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A PROCEDURE FOR THE EVALUATION OF
NEUTRON-SCATTERING CROSS SECTION
IN THE INCOHERENT APPROXIMATION

by

V. Z. Jankus

Using some simplifying assumptions about the details of phonon-
frequency distribution, we evaluated exactly the contributions of 25 phonons.
By means of these contributions, the differential scattering cross section
olE - E', 9), the scattering law S(oc,@), or inelastic-scattering matrices and
transport cross sections for multigroup calculations may be calculated. In
the evaluation of multigroup parameters use is made of an asymptotic ex-
pression when the phonon expansions fail to converge.

When the phonon-frequency distribution is considered dependent on
the direction of polarization (as in graphite), then averages over all direc-
tions are obtained.

I. INTRODUCTION

The basic ideas underlying present scheme of evaluation of the
inelastic neutron cross section have been explained briefly in a paper pre-
sented at a meeting of the American Nuclear Societya(l) This report is
intended to complete the presentation of the procedure, which is oriented
towards computer application. Thus, in addition to a brief derivation of
mathematical formulae, this report includes descriptions of calculational
procedures which may be used with a computing machine. Some meas-
ures taken are obviously somewhat arbitrary and have been included in
this description for the sake of completeness.

Essentially, we propose to evaluate the inelastic-scattering cross
section in the incoherent approximation for a simple cubic Bravais lattice.
The main formula'4) does not depend on the polarization of the phonons.

The basic part of the procedure (see Chapter III) is the evaluation
of repeated convolutions to obtain contributions due to 25 phonons. To
avoid errors in multiple integrations, it is assumed initially that the phonon-
frequency distribution p(w) is such that

plw)

fa) = wsh (©/2kT)




can be represented by a broken line with break points at integral multiples

of Aw. (UsuallyAg is much smaller than kT.) Then the multiphonon contri-

butions are determined exactly by a simple procedure [see Eqs. (16) and

(17)].

Having the multiphonon contributions we can calculate differential

scattering cross sections o(E - E', §), the scattering law S(x,), or inelastic

scattering matrices and transport cross sections to be used in multigroup
calculations. In all these cases it is assumed that contributions of neg-
lected phonons decrease in a geometric progression. A correction term is
added if it is smaller than 10% of the total. Otherwise, it must be con-
sidered that the expansion using only 25 phonons is unsatisfactory for the
determination of o(E = E',0) and S{(a, f). Fortunately, this is unlikely for
experimentally observable energy and momentum transfers.

In the evaluation of multigroup scattering matrices, integration over

scattering angle 6 has been performed analytically, and o(E = E') is com-~
puted by use of the multiphonon expansion if it converges satisfactorily;
otherwise, an asymptotic expression has been chosen to fit the region of
drop-off of the inelastic cross section at high energies, IE - E'| =

H(ﬁ + ,\/Eﬂ' )%, It is not good for much larger energy transfers. How-
ever, the inelastic cross section in that region is very small, and thus

the error is not expected to affect the subsequent flux calculations. In the
instances in which the energy change is finite but the incident energy is
very large, the asymptotic expansion may not be good, but in this case the
multiphonon expansion still converges (provided Dax = 4a2g(0), as seen
in Appendix B). In any case, the value of this nearly elastic cross section
is not expected to effect great changes in the reactor flux.

Similar asymptotic expressions have been used previously by
Schofield and Hassit(2) and by Sjolander.(3) However, they have used this
approach to evaluate individual multiphonon contributions. In our pro-
cedure this expansion is used for the main formula as a whole, thus saving
an appreciable amount of computation.

Although in our main formula it is assumed that phonon-frequency
distribution is independent of polarization, for general polycrystalline
media one can consider that p(®) depends upon the direction of polarization
and upon the kinds of atoms of the lattice. Then the inelastic-scattering
cross section can be obtained by using our main formula repeatedly for
various directions and averaging the obtained results. Currently, this has
been attempted for graphite only where results depend only on the angle of
the momentum-transfer vector with crystalline planes in graphiteu(4)

Averaging over this angle is done as the last step for the first two calcula-
tions and in the evaluation of multigroup scattering matrices averaging over

this angle is done immediatelv prior to averagsine over initial enercias.




II. INITIAL CALCULATION OF SEVERAL PARAMETERS

For simple cubic Bravais lattice the differential scattering cross
section in the incoherent approximation can be Wri‘cten(as4 as

(1)

AdE-E',8) = (o, /87%) (E'/E)l/Z f dt exp {-it(E- E') + iy [glt) - g(0)]}
where E and E' are initial and final energy of the neutron; & is the angle of
scattering; T is the cross section for a bound atom; [l is the ratio of neu-
tron mass and the mass of the atom; 7y is proportional to the square of
momentum transfer:

v =E+E' - 2cos6 JEE' ;

and g(t) is a Fourier transform:

@ df':} O -i¢
g(t) _ / d F(U) 1t

- e
o @ exp(w/kT) -1

Here pl{w) is assumed to be an even function ofw. It is proportional to the
number of modes of vibration of energy W, and it is normalized to unity,
that is,

foo,o(w) dw = 1
0

Further, k is the Boltzmann constant, T the absolute temperature, and
[exp (og/kT) - 1]—1 is the average occupation number for a phonon of
frequency w.

Operation with complex quantities in g(t) can be avoided by shifting
the path of integration. Substituting T =1t' + (i/ZkT), rearranging terms,
and omitting primes, we can rewrite Eq. (1) as

2
(G(t

o(E~E", 8) = (0 /87)E/E)Y? exp {{(E - E')/2kT] - 1yg(0)} f dt exp {-it{E - E") + pyG(t)}

where G(t) is the even function defined by

o

G(t) :/0 f(n) cos wt dw (3)

g(0) = G(i/2kT) = fom f(w) chlw/2kT) dw (4)




and

Pw)

o) = wshln/2kT)

In the present formulation of the problem, p(w) will be given in
unnormalized form at equidistant points:

pu(jA@) = for 1=j=m-1

It will be assumed that

p (0) = 0 and p (jA@) =0 for jZm
u u
Then we can compute
A % f
' = f. = , l=j=m-1 ,

assuming f, as given. If p is approximately parabolic for w= Aw,

2KkT
fo = py (Aw)?

