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THE AXISYMMETRIC FREE-CONVECTION 
HEAT TRANSFER ALONG A VERTICAL THIN CYLINDER 

WITH CONSTANT SURFACE TEMPERATURE 

by 

R. Viskanta 

ABSTRACT 

The subject of this study is the problem of laminar 
f ree-convect ion flow produced by a heated, ver t ica l , c i r cu ­
l a r cylinder for which the t empera tu re at the outer surface 
of the cylinder is a s sumed to be uniform. The solution of 
the boundary- layer equations was obtained by two methods: 
( l ) the per turba t ion method of Sparrow and Gregg, which 
is valid only for smal l values of the axial distance p a r a m ­
e te r I ; and (2) the in tegra l method of Hama et a l . , for large 
values of the p a r a m e t e r 4. Hea t - t r ans fe r resu l t s were ca l ­
culated for P rand t l numbers (Pr ) of 100, 10, 2, 1, 0.72, 0 .1, 
0.03, 0.02, and 0.01. It was found that the Nussel t numbers 
(NU) for the cylinder were higher than those for the flat 
p la te , and this difference inc reased as P r decreased . It 
was also found that the per turba t ion method of solution of 
the f ree-convect ion boundary- layer equations becomes u se ­
l e s s for smal l values of P r because of the slow convergence 
of the s e r i e s . The r e su l t s obtained by the integral method 
were in good ag reemen t with those calculated by the p e r t u r ­
bation method for P r K 1 and 0.1 < ^ < 1 only; they deviated 
considerably for s m a l l e r values of t-

1. INTRODUCTION 

The gravi ta t ional free convection from a number of typical geome­
t r i e s , such as the ve r t i ca l flat p la te , the horizontal tube, and the ver t ica l 
c i r cu l a r cyl inder , a r e impor tan t in indus t r ia l applicat ions. Even though 
l aminar f ree convection on a ve r t i ca l plate has been a subject of study 
since 1881, the re has been lit t le study of l aminar f ree-convect ion heat 
t r ans fe r f rom a ve r t i ca l thin cyl inder . Recently, the knowledge of heat 
t ransfe r f rom a fuel pin (a c i r c u l a r cylinder) under f ree-convect ion condi­
tions has become of pa r t i cu l a r impor tance in considerat ions of reac to r 
safety. When the boundary- l aye r th ickness is smal l compared with the 
radius of the cyl inder , the effect of t r a n s v e r s e curva ture on the flow and 
heat t r ans fe r is negligible, and the velocity and t empera tu re distr ibut ions 



can be well approximated by the solution of the problem of the ver t i ca l flat 
plate . As the distance from the leading nose i nc r ea se s , the thickness of 
the boundary layer also i n c r e a s e s , so that the effect of t r a n s v e r s e curva­
ture becomes no longer negligible, and the resu l t s for a ver t ica l cylinder 
depar t m o r e and m o r e from those of a flat plate. 

The theore t ica l investigations of the ax i symmet r ic free convection 
a r e p r i m a r i l y l imited to the study of Sparrow and Gregg,( l ) who solved 
the boundary- layer equations and obtained numer ica l r esu l t s for Prandt l 
numbers of 0.72 and 1, as applicable for gases ; and the more recent ana­
lytical and exper imenta l study of Hama et al. ,(^) for Prandt l number 0.72, 
as applicable for a i r . References ( l) and (2) also l i s t other re la ted work 
on f ree-convect ion p rob l ems . The solution of Sparrow and Gregg provides 
a very good approximation of the boundary- layer equations near the nose 
of the cylinder where the boundary- layer thickness is smal l compared with 
the radius of the cyl inder . The solution is not expected to be applicable in 
the region far from the nose where the thickness of the boundary layer is 
comparable with or much l a r g e r than the radius of the cylinder. This is 
the case as shown analyt ical ly and verif ied exper imental ly by Hanaa et al . 

