn. Here we have assumed @ = qg,
and will éonsider only magnon -propagation in this d}rection throughout the
remainder of this manuscript. THe'cosine dependent term is a direcﬁ'COnse-
quence of the two-ion nature of the ¢l representation. It arises from

the fully symmetric magnetoelastfc term, . and so contributes a terﬁ jn the
total Haﬁiftonian identical fn form to the Heisenberg exchange term. Wé
have calculated the numerical value of the term using the data of Rhyne

and Legvold (31), and find that it accounts for less than 10% of the
magnitqde of (Jq - JO) deduced-from-the spin wave data in the region of

small gq. Here Jq refers to the Fourier transform of the exchange energy.
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Insufficient magnetostriction data were availabfe on Dy metal to do a
similar analysis, but 6ne would expéct a result similar toufhat of Tb.
fhﬁs; it seems safe foiﬁeglect the two-ion magnetoeiastic interéctioh
in the extfaction'éf J from the spin wave spectfum of these’metals.

A Using the Equationé (7), (8), and (9) and the ?ésults of'Coopér (13)
in treéting the magnetic anisotropy terms in the spin Hamiltoniéh, we may

write a partial Hami 1 tonian for magnons propagating along the c-axis as

. ] » '
HmA— 2 [Aqnq *+ 28, Tq], (10)

where the sum is over wavevectors along the hexagonal axis in reciprocal

space, and ' 6.5 me
Aq zs(J0 - Jq) = PyS - 21 P § + Aq E

il

_' 6.5 ‘me -
P,S + 15 P6 S+ Bq .

By )

6 ‘ '
Here P6 and P2 are the six-fold and two-fold anisotropy. constants, respec-

tivelye The magnetoelastic terms are:

>
l

me 3¢ ()% _ [cy()\y)2 Ce(Ke)z] B0 * A @

q LNS 2Ns T T 2Ns 0 q’

2 €,€,2 2 :
g™ _ . ) L0 JaNT, , sa
q LNS - 2NS " 2NS q0 2
where AF are the conventional temperature dependent magnetostriction

- constants defined by Callen and Callen (9). The Kroneker delta is written
to indicate that these terms appear only when q Is identically zero.

The Hamiltonian Hm may be diagonalized by a transformation to new
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boson operators and the energy spectrum of magndns witH wavevectors
G = qc is given by:
1/2°
E( = A + B A -8B .
@ = [ + 8) (A, - 8)]

Let

i
L1
>
+
@

In the limit of long wavelengths we must distinguish two cases:

1. At q=0, :
‘ 2

2 2 ( |

_ Cy()\y) . Ce (2\6) _.[3 {C [)\ \ . \Xlz) ]

4, 2NS NS NS PenithiihMiz T L0
)
| 0,,)

+ cppligrgg - "'}73——']}’

A_ = O.
+

20 Atq=0,

o)’ V3o (x,z)2 _
8, = 7w "W fenbame -
, 23
2
- (A9o)
227
+ cgplagprgy - o3 e

A = cy.()\y)z/NS°

The 7 terms in case 2 are identically the results of Cooper's frozen

-4

lattice calculation (13). (Cooper's expression for B" in terms of xy
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should be multiplied by factor.2/3.) In case I, A_ is identically zero so
that the magnetoelastic coupling has little effect on the spin wave
spectrum except through o, which appears in the factor with axial aniso-
tropy. So case | agrees with the free lattice model which predicts

negligible magnetoelastic perturbation of the magnon energiés°

Table 2. Ehergy gaps for Tb at T =0 K and Dy at T = 78 K

Metal E(0) E(0")
b k.0 K 19.4 K
Dy 6.8 K o 10.2 K

The numerical values of E(0) énd E(0+) a?e given in Table 2 for Tb
and Dy. In calculatiné these values, the data of Fisher and Dever (32)
were used fér the elastic constants, and the data of DeSavage aﬁd Clark
(10) and Rhyne aﬁd Legvold (31) were used for the magnetostriction con-
stants of Tb. The magnetostriction constants of Dy were taken from the
data of Clark et al. (11). The free lattice gap is smaller than the
frozen lattice gab as expected, and the discontinuity is quite significant
in both metals. |t shpuld be remembered that this discontinuify is arti-
ficial due to the assumption of an infinite lattice; and that for a lattice
of finite dimension there is a sméoth transftion from free to frozen
lattice behavior as the magnon wavevector increases from zero.

In analyzing the data of neutron diffraction and ferromagnetic reso-

nance, it is important to see which way the lattice behaves in the presence
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of the magnefic disturbance created by the neutron or photon probes. An
important consideration is over what macroscopic distance the uniform
magnetostriction, which minimizes the instantaneous éiastic energy, can be
realized by the crystal. Since strain is a differential quantity, the
deformation at any interior point T depends on the deformation of the
surface atoms and fts distance from iheisurféce. Such information is
carried from the surface with a velocity of 106 cm/sec in Tb‘(the speed

of sound). Microwave and neutron diffraction experimeﬁts typically excite
magnbns of frequency 10]o cycles/sec so that only atoms within a distance
of 10+“AR of the surface can receive this information and can distort in
accordance with the equilibrium strains. Thus, if the probe which creates
the spin disturbance penetrates deeply into the crystal, as in the case of
neutfon diffraction, the bulk of the lattice cannot respond and. remains
frozeﬁ° Thus, one excites frozen lattice magnons in a neutron diffraction
experiment. In ferromagnetic resonance on metals, hgwever, fhe ﬁhotons
can only penetrate the surface a distance d called the radiation skin
depth. In Tb and Dy fhis is about IOI+ R for 10 GHz radiation so that
macroscopic strains are easily formed in the region where the microwaves
couple to the sbin system, making free lattice behavior possible. It will
be shown in a later section that the free lattice magnons.afe essential in
the interpretation of microwave absorption experiments in which a large'
dc magnetic field is applied along the hard axis in the basal plane of a

hexagonal close-packed metal.
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‘The Long Wavelength Magnon Spectrum at Finite Temperature and Field

