

MAR 19 1962

Contribution No. 1134 from the Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa. Work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission.

MASTER

Stability Constants and Intrinsic Solubility of
Several Nickel(II)-¹₂-Dioxime Complexes¹

By Charles V. Banks and Samuel Anderson*

(1) Paper No. XXIX in a series on "Chemistry of the vic-Dioximes." Previous paper in this series was No. XXVIII, "Proceedings of the Symposium." Abstracted from dissertation submitted by Samuel Anderson to graduate faculty of Iowa State University in partial fulfillment of requirements for the degree of doctor of philosophy, 1962.

Introduction

It was suggested by Godycki and Rundle² that the

(2) L. E. Godycki and R. E. Rundle, Acta Cryst., 6, 487 (1953).

nickel-nickel bonding which occurs in the crystals of the nickel(II)-vic-dioxime complexes makes a significant contribution to the stability of these crystals and thus explains their limited solubility. Frasson, Bardi, and Bezzi³ have shown that

(3) E. Frasson, R. Bardi, and S. Bezzi, Acta Cryst., 12, 201 (1959).

in copper(II) dimethylglyoxime, $\text{Cu}(\text{DMG})_2$, the copper is bonded to four nitrogen atoms and with an oxygen atom in a nearby molecule

This paper was submitted for publication in the open literature at least 6 months prior to the issuance date of this Microcard. Since the U.S.A.E.C. has no evidence that it has been published, the paper is being distributed in Microcard form as a preprint.

* Present address: Department of Chemistry, Tennessee A and I State University, Nashville 8, Tennessee.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Facsimile Price \$ 1.60

Microfilm Price \$.80

Available from the
 Office of Technical Services
 Department of Commerce
 Washington 25, D. C.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

forming a dimer. Fleischer⁴ and also Dyrssen and Hennichs⁵ have

(4) D. Fleischer, Ph.D. Thesis, Univ. Pittsburgh, 1959.
Univ. Microfilms 59-2396, Ann Arbor, Michigan.

(5) D. Dyrssen and M. Hennichs, Acta Chem. Scand., 15, 47 (1961)

concluded that the large difference in water-solubility between $\text{Cu}(\text{DMG})_2$ and nickel dimethylglyoxime, $\text{Ni}(\text{DMG})_2$, must be due to the greater tendency of the $\text{Cu}(\text{DMG})_2$ to become solvated.

Frasson and Panatoni⁶ have shown that in nickel

(6) E. Frasson and C. Panatoni, Acta Cryst., 13, 893 (1959).

ethylmethylglyoxime, $\text{Ni}(\text{EMG})_2$, the packing system is completely different from that in $\text{Ni}(\text{DMG})_2$. The nickel-nickel direction is not perpendicular to the plane of the molecule and the nickel-nickel distance (4.75 \AA) is so great that nickel-nickel bonding is not possible. Also the distance between the nickel and the closest oxygen of an overlying molecule is much too great (3.44 \AA) to involve coordination. Banks and Anderson⁷, in a study of the

(7) C. V. Banks and S. Anderson, Unpublished work.

heats of solution of $\text{Ni}(\text{DMG})_2$ and $\text{Ni}(\text{EMG})_2$, found that the crystal of $\text{Ni}(\text{DMG})_2$ is about 10 kcal. more stable than that of $\text{Ni}(\text{EMG})_2$. This difference in the stabilities of the crystals was attributed to nickel-nickel bonding in $\text{Ni}(\text{DMG})_2$.

Banks and Barnum⁸ determined the solubility product constant,

(8) C. V. Banks and D. W. Barnum, J. Am. Chem. Soc., 80, 3579 (1958).

and the nickel-nickel bond length for several nickel(II) vic-dioximes in order to ascertain if and how these properties were related. They suggested that the limited correlation which they obtained might be caused by the fact that the solubility product constant depends on the instability constant and on the intrinsic solubility constant of the nickel complex, i.e., $K_{sp} = \frac{K_s}{K_2}$ where K_{sp} = solubility product, K_s = intrinsic solubility constant, and K_2 = over-all stability constant.