This r epo r t p r e sen t s a study of l aminar f ree-convect ion heat t r a n s ­
fer from a ve r t i ca l thin cyl inder at a constant surface t e m p e r a t u r e . The 
analyses of References ( l ) and (2) a re extended to fluids with high and low 
Prandt l number s . In the l a t t e r case , i .e . , for liquid m e t a l s , the iner t ia 
t e r m s in the momentum equation a r e not negligible in compar ison with 
the viscous t e r m s , and therefore the iner t ia t e r m s have been retained in 
the momentum integral equation. 

II. ANALYSIS 

General Considera t ions and Mathemat ica l Formula t ion 

The physical model and coordinate sys tem a re indicated in Fig. 1. 
Two physical s i tuations that conn.e within the scope of the analysis a re 
shown. In Fig. l(a) the wall t e m p e r a t u r e T.^ exceeds the ambient t e m p e r ­
ature T^. F o r this case , due to buoyancy forces , an upward flow of fluid 
in the boundary layer is es tabl i shed . In Fig. l(b) the wall temiperature is 
cooler than the ambient t e m p e r a t u r e , and the flow of the fluid in the boundary 
layer is downward. 

If the coordinate systeixis a r e taken as shown in Fig. 1, there is no 
dist inct ion between the two p rob lems and the method of analysis and the 
r e su l t s for heat t r ans fe r a r e the s ame ; thus, there is no need to t r ea t the 
p rob lems separa te ly . 



C a ) T > T 
w a ( b ) T < T 

M a 

Fig . 1. P h y s i c a l Mode l and Coord ina te S y s t e m 

The b a s i c c o n s e r v a t i o n equa t ions of m a s s , m o m e n t u m , and e n e r g y 
for a x i s y m m e t r i c l a m i n a r f r e e convec t ion along a v e r t i c a l c y l i n d e r , unde r 
the a s s u m p t i o n s of b o u n d a r y - l a y e r a p p r o x i m a t i o n s and c o n s t a n t p h y s i c a l 
p r o p e r t i e s , a r e g iven by 

o T— (ru) + ^=- ( rv) = 0 
ox ' o r ' 

(1) 

ou dn V b 
ox d r r or 

dT , dT a a 
o x o r r o r 

r | ^ ) ± g M T - T a ) 

br 
dr 

(2) 

(3) 

V i s c o u s d i s s i p a t i o n and w o r k a g a i n s t the g r a v i t y f ield have been neg l ec t ed . 
In a c c o r d w i t h the u s u a l p r a c t i c e in f r e e convec t ion , the dens i ty h a s been 
c o n s i d e r e d a v a r i a b l e only in f o r m u l a t i n g the buoyancy t e r m [ i g ^ ( T - TgJ\. 
The p lus s ign is a s s o c i a t e d w i th F i g . l ( a ) , w h e r e a s the m i n u s s ign i s u s e d 
w i th F i g . 1(b). 

The b o u n d a r y cond i t ions to be s a t i s f i ed a r e g iven by 

u = V = 0 

u = 0 

Tw a t r = ro 

Tg. a t r -* CO 
(4) 



Solution of the Prob lem for Small Values of the x - P a r a m e t e r ( | ) 

In the case of free convection from a ve r t i ca l cylinder, there is only 
one "s imi la r i ty" solution in the l i t e r a tu re ,w .4 ) and that solution is for the 
t empera tu re and velocity dis t r ibut ions satisfying per t inent boundary condi­
tions for a l inear var ia t ion of the surface t empera tu re along the cylinder. 
The only solution of the ax i symmet r i c laminar free convection along a 
ve r t i ca l thin cyl inder , with constant surface t e m p e r a t u r e , obtained so far 
is that by Sparrow and Gregg. ( l ) Their solution employed a per turbat ion 
method f i r s t applied by Seban and Bond(5) and by Kellyl") for forced con­
vection along a horizontal cyl inder . Here the continuity equation, Eq. ( l ) , 
is satisfied by introducing the s t r e a m function defined by 

1 
u = — 

r 
= - l | i . (5) 

r ox 

The pa r t i a l differential equations (2) and (3) a re t rans formed from 
the (x,y) coordinate sys tem to the (|,T)) sys tem by the use of the follow­
ing subst i tut ions: 

(6) 

(7) 

(8) 

