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Abstract: Three kinetic methods measuring feactivity in the subcri-
tical state by means of source-jerk, rod-drop and pulsed source,
réspectively, are the subject of discussion in this work. The main
problems encountered in the use of these methods, e.g. local detec-
tion, harmonics effects, etc., are discussed from both the theoreti-

cal and experimental points of view.

The special role played by the three reactivities defined respecti-
vely as kinetic, static and dynamic is demonstrated using general
transport theory. After reducing this to the multigroup model, addi-
tional important properties of delayed and prompt neutron distribu-
tions are shown. Using two group time dependent theory, numerical exam-
ples are given to show the importance of these properties in heavy

water reactors.

With the help of the theoretical results, modification of the source-
jerk and rod-drop techniques, aimed at lessening perturbing effects,

are discussed.

These modified experimentél methods have been successfully checked in
the swimming-pool reactor SAPHIR and the heavy-water reactor DIORIT

in Wirenlingen. Some of the experiments are reported here.
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KINETIK UNTERKRITISCHER REAKTOREN UND REAKTIVITAETSMESSUNGEN

" Zusaumenfassung: In der vorliegenden Arbeit werden drei kinetische
~ Messmethoden zur Eestimmung der Reaktivit#ét unterkritischer Systeme
behandelt, nédmlich die Quellsprungmethode, die Stabfallmethode und

die Metnode der gepulsten Quelle.

‘Die grundlegendeh experimentellen und theoretischen Merkmale dieser
Methoden werden besprochen, besonders diejenigen der Quellsprung-
~und Stabfallmethoden. Einfliisse von Harmonischen, die eine schein-
‘bare, Ortsabhidngigkeit der Reaktivitdt zur Folge haben, werden an
Hand von Beispielen aus der Ein- oder Zweigruppentheorie des unref-
lektierten oder reflektierten Systems erliutert. Diese Berechnungen,
sowie umfangreiche experimentelle Ergebnisse aus der Literatur, las-
sen die Bedeutung der Harmonlschen—Effekte deutlich werden.

Als n&chstes wird gezeigt, dass die in kinetischen Experimenten tat-
sichlich gemessene Grosse, nimlich der Eigenwert der Grundwelle, in
eindeutiger Weise jeder beliebigen Definition der Reaktivitdt zu-
geordnet werden kann. Diese Willkiir im Begriff der Reaktivitdt hat
ihren Grund in dem willkirlichen Gewichten der Neutronendichte. Von
den vielen moglichen Gewichtsfunktionen verdienen drei besondere
Beachtung, ndmlich die kinetische, die statische und die dynamische
Gewichtsfunktion. Es wird auf den bedeutenden Platz hingewiesen,
welchen die statische Reaktivitdt auf Grund ihrer speziellen Eigen-
schaften einnimmt. Anschliessend wird die Theorie mathematisch ent-
wickelt und vornehmlich auf das Mehrgruppenmodell angewendet. An
Hand dieses Modells wird gezeigt, dass die verzdgerten Neutronen
ein fir sie charakteristisches, eng verteiltes Eigenwertspektrum
und dementsprechend shnliche Eigenfunktionen (Oberwellen) aufweisen.
Die Aehnlichkeit dieser verzdgerten Eigenfunktionen mit der Grund-
welle des fiktiv kritischen Reaktors wird durch verschiedene Reak-
tortypen demonstriert. Besondere Beachtung wird der moglichen Ab-
weichung der prompten Neutronen-~-Uberwelle von der Grundwelle ge-
schenkt, da diese meist iibersehen wird. Auch wird gezeigt, dass

die Generationszeit von Neutronen, deren Verteilung der prompten
Oberwelle entspricht, stark vom Reaktortyp abhéngt. Diese Grosse
ist von grundlegender Bedeutung fir Experimente mit gepulsten Neu-
tronen, und es zeigt sich, dass ein nicht vernachldssigbarer Unter-
schied zwischen ihr und der Generationszeit der asymptotischen '
Grundwelle besteht, besonders in Schwerwasser-Reaktoren.

Auf Grund der Annahme, dass die Verteilung der verzogerten Neu-
tronen derjenigen der asymptotischen Grundwelle entspricht, werden
experimentelle Modifikationen der Quellsprung- und Stabfallmethoden
vorgeschlagen. Es wird gezeigt, dass es auf diese Weise méglich ist,
die systematischen Fehler, die von den Harmonischen der anfdngli-
chen Neutronenverteilung herrihren, zu vermindern, indem man die
Messresultate entweder von der Anfangsverteilung unabhiéngig macht
("shape method"), oder sieexperimentell fiir Beimischungen von Har-
monischen korrigiert ("amplitude method"). Vorteile und Nachteile
dieser Methoden werden besprochen, unter besonderer Betonung der
Anwendung auf Schwerwasser-Reaktoren. Die Theorie wird auf BExperi-
mente im schweizerischen Swimming Pool Reaktor SAPHIR und im
Schwerwasser-Reaktor DIORIT angewendet.
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uCINETIQUE DES. REACTEURS SOUS CRITIQUES ET MESURES DE ILA REACTIVITE

- Sommaire: La discussion des trois méthodes cinétiques sous-critiques,

utilisant respectivement le saut de source, la chute de barre et la
source pulsée, fait 1'objet du présent travail. On examine les as-
pects essentiels, tant théoriques qu'expérimentaux, des diverses mé-
thodes, en particulier des techniques de saut de source et de chute-
de barre.

‘L'effet des harmoniques, qui cause une dépendance spatiale apparente.

de la réactivité, est soumis & une discussion; on 1l'illustre au moyen
de modéles & un et deux groupes pour des systémes nus et réfléchis,
Ces calculs, ainsi que de trés nombreux résultats expérimentaux don-

nés tant dans la littérature que dans le présent travail, mettent en

-évidence 1'importance de 1'effet des harmoniques.

On montre ensuite que la quantité effectivement obtenue lors de me-
sures cinétiques, & savoir la valeur propre cinétique de la distri-
bution persistante, peut &tre rapportée de fagon cohérente & n'im-
porte quelle définition de la réactivité. Cet arbitraire du concept
de réactivité est dQ 4 une pondération arbitraire de la population
de neutrons. On montre que parmi les nombreuses fonctions de pondé-

- ration possibles, trois méritent une attention particulidre: la fonc-

tion cinétique, la fonction statique et la fonction dynamique de pon-
dération., Le r8le important joué par la réactivité statique, sa si-
gnification et ses propriétés spéciales font 1l'objet d'une discus-
sion. On développe ensuite la théorie mathématiquement en 1'appli-
quant principalement au modéle & groupes multiples. Ce modéle souple
permet de démontrer que 1'une des caractéristiques des neutrons re-
tardés réside dans le spectre serré de leurs valeurs propres et des
fonctions propres correspondantes ('sous-modes'). On montre la

proche ressemblance des sous-modes des neutrons retardés avec le

mode principal critique virtuel pour diverses configurations de réac-
teurs; on met 1l'accent sur-la déviation possible du sous-mode des
neutrons prompts par rapport au mode principal, qui est habituelle-
ment négligde. On examine la fagon dont le temps de génération des
neutrons distribués selon le sous-mode principal dépend de la confi-
guration du réacteur, cette relation jouant un r8le essentiel dans
les expérlences de neutrons pulsés. On montre qu'il existe une dif-
férence non-négligeable entre. ce temps de génératlon et celui du
mode persistant, spé01alement dans les. rédacteurs &. eau lourde.

En utilisant la dlstrlbutlon des neutrons ‘retardés pour représenter
le mode persistant, on propose des modifications des techniques ex-
périmentales du. saut de source et de la chute de barre. On montre -
que ces modifications, qui sont indépendantes du flux initial (mé-—
thode de forme, "shape-method"), ou qui apportent une correction

. expérimentale & ce dernier (méthode de 1° amplltude), reduisent ef-

fectivement 1l'erreur systémathue due aux harmonigues. On discute -
les avantages et les limitations-des deux meéthodes du point de vue
theorlque, en accordant une considdration partlcullére aux réac-"
teurs & eau lourde; les deux méthodes om été éprouvées lors d'ex- -
périences menées dans la pile piscine SAPHIR et le rdacteur & eau
lourde DIORIT & Wiirenlingen.
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INTRODUCTION AND SUMMARY
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WThe react1v1ty, p,’ls generally defined as the ratlo of net pro-
ductlon rate throughout the reactor to the total production rate.
It serves -as a measure of, the deviation of the reactor from the

" eritical state, in Which the net production rate is just zero. The

reactor is subcritical,.critieal or supercritical, according as

p<0, p=0 or p>0 respectively.

Although the definition of reactivity is not unique, its determina-
tion is nevertheless a rather important task, because it charac-
terizes, regardless of definition, the overall balance of the reac—
tion rate in the system, and therefore represents a global cons-
tant of the reactor.

Knowledge of this global parameter may be used, through known rela-
tionships, to determine other parameters either of the reactor it-
self, or of an external sample (refs. 1, 6) . Most of these determina-
tions are carried out near the critical state (|p|<<1 #), and no
principal difficulty exists in performing the experiment and inter-
preting it. These methods cannot be extended to measurements of ex-
cess reactivity and-wofth of control rods, because those usually
amount to several dollars, and period measurements can, for safety
reasons, cover only ajsmall‘part of the required range. Other me-
thods, such as the compensation method, require knowledge of the in-
terference .effects of different perturbations, which is a rather
difficult task to perform.’

On the other hand, ability to determine large amounts of reactivi-
ty (]pl>>1) is vital to a reactor for reasons of routine operation,
safety , and theoretlcal understandlng.

The kinetic sub—crltlcal technlques, like the Source-Jerk (S J.)
technique, the Rod-Drop (R.D.) technigue and the Pulsed-Source (P.S. )
technique can handle such problems, although they pose some.expe-—
rimental and theoretlcal dlfflcultles. '

These methods are based essentlally ‘on the trans1ent response of
the neutron dens1ty to a step change (n D. and S.Jd. ), or. a delta
change (P S.) 'in tlme° In the R D. method the negatlve reactivity
to be measured (e go:control rod worth) is inserted rapidly into a
crltlcal reactor.¢"he amount of reactivity is then deduced from

the ratio of initial to tran81ent response of a suitable detector.
In the S.J. method, a subcritical reactor is held at constant power
by means of an extraneous source. The source is removed rapldly,and
the reactivity of the subcritical state can be found from the ra-
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tlo of 1n1t1al to tran31ent response of a detector. In the’P'S me-
thod an extraneous. delta source is applled to the uubcrltlcal reac—'
tor, whose negatlve reactivity is to be measured. Agaln, the tran-
sient response of a suitable detector is used for the reactivity »
measurement. | | o @

" In addition to the very important fact: of providing a means for .
measuring iarge negative reactivities, the above mentioned methods
“offer the following advantages:

a) The measurements are relatively rapid (particularly by means of
P.S. and S.J. techniques).

) They can be repeated in relatively short times, since they leave
no long range traces behind (e.g. via the creation of photoneu-
trons). _

c) The results are in principle more easily reproducible than those
by other kinetic methods, since the measurements are carried out
in a stable reactor.

d) Large amounts of reactivity can be measured without any danger,

‘ since the reactor is always subcritical.

The main drawbacks are:

a) A very abrupt change in count rate (due to the step or delta
changes) may cause high counting losses in the initial part of
the transients, and low statistical precision at later times.

b) The presence of harmonics due to the initial distribution intro-
duces a fictitious space dependence into the measured reactivity.'

c) Some difficulties are encountered in interpreting the experiments.

The three sub-critical kinetic methods, utilizing respectively the
source—jerk, the rod-drop and the pulsed-source are the subject of
discussion in the present work,

The essential experimental and theoretical features of the methods,
in particular of the S.J. and R.D. methods, are discussed. The har-
monics effect, which causes an apparent space dependence of the
reactivity, is discussed and demonstrated by means of the one and
two groups models for bare and reflected systems. This caléulation,
as well as plentiful experimental evidence contained both in the
literature and in this work demonstrates the seriousness of the
‘harmonics effect.

It is next shown that the quantity really measured in the kinetic ‘ii
measurements, namely the kinetic eigenvalue of the persisting dis-
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fributien, can be relatedeinia consisteﬁt manner to any desirable
' definition of~reéctivityQ'This arbitrariness in thelconcept of

feactivity is caused by an arbitrary weighting of the neutron po-

pulation. Among the many possible weight-functions three are shown

"to merit special attention: The kinetic function, the static func-
‘tion and the dynamic weight-function. The important role played by

the static reactivity, its meaning and its special properties are

*. discussed, The theory is then developed mathematically and applied
‘mainly to the multigroup model. With this tractable model it is

demonstrated that a characteristic feature of delayed neutrons is
their closely spaced spectrum of eigenvalues and correspondingly
similar eigenfunctions ('sub-modes'). The close resemblance of the
delayed neutron sub—modes to the virtual critical main mode is shown
for various reactor configurations. The possible deviation of the
prompt neutron sub—mode from the main mode, which is usually over-—
looked is emphasized. The dependence on the reactor configuration
of the generation time of neutrons distributed in the prompt sub-
mode, which is an essential quantity for pulsed-neutron experi-
ments is discussed. It is shown that a non—ﬁegligible difference
exists between this generation time and that of the persisting mode,

especially in heavy water reactors.

Using the delayed neutron-distribution as representative of the
persisting mode, modifications of the experimental procedure of

the S.J. and R.D. techniques are proposed. It is shown that these
modifications, which are independent of the initialhflux (the
'Shape-~Method'), or correcting for it experimentally ('Amplitude-
Method'), do indeed reduce the systematic error due to harmonics.
The advahtages and limitations of both methods are discussed, with
special attention being paid to heavy watef reactors, from the theo-
retical point of‘view, and are demonstréted by experiments conducted
in the Swiss swimming-pool reactor SAPHIR and the heavy water reac-
tor DIORIT. : | .
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1. STATIC AND KINETIC METHODS FOR MEASUREMENT OF REACTIVITY

. The methods by whlch react1V1ty is measured can be roughly divided

- into two categorles' ' a) static methods

b) kinetic methods.

a) The static method is essentially a measurement in the stable
state; either when the reactor is critical, for instance the compen-
sation method (ref. 1 p.603, refs., 2-8) or in a subcritical stable
state e.g. the subcritical multiplication method (refs. 8,9,10

(pp 11-16)).

The compensation method is based on maintaining criticality by
‘counteracting any'change in the reactivity by means of control rods

or insertion of homogeneous poison., The first method, namely compen-—
sation by control rods, is very often used for relative calibra-

-tion of control rods. The precision of this method depends either on
the absence of interaction between the various components (i.e. shado-
wing effect cf. ref. 82) or on the degree to which these effects are
known. Usually it is very difficult to calculate interaction effects,
and'for this reason the compensation of reactivity with local sbsorber
is limited to the measurement of small amounts of reactivity. The
compensation with an absorber distributed homogeneously throughout
the reactor can be interpreted accurately. But it is very time con-
suming and not always feasible.

The subcritical multiplication method depends strongly on the know-
ledge of the harmonics content at the measuring point, which is
introduced by the source that maintains the constant neutron flux
in the subcritical reactor. Estimating the effect of harmonics in

a real systein is often very difficult

D) Kinetic methods are based on a measurement of the time beha—‘
viour of a local neutron populatlon, due to some. change in the
reactor. ce o '
These methods may be.divided into three groups:

1) measurement 1n tne near critical state.

2). Measurement in the’ pos1t1ve prompt crltlcal region.

Y

%) Measurement in far subcrltlcal states.,
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~ The kinetic’méﬁhods'when applied‘to the near critiéal-staﬁe (sumha%
. rized in ref. 1), evidently measure only small amounts of reactivity.

Their range in the supercritical domain is limited for obvious reasons

of safety to p 2 0.3 €. In the subcritical region a limitation is. -~ &g - -
imposed by the very low sensitivity at negative reactivities greater.
than ~ 0.3 g (see sec.3 and ref.1). These kinetic methods include

the following techniques:

Stable reactor period (refs. 12, 13, 10, 14-16)
Pile oscillator (refs. 1, 17-19)
Rod-drop-bump method (square wave) (refs. 20, 21)

e O N

Trapezoid-wave (ref. 22, 21)

Electronic simulator (refs. 1, 23).

(6]
.

The positive prompt transient method is limited to a very few special
reactors (refs. 24, 2, 25). Because of obvious safety reasons it cannot

be used elsewhere.

Methods applicable to the far subcritical domain may, of course, be
a»plied to near critical states. But their main advantage lies in
their ability to yield measurements of large negative reactivities.
In this group one includes the following methods:

1) The statistical method (refs. 26, 27)

2) Rod-Drop (or briefly R.D.) (refs. 20, 10, 28)
3) Source-Jerk (S.J.)(refs. 20, 19)

L) Pulsed-Source (P.S.) (refs. 30-32).

The initial state in all methods, except the R.D. method, is a
subcritical state, the reactivity of which is to be measured.

In an R.D. experiment the initial state is usually Jjust critical.
In all methods the final state is subcritical.

' The statistical method, i.e. the Rossi-o method (ref. 26) is prac-
tical only when small amounts of negative reactivity are to be
.measured. The Rossi-a method gives éccurate results in fast
. systems and can be extended to somewhat slower systems. Never-
'  theless this method is not considered practical for thermal’ iii
reactors.
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'-‘The three methods 2 3 and u ‘dre used almost exclu81vely for the
"measurement of large negatlve react1v1t1es (e.g. total worth of

control rods, single or in banks, shut-down value etc.).

2. SPACE INDEPENDENT THEORY OF KINETIC MEASUREMENTS

Space independent kinetic theory is obtained if one assumes a detec— .

tor distribution function W(;,?). Then the average neutron popula-
tion <N(t)> and precursor population <Ci(t)> where

<N(t)> ='fw(?,;’m(?,?,t>d?a$, <Gy (t)> = fw(?,}’)ci (¥,v,t)ardv , (1)

satisfy rigorously the simple kinetic equations (for details see

Chap.III,Sec.410):

L
d<§£t)> = Qi:zt) <N(t)> + Lgi A <Ci (t)>+ <Q(t)> - (2)
d<Cy (t)> by (t)

= <N(t)>- A <Ci(t)> L= 1,2,...,L. (3)

at CA*(t)
with ¢ delayed neutron groups.

<Q(t)»- average external source term;

p(t) = reactivity in dollar units defined as the ratio of
average net production rate to the product of average
. production rate and B(t); '
At e
B t
bb(t) = Bb(t)/B(t), where B (t) is the effectlve fractlonal :
yleld of delayed neutrons, i. e. the average fractlonal

A*(t)ﬁr is the'reduced generation time of neutrons;

precursor productlon,

For the sake of,brevity;'the symbolA{>, indicatihg average, will

be dropped in the rest of this chapter.
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The 1ntegra1 reactor parameters Py A and bL are tlme dependent -
even if the destruction and production. operatore are tlme 1nde—,_i
pendent. This so-called internal time dependence dlsappears when ,
the flux throughout the reactor is separable in space and time. iii‘l
This occurs when the flux in the whole reactor falls or rises with '

a unigue time constant Under these conditions the flux is oald to~
jhave reached 1ts per51st1ng dlstributlon (ref 33, Chap. XII) o

In the region of the persisting distribution, the three methods‘ere
formally described by the following conditions:

" Rod-Drop (R.D.) experiment:

(1) = [ YO amme asa ax (v) [ 8O0y (4) = (Do 20 @)
P - t30 result: #  t30 bii 30
P4 |

Source jerk (S.J.) experiment:

’ Q(0) t<0
o(t) = =p, = const. Qt) = L\ - At (5)
Q(0) t>0
Pulsed-source (P.S.) experiments:
| Q(0) <0
p(t) = =p; = const. | Q(t) = { (6)

Q(O)+Po(t) t20 -

"where P-is the number of neutrons emitted per cm® by the source.

'.The response of kinetic equations 2 and 3 to the step'and delta

changes ‘given by Egs. 4,5 and 6 can be obtained either by means of a
Laplace transformation or by direct substitution of Egs. L, 5 and 6
into the integral equation of reactor kinetics (refs. 34, 35).

The results are expressed in terms of a Green's function Gp(t) of
the kinetic equations (with the help of the convolution symbol) as

follows: -




-
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R.D.

N(t) . AR | ' -[F” Nak + . *; | W(t)*G :] |
ﬁ%ﬁ% = A;Lj + pu(1°B) | G, (£)at + Gy (8) (Ag=A%) + aW(E)¥a, (%) |,

!

" S.de v t
N(t) _ Ay |
oy = 1+ py (1 A)l Gpi(t)dt, - (8)
P.S.
NCE) = 4 4 A% —Eex Goy (1) ' (9)
N(O N(O) “Prir/e
where:
- g—g_oig)') ) R.D.,
N(0) = { ) | Po 501 <0 - (10)
A*Q(0
- S.Jo and P.S-,
P1 '

B:-A:%{-g-%, A (11)

-1
( L by ‘
w(t) = L.Z res vl (s/is the Laplace transform (12)
L=1 L variable)
-1 _ ‘
L L bl.0‘ -bi,i' 1 .
AW(t) = {-Z ——
L=t s4 i
, |
S[A*+'W(s)]—p{"§, M=o Au '
: : . |
. o . : g
L i DL | -
-1 = A% . ol (4
A ‘_A_'bp?fY;;:erzyv i (14)
an.<i Yu are the)solutions of 'the inhour:equation:
p = sA* + sW(s) = sA* + 2 . (15)

i=4 S+ AL
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The‘time—behaviour following rapid insertion of a‘cohtrol‘rod,"’
Eq.7, or the fast removal of a sourcé, Eq.8, are'identical in-
‘the'present‘model if A = 0, B = 0, and if A¥ and by, are not
affected by. the reactivity change. The first condition can be -

fulfilled since an A,which differs from zero,can be regarded as -
a given background and may be subtracted. The second condition is
fulfilled if the reactor is critical, for then the effect of any
lbackground source may be made negligibly small, and it consequent-
-1y follows that B = O. The third condition is also fulfilled to a
fair degree of approximation., This is due to the fact that both
A* and BLAare quantities which are based on production processes,
while the change in p 1s usually achieved by changing the destruc-
tion rate. The effect of the reactivity insertion on by = Bi/B
is even smaller (see also IV,Sec.7). ’

Assuming the above mentioned conditions to be fulfilled and the
background to be negligible (or automatically subtracted) in the
.P.S. case, one finds the following simplified relationships:

t
- N(t :
'RoDo and SoJo N O = 1 + pi‘[) G’pi(t)dt, (16)
' N(t
P.S. BE) = px gy (). (17)

'Of the ¢ + 1 solutions of the inhour equation, the first describes
the rapid response of the prompt neutrons, while the ¢ other solu-
tions represent the behaviour of delayed neutrons, which is much
slower, For negative reactivities all solutions are ﬁegative. This
characteristic is common to Egs.16 and 17. The main difference is
the very small ratio of delayed to prompt neutrons in the response

to P.S. when compared with the corresponding ratio in Eq.16.

These features are clearly shown by using the model of a single
" delayed neutron group:

| p ( -
N(t) /N(O) = - e .Lexp[- 11;9 t:]- % exp -,%_Qp- t]} for R.D. and S'.J .

(18)
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]» for B.S.. (19)

In this model the ratio of prompt to delayed exponents is about 103
for a Dy O-reactor at =10 S The same value is found for the ratio
of relative delayed to promnt population in R.D. (and S.J.) to P.S.

Knowing‘N(O), the initial population, and measuring N(t), enables
one to determine the reactivity in the R.D. and S.J. cases. In
fact, it is not necessary to measure the decay curve in detail.

It suffices to measure the population Jjust after the jump when

“the delayed'neutron population has not yet had enough time to change.

Ideally one would like to measure the initial population of delayed
neutrons, Nd(o), (from eq.16): :

G B AU,

ti’g‘m'r iy ; IR
s2l 0+ W(s) /-

Therefore:

N(0) - N.(0) |
5 (O()i = TP ‘ (20)

Nd(O) could, in principle,bbe-obtained by extrapolating the delayed
population to time zero. The main advantage of this straightforward
procedure is due to the fact.that it does not involve any additioral
parameters. On the other hand, it does involve the use of a fast
recorder (ref. 20) and the sometimes questionable extrapolation of
the delayed neutron density tp zero. In Dy;O0-reactors this exirapo-
lation procedure may be entirely érroneous, sihce the prompt decay
constant, ¥y, has a tlme constant of the order of the fastest delayed
neutron group, Yi.,For example at -3 ﬂ Yo = =40’ and vy, = -3,84, and
t—1Svo=-20andn=”—380s,ec-i o SR

In order to oyercome the di fflcultles,tSchmld (ref 29) proposed the .~

convenlent 1ntegral count method, which derives -the react1v1ty from'
the relatlonshlp, '

RUC) I o | ,,(21)"_

[ADaE” T Taawo)] [+ 5 b/a]
0 iLm

[ 4
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. Other methods for deducing the reactivity from‘N(t)/N(O) can
éésily be found éccording to the experimental facility at hand
(cf. ref. 3%6).

In&a P.S. experiment one measures the population decay curve
.after injecting a neutron burst. Treating the delayed neutrons

as background, the slope of this decay curve on a semilogarithmic
scale for the population directly gives %ﬁ?_(cf. ref. 30).

'The pulsed-source equipment is based on the nuclear reaction of
charged particles (e.g. ionized D or T atoms and molecules). Pulsing
the neutrons is achieved by either pulsing the ion source or perio-
dical deflection of the ions away from the target. The delta function
behaviour of the source 1is obtained by having a very narrow burst“of,
for instance, 1 to 5 pusec width, with very high intensity of neutrons,
such as 105—101° neutrons per burst (ref. 37).

- Technically the rod-drop 1s achieved by dropping a single rod or a
number of rods ("single or multiple scram'"), which are accelerated
by gravity, by eir pressure, or by both. The source jerk can be
achieved by various methods, cf. refs. 10, 20 or by rapid with-
drawal of an antimony source from a beryllium envelope (ref. 38, 39).
While the step in the source may be very fast, the rod-drop is never
truly instantaneous. The drop may be said to be instantaneous, if
the effective dropping time is short compared to the decay constant,
(A2 ), of the fastest delayed neutron group.

The deviation from a true step function exhibited by p(t) (ref. 4O)
or Q(t) (e.g. if a pneumatic method is used, ref. 20) should be taken
into account in solving the kinetic equations 2 and 3. The basic
features will still be maintained, but the simple form of the

solution is, of course, lost.

The non step-like behaviour can be treated exactly, when solving
the equations on a digital computer (ref. 41). It may also be re-
garded as a soﬁrce of error introduced into the ideal situation; iii
‘the value of this error may be estimated approximately (ref. 42).
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" Another approach (ref. u3)f§s,based on thé'faﬁt that some time after
‘ the completion of the drop,‘which begins at time zero, the time-
, dependence of the population coincides with that of a step—function
o _ which occured at a later time t,*(t;*>0). The time t, after which
ii} the population behavior is the same as the response to a shifted
‘ step-function, can be determined by experiment or by an exact solu~-
tion of the prcblem. However, it is not very sensitive to details
of p(t), and therefbre, once calculated for a certain case'it can

be used, or approximated rather easily, for other cases.

Knowing t,, the moment the drop is finished, and tp, one can deter-

mine t,* (see Fig. 1).

