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A PROCEDURE FOR THE EVALUATION OF 
NEUTRON-SCATTERING CROSS SECTION 
IN THE INCOHERENT APPROXIMATION 

by 

V. Z. Jankus 

Using some simplifying assumptions about the details of phonon-
frequency distr ibution, we evaluated exactly the contributions of 25phonons. 
By means of these contributions, the differential scat ter ing c ross section 
a(E ->E ' ,0 ) , the sca t te r ing law S(a,p), or ine las t ic -sca t te r ing m a t r i c e s and 
t r anspor t c r o s s sect ions for mult igroup calculations may be calculated. In 
the evaluation of mult igroup p a r a m e t e r s use is made of an asymptotic ex­
p ress ion when the phonon expansions fail to converge. 

When the phonon-frequency distr ibution is considered dependent on 
the direct ion of polar izat ion (as in graphite) , then averages over all d i r ec ­
tions a r e obtained. 

I. INTRODUCTION 

The basic ideas underlying p resen t scheme of evaluation of the 
inelast ic neutron c r o s s section have been explained briefly in a paper p r e ­
sented at a meet ing of the Amer ican Nuclear Society. '1/ This r epor t is 
intended to complete the presenta t ion of the procedure , which is oriented 
towards computer application. Thus, in addition to a brief derivation of 
ma themat i ca l formulae, this r epo r t includes descr ipt ions of calculational 
p rocedures which may be used with a computing machine. Some m e a s ­
u r e s taken a r e obviously somewhat a r b i t r a r y and have been included in 
this descr ip t ion for the sake of comple teness . 

Essent ia l ly , we propose to evaluate the ine las t ic - sca t te r ing c ros s 
section in the incoherent approximation for a simple cubic Bravais lat t ice. 
The main formula^'^'' does not depend on the polarizat ion of the phonons. 

The basic par t of the p rocedure (see Chapter III) is the evaluation 
of repea ted convolutions to obtain contributions due to 25 phonons. To 
avoid e r r o r s in mult iple integrat ions, it is assumed initially that the phonon-
frequency dis t r ibut ion P(CD) is such that 
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can be r e p r e s e n t e d by a b r o k e n l ine wi th b r e a k p o i n t s a t i n t e g r a l m u l t i p l e s 
of A CD. (Usua l ly Aci) i s m u c h s m a l l e r t han kT . ) T h e n the mu l t i phonon c o n t r i ­
bu t ions a r e d e t e r m i n e d e x a c t l y by a s i m p l e p r o c e d u r e [ see E q s . (16) and 
(17)]. 

Having the m u l t i p h o n o n c o n t r i b u t i o n s we can c a l c u l a t e d i f f e r en t i a l 
s c a t t e r i n g c r o s s s e c t i o n s a (E - * E ' , 0 ) , the s c a t t e r i n g law S(o(,,j8), or i n e l a s t i c 
s c a t t e r i n g m a t r i c e s and t r a n s p o r t c r o s s s e c t i o n s to be u s e d in m u l t i g r o u p 
c a l c u l a t i o n s . In a l l t h e s e c a s e s it i s a s s u m e d tha t c o n t r i b u t i o n s of n e g ­
l e c t e d phonons d e c r e a s e in a g e o m e t r i c p r o g r e s s i o n . A c o r r e c t i o n t e r m is 
added if it is s m a l l e r t han lOTo of the t o t a l . O t h e r w i s e , it m u s t be con­
s i d e r e d that the e x p a n s i o n us ing only 25 phonons i s u n s a t i s f a c t o r y for the 
d e t e r m i n a t i o n of O(E - * E ' , 0 ) and S(a, jS). F o r t u n a t e l y , t h i s is un l ike ly for 
e x p e r i m e n t a l l y o b s e r v a b l e e n e r g y and m o m e n t u m t r a n s f e r s . 

In the e v a l u a t i o n of m u l t i g r o u p s c a t t e r i n g m a t r i c e s , i n t e g r a t i o n o v e r 
s c a t t e r i n g a n g l e 9 h a s b e e n p e r f o r m e d a n a l y t i c a l l y , and a (E ->E ' ) i s c o m ­
puted by u s e of the m u l t i p h o n o n e x p a n s i o n if it c o n v e r g e s s a t i s f a c t o r i l y ; 
o t h e r w i s e , an a s y m p t o t i c e x p r e s s i o n h a s b e e n c h o s e n to fit the r e g i o n of 
d rop -o f f of the i n e l a s t i c c r o s s s e c t i o n a t h igh e n e r g i e s , | E - E ' | « 
jj.{ „JK + .y/E^ ) . It i s no t good for m u c h l a r g e r e n e r g y t r a n s f e r s . How­
e v e r , the i n e l a s t i c c r o s s s e c t i o n in t h a t r e g i o n i s v e r y s m a l l , and thus 
the e r r o r is no t e x p e c t e d to affect the s u b s e q u e n t flux c a l c u l a t i o n s . In the 
i n s t a n c e s in wh ich the e n e r g y change i s f ini te but the i nc iden t e n e r g y is 
v e r y l a r g e , the a s y m p t o t i c e x p a n s i o n m a y not be good, but in t h i s c a s e the 
m u l t i p h o n o n e x p a n s i o n s t i l l c o n v e r g e s (p rov ided n^^^^^^ = 4a2g(0), a s s e e n 
in Append ix B ) . In any c a s e , the v a l u e of t h i s n e a r l y e l a s t i c c r o s s s e c t i o n 
is not e x p e c t e d to effect g r e a t c h a n g e s in the r e a c t o r flux. 

S i m i l a r a s y m p t o t i c e x p r e s s i o n s have b e e n u s e d p r e v i o u s l y by 
Schofie ld and H a s s i t ^ ^ ' and by SjoTander. •̂̂ '' H o w e v e r , t h e y have u s e d th i s 
a p p r o a c h to e v a l u a t e i nd iv idua l m u l t i p h o n o n c o n t r i b u t i o n s . In our p r o ­
c e d u r e th i s e x p a n s i o n is u s e d for the m a i n f o r m u l a a s a whole , thus sav ing 
an a p p r e c i a b l e a m o u n t of c o m p u t a t i o n . 

Al though in our m a i n f o r m u l a it i s a s s u m e d t h a t p h o n o n - f r e q u e n c y 
d i s t r i b u t i o n i s i n d e p e n d e n t of p o l a r i z a t i o n , for g e n e r a l p o l y c r y s t a l l i n e 
m e d i a one can c o n s i d e r t ha t p{(X)) d e p e n d s upon the d i r e c t i o n of p o l a r i z a t i o n 
and upon the k inds of a t o m s of the l a t t i c e . Then the i n e l a s t i c - s c a t t e r i n g 
c r o s s s e c t i o n can be ob ta ined by u s i n g our m a i n f o r m u l a r e p e a t e d l y for 
v a r i o u s d i r e c t i o n s and a v e r a g i n g the ob ta ined r e s u l t s . C u r r e n t l y , t h i s h a s 
b e e n a t t e m p t e d for g r a p h i t e only w h e r e r e s u l t s depend only on the ang le of 
the m o m e n t u m - t r a n s f e r v e c t o r wi th c r y s t a l l i n e p l a n e s in g r a p h i t e . l ^ ) 
A v e r a g i n g o v e r t h i s ang le i s done as the l a s t s t e p for the f i r s t two c a l c u l a ­
t ions and in the eva lua t i on of m u l t i g r o u p s c a t t e r i n g m a t r i c e s a v e r a g i n g ove r 
th i s a n g l e is done i m m e d i a t e l v Dr io r to averap-ina ove r in i t i a l e n p r a i R s . 