If we assume now that fy; has values given by Eq. (5) for integral
multiples of Awand is linear in between, we can compute easily the
normalization factor N, g(0), and G(t). With this assumption, f;; is really
a weighted sum of shifted rooflike functions:

fu :ij C(l) (&) - _]Au)) s

where c(l) (w) is a broken-line function equal to one for w=0 and vanishing
for all other integral multiples of Aw. G(t) is then

()
G(t) = f flw) coswt dw
0
m-1
2Aw 1 - cos Awt |1 z .
= - f4 + f. A%
N Cot) 5 fo jcos st , (6)
j=1

since

A
* (1) ~ @ oY 1 - cosd ot
dw ¢ ((D) cosut = 2 i doil - A—U) cospt = 2 _(A(_bt—)—z_—
=00




Replacing t in Eq. (6) by i/2kT, we obtain

[ve]
1
— . db
g(O) N ./0‘ £ (JJ) ch Zk

-
2A0 [ 2kT\? A, Z Ao
cou ekl £ chj s .
< ) <Ch ) 4 c¢hj 5 (7)

N Yt ZkT

Then, differentiating both sides of Eq. (7) with respect to l/IZkT, we obtain
the normalization factor N:

oo o)
2KT
f t.‘.?\., _,\) —— = ﬂf £ d?, = = ) 3
/ () Shak'_rd“ f pala) du = N A“L(A,J‘,) < T > Z
0 0
2
2kT Ao 2kT Au
+ 20 | == -2 -
280) (/.\m) [Sh 2kT <AL> <°h 2KT l>}

Lo+ £ chj o2
< |1
2" Z g T (8)

Thus, after having found f. from Eg. (5), N from Eg. (8), and g(0) from
Eq. (7), we are ready to "normalize" f(w):

(1) - 2w
fj 2N fj (9)

and to proceed with multiphonon expansion.

Since asymptotic expansion may be used in further calculations
simultaneously with evaluation of Egs. (5), (7), and (8), we compute also
two other constants needed in Chapter V, Section C. These are the
derivatives of G(t) evaluated at t = -i/ZkT. Taking Eq. (7) and differentiating

it twice with respect to 1/12.kT, we obtain




a, = [ do p(w) (coth ZkT)
m-1
2A 3 2
_ 2Aw” [2KT hé@‘-l szf JA(.D
N Aw 2kT j 2kT

200° (2kT\? Aw 2kT Aw 2kT\? Ao
+ ELLN 42t == eXo =28
N <A ) bzt - N\ Bw) P aer F O\ 20/ (P T
m-1

Aw
=y + cchj —=| .
P Z fj chj 77 (10)
j=1

et

Differentiating once again, we have:

[ aw plw) w?

_ 20 [ 2kT e 2
TN \ZAw/ \*"ZkT ZJPJ'

as

2AW° sz ZkT Aw 2kT\? Do
PN Aa; [ T Aw) shokT +6(Aw> <°h 2KT lﬂ

m-~1
2Aaf [2kT\? Aw 2kT Au 2kT\? . Ag
N+ 222 - + =2 =i
* z PiIT TN (Aw) {Sh 2wt - N\ 2w ) Pt T8\ 2 ) Pt

j=1

me-1

2k TV Aw 1 Aw
- = == = £y + . chj 2% )
24<Aw> (Ch 2kT 1) 2 fo Z fyehi 57 (11)

j:l




In these expressions the first term is dominant. Evaluating other coeffi-
cients in front of ¥ symbols, we gain accuracy expressing the needed
parameters in power series of the small constant Aw/ZkT.

At this stage we have computed g(O), as, as, f(.l), and the scaling
factor. For graphite g(o), az, az, and fj 1) are calculated separately for
perpendicular vibrations using p;, and for vibrations in the planes using
Pz- Then, for every set of directions, J, the appropriate quantities are
found by interpolating linearly with 4% as described in Appendix C. Finally,
for each f the calculations proceed as is described in Chapters III, IV,
and V.

II1. THE MULTIPHONON EXPANSION

The multiphonon expansion of Eq. (2) is obtained by expanding
exp uyG(t) in a power series.

o(E ~E', 0) = (0p/8m)E'/E)? exp {{(E - E'")/2kT] - uyg(0)}

o0 0 n
exp i(E - E"t dt Z (1) [G(t) ™ (12)
n-o !
- 0O
Using Eq. (6), with the understanding that f_j = fj’ We can express
n
m -1
2 sinAwt/2 = (1)
[G(t)]n = ( Sin ) z 27 exp ijAwt (13)
Awt . J
J:-m-i-l

as a product of two functions. The first function is independent of the

specifications of the problem and has a Fourier transform which is an
even function of the argument; this is nonvanishing only for argument

values smaller than nAw . In Appendix A we have computed a table of

transform values for integral multiples of Aw:

«® 2n
Aw 2 sinA(Dt/Z) ( . Awt ) _ (n)
- o0

The second factor of Eq. (13) is a weighted sum of exponentials. By
means of the abbreviation



10

m-1 n n{m-1)
Z fgl) exp (ijawt)| = Z F§n) exp(ijawt) ,  (15)
j=-m+s j=-n(m-1)
we find weighting factors F§n) by an iterative procedure:
m-1
F(n) = z f,(l) an._l) for 0=j=n(m-1), ... (16)
g i=-m+i ' =

where it is understood that

() _ (n) (n) _ .
F_j = Fj and Fj = 0 for |j|> n(m-1)

Now substituting Eq. (15) into Eq. (13) and using Eq. (14), we obtain easily
the Fourier transform of [G(t) ™

*® n-1
% dt cos jA Lt [GH) ™ = z C?gn) F‘(]l’_l)w _ f§n) ’ (17)
° y=-n+tl

for 0 =j =n m-1. Here again it will be understood that

(n) (n) _

and £, = 0 for |j|2nm
=) J J

Thus, the multiphonon contributions are determined using Egs. (16) and (17).