§ 3w |
| tr t t et

| ] ~ | |

j-—equivalent ’

6t
| | S - . | ‘ e ¢

Fig. 1 Reactivity and power response to a -
' non-instanteneous rod-drop.
To achieve this; one may‘use‘the'Iaplace transform of the kinetic”
equation (Egs. 2,3) or their integral representation (ref. 35, p.30
@ with A* = 0):
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N(t) = _p(t) [/D(t—T)N(T)dT+N(O)W(t):I o (a) ,:‘
waeres
¢ -At
D(t) = ngi DA e . (23)

Noting that N(tz) = N*(tZ) (the asterisk denotes quantities related

to the equivalent step-function) one gets:

t2 ta
/ D(te - T)N(7)dw = / D(tp - T)N*(7T)dT. (24)
o . (o] o

Under the reasonable assumption that t,<<ZbiAi~*= 13 sec (for
U235 fuel), one finds for tgt,:

N(t) 2 gty - (25)

After substitution of Eq. 25 into Eq. 24 one gets with some alge-
bra, two equivalent transcendental equations for t,* in terms of

01, ti and tg:

to
: ) 1-pP1
W(ty=ty %) = g: {1' (1*91)W(tz)"l D(ty-T) =77y ¢ } (26)
t,
1 1-pP1
W(ty—t, *) = E:g:w(tz-ti)"(1'91)W(t2)-'£ D(t,-7) ToP0TY df} .

(27)

3. LOCAL DETECTORS

The space independent kinetic equations (Eq. 2 and 3) were obtained

- by averaging the densities of neutrons and precursors over a detec-
+~tor distribution, W(;,;). The reactivity thus defined is really glo-
" bal and represents the overall balance of the reaction rate in the ..
"reactor, provided. such a global detector is at the experimenter's ‘ii

disposal.
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‘ " Actually, hoWever, the detectors are rather local and. their ener-

.8y response 1is nearly a Dirac delta. functlon.

‘Following the procedure described in Sec. 2, such a detector dis-
 tribution will fﬁrnish‘one with a reactivity which might depend
’strongly on -the properties of the detector and in particuler on its
location. Such a sifuation'obscures the main purpose of introducing
the concept of reactivity, namely a global representation of the

" reactor.

To overcome this difficnlty one can use the local measurement of

the detector to determine some time characteristic of the reactor as
a whole, e.g. the stable period, which is of‘course, independent of
position. But now, instead of defining the reactivity with the aid
of the actual detector distribution, and getting a local quantity,
one can relate the stable period to some convenient hypothetical
detector distribution (see Chap.III). |

In this chapter the treatment will be limited to the most common
reactivity concept, the static reactivity. The hypothetical detector
distribution needed to achieve it is the adjoint static density
function. By weighting with this function one obtains the static
reactivity, the stafic (weighted) generation time and the static
(weighted) effective delayed neutron fraction. These three glbbal
parameters are related to the kinetic eigenvalue, e.g. the stable’
period, through the inhour equation:

WbLS

P vl L= 1yueeyl. (28)

Thus in the present approach the local detector is used to deduce

the global elgenva]ue W, whlch is unique only after all memory effects

due to-initial condltlons have died out. The abllltJ to establish a
unique time behavior throughout the reactor is an es uentlal property
of the chain reaction. Nevertheless, waiting until this behavior is
achieved and then measuring the stable period is not prdet10a1 in
subcritical statee; since one looses all sensitivity to reactivity.~"
This is'demonstrated in.Table 1 below, where ﬁhe'peroisting eigen—
value Wo,8 is tabulated as a functlon of the static reactivity p

(g = 1 2L *10-2sec-1 ). ' :

PR
Lt
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TABLE 1

-p, B 12 10 8 6 N

102w sec™* | 1,2409 1,2403 1,2394 1,2377 1,2345

~pg 8 2 1 0,8 0,6 0,4 0,2

1o-2wb sec~t | 1,2243 1,2009 | 1,1878 41,1637 {1,1078 | 0,9145
'8 : .

" In any case, none of the kinetic methods of subcritical reactivity
- measurements comply with the demand of measuring in the dcmain of
Athe persisting density. Instead the R.D. and S.J. methods are
based on a comparison of initial flux to some other flux after in-
sertion of the control rod, or after removal of the source. The P.S.-
on the other hand, though not refering to any initial flux, depends
upon the prompt mode, which is not necessarily equal to the persis-—

ting one.

The discussion of the last point is postponed until later (Chaps.III
and IV), while the influence of harmonics on the R.D. and S.J. me-
thods will be discussed more thoroughly in the next section and in
Chap.V.

4. HARMONICS EFFECTS

Inborder to treat with sufficient rigor the time behavior of a
reactor with either a removable external source or with a sink that
,may be inserted, at least two energy groups will be needed. This is
due to the fact that the source emits fast neutrons, while the sink
(e.g. control rod) absorbs thermal ones. Application of this model

to a realistic. configuration is highly impracticai. On the other hand
the one-energy group model surely overestimates the actual effect of
the sink or source. For this reason one is on thé 'safe' side when
using a one group model for such a study. On the other hand, suffi-
'cient simplicity is retained to gain physical insight into the probiii

lem. Thus for the general discussion of harmonics a one—group model
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will be adopted. It will be applied first to a reactor containing

a point source and then to one with a delta sink. The main diffe-

rence between the one group and the two-gfoup model will be illus~

~trated in Appendix IT.

a) A bare homogeneous reactor with a source.

The kinetic equation governing this state is:

ot ’

o ,
V(DVZ—Z)n(x,t)4-vk(1—B)Zn(x,t)-+LZ re(x,t) +Q(x,t) = on(x,t)

vBik3n(x,t) = rpcp (x,t) =

=1 .
aCL(th)
3T’ L = 1,000,l.

(29)

with the condition that the neutron and precursor densities wvanish

at the extrapolated boundaries, X:

n(x,t) =

CL(§,t) = 0.

In the equation above,

‘n(x,t) - neutron density at space point x and time t,

G(x,t) - external source,

ci (x,t) - precursor density,

v,D,%,k - velocity of”neutréns; thermal diffusion constant, absorption
cross—section, and infinite multiplication constant, res-
pectively. ’

The solution of the equations may be obtained by means of the expan-

sions

n(x,t) =

where: V2n
a

and Bg'is the
solutions and

2 : Y ml
oo To(tIng(x), ci(x,t) -,‘1;0 T (tIng(t),
~B2n_, - o B
qa4aq :

q;fh‘geometricéifeigénvalﬁe of-the,system. The general

those fbr,slab'géqmetry are given¥in Appendix I-1.

The initial dehsitytof the subdritical‘reactorAdue~to the constant

source Q(x,0)

is:

n(x,0) = £ 1o(00n,(0) = -a¢ F (a(0/p)nyx)s (bge0) ~ (30)

here: Q_(0) =
W ere. Qq( )

Ja(x,0)n (x)dx//n2 (x)dx. - | | %;
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The harmonics contribution to the initial density is:

H(x,0) = =A% % (Q_(0)/p_)n_(x) + A%(Q (0)/po )no (x) = (51) )
g=o0 q q . : .
EHECROVSERC N

since in this case the persisting mode Jjust corresponds to the
lowest geometrical eigenvalue.

The harmonics content of the density after instantaneous removal of-
the source is evidently smaller. For example, for the time integra-
ted flux | | |

H(x) = A*[A* + W(o)]qi (1/p4)? 9, (0)n (). (32)

The higher modes are damped here faster than those in the initial
-density, due to the appearance of the factor 1/pa. The modal reacti—
vity pq inqreases rapidly with the modal index. Physically this be-
haviour is clear, since after the removal of the source, only the
decaying precursors produced formerly by the source—neutrons are not
distributed according to the persisting mode (ref. 39).

To demonstrate the deviation of the normalized initial density,
[n(x,O)]nor., which is the basic reference function employed in the
usual S.J. and subcritical multiplication techniques, from the per-
sisting distribution of the state to be measured, Eq. A-I-12a wsas
evaluated for a heavy water slab reactor. This reactor has a mate-—
rial buckling B® = 4,101°10"%*cm~?(see configuration DI-1 A-V). It

is made =10% subcritical by reducing the extrapolated thickness from
d = 155,1 em to 4 = 115,6 cm. A plane source is placed at various
positions x,, thus introducing various amounts of harmonics. Fig.2(c),
(e) and Fig.3(b) show [n(x,O)]nOP. for a number of source locations.
One sees immediately that the deviation from the persisting mode,
sin B, x, is increasing as the source moves farther away from the
center. A clearer indication of the deviation is provided by the

ratio:

[n(.xao)]nor./Sin B‘X = r(x,0), ' (33)

- plotted in Figs. 2 (a),(b),(d) and Fig. 3 (a) curves 1.

This ratio actually gives the magnitude of the correction that should

in principle, be applied to normal S.dJ. experiments in order to cor
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'AF.ig.‘3 Thermal neutron distribution in a slab reactor with plane source (a b)
and plane absorber (c). ,

curve 1) Harmonics content of the neutron density.
curve 2) Harmonics content of the time integrated density.
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rect for harmonicsi‘Since‘the time integrated density contains only
an extremely small amountxéf harmonics (seé é}g.‘the last ‘Figs.
curves 2), the above rétio; Eq. 33, directly gives (through Eg.21)
the error introduced in the reactivity as measured by the integral
count method. For example, if the removable source is in the center,
one underestimates the reactivity by about 10?6 if" the detector is
far away from the source. The reactivity will be overestimated by
about the same amount, if the measurement is carried out in the cen-
ter. Placing the source at, about 1/3d, and measuring in its vicinity )
would cause an overestimate of about 30°], while measuring near the
farther boundary will result in an underestimate of about 20°4 .

It should be clear that in a two group calculation the damping of
higher modes is stronger. Furthermore, in the three dimensional case
integration over the volume is more effective in suppressing the con-
tribution of higher harmonics than in the one dimensional case. On
the other hand, real reactors are usually more complex, and sometimes
involve media with widely different parameters, which again give rise
to considerable harmonics contamination.

b) Bars homogeneous reactor with a delta sink.

This configuration is intended to simulate a rod-drop experiment. Its
evaluation (A-IV) is carried out by the method of orthogonal functions,
applied by Auerbach (ref.4l4) to control statics.

After drdpping the rod, the new persisting mode,iﬁX¢Q which is estab-
lished after all higher harmonics have died out, is given by (A-IV,
Eq.13%): |

, o0
n(x,») = n(xofw)Y*A* p§d npgx?)np(x)/pp.
In a slabt reactor with é.plane absorber at x, it becomes (AfIVfﬂu)

n(x,0

LN BT _
nlxo ) - LvbB, L;ln ijx‘xol_731n Bf(x+xo)

= 2 cot de sin foo sin fo} ’
where;Bf is,a'fictitious'material buckling (Bf>B) chosen so as to
make the reactor virtual critical in the presence of the sink,  The
initial distribution in the critical system is sin B, x. The neutron

density integrated over time from the moment of instantaneous in-
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Thermal neutron distribution in a slab reactor with plane absorbera

curve 1) Harmonics content of the neutron den51ty.
curve 2) Harmonics content of the time integrated density.
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~

lsérfion of the sink to infinity is given by (A-IV,10):

> | | 1=yRp® i_n;(xo )/ by,
[ n(x,t)dt = To(0) [A*i—W(O)]{ 1% ng (x) +
| | Y*A¥ng (%)
. I)‘Znnp_(zro)np(X)/pp]‘ .

no (%o )

In slab geometry this expression reduces to Eq. 19 A-IV.

Explicit evaluations of the above expression have been done for a
heavy water slab reactor having‘the modified one-group parameters of
the DI-1 configuration (see A-V). Its material buckling is

B2 = 4,101 * 10-% cm® as before, and its extrapolated thickness is
155,17 em. The plane sink is dropped at various positions x5 each

- time reducing the reactivity to =10 g. Because of this constraint it

is eclear that the absorption coefficient, vy, of the sink.will depend

on the location.

The normalized initial density, [sin. B;x] , 1s compared to the

nor.
persisting mode of the final reactor, n{x,o). This is shown in Figs.4
(b),(d) end Fig. 3 (c) for various source locations. A more stringent

comparison is achieved by calculating the excess of harmonics

r(x,0) = [sin le]nor./n(x,w).

This ratio is plotted in Figs. 4 (a),(c) and fig. 3 (c), curve (1).
‘'he various curves show a considerable abount of harmonics. Since,
again, the time integrated excess of harmonics is rather small,

the above ratio, r(x,0) gives the error introduced in the reactivity
measured by an R.D. experiment with the integral éount method.‘For',
example, in the case of a central control plane,'where the harmonics-‘.
content is a minimum, there is an overestimate of about 3094 when the‘f
counter is placed near the sink, and an underestimate of about ﬁ5°6;
if thé measurement is carried out far from the sink. When thé sink is
fixed at an off-center position, the amount of harmonics inéréasesA~
considerably. Thﬁs in the case of x,/d = 0,3, in’fhe regién bétweén"'
the sink and the nearer boundary, an overestimate of 35004 to uOOOK:.

will result, while on the other side the result will be uncerestima-

ted by about 2594 .

To complete the series of comparisons, a two-group calculation for a .

two—zone cylindrical heavy water reactor, both without and with cen—
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tral céntroi rod (configurations DI-3 and DI-4L4, see A—V), has been
‘carried out. The normalized thermal initial density and the therﬁal
persisting mode of the rodded reactor, n(r,»), are shown in Fig. 5, _
»together with a plot of the corresponding harmonics excess. The cof-iii'

responding fast quantities are plotted in Fig. 6.

In a cylindrical reactor the control-rods are much less effective
than the plane'sheet absorber in slab geometry. Thus, in order to
_achieve the same subcriticality, the absorbing properties of the
‘contrcl rod should be stronger than those of the control plane. For
this reason the initial flux is less perturbed in the case of a
~;contfdl.plane and thus contains less harmonics. Fig. 5 shows the strong
volume smearing effect of a two-dimensional configuration. In spite
of the extremely high harmonic contamihation in the vicinity of the
control rod, after two migration distances there is a small, almost
constant, amount of harmonics. The fast density, Fig. 6, is evidently
much less affected by the control rod. But beyond two migration-
distances the fast harmonics have the same magnitude és the thermal

onec.
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qu.51 Compariaon of the thermal density before a rod-drop to the
- asymptotic density after the drop

- e A

. T N

. N . ‘. ; ) N by
A
. , B

Core | Reflector

[n{x,0nor)iner.

[n(x, o@)]tner.

7

[[n(x,vo‘)n'or]] -
/LIn(x,00)] Jther.

O =
»n -
8
——ld
8




A e e _
AR N
) o - s~ .

o
l

~ T : .
T .

EE T - ZUD - s ,.j‘unap S

o .(Fi,gs Compariaon of the fast density vefore a rod-drop to the o
asymptotic densuty after the drop,

Core _ Reflectbr

A

T i

AT,

[ﬂ(xlo)nor]fast

U
o~

y

[ﬂ(x, w’]fast

[n{x,0)nor]
[n(x, c0)] ] fast

. O

80 100 | 150 187

e




III-1)
I11-2)
III-3)
S ITI-h)
III-5)

III-6)
III-7)
I1I-8)

III-10)

I11-9)

Chapter 111

GENERAL REACTOR KINETICS AND THE CONCEPT OF REACTIVITY

Time dependent transport theory

The harmonics'and the existence of a persisting mode
The kinetic eigenfunctions

The‘formal soiution of the time dependent equation

Neutron importance function and the neutron deﬁecting
process

The reduction of the kinetic equation
The kinetic inhour equation
The static weight function
The dynamic weight function

Conclusions: The various definitions of reactivity and
5 > ael ) : J
its determination from kinetic experiments.

21
22
23
25
28

29
31
33
39
L0




- 21 - Chap.III

4. TIME DEPENDENT TRANSPORT EQUATION

The general time dependent behaviour of a reactor is given by the

- Boltzmann transport equation. This equation states the detailed

balance of neutrons and delayed neutron-precursors in every infi-
nitesimal element of the phase-space. The equation for a fixed

‘fuel reactor may be written in the following form (refs.45,46):

£ = VUN- vE(F,u,t) N +Z°N + (1=B) £(u) P*N +
Y’ | 5
+ inktctfi(u)ﬁ-s(r,u,t), (1)
9 ) . ‘ '
5T BiP'N - A{Ci L= 1,200, 2 (¢ delayed neutron
groups) , . (2)
where:
N(?,V,t) = neutron density in phasetspace at the point
;'3, ; is written sometimes also as v = vﬂ,
" where ﬂ is the directional unit vector; the
letharg& u will replace v as energy variable
_ wherever possible. '
2(;,u,t) = the total macroscopic cross—section.
z - - [ vz G @
zZ° is the scattering operator, while 3 1is
the macroscopic cross section for scattering.
P - = /v(u')v(u')gf(u',?,t)- av'

P+ is the production operator due to fis-
sion; Zf'is the macroscopic cross section for.
fission and v(u) is the prompt neutron yield

from the fisSion process initiatedAby neutrons
of lethargy u. . o
the normallzed lethargy dlstrlbutlons of

£(u), £i(u) .
prompt neutrons and of neutrons emitted from
the i-th precursor group, respectlvely.

delayed neutron source term, where Cb(r t) is .
the precursor dens1ty of the t~-th group with -

v
& MG ( T,t)f (u)

the decay constant A.

s(T,u,t) = external source term.

Bi = fractional yield of delayedbneutrons of the
i-th group. ' '
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"5, THE HARMONICS AND THE EXISTENCE OF A PERSISTING MODE

The.main characteristic of a self sustaining reactor is its ten-
dency to exhibit a very short memory. This is caused essentially

away from its birth place, so that the distribution of its proge-
ny tends to flatten the initial effects. Thus the reactor tends

 normally to have its own neutron distribution regardless of the

initial conditions imposed on it. The effect of the initial con- .
ditions is manifested only through the amplitude of the distribu-
tion. The distribution which is attained after a relatively short
transient time is called the persisting distribution. It will
characterize the reactor in the sense that it is independent of
the special initial conditions, but depends instead on the inhe-
rent characteristics of the reactor.

This behavior is quite general, since it applies as well to most
of the nonlinear effects associated with burnup, temperature ef-
fects and other feedback processes. The stronger the nonlinear ef-
fects, the longer will be the transient period during which the
reactor behavior is influenced by the initial conditions. This is
true except in unusual cases where no persisting distribution is
achieved,and the initial conditions do, in fact, determine the
subsequent behavior.

In the treatment to follow the main problems will concern subcri-
tical or zero power states of a reactor. In these situations the
limitations mentioned above will not exist, and the persisting
distribution will always establish itself. In fact the persisting
distribution will not only be independent of the initial condi-
tions, but will also keep its shape, while its amplitude changes.

The fact that the population of neutrons and precursdrs rises or

" fglls with a common distribution after a certain transient time

(tbe longer the fission-chain the weaker are the transients),
means a complete separability of space and time. This suggests
the expansion of the neutron and precursor densities in terms of
appropriate eigenfunctions.

An expansion in terms of a "natural" complete set of eigenfunc-

‘tions would mean complete separation of time and spaée in each
" mode (a mode is defined by an eigenvalue and its corresponding

eigenfunction). The mode which will predominate will have the al-
gebraically largest eigenvalue., This mode, defined as the persis=




value will be real (a detailed argument for this is found in ref.33
" pp 4LO8-410 and a deeper mathematical treatment in refs.L7,48).

_of the instantaneous flux. Since these harmonics possess alge-

eventually decay and become negligible compared to the prevailing
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tlng dlstrlbutlon is a physically reallzable quantlty, its eigen-

- e RN 4

function will be non—negatlve throughout the reactor and its eigen-

The remalnlng elgenfunctlons oscillate around zero and hence are
not individually realizable. They describe the harmonics content

bt

braically smaller eigenvelues'than the persisting mode, they will

b

asymptotic eigenfunction.

This decay time is known as the transient period during which the
effect of the initial conditions dies off.

The desired expansion describes correctly the reactor under the
prescribed conditions, which explicitly demand that the operator
on the right side of Eq. 1 is linear and time independent. This
is achieved if the physical parameters like cross—sections etc.
are time and flux independent. In spite of this limitation, the
existence of a persisting distribution in the wider sense makes
it useful to have such an expansion as a convenient basis for a
solution for the actual power reactor.

There are several choices of appropriate eigenfunctions in terms
of which the neutron and precursor densities may be expanded. The-
se will be discussed in‘the following paragraphs.

3. THE KINETIC EIGENFUNCTIONS

An important set of eigenfunctions are the kinetic eigenfunctions
which reveal the simple eigenvalue character of the right hand
operator in Eq. 1 and 2 and give a clear separation of time and
space in each mode. ’

The kinetic elgenfunctlons nq(r v) (for neutrons) and mbq(r)(for
the L=-th group of precursors) are deflned by the following equa-
tions: ' '

—>p - - ' - ' v
“VVng = v2(r,v)ng+ 2 * ng+ (1-B)F(W)P'ng +

¢
| . _
+ LM L(u)mtq = Wqhgq , (3)

BiP'n= Aimig =wgmiq i= 1,2,..,¢4 (£ delayed neutron . L
| | ‘groups). (L)
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- The notation used here has already been defined (see BEq. 1 and 2).

Written in matrix form Eq. 3 and 4 become:

- - - -
FH ’ 3 MT 5 AT 5 ae0 5 Mefy ng | ng
BsP* 5 M3 O 5 ... 5 O mig Maq
| BaP* 0 3 -2 35 ... 3 O My | = Wq|myg (5)
BBgP' H 0 3 O 5 cee 3 —ng ;an_ L‘mlq-

where the operator H is defined by:
H=-yv: =v3+Z +(1-g)fP* . (6)

The matrix Eq. 5 elucidates the eigenvalue character of the reac-
tor matrix operator, which will be denoted for the sake of brevi-
ty by the symbol [M], while the column matrix of the densities
will be denoted by the vector symbol Zq. Thus L] is the g-th ei-
genvalue of the operator [M] with the corresponding elgenvector
Hq. This defines the g-th mode of the density vector, which is
seen to be entirely independent of the other modes. Eq. 5 is, of
course, not the only possible representation of thebset of simul-
itaneous integro-differential equations 3 and 4. These equations
may, for instance, be reduced to a simple equation by éliminating
the precursor components
Bi
Mg T A Twg ¥ 4’ (7)

and substituting into Egq. 3. One then gets a single scalar equa-
tion for the g—-th mode of the neutron density:

(=vv+ -vz-wq)nq-+Z‘nq+f(u,wq)P‘nq = 0, (8)
_where f(u,wq) is the average kinetic neutron spectrum of-the g-th
mode _

- - i BuAi T (u)

f(u,wy) = £y (u) = (“B)f(u)-l-t_1 —RI—:—;;- . (9)

Using Eq. 8, the prbblemloosesits clear eigenvalue feature. Ne-
vertheless this equation will sometimes have practical advantages
over Eq. 5. Its main use is in actual computation of the densi-

ties in multi-group diffusion theory. Then Eq. 8 has a very simi-

o
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' lar appearance to_theiviriual static reactor balance equation,
which is easier to’treat.~(For a definition of the virtual state
see Eq. 32). This similarity enables one to find a good initial

>’€ii approximation for the kinetic variables. These points will be

‘elaborated later on.

4. THE FORMAL GENERAL SOLUTION OF THE TIME DEPENDENT EQUATION

Tryiﬁg to solve the transport equation, Eq. 5, in any of its forms
it is necessary to reduce it to a more tractable expression. This
can be achieved by first expanding both the directional density
vector and the scattering cross-section 'in spherical harmonics.,
Following this the diffusion approximation is obtained by neglec-—
ting all except the first two terms of the expansion, (refs.'h6,u9).

One can proéeed aﬁd make further simplifications for the purpose
of solving the energy dependent diffusion equation. One way of
doing this is to make some aésumptions about the strength of the
dependence of the neutron density and the parameters on the ener-
gy, (which is usually believed to be weak). This leads either to
the continuous slowing down model or ‘to the kernel method.

Another way, which provides a model more amenable for computation,
is the reduction to the group diffusion model. This method con-
sists of breaking up the full energy range of the neutrons (from
fission energy to average thefmal energy) into discrete groups,
assuming that in each group the energy is constant and the space
and energy varisbles are separable, (refs. U45,46).

In the multigroup approach, the first row of the operator matfix
[M] and the vegtox*;;q (eq,:5)~will be split into, say N rows,
where N is the number of energy groups.

All pafameters appearing'in tﬁe matrix as well as the densities
in each group are energy independent. " '

The above mentioned simplifiéations, supplemented by space bounda-

ry and intkrface conditions, amount therefore to the replacement

of the ﬁatrix_operatorg which operates on ;q, by an equivalént al- .

gebraic matrix. This enables one to write Eq. 5 in the form of a
‘i} secular equation:

{[M]—wq[l]};q o | | (1é), |
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 where [I] is the unit matrix. o I
~ A non-trivial solution for Hq (?,3) demands the-vanishing>of the

" secular determinant:

(4] - w,[1]] = o. ' (11) @

The last equation is an algebraic equation for wq, and has infi-

nitely many distinct solutions, depending on the boundary condi- -
tions. Each of these solutions describes a mode. Thus wq describeé
the eigenvalue of the g~th mode. Knowing the wq, the corresponding

‘eigenvector may be found with the aid of the normalization condi- -
tion. Thus, the set of kinetic-éigenfunctions based on Eq. 3 and L
-is formally determined. The time dependent transport equations Egs. 1
‘and 2 can also be written in the following matrix form:

(M]¥+8 = & ¥, | (12)
where:
N = {N(?,V,t), CL(;,t), cee s Cg(?}t)} density vector
-’ ) .
S = {S(r,u,t), 0 s see 3 0 } source vector.

One is now in a position to expand the density vector ﬁ in terms

of the kinetic eigenvector ;q:
- > ~ «Q - 9
N(r,v,t) =q2 (t)n (r,v). (13)

In order to isolate the time behaviour (e g solve for A (t)) one
needs a set of functions orthonormal to the n « This orthonormal
set (or rather the bi-orthonormal set) will be the set of all ad-
joint vectors n (7,v), which will be chosen so as to satisfy the
following scalar product (bi-~orthogonality condition):

// +ﬂ,;)3 (r,v)drd—w;
+ - >
= m dv = . :
f][nqn * L‘-Eim"q “p]dr VT Ogp (14)

Thus, E;'is a solution of the eigenvalue equation:

[u* ] wnt (15) @

Q q

—»+-+ )
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’ '~'where [MF] is obtalned from [M] by the follow1ng operatlons
1(refs._50 51) '

a) transposition of lines and rows,
b) replacement of the diagonal terms by their adjoints,

é) changing of integration into its corresponding algebraic ope-
" ration and vice versa, in the off-diagonal elements.,

- _
H™ ¥ s B B(Zw)5 vee 5 BR(Fu)
/fi(u ). dv's ;

| Ay AL 3 ees
[M+]=o‘.oloooooooo‘oo',uooocooo (16)

M] fplu'): d—w;'; O 3 eee 3 oY)

where: ‘
B = s vzevs,GE o0 a0

| +<1-.-a>v(‘u>;(u>zf(?,u>/ ra') av (16a)
P(Fu) = v(wv(w)zp(Rom). (16

Substituting expansion (13) into the transport equatlon (12), and
multiplying scalarly by ngz results in an ordinary dlfferential
equation for the time dependent amplitude of the p-th~mode:'

dAp(t) '
) = [[sGRE DES = s, (17)

the'general solution of which is (with the help of the convolu-
tion symbol):

wpl -

A (%) = AP'("o)__;ew._"’f +.S;(‘t)‘.' e P, DR (18) )

Therefore the genéral solution for the neutron'density is:
4 - N w,t T wt | . i
N(r,v,t) = X {A'(O)n (Z,7)e © +5¥(t)*e "' n (}’.,?f’)},» (19)
» Pe=o~ P P S D p S :

and for thevprecursof‘densities (see Eq. 7)5_

(B8 = pgo{%("k%t . sp*“mme""t }-—B‘—- P (F,9) (20).