The value of the intrinsic solubility of the nickel(II) vic-dioxime complexes can be calculated from a knowledge of the solubility product constant and the stability constant. The purpose of this work was to determine the stability constants for several nickel(II)-vic-dioximes and calculate their intrinsic solubility constants.

The low solubility of the nickel(II) complexes of the vic-dioximes in water makes it desirable to use mixtures of water and organic solvents to determine their stability. Calvin and Wilson⁹ employed the glass electrode in 50% (v/v) dioxane-water

(9) M. Calvin and K. W. Wilson, J. Am. Chem. Soc., 67, 2003 (1945).

mixtures for pH measurements in order to determine the stability constants of metal-ligand complexes of low solubility.

Charles and Freiser¹⁰ have measured the stability constants

(10) R. G. Charles and H. Freiser, Anal. Chim. Acta, 11, 101 (1954).

of the nickel(II) complexes of dimethylglyoxime and its monomethyl ether in 50% (v/v) dioxane-water mixtures. They found that the nickel(II) complex of dimethylglyoxime is more stable than the corresponding complex with the monomethyl ether, presumably because no hydrogen bonding could be present in the latter case.

Christopherson and Sandell¹¹ have determined the stability

(11) H. Christopherson and E. B. Sandell, Anal. Chim. Acta, 10, 1 (1954).

constant of nickel(II) dimethylglyoxime in water solution using solubility data.

Bochkova and Peshkova¹² have used pH measurements to

(12) V. M. Bochkova and V. M. Peshkova, Zhur. Neorg. Khim., 3, 1131 (1958).

determine the stability constants of the nickel(II), copper(II), and cobalt(II) complexes of dimethylglyoxime in 50% (v/v) dioxane-water mixtures.

Van Uitert and Fernelius¹³ determined the stability constant

(13) L. G. Van Uitert and W. C. Fernelius, J. Am. Chem. Soc., 76, 375 (1953).

for $\text{Ni}(\text{DMG})_2$ in 75% dioxane-25% water (v/v) mixtures at 30°C.

In order to use pH measurements to determine the stability constants of a metal-ligand complex, it is necessary that the acid dissociation constant of the ligand be known. Banks and Carlson¹⁴ have determined the acidic dissociation constants of

(14) C. V. Banks and A. B. Carlson, Anal. Chim. Acta, 7, 291 (1952)

several vic-dioximes in water solution. Several other workers^{8,11,15,16} also have determined the acid dissociation

(15) A. K. Babko and P. B. Mikhelson, Zhur. Anal. Khim., 6, 267 (1951).

(16) P. E. Wenger, D. Monnier, and W. Bachmann-Chapuis, Anal. Chim. Acta, 15, 473 (1956).

constants for several vic-dioximes in water.

Several workers^{10,12,13} have determined the acid dissociation constant of dimethylglyoxime in dioxane-water mixtures.

Theory

The stability constants of nickel(II)-vic-dioxime complexes are defined as follows:

$$k_i = \frac{[M(HD)]_1^{2-i}}{[M(HD)]_{i-1}^{3-i} [HD^-]} \quad (1)$$

$$K_i = \frac{[M(HD)]_i^{2-i}}{[M^{+2}] [HD^-]^i} \quad (2)$$

where M = divalent metal ion;

HD^- = the singly ionized species of any of the vic-dioximes,

k_i = the step-wise stability constant of the i th complex,

K_i = the over-all stability constant of the i th complex.

The formation function¹⁷ is given by equation 3,

(17) J. Bjerrum, "Metal Ammine Formation in Aqueous Solution," P. Haase and Son, Copenhagen, 1941.