(9) 

can be expanded in power s e r i e s of 
| : 

£(^,1)= e[foir])+ | f i ( r ) )+ eU-n) + •••+] (10) 

and 

0(1,rj) = 0o(r)) + ie.ir]) + I 'SZCT]) + ••• + . (H ) 

the pa r t i a l differential equations in the coordinate systeixi {&, ,Tj) reduced to 
the following s y s t e m s of o rd ina ry differential equat ions: 

e^' + 3 P r foS; = 0 
(12) 

fo' + 3 fof̂ ' - 2(fi)2 + 00 = 0 

n = 

1 = 

f = 

e = 

T h e 

Gri /4 ( r 2 - r | ) 
23/3^7/4^1/4 

23/E 

Gr i /4 

Gr^/^ 

/xV/* _ 

S 

vrfV%(.f,T]) 
23/2 

T - Ta 

T w " 

n, by 

Ta • 

a s s u m i n g t h a t f and 



di + do +T]0o' - Pr(foei - 4 fX ' 3 fo0i) = 0 
(13) 

fi" + f̂ ' + r]fo" - 5 fifl + 4 fi'fi + 3 f;'fo + ©1 = 0. ' 

02 + ©; + T]©; - P r ( f ; 0 i + 2 foSz - 5 fzSo - 4 f^e; - 3 foez) = 0 

f" + f; +r]f; ' - 6 f̂ f̂  - 3(f;)2 + 5 f^fz + 4 frfi+3f2'fo + ©2 = 0 

(14) 
in which the p r i m e s deno t e d i f f e r e n t i a t i o n with r e s p e c t to Tj. 

The b o u n d a r y c o n d i t i o n s , E q . (4), b e c o m e in the c o o r d i n a t e s y s t e m 
of ( | , r , ) 

f0 = f0 = 0 , 00 = 1 a t 7] = 0 
(12a) 

f0 = ©0 = 0 a t Tj -> oo 

fi =fi = ^1 = 0 a t T) = 0 
; . (13a) 

fj = ©1 = 0 a t ?•] -> 00 

f z ^ f l = 0 2 = 0 at 71= 0 ^ 
V . (14a) 

f2 =̂  02 = 0 a t 7] -* 00 J 

A d d i t i o n a l m a t h e m a t i c a l d e t a i l s c a n be found in R e f e r e n c e ( l ) . 

The z e r o t h - o r d e r a p p r o x i m a t i o n , Eq . ( l 2 ) , and the c o r r e s p o n d i n g 
b o u n d a r y c o n d i t i o n s g iven in E q . ( l 2 a ) a r e i d e n t i c a l with the d i f f e r e n t i a l 
e q u a t i o n s for f ree c o n v e c t i o n a long a v e r t i c a l flat p l a t e . N u m e r i c a l s o l u ­
t i o n s of t h e s e e q u a t i o n s c o v e r i n g a l a r g e r a n g e of P r a n d t l n u m b e r s h a v e 
b e e n t a b u l a t e d in de ta i l . ! ' ' ' ' 8 ) The so lu t ion of E q s . ( l3 ) and ( l 4 ) , sub jec t to 
the b o u n d a r y c o n d i t i o n s , E q s . ( l 3 a ) and ( l 4 a ) , r e s p e c t i v e l y , i s d i s c u s s e d in 
A p p e n d i x A. 

Solut ion of the P r o b l e m for L a r g e V a l u e s of the x - P a r a m e t e r ( | ) 