II. INITIAL CALCULATION OF SEVERAL PARAMETERS 

F o r s i m p l e cubic B r a v a i s l a t t i c e the d i f f e ren t i a l s c a t t e r i n g c r o s s 
s e c t i o n in the i n c o h e r e n t a p p r o x i m a t i o n can be writ tenV2,4) j^g 

a ( E - E ' , 9 ) = (Ob/STT^) (E'/E)^'^ / dt exp {- i t (E-E ' ) +/i->[g{t) - g(0)]} 
(1) 

w h e r e E and E ' a r e i n i t i a l and f inal e n e r g y of the n e u t r o n ; 0 is the ang le of 
s c a t t e r i n g ; CTI is the c r o s s s e c t i o n for a bound a tom; \x i s the r a t i o of n e u ­
t r o n m a s s and the m a s s of the a t o m ; 7 i s p r o p o r t i o n a l to the s q u a r e of 
m o m e n t u m t r a n s f e r : 

7 = E + E ' - 2COS0 V ^ E " ' ; 

and g(t) is a F o u r i e r t r a n s f o r m : 

l \ - r ~ . ^ P b ) -i.cDt 
^^'^ - J _ ,03 ;xp(cD/kT) - 1 " 

H e r e p((X)) i s a s s u m e d to be an even function of cXi. It is p r o p o r t i o n a l to the 
n u m b e r of m o d e s of v i b r a t i o n of e n e r g y 'Oj, and it is n o r m a l i z e d to uni ty , 
tha t i s , 

p 00 

I p(co) dCD = 1 

F u r t h e r , k is the B o l t z m a n n cons t an t , T the a b s o l u t e t e m p e r a t u r e , and 
[exp ((D/kT) - 1] is the a v e r a g e occupa t ion n u m b e r for a phonon of 
f r equency 03-

O p e r a t i o n with c o m p l e x q u a n t i t i e s in g(t) can be avoided by shift ing 
the pa,th of i n t e g r a t i o n . Subs t i tu t ing T = t ' + ( i /ZkT) , r e a r r a n g i n g t e r m s , 
and omi t t i ng p r i m e s , we can r e w r i t e Eq . ( l ) a s 

0 ( E - E ' . e) = (0b/87r^)(E'/E)' ' ' ' exp {[(E - E ' ) /2kT] - M7g(0)) / dt exp {-i t(E-E') + ,i7G(t)} 

w h e r e G(t) i s the even funct ion def ined by 

. 0 0 

G(t) = I f(cD) cos .Dt doj , (3) 
Jo 

g(0) = G ( i / 2 k T ) = I f(aj) ch(to/2kT) dCD , (4) 



a n d 

^̂ ""̂  ~ cosh(cD/2kT) • 

In the p r e s e n t f o r m u l a t i o n of the p r o b l e m , p(a)) wi l l be g iven in 
u n n o r m a l i z e d f o r m a t e q u i d i s t a n t p o i n t s : 

p (i ACD) = p- for 1 ^ i ^ m - 1 
u ' J 

It wi l l be a s s u m e d tha t 

p (O) = 0 and p (jAto) = 0 for j ~ m 
u u 

Then we can c o m p u t e 

P 1 f„(iAa3) = f- - -T r~—7 r , for 1 < i < m - l 

^̂ •̂  ^ J jAcDsh(jAcD/2kT) -̂  

a s s u m i n g fo a s g iven. If p is a p p r o x i m a t e l y p a r a b o l i c for O)^ Aco, 

ZkT 

( 5 ) 

fo ~ P i (Aco)^ 

If we a s s u m e now tha t f̂  ha s v a l u e s g iven by Eq. (5) for i n t e g r a l 
m u l t i p l e s of Aco and is l i n e a r in be tween , we can c o m p u t e e a s i l y the 
n o r m a l i z a t i o n fac to r N, g(0), and G(t). With t h i s a s s u m p t i o n , f̂  i s r e a l l y 
a weighted s u m of shif ted roof l ike func t ions : 

û " Z ^ j ̂ '̂̂  ̂ -̂ Ĵ '̂ ) 

w h e r e c\i/(a)) i s a b r o k e n - l i n e funct ion equa l to one for o) = 0 and v a n i s h i n g 
for a l l o the r i n t e g r a l m u l t i p l e s of Aco. G(t) is then 

G(t) = / f(aj) cos cot d(X) 
J a 

2A(X) 1 - c o s A(Dt 

N (Aojt)' 

m - i 

- fo + / fj c o s jAcot 

1 = 1 

s i n c e 
^00 ACD 

I dcD c^ ^ (CD) coscot = 2 I 
J -co <J 0 

dcD 1 - — coscot = 2 

(6) 

1 - cosAcDt 

(Acot)2 



R e p l a c i n g t in Eq . (6) by i / z k T , we obta in 

g(0) = 1 I ijs) ch ^ d.x 

ZAo) / Z k T V f^^ ^ _ ^ 
N I A(jj ZkT 

m.-l 

1 fo + A £j ch j 
1 = 1 

Aco 
2kT • ( 7 ) 

Then, d i f f e ren t i a t ing bo th s i d e s of Eq . (7) wi th r e s p e c t to l / 2 k T , we obta in 
the n o r m a l i z a t i o n fac tor N: 

f (c.) j:,sh —-, da. = u^ ZkT (,x) d,j, = N = ZAj ZkT -1. - 1 

^ <̂-̂ )̂  (?!) , K ^ - . ( ' - I t lUc l . ^ - l 
ZkT \ A a ; / \ ZkT 

m - i 

- f o ^ f. ch j -—--
J ^ ZkT (8) 

Thus , a f te r having found f. f r o m Eq. (5), N f rom Eq . (S), and g(0) f r om 
Eq . (7), we a r e r e a d y to " n o r m a l i z e " f(a")): 

f(i) . ^ f 
j 2N j 

(9) 

and to p r o c e e d wi th mu l t i phonon expans ion . 

S ince a s y m p t o t i c expans ion m a y be u sed in fu r the r ca l cu l a t i ons 
s i m u l t a n e o u s l y wi th eva lua t ion of E q s . (5), (7), and (8), we compute a l s o 
two o the r c o n s t a n t s n e e d e d in C h a p t e r V, Sect ion C. T h e s e a r e the 
d e r i v a t i v e s of G(t) eva lua t ed at t = - i / 2 k T . Taking Eq. (7) and d i f fe ren t ia t ing 
it twice wi th r e s p e c t to 1/ZkT, we obta in 
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3-2 = J dfX) p lo i ) ^ c o t h ^ ^ ) CD 

ZAo)^ / 2 k T \ 2 / Affi_ _ ^ 
N \ A a 3 / \ ZkT 

m - i 

1 j ' f , chj 
Aoj 

j " ZkT 

+ 2 
2AcD_2 / z k r V 

N V Aco/ 
, ACD ., / 2 k T \ / Aco 

m - i 

ZAo)^ / z k T V 
N VA (X) 

, ACD ./2kT\ ^ Aco _̂  JzhTY ( , ACD 

2kT 

m - i 

| f o + X Ĵ̂ Ĵ 
ACD 

ZkT (10) 

Di f fe ren t i a t ing once aga in , we have : 

a j = J dCD P(CD) CD 

ZAcDVzkTV / , ACD A 
m - i 

Z^'^i 

_j_ 2 ZAcD* / Z k T 
N \ ACD 

s h 
ACD ^ / 2 k T 

ZkT V ACD )(-f^x-') 
m - i 

1 ̂ ' * j - i ^ 

+ 3 
ZACD^ / 2 k T \ 2 

N \ ACD 

Affi . / 2 k T \ ^ ACD , . ^ k T V / , ACD ,' 

m - 1 

I 
j = i 

^j N \ ACD/ 

, ACD . / 2 k T \ , ACD , . „ /ZkTX^ ACD 
^^ 2kT - \-E^] ^^ IkT + 1« (AI^J ^^ 2-kT 

-(f.7(^^^-^) 
m - 1 

^ f o + 
ACD 

ZkT (11) 
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In these express ions the f i rs t t e r m is dominant. Evaluating other coeffi­
cients in front of 2 symbols , we gain accuracy expressing the needed 
p a r a m e t e r s in power s e r i e s of the smal l constant Aco/ZkT. 

At this stage we have computed g(0), ag, a.^, f: ', and the scaling 
factor . For graphite gC-*), a j , a3, and fj^^/ a r e calculated separa te ly for 
perpendicular vibrat ions using p^, and for vibrat ions in the planes using 
Pz' Then, for every set of d i rec t ions , i , the appropriate quantities a r e 
found by interpolating l inear ly with i,^ as descr ibed in Appendix C. Finally, 
for each £ the calculations proceed as is descr ibed in Chapters III, IV, 
and V. 