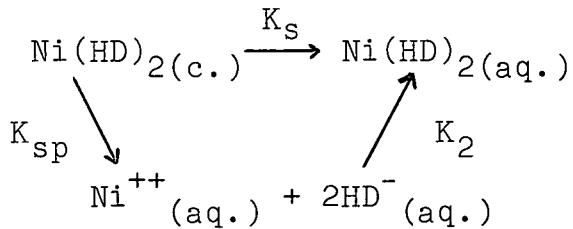
$$\bar{n} = \frac{K_1[HD^-] + 2K_2[HD^-]^2}{1 + K_1[HD^-] + K_2[HD^-]^2} = \frac{[H_2D]_T - [HD^-][1 + H/K_a]}{(M)_T} \quad (3)$$

where the subscript T refers to the total concentration of the species in the system. The stability constants may be calculated from appropriately selected pairs of \bar{n} and $[HD^-]$ values.

The extremely low solubility of the nickel(II)-vic-dioxime complexes precludes the determination of the stability constants by pH measurements in aqueous solution or by the extrapolation of values measured in various concentrations of mixed solvents to pure water. A 75% dioxane-25% water (v/v) solvent was chosen because it dissolved all of the nickel(II)-vic-dioxime complexes studied.

The relationship between the stability of metal-ligand complexes in water solution and in organic solvent-water mixtures has been investigated by Irving and Rossotti¹⁸. They have shown

(18) H. Irving and H. Rossotti, Acta Chem. Scand., 10, 72 (1956).


that equation 4 expresses approximately this relationship,

$$\log K_1 = \log \bar{K}_1 - (p\bar{K}_a_1 - pK_a_1) \quad (4)$$

where K_1 represents the constant in water and \bar{K}_1 represents the constant in the mixed solvent. This same symbolism will be used for all equilibrium constants discussed in this work.

Equation 4 applies only to the stability of the 1:1 complex but approximations for $1/2 \log K_2$ can be obtained by using $1/2 \log \bar{K}_2$.

The solubility product constant, K_{sp} , the over-all stability constant, K_2 , and the intrinsic solubility constant, K_s , for the nickel(II)-vic-dioxime complexes are related as follows:

The equations for the derivation of the solubility product constant of nickel(II)-vic-dioximes have been reported by Banks and Barnum⁸. The expression for the solubility product constant is then

$$K_{sp} = \frac{K_{a1}^2}{a_{H^+}^2} \left[[Ni]_T f_{Ni^{++}} - \frac{a_{H^+} f_{Ni^{++}}}{2f_{H^+}} \right] \left[2[Ni]_T - \frac{a_{H^+}}{f_{H^+}} \right]^2 \quad (5)$$

where K_{a1} is the first acid dissociation constant for the vic-dioxime, and $[Ni]_T$ is the total amount of nickel in mole per liter, regardless of the species in which it exists.

Experimental Work

Apparatus and Reagents. - The pH measurements were made with a Beckman Model G pH meter. Beckman Type E glass and Beckman No. 1190-80 calomel electrodes were used. The pH meter was calibrated with Beckman standard buffer solution (pH 7.00) and with solutions prepared from Beckman buffer powders (pH 4.01, pH 9.18). All work was performed at a thermostatically controlled room temperature of 25°C. All glassware used was of class A specification. Rapid mixing of solutions was achieved by means

of a magnetic stirrer which was stopped during the actual pH measurements.

Calculations of stability constants were made on a Magnetic Drum Data-Processing Machine, Type 650, manufactured by International Business Machines Corporation. The programming system used was a floating decimal interpretive system designed by Wolontis¹⁹.

(19) V. M. Wolontis, International Business Machines Corporation Technical Newsletter, No. 11 (1956).

Dimethylglyoxime was obtained from the Matheson Company.

Nioxime²⁰, heptoxime²¹, 3-methylnioxime, 4-methylnioxime,

(20) C. C. Hach, C. V. Banks, and H. Diehl, Organic Synthesis, 32, 35 (1952).

