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SWELLING O F URANIUM AND URANIUM ALLOYS 
ON POSTIRRADIATION ANNEALING 

by 

B. A. L o o m i s and D. W. Pracht 

A B S T R A C T 

The swe l l i ng of uran iumi and of a few s e l e c t e d u r a n i u m a l loys on 
p o s t i r r a d i a t i o n a n n e a l i n g was i n v e s t i g a t e d by u t i l i z ing dens i t y m e a s u r e ­
m e n t s in conjunc t ion with the o b s e r v a t i o n of p o r e s in the m i c r o s t r u c t u r e s 
of a n n e a l e d s p e c i m e n s . S p e c i m e n s w e r e i r r a d i a t e d to about 0.3 a / o b u r n u p 
in a c o n s t r a i n e d condi t ion at a p p r o x i m a t e l y 275°C and w e r e subsequen t ly 
p u l s e a n n e a l e d . The a m o u n t of swe l l ing w a s found to be l e s s than 1% for 
u r a n i u m s p e c i m e n s tha t w e r e pu l s e a n n e a l e d up to 75 h r at t e m p e r a t u r e s 
be low 550°C; the a m o u n t of swe l l ing , h o w e v e r , i n c r e a s e d c o n s i d e r a b l y on 
a n n e a l i n g at t e m p e r a t u r e s be tween 550^^0 and 650°C. S p e c i m e n s pu l s e a n ­
n e a l e d up to 75 h r at 6 l8°C d e c r e a s e d m dens i t y by a p p r o x i m a t e l y 18%. 
The swel l ing w a s a c c o m p a n i e d by the f o r m a t i o n of bubb l e s on g r a i n bound­
a r i e s in r e c r y s t a l l i z e d r e g i o n s . The o b s e r v a t i o n s s u g g e s t that r e c r y s t a l -
l i z a t i o n is a n e c e s s a r y p r e r e q u i s i t e for p r o n o u n c e d swel l ing in the a lpha 
p h a s e . 

U r a n i u m s p e c i m e n s p u l s e a n n e a l e d up to 75 h r at t e m p e r a t u r e s b e ­
t w e e n 650°C and 750°C in the b e t a p h a s e d e c r e a s e d in dens i ty by about 5%. 
S p e c i m e n s a n n e a l e d in the b e t a p h a s e , in c o n t r a s t wi th t hose a n n e a l e d at 
6 l8°C in the a lpha p h a s e , w e r e bad ly c r a c k e d and con ta ined p o r e s of a 
s m a l l e r d i a m e t e r , which w e r e u n i f o r m l y d i s t r i b u t e d wi th in the g r a i n s . 

A s p e c i m e n p u l s e a n n e a l e d up to 16 h r at 822°C d e c r e a s e d in den ­
s i ty by about 20%. T h i s h e a t t r e a t m e n t p r o d u c e d p o r e s of l a r g e d i a m e t e r , 
l o c a t e d along g r a i n b o u n d a r i e s , a s wel l a s p o r e s of s m a l l e r d i a m e t e r , d i s ­
t r i b u t e d u n i f o r m l y wi th in the g r a i n s . 

U r a n i u m a l l oys con t a in ing b e t w e e n 1 w / o and 9 w / o of e i t h e r t i t a ­
n i u m , z i r c o n i u m , n i o b i u m , o r m o l y b d e n u m g e n e r a l l y swe l l ed m o r e than 
p u r e u r a n i u m on p u l s e a n n e a l i n g up to 75 h r at 6 l8°C and 740°C. An e x c e p ­
t ion w a s the b e h a v i o r of a U-4.0 w / o Nb a l loy , which swe l l ed l e s s than u r a ­
n i u m on annea l ing at 6 l8°C . A c a r b o n addi t ion of 0.11 w / o to u r a n i u m 
s u b s t a n t i a l l y d e c r e a s e d the swe l l ing on pu l s e annea l ing up to 75 h r at 6 l 8 ° C , 
w h e r e a s the effect of 0.02 w / o N w a s s m a l l ; at 740°C, a n i t r o g e n add i t ion 
of 0.02 w / o to u r a n i u m c a u s e d an a p p r e c i a b l e i n c r e a s e in the swe l l ing , but 
the effect of 0.11 w / o C w a s s l igh t . 



INTRODUCTION 

S e v e r a l inves t iga to rs ! - ' - ' ^ ) have d e t e r m i n e d tha t t he d e n s i t y of u r a ­
n i u m d e c r e a s e s when i r r a d i a t e d at t e m p e r a t u r e s above a p p r o x i m a t e l y 
400°C wi th n e u t r o n s , o r a s a r e s u l t of annea l ing at e l e v a t e d t e m p e r a t u r e s 
fol lowing i r r a d i a t i o n at t e m p e r a t u r e s be low 400°C. The p h e n o m e n o n h a s 
b e e n c a l l e d swe l l i ng . The d e c r e a s e in d e n s i t y h a s b e e n a t t r i b u t e d p r i m a r i l y 
to the p r e s e n c e of b u b b l e s wh ich w e r e g e n e r a l l y b e l i e v e d to r e s u l t f r o m 
the diffusion of f i s s i o n p r o d u c t a t o m s , k r y p t o n and xenon , t h r o u g h the l a t ­
t i ce and t h e i r n u c l e a t i o n on su i t ab l e s i t e s for b u b b l e s . 

The n a t u r e of the n u c l e a t i o n s i t e s , t h e m e c h a n i s m of g rowth , and 
the f a c t o r s tha t c o n t r o l t he s i z e and d i s t r i b u t i o n of b u b b l e s have con t inued 
to be a sub jec t for s p e c u l a t i v e c o m m e n t . H o m o g e n e o u s n u c l e a t i o n , n u c l e a ­
t ion on d i s l o c a t i o n s , and n u c l e a t i o n of b u b b l e s on i m p u r i t y a t o m s have b e e n 
c o n s i d e r e d by v a r i o u s i n v e s t i g a t o r s. (3>4) n IIQ_S b e e n s u g g e s t e d tha t the 
b u b b l e s g row by v a c a n c y diffusion,(3) c r e e p of the s u r r o u n d i n g matr ix , (5 , -6) 
p l a s t i c y ie ld ing , (3 ,7 ) r e - s o l u t i o n of g a s f r o m s m a l l b u b b l e s which r e s u l t s 
in g rowth of l a r g e r o n e s / " / and jo in ing of b u b b l e s . 1°) Some of the f a c t o r s 
which have b e e n s u g g e s t e d to in f luence the m a g n i t u d e of swe l l ing a r e t e m ­
p e r a t u r e , amount of f i s s i o n g a s , t i m e r e q u i r e d to p r o d u c e the g a s e o u s f i s ­
s ion p r o d u c t s , and the p r e s e n c e of s econd phases . ! ' ^ / 

Much of the e x i s t i n g da t a on swe l l i ng in u r a n i u m w e r e ob t a ined 
wi th m a t e r i a l which c o n t a i n e d a p p r e c i a b l e q u a n t i t i e s of i m p u r i t i e s and 
u n d e r e x p e r i m e n t a l c o n d i t i o n s which w e r e not p r e c i s e l y def ined, such a s 
the a m o u n t of f i s s ion p r o d u c t g a s in t h e m a t e r i a l and i r r a d i a t i o n t e m p e r a ­
t u r e . F u r t h e r m o r e , no s y s t e m a t i c s t u d i e s have b e e n m a d e on the t i m e 
d e p e n d e n c e of the swe l l i ng p r o c e s s u n d e r i s o t h e r m a l cond i t i ons at t e m ­
p e r a t u r e s ex tend ing into the b e t a - and g a m m a - p h a s e r e g i o n s . The s t u d i e s 
d e s c r i b e d be low w e r e u n d e r t a k e n to s tudy t h e p o s s i b l e e f fec ts of t h e s e 
v a r i a b l e s and to c a r r y out i s o t h e r m a l a n n e a l s f r o m which one migh t hope 
to deduce i n f o r m a t i o n on the k i n e t i c s of the swel l ing p r o c e s s . The s t u d i e s 
w e r e miade wi th h i g h - p u r i t y u n a l l o y e d m a t e r i a l and wi th a few s e l e c t e d 
a l l o y s , l a r g e l y the f o r m e r . The m e t h o d s of i n v e s t i g a t i o n w e r e m e a s u r e ­
m e n t s of d e n s i t y v a r i a t i o n and e x a m i n a t i o n s of m i c r o s t r u c t u r e s by op t i ca l 
and e l e c t r o n m i c r o s c o p y . 