L =.1’2,, ecs gy zo

e e b N koSt ettt

SO

* .

et
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In spité.of their rather formal appearance,‘equations (19) and

(20) reveal some interesting features of the time dependent_feéc-
tor; These features are best described when using the multi-group A
" diffusion model and will be discussed later. ,qii :

5. NEUTRON IMPORTANCE FUNCTION AND THE NEUTRON DETECTING PROCESS

Eq. 17 is actually a reduction of the partial integro-differential
equation (12) into an infinite set of non-coupled ordinary diffe-
rential equations in time. This result was achieved by multiplying
the general kinetic equation by the adjoint vector, or, puting_it'
in another way, by averaging the density vector with the adjoint
vector.

This procedure of averaging is useful mainly for the pﬁrpose of
obtaining the general solution in the form of a complete set of
separable eigenfunctions. However it is by no means unigue.

The general kinetic equation (12) or its eigenvalue counterpart
Eq. 5 or Eq. 10 may be reduced either to an ordinary differential
equation in time, or to a set of algebraic equations, one for each
mode, by multiplying them with some arbitrary weighting function
which fulfils the appropriate boundary conditions.

It is true however, that such an averaging process is meaningless
for computational (and experimental) purposes, unless the inte-

- grals can be evaluated. This, in turn, demands the knowledge of
the density vectors.

Using Lewins' interpretation (ref.52) of the importance weight
function as the contribution of neutrons to a meter reading, a phy-
sical meaning may be attributed to the weighting process which |
will give some insight into the concept of reactivity.

Actually, the recorded behaviour of the reactor is not determined
solely by the neutron density. The detecting devices ' introduce
their own characferistics into the measurement of the density as

.a result of thelr spatial distribution and their possible influen-
ce on.the reactor parameters.

The average neutron population in the reactor which»is read from ‘ii
the'meter thns_reflects not only the neuntron density but also the
detector characteristics which can be varied at will, at least to




~some extent.
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The importance function is then defined as the contribution of a

neutron at p081tion r, velocity vector v and time t, to the meter
reading at a later time te (the reading time).

This importance function, which must obey a final condition ta-
king into account the deteetor characteristics, can be determined.

by assuming that a law of conservation of importance is valid.

As a matter of fact, it was shown (refs. 50, 54), that under these
conditions the time dependent importance function satisfies the
time dependent adjoint density equation.

The above arguments lead.oneeto the conclusion that any arbitrary
function or vector satisfying the correct boundary conditions,

may be used as a weight function for the density vector and is
physically realizable as detector distribution in the reactor. This

consequently determines the neutron-importance.

6. THE REDUCTION OF THE KINETIC EQUATION

The\balance of neutrons-in the reactor is characterized by the
production and destruction operators. The operator of direct neu-
tron and precursor production is defined by the matrix [P], and
the destruction operator, [D], is defined in such a manner that:

[M] = [P] - [D] . | (21)
[M] is seen to describe the net production. Explicitly
(4 B)f‘P‘ © 503..0] o5 ~Aafyseas-rety]
B1P- . ~:;O;'-.'O, " . 0 A\ $ee} 0.;
[P] = - ».. e s o s & o o 9 ID]= o o o e o o e o o (22)\

. . . . . . e 3 . . . 3 e e . . . .

BePe . 303..0] 03 0 jeus Ay

et B - L N -

‘where. D= 7V-+§2—Z* _] !is the neutron destructlon operator.‘

. From the eigenvalue equatlon (Eq.5) and. the splitting of the ope-~

rator [M] one can obtaln an algebralc equation involving wq by

scalarly multiplying both sides of the equation by a weighting
vector W(;,;). As already emphasized, this procedure is meaning-

 ful as long as the weighting vectqr'W describes the actual detec-

tor distribution.
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The algebraic equation may be presented in two equivalent forms:

W - (’W,:a). = (W,[P]qu

1+ A =k, - (23).
v (W,[p]R)  (W,[D]5)) * | o
_ (W, i[p1- [D)R) _  (#,3g) o

P‘l = (W’ [P]Hq) : Wq (W, [P];{q) N (2“-)

where the brackets describe a scalar multiplication in the phase
space (integration over T and 3).

These equations may be considered as the generalized inhour equa-
tions for the "inverse period of the g-th mode'.

The first equation (Eq. 23) involves only destruction processes,
while the second equation involves only production processes. Nor-
mally form (24) is to be prefered (see ref.55). The multiplication
constant of the gq~th mode, k_, is here defined as the ratio of

. weighted overall production to weighted destruction of chain car-

riers (neutrons plus precursors). On the other hand the reactivi-
ty, Eq. 24, of the same mode is the net weighted production of
chain carriers per chain carrier produced. It is evident that:

p, = —— - | | (25)

In analogy with simple kinetics one may define a generalized gene-
ration time of carriers in a certain mode:

, ®q = (W,Hq)/(W,[P]-ﬁq), | (26)

i.e. the average time elapsing between production of an average
chain carrier and the moment this carrier initiates a new one,

Similarly the generalized life time
— -> - ' :
L, = (W,a) /(W,[D]nq). (27)

is the average time elapsing between the production of a carrier
and its disappearance.

- A1l the expressions defined above refer to general chain carriers.

They can, however, easily be reduced to the corresponding expres-—

sions for neutrons alone. 6

As was mentioned above, the density-vectors corresponding to high-

- ep hafmopics are not individually physically realizable, and the-




<. refore their correspdnding"ﬁodal quantities like reactivity, gene-
";? ration time etc. cannot possess physical meaning, but rather re-
.. fer to the perturbing effect of transients. : ,

© The reactivity and the generaiized generation time, as well as i

-® . In most practical cases the main effect of local and global

~a result of this change will be much smaller than the correspon-

"“—951"*ff‘[ "'f - Chap.III :j

the neutron generation time and the effectiveness of the fractio-
nal yield of delayed ﬁeutfonS'(the latter quantity will be de-
fined later on) are arbitrary to the extent that the weight-vector
W is arbitrary. Nevertheless, some advantages are gained by using
the inhour equation and defining reactivity according to Eq. 24.

This can be seen if one expresses wq in Eq. 24 in terms of p nd

changes in an operating reactor will cause a change in the destruc-
tion operator alone, chiefly affectlng the net production [P]- [D].
Hence the main result will be a change in the reactivity of the
system (see Eq. 24), while ®, Eq. 26, will hardly suffer any chan-
ge at all. Even in cases when the reactor production parameters

are altered, the influence on the generaligzed generation time as

ding change in reactivity, since the latter is affected by the
difference between production and destruction. Hence the useful-

ness pf Eq. 24 lies in the fact that the main dependence of wq on
changes in core-properties is via a global reactor characteristic,
the reactivity.

The weighting vector W for the g-th mode has not been specified
so far. For the sake of generality, oscillating detector-distri-
bution (negative importance)may also be considered as a weight
function. Such weight functionswould be, for example, the eigen-—
functions of the time dependent importance operator. As a matter
of fact, the kinétic'importance function defined by the adjoint
eigenvalue equation (Eq. 15) must have an oscillating behaviour

similar to thatidf'the forward eigenvector (normal density veétof)
in order to fulfil the orthonormalization ¢ondition; Eg. 14.

“y - !

7. THE KINETIC INHOUR EQUATION

|
A useful 'set of Weight functions would be tﬁe adjoint ei‘ge'ri--.'.‘l
functions as defined in Egs. 14 and 15. Since these func- .:1
tions are orthogonal, one' must substitute H+q for W in i~1‘?
Egqs. 23 and 24. If normalization 1is not taken into ac— S
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_ cbuht,-both numerator and denominator may be separated into neu- -

tron and precursor components.

Furthermore, the precursof components may be expressed in terms of

the neutron density as follows (see Egs. 7 and 15): ‘ ‘i’f:

Bt (

m = _— P . n E )

Lq_ ll, +W _q’ q 7)
: q
At ' o
+ +
m_ =———1% "n_. :

' Substituting this back into the separated equation, the delayed
precursors are completely eliminated, and one is left with the
following'kinetic inhour equation:.

L w Bi,)' | ¢ ( AL ) Bi'eff,q
Ld -A———— ' = b4
. <1 v w/ Pa L At w/ R twg (29)

where: _
= + +2 pe.

A, = (ngong) / (ng,f P nq) (30)

is the kinetic generation time of the neutrons in the q-th

kinetic mode (defined by Eq. 3 and 4),
+—

fP*n 1

AEREE S ()
is the Kinetic effective delayed neutron fraction of the iL-th
group of the g-th mode. This definition represents the ratio

‘ Bt eff,q = Bt(n;,fLP * nq) / (n

of the average production of delayed neutrons of the iL=—th

group which are emitted with their normalized spectrum £ (u)
to the average production of all neutrons produced with the
average normalized kinetic energy spectrum fq(u), where (see

Eq. 9):

BRI ey

- =1 A+ W, .
fglw) = ' . (9a)
: L B w
- (-t
L MW
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. The‘kinetic inhour eqﬁation.(Ed. 29) furnishes for the g-th mode

a relation between”the'kinetic reactivity and the inverse period.
This connection is brought about by a consistent definition of

the global reactor Quantities, namely kinetic neutron generation
time, Aq, and kinetic‘effecti#e delayed neutron fraction, Bi eff,qe -

It is obvious from the discussion above that there exists a great

. deal of afbitrdriness'concerning the choice of weight function.

Nevertheless, among‘the“various'possibilities there are some which
merit special attention due to their practical use in reactor

theory and experiments.

8. THE STATIC WEIGHT FUNCTION

One of the most’usefui functions is the static weight function
(refs., 58 and 60), which is widely used in perturbation theory (ref.
57). In this approach one weights the neutrons with the importance
of a critical reactor, Thus the actual state is considered as a
perturbed state of the critical reactor. In principle this picture

'might be extended to far suberitical reactors (ref. 56), but the

real physical 31gn1flcance is lost when the perturbation becomes
large, so that there is no longer any similarity between the "un-
perturbed" and the '"perturbed" reactor.

The static weight function helps to establish the relation bet-
ween stable period (the inverse persisting eigenvalue), which can
be conveniently. measured,and static reactivity, which may either
be calculated or derived from static experiments.

The static elgenvalue ' /& of the statlc p~th mode is defined as:

(v /v)[P]h [D]h s ’ (32)
where ﬁ is the correspondlng statlc eigenvector. A
- v ' ’
b, (z,v) = {h (r,V), &, (r),-.-. g,p(r)} (33)
The static reactlvity 1s.then'def1ned as: |
LV T vy : : o ‘
Pp —77—2 . _ | . (34)

The reactor is "subcritical, critical, or supercritical in the p-th

mode" if vy >V, v.=v, or v,_<v respectively.

R Y p _
The physical nature of this model becomes clear when one. compares. .
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’»the;eigenvalue defined in Eq. Bé to the kinetic eigenvalue defined
‘in equation (5) or equation (10). By changing the neutron fission

yield v (which may be considered as averaged over energy) to some
fictitious yield vp, one brings‘the actual non critical reactor to
"eriticality" in the p-th mode (which means that in the new reac-
tbr wp==0)° In other words the production is changed homogeneously
in the multiplicative zone in order to compensate the destruction .

until criticality is attained in that mode. The set of equations(32)
‘written in matrix form may be reduced to a single integro-—diffe- -
rential equation involving the neutron density, h,s alone, by eli-
"minating the precursor densities,

g, =2 — Peh (L = 1,2,00.,2). (35)

Thus, one obtains the desired reduced equation:

D-h, = (v /v)T P-h, (36)
where:
D- = YW+vi-3Z° , (see Eg.22)
t .
= (1- B)f(u)+ Bufu(u). | (37)

is the average static fission spectrum, which corresponds
to the average kinetic neutron spectrum of the p-th mode,
Egq.9, with wp = 0,

The adjoint static density vector of the p—~th mode will naturally

" satisfy the following relation:

(v [P']B," = [D7]n,", | (38)

where [P'] and [D¥] can be identified frmn@dqus 16) to be:

[(1-8)P(T, u)/ £(u')s dv's BP(T,u)s ... BeP(r )]
[P+]= O ’ o) HE 0
i 0 ; 0 3 veu o |
(39)
i . D+ 4 O 9 oo e 9 O ]
(p*] = M[ £y (u') av' AV T 0
M[ fy (u')* av' ; O 3 eee 3 =Ng |
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where: D °

BT XN SR A VLTS mRRTA

- -,‘(.11'-6)_P'(?,u) / fu) ar,

'In order to’expreés the static reactivity of the p-th mode, Py
' in terms of the kinetic eigenvalue, the kinetic density vector of -

the q-th mode is weighted with the importance of the carriers in

‘the virtual critica’lvreaqt_'or° To this end one substitutes ﬁp+(?,?)
- for W(?,?) in the generalized inhour equation of the first form,

Eg. 23, yielding

—p
e
(hp+9n )

Q) BLPE)

1+w

Qa o - - . - ) (“‘0)
(a,%,[DIny)  (B,",[DIn)

Making use of the commutation rules for adjoint operators and Eq.38
one has: '

h

(B, (018 = B,IDMEY) = = (B, [P*1R Y=

Il

- 4 —_

1- h P .

(1-p,) (B, [PI5,)
Substitution into Eq.uo results in the desired relationship:

- -
(hg} nq)

Py = W

p (41)

e . . "a %,
(b, [PIn_) -
q
where ®pq is the gengralized generation time of the chain carriers
in the g~th kinetic mode, weighted with the p-th static importance
function (see Eq. 38). |

The last result of Eq. 41 may be obtained‘diréctly by substitu-
tion of ﬁ;f for W in the second form of the inhour equation (Eq.24).
This in turn furnishes an integral definition for pp-static:
=>4 - -~ 4 - : : ) .
= (h : h P o . 2
pp = (ny[MIn) / (B, [Pln ). | . | (42)
In order to bring Eq.‘u1 into the form of the cbnventionaliinhour-'
equation, .it is'necessarybto separate the generation time -of the -
neutrons alone.from the generalized quantity, @béi This is achieved
by the following procedure: :

s L R e
; ‘(h -'_.yn ) = (h f’n ) + X (gi. +ym£ ) ’ o : R | ('4-3) .
C - A =1 p q . :

t | ‘
(Bs[PIn) = (4=p)(nL£P - n)) + Tpu(g J\P * ng). (4ks)
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Using Eq. 38 one can express g. * in terms of the static neutron ) ,

"importance: A L
o= ont= [[eamiE e A awad ws)
Eq. 7 expresses the kinetic precursor densities in terms of the ‘iixf

neutron density. From Egs. 45 and 7 one has:

Bi Bi
+ . :————- f' . +’P' e ————— f
(8,5vmg) = 77~ (fi7nP " ng) = e (n,£LP * ng). (46)

Substitution of Eq. 45 into Eq. 44 gives:

(h*,[P]n ) = (1—5)(11 P n )+ Z eb(h ,fLP*n_)
= (n,fP " n ), (47)

where'f(u), the average static spectrum is defined by Eq. 37.
Substitution of Egs. 43 and 4L, expressed in terms of neutron den—
sity only, back into Eq. 41 leads to the conventional form of the
static inhour equation, namely

A L Bt .

pp = —L29 + g _e.:f;ms., . (L,_s)

Tq 1+ lLTq
where: v

T = ;?—, is the "period" of the g-th kinetic mode.
q

A, _=(*n)/ (0YFP 1), (49)

D,q p’"q D q |

is the static-importance weighted, mean neutron genera-
tion time. '

Blerrp,q = B;(h;,fi_P°nq) / (hp+,f‘P' ng) s (50)

is the static effective delayed neutron fraction of the
L-th group.

The computation of generation time (Egq. 49) and effective delayed
neutron fraction (Eq. 50) involves the knowledge of the kinetic
and adjoint static densities as well as integration procedures.
- There is an alternative method involving two static reactivity
calcﬁlations, which furnishes A and Bteff to a very good degree ‘ii

of’approximation. For this method it is convenient to eliminate
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',the'precuréor'terms from the integral definition of the static
-reactivity,'Eq. 42, Theélimination has aifeady'been done for the

denominator, Eq. 47. In the numerator it can be achieved by car-
rying out the scalar multiplication and using Eqs. 45 and 7. Fi-
nally, one has:

(nt,FP'n, ) - (h*,(?r’v+vz- z) *n > (nt,D'n )
pp, = —F S ~r AL = 4= 2L (51)
(hp,fP-nq) (hp,f‘P'nq)

Consider now é.pérturbation'of the absorption probability rate,

vz(;,u), by adding a small amount,'a' absorptims/sec. This is equi-
valent to the introduction of a homogeneously distributed a/v ab-
sorber, since vi+a = v(Z+a/v) = vi*. ‘ ‘ ‘

As a result, there wili be some change in reactivity, .and an addi-
tional small change in the densities n and h:

1 (h*'*,D* n". (h'p+,‘n')
-__L___q)__a ’a

)

p (h' P'n ) (h;f,%p‘n'q)'
(h'+9. D°n')
= 1~ 2 — g. - aA'Q . . » (52)
+ ' P q
(h37»fPng)

If a is small enough the change in the densities will be small and,
to the first approximétion,‘A' can be replaced by A . However,'
1---(h'+ D'n )/(h'+ fPn' ) can ngéqbe replaced by Py Eq?,%1 The appro-
x1mat10n 1nvolved in such substltutlon is of the order of the quanti-
ty to be calculated, namely aAp,q' The above.mentloned approximation
is valid to the first order, only if the weighting function belongs

to the same mode as the neutrons, and-both static and kinetic eigen-

functions should be about equal, i.é. h¥->n’ ana nq:ihg. Then follows

‘D

[\]

-

I

I

SR
1]

j3s]

g

1]

Pq = 8hp g = 8hy q T 8hg,q =80 - (53)

Thus the reactiv1ty change due to 1nsert10n or w1thdrawal of a
1/v absorber in the whol€ reactor is proportlonal to the neutron
generatlon time.

Next assume that the production operator is perturbed by doubllng
one of the delayed neutron fractions, say the l=th one. This would

6-3 naturally affect the reactivity, and to a much smaller extent the
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" densities:
. ) |+ + t
1 (Y ’fPL)Hsa (M, £ Pn' ) N I
1=pl  (n}',Dny) (n'*,Dn') ' SR
D p P q e A
(n'*,¥pn') ' o i
=R’ _a ' (54) " -
- + ot 1+ Blerppg ) -
Sincé Bi is rather small, replacement of #{ eff p,q is allowed in |
. ?

the first approximation, However, as in the preceding calculation

of A, (h5+,f P'n )/(h'+ D'n ) cannot be replaced by 1/(1—pp) unless

the conditions involved in Eq. 532 are fulfiled, namely hp - nt
d % h . The

an nq q n

q

1 -p vl =y
__.__9.1 — pq -1 = - ﬁ——qu = Bl’eff q. (55)

Thus the effective delayed-neutron fraction of the i-th group is
equivalent to the reactivity change, due to the doubling or elimina-
ting of this delayed neutron contribution. This'reactivity change
refers to the unperturbed fictitious state (with vq) as critical.

The appearance of effective delayed neutron fractions in Eq. 50
and in the kinetic case, Eq. 31, is a reflection of the fact that
prompt fission neutrons and delayed neutrons have different ener-
gy spectra. This difference gives a higher "importance" to the de-
1ayed neutrons in contrlbutlng to the chain reaction.

A typical consequence of the particular choice of weight-function
is the appearance of the average kinetic neutron spectrum, T (u),
in one case, and the average static spectrum,f, in the other case
(see Egs. 9a and 37). When the reactor is critical in the g~th

mode (wq = 0), the kinetic spectrum coincides with the static one.

But if the reactor is off critical, the kinetic behavior changes
the inherent ratio of delayed neutrons to prompt neutrons:

/4

Z B (u)
_ i@ £; ( 2 _ . _1° i
Byin = Lgi e— (1-B)f(u);  Rgipq = “(1-B)T(w)

(56 4@




For . supercrltical states (W > O)

Pk . T

kln< Rstatlc’ that is the ef-

fective yield of delayed neutrons is reduced relative to the yield
of prompt neutrons. In subcritical stages (wq< 0) the situation is

" reversed.

The significance of the -static inhour equation (Eq. 48) consists in

- giving a rigorous relatiqnship between the kinetic eigenvalue, which

may be determined by experiment, and the static reactivity, which
provides a unique mathematical description of the reactor. The

. transformation from kinetic eigenvalue to static eigenvalue depends

solely on the consistency and precision with which A and 5Leff
can be. calculated. ' '

9. THE DYNAMIC WEIGHT FUNCTION

The third weight function to be discussed, after the kinetic and
the static weight functions, is the so called ﬁdynamic” weight
function, which was ﬁsed for the derivation of the elementary time
dependent reactor eguations (ref. 59). Special consideration to
this weight function for a reactor on a stable period was given by
Gross and Marable (ref. 58). The basic idea which leads to the
"dynamic" weight function in our formalism can be elucidated by
installing a system of detectors in the reacfor which counts eve-~
ry neutron and precursor everywhere with the same probability. In
this case the impoftance of the chain carriers is constant, and
the weight vector"ﬁ Just equals the unit vector Y:

W(; -\-;) = (19|! .o 91)‘ , _ ' (57)

Introductlon of the unit. vector for W 1nto Eq. 24 and ellmlnatlng o
the. precursor components glves for the numerator and  the denomina-
tor respectlvely.:

(-i),;;q)":(",nq) + %: (1 ’l_nl. q) (1)n ) + (1 pe nq)tﬁ:i% ». (58)

(L [P15)) = (1-p)(£,2'n) + B(1,P'n) = (1,Pn).  (59)
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Eq. 59, due to its normalization: f(u)du = 1.

The prompt neutron spectrum f(u) djsappears in the flnal form of

Putting Eqs. 58 and 59 back into the second form of the generallzed L
inhour equation (Eq. 24) leads to the "dynamic" inhour equation:

o = ﬁ) Ft ' 60'
Pq = Wahq * Vg (2, wot AL’ (60)
whefe: ‘ :
Ay = (1m) / (1,2n) | (61)

is the total neutron population of the g-th mode in the
reactor divided by the total production of neutrons in the
same mode; Aq, by definition, is the neutron generation
time in the g-th mode.

The main feature expressed in Eq. 60 is the fact that the reactor
period (1/w ) is related to the corresponding dynamic reactivity:

-<I [M]n)/(I [PIng) = (T,[MIRy) / (1,2'ng),  (62)

through the neutron generatlon time A, and the purely phys1ca1

q
parameter Bi, and does not incorporate any "ecorrection' for the
preferential leakage of prompt neutrons relative to delayed neu-

trons.

10. CONCLUSIONS:
THE VARIOUS DEFINITIONS OF REACTIVITY AND ITS
DETERMINATION FROM KINETIC EXPERIMENTS

The only characteristic of a reactor which is truly global is

the algebraically largest eigenvalue, wy. It can be determined,at
least in_princiﬁle, by direct measurement without the need for
theoretical interpretation. It has already been shown that w, is
the inverse relaxation time (stable period) of the neutron popu-
lation. It is the time constant with which the neutron population
will rise or fall as a whole. After all transients have decayed,
the same constant wp, will be found by a detector placed anywhere
“.in the reactor. Until the persisting mode has been established
there is no rigorous experimental global paramefer which describeiii
the system.
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Recognition of this fact will lead to the natural conclusion that
for the purpose of direct comparison with stable'period measure-
ments, reactor theory,should be concerned with Eq. 5 for the lar-
gest eigenvalue wb,‘rather than with other equafions such as the
static eigenvalue equations (Eqs.,32 or 36).

In spite of this, in the early days of reactor theory the concept
of reactivity was introduced as a matter of con#enience. It was
maihly due to the fact that the w—eigenvalues are more difficult
to compute than the v /v-elgenvalues. The concept of reactivity
was shown to be llnked 1ntimate1y with the balance of reactions
in the reactor, which glves a better picture of the state of the
reactor than the information furnished by w. In subcritical states

the reactivity is much more sensitive to changes in the reactor

than the persisting mode eigenvalue. For instance, this eigenva-
lue changes only slightly when the balance of reactions in changed
abruptly from slightly below critical to strongly subcritical.

If one could devise a detector, distributed over the whole volume
of the reactor, with some velocity dependent efficiency, then the
meter reading would give directly the weighted population of chain

carriers.

The average population <N(t)> = [W,ﬁ(t)], with W = (N*,C¥,...,C¥),
will fulfil the well known kinetic equations (ref.59). These time
dependent equations are obtained here by scalar multiplication of
Eq. 12 with the detector distribution, i.e. the vector weight func-
tion'W(;,;) for Eq. 63a and with its C¥ component for Eq. 63b (see
also Sec.III-6 and ref':60)5

d<N> ' d<Ci > ' : .
Tat f“ L?:_:i _L" Q'H' N>+ <S>, v | - (63a)
QSQLZ QL%—% <N> = lb <CL>, : e (63b)

where <N(t)> and <CL(t)> are the average neutron and precursor den-
sities, respectlvely.~ ‘

Follow1ng the time behavior of the metér-reading one can deduce the -
reactivity:

oe) = (1@, 8GE w0 7 (0D, IRE Y ), (o)
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Cif the generation time of an average neutron A(t) and the effective
delayed neutron. fraction Bt(t) are computed according to the con~

sistent definitions,

A(t) = (W,8) / (W, [PIR),  Bigpe(t) =B (c*,Pom) / (W, [P]N)

(65) -
The global parametersp, A and fi are time dependent, which makes
it difficult to compare different systems. They become time

independent only if the time behaviour of the average population
is measured after the transients have died out, i.e. when

’ ﬁ(?,?,t)d-ﬁ(;,V)T(t), in which case T terms will cancel.

Experimentally_the detectors are local end occupy a very small vo-

;1ume of the system. Their response in space and velocity will be
" described by a vector functlon d(r v), which is non-zero only in

a small reglon around the center point, (rb,vb), of the detector,
that is d(r v) will be proportional in most cases to 6(r—r°)5(v—vb)

- - -

| Assuming the importance function W(r,v) = d(r,v), one can calcu-

late the three parameters p, A, and By and compare them with those
derived from experiment. o

It would, nevertheless, be misl;7ding to call the quantity

o= (a'(?m,[mﬁo(m) Q@ ERED), ()

the reactivity of the system, for this reactivity is not a global
characteristic of the reactor in the usual sense since it depends
strongly on the location and properties of the detectors. Such a
situation makes it again difficult to compere different systems.
Therefore, from the experimentalist's point of view, a reactivity
such as defined in Eq. 66 is unsatisfactory. Alternatively, one
can use the local measurement of the detector for determining the

_largest eigenvalue, which is, of course, independent of position.

But now, instead of defining the reactivity with the aid of the
actual detector distribution d, one can relate the stable period
to some convenient hypothetical detector distribution such as:

a) The kinetic weight function of the persisting mode, 3:'(Eq. 15). .
" b) The static weight function of the same mode, ho ‘(Egs. 32).

¢) The "dynamic'" weight function, I(Eq. 57).

These relationships are given by the inhour equation (e.g. Eqs. bii?

" or 41), with appropriately defined neutron generation time (Egs.

49 and 61 for.cases(a),(b) and (c) respectively), and effective
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.