This calculation of multiphonon contributions by means of Eqgs. (16)
and (17) is based on the assumption that f can be represented as weighted
sum of an element?ry function displaced repeatedly by a constant interval.
The coefficients cvn) have been evaluated by assuming that this elementary
function is rooflike. If Dirac's §-function was chosen for the elementary
function, the expressions for g(O), N, and a, would be much simplified, and
Eq. (17) would be unnecessary. Only some simple modifications of present
Eqgs. (7), (8), (10), (11), and (14) would be needed if f was approximated by
a step function.
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IVv. CALCULATIONS OF DIFFERENTIAL SCATTERING CROSS
SECTION AND SCATTERING KERNEL

If E and E' are integral multiples of Auw:
E = iAw; E' = i'Au ,

the inelastic-scattering cross section may be obtained substituting Eq. (17)
into Eq. (12):

Ha-a1)

n=1

O(E =180 =B = 1121,8) = (o, , 4ma )i, )P fenp [-1) 25 - 18(0)]) {Zn—l n ) } (18)

The leading term in Eq. (12) for n = 0 is a Dirac {-function and represents
purely elastic cross section:

Gel(E = iAL -E' = E, &) = (;bg’m) exp [-2ug(0)s i(l-cos€)] . (19)

Since contributions of only 25 phonons have been considered in evaluating
the sum of Eq. (18), we assume that remaining terms ayg, a,, . . . decrease
in geometric progression, and to the sum of 25 terms we add the value of
estimated remainder:
2
az5
R=——-- ,
224 - 825

if it is smaller than 10% of the sum. Otherwise, convergence is considered
unsatisfactory. Actually, the remaining terms decrease somewhat faster
than in geometric progression, and values obtained are slight overestimates.

Instead of the differential scattering cross section, we may evaluate

the scattering kernel S. 7) This is a function of energy and momentum
change, and is connected with the differential scattering cross section by

g(E—-E' €) = s(cb/-m) (E'/EYY? (kT) ! - exp [(E - E')/2kT]

Using Eq. (18) we see that

n! fEI];: E") /Ao ' (20)

wn
i
|>v
=
o
I
G
‘\
2
aQ
S
n[\/J?

And it can be computed easily for any change of momentum and energy
change in integer multiples of AL. Egelstaff 7 prefers to consider S
as a function of two dimensionless parameters: one proportional to the
change of momentum, squared,
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o= py/RT
another proportional to the change in energy:
B=|E-E'/T.

Thus our calculation may be used to evaluate S for any given & and for
any sequence of values B, till Eq. (20) stops converging according to our
criterion.

Quite often for evaluation of the cross section the Placzek(8)
expansion is used. It consists of expanding exp{uvy[g(t) - g(0)]} in power
series of |1 and performing the Fourier transform term by term. This
expansion has been found very convenient for evaluation of the total
cross section. We can understand that this should be so by keeping V¥
constant and integrating over all real values of energy change €. Then

fde [(exp ict) {exp pylg(t) - g(0)]} at = 2m

and we need only the first term of power series in U(n=0) to evaluate
this integral. Similarly, if we again (incorrectly) let € assume all posi-
tive and negative values, we need only (n+1) terms to evaluate the n-th
moment:

Jet de [(exp iet) {expluv(g(t) - g(0))]} at

However, the Placzek expansion converges poorly for purely elastic cross
sections:

[(exp ict) {exp[-uvg(0)]}dt

and therefore converges poorly for purely inelastic cross section. Indeed,
if one uses only a number of terms of order U7y g(0) (when it is 1arge),
either the elastic or total inelastic cross section becomes negative. Since
here we are interested in the value of the cross section for a specified
energy change, we have preferred multiphonon expansion with considerably
better prospects for convergence as seen in the Appendix B.

V. CALCULATION OF MULTIGROUP INELASTIC MATRICES
AND TRANSPORT CROSS SECTIONS

To obtain the multigroup inelastic matrices and transport cross sec-
tions, we perform the integration over direction of scattering,e, analytically.
Either the multiphonon expansion is used if it converges satisfactorily, or
an asymptotic expression is used. Integration over final energies and
averaging over initial energies is performed numerically.
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. A. Calculation by Multiphonon Expansion

Integrating Eq. (18) over the angle of scattering, we obtain

5 (ibw »i'Aw) = [op /4ug(0) (Aw)i] exp (i-1') Aw/2kT . [g(0)]™® fg’_)i,)
n=i

({exp [-ug(@) 8l VT - VIPT} {1+ 17 pgl@8a (/T - VT + .t () anl /T - /0
- {exp [-ug(@)aw (VT + VT PI} {14+ pg(08a (VT - VTP 4t L Lgl0)aal VT + VT )2]’1}).

(21)

Similarly, integration over & of the purely elastic cross section, Eq. (19),
gives

o110 0) = [0y, /4ug(0)Awi] {1 - exp[-4ug(0)Amily . (22)

We evaluate Eq. (21) using 25 terms and estimate the remainder by means
of the assumption that neglected terms decrease in geometric progression
as in Chapter IV. If the remainder turns out to large, we switch to the
asymptotic formula of section B below. As seen in Appendix B, the multi-
phonon expansion is expected to be good even at very high energies if the
energy change is not large and a sufficient number of phonons has been
used; (25=) nmax 2 4a,g(0).

~

In this part we evaluate also the transport cross section. We define
the contribution of inelastic scattering to the transport cross section as

g: (E) = [aE! o, (E-E") = [dE' [¢(E -E', 6) (1 - cos6) 27rdcos &
r r

And we obtain Utr(E - E') using Eq. (18):
o, (E-E') = [ob /8u%g(0)2 A0¥ % V2] exp [(i - i) Aw/2KT]

2. {ate@ 1™ o) gloma oL - VP o™ ff’;’_)i,)}
n=1

({exp[-i«’g(O)Aw(«/? - «/IT)Z]} {1 + %,ug(o)zlw(-\/i_- «/I_')Z+...+$ [uglo)Aw(~/T1 - w/;)z]n}

- {exp [-uglo)an( Vi + «/?)"‘]} {l + El‘!ug(o)/_\.w(«/i—i- ﬁ)2+,..+;17 [g(0)an (/T + ﬁ)Z]nD ,

. (23)
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where it is understood that f( ) = = 0. Since evaluation of Eq. (23) may be
performed at the same time as evaluatlon of Eq. (21), not much additional
computation is required. Also, the computation may be arranged so that
evaluation of the long sum is done only for i >i' and the results used for
upscattering, i' > i. Later integration over final energies of the transport
cross section is described. To this sum we add also the contribution of
purely elastic scattering:

Otr,el [o, /8(ug(0) Awi)?] - {1 - [1 + 4ug(0)Awi] exp [-4ug(0) Awil)
(24)