(21) R. W. Vander Haar, R. C. Voter, and C. V. Banks, J. Org. Chem., 14, 836 (1949).

and 4-isopropylnioxime²², diethylglyoxime and di-n-propyl-

(22) C. V. Banks, D. T. Hooker, and J. J. Richard, J. Org. Chem., 21, 547 (1956).

glyoxime^{23,24,25} were prepared by published procedures. Each of

(23) J. M. Snell and S. M. McElvain, Organic Synthesis Collective, 2, 114 (1943).

(24) J. Wegmann and H. Dahn, Helv. Chim. Acta, 29, 111 (1946).

(25) W. M. D. Bryant and D. M. Smith, J. Am. Chem. Soc., 57, 57 (1935).

the vic-dioximes was recrystallized at least three times from alcohol-water mixtures and dried in a vacuum oven at 40°C. before use.

A standard solution of nickel(II) perchlorate was prepared by dissolving Mond nickel in aqua-regia, evaporating to near dryness with perchloric acid, diluting and standardizing by precipitation with dimethylglyoxime. The sodium perchlorate which was used for controlling the ionic strength of all equilibrium solutions was reagent-grade sodium perchlorate obtained from the G. Frederick Smith Chemical Company. All solutions were prepared by weight.

Sodium hydroxide solutions were prepared from Fisher Chemical Company "certified reagent grade" and were standardized against primary standard potassium acid phthalate. The perchloric acid was standardized by comparison with the standard sodium hydroxide solution.

The dioxane was purified by using the method described by Vogel²⁶.

(26) A. I. Vogel, "A Text-Book of Practical Organic Chemistry," Longmans, Green and Co., New York, 1948.

Cobalt(II) and copper(II) solutions were standardized by titrating with standard ethylenediaminetetraacetic acid.

\bar{n} and $[HD^-]$ Values. - The values of \bar{n} and $[HD^-]$ were determined at an ionic strength of 0.1 in 75% dioxane-25% water (v/v) mixtures.

A solution containing nickel(II) perchlorate and a large excess of ligand was titrated with a sodium hydroxide solution. A second solution containing the same amount of ligand as was present in the above solution was titrated with the same sodium hydroxide solution. In the presence of a large excess of ligand, the difference in the amounts of base required to reach the same pH in the two titrations, ΔV , is a measure of the amount of ligand bound to the metal because under these conditions $[HD^-]$ is negligible in comparison with $[H_2D]_T - [Ni(HD)^+] + 2[Ni(HD)_2]$. The change in ionic strength due to addition of base and dioxane was about 7%. According to Ringbom²⁷, the corrections to be

(27) A. Ringbom, J. Chem. Educ., 35, 282 (1958).

applied for change in activity coefficients can be neglected for solutions which have an ionic strength of the order of 0.1 or higher, provided the volume change is small. The hydrolysis of the nickel(II) ion is not appreciable at the pH values used in this study²⁸. No precipitation of the metal-ligand complex

(28) F. Achenza, Ann. Chim., 49, 624 (1959).

occurred during any of the titrations except for nickel(II)-nioxime mixtures. No data taken after precipitation had occurred were used in the calculations.

Values for n were calculated from the amount of ligand complexed and the total analytical concentration of nickel ions in solution. The concentration of the ligand, $[HD^-]$, was

calculated from equation 6.