EXPERIMENTAL MATERIALS AND PROCEDURE 

C a s t i n g s of h i g h - p u r i t y u r a n i u m and u r a n i u m a l l o y s wi th e i t h e r 
t i t a n i u m , z i r c o n i u m , n i o b i u m , m o l y b d e n u m , c a r b o n , o r n i t r o g e n w e r e p r e ­
p a r e d by m e l t i n g the a p p r o p r i a t e m a t e r i a l s in a t h o r i a c r u c i b l e in an 
e v a c u a t e d , i n d u c t i o n - h e a t e d fu rnace and p o u r i n g into a w a t e r - c o o l e d c o p p e r 
m o l d . The c a r b o n and n i t r o g e n a l loys w e r e p r e p a r e d by adding u r a n i u m -
c a r b o n and u r a n i u m - n i t r o g e n a r c - m e l t e d m a s t e r a l loy b u t t o n s . The c a s t i n g s 
c o n t a i n e d 1.85 ± 0.12 w / o U , and they w e r e e x t r u d e d to an 83% r e d u c t i o n 
in a r e a . 



The e x t r u d e d u n a l l o y e d u r a n i u m and the u r a n i u m - c a r b o n and 
u r a n i u m - n i t r o g e n a l loys w e r e h e a t t r e a t e d at 725°C for 10 m i n , w a t e r 
quenched , and then f u r t h e r a n n e a l e d at 620°C for one h o u r and cooled to 
r o o m t e m p e r a t u r e . The r e s u l t i n g a v e r a g e g r a i n d i a m e t e r w a s 60 jd . The 
u remium a l l o y s con ta in ing m e t a l l i c add i t ions w e r e a n n e a l e d a t 800°C for 
3 d a y s , s lowly coo led to 525°C, and a n n e a l e d at th i s t e m p e r a t u r e for 
14 days and coo led to r o o m t e m p e r a t u r e . The c h e m i c a l a n a l y s e s and den­
s i t i e s of the m a t e r i a l s b e f o r e i r r a d i a t i o n a r e l i s t e d in Tab le I. The a l loys 
l i s t e d in T a b l e I w e r e s e l e c t e d for s tudy b e c a u s e of the d i s s i m i l a r d i s ­
t r i b u t i o n of second p h a s e s in t h e i r m i c r o s t r u c t u r e s p r i o r to i r r a d i a t i o n . 

T a b l e I 

C H E M I C A L ANALYSES AND DENSITIES OF URANIUM 
AND URANIUM ALLOYS B E F O R E IRRADIATION 

M a t e r i a l 

U r a n i u m * 
U - 2 . 2 w / o Ti 
U - 1 . 8 w / o Mo 
U - 4 . 1 w / o Mo 
U - 6 . 5 w / o Mo 
U-9 .0 w / o Mo 
U - 4 . 3 w / o Z r 
U - 4 . 0 w / o Nb 

U r an ium 
U r a n i u m 

N o n m e t a l l i c I m p u r i t i e s (w/o) 

O 

0.0025 
0.0037 
0.0019 
0.0032 
0.0030 
0.0027 
0.0110 
0.0059 
0.0061 
0.0084 

N 

0.0028 
0.0014 
0.0035 

0.0019 
0.0016 
0.0022 
0.0103 
0.0190 
0.0027 

C 

0.0017 
0.0014 
0.0021 
0.0025 
0.0022 

0.0019 
0.0020 
0.0101 
0.0024 
0.1107 

D e n s i t y 
( g m / c c ) 

19.02 
17.94 
18.64 
18.31 
17.91 
17.49 
17.67 
18.10 
19.01 
18.82 

*The u r a n i u m a l so c o n t a i n e d 0.0007 w/o Al, 0.0001 w/o Cu, 
0.0001 w / o Mg, and 0.0015 w / o Si. 

S p e c i m e n s , 0.635 c m in d i a m e t e r and 1.270 c m in l eng th , w e r e cut 
f r o m the h e a t - t r e a t e d m a t e r i a l s and i n s e r t e d in t igh t - f i t t i ng s t a i n l e s s 
s t e e l i r r a d i a t i o n c a p s u l e s in g r o u p s of e ight and s e a l e d in a h e l i u m a t m o s ­
p h e r e . The c a p s u l e s w e r e i r r a d i a t e d in the M a t e r i a l s T e s t R e a c t o r at an 
e s t i m a t e d c e n t r a l m e t a l t e m p e r a t u r e of 275°C. Al though the s p e c i m e n s 
w e r e not c o m p l e t e l y c o n s t r a i n e d by the c a p s u l e be fo re i r r a d i a t i o n , t h i s 
cond i t ion o c c u r r e d d u r i n g i r r a d i a t i o n b e c a u s e of i r r a d i a t i o n - i n d u c e d 
g rowth . Af ter i r r a d i a t i o n , t he s p e c i m e n s w e r e r e m o v e d f r o m the c a p s u l e 
by p a r t i n g the c a p s u l e wa l l a long i t s l eng th . 

The i r r a d i a t e d s p e c i m e n s w e r e a n n e a l e d in a t a n t a l u m cup which 
w a s s u s p e n d e d in an Incone l tube e v a c u a t e d to O.OI-u p r e s s u r e and h e a t e d 



by a r e s i s t a n c e f u r n a c e . G a s e s wh ich w e r e evo lved f r o m the s p e c i m e n s 
du r ing h e a t i n g w e r e a d s o r b e d on a c t i v a t e d c h a r c o a l coo led with l iquid 
n i t r o g e n . The ac t iv i t y of the gas w a s con t i nuous ly m o n i t o r e d by an end-
window G e i g e r - M i i l l e r c o u n t e r , and a p p r o x i m a t e l y 10" cc of Kr (STP) 
p e r cc of s p e c i m e n could be d e t e c t e d wi th t h e a p p a r a t u s . The annea l ing 
t e m p e r a t u r e s w e r e m e a s u r e d wi th a c a l i b r a t e d c h r o m e l - a l u m e l t h e r m o ­
couple l o c a t e d about one c m f r o m the s p e c i m e n and w e r e c o n t r o l l e d to 
±0 .5°C. The s p e c i m e n s w e r e h e a t e d to and coo led f r o m the a n n e a l i n g t e m ­
p e r a t u r e at 4 ° C / m i n . 

The dens i t y of an i r r a d i a t e d s p e c i m e n w a s d e t e r m i n e d af ter e a c h 
a n n e a l i n g t r e a t m e n t by weigh ing the s p e c i m e n in a i r and in c a r b o n t e t r a ­
c h l o r i d e by m e a n s of a r e m o t e l y o p e r a t e d a n a l y t i c a l b a l a n c e c a p a b l e of 
weighing with a p r e c i s i o n of 0.05 m g . The t e m p e r a t u r e of the c a r b o n 
t e t r a c h l o r i d e w a s m e a s u r e d r e m o t e l y wi th a c a l i b r a t e d t h e r m i s t e r tha t 
w a s l o c a t e d about one c m f r o m the s p e c i m e n and w a s c a p a b l e of de t ec t i ng 
t e m p e r a t u r e c h a n g e s of 0 .01°C. P r i o r to we igh ing in t h e c a r b o n t e t r a ­
c h l o r i d e , the s p e c i m e n w a s left i m m e r s e d for 30 m i n to 2 h r , the e l a p s e d 
t i m e depending on the amoun t of b e t a and g a m m a h e a t i n g of the l iquid and 
on the a m o u n t of swe l l i ng of the s p e c i m e n . The m a x i m u m dev ia t ion of the 
d e n s i t y v a l u e s f r o m the a v e r a g e w a s ±0 .02 g m / c c . The a m o u n t of swel l ing 
w a s e x p r e s s e d as the r a t i o of the change in d e n s i t y on annea l ing to the den­
s i ty of the s p e c i m e n af ter i r r a d i a t i o n . 

After the a n n e a l i n g t r e a t m e n t s of the i r r a d i a t e d s p e c i m e n s w e r e 
c o m p l e t e d , t hey w e r e cut in two p i e c e s . One p i ece w a s u s e d for d e t e r ­
m i n i n g the n u m b e r of f i s s i o n s which had o c c u r r e d in the s a m p l e , and the 
o t h e r w a s ground on s i l i con c a r b i d e and p o l i s h e d with 3 - and l-^ci d i a m o n d 
p a s t e . Worked m e t a l which f o r m e d on the u r a n i u m s p e c i m e n s d u r i n g 
m e c h a n i c a l p o l i s h i n g w a s r e m o v e d by e l e c t r o l y t i c p o l i s h i n g for 2 m i n in 
a so lu t ion con ta in ing five p a r t s o r t h o p h o s p h o r i c ac id , five p a r t s e thy lene 
g lycol , and eight p a r t s e thyl a lcohol at a c u r r e n t d e n s i t y of 30 m a / c m ^ . 
The s p e c i m e n s w e r e then c a t h o d i c a l l y e t c h e d in an a r g o n a t m o s p h e r e at 
a p r e s s u r e of 20 û and a c u r r e n t d e n s i t y of about 0.3 m a / c m at 4 kv. The 
s p e c i m e n s w e r e coo led du r ing e t ch ing by conduc t ion t h r o u g h an a l u m i n u m 
tube con ta in ing ice w a t e r . The u n i r r a d i a t e d s p e c i m e n s of u r a n i u m with 
m e t a l l i c add i t ions w e r e e l e c t r o l y t i c a l l y p o l i s h e d in a so lu t ion of e ight p a r t s 
o r t h o p h o s p h o r i c ac id , five p a r t s e thy lene g lycol , and five p a r t s e thyl a l ­
cohol at a c u r r e n t d e n s i t y of 30 m a / c m to r e v e a l the d i s t r i b u t i o n of the 
s econd p h a s e s . 