R fractional yleld of delayed neutrons (Eq. 31 in- case(a), Eq. 50 in

case(b) and the pure fractional yield, Bi, in case(c))

Although the kinetic inhour €quation is the result of a straight-
forward weighting'procesgjgnevertheless a very great difficulty

~ remains, namely the'computation of the constants appearing in it.

Evaluation of these constants, con31st1ng of B P A and p, invol-
ves the complete solution of equations (5) and (15), plus subse-
quent integration over the reactor.

Of the various inhour equations arising from different weighting
functions, the static inhour equation is the one best known. It
is more amenable to computation then any other, mainly because of
the following reasons:

a) The static reactivity is the eigenvalue of an equation (Egs.36,38)

which is simpler in appearance than the kinetic eigenvalue equa-
tion, and its calculation does not necessarily involve integfa—
tion.

b) The compuﬁation of B8 eff and A involves the static adjoint func-
tion which is easier to find than the solution of the corres=
ponding adjoint klnetlc equatlon.

c¢) There is an alternatlve method for calculation of B eff and A,
which does not 1nvolve explicit integration, but the determina-

tion of two statlc elgenvalues (Egs. 53-55).
d) In most practical cases the persisting distribution is equal,

to very good pr30181on, to the static dlstrlbution. This oc-
curs mainly in regions of high static importance. Thus, repla-
cement of n, by hp is justified. This facilitates the computa-
tion of Beff. and A )

e) If the production parameters aré ﬁot drastically changed, Beff.
and A are more or less the same for varlous states of the same
system. This permlts the utlllzation of B eff - and A, once calcu-
lated, for dlfferent statlc reactlvities.

The . dlscu531on above was conflned to the persistlng mode. But a
direct measurement of the persisting mode eigenvalue, wb, is ra=

-ther‘difficu1t<in far 5ﬁbcriticél states of a reactor.‘ln this
- case another eigenvalue may be -found to be more suitable as a cha- -

racteristic of the reactor and also more convenient for measure-
ment. ’
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" The deduction of the static reactlvity, say of the zeroth mode
(p = 0), from any measured eigenvalue wq, 1nvolves the follow1ng

express1onsfor A and Beff’ _ ‘ ,
= (nf,n) / (0, Fpon ), Gol
Biess o,q = Bi(Be T Prny)/ (05,FP ). | (68)

In this case a replacement of nq by hy, which is permissible when
'dealing with the persisting density, n,, may be quite erroneous
and may invalidate the whole interpretation.

.~ The dynamic inhbur equation is an alternative formulation of reac-
tor kinetics., Here again the basic characteristic of both theory

and experiment is the kinetic eigenvalue. However, this basic
-quantity is now related to the dynamic reactivity (Eg. 62) rather
than to the static reactivity. The dynamic reactivity, which is
'simply the ratio of total net production to total production of neu-
trons; must be calculated by integration of the kinetiec flux over
the reactor, and no approximation is permissible here.

On the other hand, if the kinetic eigenfunction is known, computa—
tion of the generation time consists only of integration over the
system and does not involve any spectral terms. An appreciable sim-
plification is achieved with regard to the fractional yield of de-
layed neutrons. In the dynamic formalism, no effectiveness is neces-
sary, and only the physical constants, B;, appear. These constants
are essentially independent of the reactor configufation (there is

a slight dependence through the fast and intermediate fission fac-
tors, because of the different delayed neutron yields of different
fissionable materials).

The dynamic approach seems to be especially recommended as alterna-
tive interpretation of the kinetic behaviour of the reactor, when
the approximations used in the static approach are questionable.
Under such conditions, the effort involved in exact evaluation of
the static parameters may be large. The dynamic approach is then
simpler and involves only straightforward kinetic parameters.
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APPROXIMATE SOLUTIONS OF THE GENERAL KINETIC EQUATION

IV-1)  General perturbation method |

IV-2) Overall eigenfunction method

IV-3) Continuous slowing—down_model and spectrum effects
IV-4) Time dependent multigroup model

IV-5) Approximate calculation of Bieff/BL = Yi

IV-6) Calculation of the static generation time, As.

" IV-7) Examination of the basic parameters in the multigroup

approach

s,
Lr

52
55
63
66

67

i

ST SR DV S BT SR

Y S R S DI

e e e




- U5 - - Chap.IV

:ffhe.general'kinetic equation is of little use for practical purpo-

ses, unless certain simplifying assumptlons are made. When this is

- done, one may learn some more about basic propertles of the general

solutions discussed in Chap.III. Even when a simplified model is
adopted for a given problem (like the multigroup diffusion model),
the exact solution for a multi-zone reactor can only be found with
the help of a digital computer (Sec.4 of this Chap.). Nevertheless,
it may.be possible to gain some insight into the problem, or to ob-

"~ tain a good starting point for a computer program, if an approximate

analytical solution is known.

1. GENERAL PERTURBATION METHOD

An approximate solution is obtained by direct application of the
perturbation concept (ref.33) to the eigenvalue equation of the sys-
tem, '

[M]7 = wn. | (1)
Let the operator [Md] of the unperturbed reactor satisfy the eigen—
value equation:

-

(Mo 15, = i, (@

with known elgenvalues wp and eigenvectors np. The elgenvectors np
are assumed to form a complete bi-orthonormal set, and to satisfy
the same boundary conditions as the actual perturbed density. The
functions orthogonal to Hp.are the 3;& which satisfy the adjoint
equation to Eq. 2 ' '
=w. n_. oo '

(4] ny a0 .‘; | | (3)
Due to the completeness of the set of . nq, the perturbed density
vector, n, may be expanded in. terms of the unperturbed set:

= z; | o - .

- The matrix operator [M] is composed of the unperturbed operator M]
'and the perturbation operator e[M']. Substitution of expan31on_(u)

into Eq. 1 leads to: _
_ - - e ) ' .
% cp(w_wp)np ep% cp[M ]np, | (5)

where 8(61) may be looked upon as parameter characterizing the per-
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,Vturbation. i ,
. In order to solve for Cpr Eq. (5) is multiplied scalarly by HQ'QL

- - = M = cese :

po Cp("p)0qp = & 2, Cplgps 1= 01,2, (6_)-\0‘
where:

' s 1132y , -
= M .
qu \ (nq,[ ]np) | | (7)

 Eq. 6 holdsfor each q, so that one has an infinite set of linear

homogeneous equations for the coefficients cp' Such a set of equa-

tions will have non-vanishing solution only if the determinant for-

med by the coefficients of the unknown-cp's vanishes, thus:

I(wva)ﬁqp - eMaPI =0,  ap-= 0,15250000 (8)

Setting the determinant equal to zero results in an infinite order

"algebraic equation for w. To each w, in turn, corresponds an expan-

tion coefficient cp.

In practice the infinite series (Eq. 4) must be terminated after a
finite number of terms. The c_'s can then be found from the homoge-

neous equations (Eq. 6) and a normalizing condition.

The actual solution of Eqs. 6 may be achieved by successive appro-
ximations, which give a larger radius of convergence than the normal
Rayleigh-Schrddinger perturbation process, (ref.61).

For this purpose the equation is written in the form:

(9)

- - Ml = Mi ,
i(w LA ) — & qq SP;Q cpMes ,

and successive approximations are carried out as described .in Sec.2.

A similar procedure, called the iteration perturbation method, is
given by Morse and Feshbach (ref.62), and gives the result in an ex-
plicit form.

If the perturbed eigenvalue coincides with the j-th unperturbed
eigenvalue when the perturbation is turned off, =0, then the eigen-
values and the eigenfunctions to third order will be given by

' t

W W) + eM}; + 322 (w_‘;p_eﬁ‘;] T+
P¥ p  pp’ ®
. ‘ M' LM' Mt
+gd é ip_pg "gj _ (10)
- - p¥J  (w-w_~eM' )(w-w -gM' )

atj,p P T pp g 4qag
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Mt o - Mt M

- = -). ) Pi N - 2 Eg qj -
BEniteky TaTel Y Bp * S Temw el I (e el Bq
°p PP 25 ‘P PP qa  aqaq
: . a¥Jdsb
M" M' M'
-
+ 3 3 T 1 < A e (11)
p# (w vy eM )(w wq eM )(w v, ngr) r
a#j,D
r¥j,p,q

The straight iteration perturbation method and the modified iteration
perturbation method have been compared to the normal Rayleigh—-Schré-
dinger perturbation theory and also to the exact solutions of some
simple basic examples in reactor calculations by Blue and Zink
(ref.63). The improvement introduced by using these iteration me-
thods is evident from their work.

2. OVERALL EIGENFUNCTIONS METHOD

In the previous section the choice of the unperturbed functions was

not specified, but limited to the fulfilment of the appropriate
boundary condition. The unpefturbed operator should be chosen so as
to make calculations simple and still to have a reasonable radius
of convergence. |

Two other approaches of approximating the kinetic solutions will
now be derived by a slight modification and extension to the time
dependent case of the method of Holwéy (ref.64) and the method of
Foderaro and Garabedian (ref.65), which was extended to complicated
static systems by Auerbach (ref.ul).

In these methods the_néutron density is_expanded“in terms of a
complete orthonormal set of eigenfunctions over the whole reactor.
Therefore, to a certain extent, these methods.can be considered as

+

a special case of the general approximation‘or perturbation approach,';"

where the unperturbed operator is chosen to.be the Laplace matrlx
operator in the multigroup theory.

In spite of their approximate nature, these methods converge rela-
tively fast for many cases and may be used as an altbrnative me-
thod for exact numerical calculatlon with the ald of a computer.

The ba81c equation to be. solved is always Eq. 1. The den31ty vec—‘

tor n will be developed in terms of the complete set of eigenfunc-—
tions, Qp’ of the Laplace-operator:

Vep * Bpep = 05 | (12)
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h = E 2

where-Bz is the p—-th geometrical bucklings.

In the «-th approx1matlon all aP—O for p;x, n is replaced by 1ts~

-F o

- Kk=th approx1mat10n equivalent m, a by b and w is replaced by a. L

p
TherefOre : ‘
[M];"a;ﬁ = ﬁ, (1}4)
where: '
- K o -
m. p=za:o bp(Pp9 , ( 5)

- _' N .
and R_is the remainder.

As Ko, 3?*35, ow and the remainder R tends to zero., 1f the appro-
x1mat10n is so constructed that the remainder R will be othogonal
to each of the eigenfunctions belonging to the sub-group K, then

(kc+1) equations are supplied

ol

= K - K =
= (o »R) = 20 (oq,[M]cpp)bp-apglo (9gs0,)0,0 (16)

Ps=
q_ = 0,1,,-.,ICO

ﬁ is a vector of N+¢ components: N components due “to the N energy
groups, in the group diffusion model adopted, and additional ¢
components due to the preSence of ¢ délayed neutron—-groups.

The i-th component of the vector (¢q,§) is given Dby:

) l-al Y
O = R = . M' 1 b - .
(0goRe) = 2 ;& (og,M jo,)0, ap=o(cpqymp)bp (17)

Using Eq. 16 as a starting point for finding a solution characte-
rizes Holway's approach. Solving Eq. 17 for the components of the
coefficient vector instead, characterizes the Foderaro method.
Eq. 16 supplies us with (N+£)(c+1) homogeneous equations for the
(N+t)(x+1) unknown components of the vector bp.

l» The determlnant of this system of equations solves the multigroup
.’problgm to the assigned approximation. But direct solution of such‘ii

a determinant is very difficult,and a perturbation approach will

 be helpful in getting numerical results. In this approach one
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] = D]+ elu'l, | QTS

where [Mo] is again the unperturbed operator and describes an un-

perturbed system with constant parameters. Therefore:

((quMoqu)p) =0, " a # p. (19)
Substituting Eq. 18 into Eg. 16 gives:
| _ . )
<((Pq:[Mo]¢q) alI]+ 8(q>q,[M']q>q)>=5q = - spglq(cpq,[M lo )b,
(20)

Eq. 20 is in a convenient form for successive approximations to
[
multigroup vectors bq.

" The first approximation for b will be based on the fact thg; in

a homogeneous reactor (e=0), the density ineach group will be propor-

‘tional to the eigenfunction of the largest eigenvalue (i.e. the

persisting mode) after the transients have decayed. Therefore, a
suitable starting approximation is to let 35 = f and gq = 6 for
q # 0. Thus resulting in

<(‘Poa[Mo](Po) - a[I] + e(po,[M']go ))3 (21)

where I and 3 are the unit and the zero vectors.

This provides us with (N+¢)(N+¢) homogeneous algebraic equations
for the N+¢ unknown components of the vector 3@. The vanishing of
the determinant of the coefficients of Egs. 21 gives the first or-
der approximation for the a's which will be dénoted by a(i).

: - - ~ - ~
The next step will be to postulate: by, by # O and bp}2 = 0, so
that one obtains:

((%,{Mom) a() (1] + e oy, [w" ]m)B( >=—e<<pi,[M 100 )B0 -
(22)

With the aid of the determined a(i), the first order approxima-
tion to 3; (denoted by gfi))'is found. Similarly assuming E;,g;,

bz # 0 and bq = 0, the following equation for gél) is obtained:
<(@z,[Mo]<pa) a[I]+e(¢z.[M 192) >3<1 | _
= - e((%,[M "o )boi)'l- (925 [M' Jos )b(1)> - (23) .
By this procedure, the set of vectors 3;1), 351),..., gﬁi) and

the eigenvalue aﬁ) are determined to the first approximation.
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Substitutlng the set of vectors b( 1) Just found, back 1nto Eq. 20,
.gives an algebraic equation for the second approximatlon of a, that
is o « With this new value one might proceed to get a second or—

der approximation for: bo, and then for bl, bz, to bx* This is 3 ’
achieved formally by the following procedure: 6ii.

((%,[mm 02D (1] o a0 Jgo ) JBE) = - eﬁo(%’m']%ﬁé): (?4‘?'_:‘

((@19[”6]@1) ae)[1]+'8(¢1,[M ]Q1)>b@)

- = o (ou 1 0100 B8 4 p§O,1<¢1,[M'J¢p>B§)} (25)

((oa + 0 Ton ) = a® (17 + & 0s 0 Teg) JB8

_u-e{(¢2[M ]¢o)b()-+(¢2,[M Tos )b()'§52;¢(¢2'[M']¢p)3§)}.
(26)

As already mentioned, an alternative method of attacking the prob-
lem, would begin with Eq. 17, which treats every energy group and
ever& delayed neutron group separately. Since no particular use is
made of the'eigenvalue character of Eq. 1, the delayed neutron com—
. ponents may as well be eliminated. Such a procedure simplifies the
kinetic multigroup treatment, since the appearance of the reduced
operator closely resembles its static counterpart. '

The main advantéges of this approach are revealed in the simplified,
but nevertheless very common and practical, multigroup treatment,
where production is due only to the slowest group, (N), fission neutrons
appear only in the first group, and energy transfer occurs only A
between successive groups.

With these restrictions, the operator [M], will look asvfollows:

D, O 0 ... Py
Ti m O ® & o o 8 O
O Tz Daooooo 0

(M] = |, 0 Tgeueee O] ? (27)
o 0 o T D

YN-1 N'! ‘i'

where the Dy 's are destruction operators including capture, and
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' elastic scattering. Ineléofic'scatteriﬁg~wi11 not be considered

in this formalism. The’Ti represent transfer operators of neutrons
from group'? toigroup i+, and PN is the thermal fission produc-
tion operator. A more detailed discussion of the time dependent
multigroup treatment will be given later. Substitution of the new-

1y defined [M] into Eg. 17 gives:

K | K | {
= = 4 Dip_ )~ ]b't T; bt (28
0= (o .R p?o[(qu, vop) = abgy oy + L (g T @), T (28)

L = 2,3,&-,.--’N

W

K ) |
pgo[(‘?q’])ﬂpp) - aéqp:}bi) + Z ((P »P Q) )b . ‘(29)

Or, in matrix form:

{[bt] - a[I]}Ta’L + ['J?-L_i]it_1 = [ T = 2,3,000,N (30)

{[Di] - a[IJ}Bi +‘[ ]ﬁN | (31)

oed, [T and«[PNl,‘are-square matrices of order (k+1), their elements
can be identified.éasily from Egs. 28 and 29.

The systematlc ellmlnatlon of all the vectors BL from thé matrix

- Egs. (30) and (31), with the exception of BN yields an equation

for a, and in turn for BN (with an additional normslizing condi-

tion):
(.1 - a'[;1>t¢'11‘-*}([.nzj - a[1])[Ta]. ..
re (3 ;-é[I]})['ﬂ-‘N_;]'*([;N\] - al1]) + |
+ [P ]}ﬁ R BRI S D (32)

The vanlshing of the determlnant of order (;c+1)2 of the coefficients
provides an equation for the determination of a. An important re-
sult of this method is the fact that the determlnant for a does’ not
depend on the nunber of energy groups but on the number of terms

kept in the expansion.

So far the boundary conditions at the interface of the different
zones were not discussed. It has merely been mentioned that all"
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“eigenfunCtions of theveipansion should obey the same bouﬁdary condi- .

tions as the actual density at the external boundaries. Account of"
the interface conditions is taken either by introducing a special
‘operator (ref.6L4) which provides for- these conditions when the. dif- -

fusion coefficients are different in {wo successive zonjs, or by dli.D'

9, (T),D(T)Ve_(T)
integration is extended over the whole reactor. These 1ntegrals auto-

rect evaluation of terms of the form » where the

matically fulfil the normal boundary conditions of density and current
continuity at each interface (ref 65).

3. CONTINUOUS SLOWING-DOWN MODEL AND SPECTRUM EFFECTS

The successive approximations method may also be used to solve the
diffusion equations of the system with continuous slowing down. The
continuous energy degradation model (e.g. Fermi age theory) is an
important tool for estimating the energy spectrum effects on the
time behavior of a reactor. Analytically only the bare system can

" be solved with this model, but the perturbation approximation me-

thod demonstrated above, shows its versatility by enabling one to
attack the problem in reflected systems as well.

In the Fermi age approximation, the equations which govern both the
flux per unit lethargy and the thermal flux are as follows (no pro-
duction except in the thermal energy group, uz, is assumed) :

vD(u,r)ve(u,r,t) - 2(u,r)d(u,r,t --533 zs(u,?)¢(u,}’,t)]+

+ v (1-8)2(n F)2(0)8 (F,8) + £ Mgy (w)C (u,7,1)

N = ~
= v{u) aQ(%ﬁf’t) ’ . (33)

VD, (r)V@z (r,t) - 22 (7)), (T, t) +32 (uz,7)8(y,T,t)

1 a<1>2(r t)

s . aCy (T,t)
Bvaf(r)@g(P,t)“lLCL(I‘,t) = 35t ¢ L = 1,25.000,¢ (35)

[

All parameters have already been defined except ES which here des-
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“cribes the macroscopic scattering crOSs-éection multiplied by &,

- . the average 1ogarithmic‘energy degradation per collision.

-

~

Elimination of the deléyed neutron precursors by means of the sub-

,stitution g% -+ w reduces the equations to a set of pseudostatic
‘equations: ' . ‘

{vn(u,}’)w - 'z*(u,}')-g’a [zs(u,?)' :Bq(u-,?) +

+ vF(u,w) 2.(F)2,(F) = 0, (36)
.'r -r - -> -
|VDs (r)V: = 323%(r) {22 (r) +2_(uz,r)®(wa,r) = O, (37)
" where:
2*(u.r) = E(u,r)+w/V(u).’ 3.%(T) = 3, (r) + W/Vz- (38)

F(u,w) = (1-)f(u) + 2 A BT (w)/(w+hi),
is the kinetic lethargy spectrum (see e.g. Eq.9 Chap.III)

‘In‘ordep to solve the equations, the following expansion is made:

8(u,7) = Itn (Wen (B), (39)
2 (F) = ZAn an(T), - | (LO)~ -
where the @n(?) satisfy the equation:

Vot B 2on= 0. . _ - (1)

To simplify the mathematibs in the following example, without loss

of essentials, it will be assumed that the reflector is a nonmultipli-

cative region, but otherw1se has the same properties as the core
(i.e. 3*(u, r) = z*(u), ete. ).

After substltutlng expansions (39) and (40) into Eq. 36 the frac-
tion fn (u) may be 1solated by 1ntegratlon over lethargy,

3 (u)fm(u)—vZYm nAn/ F(u.W)p*(u ) eXPl:-Bﬁ'r(u -'u)]du s
- . - (uz)
where.»

p*(u'-'u) = exp[ [ <Z*(u") /3 (u"))du":]   , 7 }‘('}43)

is_the 'resonance" escape probability during slowing down
from initial lethargy u' to uj;




u

T(uh*u)= f (D(u") / Zs(u")>du"' \ ,
~ is the age of neutrons originating with lethargy u' and being -
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slowed down to uj;

ven =] wm@e@E . o @

eore

Substitution of expansions (40) and (42) in Eq. 37 ylelds a rela-

tion for the coefficients of the thermal flux, which is amenable ‘
to the successive approximation procedure: .
| | Y | |
A, 'DQBB + 2k - vzfym,m[(’ F(u',w)p*(u'—uy) exp <“'Bﬁ'r(u'—+ua>du|}

up _
= v;on F(u',w)p*(u'~u,) exp‘:-Bﬁ'c(u’-’ua ):l du'} n;-"mAnYm,n .
(46)

From the last equation one gets immediately, by assuming Anfm = 0,
a first approximation for the determination of w. A comparison bet-

ween this equation and a corresponding static approximation (v>v_,

c
w— o0) yields a static inhour equation, from which the parameter_A,

the neutron generation time can be estimated approximately (e.g. for
the case of m = o) to be ’

: Uy
A= 'roovzvzf/ F(u',0)p(u' ~uz) eXD[-BE'r(u"'us ﬂdu' »  (47)
A _ | B gA) v

and more significantly the effective delayed neutron fraction Bieff
(e.g. for the case of m = 0): '

u |
Bi /f?t(u')p*(u'-’uz{exp -Béw(u'-'uz):]du' »
AL RV - E— ‘ , (48)
B ‘ [:ﬁ‘(u',o)p(u'*u?) exp| ~Bdv(u'~u, ):' du'’
~ exP:;Bgzi(uz) | - [~ o

In fact the resonance probabilities may be dropped from Eq. L8,
. since they are affected only slightly by the different spectra.

o
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4. TIME DEPENDENT MULTIGROUP MODEL

‘The most useful and common model -for reactor calculation, -as has

been stated before, is probably the'multigroup'model The general

multigroup operator includes production of prompt fission neutrons and

T of delayed neutrons in all energy groups. It also includes neutron

transfer from each group to all lower groups.

The reactor operator [M], for a fixed fuel will be:

Vi[VD1V"3r1]+ (1-B) £y Py (1“B)f1PN S CRW PSS TPR Y
’ HECCNE | ' ’ :

f(1‘5)f1P1

VaZg,, * Vo [VDeV=2 ]+ (1-B)f2Py  Tighgh-3frohy

¥(1-B)£aP,  +(1-B)f2Ps

. . 3 L] . [
......O......’.............’...,‘.Q'.......’. ’.l.'..’..’.....

.

L]

*
wse
-

[(M]= 0) .
V123N1+ VQZSN~2+ vN[VDNv~er]+ M f1 Nli: ;nglg (5 )
H 9 e oo ;
+(1-B) Py +(1-B)fNP2 +(1-B) £ Py
P1Py 5 BiPa 5eee s PaPy 3 A3 O
Bz Py 3 . BePa 3 eee 3 BaPy 3 0 573 O
Be Py 3 BePy 3eee s BePy 3 0 505 -
where:
P; = vaEfJ

vJ,DJ(r) ZPJ(P) ZfJ(r) 'arelregpectively,the neutron velocity,
the diffusion coefficient, the removal croSs‘section (which
includes capture, elastic and 1nelast1c scatterlng) and the
flssxon cross section in the j th energy group;

~f; = is the fractlon of prompt neutrons born in the energy

1nterval of the j—-th group. It is normalized to give

2 £; = 1;

fi; = the fraction of neutrons emitted from the i —-th delayed
precursor group, with the energy of the j-th group. Al~
so normalized to ; fig = 1. a '
=1
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. L = scaﬁtéfing cross—section of neutrons from gfdup j(jsuff)\ -

spd
into the pu=~th energy group.

- The basic equation is ‘again Eq.1, but now with the multigroup opera=-

tor [M]: B | ; 0

[M]—I-l’ = w-l;l)’.

The corresponding virtual static equation is given by:

(v/%)[P]R = [DIR,  (Chap.III,Eq.32) (1)

" where:

v/vo is the static eigenvalue, which modifies the balance of
production and destruction in order to achieve criticality;

h = static density eigenvector;

[P] = production matrix.
(1=B)£:sPy 5 (1=B)EsPp 5 ... 3 (1-B)f1Py 3 0 .. O
(1-B)E By 3 (1-B)f.Pp 3 ... 3 (1-B)f 3+ 0..0
[p] = R N N , (51)
_BiPi .3 B1Ps N BiPN ) 0O.. 0
Btpl ; Btpz ; oe e ; B‘PN ’ O .o O
_[D] = [M] - [P], the "destruction" matrix. (52)

in order to write down the general expressions for the static reac-
tivity (III, Eq.51) the generation time (III, Eg.49) and the effec-
tive delayed neutron fraction (I1I, Eq.50) one has to transform the
total weighted production (bt F(u)Pn) and the destruction [h(3v +
+ vS=2* )n] into their counterparts in the multigroup model.

The first is transformed easily by noting that:
+ + + + +
£(u)*h*>{ £ 0!, 5507,.., 0008 )s £i(u) 0> £iahy,Tishs, ..

..,fLNhEI,

where h+ is the neutron component of the adjoint static density veqii
tor, which in the multigrqﬁp model constitutes an N-component vector.

<

~ .
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. Pinally

<h+,-f(u)Pn> K.’g fK.'vjszf’(h; ’nj)’ (53)
R with
l
(1“3)1' + ﬁufwc- (54)

. For the destruction term, use of the explicit definition of [D]

leads to
( ,(vV4-72 AR )n) - - >jJ 1{ 2 vtsz‘(h;,n¢)+
+VJ<hK’(VDJV-ZrJ)nJ>}f (55)

With the aid of the transformation relations (53) and (55), it is

possible to write down expressions for the three global parameters,

namely static reactivity, static generation time and static weighted

effective delayed neutron fraction in the general multigroup model:
N

-1
+ F Y B4 . . -
o = Eléﬂ{(hx,nJ)fvaEfjvJ+—v3< ,[VD;V Zp ]n3>-+§;iV3zsjt(h ,ng)

S N
\E%ai (hk,nj)fKijfJVj
| (56)
N ,
J=21 . (h}-’nj)
Ag = N — y : (57)
N _ , ,
é,jai (hK’nJ )fvazijJ
N o -
BLeffr _ "§‘J=ifLKvJZfJVJ(hK.nJ) : - o
B N | - | | ) - (58)
) + . . L ed .' R ,‘ .
v%_rjg'i (hK'.’nJ )fKVszJV-J

In_the dygamic (Chap.III, Egs. 61,52) multigroup representation the

~ reactivity and the generation time (in this model all delayed neu-

trons have the same importance i.eo‘BLeff ='BL) will be given
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N o v J™e A N
_ %Li{(1,nJ)VJZfJVji-Vj(1,[VDjV“2rj]nj)-f%Lingsj‘(1,ng)}’ (568)
Py = - | |
d N L
L (1,n5)v;3p,7; . 9
J=1 .
: ( )
Ay = g J . - (57a)"

N _
§L1(1.nJ)ngfJVJ

vBy means of the appropriate_boundary conditions, the Laplace opera-

tor appearing in [M], Eq.1 may be converted into an algebraic ope-
rator (e.g, introduction of zonal bucklings), so that,

{[m] ~ wm};{ = o.