Since the x - p a r a m e t e r ( | ) i s e s s e n t i a l l y a r a t i o of the t h i c k n e s s of 
the t h e r m a l b o u n d a r y l a y e r to the r a d i u s of the c y l i n d e r , i t i s e x p e c t e d 
f r o m t h e n a t u r e of t h e e x p a n s i o n of f(|,7]) and 0(1,7]) in p o w e r s e r i e s of 
I t ha t t h e S p a r r o w and G r e g g so lu t i on shou ld p r o v i d e a good a p p r o x i m a t i o n 
n e a r the l e a d i n g e d g e , 'where the t h i c k n e s s of the t h e r m a l b o u n d a r y l a y e r 
i s s m a l l in c o m p a r i s o n wi th the r a d i u s of the c y l i n d e r . The r a d i u s of 
c o n v e r g e n c e of the s e r i e s g iven by E q s . ( l O ) a n d ( l l ) i s no t known; h o w e v e r 
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it is not expected to be g r e a t e r than one (̂  < l ) . Therefore , the results ' -^ ' 
will not be applicable in the region far from the stagnation point, where 
I > 1 and the boundary- layer thickness is much l a rge r than the radius of 
the cylinder. For this reason , the Karman-Pohlhausen integral method, 
as extended by Glauer t and Lighthill,(9) Mark,(10) and Hama et al. ,l2) 
will be used to obtain an approximate solution for la rge values of the 
x - p a r a m e t e r (^). 

It is a s s u m e d ( l l ) that the common boundary- layer thickness (6) 
can be used for both the momentum and the rmal boundary l a y e r s . This 
assumption has its just if icat ion in that the resu l t s of calculations based 
on the assumpt ion agree with those from exact solutions of the boundary-
layer differential equations. Other authors,112»13j in their studies of 
f ree-convect ion p rob l ems , have a s sumed that the thickness of the the rmal 
boundary layer , 6t> is different from the thickness of the momentum 
boundary layer , 6, and these change with the Prandt l number. However, 
Merk( l4) points out that S t / ^ = 1 for P r < 1 and that 6 t /6 < 1 for P r > 1. 
He fur ther s ta tes that "it is not reasonable to a s sume that 6^ > 6, since 
this would mean that the re a r e regions in which the t empera tu re field 
differs from that of the surrounding fluid, and that in these regions buoy­
ant force is p re sen t (in free convection, the velocity is caused by buoyant 
forces) . Hence, fromithe physical point of view, it is c lear that the upper 
bound 6 1/b is given by (the nuimber) 1." The exact (numerical) solutions 
of boundary- layer equations for free convection along a ver t i ca l flat plate , 
with low Prandt l number coolants , substantiate this conclusion.1°) 

The integrat ion of the bas ic equations (2) and (3) from the wall to 
the edge of the boundary layer with r e spec t to r , after multiplying by r , 
and utilizing the boundary conditions given by Eq. (4), and the continuity 
equation ( l ) , yields the in tegra l equations 

(15) 

and 

(16) 

where Q is the d imens ionless t e m p e r a t u r e . If a new independent var iab le , 
y = r - ro, is introduced, Eqs . ( l5) and (l6) beconae 

™- r u2(ro + y) dy : .± g ^ ( T w - T a ) f 0(ro +y) dy - r o V ^ | ^ j (17) 
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and 

• t J u 0 ( r o + y ) d y = - ctro ( | | ) ^ . (18) 

In applying the Karman-Poh lhausen method of solution to ax isym­
me t r i c p rob lems , Glauer t and Lighthill(9) and Hama et al..(2) emphasize 
the impor tance of a p rope r profile whose behavior near the solid surface 
is r ea l i s t i c . According to Hama et a l . , the velocity profile is wr i t ten as 

u = K U - f ^ 
To 

in {^4-^1 . (19) 

The o rde r of e r r o r in Eq. (19) is O(y/ro)^. The t empera tu re profile is 
given by 

0 = 1 - Nuinf l - i -^1 . (20) 

The t empe ra tu r e dis t r ibut ion near the wall is c o r r e c t to the o rde r of 
O(y/ro) . The thickness of the t he rma l boundary layer is re la ted to the 
Nussel t number (Nu) by the re la t ion 

ro = exp ( I / N U ) - 1 . (21) 

The coefficients U and Nu, which a r e functions of x, a re found from the 
boundary conditions of the p rob lem and the integrated momentum and 
energy equat ions. 

The t e r m s on the left-hand side of the momentum equation, Eq. (2) 
or (17), a r e the iner t ia t e r m s . They a.re r a the r insignificant in the f r e e -
convection p rob lems unless the Prand t l number is ex t remely smal l , such 
as in the case of liquid m e t a l s ; the re fo re , it is not pe rmis s ib l e to omit the 
iner t i a t e r m s in the p r e s e n t ana lys i s . 