III. THE MULTIPHONON EXPANSION 

The multiphonon expansion of Eq. (2) is obtained by expanding 
exp /i7G(t) in a power s e r i e s . 

o(E -> E-, 0) = (a-b/87r^)(E'/E)^/^ exp {[(E - E ' ) /2kT] - M7g(0)} 

exp i(E - E')t dt V (M7)^ [G(t)f (12) 

n=o n; 

Using Eq. (6), with the understanding that f_̂  - f-, we can express 

[G(t)f = (^^i^f^) 
zn 

m -1 

I 4 
j = - m + i 

1) exp ijAcDt (13) 

a s a p r o d u c t of two f u n c t i o n s . The f i r s t funct ion i s i ndependen t of the 
s p e c i f i c a t i o n s of the p rob lenn and h a s a F o u r i e r t r a n s f o r m which i s an 
e v e n funct ion of the a r g u m e n t ; t h i s i s nonvan i sh ing only for a r g u m e n t 
v a l u e s s m a l l e r t h a n nAcD . In Append ix A we have c o m p u t e d a t a b l e of 
t r a n s f o r m v a l u e s for i n t e g r a l m u l t i p l e s of Aao: 

Aa3 
ZTT 

zn 
/2 sinAcDt/2\ / . AcDt , \ ,, 

'V (14) 

The second factor of Eq. (13) is a weighted sum of exponentials. By 
means of the abbreviat ion 



m - 1 
(1) 

f. exp (ijAcot) 

j = - m + i 

in) ' 

n n ( m - i ) 

V F ' ^ ^ exp(ijA(JJt) 

j = - n ( m - i ) 

(15) 

we find we igh t ing f a c t o r s Fi by an i t e r a t i v e p r o c e d u r e : 

m - 1 
in) 
j 

y f^^^F^^-^^ for 0 < j ^ n ( m - l ) , (16) 

i = - m + i 

w h e r e i t i s u n d e r s t o o d tha t 

F^^^ = F 5 ^ ) and F^""^ = 0 for | j |> n ( m . l ) . 

Now s u b s t i t u t i n g Eq. ( l5 ) in to Eq. (13) and us ing Eq . ( l 4 ) , we obta in e a s i l y 
the F o u r i e r t r a n s f o r m of [G(t)]"-: 

n - i 
A CD 

7T 
dt cos j A x t [G(t)]^ = y V j-v = f 

l' = -n+i 

(n) 
(17) 

for 0 :£ j ^ n m - 1 . H e r e a g a i n it wi l l be u n d e r s t o o d tha t 

f̂ ^̂  = f̂ ^̂  and f̂ ^̂  = Ofo r | j i ^ n m . 
-J j J ' ' 

Thus , the mu l t i phonon c o n t r i b u t i o n s a r e d e t e r m i n e d us ing E q s . ( l6 ) and (17). 

Th i s c a l c u l a t i o n of mu l t i phonon c o n t r i b u t i o n s by m e a n s of E q s . (l6) 
and (17) is b a s e d on the a s s u m p t i o n tha t f can be r e p r e s e n t e d a s weigh ted 
s u m of an e l e m e n t a r y funct ion d i s p l a c e d r e p e a t e d l y by a c o n s t a n t i n t e r v a l . 
The coef f i c ien t s c^ ' h ave b e e n e v a l u a t e d by a s s u m i n g t h a t t h i s e l e m e n t a r y 
function is roo f l i ke . If D i r a c ' s 6 - func t ion w a s c h o s e n for the e l e m e n t a r y 
function, the e x p r e s s i o n s for g(0), N, and 3.2 would be m u c h s impl i f i ed , and 
Eq. (17) would be u n n e c e s s a r y . Only s o m e s i m p l e m o d i f i c a t i o n s of p r e s e n t 
E q s . (7), (S), (10), (11), and ( l4 ) would be n e e d e d if f was a p p r o x i m a t e d by 
a s t ep funct ion. 
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IV. CALCULATIONS OF DIFFERENTIAL SCATTERING CROSS 
SECTION AND SCATTERING KERNEL 

If E and E' a re integral mult iples of A(JJ: 

E = iAdj; E ' = i 'Aj 

the ine las t ic - sca t te r ing c ro s s section may be obtained substituting Eq. (17) 
into Eq. ( iz) : 

a { E = lAo, - * E ' = ,'L.L,e) = (0^ ,47rAx) ( i ' , i)^ ^ e x p [ ( i - i ' ) ^ - /i",g(0)]} Z 1 / \n ,(n) 

(18) 

The leading t e r m in Eq. (IZ) for n = 0 is a Dirac ! -function and r ep re sen t s 
purely e las t ic c ro s s section: 

o (E = iAx->E ' = E, 6) = ( j /47r) exp [-2/jg(0)A i ( l - c o s t ) ] . (19) 
el b 

Since contributions of onl\ 25 phonons have been considered in evaluating 
the sum of Eq. (iS), we assume that remaining t e r m s a^g, a^j, • • • dec rease 
in geometr ic progress ion , and to the sum of 25 t e r m s we add the value of 
est imated remainder : 

R 

2 

2-24 - 3-25 

if it is smal le r than 1 0 \ of the sum. Otherwise, convergence is considered 
unsat isfactory. Actually, the remaining t e r m s decrease somewhat faster 
than in geometr ic progress ion , and values obtained are slight overes t imates . 

Instead of the differential scat ter ing cross section, we may evaluate 
the scat ter ing kerne l S.^''* This is a function of energy and momentum 

.e a i i te rent ia i scat ter ing 
il S.^''* This is a functic 

change, and is connected with the differential scattering c ross section by 

a (E- -E ' , C) = S(a /47r)(E'/E)^''^ (kT)'^ • exp [ (E - E ' ) /2kT] 

Using Eq. (l8) we see that 

00 

/ACD 
(20) 

n = i 

And it can be computed easily for any change of momentum and energy 
change in integer mult iples of A-C. Egelstaff*- ' prefers to consider S 
as a function of two dimensionless p a r a m e t e r s : one proportional to the 
change of momentum, squared. 



a = ij.y/hT 

another proport ional to the change in energy: 

/3 = | E - E ' | / k T . 

Thus our calculation may be used to evaluate S for any given a and for 
any sequence of values /3, t i l l Eq. (20) stops converging according to our 
c r i te r ion . 

Quite often for evaluation of the c ro s s section the Placzek(8) 
expansion is used. It cons is ts of expanding exp{/i7[g(t) - g(0)]} in power 
s e r i e s of fi and performing the Four i e r t r ans fo rm t e r m by t e rm . This 
expansion has been found very convenient for evaluation of the total 
c r o s s section. We can unders tand that this should be so by keeping 7 
constant and integrat ing over al l r e a l values of energy change c Then 

/ d £ / ( e x p iet) {exp/i7[g(t) - g(0)]} dt = 27T , 

and we need only the f i rs t t e r m of power s e r i e s in /i(n = 0) to evaluate 
this in tegral . Similar ly, if we again ( incorrect ly) let e a s sume all pos i ­
tive and negative values , we need only (n + l) t e r m s to evaluate the n- th 
moment : 

/ en d£ /(exp iet) {exptx7(g(t) - g(0))]} dt . 

However, the P laczek expansion converges poorly for purely elast ic c ros s 
sect ions: 

/ ( exp iet) {exp[-/i7g(0)]}dt 

and therefore converges poorly for purely inelast ic c ro s s section. Indeed, 
if one uses only a number of t e r m s of o rder M7 g(0) (when it is large) , 
ei ther the e las t ic or total inelast ic c r o s s section becomes negative. Since 
here we a r e in te res ted in the value of the c r o s s section for a specified 
energy change, we have p re fe r r ed multiphonon expansion with considerably 
bet ter p rospec t s for convergence as seen in the Appendix B. 

V. CALCULATION OF MULTIGROUP INELASTIC MATRICES 
AND TRANSPORT CROSS SECTIONS 

To obtain the mult igroup inelast ic m a t r i c e s and t r anspo r t c ro s s sec ­
tions, we per form the integrat ion over direct ion of scat ter ing, 0, analytically. 
Ei ther the multiphonon expansion is used if it converges sat isfactori ly , or 
an asymptot ic express ion is used. Integrat ion over final energies and 
averaging over init ial energies is performed numer ica l ly . 
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A. Calculation by Multiphonon Expansion 

Integrating Eq. ( l8) over the angle of scat ter ing, we obtain 

a(iAa) -i'AcD) = [ab/4Mg(0) (Aojf i] exp (i - i') Aco/zkT ^ [g(O)]-'̂  f.W.,, 
n=i 

({exp [-,,g(o)Aa3(yr- yr")^]} {i+ j;^gWAwivr - •/T^)' + ...+~[/ig(o)Aa.(yr- vT^)^f} 

-{exp[-/ig(o)Aa3(vr+ ypf]} {i+~;ug(o)A(b(/r- yr)-+...+ ^tig(o)A'"(vT+ ji'rrfj. 