The temperature renormalization of the spin-wave.spectrum is easilf
accomplished using the 'one-ion'' theory of Callen and Callen (9;26)
described above. The magnetoélastic terms are renormalized according to
(?5/2)2, whére the function YS/Z is a reduced hyperbolic Bessel Fuﬁctfpn,'
whose argument is the inverse Langevin function of the relative magneti-
zation. This renormalization is not quite correct since thé'al repreﬁenta-
tion should be renormalized according to a “twofién” scheme. However,
the al representation‘contributes only a small term go thé factor in
Equation (10) containing the Iargé axial anisotropy term,A-ZPZS, so that
the result isvhegligibly affected by this error. The temperature re;
normalization of the planar anisotropy depends on the-érigin of this
anisotropy. Recent neutron diffraction work by Mackintosh (22) showed
that vfrtqally-all the planar anisdtrqpy of Tb metal arises from hexa-"
gonally symmetric second order magnetostriction. Thus the renormalization
_should be 79/2 ?5/2 (13,9,25). In Dy metal, however, one might expect
that the crystal field is more important in producing the anisotropy since
Dy fons have a higher orbital angular momentum than Tb ions, and hence
are capable of stronger interaction with.the crystal fields We assume
that the planar anisotropy of Dy arises solely from the crystal field
interaction, and use the renormalization 113/2 (9,26), Then using an
oblate'spheroid geometry for the samples, we can generalize Equation (10)

to the case of finite field and temperature (13):
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~

I g '
5/2

E(@~ 0) = {[-2P,$

] 6.5 AT -
- 6P6 S” cos 6 8 'f3/2 o}

+ gug (H+ bz - D M) cos (% - 8)

2

, ]
Ay Y572

; -1 6.5 - - -
+ o | [-36P6 s° co§ 6 6 l]3/2_q '

~ 2 -1 2 -
+ gug H cos (% - 8) +a_ '5/2 o ]}]/ - .(ll)

The equation is written for Dy metal. In the case of Tb we make the-ke-

Y

placement | in Equation (1!) and all related formulae.

1372 = 'os2 152
Dx’iS'a demagnetization factor, M is the net magnetization, g is the rgla-
tive magnetization, and 8 is the angle between M and the easy axis in the
basal plane. The angle 6 is>implicitly a function of the appiied field,
and is given as a solution to the transcendental equation (17):

sin 6 8 gug H

6 sin (% - 9) 3696655713/2 o

The H that appears here and in Equation (11) is the external field. The
relevant hyperbolic Bessel functions were evaluated in closed form using
the recursion formulae found in the NBS Table of Functions. The final

expressions used were:

A _ -'ig .
'5/2(2) =1 - )
lgy2(2) = 1+ 2+ 1B _(coth 2) 2+ 1%,
z z z
~ _ 210 4725 10395 _ 21 1260 10395
|]3/2(z) = (1 + R e g ) =(coth 2)(Z + 3 + 3

z z z z z

).
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Here £(z) = o where § is the Langevin function.

The values of g(H,T) were taken from the isothermal magnetization
curves. of Behrendt and Legvold (33) for Dy, and of Hegland et al. (34)
for Tb. These curves were plotted against the internal field so care was

taken to convert to the external field, using the démagnetizing factors

~of an oblate spheroid.

The spin wave energies are ploﬁted against the external'fiela in~
figures 1 and 2 for Dy and Tb, respectively° The curQesIare drawn for
fields above.the domain alignment field onlys A strong dip in the free
lattice mode, E(0), occurs when the external fiéld approaches the effective
planar anisotropy fields This effective field arises from magnetoelastic |
and crystal field anisotropy in the basal piane, and is repfesented by the
applied field independent terms in the second factor under the»radical
sign in Equation (11). As the temperature increases, this effective field
decreases until it falls below the démain.alignment field of the samples
This occurs at 110 K for Dy, and at 140 K for Tb. The frozen lattice
mode, E(0+), is rather flat over most of the field sweep in the low
temperature ferromagnetic regimes of these metals. Also, this mode lies
far .above the applied microwave energies, which are‘indfcated by horizon-
tal lines in thelFigures, with the exception of a sharp drop near the
domain alignment field in Tbo Thus, at low temperatures éne expécts
frozen lattice excitations to cause a broad off-resonance absorption
spanning most of the field range with no sharp increase at the effective
planar anisotropy field. On the other hand one.expects strong on-

resonance coupling of the free lattice modes to the microwaves near the
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planar ahisotréby field. Rosgol (17) obsefvés sffong absorption of 37
GHz fadiation at'78 k,_864K, and 91 K néér the piénar anisotropy field in
Dy metal. lﬁ'é recent microwa;e stuay at 24 GHZ; Har£ and'Stanford:(zl)!
6bser9e shafp absorbtion'peaks neér the planar.anisotropy.field bgtween;
7Q K andAIQO.K‘in‘Tb metal. These'expefiménts suggest strongly that the
free.iattice magnons are responsible for loQ ffequency:ferromagnetic‘»
resonance absorption. In the next section, -a detailed calculation of
microwave absorption is made for Dy and Tb, aqd the relafive impor tance
of the free and frozen lattice magnons to this process at various fre-

quencies, temperatures, and applied fields is determined.
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CALCULATION OF FERROMAGNETIC RESONANCE ABSORPTION PEAKS

vln‘this sectiqn we calculate in détafi the m}cfowévé absbfptf&n ex;
pected in resonance experiments in which a large dc magnetic field is |
~épplié&'éiong the hard:agis in the basal plane of a hekégoﬁai_close—péCk
vmétalo‘ Typically; these are the experimeﬁts'of Bagguley, Rossol;.Wagner,
and Hart (16-21),

The experimental configuration is as sﬁown in Figure 3. fhg crys;al
is éut.SO that the ¢ direction is perpendicular to the metal surface. The,A
pHoton beam isvincident along this direcfidn° The radiation is lfhearly
. polarized fn'thé plane of ihe metal surface; and the amplitude of the wave
is damped out in a skin depth d. A dc magnefic field is aphlied along ‘the
hard crystal direétion in the basal plane, in a directioh perpeﬁdicular to
‘the polarization of the photon beam (which is taken to be in the §
direction for this calculation). The spin:system is assumed to be aligned
fully along the applied field in the ground state.