The functions represen t ing the velocity, Eq. ( l9) , and t empera tu re 
d is t r ibut ions , Eq. (20), a r e introduced into Eqs . (17) and (18), and after 
in tegrat ions and differentiations a r e c a r r i e d out (see Appendix B) there 
resu l t s 

^U , , da , ,__> 

and 

^ff--t = ° (») 



with the initial condit ions: 

U = G = 0, for I = 0 (24) 

Since the differential equations a r e singular at | = 0 in the n u m e r i ­
cal solution of Eqs . (22) and (23), it was only possible to approach the 
origin to within e , es t imate U and CJ at | = e , and proceed with the n u m e r ­
ical integrat ion from that point on. The e r r o r introduced by this procedure 
could not be es t ima ted . The Runge-Kutta method was used for the numer ica l 
solution of the differential equat ions. 

Skin-Fr ic t ion and Hea t -Trans fe r P a r a m e t e r s 

The local skin friction is obtained by applying the Newtonian shear 
formula: 

r = M l l ^ 
O ^ / r = r , 

(25) 

The velocity component u in the x-d i rec t ion can be expressed in t e r m s of 
the d imens ionless s t r e a m function as 

u 
G r y / p f 
4ro \hri 

(26) 

In t e r m s of d imens ionless va r i ab l e s , the skin-frict ion p a r a m e t e r can be 
exp re s sed as 

T 

T 
lpGr(v/ro)2 ? 

£ ^ . = fjf;(o) + |f;'(o) + iSio) + •••] . (27) 

Equation (27) can be rewr i t t en as the ra t io of the shear s t r e s s for a cyl­
inder (cyl) to that for a flat plate (fp) in the form 

"^cyl 1 +ijnj^ + e • 
'fo(O) fo'(O) 

(28) 

where 

'̂ fp 

p[4Gr^r^ [v/^f 
- f:(o) (29) 

The local h e a t - t r a n s f e r coefficient is defined as 



In t e r m s of the d imensionless va r i ab les defined by Eqs . (6) and (9), the 
re la t ion for h becomes 

^ _ _ k G r ^ / | 0 \ (3 

The Nussel t number Nu, based on the radius of the cylinder as the 
cha rac t e r i s t i c dimension, is defined as 

The local Nusselt number Nu^, based on the axial distance x as the char ­
ac te r i s t i c dimension, is obtained from the definition of Eq. (32) and e x p r e s ­
sion of Eq. (31) with the help of Eq. ( l l ) as 

Nux = Nu^-^) = - 4 l Grll' [00(0) + 101(0) + |^0^(O) + ••• ] . (33) 

Since the f i r s t t e r m on the r ight-hand side of Eq. (33) r ep re sen t s 
the local Nussel t number for the flat p la te , Eq. (33) can be rewri t ten as 
the rat io of a local Nussel t nuxnber for the cylinder to that for the flat 
pla te : 

N^x,cy l _ 01(0) .2 01(0) 

as 

The average h e a t - t r a n s f e r coefficient over a length x is defined 

h =™ r h dx . (35) 
JQ 

If the indicated in tegra t ion is pe r fo rmed and an average Nusselt number 
Nujj., based on the dis tance x as the c h a r a c t e r i s t i c dimension, is defined, 
there resu l t s 

N ^ x ^ - ^ — ^ G r ^ [0^(0) + | e 0 i (O)+ | eez{0) + "-] . 

Again, the f i r s t t e r m on the r ight -hand side of Eq. (36) is the average 
Nussel t number for a flat plate . 