The demand for non vanishing solutions for 3, results in the requi-
rement that the determinant of the coefricients vanishes: '

] = wizl| =0, (59)

which provides an equation for the determination of the w's. The
number of solutions for w is infinite. To each w corresponds a den-
sity vector 3 (poth defining a mode) which can be determined from
Eqg.1 when an additional normalization condition is provided.

In a single zone system (bare reactor)the bucklings are determined
solely by the geometry of the system, for instange, for bare slab-
@n)/(a) 2 g=1,2,...

reactor, having extrapolated thickness 24, Bq?=
This in turn fixes the density vector 3, and transforms Eq.59 into a

" simple algebraic equation of order N+: for w_, where wq belongs to
Bq. All wq's have the same eigenvectors Kq. This fact may be looked

upon as a type of degeneration phenomenon which should, however, be

 distinguished from degenerate states in quantum mechanics (ref.61), where

several wave-functions belong to the same eigenvalue. This degene-

ration is removed when a new zone is added to the system. Under

these circumstances each eigenvalue has its own distribution vector,

* but nevertheless ¢ of the N+¢ eigenfunctions, representing the con-

tribution due to delayed neutrons, are usually still very closely
bpaced. These fine structure functions may be thought of as sub mod
of the main mode of the degenerate case.
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" In compvting the eigehyélﬁés:of theAvariQESiﬁddgs and sub-modes,

use may be made of the similarity of the reduced kinetic-eqﬁa-
tion (reduction by elimination of the delayed neutron precursors)
to the corresponding fictitious static equation.

From Eq.1, the.balance equation for the p—~th energy-group is:

v (VD V-2_ Jh + T vi3 nj+ (1=p)f S +
M M TUL™ L =1 Sug K
. .
+ %siftuxtmg = wn,, B =1,2,...,N, (60)

and for the t—th delayed neutron density my:

BLS ~Aimi = wmg L = 1,2500e52, ' (61)

" where: N

S =-§L1VJ2fJanj,iS the fission source.

Elimination of the my's by substitution of Eq.61 into Eq.60 leads
to the following pseudo-static equation for the densities:

‘_‘J:VD'J.V--}JPu - ——:ln +§ VJZSanj +fu(w)S = 0,

B = 1,25000,N, (62)

where the production is'according to the kinetic spectrum:
| t : ' |
£,(w) = (1-p)f, + 2 (BMLip)/(wedi). (63)

A straightforwafd procedure to determine ﬁ'and'the borrespOnding
eigenfunctions would involve a dlrect w—-iteration of Eq.62. It is,
however, feasible only for the w's whlch are generated by the prompt
neutrons, while dlfflcultles will be encorentered in the delayed
A fL
-iteration 4 e the str f ti Bi i
w ration due to the strong varying func 1on ﬁai___:x_ﬁ whlch

has poles at = Aie In this case an indirect way may be preferable as

_descrlbed next,

Eq. 62 should be compared to the balance equation of the same reac-
tor which is made fictitidusly critical by changing the neutron

Gii yield per fission: S 4'€% SS, and consequently w — O,




. v

o . =4 : ,
D v-3_In +8 vi_ hy+£(0) L S_=0 6
‘vu[ B PH] T AR TR M( ) vo S (64)
lﬁhere: ‘ _
-y?- is the static eigenvalue _— 6 )
o s

hp‘is the static neutron density of the p-th group'

£,(0) = £, = (1=p)f, +2 £ B (Ba.5b),

the static production spectrum

Sg = & vjZp;vyhj , the static fission production ternm.
J=1 )

. If the additional "absorption" term, w/v, appearing in Eq.62 can
" be neglected, then_nH,agd hy satisfy essentially the same system
of linear differential equations, with source terms differing
slightly.

' The knowledge of (v/vo)P, for the p-th mode, then provides a first
abproximation for the 4.w's of the same mode; thus wp is actually
wp;i’ where L = 1,2,...,¢. The approximation involved is due to the
neglection of the term w/v and its influence on the kinetic density.
By equating the source terms of Egs. 62 and 64 one gets:

Vo = V .
S — = 2 tu
o)y = 5o~ =3 L, e - (65)
V)

This is an algebraic equati?n,of the ¢-th order for wp. For positive
(ps) , there are one positive w, and ¢-1 negative ones, While for ne-
gative p all the ¢ solutions are negative. In the last case, when |p]
is not too near to zero, the w's are very nearly equal to A's. Thus
one may claim that these w's are generated by the corresponding de- -
layed neutron groups. On the other hand these eigenvalue are indepen-

dent of the energy groups (cf. Eq.1). Therefore one can sum the p-terms

in Egq. 65 after multiplying both sides by f . Due to the normaliza-
1
tion of £ and ft one obtains for wé ), in the first approximation,

' the following algebraic equation:
(1)

(ps)p = (ps)(o) = L§1 -TET:T;— (66)
; o

vAﬁding the new "absorption term" wé )/Vu to Zr“ in Eq. 64, one gets
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' ffa new fictitlous critlcal elgenvalue v'/%o. Agaln with ‘the assumption‘
~* ‘that (n ) = (h ) , the second ‘approximation, L ) is obtained from:

(o ><1> - & —@27—— . (662)

e~This iteration procedure is repeated, say n tlmes, until the desired

convergence is achieved.. It should be noted, however that (p )én 1),

- from which the correct w( n) is derived, does not coincide with the

actual static reactivity (ps)p = (ps)§°) of the system. They describe

"reactivity of two systems differing, by the amount w§n)/ﬁp, in the

removal cross—sections.

As long as w/v can be neglected all the ¢ eigenvalues = Wi ,Wo seee,We,
have the same eigenfunctions given byﬂﬁp(Chap.III, Eqs.32,%4).

This situation can again be looked upon as a type of degenera%geaf
It is removed if one eonsiderS‘the appearance of the additional
"absorption' w/v. But, since w/v is rather small for the delayed
neutron-eigenvalues, the splitting caused is still very small and

the delayed-neutron sub-modes are usually almost identical with

the main-mode. This is an important feature of the kinetic solu-

‘tions. It means that after the higher harmonics have died awey the

delayed neutrons have the same spatial distribution as neutrons in
the fictitious critical reactor, which is characterized by the sta-
tic reactivity. In other words, the delayed neutron distributions are
very similar to the persisting mode, and the latter almost coincides
with the zero mode of the virtually critical reactor (see Sec.7).

- The above arguments do not hold for the other N solutions for W,

which appear due to the separation into N energy groups, and des-
cribe the behavior of the prompt neutrons. These'w'svare much lar-

"ger than the eigenvalues of the delayed neutrons, which, for the

case of p«O, lie between the largest lhbl and O. It might occur

that the prompt w/Vv, partlcularly for the thermal group where v is
smallest, will be of the same order of magnitude. as the removal
cross—-section or even 1arger as may happen in a heavy water reflec-‘
tor. Therefore the prompt eigenvalues define sub-modes ’ which
might deviate qulte strongly from the static main mode (see Sec.?)

Computatlon of the dlfferent w and the corresponding elgenfunctlons _

6;; for the zero main mode and its sub-modes, or for higher main modes
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" and their sub-modes, makeé use of the similarity between the redu- »j\e
‘ced kinetic equation and the fictitious critical equatlon, as des- -

cribed above. The sequence of computatlon is summarizéd below (an.’

" example of such a calculation in two energy-group model is given ‘ii -

in Sec. 7 and in refs. 66,67:

a) The eigenvalue of the main mode: the static eigenvalue of the
.p~th mode is found first. This corresponds actually to e zero
approximation for w;, since wL/v is assumed to be zero. ‘

b) The eigenvalues cof the delayed-neutron sub-modes: first order
approximation for ¢ w's (Wt(p))v is found by solving E? 66 for w.

)/v, is
substituted back into Eq. 62 (or into its matrix equlvalent), and
a second approximation for y/y, is sought (vE f (0) is again sub-
stituted for f (w)). _ H

d) Second order approximation for w of the p-th mode, wéi% is found
from Eq. 66.

e) This procedure is repeated until the desired convergence is
reached. Usually, in the two group model, two iterations will suf-
fice. ‘

f) The eigenfunctions of the delayed neutron sub-modes: Using the
final wéf , the corresponding eigenfunction is calculated from
Eq. 62 iﬁcluding w/v terms and fu(w). The adjoint density and
other quantities can also be found, once the w's are known.

» g) The eigenvalue and eigenfuhction for the prompt neutron sub-mode:

for the prompt wp of the p-th main mode, one can iterate Eq. 62,

or its matrix counterpart, directly, since here divergence of the
iterations does not arise. A first approximation may be obtained

from the equivalent bare system. |

Calculation of Beff and A for some realistic reactor-models, with
the aid of multigroup theory demands at least a few—group multi-
zone computer programme, Nevertheless, since ﬁeff'is much more
sensitive to spectral effects and less sensitive to geometrical de-

/tails, it will be sufficient to use either a few-group single zone,

equivalent bare system, or a first approximation in the continuous
slowing down model, for its computation. On the other hand, the ge-v
neration time, A, and the reactivity p, being insensitive to spectral
effects, are calculated with a multizone fwo-group programme RIFIFI
(ref. 66), which neglects any spectral difference between prompt aiﬁb
delayed neutrons,
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. 5. APPROXIMATE CALCULATION OF B _../BL = ¥i ..

. A minimum of three;energyfgroups is necessary in the multigroup mo-

dei to adequately describe the spectral effects on the effectiveness

~ of delayed neutrons:

a) The first group describes the average prompt neutrons.

b) All delayed neutrons are born in the second group; thus the same
effectiveness is~assigned to all delayed neutrons. -

c) The third group describes thermal neutrons.

- If two fuels are considered, e.g. U?®®, yielding only fast fissions,

and U235, yielding only thermal fissions, then in the multigroup
notation, the fission cross—-section in each group will be:

= = 8 = s = = 5
Zfi zf(238) zf ’ ;fz_ 05 zfa Zf(235) Ef ‘
There are, in addition? Bf’and'B? for the delayed neutron fraction
of the L-th group in U®®® and U?°®, Following the separation into
three groups, as defined above, it is clear that the spectrum-coef
ficlent £ will be:

fii = 03 fia = 13 ’fi‘,3~ = 03 fi = 1 fa = f3 = O.

Substituting all parameters ;nto-Eq.SS.one gets (e.go in the per-

 Lerelanflen)
[(1-&3 )R® + (1-8° )] [BBRS + B{Khz na>/< .n..-,>

A

= (V 28/v52 ) (hz’nd_) / (hzyna) . o (68)

is the ratio of total weighted fast f1$$1ons to the total
weighted thermal f1$$1ons.'

sisting mode)

' For natural uranlum, it is approx1mate1y
R8 = ,74(3-1) '_ (ref.68l .
where e 1s the fast flSSlOn factor of the reactor,

njﬁ—‘the kinetic persisting mode neutron density Of'the J*thv
energy group; ‘
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hj.- the adjoint zero static mode density of neutrons from
the j=th energy group; '

(hu,nj) = hu(¥)nq(;)d;.

Eg.67 shows that the efféct of the fast fissions is not necessariiy )

a spectrum effect. It can be taken into account by modifying B? with ,
- “the aid of the fast fission factér. A simple result is obtained for

the ratio (hz,na) / (hi,ns) if the bare system assumption is made.

In the bare system all densities have the same spatial distribution,

but with different amplitudes. Under the additional assumption of

no absorption during slowing down, and no direct contribution of

neutrons from the first group to the thermal group, one gets:

B _ [ﬁ%Ré-rBf:[[1i-Bz(wi-Tz)] (69)
, . l_“"ﬁa JR® + (1-8° )_l+lL_£_38R8 + 65][1+B2('r1-—'52):l | |

= [p%R?-fB?]‘[11'B2(T1-Tz)] [1—<R3(1-+68)+'Bs>Bz(T1“T2)]-
' (69a)

'”ﬁhere T, and T, are the slowing down areas of fission neutrons and
delayed neutrons to thermal energy, respectively.

In most practical cases B®t<<1 and the result of the first appro-
ximation in the continuous slowing down model, Eq.49, reduces to
Eq.69a for a single fuel, where B is neglected compared with unity.

' Fig.1 demonstrates the dependence of Beff/B on the square of the
backling B® for different t,-14.

~The large bucklings characterizing highly enriched light water reac-
tors, amplify the spectral difference between the prompt fission neu-
trons and the delayed neutrons, through the fast leakage probability
B%1/(1+B%t) = B2T. The fast non-leakage probability thus favours the
delayed neutrons, since they are born with lower energy, ~0,5 Mev,
than the prompt fission neutrons, born with an average energy of

. ~2 Mev.

For a more accurate calculation by direct integration (Chaep.IIl, Eq.50),
~ or by production-perturbation (III, Eq.55) one has to apply the mult‘i’
‘zone- multigroup diffusion codes (e.g. refs. 69-71). The calculations
described in ref. 69, e.g. compare fairly well with the results of a
careful substitution*qxperiment, which is also described there.

..
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' 6. CALCULATION OF THE STATIC GENERATION TIME, A.

'The static generation time (and the neutron lifetime, as well) de-

pends only weakly on the neutron spectrum. This is evident from the R
geﬁeral definition of A (III, Eq.49). The contribution of the de— 'ﬁii

layed -neutron spectrum fi(u) to the average static spectrum *(u),

is only of the order of Bi. Therefore one may expect to get good a
results by computing A, using a normal two group calculation, which

does not take into account the difference in the spectra of prompt

and delayed neutrons. The most important factor affecting the gene—
ration time is the reactor configuration, especially the presence or

‘absence of non-multiplying zones (e.g. reflectors).

The direct computation'of the zero mode static generation time for
a critical reactor does not involve any approximations, except those
inherent in the two group model and its adaptation to multi-zone he-
terogeneous reactors. By direct computation is meant the applica-
tion of Eq.57 to the case of two energy groups. With this model, if

fast and thermal fissions are included, the generation time will be:

(h:,h,_) + (h;’hz) (70)
A e = ’ °
critical v1*2f1V1(h::h1)'*Vz*zfzvz(h:’he)

where:
vf,v; = fast and thermal fission yields respectively, in the
critieal reactor. If the reactor is off-critical, v} and v}
are not the physical fission yields but fictitious values nee-
ded to make the reactor virtually critical. ‘

‘Phe calculation of A for the actual off-critical reactor by direct

application of Eq.56 demands a knowledge of the kinetic flux. In the

" case under consideration this is the persisting mode. However, as

argued in section 4 and demonstrated in Sec.7, this distribution is,

"to a very high precision, equal to the zeroth mode of the neutron
 density in the fictitious critical reactor: 3(?) = ﬁ(;), and conse-

quehtly (4, = A of the actual reactor):

~
-

A ‘ (h:’hi)‘*' (h;’hz)

& Vi 24y (hy,hy ) + vzz%,(h;*,hz) (70e)
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crltlcal has been des-
cribed in Chap.III,Eq.52. Thls method, which may be used for calcu-
lational as well as for ‘experimental purposes, is based on the ef-
fect on reactivity of slightly perturbing the entire reactor withia

1/v absorber. The approximations pertinent to this method are:

- .a) The assumption‘normally made in perturbation theory that the

- neutron density in the actual and the perturbed system remains
unchanged. o - _
b) The adjoint densities in the virtual critical states before and
after perturbation are equal.

If the basic assumption concerning the very close resemblance of
the persisting distribution, 3 and its adjoint, to the fictitious
critical distribution,'ﬁ,and its adjoint is fulfilled, the approxi-
mations listed above reduce to the normal assumptions of perturba-
tion theory.

- It has been mentioned earlier that occasionally the prompt sub-mode

of the essential mode corresponds to an eigenvalue which is parti-
cularly convenient to measure (e.g. in a pulsed neutron experiment).
To interpret such a measurement in terms of a static reactivity
would require using the generation time of this sub-mode instead of
that of the persisting mode or that of aAcritical reactor. The ki-
netic flux of the prompt sub-mode, as mentioned in section 4, may
differ appreciably from ﬂ. This occurs mainly in strongly reflec- -
ted heavy water reactors. Neglection of the difference between these
fluxes may introduce a non-negligible error in the reactivity.

7. EXAMINATION OF THE BASIC KINETIC PARAMETERS
IN THE MULTI=GROUP  APPROACH ‘

In the precedlng chapters some basic features of the kinetic para-
meters have been discussed on the bas1s of general reactor theory.
In this section the varlous kinetic parameters w111 be dlscussed in
more detail, mainly w1th the aid of the two-group model. ‘

The main points: to be eluc1dated here. may be summarized as follows'
a) The very weak sens1tiv1ty of the effectlve fractional yield of" de~
layed neutrons, Beff’ to geometrical details of the system.
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THe~very*strdngiresemblance,between»the‘delaYed sub-mode,éhd the‘,

‘main virtual critical mode.

The possible deviation of the prompt sub-mode‘from the main vir-
tual critical mode. '
The dependence‘of generation time on reactor configuration and Qii3 

‘the difference between persisting generation time and prompt sub-

mode generation time.

The static effective delayed neutron fraction of the i~th delayed

group is defined by the multigroup model in Eq.58. The only diffe-
‘rence between numerator and denominator of this ratio is due to the
-difference between the fraction of delayed and prompt neutrons ap-

pearing in the various energy groups.

The yi of-a reactor, which is perturbed by an absorber, will hardly
change, because the only changes that result after insertion of an
absorber (e.g. control rod)’occur in the fluxes. However, these chan-

ges usuélly'are much effective in the thermal range, where the dif-

| ference between the spectra of delayed and prompt neutrons is negli-

gible.

Using Eq.69a, one may write down the approximate ratio of y; to ya3
i.e. the ratio of effectiveness of delayed neutrons in the perturbed
and unperturbed (e.g. critical) systems. Using the definition of sta-

tiec reactivity in the modified one group theory (ref.68)one gets:

Y1 T o= T

~

Y-—o—z"ﬂkm——g_'m P1 » (71)

where:

T,Td - ages to thermal of prompt and delayed neutrons respec-
tively.

M2 - migration area.

Py ~ static reactivity of the perturbed state.

Eq.71 shows that the perturbation has negligible effect on yo. The

- - effect is of the order of ps which is at most a few percent.

Auétringent check on the constancy of y is its behaviour in -a small (high
| »buckiing) thermal reactor. For instance in a homogeneous light wa-
ter moderatéd PR35 gpherical reactor, having a diameter of 19.90cm ‘ii
(ref.72), the changes in Béff as a function of the volume concentra-
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tion of the fuel, UR3%, iS.éS follows:

- TABLE 1

Vol.fraction 107% |o-407* L1 o~ 61 o~* |4107°

Bepp 10 > |6,82 | 7,00 | 7,45 7,82 |8,40

Information on the change of Beff in fast reactors is provided in
ref.71. Values of B erp 8T€ given for spherical reactors having a
Pu239-.U238 core and a U?3% Dblanket.

Tables 2 and 3 show that Beff stays almost constant over a wide
range of changes in volume (Table 2) and changes slightly as the
energy distribution is changing (Table 3).

TABLE 2

Core-vol. - 800 11500 [2500
liter '

Beff'1°-$‘ 3,902|3,908|3,907|

TABLE 3

type : - Pu(c)-metal | Pu(c)-oxide| Pu(c)-carbide

10 Beff ' Ll-’865 Lhu?)-l- LI.,GL;LL

The arguments and'eksmples'above clearly show the'global nature of

Beff as a kinetic- parameter. Therefore, Beff once calculated for a

reference system, can be used without further computatlon in other

systems having propertles 31m11ar to those of the reference system.

This is of 1mportance 1n klnetlc measurements of reactivity, where

different configuratlons (e.g° control—rods fully inserted, partial-
G;} ly inserted or completly w1thdrawn) are compared
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D) Sihcé'phe eigenvalues of the delayed sub-modes are rdthér,éméli,

. of the order of the precursor decay constants, the delayed sub-mode . .
‘eigenfunctions may be considered as those of the pérturbedyfictitious“;'x
‘critical state. The perturbation is an additional absorption of mag-

- nitude w/v, (see e.g. Eq.62). ' : - ‘ii.

Under almost all circumstances 3>>w/v. Even in a heavy-water reactqr'bf.

the DIORIT type this condition is always fulfilled:

-3 =1
(2 °°re)thermal = 7,37 *10 “cm

. —d -1
(= refIGCtor)thermal = 1,85°*10 cm |
w/v,,) for fastest delayed group = 1,4 ° 10 ecm
th

~ -6
<X>/Vth = 0,45 10 cm ,

where: <A> is the average decay constant of delayed neutrons.

It is evident, therefore, that the delayed eigenfunctions’wiil e

. very similar to the corresponding virtual critical eigenfunction of

the same main mode.

In order to check this point for a real system, a configuration was

chosen which will emphasize this fine structure. The configuration
studied by means of the two group time dependent model (refs.66,67) is
based on the small core, K-132 ( A-V, config. DI-4) of the reac~
tor DIORIT, in which a central control rod was inserted. The parame-
ters of the system are given in Appendix V, together with some ite-

" rated values of w. The configuration chosen thus gives a relatively
high importance to the reflector, in which the assumption of

3>>w/v may not be applied with full rigour.

" The most sensitive test to check the difference between the delayed

densities and the virtual critical density is a comparison of these
densities in the thermal group.

In Fige. 2 s curve (1) shows the persisting thermal density (the

oth’ which is identical
with the thermal density of the zero main mode for the virtual critical

' state. The plotted points show the largest deviation of the thermal

sub-mode of the fastest delayed group (see A-V).

" The differeﬁce between the delayed densities and the virtual cri-

tical density, belonging to the fast group, is even less pronounced
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'T(sihce vf$>vth), These fast densities are plotted in Pig. 3 ,
‘curve (1). ' | '

'The adjoint density , curve (1) Fig. 4 ', the current , curve (1),
. Fig. 5 , and the densities of higher modes curves (1),(3), Fig.

6,7 of the delayed sub-modes are also rather close to the correspon—-
ding quantitiés of the main mode in the virtual critical reactor.

The fact thaf‘the delayed heutron distributions in the fast and
thermal groups are practically identical yith the corresponding dis-

tributions in the virtual critical reactor, is rather important. The

former distributions, which are measurable, may be used experimental-
ly as a means for determining.the static reactivity which characte-

‘rizes the virtual critical distributions.

c) The eigenvalues of the prompt sub-mode, wp, may also be'consi-
dered as some perturbation on the destruction operator of the vir-
tual critical reactor. But since WP/V might be relatively large,
mainly in heavy water reactors, the resulting perturbation is also
large. Thus the prompt sub-mode may deviate considefably from the
virtual critical main eigenfunction or, which is the same, from the
persisting eigenfunction of the same main mode.

‘This difference is shown in Figs., 2, 6 and 7 for DgO reactor, confi-

guration DI-Y4.

The largest deviation occurs naturally in the thermal group, the
cross—section of which is strongly modified by the prompt eigen-

~ value. This is shown in Fig. 2 curve (2), where the prompt ther-

mal density of the zeroth main mode, n n’ is plotted. In Fig.3

o ,pt
curve (2) By of? the prompt fast density of the zeroth main mode is
, pf ‘ .
plotted. It shows a much smaller deviation. Fig. 4L shows the de-

viation between the persisting n: th (curve (1)) from the prompt
. . ’ ' .
D, pth (curve. (2)) thermal adjoint density. Fig. 5  shows the
b4 . .
corresponding thermal current.

For higher modes.the deviation between. the prompt‘sub-mode'and the
virtual critical main mode aré much larger due to the magnitude of -
the prompt eigenvalues. For example'(s?e also A-V) L = ~4h,

Lo z -278 and.wz.P = ~462_sec-}. Fig. 6 shows thg fast, thermal,
delayed, and prompt densities for the first main mode, while
Fig. 7 shows the same guantities for the second main mode.

In a light water reactor the deviations mentioned above in each
main mode are smaller, as the removal and absorption cross-éections;"
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L:'jf‘are much larger than those in heavy water reactors. In Fig. 8 the
5?_ most sensitive quantlties, namely the thermal neutron densities and

| ' currents are plotted. These quantities have been calculated in a
- light water reactor based on the normal loading of the_swimming pool

reactor SAPHIR (see Appendix VI, configuration SR-1%*),

The fact that the prompt sub-mode eigenfunction may deviate appre-
ciably from the persisting eigenfunction or from the fictitious

‘critical eigenfunction which is characthkrized by-the static reacti-

vity has to be taken into eccount if the prompt eigenvalue is used
for the determination of static reactivity, (see also Sec.10,
Chap.III). '

d) The last two points to be verified are: (1) the difference bet—
ween the generation time of neutrons distributed in the persisting
mode and the generation time of neutrons distributed in the prompt
sub-mode of the zeroth main mode, and (2) the dependence of the ge-
neration time on the reactor configuration. '

‘The generation time, in any of its definitions, describes the averagé

time taken by & neutron to produce a new fission-neutron. The diffe-

_rence between the various definitions lies in the different weigh-

ting functions used for averaging, namely: the kinetic, the static
and the dynamic weight-functions (Sec.10, Chap.III).

The main reason for introducing the generation time and the effective
delayed neutron fractions as the means to relate the measurable kine-
tic quantity w, to the global entity p, i.e. the reactivity of the
system, is their inherent ihSensitivity to details of the system.

It has been shown above that, in fact, Beff is rather insensitive.
This result is essential to all methods of reactivity measurements,
since 8 eff establishes the transformation from the relative units,

the dollar, to the absolute units of react1v1ty e.g. mk or percent.

Knowledge of the dependence of the generatlon tlme, and in particu-
lar of the prompt sub-mode, on reactor conflguratlon is essentlal ]
to the methods of reactivity measurement, which are based on detalls
of the prompt burst, mainly the pulsed neutron technique.

One is usually able bofh to calcUlaﬁe and tovmeasure in & relisble
manner  the generation time in the critical or near critical state
of relatively clean configurations. In order to determine the reac-
tivity in a perturbed state (e.g. when a control rod is partlally.
or fully inserted) one should know the generation'time in-the new
state. Therefore the information on the possible changes in genera-
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tlon time as the result of the perturbatlon is essential to the pre-

: c151on of reactivity measurements.,

As mentloned earlier, the concept of generatlon time is preferable
for a reactor, the control of which is achieved by changing the ab-.

sorption operator, while the production operator remains unchanged.‘i)uf

Thus any change in generation time from one reactor state to another

'is induced only by a density redistribution. For a reactor which‘ie

controlled by changing the production, the life time concept is to .
be preferred.

It is clear, therefore, that the smaller the chahge in the neutron .
distribution as a result of perturbing the reactor by absorbers,

the smaller will be the change in the generation time.

;In fact it was found experimentally (ref.27) that under constfeint

ef_criticality with no fuel or moderator changes, considerable rear-

- rangement of lumped poisons did not cause any change in the genera-

tion time, within ~an experimental accuracy of 194 . These measure-
ments were carried out in hydrogen moderated critical assemblies,

with bucklings of the order of 30° 10 *cm =,

A maximum variation of less than 2% in generation time has been ob-
served as bucklings were changed by insertion of safety rods (ref.73).
It is evident, however, that extreme rearrangements of absbrber could
cause larger changes in generation time.

Simultaneous addition of fuel and poison, again under constraint of
criticality, will cause an appreciable change in A (refs. 73,74).