The m i c r o s t r u c t u r e s of the i r r a d i a t e d and c a t h o d i c a l l y e t ched 
s p e c i m e n s at m a g n i f i c a t i o n s up to 750 d i a m e t e r s w e r e e x a m i n e d in the o p ­
t i c a l m i c r o s c o p e by m e a n s of n e g a t i v e r e p l i c a s p r e p a r e d with c e l l u l o s e 
a c e t a t e , o r by d i r e c t o b s e r v a t i o n in a b e t a - and g a m m a - s h i e l d e d op t i ca l 
m i c r o s c o p e . F o r e x a m i n a t i o n of the m i c r o s t r u c t u r e s at h i g h e r m a g n i f i c a ­
t i o n s , the n e g a t i v e c e l l u l o s e a c e t a t e r e p l i c a s w e r e shadowed with a 



11 

P t - 2 0 w / o P d a l loy and b a c k e d wi th c a r b o n . The c e l l u l o s e a c e t a t e on the 
c a r b o n r e p l i c a s w a s d i s s o l v e d in m e t h y l a c e t a t e , and the n e g a t i v e c a r b o n 
r e p l i c a s w e r e e x a m i n e d in a S i e m e n s E l m i s k o p I e l e c t r o n m i c r o s c o p e . 
H e n c e , p o r e s in the s u r f a c e of the o r i g i n a l s p e c i m e n w e r e m o u n d s on the 
n e g a t i v e c a r b o n r e p l i c a , wi th shadows ex tend ing f r o m t h e m , w h e r e a s 
m o u n d s on the s u r f a c e of the o r i g i n a l s p e c i m e n w e r e d e p r e s s i o n s in the 
n e g a t i v e c a r b o n r e p l i c a , wi th shadows wi th in t h e m . 

The e x p o s u r e of the s p e c i m e n s to the n e u t r o n s is r e p o r t e d in t e r m s 
of the f r a c t i o n of a l l a t o m s which had u n d e r g o n e f i s s ion o r , a s e x p r e s s e d 
m o r e b r i e f l y , a / o b u r n u p . The b u r n u p w a s d e t e r m i n e d f rom an a n a l y s i s of 

137 the i r r a d i a t e d s p e c i m e n s for f i s s i o n p r o d u c t C s and u r a n i u m i so topes 

The a m o u n t s of k r y p t o n and xenon in the i r r a d i a t e d and annea led 
s p e c i m e n s w e r e not d e t e r m i n e d e x p e r i m e n t a l l y . However , f r o m e x p e r i ­
m e n t a l da ta on the i so top ic y i e l d s of k r y p t o n and xenon f rom the f i s s i on of 
U^^ r e p o r t e d by B l a d e s , F l e m i n g , and Thode,(^^ 1 cc of u r a n i u m at 
1 a / o b u r n u p would con ta in 4.6 cc of gas (STP) . 

E X P E R I M E N T A L RESULTS 

Swel l ing of Una l loyed H i g h - p u r i t y U r a n i u m 

D e n s i t y m e a s u r e m e n t s . The dens i t y d e c r e a s e of i r r a d i a t e d u r a ­
n i u m s p e c i m e n s on pu l s e annea l ing up to 75 h r at v a r i o u s t e m p e r a t u r e s is 
shown in F i g u r e s 1 and 2. In F i g u r e 1 the dens i ty d e c r e a s e i s p lo t ted 

T 1 1 1 
g / SINGLE SPECIMEN aNNE/XLED 

AT EACH TEMPERATURE 

5 4 8 ° C ( 0 3 0 At % Burnup) 

4 6 3 » C { 0 2 9 A t % Burnup) 

20 40 60 
CUMULATIVE HOURS ANNEALED 

80 

Figure 1. Effect of Annealing on the Swelling of 
Irradiated Uranium 

200 400 600 800 
ANNEALING TEMPERATURE °C 

1000 

Figure 2. Effect of Annealing Temperature on 
the Swelling of Irradiated Uranium 
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a g a i n s t the a n n e a l i n g t i m e for s p e c i m e n s a n n e a l e d at the i n d i c a t e d t e m ­
p e r a t u r e . E a c h c u r v e r e p r e s e n t s the c u m u l a t i v e d e n s i t y d e c r e a s e of a 
s ing le s p e c i m e n , and e a c h point on a c u r v e r e p r e s e n t s t he t o t a l t i m e tha t 
the s p e c i m e n w a s a n n e a l e d at the i n d i c a t e d t e m p e r a t u r e . The a n n e a l i n g 

t i m e s p lo t t ed do not inc lude the 
t i m e s r e q u i r e d for the s p e c i m e n 
to h e a t to or to cool f r o m the a n ­
nea l i ng t e m p e r a t u r e for e a c h 
d e n s i t y d e t e r m i n a t i o n . In F i g ­
u r e 2 the d e n s i t y d e c r e a s e i s 
p lo t t ed a g a i n s t the a n n e a l i n g t e m ­
p e r a t u r e s for v a r i o u s p e r i o d s of 
a n n e a l i n g t i m e . T h e s e c u r v e s 
w e r e c o n s t r u c t e d f r o m t h o s e in 
F i g u r e 1 by s e l e c t i n g the i n d i c a t e d 
annea l ing t i m e s . 

t 
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Figure 3. Swelling of Uranium Specimens Irradiated 
about 0.30 a/o Burnup and Annealed 30min 
at Various Temperatures 

T h e s w e l l i n g of i n d i v i d u a l 
s p e c i m e n s a f t e r a n n e a l i n g 30 m i n 
a t v a r i o u s t e m p e r a t u r e s i s s h o w n 
in F i g u r e 3 . E a c h s p e c i m e n w a s 
i r r a d i a t e d b e t w e e n 0 . 2 8 a n d 
0 .31 a / o b u r n u p . 

T h e s w e l l i n g of i r r a d i a t e d u r a n i u m s p e c i m e n s w i t h d i f f e r e n t b u r n ­
u p s o n a n n e a l i n g 30 m i n a t s u c c e s s i v e l y h i g h e r t e m p e r a t u r e s i s s h o w n i n 
F i g u r e 4 . E a c h p o i n t o n a c u r v e 
r e p r e s e n t s t h e c u m u l a t i v e d e n s i t y 
d e c r e a s e of t h e s p e c i i n e n . 
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It i s a p p a r e n t f r o m the 
c u r v e s in F i g u r e s 2, 3, and 4 tha t 
a p r o n o u n c e d i n c r e a s e in the swe l l ­
ing of u r a n i u m c o m m e n c e s at about 
600°C, r e g a r d l e s s of w h e t h e r the 
s p e c i m e n s w e r e a n n e a l e d for e x ­
t e n d e d p e r i o d s of t i m e at t e m p e r ­
a t u r e ( see F i g u r e 2), a n n e a l e d only 
30 m i n at t e m p e r a t u r e ( see F i g ­
u r e 3), o r a n n e a l e d 30 m i n at s u c ­
c e s s i v e l y h i g h e r t e m p e r a t u r e s (see 
F i g u r e 4). The a m o u n t of swel l ing 
w a s l e s s t h a n 1% for s p e c i m e n s 
p u l s e a n n e a l e d up to 75 h r at t e m ­
p e r a t u r e s l e s s t han 550°C, but the a m o u n t of swe l l ing i n c r e a s e d a p p r e ­
c i ab ly for s p e c i m e n s a n n e a l e d at t e m p e r a t u r e s b e t w e e n 550°C and 650°C. 

SPECIMENS ANNEALED 30 
MINUTES AT SUCCESSIVELY 
HIGHER TEMPERATURES 

100 200 300 400 500 600 700 800 900 1000 

ANNEALING TEMPERATURE °C 

34112 

Figure 4. Swelling of Uranium Specimens on Annealing 
30 min at Successively Higher Temperatures 



A l s o , it i s a p p a r e n t t ha t the a m o u n t of swel l ing is dependen t on the 
a l l o t r o p i c s t r u c t u r e of the u r a n i u m at the annea l ing t e m p e r a t u r e and on 
the a l l o t r o p i c t r a n s f o r m a t i o n s . S p e c i m e n s on pu lse a n n e a l i n g up to 75 h r 
at 6 l8°C in the a lpha o r t h o r h o m b i c p h a s e d e c r e a s e d in dens i t y by a p p r o x i ­
m a t e l y 18%, w h e r e a s p u l s e a n n e a l i n g up to 75 h r at t e m p e r a t u r e s b e t w e e n 
650°C and 750°C in the b e t a t e t r a g o n a l p h a s e p r o d u c e d a d e c r e a s e in the 
d e n s i t y of only about 5%, and a s p e c i m e n pu l se a n n e a l e d up to 1 6 h r at 
822°C in the g a m m a cubic p h a s e d e c r e a s e d in dens i ty by about 20%. 