Let W, .,= probability/time of transition from state B to B', where

gp!

‘B and B! are states of the spin system. Then Wag1 = %ﬂ |% B']VlB:>|2

5(E5 - Eﬁ,+h w) as is given by the '"golden rule'' for the absorption of
quantum A ¢ from a time-dependent electromagnetic perturbation field. We

calculate W for the photon-magnon interaction in an optical pumping

pp’

experiment. The microwave magnetic field intensity inside the metal is:

-Z(]+i)/deiwt y

H = fHO e + CoCol X,

and the perturbation potential is:
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V(t)

'-Zf(l +1)/d é'mt+.c.c.]°

R [“Fx HO e
 f
Here Ef is the magnetic moment on the f$h'sjteo We assume that o;her'prdé-
esses are more favorable to magnon decay than the photon-magnon‘intér-
' action, so we only consider absorption processes. Therefore we omit the
;‘cohpTex conjugate term and obtain:

o SZ.(00 + i)/d A,
V= ? [ue, Hy e °F o )

Now .
B

B -1

Here g is gyromagnetic fatio, g is Bohr magneton, and ac is a boson spin

annihilation operator on the FEQ site. Substitution of spin deviation

operators for ey yields:

-2 (1 + i)/d
,S . f
V=§g“DHO%e (af+a_

1-
f e

Now Fourier transform the boson operators:

-z (1 + i)/d -igeR iq°R
_ f f, _t f1 /S
V—HO§§-¢ [aa.e _+aae ]ggus.
q
/7
Sumhing first over the Xf and Yf components of Rf, then over q and qy

we obtain:
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-z (1 + i)/d . -iq Z. i S
/ N f _ fo ¢t £ 1
guB Hy Z Te [aq e tage ] c
Z¢ 4 ’ z

" Here N, is the number of unit cells in the z direction, and N = N NyN .
The suppressed notation q_ =q and a =a is also used°
z ~ q 0, 0,59
Now the damping distance d << LZ the thickness of the crystalo-‘So

one may take the upper limit of the sum on Zf'as o with negligible error,

. and convert the sum to an integral:
[" gz
- 2
o ¢

c being the hcp lattice parameter. Then using Nzc = Lz’ we can write:
ﬁ gug a a- T : -
V=1 H V3 — = Tt 1. (12)
z q (q+ i i) (G-a-3

Now we make a Bogoliubov‘transformation from the boson operators_aq‘to the

magnon operators aq:

a =ua -vQo . 1
g~ “aq " Vg -q : (13)

Here uq and vq are c~-numbers and satisfy:

u = u = u
q -9 q°

V-(I\-'—-V =V °
q - -qa 'q

f]‘_

Substitution of Equation (13) into the commutation relation faq,aq =1,
and requirement that aq satisfy the boson commutation rules gives the

relation:
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cuu - vV =1 . . : (14)

The requirement that the Hamiltonian of Equation (iO)‘be diagonal in aq

_ ' t
H = ‘g E(q)AOtq Q
with . o
£(q) = r(Aq>‘Z - (sq)zlf/z ,

gives further relations among the c-numbers :

. . :':+' *=A
UgYq A q/E(q) s

2uv: =8/E(Q) . - . - o
q'a = & (q) A . (15)
Then under the transformation of Equation (13), Equation -(12) becomes:

1/2 +

. . | -1
AT |HO(SN/2) guB/LZ_Z [(u - v_q)(-q + 1/d -i/d) _aq

g @

' * . .. 1
- - d . .
+ (uq V_q )(ql+ l/q i/d) aq]

Using the Equations (14) and (15), the square of the matrix element for
the absorption of one photon, and the creation of one magnon'of wavenumber
q is: | 2 2
2 2 sn 94
+ 1|V = |H ==
(g + TIVIn1* = JHol” 5

L 2
z

(nQ,+ l)‘

ol [(%'-q)2 +sz~] (Aq+ Bq)

Here ng = [eBE(q) - l]-l, and E(q) = (EBl
wavevector q. We assume that n_ =~ KT

, q  E(a)
ture and wavevector of interest. Then the transition probability wm(q) is

- EB) is the magnon energy with

>> 1 in all regions of tempera-
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giveh by: :
' 92H2 ‘ ' 5T awy - E(q)]‘ .

Y T 2 0 : ! 1 2 .1 v
L (ag * B (G -a)" + 2

Neufrdn diffraétion‘studies show that tﬁe'magnon spectrum is broadened
somewhat at d = 0, so we will assume a Lorentzian broadening of the energY'
at fixed wavevector. To account for this in Equation (16) we make the
replacement : |

Y /n

m
[ - E(q)]2 + sz/h :

sl 2 - E(q)] -

Here 7 is the width of the magnon spectrum. Since His paraliel to the
metai surface,lit is continuous across ite Thus H0 is the amplitude of
‘Fhe incident radiation, and |H0‘2 is rglated to the element of area under
the intensfty distribution of the photons in the following way :

c c

= b = —2 Re(F x BY) = =L 2
S,y = () do =—Fg—Re(E x 8) =g— |Hy|" .

Here gav is the time-averaged Poynting vector at the metal surface, and-

Cy is the speed of light. Thus:

2 8x
|H0| = ..

< |.Go)du? .

Now assume a Lorentzian shape for the photon spéctrum:
@) = =20 [ (o5 )%+ 2]
lw = 7 .(.Dwrf ) 7ph .

Here 7ph is the width of the spectrum and mrf is the center frequency of
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the incident radiation. Making the above replacements and substitutions

in Equation (16) and integrating over all photon frequencies we obtain:

2 2 ‘
NSwg™ wg™  p [.(.1_'_ )2 . _1_2]-1 (7Eh + 7m)
g d

W(q) = -
2 2 :
oaL, ;0 | (Aq +‘Bq) 3 , o

flo o - Ea)/al” + Oph * 7m)2 ruy

The photon beam is. usually generated in a klystron tube and has a
narrow linewidths So we assume 7m >> 7pho Thén the transition rate from

state with nq'magnons to nq‘+ 1 magnons becomes :

2

N kT Y : - -
= + (5,0 - E@)/N7) '[-;-2—+(i N L R

0 .