-In the calculations gquoted above, the possible difference between

the persisting generation time Ao, o and the generation time A 0, D in
the prompt sub-mode of the zeroth main mode has been neglected. This
is 1likely to be correct in hydrogeneous reactors. In what follows,

this point and other related points will be checked on the basis of

two group. theory for a typical light water reactor of the SAPHIR type,

. which will be denoted in the following by SR, and heavy water reac-
‘tor, of the DIORIT_type, which will be denoted by DI. The genera-
- tion time of the persisting mode in the two group model is given in

Eq;70a. In the usual two group notation and with production due to
thermal fissions confined to the fast group it becomes:

- (85,8,) + (07, 8,) (v,/v,) -
foso —[ (5 ,25) ]Pc = Pe

B AN
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“where:- . - - S R o

hm2'= 1/#éﬁ¢zéé - generation time of thermal neutrons in the
infinite core; - .

R .‘.4

Pe ~ resOnance' escape probability in the core.

while in the denominator it extends over .the core alone.

Ao,0» s mentioned abo#e, may be calculated by applying the 1/v ho-
mogeneous poison method (Chap.III,Eq.52):

ho,o = (po-'pé(a)>)//a.= (vo(a) - vo>//<;a 2 (73)

where:
po, vo— static reactivity of the zeroth main mode, and ficti-
tious fission yield.whiCh maintains criticality in the same
mode of the off-critical reactor, respectivély;

vo (&) = fictitious fission yield at criticality after inser-
tion of the a/v absorber;

v - energy averaged fission yield of prompt neutrons.

Ay ,o calculated from Eqg.72 (such calculations will be denoted in

the following by a = 0) and Eq.73 coincides in light water and heavy
wéter reactorslover a fairly wide range of poison concentrations =-a.
The fairiy weak dependence of Ao,0 On a is demonstrated in Table 4
(for the first column, see A=~V and A-VI):

TABLE 4
Config.:Ndf -0% | & sec Ao,o:x10—*sec

pI-1 .  |3,23| -0,273 |. 8,6510

e 3,23| -0,5 ~ 8,6570

" '13,23| -3,138 | 18,6766
SR=-1 o[ -1,0 0,7469

d 0| -0,0 10,7470
'sR-1* 4,0 | -3,856 | . 0,7829

o y,0 | 43,856 0,7830

In the numerator the integration is extended over the whole reactor, -
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 In 6rder to study the variation of the_péréisting'and prompt sub-modéf
., static generation times a variety of configurations of DI and SR have
‘been ‘chosen, The details of these confiéﬁrations are given in.Appen—
'diées V and VI, B

' The prompt sub-mode generation-time is calculated from the static ,i')‘

inhour equation (Chap.III, Eq.u8):
. P

pc, ) ﬁi.o | o
Apﬂ'—prﬁf‘;—f Po < 0 ()

where: po = static reactivity'of the zeroth main mode.

The persisting Bioﬁ‘ is used in Eq.74 instead of BLO D since the
' ’

main difference between the prompt sub-mode and the persisting sub~—
mode is in the thermal range, where the spectral differences are ne-
gligible. |

Results of the computation are given in Tables 5 and 6.

TABLE 5
| Config. | D;O-level Koo -0% tea sec-ip—wb oo 10 % Ao,p
No. mm : ’ sec
DI-1 2346 1,100567{ O 0,1 7,140
" ‘2346 1,100567( O 10,67 : 7,156
" 2346 1,100567 |core [0,1 6,440
: - |alone
" 2200 1,100567{ 0,45 {0,5 7,441
" 2200 | 1,100567| 0,45 16,75 75166
" 2000 1,100567| 1,22 11,0 7,146
"o 2000 | 4,100567| 1,22 | 27,28 7,172
DI-2 1414 1,159399| 0 |0,5 | 6,849
" 1411 | 1,159399| O© 11,15 6,823
" 1253 | 1,159399]| 1,80 O ' 6,850 |
g 1253 | 1,159399| 1,80 36,89 6,883
. 1140 | 1,159399| 3,60 | O 6,879
" 1140 1,159399| 3,60 | 62,57 . 6,932
DI-3 4345 | 1,201600] O | 1 8,088
o 1345 | 1,201600{ O 9,45 8,139
M 4345 | 1,201600| core | O 6,177 ®
. - ‘ . along :
- DI-4 1345 |-1,201600| 3,23 |0,273 8,651
, "o 1345 1,201600| 3,23 43,86 9,043
" b 1345 1,201600 'gggge 0 6,281
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: ~ _TABLE 6 N | - |
;Confi%ﬁretion' Koo . -p % | -a sec’ 4wp Ao,0o 10°° A70 -
No. . se
core v
radius .
sR-1 18,7 | 1,607080 | O | -1 0,7438
" 18,7 1,607080 0 108,53 |1 0,7401
" 18,0 1,607080 | 1,6 -1 : 10,7599 |
" 18,0 1,607080 | 1,6 316,30 0,7593
" 17,5 | 1,607080 | 2,91 | -1 | 0,7730 |
" 17,5 1,607080 | 2,91 478,85 0,7739
" 17,11 1,607080 | 4,0 | -1 - . 0,7838
" 17,114 1,607080 | 4,0 | 1609,00 0,7861
" 46,5 1,607080 | 5,77 | =1 , 0,8023
" 16,5 1,607080 | 5,77 815,29 0,8068
SR-2 1,607090 0 -1 0,7810
" - 1,607090 0 102,89 0,7809
‘SR-3 1,607150 0 -1 41,0062
|- 1,607150 | O 79479 +1,0083

Table 6 shows that in a.light water reactor the difference between

the generation time of neutrons distributed in the prompt sub-mode
and the generation time of neutrons in the persisting mode is ne-
gligible. Variation of the generation times within one configura-
tion e.g. SR-1, which is made'sub-critical by reducing the core-ra-
dius, is noticeable: it is about 7% when p is changed from zero

to -5,8 %,. The presence of a medium of a much longer diffusion
length than that of the core, e.g. a graphite reflector (SR—B),
considerably increases the ~generation time. h

As expected, the difference ‘between the two generation—times for

‘a typical heavy water reactor is larger. This difference in a gl-

ven conflguratlon increases as the reactor deviates more and more
from criticality. Between the critical configuration of DI-1 and
DI-2 there’is_a homogeneous change in the production (ke), which -
is the main cause for the difference in the A's. In DI-3 the com- "
paratively high impeftance of the reflector is the reason for the
increase in generation time, and for the difference between Aq,o
and A§,p. The transformation from the critical state, DI-3 to e»

RS W ULV SO




'sﬁb*critical state, DI-4, is achieved by insertiohgof a centrai.coh4
trol rod which causes a strong deformation  in the density pattern.’

o0 and ~11 95 in’.Ab p* This fact explains also the fairly large ‘.i
. _ .
difference, ~4,5 %,. between Ay,o and A _in the subcri»tical state.

‘as deduced from v and the inhour equation, Eq.74.

Then the static reactivity with this generation time and W, ) D =

" while (3

- 77 - o - | ) .,'Chap"..iV

(see Fig.5,II). This increases the relative importance of,the heavy
water reflector and thus increases the generation time by ~7 %;in '

»P

The effect of neglectlng this difference between A5, o and Ab,p can’

be demonstrated by the error introduced in the value of reactlvity

0y, D

Suppose that the increase in Ay,o from the critical state to the .
sub=-critical state DI-4 can be calculated exactly: Ao,0 = 8 651'10f§ecm

= 43,86 sec = is p = 3,058 ¥, , instead of 3,23 ¥,. Neglectlng the
increase in generation time from critical to -3, 23 /5, would result
in p = =2,81 %!

In the two group treatment, only one prbmpt eigenvalue was conside-
red. But, as shown previously, splitting the density into energy
groups introduces eigenvalues (and in turn corresponding eigenfunc-
tions) for each'group. In most, if not in all experiments for deter-
mining reéctivity, one is interested in,and is able to measure rela-
tively easily the thermal density. In fact, the prompt sub-mode de-
cays very rapidly and describes the time behaviour during slowing
down. In heavy water reactors (e.g. config. DI-{1) the fast prompt
eigenvalue is about (see A—Ii) 2+ 10%t sec & with negligible depén-
dence on reactivity, while the thermal prompt eigenvalue is

~0,113 * 102gec *(for p = 0) and 1,24 * 10%sec *(for p = =10 £).

Thus the thermal prompt neutron density does not even change while
the fast prompt density practically vanishes., It is clear, however,
that the fast neutron distribution in the various modes deviates
considerabiy from the persisting mode distribution, since the cross
sections are drastically perturbed, e.g. (w, ) /v, = =0,091 em *
core)ther. = 7,4°10 2% for DI-1 and even for SR,

(%o, ); /Va = =0,407 cm™* for SR-1 while (2 o 092 em ™t

core)ther.
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1. INTRODUCTION

In the preceding ehapters, particularly in Chap.II, it was demon-
strated that the initial density, which plays the ba51c role in

Gii the normal S.J. and R.D. techniques, is the main contributor to

systematic errors induced by harmonics in the measured reactivity.
Any attempt to eliminate these errors may follow two obvious ave-
nues of attack: theoretical,eorrectioﬁ for harmonics in the initial .
density, or modification of the experimental procedure and the way
of evaluating it. '

Numerical corrections, or theoretical arguments for finding measu-

‘ring points which are essentially free of harmonics, can be found
only for simple reactor configurations (refs.75,76,78).In a real

multizone complex reactor, theoretical analysis, which can be done
on a greatly simplified version of the reactor, may give some hints

. and helpful suggestions, but by no means the correct solution.

However, a considerable reduction of systematic error due to the

“harmonics may be achieved by some modification of the experimentalf

technique ‘described previously.

The time dependent density established after a step—-change in the
seurce or in the reactivity obviously contains much less harmonics
or traces of the initial condition than the initial density itself
(Chap.III, Sec.2; Chap. IT). In Chap. II the time-integrated densi-
ty was chosen as the representative for this kinetic behavior for
reasons of convenience and because of its use in the integral count
method. But, naturally, this choice is not unique. Any measurement

based on the kinetic dernsity, with no reference whatsoever to the

initial density, Will considerably reduce the content of harmonics.
It is clear that the - correct reactivity (kinetic, statlc or dynamlc)
will be obtalned if the klnetlc flux used for its measurement is the
per31st1ng mode. But this dlstrlbutlon is insensitive to reactivity
from about p<-0 3% on downwards. Therefore one can not afford to
wait for the establlshment of the per31st1ng mode, and one is. obllged
to use the klnetic'den31ty,'wh1eh will 1nev;tab1y 1nc1ude some amount
of harmonics..Fortunately;-however{rthis harmonics-conteht is ra—
ther small (Chap.II,‘Sec.h). The neutron population a few genera-
tioh-times after the step is practically due to the delayed neu-
trons alone. As proven in Chap.IV, apart from delayed neutron har-
monics, their distribution is practically identical with that of the
persisting mode, thus yielding the correct reaetivity if,eonsistently'




‘ deflned generatlon—time and B”eff are used. : SRR

: tion factor for the harmonics of the initial. density.

- It was found convenient to determine the reactivity from a measured

 grals of the decaying densitiy, n(x,t):

Another approach is to find experimentally, if poss1ble, the correc— -

2. THE SHAPE METHOD

. 2.1 Description of the method

Considering the reactivity as the only unknown parameter in the kiﬁétic

density, then the form of the decay curve,or its shape, is deter—

) mlned solely by the reactivity of the system.

Generally the delayed neutron dlstribution is a very weak function of
reactivity. If the multiplication constant of the system is small,
thé neutron production, following the withdrawal of the source or

the insértion of a strong absorber, will be essentially due to the
radioactive decay of the precursors. An increase in the multiplica=-

- tion constant will slow down the decay of the neutron population.

Since these decay constants are limited to the range lying between
zero (for critical systems) and the corresponding decay con-

stants Ay (for p = =e), the whole dependence is clearly weak, the

faster groups being more affected. The first part of the decay curve
is, therefore somewhat more sensitive to the reactivity than the re-
mainder. Thus, any measurement which uses the delayed neutron den-

"sity is destined to be insensitive towards reactivity. This is evi-

dently the biggest disadvantage of the "Shape" method.

Among the many ways of measuring the shape, those giving higher
weight to the first few seconds after the step are to be preferred.
A straight-forward utilization of the ratio of the zeroth moment to
the first moment with respect to time (ref.39,pp 9,11) is not. to be
recommended. Such a choice gives higher importance to later times
and thus results in poor sensitivity; for instance, a 19, error

- in the ratio of the mOments results in a 309, error in a reacti-
- vity of =10 K. '

"shape-index". This index is just the ratio of suitable time inte-

o fsh(p;x) = n(x,t)dt// n(x,t)dt, ty <tpa<ty<ty. (1) 0

\e
¢
“
i
.
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If the meqsurement would be carried out cn the'persieting mode,
then one would have,": 7 - -

. te
fonlprx) = £, (p) = _/ no (x)To (t)at / no (x)To (t)at =
' 0 7 - 13-
tg |t | |
= fT‘o-(t)dt // To (t)at, : (2)
t, tg | |

where T, (t) is the time dependent part c¢f the density, and is the
" same everywhere throughout the reactor. When dealing with the per-
'sisting mode,. the index zero will be dropped out and T(t) will des-
cribe the count-rate at the point of measurement.

If the harmonics contrlbutlon is indeed negligible, as has been

argued, the experimental f h(p,x) can be compared with the theoretical—‘

ly calculated £y (p) to determine the reactivity. sh(p) may be
calculatkd either with the aid of the space independent model
(ref. 41 ) or from the space integrated model (Chap.II, Sec.10).

The choice of'times ti,tz,ta and tys is not dictated by the sensi-
.,t1v1ty of £ h(p) to react1v1ty alone, but also by the problem of
statlstical accuracy in the. presence of background. For “example, a
larger t, ‘and tse may be desirable at first sight, since the later
portion of the decay curve contains almostvno information on reac-
tivity. However, such a choice would add littlevof the desired sig-
nal and a great deal of the_background,'thus seriously reducing the
statistical precision. A relatively large interval t, =t; would be
desirable from the statistical point of view, but undesirable from
the point of view of senSitiVity.’ |

Using the above mentloned a guments and comparlng the normalized
- time dependent parts, T(t»/ T(t)dt sieef. 39,p. 7a) for dlfferent
reactivities, the following. times have been.chosen.

t, = 0 or 1 sec; tp =n5'sec; ts = 8 sec; tyg = 30 sec.

h(p) for these time intervals has been calculated for the follo-

wing two cases with the computer programmes AGAMA and GFUNK (ref. 78) |

Light water reactor, A%=0,01 sec,

'(SR-case) |
L 1 2 3 Lo 5.1 6
M_ 13,87 | 1,40 | 0,311 | 0,1455 | 0,0317: | 0,0127

| sec—t - % . . flfi~h
B./B | 0,026 | 0,128 | 0,407 | 0,188 | 0,243 | 0,038
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Heavy water reactor, A%=0;1 sec
' (DI-case)

L2 3w | s 6 7| 8

M, (3,87 [1,50 | 0,311 0,277 | 0,4155 | 0,0317 | 0,0169 | 0,0127-. &

Bi/B 10,025|0,122| 0,390 0,033 | 0,180 | 0,204 | 0,010 | 0,036 .

T “”J

- If the statistical error of the total count in the interval t;-t; is:

5 30 o
fsh(p) = / T(t)dt f T(t)dt, for both cases is given in Fig.1. .
A A | o

2}2'Sensitivitz,and,statistical precision

The low sensitivity of the shape index is reflected in the error in-
duced by the;statiétical fluctuations of fsh(p) in the reactivity.
The symmetrized error € in the measured reactivity as a function of "
reactivity is obtained from

( ) = relative statistical error -
elp relative sensitivity

=<Afsh> 1 eple) 4 . (3)
Tsh/statis. [ Tsn 0P r(0) /3

e(p) for - T(0)  equal onme is  plotted in Fig.2. It shows
that high statistical precision in fsh(p) is needed for a reasonably
accurate value of reactivity in far suberitical states.

A possible improvement in the sensitivity may be achieved by the use
of a weight function for the experimental signal. Since most of the
information concerning the reactivity is concentrated in the first
portion of the decay curve, it would be reasonable to amplify this
portion with the aid of a theoretical weight function, W(t), which
does not'fluctuafe statistically. Otherwise the gain in sensitivity
would be overridden by the increase in statistical error. '

t;
8) | T(p,t)at| = T(0) /2 R(p,t)at , (4)
t statis. t
where: :
T(0) = initial count-rate : ~ ' 0

R(p,t) = T(p,t) / T(0) = relative count-rate.




‘fthen it can be shown that the statistlcal error of the welghted to-
"“tal count in the same time interval will be: '

'A{f:é’*(p,mt} .:.-'7 7(0) /zJ o e (5)

statls.

" where'

T*(p,t) = W(t)T(p,t) = welghted count-rate.

A wdght function which is appropriate for this purpose will be the
theoretical R(p,t) to an arbitrary power: W(t) = RY(p,,t).

The best amplification is achieved if the weight function is cal-
culated for the measured reactivity. The statistical accuracy of
the reactivity derived from the weighted shape indices for v = 1
‘and v = 2 has been calculated (for the SR-case) and plotted .in Fig.2,
curves (2) and (3). Comparison of these courves with curve (1), in
which the weighting function is unity, reveals a considerable reduc-
tion in the error; Such a weighting procedure need not necessarily
be done by electronlc means. It can be done as well by step-wise
weighting and integration, if the experimental R(p,t) is known in -
these integration stepsf The result does not depend strongly on-the

integration stepsjs;At,when Atg 1,5 sec.

Some disadvantage still exists because the reactivity must be knbﬁn fﬂ

a priori. However if the first value is reasonably well estimated
from the experimental results of the normal method, a better appro-
ximation will result from the above mentioned weighting procedure.

2.3 Counting losses

The poor sensitivity of the shapé-method may bevpartially“overcome
by having, if poSsible,high initial count-rates, thus_measuring

the shape index fsh(p) with very high precision, which in turn yields
the reactivity»with_fair precision. The use of a very high count rate

introduces counting losses due to dead-time of the“countéf'and'
of the whole" electronic system. ) V '

However, it is to be expected that the shape 1ndex will be rather .

insensitive to countlng losses, prlmarily due to -the 1ack of any re--
ference to the initial count—rate, ‘and secondly due to. the fact that-.,

f is a ratio of two quantities whose phy81ca1 nature is essentlally .
the same.

The effect of counting losses on the shape index can be calculated:
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 ffbm the following expression:

| [. h(Pi] | ‘gfé_

Sh(p)

1'-'-L R*(t)dt/[ R(t)dt+L2 R"(t)dt// R(t)dt ...
1-L R“(t)dt/[ R(t)dt+L‘°‘ R"(t)dt// R(t)at ...

This expression is based on the assumption that the losses are in

. (6)

the linear region. Thus one can write (m = measured):

T(t) / [1+7T(t)] = T(t) [1-'|:T(t)+'1:2’1‘2(t) ceels (7)

Tm(t)

where:

Tm(t) - measured count-rate (which includes counting losses)
T - dead time (in seconds)
L = ¢T7(0) - initial counting losses.

7Eq.6 is plotted in Fig.3(a) for L = 0,2; 0,1 and 0,05,

2.4 Systematic errors due to harmonics

The order of magnitude of the systematic errors involved in the
shape index can be found by using the one-group harmonics calcula-
tion presented in Chap.II and Appendix I. The final results thus
strictly apply to the case of an S.J. experiment in a subcritical
homogeneous bare system. | ’

With use of Egs. AFI,6 and Chap.II,13 one can write for the integral:
t; ' o : .

/ : . - . - .
n(x,t)dt = A*Q.(O)ny (x) X [A 2lex t;) = ex t )] +

b (x,%t) | Qo_( )no ( _), 2, [ _ou/rou][ .P(Yop' i) P(You i)]

+ A® On x Z 2 1[ex t;)-ex t

ZQP() () o[ /Ypu][ p(\ru ) P(Y“L)]
(8)

Some simplification may be achieved if one rédalis that the modal

reactivities,even of the flrst modes,have a large absolute value

(see e.g. A=5). This means that the solutlons for delayed neutrons

of the inhour equation practically coincide with -the decay constants RL.
The dependente on the modal index is weak . In view of this one may
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make the following substitution:

ugio[Apu/Ypu][exp(Y tJ)""exP(Y tt)] EL, /0% (9)

= 1im { Z [A /Ya][EXP(Y w i)~ exelyy )] )

=
=
S
<
{

- o’ Ypu
- £ o aJlem (o 10) - exp(-n, 0] (98)

" Substitution of Eq.9 into Eq.8 and of the latter into the. deflnltion'
of g (p,x), leads to:

=1 Ei,p~=FEs,o £ (F
fsh(p,x) _ fsh(p)‘{:1 . I'(X) s Sh(P) }’ (10)

T2
fR(t)dt P
ty
where: : o
r(X) = 2 Qn, (X)/Pp/Qono(xo)no(X)/pg (11)

= n(x,t)dtl1 }//é:(x), (see Eq.A~I-14a) (11a)

For the chosen ty, t;, namely. t, = 0”, t, = 5", tz = 8" and t, = 30"
one gets: By, 5 = 3,012 Eg,30 = 3,982. For p = -10 £ and with a ra-

- ther large fraction of harmonics in the time-integrated density:

r(x) = 1,1 , it is found that £, (p,x) / £, (p) = 1 = 0,577 % .

Taking into account the approximations made, the error due to har—

monics in a typical experiment is even smaller.

3. THE AMPLITUDE METHOD

3.1 Description of the method and its systematic errors

»Ih_this»modification'one is'looking for an approximate corrected

initial density. It applies essentially to the S.J. technique com-

-bined, for example, with the integral count method (Chap.II, Sec.2
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‘“’The normal amplitude 1ndex is. deflned as.;

fA(p’x) = n(X"O) /‘/; n(Xst)dt/(tj'tL)° o (12)
: i
If the measurement could be carried out in the persisting mode then:

t; 13
£,(pyx) > £,(p) = T(O)/fq T(t)at/ (t5-ty) = (tr'ta)/[ R(t)at.

ty
(13)

For reasons of statistical precision the following times were cho-
sen: t; = 0" or 1" and t; = 30". fA(p) for the interval 0-30 for SR
and DI is plotted in Fig.l.

Since the denominator, i.e. the time integrated density, contains a
negligible amount of harmonics, compared to the initial density, the
harmonics content of f (p,x) is given essentially by that of the ini-
tial flux n(x,0). The ratlo r(x,0) = [n(x,O]nor / ng(x) is plotted

in Figs.2,3,4, Chap.II, for a slab reactor. Since fA(p) varies al-
most linearly with reactivity, the systematic error of fA(p) intro-
duces about the same error in the reactivity. As seen in the last fi-
gures, this error is rather large. | '

In order to avoid such a large error, one is obliged to cgnduct the
measurement at a point where the harmonics as a whole, or their main
part, vanish (ref.39,p.13). Such a point can only be found in simple
configurations, whereas in real configurations its existence is of
little practical importance. However, far from the perturbed region,
there is a region where the actual density deviates by a small ne-
gative, almost constant, amount from the persisting mode (see'Figs.II-Z;
3,4 and in particular‘Fig,IIb5); This is due to the fact that vir¥ , '
gin neutrons as well as those belonging to the first few generations
have very low prdbabiiity of arriving in this region. The neutrons
which do arrive there "forget" their history and their initial dis—
tribution and assume a dlstrlbutlon close to the per51st1ng mode.,
This fact is seen very clearly in Fig.II-5,-which 111ustrates the -
cylindrical case. It is ‘seen ‘that the local flux depression resul—b
ting from control rod 1nsert10n is very strong, but that - a few mi—-
gration lengths from,the center,,there is nevertheless only a small
negative deviation of the actual density from the pérsisting.one.
Thus a measurement at point X, irn this region, if accessible, would
introduce a comparatively small error, 6rzfA(p,x‘)-2_fA(p).







‘i'

- 86 - 3'1 N T Chap v

'In order to apply such a technique one has to show experimentally

"f;'that the region chosen has" the de31red property. Measurement of the

<o

per31st1ng mode can be carried out with fairly good precision by

\

measuring any time 1ntegra1 of the den81ty. The similarity of neu-

tron distributions, normalized at the same point, under various con-

ditions (e.g. configurations with control rods inserted to diffe- v
rent heights, with distributed source etc.) leads to the conclusion
that in the region of. ccincidence the persisting modes of diffe-

rent configurations are more or less alike. Hence, this region is free
of harmonics within the prescribed experimental accuracy. Actually

a region which is free from harmonics may be found without using -

the time integrated density. It is sufficient to compare the normali-
zed density at a given point for a variety of reactor configurations.
If the densities coincide this may be used as an indication of the
fact that one is in the region of the persisting mode.

3,2 Background normalization

It might occur that the region which is free of harmonics is inacces-
sible, or does not exist at all. In such a case one isdliged to con-

_duct the S.J. experiment in the presence of harmonics induced by the

initial density. Some improvement may be gained by referring to the
distributed background. source. density instead of the initial flux.
In a reactor with hot fuel the background sources consist mainly

of photoneutrons (in heavy and light water reactors) and of the re-
sidual point source of the S.J. equipment. The photoneutron sources
are essentially distributed along the latest critical distribution
(it is somewhat smeared out due to the longer mean free path of pho-
tons compared with the migration area of neutrons). If the measured .
subcritical configuration is considered as a perturbed state of

the critical reactor (e.g. if - subcriticality is attained by control
rod insertion)’ then the persisting. density far from the perturba-
tion will still be very similar to the critical persisting mode.
The latter distribution’ may be: described to a good approximation by
the photoneutron denSity. Therefore, eferring to the background
density at the measuring point may_lessen the error due to harmo-
nics. ' ‘ ‘

Assuming that the background density b(x,O) resembles the pers1s-\
ting mode, one has,

b(x,0) =-A*Bono(x) / Po » (1h)
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where: :

By = B(X)no(X)dX//no(X)dx

w1th B(x) representlng the background source dlstrlbutlon.
The persistlng component of the initial flux is: o ,
n(x,0) = A%Q ()00 (x) / G0 | (15) @
where.
Q = |Q(x, O)no(X)dX/jno(X)dx,

with Q(x,O) representlng the intensity of the external p01nt
source before the step.

o Thus,

n(x,0)/b(x,0) = Q(0) /By = S~ const. (16)

The constant S may'be measured; while keeping the source in the same

‘ position, as the ratio of two densities: one with loaded source and
one. with unloaded source in a near critical state, provided that at-
“tainment of criticality will not introduce new sources. Under these

circumstances the harmecnics content throughout the reactof will be

small and the ratio S, being independent of position, can, in prin-
- ciple, be measured everywhere.

Knowing‘s, and determining the background density (with source un-

" loaded) at the position of measurement, permits replaging the actual

initial density by an approximate equivalent persisting mdde den-

~ t
£a(x,p) = £,(bg.,p) = Sb(x,O)/j;n(x,t)dt/ (t5=t). - (17)

i

sity:

It might well happen that the background at the point of measurement

;will still include a considerable amount of harmonics. This will hap-

pen in rather far subcritical states and in the proximity of the re-
sidual point source. In such a case one may try to search a region
where harmonics of‘the background are negligible and there conduct

~the background normalization procedure. Such a search should, in

principle, be successful, since the background distribution is any-
way closer to the persisting dlstrlbutlon than the actual source-

»dens1tyo

o
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3 ‘3 Sen31tiv1ty and countlng losses

.LThe main advantage of" the amplltude method, ‘in any of its forms,
‘lies in its high sensitivity to reactivity. The amplitude index is
‘linear with reactivity almost throughout the whole range of reacti-

vities. There is a slight deviation from this linearity in near cri-

. tical states, where the increased sensitivity to reactivity of the

“ time integrated density cancels part of the sensitivity in the nume=

rator. Thus, from the statistical point of view, this method is ra-

ther accurate.