The r a t e of swe l l ing w a s h i g h e s t du r ing the f i r s t few h o u r s of 
a n n e a l i n g . In the c a s e of s p e c i m e n s a n n e a l e d b e t w e e n 650°C and 750°C, 
the r a t e of swe l l ing d e c r e a s e d with t i m e to the extent t ha t a f te r the f i r s t 
3 h r of annea l ing the d e n s i t y d e c r e a s e d by l e s s than 1% on f u r t h e r a n n e a l ­
ing up to 75 h r . 

The d i m e n s i o n s of the s w e l l e d s p e c i m e n s w e r e u n i f o r m l y l a r g e r a s 
c o m p a r e d wi th the d i m e n s i o n s of the a s - i r r a d i a t e d s p e c i m e n s p r i o r to 
a n n e a l i n g . 

M i c r o s t r u c t u r e s b e f o r e axid a f t e r i r r a d i a t i o n . P o r e s b e t w e e n 
0.02 and 0 . 0 6 ^ in d i a m e t e r and in c o n c e n t r a t i o n s of a p p r o x i m a t e l y 1 0 /cna 
w e r e o b s e r v e d in the m i c r o s t r u c t u r e s both be fo re and a f te r i r r a d i a t i o n 
( see F i g u r e s 5c and 6b); p o r e s wi th a d i a m e t e r g r e a t e r t h a n 0 .06/ i w e r e 
a l m o s t n o n e x i s t e n t ( see F i g u r e s 5 and 6). The p o r e s in the a s - i r r a d i a t e d 
u r a n i u m w e r e s u r r o u n d e d by a d a r k e n e d a r e a which w a s not p r e s e n t a r o u n d 
the p o r e s in the u n i r r a d i a t e d u r a n i u m . The 0 .02- to 0 . 0 6 - ^ p o r e s in the 
u n i r r a d i a t e d and a s - i r r a d i a t e d u r a n i u m w e r e d i s t i n g u i s h a b l e only at m a g ­
n i f i ca t i ons g r e a t e r than 32,000X; the effect of annea l ing w a s to m a k e p o r e s 
wi th d i amie t e r s l e s s t h a n 0.06 jU e a s i l y d i s t i n g u i s h a b l e at m u c h l o w e r m a g ­
n i f i ca t i ons ( see F i g u r e 8d). C r a c k s w e r e not ev iden t in the m i c r o s t r u c t u r e 
of the a s - i r r a d i a t e d u r a n i u m a l though the m a t e r i a l a p p e a r e d s e v e r e l y d i s ­
t o r t e d ( see F i g u r e 6a). 

M i c r o s t r u c t u r e s a f t e r a n n e a l i n g at t e m p e r a t u r e s up to 650°C in 
the a lpha p h a s e . ' The m i c r o s t r u c t u r e of a u r a n i u m s p e c i m e n i r r a d i a t e d to 
0.29 a / o b u r n u p and a n n e a l e d 75 h r at 463°C a p p e a r e d s i m i l a r to the 
m i c r o s t r u c t u r e of the a s - i r r a d i a t e d m a t e r i a l . The d e n s i t y of th i s s p e c i ­
m e n d e c r e a s e d by 0 .11%. 

P o r e s b e t w e e n 0.02 and 0.3 jd in d i a m e t e r w e r e o b s e r v e d in the 
m i c r o s t r u c t u r e of a s p e c i m e n i r r a d i a t e d to 0.30 a / o b u r n u p and a n n e a l e d 
69 h r at 548°C ( see F i g u r e 7). The l a r g e s t p o r e s w e r e l o c a t e d on g r a i n 
b o u n d a r i e s or s u b g r a i n b o u n d a r i e s . A l s o , s t r i n g s of p o r e s w e r e o b s e r v e d 
in the m i c r o s t r u c t u r e of t h i s s p e c i m e n (see F i g u r e 7a) , which w e r e p r e ­
s u m a b l y f o r m e d on the b o u n d a r i e s of e l o n g a t e d g r a i n s p r e s e n t in the a s -
i r r a d i a t e d m a t e r i a l ( see F i g u r e 6a) . It could not be a s c e r t a i n e d w h e t h e r 
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Figure 5. Microsuuctures of Uranium before Irradiation 
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Figure 6. Microstructures of Uranium after Irradiation to 0.30 a/o Burnup 
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Figure 7. Microstructures of Uranium Irradiated to 0,30 a/o Burnup and 
Annealed 69 hr at 548°C. 



the m o r e r e g u l a r l y s h a p e d g r a i n s wi th p o r e s on t h e i r b o u n d a r i e s w e r e 
g r a i n s of r e c r y s t a l l i z e d m a t e r i a l , s u b g r a i n s f o r m e d by r e c o v e r y of the 
i r r a d i a t e d m a t e r i a l , or g r a i n s p r e s e n t in the a s - i r r a d i a t e d condi t ion . 
T h i s s p e c i m e n d e c r e a s e d in d e n s i t y by 1.01%. 

T h e r e w a s e v i d e n c e of p a r t i a l r e c r y s t a l l i z a t i o n in the m i c r o s t r u c ­
t u r e of a s p e c i m e n i r r a d i a t e d to 0.30 a / o b u r n u p and a n n e a l e d 30 m i n at 
625°C (see F i g u r e 8). The ev idence for t h i s is the shape of the g r a i n s and 
the d i f fe ren t o r i e n t a t i o n wi th in the n e i g h b o r i n g g r a i n s of the s t r i a t e d s t r u c ­
t u r e wh ich w a s p r o d u c e d by the ca thod ic e t ch ing ( see F i g u r e 8a) . The d i a m ­
e t e r s of the p o r e s in t h i s s p e c i m e n r a n g e d f r o m 0.02 to 1.3 / i , and the 
l a r g e s t p o r e s w e r e s i t u a t e d m o s t l y on g r a i n b o u n d a r i e s (see F i g u r e s 8a, 
8b, and 8c) . In t h o s e a r e a s of F i g u r e 8b which w e r e r e l a t i v e l y f r ee f r o m 
l a r g e - d i a m e t e r p o r e s , n u m e r o u s p o r e s wi th d i a m e t e r s b e t w e e n 0.02 and 
0 .06 / i w e r e p r e s e n t (see F i g u r e 8d). T h i s s p e c i m e n d e c r e a s e d in dens i t y 
by 2.28%. 

S p e c i m e n s i r r a d i a t e d to 0.24 o r 0.27 a / o b u r n u p and a n n e a l e d 75 h r 
at 6 l8°C w e r e d e t e r m i n e d , f r o m m e a s u r e m e n t s on p h o t o m i c r o g r a p h s of 
a r e a s in which t h e r e w e r e l a r g e d i a m e t e r p o r e s , to be about 75% r e c r y s ­
t a l l i z e d , and the d i a m e t e r of the g r a i n s w a s a p p r o x i m a t e l y 6 jd ( see F i g ­
u r e s 9 and 10). The p o r e s in t h e s e s p e c i m e n s had d i a m e t e r s b e t w e e n 
0.02 and 2.5 jd, and the p o r e s wi th the l a r g e s t d i a m e t e r w e r e m o s t l y 
l o c a t e d on g r a i n b o u n d a r i e s . The n u m b e r of p o r e s w a s s ign i f i can t ly r e ­
duced o r w e r e not p r e s e n t at a l l w i th in the r e c r y s t a l l i z e d g r a i n s (see 
F i g u r e s 9b and 10). In the u n r e c r y s t a l l i z e d a r e a s of F i g u r e s 9a and 9b, 
wh ich w e r e r e l a t i v e l y f r e e of l a r g e - d i a m e t e r p o r e s , the m i c r o s t r u c t u r e 
a p p e a r e d s i m i l a r to tha t shown in F i g u r e 8d. C r a c k s w e r e a l m o s t n o n ­
e x i s t e n t in s p e c i m e n s a n n e a l e d at 6l8°C o r at l o w e r t e m p e r a t u r e s . The 
d e c r e a s e in d e n s i t y of s p e c i m e n s a n n e a l e d 75 h r at 6l8°C was about 18%. 