2 2
B8NS g wg” wy ‘ ,
Here Ng = — 5 and is independent of LZ by virtue of N in

COLih

the numerator.

The transition rate to the q = 0 state is then:

2
N kTd Sy 2 - .
: T+ [w ¢ - E(O)/alz} . (17)
(Ao +B)L L .
o b4

W) =

' The total transition rate to the states g # 0 is given by:

/¢ NgkT " A
W = J dgw(q) = ——— 1, ; (18)

2n 0+ ’Zn
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where A
n/c 2 '
dq 14 - 1 -
ly= {4 _[Erf - E(Q)/h]z} '[—%-+ (l‘-- q)2]~' .
oot (Aq *-Bq) b “ ' 4 d

Equation (18) rebreéen;s the'totai absorption.by frozen lattiée magnons ;
whéreas,'Equation (17) is only proportional to the absorption by free: |
lattice magnons. To obtain the total.contEiBution éne must multiply
Equation (17) by the number of free lattice states. Using the formula

for the skin depth of periodic crystal distortion der}ved by.Evénson.and.
Liu (5), one canAestimate the number of suéh states. Taking the ;adiation
skin depth 6f.the metal to be IOA X, clamping is found to be ineffective
within this skin depth for magnons of Wapenumber less.than iO_u R -]o

This corresponds to about 103 magnon stafes afong-the hexagonal axis of
the Brillioun zéne of Tb or Dy metal (using samble dimensions typical of
publi;hed FMR work). The total absorption By free lattice magnons is

L= 100 W(0). The ihtegral I

T d

E(q) = E(0+) +‘Cq2 was -assumed in the integration. The microwave

thén.w ‘was computed nymerically, and
absorption versus external field is plotted for a varlety of temperatures
in Figurés L through 8 for Dy and Tb. These absorption curvgsAwere
normalized by taking‘the maximum absorption at each temperature equal to
unity. .The curves are drawn only for field values above the domain aligﬁ-
ment fieid-(i.e., that field necessary to align all fhe magnetic moments
ferromagnetically). Such a domain alignment field is finite even below
the Curie temperature since ferromagnetically aligned domain% tend to

align in a random fashion along the three easy axes in the basal plane.



The absorption of 10 GHz microwaves is shown in Figure 4 for Dy.
metal. The absorption profile below the Curie point (85 K) is character-
ized by a sharp rise, followed by a long asymmetric tail which persists to
very hiéh field values. Virtually allAthe absorption in the peak region--
is due to free lattiee magnhon processes.. The ratio, wT/w% is less |
than 0.2 near the peak at the three temperatures shown. Absorption proe
flles above the Curie temperature have the same characteristics as the |
90 K curve shown in the Flgureo"ln this curve.the strongest microwave
absorption occurs at the “cr:tlcal fleld“ that~tield at which the anti?
ferromagnetlcally alngned domalns flip into a fan or ferromagnetlc con-
'flguratlono Thus, in the high: temperature reglon, ‘the spin wave -
-absorption is masked by strong domain allgnment effects. The long,tail
in the observed absorptlon (20) rs due - to off-resonance absorption by
both free and frezen lattfce:states, the frozen Iattice states con-
tributing. most stronglyo At 150 K, for example, the ratio wT/w' is
hoS over the whole. fleld sweep. One should note a tendency for'the 1ine-
width of the absorption to narrow with increasfng temperature below the |
Curie point. This tendency was observed by Bagguley (16), and later by
Ressol' (17).

The absorption of 20 GHz microwaves is shown in Figure 5 for Tb
metal. The general characteristics of the'absorption are the same'as for
Dy. At low temperatures there is a rather-sharp high field peak. ‘The
position of this peak shifts to lower fields as temperature increases,
until it falis below theAdomain alignment fleld.at 140 K. The maximum

in the absorption is again masked at high temperatures by domain alignment
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effects, but the long téil should still be_observable, and is due primarily
to off-resonance absorption by the frozen lattice states. The'absorption
below 120 K is due mainly to free Iaftice magnon proceéses, wT/wa. Beihg
less than 0.2 in the peak regioﬁ° This ratio increases to about 1.0 at

140 K, and frozen lattice magnon processes domiﬁate the,absorbtioﬁ above
160 Ko The characteristics of the absorption'profiles'shoﬁn in Figures

L and 5 (i.e., general shape and peak positions) are observed experi-
mentally (16,20,21). | | |

The absorption of 40 GHz radiation below the Curie temperature is
shown versus-fiéld in Figure 6. A barely resélvableAdoﬁb!e peak occurs
below 85 K.. Experimentally the .double peak is not observedA(I7), a fact
which is not‘surprising.because the peaks are so close; overlapping almost
entirely. A strong.single peak is §bserved, howeVe;, and oécﬁrsAneaf.the
center of the calculated double peak (l7), The "ratio WT/W'T is about 0.2
in the'peak'region,.so that on-resonance absorption by free Latticé states
is the important absorption mechanism in ;he'prodgc£ion of the peak.

The absérption of fOO GHz radiation in ferromagnetic Tb is éhQWn in
Figure 7. Below 200 K, the.primary absérption occurs at the domain align-
ment field due to the sharp low field dip in the frozen iétti;e magnon gap
(Qee Figure 2) which makes the off-resonanée absorption by frozen lattice
states quite strong. At higher fields in the lowltemperature;region,
weak strucgure appears due to.on-resonance absorption by free lattice
magnons. This structure, howevér, i's not resolyablé experimentally (17)
probably because of the especially low sensitivity of high fr§quencylmicro-

wave experiments. This weak absorption structure is also masked by the
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very strong absorption near doméin élignment. Above 200 K, on-resonance
absorption by the frozen lattice states becomes possible. The field at
which this resonance occurs'inéreases with increasing temperature,
~shifting the peak to higher fields.