(36) 



III. DISCUSSION OF RESULTS 

F rom the solution of Eqs . (12) through (14), the essent ia l informa­
tion needed in the hea t - t r ans fe r calculations includes 0^(0) and 02(O). 
These resu l t s a re l i s ted in Table 1 with the values(7,8) of 0o(O). There 
a r e two aspects of these r e su l t s which should be mentioned: f i rs t , that 
0j(O) va r i e s only slightly with the Prandt l number over the very wide 
range considered h e r e ; and secondly, the large magnitudes of 0l(O)/ 
0o(O) and 02(O)/0o(O) for smal l Prandt l numbers . Thus, even for smal l 
^ values (I =0 .1) the second and third t e r m s of the se r i e s begin to be 
important . In the per turba t ion method of Sparrow and Gregg as applied 
to liquid m e t a l s , the t runcat ion of the s e r i e s after the thi rd t e r m appears 
to be in question, even for values of | < 0.3; therefore , no effort was 
made to obtain solutions for P r < 0.01. 

Table 1 

TEMPERATURE GRADIENTS AT THE SURFACE OF THE CYLINDER 

Pr 

100 
10 
2 
1 
0.72 
0.1 
0.03 
0.02 
0.01 

0;(o) 

-2.1913 
-1.1694 
-0.7165 
-0.5671 
-0.5046 
-0.2301 
-0.1346 
-0.1117 
-0.0812 

0i(O) 

-0.2236 
-0.2281 
-0.2251 
-0.2239 
-0.2230 
-0.2217 
-0.2225 
-0.2218 
-0.2259 

02(0) 

0.0206 
0.0262 
0.0298 
0.0810 
0.1525 
0.1811 
0.2051 

ei(o)/0;(o) 

0.1020 
0.1347 
0.3141 
0.4034 
0.4421 
0.6935 
1.6523 
1.9866 
2.7820 

0z(O)/9;(O) 

-0.0288 
-0.0462 
-0.0591 
-0.3521 
-1.1324 
-1.6128 
-2.5259 

For coinple teness , the f i r s t per turbat ion of the velocity and t e m p e r ­
a ture dis t r ibut ions (f{ and 0j) obtained a re p resen ted (Figs . 2 and 3, r e s ­
pectively) as functions of r) for var ious values of Prandt l number . Both 
the min imum and the max imum values of the f i r s t per turbat ions of the di ­
mens ionless velocity and t e m p e r a t u r e dis tr ibut ions occur at l a rge r values 
of the a rgument T] as the Prand t l number d e c r e a s e s . The 9^ function is 
re la ted to the t e m p e r a t u r e dis t r ibut ion by Eq. (9), whereas the f̂  function 
is re la ted to the velocity component u by Eqs . (26) and (lO). 

The ra t io of the local Nussel t number for a cylinder to that for a 
flat plate is shown in Fig. 4. Three t r ends evident from Fig. 4 a r e : 
(l) that, for a fixed P rand t l number , the Nussel t nuinber for a cylinder 
deviates m o r e and m o r e from the Nussel t number for a flat plate as | in­
c r e a s e s ; (2) that, at a fixed value of the x - p a r a m e t e r (̂  ),there a re g r ea t e r 
deviations of Nux,cyl f rom Nux fp as the Prandt l number d e c r e a s e s ; and 
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(3) that the per turbat ion method of solution of the boundary - layer equations 
becomes use less for P r < 0.1 because 
of slow convergence of the power-
se r i e s expansion of both the dimen­
sionless s t r eam function f(^ ,T)) and 
tempera ture 0(1,7^). Since the x-
p a r a m e t e r ( ^ ) i s proport ional to the 
rat io of the boundary- layer thickness 
to the radius of the cylinder, the 
Nusselt numbers for a cylinder a re 
close to those for a flat plate , and 
as the thickness of the boundary 
layer inc reases the Nux^cyl deviates 
more and more from Nux^fp. 

The rat io of the local shear 
s t r e s s for the cylinder to that for a 
flat plate is shown in Fig. 5 for 
P r = 100 and 0.01. There a re two 
aspects of these resu l t s which should 
be noted: firsts that Tcyl/Tfp var ies 
only slightly with Prandt l number 
over the very wide range considered 
here ; and secondly, as in the case of 
heat t ransfer r esu l t s , again there is 
the slow convergence of the se r i e s 
for P r = 0.01. 