B. Calculation by an Asymptotic Expression

When energy change and initial energy are large, the multiphonon
expansion fails to converge, and we use an asymptotic expression to calcu-
late o(E - E'). The asymptotic expression can be obtained in a closed form
by integrating Eq. (2) over the directions of scattering:

o(E -E') = (op/8muE) I:m{exp [ i(E_E')< 212T>]}

exp {WVE + /E')? [G(t) - g(0)]} - exp {WVE - VE)[G(t)-g(0) ]}

G(t) - g(0)

(26)

We know that for very large energies the cross section approaches the cross
section of a free atom. The downscattering cross section is appreciable only
when E - E' £ (JE + JE! )% and very nearly vanishes for larger energy
losses. Thus, it seems that the behavior of the cross section in the drop-off
region is most important when energies are not so very high. In this region
the integral of the first term is very much larger than the integral of the
second term (u < 1), as one can see clearly by trying to apply the method of
steepest descent. To obtain the first term we expand G(t) in Taylor series
about the point t = -i/ZkT:

| i \% i i\l 4
+ift + — | - — t ot ——) - b N+ —a, [t 4
G(t) = g(0) 1<t 2kT> 2T 22 ( ZkT) 31 23 < 2kT> i <t 2kT>

(27)
where

g(0)

1

w 1
d =\ Z
fawp (w) (coth ZkT> = a,

Jdwp(w) as

2kT

Jawp(w) <coth -——-—) w

1]
I

fdwplw) of

are constants evaluated in Chapter II.

dat .
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Now, if we substitute Eq. (27) into the integrand and introduce a
new variable of integration,

x=x/';' LVE + VE')? 2, (t+ 211<—T>

we see that the integral in Eq. (26) is very nearly equal to

i) < HVE VB 6 - 50}

exp {-i(E—E') (t SRT
f t

Glt) - g(o0)
i - %2 W2 2y, |7
2ul/E + J/E) 2U/E +JE ) 3 a2
. ,VE - VE - u(JE +JE 2 a 2 a;
exp < - 2 ix - x° - = =T, T i—3x
J2a, 2{~E +/E) 3 a3

N a, i ag 4 . d
2AJE+JE ) 3 57 T *
If we assume now that

VE - VJE' - u(vVE +VE')
V2ua; )

is finite, while Z,LL(«/E + /E! )z/faz - o, and expand the integrand in power
series, we find that leading term reduces to a standard form.\?) The
value of the integral can be obtained easily from the integral

o2
f dx exp [-2in x - x*] = /Fexp (-7f)

ey

7 (28)

by integration with respect to the parameter 7. The constant of integration
is determined from consideration of the value of the integral for large
positive 7). Then the method of steepest descent shows that the integral
vanishes when the path of integration is below the pole. We obtain, thus,

f%—:— exp [-Zinx - x*)=7(1 - erfn) . (29)

Integration of succeeding terms is elementary. Collecting the terms, we
obtain for E > E',
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(E ~E) = (op/84E) : f R
J{E - E' —N;SuE 1 -eriq f— . —
b zu(f+ E')'2 3al  3ai
1 a a a a?
+,\/: —__—.—._.—Z e—')’}z 1_%._3._.}_._‘_1.{.2._3- 7
T2, (VE +J/E')? 3 a% 2 al 6 aj

f(L Ba 1028 s+_2.ai . (30)
3 i ] ] .
3 aj 9 aj 9 a

Equation (30) is considered unsatisfactory and not usable when 7) becomes
so large and positive that the second term is larger in absolute value than
the first. Neglected values are considered vanishingly small. In practice,
we have neglected the last term for simplicity, and we have used Eq. (30)
only for downscattering. Upscattering has been obtained from Eq. (30)

by means of detailed balance:

g(E' -E) = o(E —»E') — exp [-(E - E'")/kT]

For large energies 04.(E - E') can be calculated in a very similar
way. Direct integration using Eq. (2) for o(E - E', &) gives

r (E -E') = fG(E -E'5) (1-cos &) 2wdcos 9 = \-’b/s ,u,E)f a exp l:-lGi) B )(0() ZLT)]
-8

1

{[ L EE [G(t)-g(O)}] exp [ (/B + /ET)? (Gle) - g(0))]

1

T EE G0 a0 P LHVE - VBN G - gwm}

Here again the integral of the second term is very small, and we can evalu-
ate the first term by the same procedure as previously. An additional
singular integral is encountered and is evaluated by integrating Eq. (29)
with respect to the parameter 7:

dx

ax Y W2y = _ _ 1 2
oz exp (-2imx - x%) ZW{T)[I erfm)] JE e (-7 )}

The result of this integration is a sum of two series. The first one is just
twice the series of Eq. (30) representing predominantly backward scattering
for E - E' 2 u(/E + VE'")% The second series represents the deviation .



file:///ZaiJT

from backward scattering and tends to cancel the value of the first series
when E' —E and scattering becomes nearly forward. Thus, simultaneously
with Eq. (30), we may evaluate also

(VE +/E )2 ) Y a;
-/ SIEE 2 {ﬂ(erfn 1)+ﬁe +\/Zm JE + JE )
asg -TIZ
GRS Gy

C. Integration over Final Energies and Averaging over Initial Energies

To develop multigroup scattering cross sections, we numerically
integrate over final energies E' and average over initial energies E by
means of Simpson's rule. Thus, in every energy group there has to be an
even number of elementary intervals. At first, integrations over E' are
performed for every value of E. The results of these integrations, for
every value of E, are inelastic cross sections for every energy group and
scattering contribution to the transport cross section g{,.. To obtain the
latter, we integrate over E' of Egs. (23) or (31) and add the elastic con-
tribution Eq. (24). Toeconomize the calculations, for every pair of values,
E and E', the evaluation of inelastic cross section and transport cross
section for up- and down-scattering is done at the same time, and the
results are multiplied with appropriate coefficients and accumulated.
Integration begins with E = E' = Aw. Then E is kept the same and E’
increases till maximum value is reached or the asymptotic formula
Eq. (30) fails and the cross section is considered negligible for larger
values of E'. At the end of this step, we have a complete set of cross
sections for E = A®w. In the next step, we start with E = E' = 2Ad and
end up with a complete set of cross sections for E = 2A«¢. We continue
in this way, always starting evaluation on the diagonal, till the maximum
value of E is reached.

After finishing integration over E', with the first value of [, we
pick up the next value of /, as explained in Appendix C. Interpolation takes
place {or new values of contstants £4), g(0), a,, and a;; we repeat the calcula-
tions of Chapter V sections A and B, and integrate over final energy E'. The
results of this integration are immediately multiplied with appropriate
weighting factor for each / and immediately added to the previous values.