$$[\text{HD}^-] = \frac{\text{Ka}_1[\text{H}_2\text{D}]}{[\text{H}^+]} = \frac{\text{Ka}_1 \left[[\text{H}_2\text{D}]_T - [\text{NiHD}^+] - 2[\text{Ni}(\text{HD})_2] \right]}{[\text{H}^+]} \\ - \frac{\text{Ka}_1 \left[[\text{H}_2\text{D}]_T - \frac{(\Delta V)N}{V} \right]}{[\text{H}^+]} \quad (6)$$

pKa₁ and pKa₁ Values. - The first acid dissociation constants of the various vic-dioximes were measured in dioxane-water mixtures by titration with sodium hydroxide solutions under the same conditions used for titrating the metal and the ligand. The change in the volume of the solutions was never greater than 4% so that corrections for changes in activity coefficients were considered negligible. In order to avoid the replacement of more than one of the dioxime hydrogen, only about one tenth mole of base per mole of vic-dioxime was added. During the titration, increments of dioxane were added in order to keep the dioxane content constant. Nitrogen, saturated with water vapor, was passed over the solution during the titration. The magnetic stirrer used for mixing was turned off during the actual measurements of pH.

The acid dissociation constants of the vic-dioximes in water were determined by measurements in several concentrations of dioxane. The pKa₁ was plotted against the percentage of dioxane and extrapolated to zero concentration of dioxane. Linear functions were obtained for all the vic-dioximes studied.

pK_{NH} Values. - The pK_{NH} (basicity of the oxime nitrogen) was determined in dioxane-water mixtures for each vic-dioxime

studied by titrating a known amount of vic-dioxime with a standard acid solution. In all cases, the $p\bar{K}_{NH}$ was less than 2 which indicated negligible basicity of the oxime nitrogen.

Calculation of $\log \bar{K}_i$ Values. - The data for the calculations of the stability constants for the nickel(II)-dimethylglyoxime complexes are given in Table 1. Similar data were obtained for the other nickel(II)-vic-dioxime complexes. The equilibrium constants calculated from these data are given in Table 2. The stability constants were calculated by using appropriately selected pairs of \bar{n} and $[\text{HD}^-]$ values and solving a system of two simultaneous equations. For a single titration, a value of \bar{K}_1 and \bar{K}_2 may be calculated for each pair of \bar{n} and $[\text{HD}^-]$ values selected.

Table 1
Titration of Nickel(II)-Dimethylglyoxime Mixtures
with Sodium Hydroxide^a

ML. NaOH, ΔV^b	pH	\bar{n}	$-\log [\text{HD}^-]$
Titration I ^c			
0.500	3.97	0.437	11.69
0.600	3.99	0.524	11.67
0.700	4.01	0.611	11.65
0.800	4.03	0.698	11.64
0.900	4.03	0.787	11.64
1.000	4.04	0.874	11.63
1.100	4.06	0.966	11.61
1.200	4.12	1.05	11.55
1.300	4.16	1.13	11.51
1.400	4.22	1.22	11.45
1.500	4.28	1.31	11.40
1.600	4.34	1.40	11.34
1.700	4.42	1.48	11.25
1.800	4.48	1.57	11.20

Table 1 (Concluded)

Ml. NaOH, ΔV^b	pH	\bar{n}	$-\log [HD^-]$
Titration II ^d			
0.050	3.75	0.319	11.92
0.080	3.95	0.510	11.72
0.090	4.00	0.574	11.67
0.120	4.10	0.766	11.57
0.140	4.15	0.893	11.52
0.165	4.20	1.05	11.47
0.200	4.30	1.276	11.37
0.240	4.40	1.53	11.27
0.280	4.50	1.786	11.17
Titration III ^d			
0.080	3.75	0.510	11.92
0.120	3.90	0.766	11.77
0.140	4.00	0.893	11.67
0.180	4.10	1.15	11.57
0.210	4.20	1.34	11.47
0.230	4.25	1.47	11.42
0.250	4.30	1.59	11.37

a 75% dioxane-25% water, $\mu = 0.1$, $T = 25^\circ$, $[H_2D]_T = 7.18 \times 10^{-4} \text{ M}$, $[Ni]_T = 1.162 \times 10^{-4} \text{ M}$.

b $[NaOH] = 0.01014 \text{ M}$.

c The difference in volume of sodium hydroxide solution required to titrate the ligand alone and the nickel(II)-ligand mixture to the same pH.

d $[NaOH] = 0.07410 \text{ M}$.