(21) 

Similarly, integration over 9 of the purely elast ic c ross section, Eq. (l9), 
gives 

ag^(iAoj) - [ab/4/ig(0)AcDi] {1 - exp[-4/ig(0)Aa3i]} . (22) 

We evaluate Eq. (2l) using 25 t e r m s and es t imate the remainder by means 
of the assumption that neglected t e r m s decrease in geometric progress ion 
as in Chapter IV. If the remainder turns out to large , we switch to the 
asymptotic formula of section B below. As seen in Appendix B, the mul t i ­
phonon expansion is expected to be good even at very high energies if the 
energy change is not large and a sufficient number of phonons has been 
used; (25 = ) nmax > 4a2g(o). 

In this par t we evaluate also the t ranspor t c ross section. We define 
the contribution of inelast ic scat ter ing to the t ranspor t c ros s section as 

a" (E) = / d E ' a ( E - ^ E ' ) = / dE' / a ( E ~*E', 0) (l - cose) ZTidcos 0 . 
t r tr 

And we obtain O ( E -^E') using Eq. (18): 
tr 

a^^(E-»EO = [ab/8ii'g(0)^Ao.^i^/^i'^2]exp [(i-i')Ao./2kT] 

CO 

n=i 

f|exp[-Mg(o)AcD(yr- y F r ] | | i + ~fig(o)Aco(yr- V ^ ) H . . . + ^ [/ig(o)Aa3(vT- ^ r f \ 

- | e x p [-/xg(0)Aa)( y r + v ^ ) " ] | - 1 + ~ ^g(o)Affi( TT + -/[')'+...+ — [iig(0)Aw{-/i + JT'fj'^l] 

(23) 



where it is understood that f*. .,\ = 0. Since evaluation of Eq. (23) may be 
performed at the same t ime as evaluation of Eq. (2l), not much additional 
computation is required . Also, the computation may be a r ranged so that 
evaluation of the long sum is done only for i > i' and the resu l t s used for 
upscat ter ing, i' > i. Later integrat ion over final energ ies of the t ranspor t 
c ros s section is descr ibed. To this sum we add also the contribution of 
purely e las t ic scat ter ing: 

V el " [ffbA^MS^^)^^^)^] • {1 - [1 + 4/ig(0)AcDi] exp [-4iUg(0) AcDi]} 

(24) 

B. Calculation by an Asymptotic Express ion 

When energy change and initial energy a re la rge , the multiphonon 
expansion fails to converge, and we use an asymptotic express ion to calcu­
late a(E -*E' ) . The asymptotic express ion can be obtained in a closed form 
by integrating Eq. (2) over the direct ions of scat ter ing: 

a(E ->E') = (ab/STTjUE) r jexp - i(E - E') (t + ^ ) j 

exp M T E + .yE ' )^ [G( t ) -g (0 ) ]} - exp M T E " - ' / E ' ) ^ [ G ( t ) - g ( 0 ) ] } 

G(t) - g(0) 
(26) 

dt 

We know that for ve ry large energies the c ross section approaches the c ross 
section of a free atom. The downscattering c ros s section is appreciable only 
when E - E ' S ( v E + v E ' )^ and very near ly vanishes for la rger energy 
losses . Thus, it seenas that the behavior of the c ros s section in the drop-off 
region is mos t important when energies a r e not so very high. In this region 
the integral of the f i rs t t e r m is very much la rger than the integral of the 
second t e rm {ji < l), as one can see c lear ly by trying to apply the method of 
s teepest descent. To obtain the f i rs t t e r m we expand G(t) in Taylor se r i e s 
about the point t = - i /2kT: 

G(t) = g(o) + i(t + i b ) - IT '̂̂  ('" i ^ ) ' - Ji '̂ ( ' ' 2 ^ ) ' " i '̂ (' "ib)* +. 

(27) 
where 

g(0) = /dcop(cD) fcot^^kT/II^ ^2 ^ /da3p(cD) f c o t h ^ ^ j co 

1 = /d(X.p(co) a3 = /d,'X)p(cD) a/ 

a r e constants evaluated in Chapter II. 
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Now, if we substi tute Eq. (27) into the integrand and introduce a 
new var iable of integration. 

" ^ ( T E + JK'^ a2 (t + —• 
2 '-̂ ^ ' " y ZkT J' 

we see that the integral in Eq. (26) is very near ly equal to 

dt-
xp |-i(E - £•) (t + ^ j - /i(y~E - T E ' r [G(t) - g(o)]} 

G(t) - g{0) 

ix - / ^ x̂  ^ l . i ±2 x̂  +.. 
Z,a(v^ + JE' )' 24-/^ +jE'y i a.i 

T E - TE^ - IJ{J^+JE') 
exp / - Z ~ : - — — • ix - X' - / — ^ ^— "—r=- :^ i -4 x̂  

yirni • ' ^/ Z,<{VB + JE'Y" 5 â  

ZIJ.(JK'+ T E ' r 3 a| " 

If we assume now that 

•/¥ - jw - iiiyK + TE"' ) 
y^/iaj 

x'-' + ... y dx 

r] (28) 

is finite, while 2ju(vE + v E ^ )^/a2 -* °^> and expand the integrand in power 
s e r i e s , we find that leading t e r m reduces to a standard form.(9) The 
value of the integral can be obtained easily from the integral 

p 00 

I dx exp [-2i7] x - x^] =^71 exp {-rf) 

by integration with respec t to the pa ramete r TJ. The constant of integration 
is determined from considerat ion of the value of the integral for large 
positive 'p. Then the method of s teepest descent shows that the integral 
vanishes when the path of integration is below the pole. We obtain, thus, 

I -7^ exp [-2irjx - x^] =7r(l - erfr)) (29) 

Integration of succeeding t e r m s is e lementary. Collecting the t e r m s , we 
obtain for E > E' , 
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a(E - E ' ) = (ffb/8uE) J 1 - erf r, " V " / " 
2,u(V^ +^'Y 

e'T! 1 + 
3a^ 

„ a 

:T \ZaiJT + -/^'V 
l . i ^ 5 a | 

3 a3 
12. fi 
9 af + 9 at '̂̂  +.. 

( 3 0 ) 

Equation (30) is considered unsat isfactory and not usable when Tj becomes 
so large and positive that the second t e r m is la rger in absolute value than 
the f irs t . Neglected values a r e considered vanishingly small . In prac t ice , 
we have neglected the last t e r m for simplicity, and we have used Eq. (30) 
only for downscattering. Upscatter ing has been obtained from Eq. (30) 
by means of detailed balance: 

ff(E' - E ) = a(E - . E ' ) ^, exp [-(E - E ' ) / kT] . 

For large energies (J -̂p(E -*E') can be calculated in a very s imi lar 
way. Direct integration using Eq. (2) for 0 ( E ^ E ' , 0) gives 

r /. dt exp - i ( E - E ' ) ft f - ^ ' l 
ff^^(E-*E-) = p ( E - . E ' , 6 ) ( 1 - c o s 6) 27Tdcos9 = (ob/STT/xE) / _ _ _ _ _ ! V -kX/ 

J J G(t) - pio) 

Z/ iv^ 'E^ [G( t ) -g(0) ] 

G(t) - g(0) 

x p f / i ( V E + y E ^ ) 2 ( G ( t ) - g ( 0 ) ) ] 

ZiijK^' [G( t ) -g(0) ] 
exp [ixiJW- JE'Y (G(t)-g(o))] 

Here again the integral of the second t e r m is very smal l , and we can evalu­
ate the f i rs t t e r m by the same procedure as previously. An additional 
singular integral is encountered and is evaluated by integrating Eq. (29) 
with r e spec t to the p a r a m e t e r rj : 

/ ^ exp (-2ir)x - x^) = 2TrJ7][l-erfTJ] - j=- exp {-rf){ 

The resu l t of this integration is a sum of two se r i e s . The first one is just 
twice the s e r i e s of Eq. (30), represent ing predominantly backward scat ter ing 
for E - E ' > / i ( v E + S/FY ) . The second se r i e s r ep re sen t s the deviation 

file:///ZaiJT
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from backward scat ter ing and tends to cancel the value of the f irs t se r i e s 
when E ' -^E and scat ter ing becomes near ly forward. Thus, simultaneously 
with Eq. (30), we may evaluate also 

t r 
(E - E O = (Ob, 4ME) 1 - e r f , -

27T/i{,/E + J^'Y 
1 +. 