Final results may be used to obtain standard multigroup cross-
section sets for reactor regions having various flux shapes. In this, last,
part of the procedure, the complete transport cross section:

17
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is calculated. The capture cross section is assumed to be proportional to
E—UZ, and its value for 2,200 m/sec neutrons is assumed as given. Then
Oc» the diffusion coefficient (l.g/:‘s otr), and the inelastic scattering cross sections
for every group of final energy E' are averaged in every group of initial
energy E, weighting each with a chosen flux. So far three forms of the flux
have been chosen in each group:

1. Hardened Maxwellian:
¢ = (CE/kT) exp (-CE/kT),

where C is a number somewhat larger than one. This form is convenient
for groups of lower energy.

2. The flux is assumed to be proportional to the N-th power of
energy:

¢ = (B/kT)V

3. The flux is given numerically for every value of energy within
the group, for which cross sections are calculated.

Calculation of the cross sections for every couple of E and E' that
can be expressed in integral multiples of AW may be too time consuming
and, indeed, unnecessary if energies are large. From the leading term in
Eq.(30) we see that the extent of the drop-off region at large energies is
proportional to the square root of the initial energy. Thus, at high energies,
the elementary interval of integration may be allowed to increase propor-
tionally to the square root of energy. The increase, however, must be
such that the number of elementary integration intervals in every group
is even.
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Appendix A
EVALUATION OF c(,j‘)

After a change of integration variable Eq. (14) can be written as

T oo . 2n
cgjn) :}Tf (S”:{ X) exp(-2ivx)dx . (A-1)

This integral can be evaluated exactly by changing slightly the path of in-
tegration to avoid x = 0, expanding (sin x)*™ in power series of exp ix and
finding the residue of each term. In this way we obtain

{m-v)m'l (3) eyt (32 ezt () a0 (1)“"’] .
(a-2)
We see also while deriving this formula that c(n) = 0 for iv[ =z n. Fur-

1/
ther, we can show simply, starting with Eq. (A-1) and summing over all

integer values of v, that

n-i
cln) i g Z A (A-3)
V=1

Table A-1 contains values of c&n) derived by direct evaluation of
Eq. (A-2). All values contained therein satisfy Eq. (A-3) coincident with
8-place accuracy. For 1 =n =11, values of (2n-1)! C_Vn were foundexactly.
By this time, however, the calculations were involving numbers as high in

order of magnitude as 10°*. The ensuing calcula-

tions (12 = n = 25) were continued with the inten-
n v Dagits Lost . .

tion of guaranteeing only 8-place accuracy.
5 0 1
10 0 3 Since the series in Eq. (A-2) is alternating
15 0 4 in sign and since the binomial coefficients increase
20 0 6 with successive terms, there was a tendency toward
25 0 8 .
25 5 4 cancellation dependent upon the values of n and v.
25 | 10 1 For a given value of n this tendency reduced with
25 115 1 increasing values of v. It increased, however,
25 | 20 0 with increasing values of n. The adjoining tabula-

tion is intended to exemplify this effect. The third
column designates the number of digits lost from the largest term in the
respective series.