Table 2

Acid Dissociation Constants of Several vic-Dioximes and the Stability Constants of Their Nickel(II) Complexes in 75% Dioxane-25% Water Mixtures^a

<u>vic</u> -Dioxime	$p\bar{K}_{a_1}$	$\log \bar{K}_1$	$\log \bar{K}_2$
Dimethylglyoxime	13.53	$10.96 \pm .34$	$23.10 \pm .14$
Diethylglyoxime	13.93	$12.43 \pm .20$	$23.69 \pm .13$
Di- <i>n</i> -propylglyoxime	14.18	$13.14 \pm .35$	$23.86 \pm .65$
Ethylmethylglyoxime	13.55	$10.41 \pm .52$	$23.97 \pm .03$

Table 2 (Concluded)

<u>vic</u> -Dioxime	$p\bar{K}_{a_1}$	$\log \bar{K}_1$	$\log \bar{K}_2$
4-Isopropylnioxime	12.27	10.06 \pm .31	20.44 \pm .18
Nioxime	13.11	11.08 \pm .19	22.46 \pm .10
4-Methylnioxime	13.07	10.76 \pm .30	23.00 \pm .27
3-Methylnioxime	13.23	11.28 \pm .12	23.52 \pm .09
Heptoxime	13.33	12.26 \pm .19	24.68 \pm .23

^a All constants were determined at 25°C. and at ionic strength 0.1.

Calculation of $\log K_i$ Values. - Values for $\log K_1$ and $1/2 \log K_2$ were calculated from the corresponding values for $\log \bar{K}_1$ and $1/2 \log \bar{K}_2$ by means of equation 4. In order to show that equation 4 gives a good approximation for the stability constant of Ni(DMG)_2 in water solution, the stability constants of Cu(DMG)_2 and Co(DMG)_2 were determined in water, in 50% dioxane-water (v/v) and in 75% dioxane-25% water (v/v) mixtures. Thus, a comparison of the values of $(p\bar{K}_{a_1} - pK_{a_1})$ for dimethylglyoxime as determined experimentally and as determined from the stability constants of Cu(DMG)_2 and Co(DMG)_2 in water and in dioxane-water mixtures should serve as a good check on the applicability of equation 4. These results are shown in Table 3. The average value of the term, $(p\bar{K}_{a_1} - pK_{a_1})$, calculated from equation 4 for 50% dioxane-water (v/v) is 2.13 compared to the value of 2.07 which was determined experimentally. The average calculated value of the term for 75% dioxane-25% water (v/v) is 2.83 compared to the value of 3.05 which was determined experimentally.

Table 3

Stability Constants of Copper(II)- and Cobalt(II)-
Dimethylglyoxime Complexes in Dioxane-Water
Mixtures and Values of $(p\bar{K}_{a_1} - pK_{a_1})$.

% Dioxane	$\log K_1$	$1/2 \log K_2$	$(p\bar{K}_{a_1} - pK_{a_1})^a$	$(p\bar{K}_{a_1} - pK_{a_1})^b$
Copper(II)				
0	9.05	9.25	-	-
50	11.94 ^c	11.66 ^c	2.41	2.07
75	12.23	12.17	2.92	3.05
Cobalt(II)				
0	8.35	8.49	-	-
50	11.01	10.34	1.85	2.07
75	12.20	11.22	2.73	3.05

^a Calculated using equation 4 and values of $1/2 \log K_2$.

^b Calculated from experimentally determined values of $p\bar{K}_{a_1}$ and pK_{a_1} .

^c Values taken from work of Charles and Freiser¹⁰.

Because the various vic-dioximes included in this study are very similar, the assumption is made that equation 4 is also applicable for other nickel(II)-vic-dioxime complexes.

The stability constants in water were calculated from the stability constants in 75% dioxane-25% water (v/v) and $(p\bar{K}_{a_1} - pK_{a_1})$. The results are given in Table 4.