fhe absorption of 100 GHz radiation for Dy metal is shown in Figure
8. A strong double peak appears below 80 K, and is due almost entirely to
oﬁ—resonancé absorption by free lattice sfates. Above 85 K, the low field
peak is lost below the domain alignment field; and at 110 K the high
fiéid peak‘is,iosto The curve shown at 110 K is represenfative of curves
at higher temperatures. |In this éurve maximum absorption occurs ‘at the
critical field, and is followed by a long absorption tail. Off-resonance
f;qzen lattice processes are requnsiﬁlé'for most of this absorption.
 The pfofiles shown fn.Figure 8 have beenAobserQed iHADy for tempefafures
above the Curie temperature (35). According to our calculation, the
double peak should be clearly'observaBIe at 70 K, althodgh no accurate
study of ferromagnetic Dy has been made to date. Future observation of .
‘this double peak would substantiate fqrther the gvidence that free
lattice magnons play an important role in low temperature microwave
absorptioﬁo 1

The resonance field is defined as that field at which maximum ab-
sorption‘pccursa The_resonance field versus temperature for-Dy'metal is
shownlin Figure 9 forvmicrowave frequencies of 40 GHz and 100 GHz élong
with experimental points (17,35). . The tHeoreticai curves are obtained
by taking the field values at which the calculated microwave absorption

is a maximum. The average position is taken in the case of barely
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resolvable double- peaks. .At L0 GHz, the resonance field fncreases
.dramatically as temperature ‘is reduced in‘thé,ferromégnetic reéimeo This
is due to the on-resonance absorption by free latfice magnon;, wﬁith
'dccurs‘most-strongly"near_tﬁe;planar anisotropy field where E(0) dips.to
zero.(gee Figure 1). %he blanar anisotropylf}eld,incféases wi th decreas-
ing‘_temperature, producing the sharp rise in the resonance fiéld° The
data of Rossol verify this p?edicted rise quite conclusively, Above the
Curie temperature, the 100 GHZ'absorption peaks occuf at the critical
‘field so that the data of Wagner follows fhé critical field curve quite
well, except for a small deviation toward higher fields above 140 K;A
Below the Curie temperature of Dy free lattice magnon absorption is

the dominant process at both 40 GHz and 100 GHz. Above the Curie tempera;
ture, frozen lattice absorption is the dominant proces§ at both 40 GHz

and 100 GHz. Thus,'one expects fhe temperature dépendence of the resonance
field to be. similar at both 46 GHz and 100 GHz over the complete ordered
regime of Dy. In ferromagnetic Tb, below 140 K, frozen lattice magnon
processes dominate 100 GHz absorption producing a peak at the domain
alignment. field; whereas, free lattice magnon processes dominate 20 GHz
~absorption producing a peak at the effective planar anisotropy field.
Therefore, the theory predict§ a striking difference in the behavior of
the resonance field curves at the two frequencies. The resonance field
versus temperature for Tb ﬁétal at 20 GHz ana at 100 GHz is shown in
Figure 10 along with the experimental points (21,19). There .is a dramatic

increase of 8kOe in the 20 GHz curve between 140 K and 100 K. Over the
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same temperature interval, the 100 GHz curve changes less than 1kOe.
The éxperimenta] points fall almost exactly on the'thééfetical'curVes,
providiné an extrémely strong confirmation of the théory° | |
One notes that good{expe?imental agfeement i§ attained‘in both metals
using: the staticaljy meaéured planar.anfsotropy constants with a tehperé-'.
tqfe'renormalization of ?'3/2 for Dy and ?9/2 }5/2 for Tb. A neutron
diffractioﬁ study of Tb (5) has verified that the planar anisotropy of
that metal is of magnetoelastic origin, so that the temperature renormali-
zation ?9/2.?5/2 is well justified. The renormalization ?'3/2 for Dy
assumes that the planar anisotropy arises from crystal field symmetry in
fhis metal. Such an assumptfon seems to be well justified by the excellent
agreement of the theory with microwave abso'rption'data° A neutron
diffractiqn study of Dy, similar to that done for Tb, seems appropriate
a;lthis time.to see if there is iﬁdeed a difference in the origin of the
planar anisotropy in these metaiso The microwave exberiments point very

strongly to this conclusion.
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THE MAGNON-PHONON INTERACTION

In the preceding‘chapter we,computed the‘effécts of uniform magne to-
‘stfictioﬁ on the spin wave ehergiéso ‘In this éhaptér, we calculate the
effect of arbitrary v}brations of the crystal ions about’the unifofmlf
strained configuration produced by the spin order. In general; tHe vfbra;
tions produce non=-uniform strains which couple locally to the spiﬁ system
through fhe local magnetééléstic interaction of Evenson and Liu [éee.
Equation (6)]° -Normé]”mod§§.of Iattice‘and spin Qibrétions’cbyple stfdng‘y
when vibrational frequencies are nearly equai,‘prpdgcing mi xed spin-lattice
modes (36).

| Figure N shows the experiméhta] magnon and phonon dispersion curves
along the c-axis of pure Tb metal at 79 K in the reduced zone scheme (37)°
The.d;shed I}nes indicate-thé dispersion curves expected without spin=-
lattice coupling. Thé solid lfnés are drawn_fhrouéh the experimen£al
points. In the region where the transverse opfical phonon branch (T0)
crosses the acoustical magnon branch (MA), a large splitting, labelled a,,
is observed. In the region where the tranSversé acoustical phonon branch
(TA) "'kisses' the acoustical magnon branch (MA), a smaller splitting,‘A,,
is observed. The mégnetoelastic coupling removes the degeneracy of the
spin and lattice modes, and the size of the branch splitting is a measure
of the coupling strength. Thé states in the region of strohg spin-lattice
coupling are magnon-phonon qqasi-particle states. It is the purpose:of
this chapter to calculate the splittings expected on the basis of

Equation (6).
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First we compute the e-representation terms of the magnetoelastic

interaction. The local strain functions for this representation are:

e _ 1 .,z z,. X X
fiF2 T Doy (g = reug V+ 8, (rgm = res I,
28 =2 §,[> 8y (¢ T Tres V48, {re’ = reg . ‘ a9