M i c r o s t r u c t u r e s a f te r a n n e a l i n g at t e m p e r a t u r e s b e t w e e n 650°C 
and 750°C in the b e t a p h a s e . P o r e s wi th d i a m e t e r s b e t w e e n 0.02 and 1.3/i 
w e r e u n i f o r m l y d i s t r i b u t e d in the m i c r o s t r u c t u r e s of s p e c i m e n s a n n e a l e d 
b e t w e e n 650°C and 750°C in the b e t a p h a s e (see F i g u r e s l i b and 12), and 
c r a c k s w e r e p r e v a l e n t a long g r a i n b o u n d a r i e s (see F i g u r e 11a). The p o r e s 
ad j acen t to c r a c k s o r a long g r a i n b o u n d a r i e s did not a p p e a r to be s u b s t a n ­
t i a l l y l a r g e r t h a n the p o r e s wi th in the g r a i n s . The a m o u n t of g r a i n b o u n d a r y 
c r a c k i n g did not a p p r e c i a b l y i n c r e a s e on ex tend ing the annea l ing t i m e f r o m 
30 m i n at 670°C to 75 h r at 740°C. 

A s p e c i m e n a n n e a l e d at 651°C h a d a m i c r o s t r u c t u r e s i m i l a r to 
s p e c i m e n s a n n e a l e d at h i g h e r t e m p e r a t u r e s in the b e t a p h a s e , even though 
for h i g h - p u r i t y u r a n i u m t h i s t e m p e r a t u r e is wel l wi th in the a lpha p h a s e . 
A l s o , the s p e c i m e n d e c r e a s e d in d e n s i t y in a m a n n e r s i m i l a r to o the r 
s p e c i m e n s a n n e a l e d at 700°C and 740°C (see F i g u r e 1). The d e c r e a s e in 
d e n s i t y of s p e c i m e n s a n n e a l e d up to 75 h r at t e m p e r a t u r e s in the b e t a 
p h a s e w a s about 5%. 



102860 Negative Replica 5200X 

(a) 

102861 Negauve Replica IS.OOOX 

(c) 

102864 Negative Replica 5200X 

(b) 

102349 Negative Replica 16,000X 

(d) 

Figure 8. Microstructures of Uranium Inadiated to 0.30 a/o Burnup and Annealed 30 min at 625°C 
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(a) 

110492 Negauve Replica 768X 

102406 Negative Replica 520 OX 

Figure 9. Microstructures of Uranium Irradiated to 0.24 a/o Burnup and 
Annealed 75 hr at 618°C 

(b) 
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102359 Negative Replica 20,OOOX 

Figure 10. Microstructure of Uranium Irradiated to 0.27 a/o Burnup and Annealed 75 hr at 618°C 



(a) 

33402 Polarized Light lOOX 

(b) 

102355 Negative Replica 5200X 

Figure 11. (a) Microstructure of Uranium Irradiated to 0.30 a/o Burnup and 
Annealed 30 mm at 731°C. 

(b) Microstructure of Uranium Inadiated to 0.28 a/o Burnup and 
Annealed 30 mm at 670°C. 
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(a) 

102868 Negative Replica 520 OX 

102866 

(b) 

Negative Replica le.OOOX 

Figure 12. Microstructures of Uranium Irradiated to 0.25 a/o Burnup and 
Annealed 75 hr at 740°C 



M i c r o s t r u c t u r e s a f te r annea l ing at t e m p e r a t u r e s in the g a i n m a 
p h a s e . P o r e s with d i a m e t e r s b e t w e e n 0.02 and 2.5 jd w e r e p r e s e n t in the 
m i c r o s t r u c t u r e of a s p e c i m e n i r r a d i a t e d to 0.31 a / o b u r n u p and a n n e a l e d 
30 m i n at 860°C (see F i g u r e 13). A r e a s about 2 ^ in width and denuded of 
p o r e s w e r e o b s e r v e d to c o u r s e t h r o u g h the m i c r o s t r u c t u r e . The con f igu ra ­
t ion of t h e s e a r e a s s u g g e s t s tha t they a r e a s s o c i a t e d with g r a i n b o u n d a r i e s 
m the g a m m a p h a s e . P o r e s on one s ide of the denuded a r e a s w e r e m o r e 
r e g u l a r l y s p a c e d and g e n e r a l l y l a r g e r in d i a m e t e r t han p o r e s on the o the r 
s ide . The p o r e s wi th in the g r a i n s w e r e u n i f o r m l y d i s t r i b u t e d , and the d i ­
a m e t e r s of the p o r e s w e r e about the s a m e as t hose along the a r e a s denuded 
of p o r e s . The d e c r e a s e in d e n s i t y of t h i s s p e c i m e n was 7.84%. 

A s p e c i m e n i r r a d i a t e d 0.24 a / o b u r n u p and a n n e a l e d 1 6 h r at 822°C 
con ta ined l a r g e p o r e s with d i a m e t e r s up to 21 ^ a r r a n g e d in a con f igu ra ­
t ion which s u g g e s t s tha t they a r e a s s o c i a t e d with g r a i n b o u n d a r i e s in the 
g a m m a p h a s e (see F i g u r e 14). Many of the l a r g e p o r e s along the g r a i n 
b o u n d a r i e s jo ined to f o r m e l o n g a t e d p o r e s , and the po re d i a m e t e r and in-
t e r p o r e spac ing g e n e r a l l y d e c r e a s e d with d i s t ance f rom the g r a i n bound­
a r i e s . The a r e a s a long g r a i n b o u n d a r i e s denuded of p o r e s w e r e not so 
wel l defined a s in the s p e c i m e n a n n e a l e d 30 m i n at 860°C. T h e r e was 
s o m e ev idence of p l a s t i c d e f o r m a t i o n in the v ic in i ty of the l a r g e p o r e s on 
g r a i n b o u n d a r i e s . D e f o r m a t i o n twins a p p e a r e d to e m a n a t e f r o m t h e s e 
p o r e s , and the m a t r i x ad jacen t to the p o r e s a p p e a r e d d e f o r m e d (see F i g ­
u r e 15). The p l a s t i c d e f o r m a t i o n of the u r a n i u m m a t r i x m a y have r e s u l t e d 
f r o m cool ing the s p e c i m e n to a m b i e n t t e m p e r a t u r e . T h e r e w e r e n u m e r o u s 
c r a c k s v i s i b l e in the i n i c r o s t r u c t u r e of t h i s s p e c i m e n , but c r a c k i n g was 
not so e x t e n s i v e as in s p e c i m e n s a n n e a l e d in the b e t a p h a s e . The d e c r e a s e 
in dens i t y of t h i s s p e c i m e n w a s 19-86%. 

S izes and d i s t r i b u t i o n of p o r e s . The effect of the di f ferent a n n e a l ­
ing t r e a t m e n t s on the n u m b e r and s ize of the p o r e s was d e t e r m i n e d by 
e x a m i n i n g a p p r o x i m a t e l y 10 p o r e s in the m i c r o s t r u c t u r e s of s e v e r a l s p e c i ­
m e n s . The n u m b e r of p o r e s with d i a m e t e r s m exponen t ia l ly i n c r e a s i n g 
s i ze r a n g e s i s p r e s e n t e d for t h e s e s p e c i m e n s in Table II, and h i s t o g r a m s 
for t h e s e da ta a r e p r e s e n t e d in F i g u r e s 16 and 17. 

Table I 

DISTRIBUTION OF POROSITY IN IRRADIATED AND ANNEALED URANIUM SPECIMENS 

Specimen 
Heat Treatment 

30 mm at 6250C 

75hrat6lSPC 

30 mm at670»C 

75 fir at y^oc 

30 mm at 86000 

16hrat8220C 

Number of Pores Per cm2 in Given Size Ranges 
(Ml 

0 02 to 0.06 

~ 1 X 10' 

~ 1 X 10' 

~ 3 X lO' 

~ 1 X lo ' 

~ 3 X 10? 

~ 3 X lO' 

0.06 to 0 15 

2xU)7 

3xl06 

8x10? 

5x10? 

4xU) ' 

3x10? 

0 15 to 0 3 

I x i o ' 

6 x # 

5x 10? 

5 x l 0 ' 

5x10? 

3x10? 

0 3to0 6 

5x10^ 

9x10* 

9 x # 

1 xlO? 

2x10? 

2x10? 

0 6 to 1 3 

6xl05 

9xl06 

5X1D5 

2 x # 

2x10* 

5x10* 

13to25 

1x10* 

5xl05 

7 x 105 

2 5 to 5 1 

3xl05 

5 1 to 10 2 

8x10" 

102to210 

I x i o " 

2T/(4n,dfl' 

31 

121 

44 

54 

83 

19 3 

Density-'" 
Decrease 

2 28 

17 20 

3 66 

4 53 

784 

19 86 

"The ratio of the change m density to the initial density - 27r/(4n|d|) 

'"•The ratio of the change m density to the initial density as determined by the buoyancy technique 
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102458 Negative Replica 5200X 

Figure 13. Microstructure of Uranium Irradiated to 0.31 a/o Burnup and 
Annealed 30 min at 860°C 
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- • • • . , » , , » ^ , « . . • . _ • • • • 

(a) 

33417 Bright Field lOOX 

(b) 

102466 Negative Replica 520 OX 

Figure 14. Microstructures of Uranium Irradiated to 0,24 a/o Bum up and 
Annealed 16 hr at 822°C 
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. i / : ^ ^ ^ * * * * ' / - . 