On the other hand, the amplitude index fA(p) is sensitive to counting
-losses due to the dead-time effect on the initial count rate. Close
to criticality this effect is weakened by non-negligible counting los-

ses which appear also in the time integrated density (denominator

Eq.12). But in far subcritical states the'counting losses of the ini-

tial count-rate predominate (see Fig.3(b)).

"Iy, ELIMINATION OF SLOWLY VARYING BACKGROUND

Some ambiguity due to the presence of photoneutrons exists in kine-

tic measurementsdone in heavy water reactorsor to an even greater ex— ..

tent, in beryllium moderated reactors. This ambiguity, which particu-::

larly effects stable period measurements (ref. 79,14), makes itself felt
dlso in the S.J. technique (ref.15).It derives from the fact that the stable

state in the presence of sources is not really established until all

‘long lived photoneutrons have come to an equilibrium, which will take

a few days. It is, of -course, impossible in practice to wait that long,

and since one has to conduct experiments in shorter intervals, the
long lived groups have to be treated as background. This background,
being dependent on the history of the reactor, may'change dufing an
experiment, and must be remeasured'after each measurement. This is
again time consuming, and the slow time variation due to the long-
lived groups is still not entlrely ellmlnated.

To avoid this amblgulty one may sllghtly change the definition of :
both the shape and the amplitude indices. Since the change in photo—
neutron "background" (groups 11 to 14, ref. 80, say) is slow compared"
to the measurlng time, one .can safely assume that the background is
constant during the perlod,of one minute. Thus,

SV S S
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J t; - tL ¢ v
- n(x,t) + b(x,0) fdt - —— n(x,t)4fb(x70) dt =
t - ty =t
E Cty-ty [ i ty-ty [
n(x,t)dt - &————o n(x,t)dt o R(t)dat - —— | R(t)dt. :
% tt—tK.' t te te tIC %
K ¢ K ]
(18)

In this way one entirely eliminates the background. Expression 18 can - !
be calculated theoretically as usual, giving shape and amplitude in- ‘
dices from which the background is automatically eliminated:

= (5[ oo/ [TE [ s

1 1

(see Fié?b) (19
£,(p) = <ao" - /BOR(t)dt' </so - - /60-- >R(t)dt
30" 0" BO'T
(see Fig. U4) (20)

These indices have been. calculated for DI, with ten delayed neutron
groups: ‘

ot 2 | 3 w5 | 6 | 7|8 | 9|10
L, 3,014 1.,1 36 [0,301 0,277 [0,111 10,0305 0,0169 |0,01 24 10,00481[0,0015
Ff /B [0,0437(0,4215 [0,3753 |0,0328[0,1827 [0,1995 [0,01030,0291 [0,0035 [0,0017

It should be ﬁotéd that there"is no loss in sensitivity to reactivi—
ty, since the 1ntegra1 f : 1ncludes almost no signal. In any case,
the choice of this 1nterva1 is dictated malnly by statlstlcal rea-
sons. Another advantage emerges from the elimination of - background,
namely the fact that 1t is not necessary ‘to know all parameters of
the photoneutrons. The groups whose parameters should be known exac-
tly are those which change appre01ably from the tlme of shooting
the source to the time of loadlng it again. The time of’ shootlng, .
measuring the partlal tlme integral and loadlng agaln, is about 2
minutes., One may thus assume that groups having half lives greater -
than 7,7 minutes (group 10) do not change at all, and need not

be included in the theoretical computation of the indices in Egs.19,20,
while the parameters of groups 9 and 10 (2,4 min. and 7,7 min.) which




‘changelonly slightly during the interval of measurementqneed'not‘be

' 5. EXPERIMENTAL VERIFICATION OF THE MODIFIED S.J. METHODS
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known exactly. This may be advantageous, for example,in Be modera~'
ted reactors, where some photoneutron parameten;are unknown. .

.5e1 Eguipment | ‘ ﬁ};

The source used in these experimente was nearly always a so~called

"slow" step—source (30 msec equivalent step, for details see refs. 38,39)

except at the beglnnlng, where & "fast" step-source (7 msec equiva-
lent step, ref.81) was used.

The electronics drawn schematically in Fig. 6 represents in prlnclple,
a simple counting channel. Howkver a slow time analyzer was ‘used in-

' .stead of a simple scaler. It contains five scalers: the first gives

the integral count, while the others operate in succession according
to pre-determined variable time-intervals and give the partial time-

“integral of the decaying neutron population. The pulse from shooting
-the sdurCe or from stopping it at a predetermined position (which de-—
.termlnes in part the intensity of the residual source) resets the

scaler 'and opens the gates of the first and second scalers.

SCALERS

Timing
unit

H.T

Counter

: > - Pre Amp. +
CORE : mp
lil _ | D Amp. Discr.

o =
Fig.6

,Schehatic diagram of the experimentai'arrangemenf

EEOE
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thhenexperinenteeeimed efneetablishing:the methods were conducted in
“the Swiss'Swimming Pool- Reactor SAPHIR. Two permanent fission coun- -
ters in power channels, FC-1 and FC—-2, were used. In addition, a me—
- vable fission- chamber, FC~- 3, was used to measure distributions and
"‘i;iw reactivities as a function of position. Because of technical reasons
. - the distributions and the reactivities in different SAPHIR laodings
were measured only afound the core at the interface of core and re-
‘flector. Some measurements which will be quoted here were carried

out in the heavy water reactor DIORIT.

Due'to the sensitivity of the amplitude method to counting losses,
- the dead time of the channel in the actual experimental arrangements
wes measured before experiments were begun. The dead time was measu-
- red with different methods£ the method of two sources, measurement
- of the deviation.from the exponential power increase after reaching
the stable period, and comparison of different count-rates (e.g. with
loaded and unloaded sonrce) in the channel under consideration to a
reference.channel, which was known to be free from counting losses.
A variety of conditions yielded about the ‘same dead time of
Tt =2,0 £ O,4 usec for all  three counters, valid up to about
105 ¢/sec.

5.2 Near critical measurements

In the region near critical, source harmonics are practically absent,
except in close proximity to the source. In this region one may com-
pare the S.J. technique with thedconventional‘methed such as the »
stable period nefhod; Such a comparison has been done during calibra-
tion of the fine control,fbd in loading No.82 of SAPHIR. The reactor
was kept critical by poison with all safety rods, S,, S, and S; ‘
completely withdrawn. The result of the calibration is shown in Fig;7.
Measurements in the supercrltlcal domain down to = 0,0425 £ have.
been done by perlod measurements, and below - 00,0425 ﬁ'by the S.J. tech—/
nique using the amplitude and the shape methods. The results were "
completely. independent: of ‘the place. of measurement The curve plotted
in Fig.7 has been verlfled over long periods of tlme, us1ng dlflerent
loadings and methods. |

The points fit extremely'well, which shows that shape and.amplitude
'methbds'are eonSistentvwith other well-established methods;vSimilari~
measurements haVe‘been done,in'the heavy Water_reacton DIORIT. There.
Gii the‘calibration of one of the fine control rods (Fp) was also done .
by means of the stable period. Criticality was.attained by compehsa-
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tion'With the other fine'cdntrel rod. (Fi),VWhich is'sufficiently far
away to render any 1nteract10n'effects negligible. The results of

x' ‘the S.J. measurements are glven in Tables 1 and 2. In Table 1 ampli~-

tude and shape indices are:? glven w1th background eliminated. fOsh

i;hnd £oA are defined in Egs. 19 and 20. fiop @04 £,

' pondlng indices with integration starting one second later, in order

are the corres-—

to check the influence of the prompt decay. The measurements llsted

-in Table 1 (ref. 82) were done in the small core of DIORIT (K-132),

‘using the channel X-32 with the help of a BFz-counter. C.R. F-=1 was
always completely inserted. The dead time of the system is about 2 L sec.
The source was approximately in the center,and the counter was 90 cm
away from the source and about one meter below it. Occasionally mea-
surements were done with the counter lifted. The change of the counter
position has practically no effect on the indicee, which indicates a
negllglble amount of harmonics. In Table 2 the results of the period
measurements {ref. 83) are compared with those,of the 8.J, technique

TABLE 41: Calibration of F-2 (K=132)

' F,-pos. fop* % foat % fosnt % fient %
F,- UL 3,894 % 0,3Lﬁ 4,209 + 0,35 | 0,6223 £ 0,70 | 0,4691 £ 0,77
Fp- UL 3,858+ 0,3l 4,195 % 0,35 | 0,6203+ 0,70 | 0,4680% 0,77
Fo~ UL 3,724+ 0,7 | 4,029 *+ 0,8 o,6233£1,12 0,4773% 1,5
F,- 800 5,463+ 0,47 6,029+ 0,5 0,72801 0,90 | 0,5377% 1,30
Fp- LL 6,764 % 0,64 7,555 % 0,98 | 0,8089 + 1,08 | 0,5815 % 1,12
Counter—-100cn 6,623+ 0,74 7,3702 9’70 ‘40’80_38 + 0,85 0,5859 i_ 1,5

TABLE 2: Callbratlon of F-2 (K-132)

_ mk Lo,
Fz~pos. S. J /6 perlod 4

F,-UL | o | o

Fp= 800 | 2,471 |2,49%1,5

GI[FB— LL | 4yl 1,1 | L,49%1,5

UL = C.R. completely withdrawn = Upper Limit

. C.R. completely inserted Lower Limit.

e
=
Imn
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'_5 3 Measurement of the shape and amplitude 1nd1ces

. . Another series of experiments may be used to show the 1ndependence

of ‘the shape index of counter position. In Loading No.57 of the -

-;SAPHIR ‘reactor accurate shape measurements have been ‘done, Due to. 5 :
the low sen31t1v1ty of the shape index, the source had to be fired ”‘Iiz
'many times. Results of the uncorrected "amplitude- react1v1ty (nor-~

mal integral count method) and "shape reactivity'" are given in

_'TableeB for a position close to the'source (pos. 63) and far from
_the source (pos. 22). The improvement'introduced by the shape method :
"is evident. The results furthermore show that pos. 22 is in the zone '

which is free from harmonics.

Loading 57
1. 2 3 4 5 6 7 8 9
1 X [x |x |x |x
2| ¢ |x |x Bs (X Ba
3 X B |X Ba
u {x {x Ix Ix
5 x |x [s [x [x
6 c |x |J

Sy,+82,8, -UL,S3-LL

‘ TABLE 3: Independence of shape index of position (SR).

Meas.pos. |Uncorrected 2 Shape index Shape p £ |
Amplitude meth. :

‘~ 22 -3,75+ 0,04 0,553 £ 0,002 3,70% 0,12

63 "f'5_900’-". 0,05 0,554 £ 0,003 ,39701‘ 0,15

Slmilar measurements have been conducted in the DIORIT In this case,v

' the small core (K-132) was made subcritical by full insertion of the
~ three safety-rods (about ~ =7 f). One series of measurements (ref.82) @s
' done along channel X-32, thus indiceting the axial harmonics along its




t

o _flength (see Table L)
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Another measurement was done in the center of

",the reactor, in the immedlate vicinity of the source’ (30 cm from it)

" (Table L).

I

PN

o G
"~

'TABLE 4 : Independence of shape index of position (DI).
"Coﬁnterpos £ x5 Y £,,25,5% |f +5 79 f 67
| along x-35°1 Toa o 1A= 212 7o Osh 0 1sh 0

[

0,49 H '/ | 35,485 (140,798 1,0906 0,7666

0,19 " 37,590 443 ;005 1,0913 0,7798

0,40 " 37,430 43,251 1,1126 0,7798

0,60 " 36,736 42,753 1,0936 0,7480

0,80 " count-rate too low
average 36,811 42,518 14,0970 0,7630
10 teactor | 97,56 0,1%[116,15£ 0,1% |1,10242 2,5 %[0,7653 £ 1,59

*) H - extrapolated reactoriheight.

ey

TABLE 5: 'Shape' and "Amplitude" reactivities (DI).

The resuitant reaetivities ere tabulated in Table 5.

Counter pos. =Pop B -'bmﬁ | Posn £ |=Pygn &
<X-32> 6)90 6,85 6’55 _6’70
LReactor cehteT. 18,60 iS}SO 6,85 7,00

-~

The evident su~ -

periority of the shape method with regard to systematic errors due to
harmonics ‘is ev1dent ‘ : :

The results above show as: a by product the existence of a zone which
is almost free of harmonlcs. The existence of such a zone, regardless

of circumstances (e. 8o dlfferent -amounts of C.R. 1nsert10n) _may be

iiiver.y helpful for a rapid determination of’ react1v1ty by means of the

Wamplitude method. Expefimentally the existence :‘of such a region was chec-

ked with different loadings of the SAPHIR. In each loading'the flux
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_l was measured around the core for dlfferent reactlvities (achleved
'by changlng the C.R. height) while the source was loaded, unloaded '
or completely removed (to ellmlnate the effect of beryllium). ‘The.
,,'reeulting flux distribution, normalized at position 32 for Loading’ L
. No.54, 43 (which is very similar to Loading 57) and at position 48 "ii'~f
fb: Loading No.82, are given in Figs. 8,9,10 respectively. In spite
of the fact that'these flux distributions describe different condi-
tions, the existence of a region low in harmonics is evident. In y
Loading No. 54 with source located in pos. 38-48 this region extends |
- approximately from pos. 61 to pos. 12. In Loading No.57 it extends
approximately from pos. 68 to pos. 18, and in Loading No.82 it extends
. throughout approximately the same region. This means that amplitude
‘measurements cenducted in these regions will involve only a small sy-
stematic error. | |

After establishing the validity of the shaepe method, the two types

of amplitude method discussed earlier were examined. These consist of
‘vregular amplitude measurements (particularly in the zone free from .
: harmonics) and background normalization. The results reported below were
found in Loading No.54, the flux distribution of which is given in

' Fig. 8. The measurements were done in three locations: far from the
source, pos. 22, intermediate, pos. 64, and in close proximity to the
source, pos. 58. The amplitude method demands  only a few source=jerks
(in fact quite often one is sufficient) in order to obtain good pre-
cision in the reactivity. Thus; the reactivity measured at the same
‘time by means of the shape method has rather low precision and serves
only as a check. The results of measurements without correction (nor-
mallintegral count method) and with correction, together with con-
trol-rod positions, are given in Table 6, below.

TABLE 6 : "Amplitude" reactiuities (SR)

.R. pos. tT .1 -p 8 -p B T - =-p P
" [pos. of oA corrected | ' osh
E counter uncorrected background
" norm.
pll S 22 34,693 9.1__;5.03 10,1020, 39 -
.LL [N .168111.45 *0,04 [10.80+0.48] 0.€047+0,0300 9.0
= - 58 117 310 41,33 *5, 22,49+2,30
S; »S2, 22 1 %.gg +0,04 i.ZO- .05 0.522810.0083 3.8
S&-UL Bl{- 1 e t .0 * : 00 Oo tooo - L‘-nh
Sg ~LL 58 35 .3 0 9.35 0.7 5.70:0.H2 5.5330i0.0&2%- 5.7
1891583, .22 2.6101 O, +0,001] —— 0.3255+0.0010 0.475
. '|ss=UL 30 ,E2§ 0.8%5:0.001 — 0,3192+0, 0010 -0, 445
. [Se~LL 58 2.965 0.5 5+0,002 ——— 0.3185+0,0020 ‘ O.uqlﬂ
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For the backgrbuhd normalizationrprocedure, the ratio S,‘Eq.16, was

- determined with the configuratidni Sy sS85 »S3~UL, Sy~-LL -p~0,5 &. It
.‘'was found to be indeed independent of position except at pos.58,

which gave a value about 10 9% higher than the others.

From the table above one sees on the one hand the improvement intro-

duced by the background normalization, and on the other hand its in-
herent limitations due to the residual point source.

6. MODIFIED ROD-DROP MEASUREMENTS

6.1 General description

As explained in Chap.II, the rod drop technique is based on a measu-

rement of the reactor response to a rapid insertion of absorber,

e;g. a control-rod. This technique offers some advantages over the

S.d. method but introduces sme serious difficulties. The main ad-

vantages can be summarized as follows:

a) Since the reactor is usually critical in the initial state be-
fore dropping therod, the initial count-rate can be chosen as
high as necessary to render any background negligible.

b)‘For the same reason, the statistical precision of this technique.
is considerably higher than that of the S.J. technique.

c) Due to the high statistical accuracy, the "shape-method" can be
used to determine a reactivity free from harmonics in a reaso-
nable number of measurements. _

d) No additional equipment is necessary for the rod-drop mechanism,
and by means of the 'shape-method'" the permanent counters of the
reactor‘control circuit may give a reasonably accurate value of
reactivity, even if they are located in a harmonics-contaminated

zone.

The main limitations of the method are:

a) It is impossible to calibrate a control rod without the help of
some compensation of other rods. Thus the method is mainly prac-
“tical for'total'worth measurements.

'p) The harmonics content involved in such a technique is apprecia-

" bly larger than that of the S.J. technique (see Chap.II, Sec.l,
and A-I and A-III).

This is so,because of the strong deformation of the neutron dis- g
\ vtrlbution near the 1nserted rod. :
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. 1c) Dropplng of the rod is not 1nstantaneous. Thls 1nvolves, 1n prln-

01p1e, a separate analysis for each rod that is measured.

“d) The R.D: experiment is much more time consuming than the S.d. exf
perlment since each time the rods must be withdrawn and a con-. _

- stant power at criticality is to be established._ S - .i'if

In view of these advantages and limitations, the rod drop technique_
- finds its main application in hot, heavy water or Be moderated reac-
'fors, where the external sources available for S.dJ. or P.S. techni- .
ques cannot compete with the inherent photoneutron background, even(

after relatively long shut-down periods.

'~ The strong contamination with harmonics, and the availability 6f
very high count-rates suggests the use of the shape method, which in
addition is less sensitive to counting losses than the integral count
method.

Dropping the control-rods causes a non—negligible change in genera-
tion time (see IV, Sec.7). However, it can be éhown(ref;hj)that the
generation time may be neglected altogether in the theoretical treat-
" ment. Using the measured p(t) of C.R. S, of reactor SAPHIR (Curve 1,
~ref 40 ; see also Fig.12) the shape and amplitude indices f <h (for
R.D.) T (for R.D.) were calculated (ref.84) using the previously
glven delayed neutron parameters. The indices as a function of -
reactivity are plotted in Figs. 11 and 12.

6.2.Experimental checks

The rod-drop measurement was applied to loading No.61 of SAPHIR.

Loading 61
12 3 4 5 6 7 8 9°
1 FC1 X| X| X| X| X [Fc2
2| X! X|s | X|s,
3 Xi{Sg| XiS( X
L S|X|X[FC3 X| X
5 J| X X[ X|X
6 XIX[x]x|x

Thé,potal worth of each safety rod, S;,S;,53 and of the banks S, + S3
\and S, +S, + S3 were first measured by the S.J. amplitude method (wit y
and without background nOrmalization) at the foilowing three loca-

]




= ®lo =

e

,‘\ N A 0}‘
e L

Mo . -~ Py . nn

0,25 DL 03 04 | 05— | ~

h Sy N . (O . .
*Logar: noUng 4.4 100, Einheit g5 a8 mm : SR y S : —

L Divisin ~xh

Lok



. i

—50 -

- fa tfor R.DY

|

Fig. 12

(1) Amplitude index for rod-drop experiment
(with reactivity input (2) ).
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(2) Variation of reagtivity with time
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“tioms: pas.12(FC1), pos.45(FC3) and pos.18(FC2),Due to the relative—
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Ay low couﬁt—rates, the shape method .could not be applied. The ra-
tio S, Eq.16, was determined at p~-O,4 £, obtained by withdrawing
the S-rods almost to their UL, while S, was kept at LL. The results

. TABLE 7: Amplitude indices in Loading 61.

. -of these measurements are summarized in Tables 7 and 8

-R.

o8, Uncorfected: fAU bg. normalized: fAB
5 |s,|s, [FC1 pos.12|FC2 pos18[FC3 pos.45|  FC1 FC2 FC3
LrjuruLhi,y $0,3 |10,6 0,3 === |11,7 £0,3 |11,k 20,3 -—-
ULLIUL1O,44*0,15(10,2620,1311,10£0,60110,70+0,20 10,24+0,15{10,53+0,1(
QuiLL| 9,20:0,06 8,83:0,23? - 9,270,048 8,68*0,23  ---
ILLH8,L £0,5 117,3 0,7 |20,0 0,1 19,2 *0,L4 {17,7 *0,7 [18,1 *0,2
aifrnb7,9 0,7 (24,2 0,9 |30,6 £0,2 |30,6 #1,01(25,7 11,1 [28,0 20,2
TABLE 83 Total worth of C.R. in loading 61 (b& Sed. ). -
LR, o l
oS- <ty typ> b -p(B)  |<t ity ~o(8)
S'(Se | S
LL{UL|UL}{11,0%* 0,4 [11,55:0,2 |2,85£0.0711,4 £0,3 |2,7540,10
UL|1L|UL|10,60+0,25|10,490,14|2,62+0,0410,52+0,17 |2,6220.05
vL|vn{iL| 9,01t0,20| 8,98%0,30{2,2 0,07 9,00:0,25|2,20+0,06
UL{LL|LL|48,6 £0,7 |18,3 *O,4 |4,75204QJ18,4 0,5 [U4,7L4+0.13
| 1n|1n|1L|27,6 =1,8 |28,1 1,4 |7,3320.7927,9 21,0 |7,3020.50

.The averages listed in Table 8 were done with the appropriate statis-

'tical wdaght given by the statistical error at each measurement.
Table 7 shows that the background normalization, though not elimina-
_ting the harmonics effect entirely, nevertheless results in some im-

provement. This is seen clearly in the smaller statistical fluctuationsin

most valueS‘-ofd'AB> ébmpar'ed to those of ><fAU>.Because of the syminetfi—

cél location of FC1, FC2 and the C1ose proximity of the source to
FCig‘one'could expect the result of FC1 to be higher than the true

i

value; and that of FC2 to be lower. Actually, the averages of the

N s e e
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bﬁckgfound corrected results of FCt and FG2 are very close to that
of FC3. Those facts indicate that the averaging process is meaning-
ful here. However, in general the magnitude of the reactivity de-

rived from the averaged background corrected indices should be ac-
cepted as the most reliable of all. '

‘A first check on the feasibility of applying the shape method to the ”

rod-drop technique was carried out on Loading No.6%1, without source"
equipment or FC3 counter. The measurements were confined to FCY1 and

' FC2, fixed above the core. The pulse to actuate the scaling system

was given by the seat-switch of C.R. S,. For measuring the total

~worthof S;, an initial power of about 250 watts was used, while for

the total worth of the bank S,,S; and Sa~fhe initial power was about
1 kW. In both cases S, was at height C-60 (see Fig.7) before the
drop. In the last case the amplifier was rather heavily overloaded,
so that the high tension was switched on only after the drop, when
the power was reduced by virtuve of the prompt decay. Such a proce-
dure invalidates the integral count from zero to one second. The re-
sults of these measufements are listed in Table 9.

TABLE 9: Shape and amplitude indices in loading 61 (by R.D.)o

pos. |C.R. o i _ ° o, | _
‘ dropped | Tosnt e 7 " (B) |44, % Topt% 7 ~p (B)

»

B x: 92 Sa 0,6060*0,4|2,83*0,06|0,4506+0,5{141,557%0,3|2,80+0,4
FC1

E’ads S1 +S2+8s [(0,6705+1,0| (8,1) |0,4902+0,3|38,81 £0,5|9,750,05
12

B x: 92 Sg 0,6049£0,4 2,80£0,06{0,4494*0,5 12,473*0,3(3,05£0,4
rC2

??g; Si+Sg+Sa> === = 0,u920i0,h 36,612i0’5 9,20i0,05

*)ax=maxial position, rad=radial position.

The table shows that the shape indices and their corresponding reacti-

vities are much less sénsitive to location of the counter than the
amplitude indices and their resultént reactivities. In fact, the
"shape" results in,each'Configuration are the same within the sta-
tistical precision. ‘ 4 A

The second step was to conduct rod—drop measurements under the same
conditions under which the source-jerk reactivity had been deter-
mined previously (Table 7). For this purpose the source equipment

JIGENL T
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’pOSsible by the automatic control system, which attempted to keep

pos. |C.R. s *) | =p (&)
4 4 _ _ p
- |dropped | pos. fosn T 70 @) Teh A Tec9,

ax:LOl g D-18% | 0,5961 2,55+0,1 |0,LL67 10,592,55
| FCH - +0,0040 | +0,0010

lpad: | s, 48, |[D-200°|0,6417  |L,50%0,12|0,4741 22,0415,50
(12) +0,0019 +0,0013

S, +85+55 | D-208° [ 0,6639 7,20£0,15}0,4879 37,02(9,35
+0,0010 +0,0004

ax s 40 Se D-1800 | 0, 6042 2,75£0,1 |0,4488 11,562,814
Fo2 , +0,0020 ~ +0,0013

rad: | Sp;+Ss |D-213°|0,646L 4,85%0,2 |0,4786 23,35|6,85
(18) +0,0014) +0,0006

Sy +Sg+S5 | D=166° | 0,6623 6,85%0,25{0,4856 36,4219,20
- +0,0019 | *0,0012

Sz D-180° {0,5947 2,5020,05{0,4449 10,56(2,53
+0,0017 +0,0017

FC3 | g,4Ss |D-220° |0,6u24  |L,58%0,12|0,4759  [19,23|L,80
rad: . *0,0015 _ +0,0008

(45) |5, +8,+55 | D-2145° | 0, 6620 6,80:0,5 |0,4875 31,17|7,35
1 +0,0027] +0,0020

- 400 = - T Chap v

-was placed at. p051tlons uz 52, and the moveable flssion-counter was

placed at position 45. Again the ‘measurement was initiated by the

 endsswi£ch‘("Seat-switch”),,which»was:actuated.when S, reached its

lower limit (LL). The initial power level was adjusted, whenever

the same fine control rod (Se) position before each drop. Just be-
fore the drop, the automatic control was disconnected. leflcultles
were encountered when measuring with the FCgcounter, In order to have

ithe'same count rate as the other counters, i.e. FC4 and'FC2,’the po-
‘wer'had to be reduced below the minimum possible power for automa-
. tic control. Thus one was obliged to maintain the desired power at
-8 éonstant level by means of manual operation. In addition, counfer

FC3 was subjected to intense gamma radiation. The results of the

‘measurements are summarized in Table 10.

- TABLE 410: Total worth of C.R. in loading 61, as determined
: by R.D. technigue

*) see Fig.7

This table shows again that reliable results can be achieved by ap-
" plication of the shape method to the rod-drop technique. While the

normal fodFdrop technique gives a reactivity at pos.'FC1 and FC2
which is about 25 /o hlgher than the true value, the modified tech- G
nique gives the correct result at pos. FC1 with a statlstlcal scat-

"tqunglof about 2,1 % . At position FC2 the largest negative reacti-
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v1ty (dropplng of all S-rods) found is somewhat lower - with larger sta-~
.tlstlcal fluctuation.: ‘

'One usually expects to strongly overestimate the reactivity when mea-
suring close to the dropped rod. But in the described experiment the .