2a3 

a.3 . ^ 2 

y i r (erf r; - 1) + j Tj 
3a^ 

+ ... (31) 

C. Integration over Final Energ ies and Averaging over Initial Energies 

To develop mult igroup scat ter ing c ros s sections, we numerical ly 
integrate over final energies E ' and average over initial energies E by 
means of Simpson's rule . Thus, in every energy group there has to be an 
even number of e lementary in terva ls . At first , integrations over E ' a re 
per formed for every value of E. The re su l t s of these integrat ions, for 
every value of E, a re inelast ic c ros s sections for every energy group and 
scat ter ing contribution to the t r anspor t c ross section CTIJ.- To obtain the 
la t ter , we integrate over E' of Eqs. (23) or (3l) and add the elast ic con­
tribution Eq. (24). To economize the calculations, for every pair of values, 
E and E' , the evaluation of inelast ic c ros s section and t ranspor t c ross 
section for up- and down-scat ter ing is done at the same t ime, and the 
r e su l t s a re multiplied with appropr ia te coefficients and accumulated. 
Integration begins with E = E' = Aco. Then E is kept the same and E' 
i nc reases ti l l maximum value is reached or the asymptotic formula 
Eq. (30) fails and the c ros s section is considered negligible for la rger 
values of E ' . At the end of this step, we have a complete set of c ross 
sections for E = Aco. In the next step, we s ta r t with E = E' = 2Aaj and 
end up with a complete set of c ro s s sections for E = 2Act. We continue 
in this way, always s tar t ing evaluation on the diagonal, t i l l the maximum 
value of E is reached. 

After finishing integration over E ' , with the f irs t value of i , we 
pick up the next value of i , as explained in Appendix C. Interpolation takes 
place for new values of contstants f."'', g(0), aj, anda3; we repeat the calcula­
tions of Chapter V sections A and B, and integrate over final energy E ' . The 
r e su l t s of this integration a r e immediately multiplied with appropriate 
weighting factor for each i and immediately added to the previous values. 

Final r esu l t s may be used to obtain standard multigroup c r o s s -
section sets for r eac to r regions having various flux shapes. In this, last, 
pa r t of the procedure , the complete t ranspor t c ross section: 



a^ = o. + a t r tr c 

is calculated. The capture c ro s s section is assumed to be proport ional to 
E , and i ts value for 2,200 m / s e c neutrons is assumed as given. Then 
a^,th.e diffusion coefficient (1/ 3cTtr)! and the inelast ic scat ter ing c ro s s sections 
for every group of final energy E ' a r e averaged in every group of initial 
energy E, weighting each with a chosen flux. So far three forms of the flux 
have been chosen in each group: 

1. Hardened Maxwellian: 

0 oc (CE/kT) exp ( -CE/kT) , 

where C is a number somewhat l a rge r than one. This form is convenient 
for groups of lower energy. 

2. The flux is a s sumed to be proport ional to the N- th power of 
energy: 

(p « ( E / k T ) ^ 

3. The flux is given numer ica l ly for every value of energy within 
the group, for which c ro s s sections a r e calculated. 

Calculation of the c r o s s sections for every couple of E and E' that 
can be expressed in in tegra l mult iples of Acomay be too t ime consuming 
and, indeed, unnecessa ry if energies a r e la rge . F r o m the leading t e r m in 
Eq.(30) we see that the extent of the drop-off region at l a rge energies is 
propor t ional to the square root of the init ial energy. Thus, at high energ ies , 
the e lementa ry in terval of integrat ion may be allowed to inc rease p ropor ­
tionally to the square root of energy. The increase , however, mus t be 
such that the number of e lementa ry integrat ion in tervals in every group 
is even. 



Appendix A 

EVALUATION OF c 
(n) 
V 

After a change of integration var iable Eq. (14) can be writ ten as 

.(n) _ i 
+ CO 

'V 7T 

s m X zn 
exp(-2i-yx) dx (A-i : 

This integral can be evaluated exactly by changing slightly the path of in­
tegrat ion to avoid X = 0, expanding (sin x) in power se r i e s of exp ix and 
finding the res idue of each t e r m . In this way we obtain'--'-"^ 

eW = —J 
""v (Zn-iy. 

•vf -{''} •v-lf •v-Z) -j-lf • 1 ) '̂ -^-'(ni) 1)^ 

(A-2) 

We see also while deriving this formula that c^^-' = 0 for \v\ > n. F u r ­
ther , we can show simply, s tar t ing with Eq. (A-1) and summing over all 
integer values of v, that 

.(n) + 2 
n - i 

z ,(n) = 1 (A-3j 

Table A-1 contains values of c}^^ derived by direct evaluation of 
Eq. (A-2). All values contained there in satisfy Eq. (A-3) coincident with 
8-place accuracy. For 1 :̂  n < 11, values of (2n-l)'. c^^ were found exactly. 
By this t ime, however, the calculat ions were involving numbers as high in 

o rder of magnitude as 10 . The ensuing calcula­
tions (12 :S n £ 25) were continued with the inten­
tion of guaranteeing only 8-place accuracy. 

Since the se r i e s in Eq. (A-2) is al ternating 
in sign and since the binomial coefficients increase 
with successive t e r m s , there was a tendency toward 
cancellation dependent upon the values of n and v. 
For a given value of n this tendency reduced with 
increas ing values of v- It increased, however, 
with increas ing values of n. The adjoining tabula­
tion is intended to exemplify this effect. The third 

column designates the number of digits lost frona the la rges t t e r m in the 
respect ive s e r i e s . 

n 

5 
10 
15 
20 
25 
25 
25 
25 
25 

V 

0 
0 
0 
0 
0 
5 

10 
15 
20 

Digits Lost 

1 
3 
4 
6 
8 
4 
1 
1 
0 



Table A-1 

COEFFICIENTS OF c ^ * 

n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

V 

0 

0 
1 

0 
I 
2 

0 
1 
2 
3 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 
6 

0 
1 
2 
3 
4 
5 
6 
7 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 
1 
2 
3 

c|n' X101 

1.000 0000 

6.666 6667 
1.666 6667 

5.500 0000 
2.166 6667 
8.333 3333 

4.793 6507 
2.363 0952 
2.380 9523 
1.984 1269 

4.304 1776 
2.431 4925 
4.025 5731 
1.S3 3774 
2.755 7319 

3.939 2556 
2.439 6028 
5.520 2020 
3.823 8786 
5.100 6092 
2.505 2108 

3.653 7086 
2.417 8S41 
6.797 4968 
7.312 2366 
2.376 2984 
1.313 3086 
1.605 9043 

3.422 4025 
2.381 2319 
7.859 5252 
1.150 2274 
6.485 4898 
1.057 2004 
2.504 5990 
7.647 1635 

3.230 0939 
2.337 3674 
8.731 1640 
1.607 3921 
1.330 8125 
4.182 1548 
3.564 3941 
3.684 5271 
2.811 4572 

3.066 9310 
2.290 4565 
9.441 9298 
2.078 1149 

q 

0 

1 
1 

1 
1 
3 

I 
1 
2 
4 

1 
1 
2 
3 
6 

1 
1 
2 
3 
5 
8 

1 
1 
2 
3 
4 
6 

10 

1 
1 
2 
2 
4 
5 
8 

13 

1 
1 
2 
2 
3 
5 
7 

10 
15 

1 
1 
2 
2 

n 

10 

11 

12 

13 

14 

V 

4 
5 
6 
7 
8 
9 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0 
1 
2 
3 
4 
5 
5 
7 
8 
9 

10 
11 

zf X 10<i 

2.291 8669 
1.134 1319 
2.069 3993 
9.468 3295 
4.309 8160 
8.220 6352 

2.926 2269 
2.242 80O8 
1.001 9429 
2.545 1983 
3.511 1077 
2.436 1241 
7.486 5178 
8.158 7910 
2.038 3683 
4.104 7002 
1.957 2941 