Table A-1

COEFFICIENTS OF oY

nlw cg}’ x109 f¢ |nlw cgﬂ x109 Jg | niw cg” W lq{nly c;j“’ xWilg | nly c;/n' xWWlg {nlw cg“ x| g
110110000000 0 101 402201869 31 24112112326137 120} 18, 411600 6790 2 (21| 21207 2808 1 123 1513.238 6105 | 18
511141319 ¢ 4 131 9.183 6902 | 29 513456 1876 | 3 31593 5216 | 2 16 18,548 1443 | 19
2 1016666 6667 § 1 612069 3993 6 615105 4171 | 4 412178 0373 | 2 17 | 8580 3055 | 22
1] Le6s 6667 | 1 719488 32951 915 0125104851 1 71505 26081 5 5159136411} 3 1812371 1955 | &5
81 4.309 8160 {12 11206301551 1 813177 89301 6 611374 2268 ¢ 3 19| 1.034 7610 1 29
310155000000 1|1 9| 8.220 6352 |18 Z1114t 048] 1 910228 4% ) 7 71 1.678 6922 | 4 0] 2469 7009 | 3B
112166 6667 | 1 314210 93701 2 {2708 72431 9 811693 1216 5 21| 2.941 2906 | 43
218333 3333) 3 |11 ) 02926 2269 | 1 411018 5923 2 11 13,084 8030 ) 11 9] L1733 4829 | 6 22} 8.359 6509 | 57
112242 8008 ¢ 1 511574 3122} 3 12 1562 9703 | 13 1015.400 8361 | 8
4 1014793 6507 | 1 211000 9429 1 6| 1497 4195 | 4 13 1 27715 4497 | 16 IDV1577 7967 | 9 124 0 1.988 4680 1
11233095211 3182545 1983 | 2 7183043229 6 1411140 7854 1 19 1272753 S017 | 1L 111757 43%5 | 1
212380 9523 | 2 413511 077 | 3 812431 8021 7 15 1 4.841 7295 | 24 131 2639 7162 | 13 21121236711 1
311984 1269 | 4 51243 1241} 4 913549 31| 9 16 1 3.325 1955 | 30 1411232 1358 1 15 316512 8957 | 2
6] 7.486 5178 | 6 10 | 2.009 1861 | 11 17 | 9.677 5929 | 41 15§ 2,340 6061 | 18 412713 867 | 2
510143041776 11 718158 7910 | 8 111323 5913t 14 16| 1.353 3108 § 21 518721 5228 | 3
112431 4925 | 1 8] 2.038 3683 |10 1217760 2485 118 1 19| (2232 9949 1 17 11445 0840 1 25 62145 13511 3
214.025 5731 | 2 914104 7002 114 13 | 6.071 9897 | 23 101910 33837 1 18 | 1090 2884 | 30 71398 11247 4
31138337741 3 10| 1957 241 {20 14 71,130 9962 { 31 21 L1% 8001 | I 19 1 6.573 5640 | 38 815575 90061 5
412755 7312 § 6 3| 5.456 4285 1 2 20 | 2.989 3107 | 50 915727 3232] 6
12702803219 11161 0243153381 1 411.79% 76291 2 10| 4.247 5324 | 1
6 | 03939 255 | 1 1121956830 | 1 112024854 1 514222 66221 3| 221 02076 2933 1 112218 2792 8
112439 6028 | 1 211048 7418 1 1 211160 7955 ) 1 616966 6316 | 4 111814 82778¢ 1 12 | 7.903 5283 | 10
2 15.520 2020 | 2 372997 4159 ) 2 314561 4397 | 2 717.891 47691 5 21021672591 1 1371844 383% | 11
313823818 | 3 414952 3% | 3 411210 4051 ) 2 815958 7571 6 36146 2968 | 2 14| 2.672 6183 | 13
415,100 6092 | 5 5144731411 | 4 512124 1798 3 9] 2883 1681 7 412362 1280 2 15| 2.238 8184 | 15
512505 2108 | & 61202250841 5 612392 9595 | 4 10 | 8474 0266 | @ 516821 1776 | 3 16| 9.821 6928 | 18
70397 967 |7 711659 2% | 5 1111404 9088 ) 10 61 1.465 (822 3 171 1.958 2622 | 20
7 ]0136537086 11 81263 673§ 9 816676 1530 | 7 121 1,181 4668 | 12 7123952451 4 181 1.433 7300 | 23
142417 8841 | 1 91 3.633 8306 {12 91143 3B 8 13 14.29% 42691 15 812626 5640 | 5 1902743 72874 27
2 | 6.797 4968 | 2 10| 3.244 8470 | 16 10 ] 1.434 6824 | 10 14 15.234 18% § 18 912108 23431 o 20| 7.658 1532 | 32
317.312 236 | 3 1113868 1701 | 23 11 | 5.483 9277 | 13 1511371 1634 21 1011161 12155 7 211 1028 0904 | I7
412376 2984 | 4 12 1 5584 3505 | 16 16 | 3.271 4318 | 26 1114230 %081 9 221 5.441 7959 | 46
511303308 L6 1131026059771 1 1317.510 8451 | 20 17§ 9.985 5722 | 33 1219722 9842 | 11 23| 3.266 6285 | 60
6 | 1605 9043 |10 12149 8081 | 1 14 1 2611 6085 | 25 18 | 7.265 4602 | 44 1301321 4473 1 12
2| 1086 5617 | 1 151 1,216 1250 | 34 1419719 2876 115 | 251 0] L9458 5379 1
8 101342 4025 |1 313427 9354 ) 2 201 02176 8871 ) 1 15 | 3.406 1660 § 17 111730 5825 | 1
1238 2319 | 1 416573 0455 1 3717 01235959081 1 111877 6016} 1 16 | 4.696 5446 | 20 21 L2011 5719 1
217895522 517.34 9505 | 4 11198368513} 1 2 L205 3457 ) 1 17| 1876 1225 | 23 316672 5185} 2
311150 274 ¢ 2 614485 94271 | 5 21 L16 0460 ) 1 315707 09157 2 1811280 4183 1 77 412830 71941 2
416,485 4398 | 4 711356 784 | 6 314885 0747 | 2 411989 28091 2 19 | 5.433 3385 | 33 51 9700 5958 | 3
51105 2004 | 5 811734 39151 8 411405 57148 | 2 515044 68351 3 20| 1455 9388 | 40 612530 7828 3
612504 5990 | 8 91 7.116 6678 | 11 512753 9276 | 3 619178 7613} 4 21 ) 1.655 2108 | 53 715071 058 | 4
7 17.647 1635 |13 10 | 5.456 8031 | 14 61358 6647 | 4 711176 2589 | 4 817719 2246 | 5
11} 2163 2358 |18 7138033065 5 &1 1036 14731 5123 02030 979; 1 94 8.805 3919 6
9 10132300939 1|1 12 1 6.446 9505 | 26 811544 3189 6 916076 58381 7 11178 4911 1 10 7.400 40347 7
112337 3674 | 1 9| 4572 7586 { & 1072274 1955 8 2{1212 472t 1 11 4486 6942 8§
218730 1640 | 2 {14 ] 0} 2597 6616 | 1 1017108 2216 | 20 111 5.130 2689 | 10 316337 %400 2 121 1911 1153 9
311607 3921 | 2 1121058 5470 1 1 117 5,048 2095 | 12 121 6,446 3349} 12 412540 89011 2 131 5531 2635 11
411,330 8125 | 3 21117 0151 1 121 1,311 3221 | 14 131 4029 (598} 14 517.759 5416 | 3 14 1.042 1160 | 12
514182 1548 | 5 313.833 0006 | 2 131 8475 7365 | 18 41 1.056 6743 | 16 6| 1789 2568, 3 151 1.208 3763 | 14
613564 3041 1 7 41833 7168 | 3 14 | 6.401 6643 | 22 151 8.858 2888 | 20 73019 7309, 4 161 7.998 9178 | 17
713684 5271 |0 STLIg 039! 3 151 9.892 4570 | 28 16 | 1.480 8858 | 23 81389 45171 5 17| 2724 46821 19
§ 12811 4572 |15 618639 5093 ¢ 5 16§ 1151 6335 | 38 171 1.986 74211 28 913565 1334} 6 181 4113 3833 | 22
713656 2192 1 6 131 2,695 1612} 35 102208 90241 7 197 2200 0616 | 25
10 1013066 93101 1 817545 8578 1 8] 18] 0122936771} 1 19§ 4.902 4697 | &7 11} 1.014 6704} 8 207 2.917 6307 | 29
112200 4565 | 1 916,381 8009 [ 10 1] 1946 6400 | 1 1212949 2901 | 10 21| 5.209 7672 | 4
219441 9298 | 2 10 ] 1634 7825 |12 211187 8567 1| 21| 012124 8065 1 13| 5,366 7358 | 12 22| 3.934 0199 | 40
3]2.018 1149 } 2 11 16,999 6612 | 16 37518 9380 2 111845521 1 1415712 6175 | 14 231 9.254 7548 | 49
24| 1.643 97147 | 63

If6n is large and cgln) appreciable, the Central Limit Theorem can
be used.( ) The values predicted by the Central Limit Theorem are ob-
tained by the following replacement in Eq. (A-1):

sin x 1 2
rm——— =3 ex - —
% P % s

so that in this approximation

o0
1 1 z
(;1) = p dx exp |- ra x* - 2ivx ] = > exp |- 3V

C

- 00
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. Numerical values obtained with this approximation with n = 25 have been
computed and displayed along with the correct values in Table A-II. Agree-
ment is definitely poor for larger values of v.