102469 Negative Replica 20,000X 

Figure 15. Pores on Grain Boundary of Uranium Irradiated to 0.24 a/o Burnup 
and Annealed 16 hr at 822°C 
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Figure 16 Histograms Showing Distribution of Porosity Figure 17. Histograms Showing Distribution of Porosity 
in Irradiated Uranium Specimens after m Irradiated Uranium Specimens after 
Annealing 30 mm at 625°C, 670°C, or Annealing for Extended Times at 618°C, 
860°C 740°C, or 822°C 

T h e t o t a l n u m b e r of p o r e s m s p e c i m e n s a n n e a l e d m e i t h e r t h e 
a l p h a , b e t a , o r g a m m a p h a s e d i d n o t d e c r e a s e s i g n i f i c a n t l y o n e x t e n d i n g 
t h e a n n e a l i n g t i m e f r o m 30 m m t o 16 o r 75 h r H o w e v e r , t h e t o t a l n u m b e r 
of p o r e s m s p e c i m e n s a n n e a l e d m t h e b e t a o r g a m m a p h a s e w a s a b o u t a n 
o r d e r of m a g n i t u d e l e s s t h a n w h e n a n n e a l e d m t h e a l p h a p h a s e E x t e n s i o n 
of t h e a n n e a l i n g t m n e s a t t e m p e r a t u r e s m t h e a l p h a a n d g a m m a p h a s e h a d 
t h e e f f e c t of e x t e n s i o n of t h e s i z e r a n g e s to h i g h e r v a l u e s ; h o w e v e r , t h i s 
w a s n o t t h e c a s e o n a n n e a l i n g m t h e b e t a p h a s e T h u s , t h e d i a m e t e r of t h e 
l a r g e s t p o r e s m s p e c i m e n s a n n e a l e d a b o u t 620°C m t h e a l p h a p h a s e i n ­
c r e a s e d f r o m 1.3 (U t o 2 5 jU o n e x t e n d i n g t h e a n n e a l i n g t i m e f r o m 30 m m 
to 75 h r , w h e r e a s t h e l a r g e s t p o r e s m s p e c i m e n s a n n e a l e d m t h e b e t a 
p h a s e h a d a d i a m e t e r a b o u t 1 3 /i r e g a r d l e s s of t h e a n n e a l i n g t i m e o r t e m ­
p e r a t u r e T h e d i a m e t e r of t h e l a r g e s t p o r e s m s p e c i m e n s a n n e a l e d a t 
t e m p e r a t u r e s m t h e g a m m a p h a s e i n c r e a s e d f r o m 2 5 /i t o 21 jU on e x t e n d ­
ing t h e a n n e a l i n g t i m e f r o m 30 m m a t 860°C t o 16 h r a t 822°C 
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T h e s i z e s a n d d i s t r i b u t i o n s of p o r e s in t h e a n n e a l e d s p e c i m e n s c a n 
a l s o b e u s e d t o c a l c u l a t e t h e v o l u m e c h a n g e s a n d t o c o m p a r e t h e s e w i t h 
t h e m e a s u r e d d e n s i t y c h a n g e s . S i n c e i t w a s p o s s i b l e to o b s e r v e b u b b l e s 
o n l y a s t h e y i n t e r s e c t e d a p l a n e s e c t i o n , i t w a s a s s u m e d t h a t t h e r e w e r e 
N i , N2, . . . Nĵ  b u b b l e s p e r u n i t v o l u m e of s p e c i m e n w i t h r a d i i of r i , r 2 , . . . r^ . 
T h e n u m b e r of b u b b l e s p e r u n i t v o l u m e of s p e c i m e n w a s d e d u c e d f r o m t h e 
n u m b e r of p o r e s p e r c m ^ , n^, o b s e r v e d i n t h e m i c r o s t r u c t u r e b y m e a n s of 
t h e e q u a t i o n ! ^ ^/ 

N i - n i / 2 r i 

T h e p o r e d i a m e t e r s d i o b s e r v e d i n t h e m i c r o s t r u c t u r e s w e r e r e l a t e d to 
t h e t r u e b u b b l e r a d i i r^ b y ' ^ ^ / 

T h e r a t i o of t h e v o l u m e i n c r e a s e of t h e s p e c i m e n s , AV, t o t h e f i n a l s p e c i ­
m e n v o l u m e Vf (Vf = v o l u m e a f t e r a n n e a l i n g ) i s g i v e n b y 

AV v^ 477 ^, 3 

V7 = I — î̂ ^ 

T h e r a t i o of t h e v o l u r a e i n c r e a s e of t h e s p e c i m e n t o t h e f i n a l s p e c i m e n 
v o l u m e i s e q u i v a l e n t t o t h e r a t i o of t h e d e c r e a s e in d e n s i t y of t h e s p e c i ­
m e n , A p , t o t h e i n i t i a l s p e c i m e n d e n s i t y p ^ (p^ = d e n s i t y b e f o r e a n n e a l i n g ) . 
T h e s u b s t i t u t i o n f o r N^ a n d r^ in t e r m s of n i a n d di y i e l d s t h e e x p r e s s i o n 

AV _ Ap _ V- 77 ,2 Z 77 i 2 

T h i s e x p r e s s i o n w a s e v a l u a t e d for s e v e r a l a n n e a l e d s p e c i m e n s , and the 
r e s u l t s a r e p r e s e n t e d in T a b l e II. The d e c r e a s e in d e n s i t y c a l c u l a t e d 
f r o m the d i s t r i b u t i o n of the n u m b e r and s i z e s of p o r e s o b s e r v e d in the 
s p e c i m e n s a g r e e s r e a s o n a b l y wel l wi th the d e n s i t y d e c r e a s e d e t e r m i n e d 
e x p e r i m e n t a l l y , c o n s i d e r i n g the v e r y l a r g e n u m b e r of p o r e s to be coun ted 
to ob ta in r e p r e s e n t a t i v e d i s t r i b u t i o n s , the l ack of d i r e c t o b s e r v a t i o n of 
t r u e bubble s i z e s , the n o n u n i f o r m d i s t r i b u t i o n of p o r o s i t y in l o c a l i z e d 
a r e a s , and the diff icul ty in m e a s u r i n g n o n s p h e r i c a l p o r e s . 

The s i z e s and d i s t r i b u t i o n s of p o r e s w e r e a p p r o x i m a t e l y the s a m e 
at the c e n t e r and n e a r the s u r f a c e of the s p e c i m e n s . 

F i s s i o n gas r e l e a s e . No d e t e c t a b l e amoun t of r a d i o a c t i v e f i s s i o n 

gas w a s evo lved f r o m s p e c i m e n s of i r r a d i a t e d u r a n i u m or u r a n i u m a l loy 
d u r i n g a n n e a l i n g . S ince a p p r o x i m a t e l y 10" cc of Kr p e r cc of s p e c i m e n 
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could be d e t e c t e d wi th the a p p a r a t u s , the v o l u m e of k r y p t o n and xenon g a s 
r e l e a s e d f r o m the s p e c i m e n s at a n n e a l i n g t e m p e r a t u r e s up to 860°C w a s 
p r o b a b l y l e s s than 10"* cc p e r cc of s p e c i m e n . ^^^ 

Swel l ing of U r a n i u m Al loys 

Dens i t y m e a s u r e m e n t s . The dens i t y d e c r e a s e of s e v e r a l u r a n i u m 
a l loys on annea l ing up to 75 h r at 6 l8°C and 740°C is shown in F i g u r e s 18 
and 19, r e s p e c t i v e l y . E a c h c u r v e r e p r e s e n t s the c u m u l a t i v e dens i ty d e ­
c r e a s e of a s ing le s p e c i m e n , and each point on a c u r v e r e p r e s e n t s the 
to ta l c u m u l a t i v e t i m e t h a t the s p e c i m e n w a s at the i nd i ca t ed t e m p e r a t u r e . 
The dens i t y d e c r e a s e of an una l l oyed u r a n i u m s p e c i m e n i s inc luded for 
c o m p a r i s o n . 
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Figure 18. Effect of Annealing at 618°C on the 
Swelling of Irradiated Uranium Alloys 

Figure 19. Effect of Annealing at 740°C on the 
Swelling of Irradiated Uranium Alloys 

T h e s w e l l i n g b e h a v i o r of U - 6 . 5 w / o M o a l l o y s p e c i m e n s i r r a d i a t e d 
t o 0 . 1 9 , 0 . 3 5 , 0 . 4 8 , a n d 0 . 7 3 a / o b u r n u p i s s h o w n in F i g u r e 20 . E a c h c u r v e 
r e p r e s e n t s t h e c u m u l a t i v e d e n s i t y d e c r e a s e of a s i n g l e s p e c i m e n o n a n n e a l ­
i n g f o r 30 m i n a t s u c c e s s i v e l y h i g h e r t e m p e r a t u r e s . 
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Alloying with m e t a l l i c e l e m e n t s a p p a r e n t l y r e s u l t e d in i n c r e a s e d 
swel l ing . An excep t ion w a s the b e h a v i o r of the U-4 .0 w / o Nb al loy at 
6 l8°C. The effect of n i t r o g e n w a s s m a l l at 6 l8°C , but it s u b s t a n t i a l l y in ­
c r e a s e d the swe l l ing at 740°C. C a r b o n , on the o the r hand , s u b s t a n t i a l l y 
d e c r e a s e d the swel l ing at 6 l 8 ° C , but had only a s l ight effect at 740°C. The 
m a j o r amount of swe l l i ng o c c u r r e d wi th in the f i r s t 1 5 h r of annea l ing . 