2.803 2619 
2.195 6830 
1.048 7418 
2.997 4159 
4.952 3095 
4.473 1411 
2.022 5084 
3.967 9867 
2.634 6734 
3.633 8306 
3.244 8470 
3.868 1701 

2.694 5977 
2.149 8081 
1.086 5617 
3.427 9354 
6.573 0455 
7.344 9505 
4.485 9427 
1.356 7864 
1.734 3915 
7.116 6678 
5.456 8031 
2.163 2358 
ft.Ui 9503 

2.597 6616 
2.105 5470 
L117 0135 
3.833 0006 
S.330 7168 
1.110 0319 
8.639 5093 
3.656 2192 
7.545 8578 
6.381 8009 
1.634 7825 
6.999 6612 

q 

3 
4 
6 
9 

12 
18 

1 
1 
1 
2 
3 
4 
6 
8 

10 
14 
20 

1 
1 
1 
2 
3 
4 
5 
7 
9 

12 
16 
23 

1 
1 
1 
2 
3 
4 
5 
6 
8 

11 
14 
IS 
26 

1 
1 
1 
2 
3 
3 
5 
6 
8 

10 
12 
16 

n 

14 

15 

16 

17 

18 

V 

12 
13 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0 
1 
2 
3 

cf^'xlOfl 

1.232 6137 
9.183 6902 

2.510 4S51 
2.063 0735 
1.141 4048 
4.210 9370 
1.018 5923 
1.574 3122 
1.497 4195 
S .W 3229 
2.481 8502 
3.549 3851 
2.009 1861 
3.236 5913 
7.760 2485 
6.071 9897 
1.130 9962 

2.431 5338 
2.022 4454 
1.160 7955 
4.561 4397 
1.210 4051 
2.124 1798 
2.392 9595 
1.659 4236 
6.676 15a 
1.430 3578 
1.434 6824 
5.483 9277 
5.584 3506 
7.510 &J51 
2.611 6085 
1.216 1250 

2.359 5908 
1.983 6513 
1.176 0460 
4.885 0747 
1.405 5748 
2.753 9276 
3.586 6647 
3.B03 3305 
1.544 3189 
4.5T2 7586 
7.108 2216 
5.048 2095 
1.311 8221 
8.475 7895 
6.401 6643 
9.892 4570 
1.151 6335 

2.293 6771 
1.946 6400 
1187 8567 
5.182 9380 

q 

20 
29 

1 
1 
1 
2 
2 
3 
4 
6 
7 
9 

11 
14 
18 
23 
31 

1 
1 
1 
2 
2 
3 
4 
5 
7 
8 

10 
13 
16 
20 
25 
34 

1 
1 
1 
2 
2 
3 
4 
5 
6 
8 

10 
12 
14 
18 
22 
28 
38 

I 
1 
1 
2 

n 

18 

19 

20 

21 

V 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
IS 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0 
1 

zf X10^ 

1.601 6790 
3.456 1876 
5.105 4171 
5.025 2908 
3.177 89» 
1.228 4490 
2.708 7243 
3.0M 8030 
1.562 9703 
2.775 4497 
1.140 7854 
4.841 7295 
3.325 1955 
9.677 5929 

2.232 9949 
1.911 3383 
1.1% 8001 
5.456 4285 
1.796 7629 
4.222 6622 
6.966 6316 
7.891 4769 
5.958 7571 
2.883 1681 
8.474 0266 
1.404 9088 
i.lSl 4668 
4.296 4269 
5.234 1896 
1.371 1634 
3.271 4818 
9.985 5722 
7.265 4602 

2.176 8371 
1.877 6616 
1.203 3457 
5.707 0915 
1.989 2809 
5.M4 6835 
9.178 7613 
1.176 2589 
l.m 1473 
6.076 58M 
2.274 1955 
5.130 2689 
6.446 3349 
4.029 0598 
1.056 6743 
8.858 2888 
1.480 8853 
1.986 7421 
2.695 1612 
4.902 4697 

2.124 8065 
1.845 5211 

^ 
2 
3 
4 
5 
6 
7 
9 

11 
13 
16 
19 
24 
30 
41 

1 
1 
1 
2 
2 
3 
4 
5 
6 
7 
9 

10 
12 
15 
18 
21 
26 
33 
44 

1 
1 
1 
2 
2 
3 
4 
4 
5 
7 
8 

10 
12 
14 
16 
20 
23 
28 
35 
47 

1 
1 

n 

21 

22 

23 

V 

1 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

c^"'xlO«i 

1.207 8808 
5.936 5216 
2.178 0373 
5.913 6241 
1.174 2268 
1.678 6922 
1.693 1210 
1.173 4829 
5.400 8861 
1.577 7967 
2.753 5017 
2.639 7162 
1.232 7358 
2.340 6061 
1.353 3108 
1.445 0840 
1.090 2884 
6.573 5640 
2.989 3107 

2.076 2933 
1.814 8278 
1.210 7259 
6.146 2968 
2.362 1280 
6.821 1776 
1.465 0822 
2.309 5246 
2.626 5640 
2.108 2343 
1.161 1275 
4.230 9608 
9.722 9842 
1.321 4473 
9.719 2876 
3.406 1660 
4.696 5446 
1.876 1225 
1.280 4183 
5.433 3S5 
1.455 9388 
1.655 2108 

2.030 9579 
1.785 4951 
1.212 1472 
6.337 9400 
2.540 8901 
7.759 5416 
1.789 2568 
3.079 7509 
3.899 4517 
3.565 1334 
2.298 9024 
1.014 6704 
2.949 2901 
5.366 7858 
5.712 6175 

q 

1 
2 
2 
3 
3 
4 
5 
6 
8 
9 

11 
13 
15 
18 
21 
25 
30 
38 
50 

1 
1 
1 
2 
2 
3 
3 
4 
5 
6 
7 
9 

11 
12 
15 
17 
20 
23 
27 
33 
40 
53 

1 
1 
1 
2 
2 
3 
3 
4 
5 
6 
7 
8 

10 
12 
14 

23 

24 

25 

V 

15 
16 
17 
18 
19 
20 
21 
22 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

cj,"'xl0!l 

3.238 6105 
8.548 1443 
8.5S0 3055 
2.371 1955 
1.034 7610 
2.469 7009 
2.941 2906 
8.359 6509 

1.988 46S0 
1.757 4395 
1.212 3671 
6.512 8957 
2.713 8567 
8.721 5228 
2.145 1351 
3.998 1124 
5.575 9006 
5.727 3232 
4.247 5324 
2.218 2792 
7.903 5283 
1.844 3836 
2.672 6183 
2.238 8184 
9.821 6928 
1.958 2622 
1.433 730) 
2.743 7287 
7.658 1532 
1.028 0904 
5.441 7959 
3.866 6285 

1.948 5379 
1.73D 5825 
1.211 5719 
6.672 5185 
2.880 7194 
9.700 5958 
2.530 7828 
5.071 0586 
7.719 2246 
8.805 3919 
7.400 4034 
4 . « 6942 
1.911 1153 
5.531 2635 
1.042 1160 
1.208 3763 
7.998 9178 
2.724 4682 
4.113 3833 
2.200 0616 
2.917 6807 
5.209 7672 
3.934 0199 
9.254 7548 
1.643 9747 

q 

16 
19 
22 
25 
29 
35 
43 
57 

1 
1 
1 
2 
2 
3 
3 
4 
5 
6 
7 
8 

10 
11 
13 
15 
18 
20 
23 
27 
32 
37 
46 
60 

1 
1 
1 
2 
2 
3 
3 
4 
5 
6 
7 
8 
9 

11 
12 
14 
17 
19 
22 
25 
29 
34 
40 
49 
63 

If n is la rge and c^"'-' appreciable , the Central Limi t Theorem can 
be used.^"-' The values predicted by the Central Limit Theorem are ob­
tained by the following replacement in Eq. (A-1): 

sm x 
exp I - -7- X 

so that in this approximation 

.(n) « 1 
exp 

3v^ 
n 



Numerical values obtained with this approximation with n = 25 have been 
computed and displayed along with the correct values in Table A-II. Agree-
naent is definitely poor for larger values of v-