Fig. 4 

Comparison of Local Nusselt 
Number between Cylinder and 
Flat Pla te 

The Nusselt numbers predicted 
by the perturbat ion method of Sparrow 
and Gregg and those by the integral 

method of Hama et al . , a re shown graphically in Fig. 6 as a function of the 
distance p a r a m e t e r | for a range of Prandt l numbers (from 100 to O.Ol). 
The radius of convergence at the power se r ies in | is not known, but it is 
expected to be smal le r than one, and therefore Nusselt numbers have not 
been presented for | > 1. On the other hand, the integral method of solu­
tion is expected to be applicable when the boundary layer is thick, i .e. , ^ 
is l a rge , and therefore Nu a re not shown for | < 0.5. It is seen, however, 
that the gap between the two resu l t s is smal les t for P r « 1.0. For all 
Prandt l numbers studied the integral method predicted l a rge r values of Nu 
than the per turbat ion method did for smal l | values ( | < O.Ol). This is 
expected because the assumed velocity, Eq. (l9), and t empera tu re , Eq. (20), 
profiles a re in e r r o r for small values of ŝ . It is seen from Fig. 6 that, as 
Prandt l numbers dec rease , the Nussel t numbers decrease and the variat ion 
of Nu with I becomes sma l l e r . 
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The local Nussel t numbers for a i r , P r = 0.72, predicted by var ious 
invest igators for l aminar natural-convect ion flow along a ver t ica l flat plate 
and thin cylinder, a r e shown graphical ly in Fig. 7 as a function of | . In 
the region near the leading edge (small | ) , the ver t ica l cylinder behaves 
much like the ver t i ca l flat plate . However, as the distance from the lead­
ing edge i n c r e a s e s , the Nussel t numbers for the ver t ica l cylinder deviate 
more and m o r e from the Nussel t numbers for the flat plate. For a i r , the 
hea t - t r ans fe r resu l t s predicted by the boundary-layer analys is( l ) a re 
lower than those determined exper imental ly . \2 ; 

10 

SPARROW AND GREGG* 

HAMA ET kl.^^K RECOMMENDED 

- ECKERT AND D R A K E ' " \ FOR A FLAT PLATE 

• OSTRACH^''', FOR A FLAT PLATE 

1.0 — 

0.1 

Fig. 7. Comparison of the Nusselt Numbers for Prandt l 
Number of 0.72. 

IV. CONCLUSIONS 

An analysis was made of the ax isymmetr ic free-convection laminar 
flow about a ver t ica l thin cylinder oriented in a direction para l le l to that 
of the generating body force. The solutions of the boundary-layer equations 
were obtained by the per turbat ion and the integral methods. Because of 
the nature of the assumpt ions made in obtaining the solutions, both methods 
have a l imited range of applicability, a re only approximate, and are not 
expected to be very rel iable for smal l Prandt l numbers . 



The use of f la t -plate Nussel t numbers for j i redict ingheat t r ans fe r 
from a cylinder will always be conservat ive . The hea t - t r ans fe r coefficients 
calculated will be m o r e conservat ive for small Prandt l numbers than for 
l a rge Prandt l number s . 

For the problem cons idered h e r e , the boundary layer can become 
re la t ively thick and cer ta in assumpt ions of the theory will no longer be 
valid. The velocity and t empera tu re profiles assumed are not quite accura te 
for smal l values of the x - p a r a m e t e r | . In addition, the use of these p r o ­
files in the integral method of solution might not have been appropria te for 
the case of smal l P rand t l number s . Hence, there remains a need for a 
more exact theory and an exper iment to verify the analytical r esu l t s p r e ­
sented in this r epo r t as well as to provide information on the l imits of 
applicabili ty of the boundary layer theory for f ree-convect ion flows with 
fluids of low Prand t l number . 