M i c r o s t r u c t u r e s be fo re i r r a d i a t i o n . The m i c r o s t r u c t u r e s of the 

u r a n i u m a l loys be fo re i r r a d i a t i o n a r e shown in F i g u r e s 2 1 , 22, and 23. 
The m i c r o s t r u c t u r e s of the a l loys a f te r i r r a d i a t i o n w e r e not e x a m i n e d . 

DISCUSSION OF RESULTS 

H i g h - p u r i t y U r a n i u m 

Annea l ing in a lpha p h a s e . The s ign i f ican t a s p e c t of the swel l ing 
b e h a v i o r in the a lpha p h a s e of u r a n i u m is the s h a r p r i s e in swe l l ing as the 
annea l ing t e m p e r a t u r e i s r a i s e d above about 550°C. Be low t h i s t e m p e r a ­
t u r e , 75 h r of annea l ing p r o d u c e d a dens i t y d e c r e a s e of 1% or l e s s , w h e r e a s 
at 6l8°C dens i ty d e c r e a s e s of about 18% w e r e o b s e r v e d . In t h i s l a t t e r 
r e s p e c t the r e s u l t s differ f r o m those of P u g h , ' ^ / who r e p o r t s swe l l ing only 
of the o r d e r of 1% on annea l ing in the a lpha p h a s e . B i e r l e i n , L e g g e t t , 
M a s t e l , and Weber, '- -' h o w e v e r , l i k e w i s e r e p o r t tha t t he d e n s i t y d e c r e a s e s 
a p p r e c i a b l y on annea l ing at 600°C. 

The p r o n o u n c e d i n c r e a s e in swe l l ing at about 600°C is a s s o c i a t e d 
with the p r e s e n c e of n u m e r o u s bubb le s with d i a m e t e r s up to 2.5 jd . B u b b l e s 
with the l a r g e s t d i a m e t e r s w e r e noted to f o r m in a r e a s which had r e c r y s -
t a l l i z e d to p r o d u c e g r a i n s wi th d i a m e t e r s of about 6 [i, and the bubb le s 
w e r e o b s e r v e d to be l o c a t e d m o s t l y on g r a i n b o u n d a r i e s . T h e s e o b s e r v a ­
t ions s u g g e s t tha t r e c r y s t a l l i z a t i o n is a n e c e s s a r y p r e r e q u i s i t e for 
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Figure 22. Microstructures of (a) U-4.1 w/o Mo, (b) U-6.5 w/o Mo, 
(c) U-9.0 w/o Mo Alloys before Irradiation 
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Figure 23. Microstructures of (a) U-4.0 w/o Nb and 
(b) U-4.3 w/o Zr Alloys before Irradiation 
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p r o n o u n c e d swe l l i ng to t a k e p l a c e . E v i d e n c e for t h i s is a l s o p r o v i d e d by 
the o b s e r v a t i o n tha t in u n r e c r y s t a l l i z e d a r e a s the m a j o r i t y of the p o r e s 
had d i a m e t e r s of l e s s t h a n 0.1 p.. A r e c r y s t a l l i z e d f i n e - g r a i n e d s t r u c t u r e 
h a s a l s o b e e n o b s e r v e d by B i e r l e i n , M a s t e l , and L e g g e t t l ^ ^ ) on annea l ing 
at 600°C. 

The m e c h a n i s m w h e r e b y the k r y p t o n and xenon f i s s i o n p r o d u c t 
atonns change t h e i r r e l a t i v e l y u n i f o r m d i s t r i b u t i o n in the u r a n i u m m a t r i x 
at s o m e t i m e du r ing i r r a d i a t i o n to a n o n u n i f o r m d i s t r i b u t i o n in the f o r m 
of b u b b l e s on g r a i n b o u n d a r i e s du r ing s u b s e q u e n t a n n e a l i n g i s not a l t o g e t h e r 
c l e a r . The o b s e r v a t i o n of the a p p e a r a n c e of 0 .02- to 0 .06- / i p o r e s wi th a 
c o n c e n t r a t i o n of about 10^ / c m ^ , which c o r r e s p o n d s to the r e p o r t e d d i s l o ­
ca t ion d e n s i t y in a n n e a l e d uranium, '^-^^ c o m p l i e d wi th the a b s e n c e o r s i g ­
n i f icant r e d u c t i o n of p o r o s i t y wi th in r e c r y s t a l l i z e d a r e a s , which s u g g e s t s 
the p o s s i b i l i t y of a s s o c i a t i o n of xenon and k r y p t o n a t o m s with d i s l o c a t i o n s 
du r ing i r r a d i a t i o n and t h e i r be ing s u b s e q u e n t l y swept to g r a i n b o u n d a r i e s 
by the r e c r y s t a l l i z a t i o n and g r a i n g rowth p r o c e s s . 

The m e c h a n i s m w h e r e b y the c o l l e c t i o n of gas a t o m s in m i c r o s c o p i c 
bubb l e s on g r a i n b o u n d a r i e s r e s u l t s in a m a c r o s c o p i c v o l u m e i n c r e a s e is 
a l so o b s c u r e . One p o s s i b i l i t y tha t s u g g e s t s i t se l f is tha t the v o l u m e in­
c r e a s e p r o c e e d s by the d e p o s i t i o n of u r a n i u m a t o m s at i n t e r n a l s u r f a c e s , 
i . e . , g r a in b o u n d a r i e s . T h i s could o c c u r a s a r e s u l t of v a c a n c i e s diffusing 
to e x i s t i n g g a s - f i l l e d b u b b l e s o r s o m e gas a t o m - v a c a n c y c o m p l e x e s a g ­
g l o m e r a t i n g at p r e f e r r e d s i t e s on the g r a i n b o u n d a r i e s . GreenwoodW/ h a s 
shown f r o m c o n s i d e r a t i o n s of f r e e e n e r g y t h a t for v a c a n c i e s to diffuse to 
a bubble the gas p r e s s u r e in the bubble m u s t be g r e a t e r than the s u r f a c e 
t e n s i o n r e s t r a i n i n g p r e s s u r e at the b u b b l e / m a t r i x i n t e r f a c e . F r o m the 
idea l gas law, the a v e r a g e gas p r e s s u r e P a v i". a bubble is given by 

AV) 
P a v \rr- = q^T 

w h e r e q is a c o n s t a n t and b is the a t o m i c p e r cent b u r n u p . F r o m the f i s ­
sion g a s y i e l d w ) the va lue of q w a s c a l c u l a t e d t o b e 1. 7 x 10 dynes cm"^ (°K)~'' 
for one a / o b u r n u p . The a v e r a g e s u r f a c e t e n s i o n r e s t r a i n i n g p r e s s u r e P ^ 
is given^-'-'*^ a s 

Pr ~ 4 ^ 2 / 3 7 X ^i 

If for 7 , the s u r f a c e t e n s i o n of the b u b b l e / m a t r i x i n t e r f a c e , a va lue of ap­
p r o x i m a t e l y lO'̂  d y n e s / c m ( l ^ ) i s u s e d a long wi th the da ta in Tab le II, the 
v a l u e s of P a v a-^d P j . for a s p e c i m e n i r r a d i a t e d to 0.24 a / o b u r n u p and 
a n n e a l e d 75 h r at 6 l8°C a r e 2 x 10^ d y n e s / c m ^ and 1 x 10® d y n e s / c m ^ , 
r e s p e c t i v e l y . The c o r r e s p o n d i n g v a l u e s for a s p e c i m e n i r r a d i a t e d to 
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0.30 a / o b u r n u p and a n n e a l e d for 30 m i n at 625°C a r e 2 x 10® d y n e s / c m 
and 4 x 10® d y n e s / c m ^ . T h u s , the a v e r a g e gas p r e s s u r e in the b u b b l e s i s 
l e s s t han the s u r f a c e t e n s i o n r e s t r a i n i n g p r e s s u r e , and it i s t h e r e f o r e dif­
f icul t to see on the b a s i s of G r e e n w o o d ' s c o n c e p t s the r e a s o n s for v a c a n c y 
m i g r a t i o n to e x i s t i n g g a s - f i l l e d b u b b l e s . The s u g g e s t e d a l t e r n a t i v e of the 
f o r m a t i o n of gas a t o m - v a c a n c y c o m p l e x e s and t h e i r a g g l o m e r a t i o n at g r a i n 
b o u n d a r i e s r e m a i n s to be d e m o n s t r a t e d . 