Table A-II 

V 

0 
1 
2 

3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 

15 
16 
17 
18 

19 
20 
21 
22 
23 
24 

EVALUATION OF c'^^' x 10^3 BY ALTERNATIVE METHODS 

By the 
Longhand Method 

^ 
1.949 1 
1.731 1 
1.212 1 
6.673 2 
2.881 2 
9.701 3 
2.531 3 
5.071 4 
7.719 5 
8.805 6 
7.400 7 
4.487 8 
1.911 9 
5.531 11 
1.042 12 
1.208 14 
7.999 17 
2.724 19 
4.113 22 
2.200 25 
2.918 29 
5.210 34 
3.934 40 
9.255 49 
1.644 63 

By the T h e o r e m of 
C e n t r a l L i m i t s 

q 

1.954 1 
1.733 1 
1.209 1 
6.637 2 
2.865 2 
9.730 3 
2.599 3 
5.462 4 
9.029 5 
1.174 5 
1.201 6 
9.662 8 
6.115 9 
3.045 10 
1.192 11 
3.673 13 
8.902 15 
1.697 16 
2.545 18 
3.002 20 
2.785 22 
2.033 24 
1.167 Z6 
5.272 29 
1.873 31 

By the Method of 
S teepes t Descent 

S. 
1.949 1 
1.730 1 
1.210 1 
6.659 2 
2.883 2 
9.670 3 
2.527 3 
5.048 4 
7.745 5 
8.829 6 
7.419 7 
4.464 8 
1.902 9 
5.534 11 
1.041 12 
1.207 14 
7.965 17 
2.710 19 
4.096 22 
2.200 25 
2.914 29 
5.218 34 
3.930 40 
9.234 49 
1.645 63 

1 
•• 2n 

[1 iF 5 
_8 asY '-^ 

0.0030 
0.0030 
0.0030 
0.0031 
0.0031 
0.0031 
0.0032 
0.0032 
0.0033 
0.0033 
0.0034 
0.0035 
0.0036 
0.0037 
0.0038 
0.0038 
0.0037 
0.0035 
0.0031 
0.0026 
0.0022 
0.0018 
0.0017 
0.0017 
0.0017 

(f^")^1 

asfj 

A better approximation procedure for the whole range of values 
v/n would be the Method of Steepest Descent. By this method, the ex-

tremum of the function 2n In - 2i7xi is obtained, the path of integra­

tion is shifted to pass through this maximum, and the integral is evaluated 

under the assumption that v/n remains constant while n increases towards 

infinity. The extremum TQ of our function is found to lie on an imaginary 

axis, and its position is obtained by differentiating 

f (r) = In sh T - In T 

and, equating the result to v/n, 

f (TO) = coth To = ~ . ( A - 4 ) 

To n \ / 



F r o m t h i s equa t i on TQ w a s found for e v e r y v a l u e of v/n, and c ^ ' w a s coin-
pu ted a c c o r d i n g to the f o r m u l a 

In c (^) = 2nfo - \ In nTTfo + ^ 
^ Z ZTL 

rIV 

[nf 24 

I l ! \ 2 
(f^) 

(f{,')3 + (A-5) 

w h e r e the v a l u e s of f and i t s d e r i v a t i v e s h a v e to be e v a l u a t e d at T = Tg. 
The r e s u l t s of t h i s c a l c u l a t i o n wi th n = 25 a r e a l s o d i s p l a y e d in T a b l e A- I I , 
It i s ev iden t t h a t t h i s p r o c e d u r e g ives r e a s o n a b l e a g r e e m e n t o v e r the whole 
r a n g e of v a l u e s of v/n. The d i s a g r e e m e n t b e t w e e n t h e s e a p p r o x i m a t e 
v a l u e s and the e x a c t v a l u e s is due , at l e a s t in p a r t , to insuf f ic ien t a c c u r a c y 
in the d e t e r m i n a t i o n of TQ f r o m Eq . (A-4) (four p l a c e s w e r e u s e d m o s t of 
the t i m e ) . In T a b l e A - I I we have g iven a l s o the v a l u e of the l a s t t e r m u s e d 
in Eq. (A-5) . One c e r t a i n l y shou ld e x p e c t the f r a c t i o n a l e r r o r in c^^-' due 
to t r u n c a t i o n of s e r i e s E q . (A-5) to be l e s s t h a n the l a s t t e r m u s e d . 
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Append ix B 

THE M E T H O D O F S T E E P E S T DESCENT AND CONVERGENCE 
O F M U L T I P H O N O N EXPANSION 

F o r l a r g e e n e r g y v a l u e s we h a v e u s e d f o r m u l a e b a s e d upon a T a y l o r 
s e r i e s e x p a n s i o n of G abou t t he poin t t = - i / 2 k T . Th i s expans ion gave r e a ­
s o n a b l e a p p r o x i m a t i o n in t h e v ic in i ty of E - E ' ~ lii^/E, + V ' ' E ' ' ) ^ ; h o w e v e r , the 
e r r o r i s c o n s i d e r a b l e for o t h e r v a l u e s of the r a t i o E ' / E . A s we have s e e n 
in Append ix A, we c a n e x p e c t good a c c u r a c y for any r a t i o E ' / E if we u s e 
an e x p a n s i o n of G about a v a r i a b l e po in t t = - iT c h o s e n to ob ta in the s t e e p ­
e s t d e s c e n t in the i n t e g r a n d . F o r m u l a e ob ta ined by th i s m e t h o d a r e dif­
f icul t to e v a l u a t e n u m e r i c a l l y . But they p r e s e n t a c l e a r p i c t u r e of the c r o s s 
s e c t i o n a t l a r g e m o m e n t u m t r a n s f e r s , when mul t iphonon expans ion r e q u i r e s 
nnany t e r m s . 

In the m e t h o d of s t e e p e s t d e s c e n t , we u s e a T a y l o r expans ion of G(t) 
about a v a r i a b l e po in t , t = - I T , on the i m a g i n a r y a x i s : 

G(t) = G + G ' i ( t + iT) - ^ G"(t + iT)2 - ~ G"'i(t + iT)2 + ~ G^^it + ir)^ + 
21 (B-1) 

w h e r e coef f ic ien t s 

:(n) = — f dcb p(co) 
^j-n J ojish 03/2kT 

ch ojr 

a r e a l l p o s i t i v e . To e v a l u a t e a ( E - ^ E ' , 0 ) , a va lue of T i s c h o s e n so tha t the 
i n t e g r a n d in Eq . (2) i s an e x t r e m u m : 

E - E« = / i 7 G ' 

Upon i n t r o d u c i n g a new v a r i a b l e of i n t e g r a t i o n , 

(B-2) 

- r / i7G" (t + iT) 

and expanding the i n t e g r a n d in Eq . (2) in p o w e r s of v G " / 2 ^ . 7 , we obta in 

r d t e x p | - ( E - E ' ) i (t + 2Pf) +M7fG(t) - g(0)]j = y ' " ^ fdx exp 

-,,c. (. - ^) ,..[c - ,(0,1 -.' - /^h§^'' <^,)m-' ^ •• 

G" 2 . G ^ 3̂ / _G^ 
2/i7 3 ^ G"2 '̂  "'' V 2/i ' 

i Gil . 1 G _ ^̂ , 
3 G"2 9 G 

II! 2 
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Thus, after integrations we have 

a(E"*-E',e) = (ab/8 7r2)(E'/E)^/2 {4'n/ziiyG"^^^ 

_12 G"3 " 12 G"*J ' • • / ' ^ '' 

a convenient express ion for l a rge momentum t r ans fe r s when multiphonon 
expansion becomes imprac t i ca l . 