Table A-II

EVALUATION OF ng.s) x 109 BY ALTERNATIVE METHODS

By the By the Theorem of | By the Method of 1Y s (g)?
v Longhand Method Central Limits Steepest Descent T 2n|8 (£5)? T 24 ‘(_th—)-3
a 4 4

0 1.949 i 1.954 1 1.949 1 0.0030
1 1.731 1 1.733 1 1.730 1 0.0030
2 1.212 1 1.209 1 1.210 1 0.0030
3 6.673 2 6.637 2 6.659 2 0.0031
4 2.881 2 2.865 2 2.883 2 0.0031
5 9.701 3 9.730 3 9.670 3 0.0031
6 2.531 3 2.599 3 2.527 3 0.0032
7 5.071 4 5.462 4 5.048 4 0.0032
8 7.719 5 9.029 5 7.745 5 0.0033
9 8.805 ¢ 1.174 5 8.829 6 0.0033
10 7.400 7 1.201 6 7.419 7 0.0034
11 4.487 8 9.662 8 4.464 8 0.0035
12 1.911 9 6.115 9 1.902 9 0.0036
13 5.531 11 3.045 10 5.534 11 0.0037
14 1.042 12 1.192 11 1.041 12 0.0038
15 1.208 14 3.673 13 1.207 14 0.0038
16 7.999 17 §.902 15 7.965 17 0.0037
17 2.724 19 1.697 16 2.710 19 0.0035
18 4.113 22 2.545 18 4.096 22 0.0031
19 2.200 25 3.002 20 2.200 25 0.0026
20 2.918 29 2.785 22 2.914 29 0.0022
21 5.210 34 2.033 24 5.218 34 0.0018
22 3.934 40 1.167 26 3.930 40 0.0017
23 9.255 49 5.272 29 9.234 49 0.0017
2 1.644 63 1.873 31 1.645 63 0.0017

A better approximation procedure for the whole range of values
'u/n would be the Method of Steepest Descent. By this method, the ex-
sin x

tremum of the function Z2n In - 2vxi is obtained, the path of integra-

tion is shifted to pass through this maximum, and the integralis evaluated
under the assumption that “u/n remains constant while n increases towards
infinity. The extremum Ty of our function is found to lie on an imaginary
axis, and its position is obtained by differentiating

f{(t) = lnshT-1nT ,
and, equating the result to ?//n,

1 v
: f = cothTp - — = — . -
& (To) = coth 7o - — = = (A-4)
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From this equation 179 was found for every value of V/n, and cgjn) was com-
puted according to the formula

1V 14y 2
(n) = opg, - L 1 |L5" 5 (&) _
In cj, nfy Zlnnﬂf°+2n 5 Gy 24 ) +... . (A-5)

where the values of f and its derivatives have to be evaluated at 7= Tg.
The results of this calculation with n = 25 are also displayed in Table A-II.
It is evident that this procedure gives reasonable agreement over the whole
range of values of V/n. The disagreement between these approximate
values and the exact values is due, at least in part, to insufficient accuracy
in the determination of Ty from Eq. (A-4) (four places were used most of
the time). In Table A-II we have given also the value of the last term used
in Eq. (A-5). One certainly should expect the fractional error in c(;l) due
to truncation of series Eq. (A-5) to be less than the last term used.

@




Appendix B

THE METHOD OF STEEPEST DESCENT AND CONVERGENCE
OF MULTIPHONON EXPANSION

For large energy values we have used formulae based upon a Taylor
series expansion of G about the point t = —i/ZkT. This expansion gave rea-
sonable approximation in the vicinity of E-E'= p(ﬁ +\/f')2; however, the
error is considerable for other values of the ratio E'/E. As we have seen
in Appendix A, we can expect good accuracy for any ratio E'/E if we use
an expansion of G about a variable point t = -iT chosen to obtain the steep-
est descent in the integrand. Formulae obtained by this method are dif-
ficult to evaluate numerically. But they present a clear picture of the cross
section at large momentum transfers, when multiphonon expansion requires
many terms,

In the method of steepest descent, we use a Taylor expansion of G(t)
about a variable point, t = -iT, on the imaginary axis:

1 .
G(t) = G+ G'ilt+iT) - 55 G"(t+1iT)?% - % G"i(t+iT)® + -;ll—, GYV{t+iT)* + ...
° ° e (B_l)

where coefficients

(n) - dn da plw) )
G drn wsh d}/ZkT ch a7

are all positive. To evaluate o{E—~E',6), a2 value of T is chosen so that the
integrand in Eq. (2) is an extremum:

E-E' =uyG . (B-2)

Upon introducing a new variable of integration,

x-SV (i)

and expanding the integrand in Eq. (2) in powers of +/ G"/Z,ury, we obtain

. i /S 2
fdt exp {-(E - E') i (t + ﬁ) + M",’{G(t) - g(O)]} = m fdx exXp
" 1 2 Gz, G" 5 (G">_1_Ciii4
{- 1y Gt (T— Zﬁ) 1y [G - g(O)] - X - /\/;/3 i GHZX + L STE x= + ...

_ /2 . ( 1 )“L ) o
= L Gn exp 4 Uy [—G T - 555, G - glo) dx e

Gt 2. Gm el 1 giv 2 Gme .
{1 - ZM'\/g 1 GnZ X3 + ( 2,/_,(,“/) {:g arg X4 —3 G"4 X:] + .-.}
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Thus, after integration, we have

G(E~E*',6) = (o‘b/STFZ)(E'/E)I/Z (4ﬂ/2p“yG“°)l/2

1
© exp {pxy[:— ! (’T— m) + G - g(O)]}
G" |3 Giv 5 Gw?
{1 + 2y [12 G - I3 G”‘*}’ } ) (B-3)

a convenient expression for large momentum transfers when multiphonon
expansion becomes impractical.

By contemplation of Eq. (B-3) we can make a judgment on the num-
ber of phonons necessary to obtain the differential cross section. It is rea-
sonable to expect that, when Eq. (B-3) is approximately valid, this number
is roughly equal to the number of terms required in the power series ex-
pansion of exp (uyG). Thus the largest contribution is expected for n =uvyG.
Since

d? 1 n 1
oz oo WGP = -

one would obtain the value of the exponential within about two per cent if
one uses

nmax = (VuyG + )% . (B-4)

Actually, applying the method of steepest descent to each term of the phonon
expansion we see that the "half-width" is somewhat smaller and that

Nyax :[\/lu'y(} +a/1 - (c;ﬂz/c;cw)]‘2 (B-5)

would be satisfactory. Thus, for largeuy G only comparatively small num-
ber of phonons at the end of expansion contribute significantly towards the
sum. The second term in Eq. (B-3) is then

1 1 3giva - G2 1 3GiVGN - 52
12 uyG 2G"° G~ 12nmax 2G™?