APPENDIX A 

NUMERICAL SOLUTION OF THE PERTURBATION EQUATIONS 
[Eqs. (13) and (14)] 

Inspection of both equations designated Eq. (13), for example, 
revea ls that fj and ©i appear in both equations, which necess i t a t es s imul ­
taneous solution. In addition, it should be noted that it is also n e c e s s a r y 
to uti l ize both solutions of Eq. (12) as input data, since fo. fo> fo , fo"> ©c 
and OQ all appear in both equations of Eq. (13). In o rde r to c a r r y out the 
integrat ions of both equations of Eq. (13), the values fj, f̂ , £", ©j, and 0| 
a r e requi red at r)= 0. F r o m the l ist ing of the boundary conditions, 
Eq. (I3a), it is seen that only f̂ , f{, and 0̂  a r e given at T) = 0, whereas 
fj and 01 a r e given atTj-^-oo. Thus, the computational problem is reduced 
to a sea rch for the c o r r e c t values of f" (0) and 0^ (0) which would yield 
a solution of the equations satisfying the boundary condition at Tj -> oo 
within the p r e s c r i b e d accuracy . 

A double-prec i s ion Adams-Moulton forward- integrat ion method 
was chosen for the solution of the equat ions . The problem was p rog ramme 
for an IBM-704 digital computer . To satisfy the boundary conditions at 
Tj -> 00, a continuous i te ra t ive p r o c e s s developed by Heringl l^) to obtain 
initial values of fo (0) and O'l (0) was used. Since the tables('^»8) of the 
functions fo. fo. fos 0O' and 9Q were not adequate for the integrat ions of 
Eqs . (13) and (14), as the inc remen t s in the independent var iab le were too 
l a rge , Eq. (12) was also solved. The solution thus obtained was utilized in 
Eqs , (13) and (14). The method of solution of Eq. (14) was identical with 
that of Eq. (13). 

For P r < 0 .1 , the functions fo (rj), f" (r/j, and f2 (TJ) had a tendency 
to osci l la te at some point ( 7] > 0), and these osci l lat ions grew and fed into 
other functions. The sma l l e r the P rand t l number , the ea r l i e r in the inte­
grat ion p r o c e s s did the osci l la t ions appear . This was par t ly due to the 
numer ica l in tegrat ion method used . By decreas ing the increment size 
this difficulty was ove rcome . However, for smal l P rand t l numbers the 
method of solution was ex t remely t ime consuming. 
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APPENDIX B 

REDUCTION OF THE INTEGRAL EQUATIONS 
[Eqs. (17) and (l8)] 

By substituting y - TQ (e^ - l) and the velocity, Eq. (l9), and tem­
p e r a t u r e , Eq. (20), d is t r ibut ions in the in tegral Eqs . (17) and (18), there 
r e s u l t s 

rgK2 A p [u^ „ 2U(e° ' - l) + (e^' - l)^] (a ' ) ' e^^' d0 ' 

- ^2 rlg^lT^ - Ta[ [^ U^"^' "-™ e^^' ] da ' - ' KU 

and 
''Or 

4K^ d_ 
dx 

(U + l )a ' - a ' e^ - (u + 1) + 
(o')2 (a '̂)2e*^ 

o 
e^"^ do' = 

r o a 

(37) 

, (38) 

respec t ive ly . Pe r fo rming the indicated in tegra t ions , differentiating 
Eqs . (37) and (38) explicit ly, and r ea r r ang ing t e r m s , one obtains 

a ^ + b — = 
dx ' dx 

(39) 

and 

dx dx 
(40: 

where 

a = <-• ij - ̂ )" I .3a + (U + 1H 0 2 - a + y ) e 2 " - ^ 
54 ^^^ 

b = [a^e^*^- 2(U + l)ae3O + (U + l)202e2^] 2a 

2^2 
c = 

g^lTw - T a | r 4 
( e ^ ^ - l ) - 2 a ( u + l) 

' (41) 

(42) 

(43) 

A = [a+1 + (a+ l)e2^] (44) 
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3 
( | . , ) _ A l , 3 a . a ( u . i ) ( a ^ . a . i . ) e « - ( u . l ) . ^ 

m 2v' 

gPlTw - Ta|r^ 

(45) 

(46) 

Introducing the x - p a r a m e t e r ( |) as the independent var iable , 
Eqs . (39) and (40) can be rewr i t t en as 

dU , , d0 _ (47) 

and 

dU ^ „ d0 (48) 

whe r e 

and 

. 2 0 d = - ^ [ e ^ " - l - 2 0 ( U + 1)] (49) 

- ^ ( 1 ; ) (50) 
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