By contemplation of Eq. (B-3) we can make a judgment on the num­
ber of phonons n e c e s s a r y to obtain the differential c r o s s section. It is r e a ­
sonable to expect thats when Eq. (B-3) is approximately valid, this number 
is roughly equal to the number of t e r m s requ i red in the power se r i e s ex­
pansion of exp {[lyG). Thus the l a rges t contribution is expected for n =jiyG. 
Since 

•r-z In — (uyG)^ a - —~ 
dn^ n! '̂̂ '̂  ' ^lyG 

one would obtain the value of the exponential within about two per cent if 
one uses 

nmax = (TfTyG + D ' . (B-4) 

Actually, applying the method of s teepes t descent to each t e r m of the phonon 
expansion we see that the "half-width" is somewhat smal le r and that 

nmax = [ V M 7 G + V ^ ^ " ( G ' V G G " ) ] ' ( B » 5 ) 

would be sat isfactory. Thus, for l a rge / i7G only comparat ively smal l num­
ber of phonons at the end of expansion contribute significantly towards the 
sum. The second t e r m in Eq, (B-3) is then 

J ]_ 3G^vG" - 5G"'^ _ 1 3G^VG" - 5G"'^ 
12 iiyG 2G"^ ~ 12nmax ^G"^ 

If T (and the rat io | E - E ' | /ny) is very l a rge , this t e r m is approximately equal 
to - l/l2nj^a_jj.3 3-nd Eq. (B-3) joins quite smoothly our expansion of nnaax( = 25) 
phonons. However, for sma l l e r T this t e r m can be considerably l a rge r in 
absolute value. In such c a s e s , one could t ry to approximate every mul t i ­
phonon t e r m by a Gaussian (or modified Gaussian) distr ibut ion. And, indeed, 
one can demonstrate!2) that such an approxinaation is good for individual 
t e r m s . However, the number of t e r m s requi red for evaluation of a(E-*-E''5 9) 
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is l a rge . And, since the Gaussian distr ibution depends only on the second 
der ivat ive of G, it cannot be depended upon to yield cor rec t ly the second 
t e r m of Eq. (B-3), which r equ i re s knowledge of higher der iva t ives . Thus, 
at p r e sen t we r ema in with the unpleasant need to evaluate exactly many 
t e r m s in multiphonon expansion in sonae cases (as for graphite at high t e m ­
pe ra tu re s ) if we want to join smoothly the method of s teepes t descent to the 
multiphonon expansion. 

In evaluation of a(E-»-E') we encounter also both multiphonon expan­
sion and an asymptot ic express ion . Multiphonon expansion he re needs to 
be used also at very high init ial energies if energy loss is not l a rge . When 
| E - E ' I is fixed finite and ^ ( v ^ + v*^')^ keeps increas ing, we can no longer 
nelgect the second t e r m in Eq. (26). (The asymptotic expansion for it does 
not "converge.") Indeed the appropr ia te procedure for such a case would 
be to neglect the f i r s t t e r m , since ^ ( I / E + .J^^Y is l a rge and [G(t) - g(0)] is 
negative. Since 

11 ( V ^ - T E " ' ) ^ =/i(E-E')y(7E+yE^f 

is smal l when | E - E ' ] is finite and {'J^ + V ^ ' ) ^ is l a rge , we can expand our 
integrand in a power s e r i e s i n / i : 

e x p { ^ ( y E - v ^ ' ) ^ [G(t) - g(0)]} _ 1 M ( E - E 1 ' 
" G(t) - g(0) = " G ( t ) - g ( 0 ) " ( 7 E 4 - V ^ ) ^ 

1 j / ( E - E ' ) ^ . , , . ,1 , 

and in tegra te t e r m by t e r m , F o u r i e r t ransformat ion of 

1 1 
g(0) - G(t) " g(0) 

will now give the main ine las t ic contribution. Thus, the inelast ic c ros s sec­
tion is approximately equal to 

a(E-^E')« (ab/STT^) J dt exp - (E-E')(t + ^ ) [^^^^ = g(0)_ 

= (a^/STT^E)-^ - J d t exp - (E-E')(t + ^ ) I GM -\2 

n-l '-
g(0)J -^ 

(B-6) 

Since the n e a r e s t z e r o of g(0) - G(t) is located at t = - i /ZkT, for la rge values 
of ( E - E ' ) , Eq, (B-6) gives c o r r e c t value for the inelast ic c ro s s section: 
(cJb/4uE). The same value, of cour se , is obtained also from Eq. (30) when 
J U ( V E ' + V E ^ ) ^ is l a rge and 7] is l a rge negative. 



Applying the method of s teepes t descent to each t e r m of Eq. (B-6), 
we see that the l a rges t t e r m , Ŝ ,̂ is obtained for n = g(0) I E - E ^ |. If n is 
l a rge , 

_di, _ 1 L___ 
^ ^ , I n S n « ^ g ( o ) JE„E'I a2g(o)-l ' 

Thus 

^max = ( y i E - E ' I g(0) + ya2g(0)"Il) (B-7) 

t e r m s should be sa t is factory for the evaluation of Eq. (B-6), When the f i r s t 
t e r m m Eq. (B-7) becomes sma l l e r than the second, the number of phonons 
given by Eq. (B-7) is insufficient. It s eems that one needs about 4[a2g(0)-l] 
t e r m s even for smal l energy l o s s . Moreover , we bel ieve also that for 
I E - E ' I SagEq . (B-6) will have apprcSached its limiting value. Thus, if we 
use n^nax ~ 4a2g(0), we should have a fair ly smooth t rans i t ion between mul t i ­
phonon expansion and the asymptot ic express ion . 



Appendix C 

AVERAGING OVER DIRECTIONS OF POLARIZATION FOR GRAPHITE 

For calculation of the sca t te r ing c r o s s section from polycrystal l ine 
graphite p used in the initial formula, Eq. (2), can be represen ted as an 
interpolation: 

P= P i i ' + P 2 ( l " i ' ) , (C-1) 

between frequency distr ibution perpendicular to the planes of c rys ta l la t ­
t ice , pi, and frequency dis t r ibut ion in the planes , P2 - ' ^ The scat ter ing 
c r o s s section then is obtained upon integrat ion of the final r e su l t s for 
c r o s s section over the di rect ions of la t t ice orientat ion, 0 ^ i ^ 1. Actu­
ally, in Chapter II, calculat ions of f̂^ , g(0), a.^, and a.-^ a re per formed 
separa te ly for both sets of values Pj4 and p.^^, and a common scaling 
factor is de termined. Then, for every needed value of i appropr ia te 
quantit ies f! , g(0), ag, and a.^ a re de termined by an interpolation p r o ­
cedure , Eq. (C-1). 

Since evaluation of the c r o s s section is a quite elaborate and long 
p r o c e s s , we have chosen a Gaussian!-'-•••'•'•2) integrat ion p r o c e s s . We notice 
he re that our integrand is an even function of &. Thus, if we would expand 
the l imi t s of integrat ion from -1 to +1, we would not need actually to ca l ­
culate the values of the integrand for negative values of &. Thus (con­
s ider ing only Gaussian integrat ion schemes with even numbers of values 
for i ) , we see that by actually calculat ing the integrand value at n points 
we approximate the integrand with a polynomial of degree 4 n - l . (Or, we 
can say that we approximate our integrand with a polynomial which coin­
cides with the integrand at 3n points , of which 2n a r e chosen a rb i t ra r i ly . ) 
We can see easi ly that this integrat ion scheme is exact for a P laczek ex­
pansion (in powers of y) that neglects t e r m s with /i^"' and higher powers . 
It is also exact for expansion of S in a power s e r i e s of a up to and in­
cluding the terna with a?''^"'^. These considerat ions lead us to believe that 
only a few points a r e needed for quite sat isfactory integrat ion over i . 
Indeed, in severa l previous calculat ions graphite has been approximated 
by a cubic c rys ta l , using only the total frequency spect rum, and thus e s sen ­
tial ly using only one point in our Gaussian integrat ion scheme. Upon con­
templat ing the i nc rease of accuracy obtained by using the P laczek expansion, 
we believe that the additional labor requ i red in using at leas t two points is 
well justified. The values of i and corresponding weighting coefficients(•'•-^z 
have been given in Table C-I. 



Table C-I 

CONSTANTS FOR GAUSSIAN INTEGRATION 
OF AN EVEN FUNCTION 

n 

1 

2 

3 

4 

5 

1 

0.57735027 

0.33998104 
0.86113631 

0.23861919 
0 66120939 
0.93246951 

0.18343464 
0.52553241 
0.79666648 
0.96028986 

0.14887434 
0.43339539 
0.67940957 
0.86506337 
0.97390653 

w(") 

1.00000000 

0.65214515 
0.34785485 

0.46791393 
0.36076157 
0.17132449 

0.36268378 
0.31370665 
0.22238103 
0.10122854 

0.29552422 
0.26926672 
0.21908636 
0.14945135 
0.06667134 
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