G

If T (and the ratio IE-E“I /p/y) is very large, this term is approximately equal
to - 1/12nmax3 and Eq. (B-3) joins quite smoothly our expansion of nmax(=25)
phonons. However, for smaller 7 this term can be considerably larger in
absolute value. In such cases, one could try to approximate every multi-
phonon term by a Gaussian (or modified Gaussian) distribution. And, indeed,
one can demonstrate(2) that such an approximation is good for individual
terms. However, the number of terms required for evaluation of o(E—~E’, 8)
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is large. And, since the Gaussian distribution depends only on the second
derivative of G, it cannot be depended upon to yield correctly the second
term of Eq. (B-3), which requires knowledge of higher derivatives. Thus,
at present we remain with the unpleasant need to evaluate exactly many
terms in multiphonon expansion in some cases (as for graphite at high tem-
peratures) if we want to join smoothly the method of steepest descent to the
multiphonon expansion.

In evaluation of G(E~E') we encounter also both multiphonon expan-
sion and an asymptotic expression. Multiphonon expansion here needs to
be used also at very high initial energies if energy loss is not large. When
]E-E“] is fixed finite and u(v/E +/E')? keeps increasing, we can no longer
nelgect the second term in Eq. (26). (The asymptotic expansion for it does
not "converge.") Indeed the appropriate procedure for such a case would
be to neglect the first term, since !u(.i;/]T:--l- JEN? is large and [G(t) - g(0)] is
negative. Since

HWE - VB = p(B-EV/VE +V/E)

is small when ]E—E'] is finite and (/E +./E!')? is large, we can expand our
integrand in a power series in (i

Cexp {ul/E - /B (G0 - g} _ 1 b (E-E)?
G(t) - g(0) G(t) - g(0) “

- R (6 - 5(0)] -

and integrate term by term. Fourier transformation of

1 1
g(0) - G(t) ~ glo)

will now give the main inelastic contribution. Thus, the inelastic cross sec-
tion is approximately equal to

g(E-E") = (Gb/Sﬂ;JE)f dt exp - (E—E’)(t + ZlitT) [g(O) i <O g(O)]

n=i
(B-6)

Since the nearest zero of g{0) - G(t) is located at t = =i/2kT9 for large values
of (E-E'), Eq. {B-6) gives correct value for the inelastic cross section:
(Gb/4‘uE), The same value, of course, is obtained also from Eq. (30) when

H(VE +/E")? is large and 7} is large negative.
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Applying the method of steepest descent to each term of Eq. (B-6),
we see that the largest term, Spe is obtained for n = g(O) !E=E I If nis
large,

iz—1nS = L 1
7T g0) E-EY aglo)-1

dn?

Thus

2
pmax = (/FE-B 80) +1/a(0)-1) (B-7)

terms should be satisfactory for the evaluation of Eq. (B-6). When the first
term in Eq. (B-7) becomes smaller than the second, the number of phonons
given by Eq. (B-7) is insufficient. It seems that one needs about 4[a,g(0)-1]
terms even for small energy loss. Moreover, we believe also that for

fEaE“ l Z a, £q. (B-6) will have apprdached its limiting value. Thus, if we

use nmax = 42,g(0), we should have a fairly smooth transition between multi-
phonon expansion and the asymptotic expression.

L




Appendix C
AVERAGING OVER DIRECTIONS OF POLARIZATION FOR GRAPHITE

For calculation of the scattering cross section from polycrystalline
graphite p used in the initial formula, Eq. (2), can be represented as an
interpolation:

p=p £+ p(1-17) , (C-1)

between frequency distribution perpendicular to the planes of crystal lat-
tice, p;, and frequency distribution in the planes, Pz-(S) The scattering
cross section then is obtained upon integration of the final results for
cross section over the directions of lattice orientation, 0 = § =1. Actu-
ally, in Chapter II, calculations of fgl), g(0), a;, and a3 are performed
separately for both sets of values Py and Pzjs and a common scaling
factor is determined. Then, for every needed value of [ appropriate
quantities f}l), g(0), a;, and a; are determined by an interpolation pro-
cedure, Eq. (C-1).

Since evaluation of the cross section is a quite elaborate and long
process, we have chosen a Gaussian(11,12) integration process. We notice
here that our integrand is an even function of /. Thus, if we would expand
the limits of integration from -1 to +1, we would not need actually to cal-
culate the values of the integrand for negative values of /. Thus (con-
sidering only Gaussian integration schemes with even numbers of values
for [), we see that by actually calculating the integrand value at n points
we approximate the integrand with a polynomial of degree 4n-1. (Or, we
can say that we approximate our integrand with a polynomial which coin-
cides with the integrand at 3n points, of which 2n are chosen arbitrarily.)
We can see easily that this integration scheme is exact for a Placzek ex-
pansion (in powers of ) that neglects terms with Mzn and higher powers.
It is also exact for expansion of S in a power series of o up to and in-
cluding the term with o®®”!. These considerations lead us to believe that
only a few points are needed for quite satisfactory integration over J.
Indeed, in several previous calculations graphite has been approximated
by a cubic crystal, using only the total frequency spectrum, and thus essen-
tially using only one point in our Gaussian integration scheme. Upon con-
templating the increase of accuracy obtained by using the Placzek expansion,
we believe that the additional labor required in using at least two points is
well justified. The values of £ and corresponding weighting coefficients(13)
have been given in Table C-1I.
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Table C-I

CONSTANTS FOR GAUSSIAN INTEGRATION
OF AN EVEN FUNCTION

(n) (n)
1 0.57735027 1.00000000
2 0.33998104 0.65214515
0.86113631 0.34785485
3 0.23861919 0.46791393
0 66120939 0.36076157
0.93246951 0.17132449
4 0.18343464 0.36268378
0.52553241 0.31370665
0.79666648 0.22238103
0.96028986 0.10122854
5 0.14887434 0.29552422
0.43339539 0.26926672
0.67940957 0.21908636
0.86506337 0.14945135
0.97390653 0.06667134
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