If one a s s u m e s a r e l a t i o n s h i p b e t w e e n swel l ing and r e c r y s t a l l i z a ­
t ion , a s s u g g e s t e d by the m i c r o s t r u c t u r e s , the d e c r e a s e in the swe l l ing 
r a t e wi th t i m e can be r e a d i l y i n t e r p r e t e d in t e r m s of the k i n e t i c s of the 
l a t t e r p r o c e s s . S i m i l a r l y , it would a l s o accoun t for the o b s e r v e d effects 
of c a r b o n a d d i t i o n s , s i nce u r a n i u m - c a r b o n a l loys have been r e p o r t e d to 
r e q u i r e h i g h e r t e m p e r a t u r e s for r e c r y s t a l l i z a t i o n . V'• "/ 

Annea l ing m the b e t a p h a s e . The d i s t r i b u t i o n of bubb le s af ter a n ­
n e a l i n g in the b e t a p h a s e w a s not c l o s e l y r e l a t e d to the p r e s e n c e of g r a i n 
b o u n d a r i e s or o the r m i c r o s t r u c t u r a l f e a t u r e s ^ in c o n t r a s t with s p e c i m e n s 
a n n e a l e d at t e m p e r a t u r e s in the a lpha p h a s e . The bubb l e s w e r e u n i f o r m l y 
d i s t r i b u t e d and a p p e a r e d to r e s u l t f r o m h o m o g e n e o u s nuc l ea t i on and 
g rowth in the b e t a p h a s e a n d / o r the growth f r o m p r e - e x i s t i n g b u b b l e s 
f o r m e d in the a lpha p h a s e on h e a t i n g to the annea l ing t e m p e r a t u r e in the 
b e t a p h a s e . 

The m o s t puzz l ing a s p e c t of the swe l l ing b e h a v i o r in the b e t a 
p h a s e is t ha t the bubble s i ze does not change a p p r e c i a b l y on ex tended a n ­
n e a l i n g . It i s , p e r h a p s , s ign i f ican t t ha t , if one app l i e s the s a m e c a l c u l a ­
t i ons a s above , the a v e r a g e gas p r e s s u r e m t h e bubb le s is found to be 
s l igh t ly l e s s t h a n the s u r f a c e t e n s i o n r e s t r a i n i n g p r e s s u r e . Under t h e s e 
cond i t i ons a d r i v i n g f o r c e would not e x i s t for v a c a n c y diffusion to b u b b l e s , 
but r a t h e r v a c a n c i e s would t e n d to l e a v e the b u b b l e s . 

C r a c k s w e r e p r e s e n t a long g r a i n b o u n d a r i e s and w e r e p a r t l y r e ­
s p o n s i b l e for some of the swe l l ing . S ince no c r a c k i n g o c c u r r e d in s p e c i ­
m e n s a n n e a l e d m the a lpha p h a s e , it i s e s t i m a t e d f r o m the c u r v e for the 
s p e c i m e n with 0.29 a / o b u r n u p m F i g u r e 4 tha t c r a c k s c a u s e d a p p r o x i ­
m a t e l y a 1% d e c r e a s e in d e n s i t y . The c r a c k s p r o b a b l y f o r m e d a s a r e s u l t 
of the a l l o t r o p i c t r a n s f o r m a t i o n s t r e s s e s . 

Annea l ing in the g a m m a p h a s e . The p r e s e n c e of a r e a s of a p p r o x i ­
m a t e l y 2 jU m width and denuded of p o r e s along the g r a i n b o u n d a r i e s of a 
s p e c i m e n a n n e a l e d at 860°C m i g h t be exp la ined by a s s u m i n g that v a c a n c i e s 
diffused f r o m the g r a m b o u n d a r i e s to b u b b l e s wi th in the g r a i n s , and tha t 
u r a n i u m a t o m s w e r e s i m u l t a n e o u s l y d e p o s i t e d along the g r a i n b o u n d a r i e s . 
A l t e r n a t i v e l y , the a r e a s f r ee of p o r o s i t y could be due to the sweep ing of 
s m a l l b u b b l e s f r o m t h e s e a r e a s by m o v e m e n t of g r a i n b o u n d a r i e s . 



The l a r g e e l o n g a t e d p o r e s o b s e r v e d in a s p e c i m e n a n n e a l e d for 
16 h r a t 822°C w e r e ev iden t ly the r e s u l t of bubb l e s jo in ing up and w e r e 
p r e s u m a b l y s i t u a t e d on g r a i n b o u n d a r i e s in the g a m m a p h a s e . H o w e v e r , 
it is no t c e r t a i n w h e t h e r the l a r g e b u b b l e s ad j acen t to the g r a i n b o u n d a r i e s 
a r e due to the diffusion of v a c a n c i e s f r o m the g r a i n b o u n d a r i e s o r to r e ­
so lu t ion of gas a t o m s f r o m the s m a l l e r b u b b l e s in favor of the g rowth of 
l a r g e r n e i g h b o r i n g b u b b l e s . ' ' In e i t h e r even t , such a p r o c e s s did not 
o c c u r to an a p p r e c i a b l e ex ten t wi th in the g r a i n s . 

CONCLUSIONS 

1. U r a n i u m i r r a d i a t e d b e t w e e n 0.24 and 0.30 a / o b u r n u p at about 
275°C s w e l l s and d e c r e a s e s in d e n s i t y on p o s t i r r a d i a t i o n annea l i ng ; the 
a m o u n t of swe l l ing does not i n c r e a s e p r o p o r t i o n a l l y wi th i n c r e a s i n g an ­
nea l i ng t e m p e r a t u r e s . 

2. The swe l l ing r i s e s s h a r p l y when the a n n e a l i n g t e m p e r a t u r e 
e x c e e d s about 550°C; it i s p r o p o s e d tha t t h i s i s due to r e c r y s t a l l i z a t i o n 
and the f o r m a t i o n of e n l a r g e d p o r e s on g r a i n b o u n d a r i e s . 

3. The ex ten t of swe l l ing i s dependen t on the a l l o t r o p i c s t r u c t u r e . 
Annea l ing in the b e t a t e t r a g o n a l p h a s e c a u s e s l e s s swe l l ing than a n n e a l i n g 
at h igh t e m p e r a t u r e s in the a l p h a o r t h o r h o m b i c p h a s e or in the g a m m a 
cubic p h a s e . 

4. The r a t e of swe l l ing is h i g h e s t du r ing the f i r s t few h o u r s of 
a n n e a l i n g . In the c a s e of s p e c i m e n s a n n e a l e d in the b e t a p h a s e , t he r a t e 
of swe l l ing d e c r e a s e s to the ex ten t tha t a f t e r the f i r s t 3 h r of a n n e a l i n g 
the d e n s i t y d e c r e a s e s l e s s t han 1% on f u r t h e r annea l ing up to 75 h r . 

5. U r a n i u m a l l oys con ta in ing b e t w e e n 1 w / o and 9 w / o of e i t h e r 
m o l y b d e n u m , t i t a n i u m , z i r c o n i u m , or n i o b i u m g e n e r a l l y swe l l ed m o r e than 
p u r e u r a n i u m on a n n e a l i n g up to 75 h r at 6 l8°C or 740°C. The excep t ion to 
t h i s b e h a v i o r w a s a U-4 .0 w / o Nb a l loy a n n e a l e d at 6 l8°C . 

6. The a l loy ing of p u r e u r a n i u m wi th 0.11 w / o C c a u s e d an a p p r e ­
c i ab le r e d u c t i o n in swe l l ing on p o s t i r r a d i a t i o n a n n e a l i n g at 618°C, but the 
effect of t h i s a m o u n t of c a r b o n w a s s m a l l in r e d u c i n g the swe l l ing at 740°C. 

7. The a l loy ing of p u r e u r a n i u m wi th 0.02 w / o N r e s u l t e d in an 
a p p r e c i a b l e i n c r e a s e in the swe l l i ng of u r a n i u m on p o s t i r r a d i a t i o n a n n e a l ­
ing at 740°C, but the effect w a s s m a l l on a n n e a l i n g at 6 l 8 ° C . 
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