Here f = (¢,s) labels the position of the F-Eh atom in the crystal, and.§ -
labels the positions qf its fwelve nearest neighbors.
"Ffom lattice vibration theory, the second quantized form of the

components of displacement from the unstrained equilibrium positions is

given by:
i Loy JEE T b, . | 20
Fis = E, Rb,q Vs e ‘f-’-a‘p * qu L (20)

Here i‘= (%, ys2)s and s = (0,c/2) labels the two atoms of the unit-cell; o
labels tﬁe mo&e of vibration, and &ilabels the unit cell. The quantity
Rpa = (ﬁ/Nﬁ.mpa)]/Z, where N is‘the number df'ﬁnit ceiié, mis tﬁe mass of
anlion, and w -, is the frequency of a normal mode of crystal vibration.
The quantities v?: are theicompdnents of fhe polarization vector of the
lattice wave, and B and B+ are the anﬁihilation and creation operator§ for

the phonons. The components of the polarization vector must satisfy the

following orthonormality condition:

z o3 oIy -s - a@n
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In order to compare the results of the calculation with measurements on Tb,
we assume the lattice modes to be propagatinglalong the c-axis of a hép
crystal; and to be trénsverse polarized along tﬁe 3-akis in the baéal plane.
The Cartesian coordinates appearing inquuétions (19) are aefined with X
along a and-E along c. For such lattice waves, the solution to Equation

(21) for the polarization vectors is:

. 1.
=T2'a, (p=':2) ’

va
b

oD

0
-
L0
0
~
N
>

ap _ dp _ (s = C =1 |
Vyg = Vzg — O © . (S = 0, C/2, p_ I’z) Co (22)

Then, using Equations (22) in Equation~(20), we find the local strains of

Equations (19) to be:

€ ic ' g F . qc t
e, .5 = T R~ e -sin 6_ +B8 )1
1f N2 q,p P 2 ap  'qp’ 'fp’
€—
L2g =0 ‘ | (23)

where

nf] = Tle =1 if f= (£0); and T]fl = -an =1 'f f = (£,c/2).
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The summatlon on q ts taken along: the c-aX|s of- the Brlllloun zone in the
S|hgle zone scheme. The hcp structute is con5|dered to be made of two
ldentlcal |nterpenetrat|ng hexagonal sublattlces. .Two klnds of spin
'deviation bperators, afland-bf.are introducee certesponding to each of the
 two sublattlces (38) | Then the spih.f&nctions of the e-representation

are transformed to spln deviation operators as follows:

3 | |
. T af-) F= (t,0)
" 53‘ P ' | .
= - —-2-' (be' + be) f= (4,¢/2) . : (24)

Usnng Equatlons (23) and (24) in the local magnetoelastlc Hamlltonlan of
Equation (6) and summing over lattice S|tes we obtaln

ev ﬂaeJr—S + 9c
2

= - sin

. t
| T+ )lal+a_+2
me N2e pq oa ® Pap’ %

CARE) E @)

where Kp =1if p=1; andx_ = -1 if o=
0 A

Here aq and,bq are the Fourier transforms of the spin deviation operators

af and bf.

The terms in the magnetoelastic Hamiltonian that transform according

to the 7 and @ representations are calculated in an exactly similar way.

A surprising result is thatl1;e= 0. The local strains are zero in this

case, due to the cholce § = q¢ and the hcp symmetry of the crystal. The
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spin functioﬁs of the & representation all involQe bilinear combinations
of the magnon operators, so ngconéains ohly proégsses that do npt con-
serve particle nhumber, and which contribute 6nly to broadening effects.
A time dependentAperturbation calculation was done to determine the
amount of broadening caused by third order prbcesses in the magnetoelastic
Hamiltoﬁian. In the mixed-mode regiop, the Tb spéctrgm was found to be
broadened by 0.04 meV by the magnetoelastic interéction. This is quite
sméll compared to the Broadening caused by magnon-magnon processes in this
part of the Brillioun zone.

" Let Hm-p dénotg the total seéond-quanfized'Hamiltonian felevant to

mode-mi xing:

| 1 t t L t, t ety
H == A . +b b )+=8, + +b b
m-p 2C|§:p [Aqj(ag 3q * Bqbq) + 2 Bgj (3g72. % g3 + By g
' t e
+ b b + +
babeg) M Bap Pap * 8qp Bogp By,
.[4(a1'+.a ERVNCRE R | | ('ze)'
q -q 6 ' q -q .
~where e 3 :
- BNSTF sin 4> R .
ap 2 ¢ pd

The quantity hmpq is the unperturbed phonon energy, and qu and qu are
the coefficients that appear in Equation (10) with a subscript j = 1,2
added to denote acoustical or optical magnon branches respectively. (The

earlier discussion was in the double zone scheme using a Bravais lattice,)
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The factor 1/2 in Equation (26) is in;erted to prevent aouble counting.
The boson operatoré aq and bq are a mixture of‘acoustical and optical
magnon énnihilation oberators. .We'define opérators éq and dq by the
fol lowing transformation:

a (cq q) s

(c,=d) - (27)
Expressing Hm-p in terms of these new boson operafors we obtain:

T + d *dv { 1 B t T + c + d f& T
(6qeq * dq'dg) * 2 Bgj (Gqcq ¥ g * dq dq

t ST . +
Pap * ACIo (B'qo

+ A
P9 "Qqp " 9p * Bgp)

9p

b, tag 1 L

c '+ + (dT+d s 1 : 28
[( C_q) 5.1 ( q -q) o0 } | (28)
Here Gp] and 695 are Kronecker deltas. Finally, we make a éogoliubov

transformation of the operators cq and dq to magnon creation and annihila-

tion operators:

cC = u, 0, =v (04
q g7 1q Iq

1,-9 )
d = - t ; | ; (29)

q = Y29 %2q T V2q %2,-q -

Here alq and a2q are the annihilation operators for acoustical and optical
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magnons respectively. The coeffiéieqts of the transformation satisfy
relations analogous to Equations (15). Substltution of Equations (29)

into Equation (28) yields:

Hoe w E toy gt
H. =% E, @a,.'a. +.5 4y B B
m=p . j.q " Ja J4 059 P9 "Qp " “dp
: ~1/2
| ST t tep ). GO)
+ : A 6. a. + . + .
z ap Jp ¢ J4g J:'q)(Bp:‘q qu

joa 2(Ag; + Bgj)
By virtue of the Kroﬁecker delta bjpvthat appears in Equation (30),

‘the magnetoelastic interaction of Evenson and Liu, Equation (6), fails to
account for the'coupling of acoustical and optical modes. This interaction
was originally devised in order to describe static effects, and so couples
only local displacements to the spin system. In the excited states of the.
lattice, however, dynamic quantities, sucﬁ as lattice angular moméntum,
may couple to the spins. In fhe Appendix, it is shown that a kind of
11L-S coupling'' does in fact couple the acoustical mégnons to the optical
phonons, giving rise to a splitting. This mechanism, however, does
not lead to any coupling of acoustical mode;, so let us'use the»mbde-
mixing Hamil tonian Hm—p to calculate the splitting between the TA and MA
branches shown in Figure 11.

For the mixing of these specific modes Hm_p'reduces to:

_ t t
Hop = 2 E(q) Qg o+ 2 oy By Pq
t t,
+T o8y b +a_q)(13_q *Bg) . C(31)
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E(q) {1/2

Here Aa = I 2(Aq n Bq) Aq’ and the mode labgls p and j arersuppressed.

We diagonalize this Hamiltonian by defining a new annihilation operator:

¥
q

| t
-q 2 + ;3 B-q + th Bq .

The imposition of the dition [ H. = ives four homo éneous

e imp |'| n con n 7q’ m-p] '(ﬁ7q g g
equations in the coefficients tys tys t3, ty,. The quantity Qq is the
energy of the mixed phonon-magnoh mode,' The solution of the‘Heisenberg.
~equation of motion is non-trivial if the following condition on the secular

determinant is met: -

E - ' 0 o ' '
.[ @ -a,l - 8] 8y
0 E(q) + SRR, '
’ @ +a) A 4
' N . -0 ). 0 |=o0.
8q 4 g ag) -
ay” 8" 0 (e )
+
9 M T el (32)

In writing Equation (32) we use Alq = Aaw- The determinant may be simpli-
fied easily, and reduces to the following equation for the eigenvalueé of

the mixed~-mode state:

0, - o, (e@1? + (ny)?) + (hug)* TE@1” = bt o |* €)= 0. 63)

One observes strong mixing when EQ) = hql’ Q being the wavenumber at which
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_the branches ''kiss.'. ‘In this case Equation (33) has ;hensqlﬁtiqn:

ag=E@zxlag| -

Then fhe energy splitting i at Q is:

. 172 -

A 23 :
- ~ A°s” (A, + 8)

Ay = 2|agl = &4 Q2 . sin %S y (34)

QT m el | ~

Taking E(Q) to be 2.0 meV and Q =.0.25 8 ~! we find:

This compares well with the splitting shown ianfgdre 11._
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SUMMARY AND CONCLUSIONS

The development of the formalism of Evenson and Liu to treat the
magnetoelastic perturbatibn of the dynamic propefties of a crystal has
been a major.agpect of this work. Previous - ad hoc models apﬁear in‘éer-
tain limits of the theory, giving a coherence to the theoretical picturgn
of magnetoelastic coupling. In general, thé Tocal coupliﬁg theory has -
been ‘successful in accounting for a large number of experiments performed -
on Tb and Dy metals.

The Hamiltonian of Evenson aﬁd Liu was usedlas a starting point, as
it is a simple and physically plaﬁsis]e m&del for this interaction. If
assumes that the atomic spins couple locally to the strain field. It is
found that unfform magnetostriction cahsgs a smooth transition from 'free
lattice' to “ffozen lattiée” per turbation of the magnén spectrum depending
on the wavevector of the state; Manifestation of the free lattice per-
;urbatioﬁ is also limited by the finite response time of the Iétticeo‘ It
.is found that neutron diffraction can only éxcite frozen lattice mégnons,
because the lattice is unable to respond to spfn excitations spread
spacially throughout the crystal. In ferromagnetic resonance,studigs of a
metal, however; spins couple to the'microwave fields within the radiation
skin depth; and this skin depth is ofAthe same magni tude. as the léttice
response‘distancé for a typical spin vibration frequency. .Therefore, in
these microque experiments, the free lattice résponse is possible.

The microwave absorption versus magnetic field applied along the hérd

planar axis of Tb and Dy is calculated. It is found that free_lattice



magnons are prfﬁarily responsible for low fréquency.absdrptidn in Tb
bglow 140 K, and for both low and hfgh‘frequency absorption in Dy below
the Curie temperature of that metal. It is shown tHat,fhe transition
from free to frozen lattice behavior of the_magnoﬁ spectfum is essential
to the explanation of existing data on the temperature dependenceiof
absorption peak positions in Th.

THe formalism of Evenson and Liu is also used to calculate the dy-
namic interaction between spin and lattice waves. The use of local strain
functions wés particularly suited to this‘pfoblém since lattice waves
create non-quform local strain§ which are superposed on a background of
uniform_magnetosfriction induced by the spin order. Mixed-mode energy
splittings are caléulated in regions of the Brillioun zone where phonon
and magnon dispersion curves cross. The theory fail;'to account for the
large splitting which occurs at thebcros$ing.point of - the acoustical
magnon ana transverse optical phonon branches in Tb mefal, but prediéts
well a smalle? splitting which occurs where the acoustitaj magnon and
transverse acoustical branches touch. An alfernate mechani sm which may

account for the former splitting is given in the Appendix.
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APPENDIX. A MECHANISM FOR THE COUPLING OF

MA AND TO MODES IN Tb

In this Appendix a mechanism is proposed which couples aéoustical
‘magnons to optical phononé along the E-éxis‘of a hcp‘crystal near the
edge of the Brillioun zone. Such coupling results in a splitting of the
Adfspersion relétions of these modes as observed in Tb metal, and cannot be
explained using a formulation of magnétoelasticity which couples the spin
system to local strain fields.

in order tb‘see how the lattice couples to tﬁe'sﬁin system, one must
look in detail at the way the ions vibréte when a TO mode.is excited along
the c~axis near the Brillioun zone édge. One sublattice of atoms, say

f

(¢,0), remains nearly stationary; whereas, the other sublattice,

f (¢,c/2), v?brates with nearest neighbér planes on the sublattice being

]

neérly 180° out of phase.' Thus, a kind of angular motion about the
stationary sites is generated by the nearest neighbor ions. This net
angular motion produces a magnetic field which interacts with the spins on
the stationary sites. The field will be broportional to fhe instantanéous
current created by the nearest neighbor ions moving in opposi tion, andlwili
-be directed perpendicular to the plane of this motion. Note.tﬁat no such
net field is created in a TA mode since the nearest neighbor planes are
then moving in phase and no net angultar moment is produced about any spin
site.