; indices at this point turn out to give the correct reactivity of the

configuration. However, it is evident that if the counter would not re-
place fuel and moderator, a large overestimate of reactivity would usual-

ly result.

7. CONCLUSIONS

In the preceding sections a stringent series of experimental checks on
modified source=-jerk and rod-drop technique has been described. It was
demonstrated that an appreciable improvement may be gained from these
techniques if properly applied to the measurement of reactivity. With
the present limitation on count-rates due to conventional electronics

and counters the shape method is not amenable to routine determinations_

of large negative reactivities. However, it may be useful to apply the
accurate '"shape' method occasionally, in order to make sure that the
region where one measures reactivity with the help of the amplitude
method is more or less free from harmonics. This can be done in the

start-up phase of the reactor to show that there exists a region where

the persisting modes of different configurations coincide.

In the amplitude method with background normalization one obtains an

‘improvement almost without additional effort. The magnitude of the. im-
provement depends on the origin.and.type of the background sources.-

In heavy water reactors the elimination'of‘beckground is rather impor-
tant. When such a reactor has experlenced some power-runs, the only ‘
p0581b1e way of measurlng large amounts of react1v1ty is by means of
the rod-drop technique. Here the shape-method will be more practical,
due to the high count rates available. But still one should keep these
count-rates low enough, eo that counting losses will be confined to'
the linear region., Considerable imprOvement could be gained by using
faster electronics and faster eounters. At the'same time, for in-core
measurements the counters should be sufficiently insensitive to the
Q;; gamma baekground.

water hole at position 45 and the 1ntroduction of some vacuum, i.e. the
‘- counter, radically change thls picture. Curlously enough, the amplitude

S VU IS SO -
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“;‘Appéndix 1I: A bare homogéneoﬁé reactof with a time dependent source.

One-group treatment.

. The kinetic equations describing this case are:

v(DV2-2)n(x,t)+-vk(1-ﬁ)2n(x,t)4-L§11Lct(x,t)+-Q(x,t) = QB%%¢31 , (1)

det (x,t)

vBikEn(x,t) = rici(x,t) = 31 (2)

with boundary conditions (at the extrapolated boundaries E):
n(X,t) = ¢;(X,t) = 0, and initial conditions an/at = aciy/at = 0.

The densities are expanded in terms of the geometrical eigenfunctions:

n,(x), - ¥ny(x) = - B3n (x):
n(x,t) = qg;nq(X)Tq(t); ci(x,t) = qz;nq(X)T;(t)-

After substituting the expanSions and using thé'orthogonality proper-
ty, the precursors are eliminated from the Laplace-transformed equa-~
tions, yielding: '

T(s) = T,(0) (A% + W(s)]gy(s) + A% (), " (3)
where: -1 | -
gy(s) = {s[l'\'@(s)]. - pp} =L{Gp(t)}- , (4)
- (/g0 {Gemt) - ),

modal reactivity in dollar units, in the modified one -

Pp

group thebry,

M2 = the migration area,

A% = (vskg)-t, S (5)

reduéed’generation'time, which is independent of the
mode in the present model, o

W(S) Zb/(s"‘lu)’

bi. = B‘eff’/ﬁeff’

Qp(s) /Q(x,s)n (x)dx / /;2(x)dx.

Gi; By the above expansion one obtains complete separability of modes.

In each mode the time-dependence is formally the same as that of
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itho spgcé;independent.model, II-Séc.-z; namely:

In the S.J. experiment: ot
Tp(t)’Tp(O) = 1+ p,(1=8) [0 (t)a,

—
16))
~—

.TP'(O) = - 'A*.QP(O)/pp.' (7)
In a P.S. experiment:

Tp(t) = TP(O) + PPA*Gp(t), o - - (8).
where: Pp = jé(x)np(x)dx / n;(x)dx.

The delayed neutron denéity, nd(x,O), just after the prompt jump, is
essential to S.J. and R.D. experiments based on the prompt decay. It
can be found from n(x,t) by the following procedure:

l%ﬂo nd(x,t) = q§0n (x)liEgT (t)%ﬁ 0 = qio[Tq(o)/(1;pq)][1quAO 1,

0

Emvlag(0) /by (1-p) 1100 /ana (o)), (9)

The time integrated density, in S.J. with no residual source (A=0)
or with substracted background is:

t
lim [ n(x,t)dr = 2 OB (x)llm T (s) = (A*+W(0)) E (T (O)/b )n (x),
%00 - s»0 ¢

= A*(A*+W(o))qéo(1/p3)qq(o)nq(x). - (10)

Thé-time'integrated density in a P.S. experiment, where Q(0) =
will be: ’

_/;n(x,t)dt_= *A?q§$(1/pq)Pqnq(x)-, - , | ‘A | (11)

In a slab reactor of extrapolated thickness 4 cf., Flg.II 2, the
geometrlc eigenfunctions are: nq(x) = sin q(n/d)x, with

B2 = q®(w/d)?. In the presence of an infinite plane source at a
poiht.xo of intensity Q neutrons per second per cm®, the density,
n(x,0) is maintained in a steady state with the following dlstrlbu~

‘tion (see Eq. 7):

n(x 0) = ?? Vng Z sin p BixO sin p Bix / (p BZ/EE), | (469
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~where: B2 = (n/d)2and B® = (k-1)/M?, the material buckling.

The sum in Eq. 12 is summable (ref. 85)

oo . : < n - ' «h2 s .
;O sinp B ¥, sinp B x _ d_BliL [sin B(X+Xo) - sin B|x=-x, |+ (13)

p*-B*/BE
- 2cotBd sin Bx, sin Bx .

The time integrated density in S.dJ. experlments, Eq.10, in the slab-
case will be:

@ sin p Byjxp * sin p By x

‘ g1 W(o
/on("'t)dt - 8 e L L e - mmr Y

The last sum can be expressed in closed form by differentiating
Eq.13 with respect to B.

8

sin p Byx, sin p Byx ad2-Bf {x+xo
0 [p? - B2/B2]" 8B?

g cos B(x+xp) +

ne

|x=%o | , | ‘
- —3— cos Blx=%xo | + 2 sin~2?Bd sin Bx, sin Bx+

- 2(x,/d)cotBdcosBx,sinBx - 2(x/d)cothsianocosBx +

- .B1_d.> l:sinB(x+Xo) ~ sinB|x-%, | = 2 cotBdsinBx, si_an:B_ (15)

In order to find the correct relative amount of harmonics in the
initial distribution n(x,0) and of the time integrated flux, Eq.1l4,
the expressions, normalized according to A-I1I, are compared with
the persisting mode, sin B, x (Figs. 11-2,3,4). The normalized ex-
pressions are:

[n(x,O]no'r f [ﬁ;ggﬁf}géj (d Bz) [ ] , (see Eq.13) (12a)

[éi(x t)dt]nor = ESE:@:T <8B2 ) [ :l (see Eq.15). (1&&)
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| -Appéndix II: A bare homdgeheous'reactor with~fime depehdent fast
R - source. Two-group treatment. '

( ~

: A"The'time dependent diffusion equations describing this situation are: o

L - .
nwﬂhwmfvuvmﬁﬂﬁwz+gﬂwi+M&ﬂ=%%»V(H_'

'.viPzini + V3 (DyV3=35)n, = a—g—’g- ’ o (2)‘
va(k/D)BiZzme = Acy = 2B = 1,2,...,, (3)

. 'where: 5, = hi(x,t), ng = na(x,t), ct = ci{x,t) are the time and
' space depehdent fast, thermal and precursor densities, respec-
tively.
In addition there are the conditions at the extrapolated boun-
daries: ng (X,t) = na(X,t) = ci (X,t) = O and the steady state
initial cohditions: ﬁg(x,O)'= ng (x,0) ét(x,o) = 0,

. The densities are again expanded in terms of the geometrical eigen-
functions nq(x), which have as geometrical eigenvalues the buckling
Ba. Substituting these expansions, making use of the orthogonality
‘property pf the nq's; Laplace transforming and eliminating the delayed
precursors finally lead to a set of 2 coupled algebraic equations

for each mode:

[}vi(DiB§+21)-S]_Tp1(6)+vzze(k(8)/r> To(s) +Q(s) = -1, (O (1)

) t TL(0);
i=1 S+A{ ’
ViPziipi(s) + [sz(D2B§+22)-SJTp2(S) = -sz(O), (5)
, v»"'whe‘re= k(s) = 1-Liisﬁi’/(s+)\i' )] = k[1-éBW(s)], (6)
| - 4(s) = | &x,s)n (x)ax / n;(x)dx.

'f The solution for the transformed thermal coefficient is:
P = .7, * W * A% 0 *
T, (8) Tpi(o)[Ap4i'W(S)+'SKPA&#A&E]EP(S)*'Tpi( Jpa* g (s) +
: .z
o + pazTple)ey(e), )
u : = {s2gkA* A* * ® 4 W - -1 .
- where: gp(‘s) {s BkA_ooiAoo2+ S[.Ap1 +Ap2+w(s)] ppl Yy (86




N T g . Lo . ' N . N -
SEPTREE o A : - 106 - - 7 L . -II
S o N =1 o By A-I
. 4 ~ . . . L B - . .
. . . R Lo
SURRIE s : .

= (keffp 1) / Bkeffp’ the modal reactiv1ty in g _ (9)

Pp
: = T 2 . :
Keppp = K / (14 Bz)<1+L B) - . - (10)
= 2 1 = 2 / _
G {vizlﬁkefprM:B )} (1417 B2) / vi33i Bk } , (1)
{,t , - p2 (1+TB2) / szgﬁk
A;i + A§2 = AB » the reduced two-group neutron generation time
A, = (vaZiBk)™h 5 A, = (va22PK)77, (12)
A¥ + A* = A* |, the reduced two-group neutron generation time
ol 002 00 -

for infinite systems.

Using the initial conditions one finds:
- L T2 N2 . -
Tpi(O) = A;1Qp(0)(1+L Bp) / Pp sz(O) pA* Q (0)/p

Substitnting this into Eq. 7 results in the expression:
Tpa(8) = —pax [Q,(0)/p ][A% + W(s) + s°kBAX A% lg (s) + - (13)
+ phx R, (s)g(s).

If one uses only one averaged delayed neutron group, the three so-
lutions of the two-group inhour equation gii(s) = 0, may be Ffound
rather easily to a good degree of approximation. This is done by no-
ting that these solutions describe three different time scales: the
‘'very slow decay of delayed neutrons, Y1, the rapid prompt thermal
neutron decay, yz, and the extremely rapid decay'of the fast prompt
neutrons, yaz. Thus: y;<<yz<<yg, then:

Dt pz . p3

For example, in the DI-1 configuratlon (ArV)4Yodz2 * 10*sec"?,
Yoz m-124 sec‘i(f‘or Po = -10 #) and Yo1 #-0,063 sec‘i(for po = =10 Z).

In the SR-1 configuration yos 9+ 10%*sec™, Yoz(po = =10 %) =4,3°1035ed",

Yo1(po = =10 £) =-0,071 sec‘i. ' !

Conducting measurements ‘at times t>>1O sec' then permlts neglecting

the s® term in Eq. 13, and this expression, with P-1,‘reduces to the

corresponding expression in a one-energy group model ‘With r-1, the

time integrated thermal density coincides exactly with the corres-
Qii ponding quantity in one group theory.

Y, = LT /(,1-jp s vy, T -(1-p /AR Tps = —A*/t}kA:‘oiA:'oz. (1)




- propriate weight function will be the adjoint density vector of this
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Appendix III:“Thezhormalization of densities in different‘states.

The problem of consistent normalization is encountered when two o,
neutron densities belonging to two different states of the reactor, ;—‘Vf
e.g. the densities in critical and subcritical states, are compared i.i“-
with one another. A physical procedure, which also maintains mathe-
matical consistency is to normalize both densities to the same weigh-
ted total population of chain carriers (i.e. neutrons and precursors).
‘The choice”of the weight function depends on the state which is con-
Hsidered as reference state.

If in the reference state the persisting mode prevails, then the ap-

'state. This means that one weights the carriers in the perturbed sta-
te by the importance of the reference state, in order to"get the same
total population.

H(X,t) is the density vector of the perturbed state in the two-group
model:

H(X,t) = {ni(x’t)’ ng(x,t), cy(x,t), eues ce(x,t)}. | (1)

The reference state, if assumed stable, is characterized by the den-
sity vector An(x), and the importance vector nt(x):
n<x) = {ni(x)9 nz(x)v Ci(x)o'ooﬁ’ Cl(x);r (2)
=4+ + .+ + +
n'(x) = {n;(x), np(x), ei(x), ..., cz(x)i.
The total weighted population of chain carriers in the perturbed
state will therefore be (scalar product is denoted by round brackets
and comma),

(H(x,t),ﬁ*(x)> = (ni(x,t),n:(x)> + <n2(x,t),n;(x)>4-L§1<ci(xgt),c§(x)>.
' | (3)

Taking the Laplace transform of the last equation and using the rela-
tions (see Chap-1IV):

ci (x,8) = [ﬁtvkz / (xg4-s)] n, (x,s),  ci(x) = n:(x),

one gets:
<n(x,s),n (x)> (ni(x s),ni(x)> (nz(x,s),ne(x)>i-ﬁ;s <(n2(x,s%15(ﬁi;
002

o,f denotes integration on the core alone. (4)
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The'scalarfproducts are of the same order of ‘magnitude, however

W(s)/A*z is of order 1® (for t>yz~', A-II) thus the contribution
oo . . v ; v

of the precursors to the total population predominates:

(Gxe) i 0) 2 (R (o) om0 ).Ce) / ax, (s

Equating this total population to that of the reference reactor de-
termines the normalization factor, A:

(Ratxre) i), (1)) |

(R0, nie) ), (o)

In normal two-group theory the source consists of fast neutrons due

e

A (6)

" to thermal fissions. Since the importance of a neutron at a certain

point in phase space 1is proport10na1 to the change of the power re-
sulting from the injection of that neutron, the ratio of the pro-
ducts in Eq.6 may be replaced by the ratio of the powers:

A (/kz(x,s)dx>((w(s)>‘ | | ., (7)
c :

’ /hz(x) dx W(o)

Both integrals are extended over the core alone.

From the formal point view the normalization described above is
equivalent to the determination of the coefficient of n(x) in the
expansion of the density vector n(x s) in terms of the eigenfunc-

.tions of the reference reactor.

" In one group theory n,(x) = ny,(x) = n(x) = n*(x), thus the exact

normalization factor A, in a bare system is:

(ﬁ(x,s),n(x)) [14-W(O)/’A*] . 8)
(n(x),n(x)>‘[1+-ﬁ(0)'/-)w]"_. L |

In reflected system the last'eQuation is approximetely.valid‘(it'

A =

involves the .same approximation as in Eq.6) if the integration ex-
tends only on the core volume. .
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Appendix IV: A bare. homogeneous reactor with time dependent sink.
- One-group" treatment. . \ ’

fThe.time dependent diffusion equations governing this case are:

aci (x,t)

v kan(x,t) = hei(x,t) = —5g— , (2)

with the steady-state as initial condition, and vanishing of the
densities at the extrapolated boundaries.

0 t<0,

v(xt) = o (3)
yo(x-%,) 120
(the sink is at the point x,)

Y(x}t) is the number of absorptions per second by the external ab-
sorber. ' .
Expanding the densities in terms of the geometrical eigenfunctions
and repeating the procedure described in A-I and A-~II, one gets for
the Laplace-transformed coefficient of the p-th mode:

T (s)gzt () + yoaen (x)F(s) = T,(0)[W(s) + a*], W

where: yv* = v/ n;(x)dx (independent of the mode in slab geometry),
| "F(s) = % T (s)n (%,) the Laplace transformed density at the
q q sink.v

Multiplying Eq.lL by ﬁp(xo) and summing on p furnishes an expression
for F(s) in terms of known quantities:

Zo g, (S)T (O)n (%)
F(s) = [a¢+W(s)] &= . (5)

RESa N ) n?(%)g, (s)
p—O

Since the reactor is initially critical T, (0)#0 while TP(O) =
for p3»t, therefore:

Ty () = —yoheno (%) 8 (8)B(s) + (A% + (s) 1o (3)T5 (0), (6)
T (s) = -y*asn (%)gy(s)F(s)  p>1, | (7)

Y T A

: iii;:
'[y(DV2-2)+ka(1-B) n(x,t)+ é Mei (x,8)=v(x, $)n(x,t) = =anlnt) - (q)
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| e o I ; :
P(s) = [A® + W(s)] .go(S);(%)TO( ] - | (52)
, 1+Y&A*p£dnp(Xo)gp($)

‘lTb " Substituting F(s)‘in'Tp(s), one obtains

7

To (O) [A%* + W(s) ] [1+y*A* Z1n2(xo)g (S)]

(6a)

L e

~

CTo(s) =
. 851 (s)+y*A*ng (xo ) +y*A*g5 (s) 2 (%) 8, (s)
‘ p=1
- ~To (0)no (%0) [A*+W(s) Jy*A*n_(x,)g (s) | ,
T'o(?) = sy D3t . (73)
i 851 (s)+y*A*nd(x, ) +y*A*gst (s) Z1n2(xo)g (s)
p=

The time integrated density may be obtained, as before, by letting
s tend to zero:

R TC 5 nz(Xo)/p
= T, (0) [A*+W(0)] — p=1 (8)
Axy¥n2(x, )
np(xo)/pp

no(x0) °

OF-B
~~
4]
¥
O
S~
)

p>1e. | (9)

-3
—~
0]
i
o
~
|

= Ty (0) [A*+W(0)]

Thus:
00
a 1=y®A* ) nz(X)/bP

ln(x,t)dt = To (0)[A*+W(0)] { Y*R;;o(xo)

n, (x) +

Sn (xo)n (X)/’pp }
sy D

+ B=1 N E (10)

The persisting.distribution, n(x,o) of the reactor with a sink, is
established after all higher modes, which afe due to the initial con-
ditions, have died out, It can be calculated by making the reactor
flctitlously critlcal, i.e. changing k to kf, thus:

v[DV‘+(k -1)Z]n(x,m)—yé(x-xb)n(x,m) = O. > (11)

Expandlng the den31ty as usual in terms of the geometrical elgenfunc-‘
tions of the system: -

n(ee) = I T (wing(x),

‘ Qﬂi | q=0
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and repeating again. the procedure of'isblating.the cpefficientiof

expansion Tq&») and the density at the sink, F(w) = n(x ,o) leads
to the following expressions: -

yx = {A*pijonz (% >/p_p} ; | - (17
 and
sd = £ nGomy(epe ()

In slab geometry:

_Pp _ 4 4
" K¢ T EvD pP-BL/E

where:
k. -1

B o= —p— » B = (n/a)%,

np(x) = sinpB, x.

Thé sums which appear in Egqs. 12 and 13 are of the form of Eq. A-I-13,

which leads to:

v¥ = —(2vDBf/d)siand / sianxosian(d—xo), ’ ‘ (14)

n(xm) - 0 (i iy, | -

Ny uvDBf ’slanlx %o | sian(x+xb) +
—»ZCothdsianxosianx} . (15)

The sums which appear in Eq. 10 are of the form

oo ) (o]

an(x;))np(x) 4 {_ , z s-iani':osing;x } e
p= pp ) B1VD P=2 P -1 .

since in the real reactor B = B, = w/d.

From Eq. 13 one finds:
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Ll S =2 - o . A-IV
L - s8inpB, x, sinpB; x . . _ : \
b i Z ———5— = lim Q_ngf_ sinB(x+xXo )-sinB|x-x | { +

, p=2 P BB, ,

- 1im 4B cotBdsinBx, sinBx +

|, | | | | + 31n1_ S%Il x} . (17)

] | : = f: {sinBl ( x+xo )—si‘nBile-xo |+

- %x_ sinB; xg cosB; x ~ _Zagc_ sinB, xcosB1xo},
and
20
=
3 2 - .
L £in pBixo - X sinZBixo[:1--§°-2 ] . (18)
b2 PP o d -

Assembling all expressions one gets the following equation for the

time integrated density in the R.D. experiment:
o0

. w0) | =« 1 { LvDBf
ln(x,t)dt = To(o)[:1 “'")‘\Tl_]thBf sin®B, xo Ty*

5in2B; x} 1- 2% ) lsinBx - sinB, Xg| sinB,; (x+xy, ) +
da _

+

sinB, |x=%, | = 2(x/d)sinB, xgcosB, x =

2(xo/d)cosB1xosinB1x]}, : o (19)
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Appendix V: Various(DIfCOﬂfigurations (typical heavy water reactor):

critical'kc° = 1,100567

Radial-parameters (two groups):

DI-1: Critical axial buckling: 1.470161 * 107%cm™2; .

D,

.
.
N ~ -
,«. '

z one outer-radius | T cm® 12 cm® Dy cm cm
1 cm .
C-ref [187.0 370,0 [2025.0 [1.0 0.9733 |0.8433
Al—tank 114. 4 5000.0 300.0 (1.0 3.59 3.59
D, O-ref |114.0 129.1 |4582.44 (1.0 1.,256975.| 0. 845405
|core 111.03251 130,50| 113,28 {0.9081521.243930{0,.835380
Delayed;neutron parameters:
L 1 2 3 L 5 6
sec™t  [5.16l4{1.183(3.069°10"* |2.773°101 | 1.136°107t | 3.062:10"2
- . 10-% K
B err " 10715, 176 8. 86| 27.331 2.389 13,316 14,538
i 7 8 9 10
i sec-t 1.691°107211,247°1072| 4. 8141073 (1,510
Bi .
L eff 1{7*0,7u8 2.127 0.256 0.123%
10
i.glﬁ'L ert = Berr T 7.285 1075,
v, = 1.833° 1086 cm/sec; v, = 2.2 ° 10° cm/sec.
DI-2: Critical axial buckling: 3.6 ° 10-%*cm~2; critical
ko° = 1.,159399.
The other parameters are as in DI-1.
DI-3: Cfitical axial buckling: 3.87837 * 10-tcm™?,
» critical k = 1.2016.
"~ Radial parameters (two groups):
zone outegaradius v cm?| L2cm? P D, cm D, cm ' 6ig
D, O-ref.,|187.0 1129.1[4582.4411.0 - 11.25697]0.8454L05
core - 79.72915 1130.5] 113.28 0.908152|1.24393]0.835380

e
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y:fz:!ghe delayed neutron parémetefs'aré those of DI-1.

’

DI-4: This configuration is - 3.23% subcritical,which is achieved
by introducing a central control rod of 5 cm radius into the criti-

" cal configuration DI-3.

The control rod is treated as a non-multiplicative 2zone, and its ab-
sorbing properties are taken into account'by special boundary condi-
tions at the rod surface. They give the effective distance

d =n (C.R.) / n'(C.R.) from the control rod surface to the point
inside the rod wheéere the density virtually vanishes. This boundary
condition enables one to use diffusion theory for deriVing the neu-
tron density beyond a distance of about a transport mean free path
from the control rod (e.g. ref. 86).

In the DI-4L:

:di = 10® cm, the control rod has almost no effect on the fast neu-
trons except through the absence of production and
moderation in it (fromr = 0 tor = 5 cm),

de = 2.107 cm. |

A

The insertion of the control rod introduces a static negative reac-
tivity of 3.23% or L.U3 B. '
Examples of w for delayed iterations:

po = = L.L% &,

The fastest delayed éigenvalue of the zeroth main mode - w,,

k(0 = 1200412235 w,(0) 2 L a, = - 3164 sect - k(1) = 123711345 o
-y.w‘(W) = - 3,13759216 sec™ .;k(Z) = 1.23714106 - wd.(Z) :
= - 3.13761564 sec™ = Wois » ‘ o

- x03) ~ 4237141102,

The fourth delayed eigenvalie - w_, .

k(o) = 1.24041223} w*(°) = - A, = - 0.277% sec™? ».k<1) = 1.24012383-»

(2) _

= - 0.273110109 sec™* = w, ' ‘
+ k3) = 1.240128%0.

Wy

0.4

e e iAo b Y
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:Comparison of ‘one group inhour solutions: (ref. 78 - with A% = O, 1sec)
" with kinetic solutlons for the zeroth main mode (10 groups of delayed
_ neutrons in a heavy water reactor, ref. 80). :

PR

== 3,23 % . ' }’°’
o 3.25 ‘ ' | | | o ',"’

i 1| 2 3| u 5

K'X; sec~?t 3.164 1.183 3,069+10°1 |2,773°10"* 1.136‘10‘1

Jw, S€C7 13 43793 11,15672(2.8835-107%|2.7284 +107* [1,0921 10

“inhour .

two groups

. SecTt |5 43760 2.7125

L | 6 7 8 9 10

A sec~?! 3,062°10"2 [1.691°10°2 [1.247°10"% 4,814°10"% |1.5-10"3

sec™? .a0-2 cin-2 ez s s
¥ i nhour 2.9301°10°% |1,6870°107%| 41,2385 1072 | 4. 81021077 | 1.4994 " 10

sec~t . -é
wtwo groups 2.9302°10

. P1 = "' 103.663 }3 Wi,1

Results of iteration for higher main modes:

First main mode:

- 3,05611°10"2sec™?

- 3,16268 sec-? Wi.e

(w, )s = = 278.240 sec-?.

1.P

Second main mode:

i
il

pz = = 393.313 g wy,, = - 3.163%65 sec~? Wo. 6 - 3,06045°10"2sec"?

(wz.p)z = - 583,764 sec~t.
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- Appendix VI: Various SR-configurations (typical light water reactor).

1.60708.

e i S i P

SR-1: critical axial buckling$'2.055101'10'3cm‘2; koo =
Radial-parameters (two groups)
7zone outer-radius T em?®|L® cm®| p D, cm|D; cm
cm

%zr ref. o0 31.40{ 8.13 [1.0 [1.111]0.1585
Fore 18.659 56,60 2.64 0.96511.232 0.2438
Delayed neutron parameters (ref. 87)

i 1 2 3 L 5 6
Ay sec-? 3.87 1.40 3.110°10-1 1._155’10'1 3.170°10-214,27°10-2
Bi eff—1o-1 2.080110.240]32.560 15.040 17.040 3.04
6 .

H = = * -3
2, B epp = Bepp = 8.0°10
v, = 1.833°10 “cm/sec; v, = 2.2°10° cm/sec.

SR-1* has the same parameters as SR-1, eXcept for the reflector, which
has a finite outer radius of 40 cm. This configuration is made about

- =4 % subcritical by reducing the core radius to 17.11 cm.

SR-2: critical axial buckling: 2. 055101 10~8%cm-? crltical k =

1.539213

Radial Parameters (two groups)

zone outer-radius|t em?|1? cm?® p D, cm|{D; cm
cm A ‘ :

H,0 ref. o |31.40] 8.13 [1.0  [1.111[0.1585

core 22,2601 [56.50| 2.64 [0.96510|1.232]0.2438

HoO ref. 4.27 31.40| 8.13 |1.0 1.111]0.1585

The delayed neutron parameters are those of SR-1.




. f

| Rédiél_paiameters_(two éroups)  -

zone outerfradius ‘x'cmz‘L? cm?. p |D em Dz.cm
C m . . . .

HaO ref.| ' = o 31.40|  8.13[1.0 [1.111[0,1585

C-ref. | 23.988 - [345.00|2809.0 (1.0 ~|1.125[0.816

lcore 15.988 | 56.50| 2.64]0.96511.232 |0,2438

The delayed neutron parameters are thqse of SR-1.
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