The interaction created in the optical mode‘of vibration may be formu-

lated as follows:
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(A1)

Here, and in all following'equatiOns, the sum on f is restricted to the

sublattice (¢,0). The quantity'ﬁ is the effective magnetic field

fs
generated at site f by the motion of nearest neighbors labelled by 5, and
T, is the spin on the Fh cite. It is easily seen that the field L

being proportional to the current of the moving ions, is probortional to

the vector angular velocity of .the nearest neighbors about the Fsb si te.

Therefore, Equation (A1) may be written:

Hoe = Ea AL, - Re o) x (Vg - vf+6)] *Se . (A2)
"Here Ef is the position vector of the 1’-t-h site, Vf is the velocity of the
th _. - : '
f site, and - 2he”
A=——7— .
:rcoc3

We have assumed the charge on ion = 3e-, and c0 is the velocity of light.
We apply Eqﬁation (A2) to Tb metal, assuming that the net magnetization is
confinéd to the basal plane along the easy a-axis. We take the polariza-
tion of the TO phonons to be in an arbitrary planar directi0n;'specified

fN

which leads to magnon-phonon mixing is given by:

by angle 8 to the a-axis. Then, assuming V. ~ 0, the part of Equation (A2)

H =% (3) J‘% Vf+$ s}' cos 8 . ‘ . T (A3)

" Here (%) is used when summing on atoms ih the (fg&g:) nearest heiéhbdr
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th '
planes of the f— atom. The quantity ¢ is a lattice constant. The

quahtity SFY is the component of the spin perpendicular to the 3-axis,

and may be expressed as ‘a linear combination of Fourier transformed spin

deviation operators of the sublattice f = (2,0):

Sfy = i fzﬂ:s i (ak'f omiK T 2, SR T )

Then noting that the Fourier components of the displacement :f+5 dépend‘

on time according to the factor e'wqt, we use Equation (20) to transform

—

d - . ‘ L.
Verg = dt<(rf+5) ;o phongn operators. .Then after summation over f and

6, Equation. (A3) becomes:

. _ 3cAi -1 t+, oot
H == JNs cos 6 N wq Rq sin B +,Bq)(a_q aq )

. A
m-p | q 2 7-q -

Here the optical phonon index, p = 2, is suppressed. The spfh bperators
of Equation‘(AQ) may be transformed to a linear combination of  acoustical
and opticali magnon operators by using Equations (27) and (29).: Then the

part of Equation (Ah)iwhich couples TO phonons to MA magnons Be;omes: 4

e a @ t UV | |
Hro-ma § 8 (B-q +Bq)(a-q %) - , (A5)

Here, the acoustical magnon index; j =1, is suppressed.. The strength of

the interacfion, Aq’ in the regioh of strong coupling is written ex-
pllclely as: '
1/2 .
+ B.) :
Q Q ] sin %E lcos 8|, (A6)

m

S(A

_ 3Ac i
-4

)
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where Q is the wayenumber at which the acoustical and opficel branches
cross. The'uhperturbed TO bhonons are degeherate with~reépect to polariza-
tion dieection, SO we consieer 8 as uniformiy distributed_between zeroAand
/2 with probability density P(8) = (%—)-l.l Then the splittings AQ,are
distributed with density P(|cos 8}|) = 2/& sin 8. This is reflected in

the eﬁergy aBsorption profiles of a neutron diffrac;lon experimenf.which
'should show sharp peaks ih the neutron seattering by quasi-particles in
the region of maximum splitting (i.e., for 8 = Q). The peak should be
asymmetric, dropping sharply to zero for energies greaeer than that given
by maximqm sp]itting, and more gradually to a small ﬁinimum at the un-
pefturbed energy of the phonon and magnon exci tations.

One may. account for the natgral linewidth of the quasiparticlelstates
by allowing the delta function distribution of eacﬁ value |cos 8] to
broaden into a Lorentzian distribution. Letting X =-|cos Q[, the probabil«
ity density for the unbroadened spectrum is P(x) = I dr 8§(x-r) P(r). In
this expression we make the replacement 8(x~r) - (y/n)l (x-x')z + y5/u,
where y is the linewidth of the spectrumt The distribution which allows

for broadening then may be written as:

. ] ‘ : .
) =Z [ oar (e )2 (P e s P AT L )

0
The integral in Equation (A7) has been computed numerically and shows a
strong, asymmetruc peak in the reglon of maximum splitting (8 = 0) (39).
If the model proposed here has any validity, this llneshape should be a

characteristic of the neutron energy absorptlon profiles.
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A]thougﬁ the interaction, Eduation (Al),Aexplains_in some qualitative
ways thé acbusticai and opticai mode coupling, the value of the.splitting.
computed from Equatfon'(AG) is much too small to account for therbserved
splitting in Tb. This i§ probably due to our simplified quasi-claésical
formulation which couples the local spins to an effectivé field produced
by the lattice vibrations. A much stronger interaction'mighf be pkéduced _
if the conduction electrons mediate the interactfon between the lattice
and the ‘local spins, in anajogy to the stfong indirect exchange interaction
which couples the Ioca] spins together in Tb. Mediation by itinerant 5d
electfons is plausible, since their larée orBital m§ment§ can coupié

veffectiyély'with the field produced by the vibrating lattice.