Table 4

Acid Dissociation Constants of vic-Dioximes and Stability
Constants of Nickel(II)-vic-Dioxime Complexes
in Water Solution

<u>vic</u> -Dioxime	pKa ₁	(pK _a ₁ -pKa ₁)	log k ₁	log k ₂	log K ₂	Ref.
Dimethylglyoxime	10.48	3.05	7.91	9.09	17.00	a
	10.6					14
	10.46				17.23	29
	10.66					11
	11.1					15
Ethylmethylglyoxime	10.41	3.14	7.27	9.99	17.26	a
Diethylglyoxime	10.67	3.26	8.97	8.20	17.17	a
Di-n-propylglyoxime	10.81	3.27	8.77	8.35	17.12	a
<hr/>						
4-Isopropylnioxime	10.53	1.74	8.42	8.34	16.76	a
Nioxime	10.55	2.56	8.52	8.82	17.34	a
	10.6					14
	10.4					16
3-Methylnioxime	10.61	2.62	8.66	9.62	18.28	a
4-Methylnioxime	10.54	2.53	8.27	9.71	17.94	a
Heptoxime	10.71	2.62	9.62	9.81	19.44	a
	10.7					14

a Values from this work.

(29) D. Dyrsen, F. Krasovec, and L. G. Sillen, Acta Chem. Scand., 13, 50 (1959).

Calculation of pK_S. - The intrinsic solubility constants for the nickel(II) complexes of dimethylglyoxime, nioxime, 4-isopropylnioxime, 3-methylnioxime, 4-methylnioxime, and heptoxime were calculated from the values of K_{sp} from this work, the work of Banks and Barnum⁸ and the calculated values of K₂. These values for pK_S are reported in Table 5.

Table 5

Values of the Intrinsic Solubility, Nickel-Nickel Bond Length, Solubility Product and Over-All Stability Constant for the Nickel(II) Complexes of Several vic-Dioximes

<u>vic</u> -Dioxime	pK _S	Ni-Ni Bond Length in Å. ^a	pK _{sp}	log K ₂
Dimethylglyoxime	6.66	3.233	23.66	17.00
Ethylmethylglyoxime	5.70	b	23.27	17.57
Diethylglyoxime	6.96	c	24.21	17.17
Dipropylglyoxime	8.02	c	25.14	17.12
4-Isopropylnioxime	11.08	3.19	27.84	16.76
Nioxime	11.06	3.237	28.39	17.34
4-Methylnioxime	10.32	3.24	28.25	17.94
3-Methylnioxime	9.34	3.47	27.62	18.28
Heptoxime	7.20	3.596	26.64	19.44

^a Values taken from work of Banks and Barnum⁸.

^b Does not form nickel-nickel bonds⁶.

^c Crystal structure has not been determined.

Solubility Product Constants. - Nickel perchlorate and the vic-dioxime were mixed in stoichiometric amounts, shaken at a room temperature of 25° for two hours and the pH measured. Between 0.100 and 1.00 ml. of 0.05874 M nickel solution was added with a micro-pipet to a solution of the vic-dioxime. The volume of the sample was adjusted by adding a known amount of water. The ionic strength was adjusted by using a solution of sodium perchlorate. The values of the activity coefficients are those reported by Kielland³⁰. The pH of the mixture was measured without filtering.

(30) J. Kielland, J. Am. Chem. Soc., 59, 1675 (1937).

The values for pK_{sp} are reported in Table 5.

Results and Discussion

The pK_{a_1} values for the vic-dioximes vary in a linear manner with the dioxane content of the solvent mixture. As is to be expected, the acid dissociation constant decreases as the dielectric constant of the solvent mixture decreases.

When a comparison is made of the stability constants of the nickel(II)-vic-dioxime complexes in Table 2, one observes that all have values of the same order of magnitude. This is to be expected because the nature of the ligand does not change significantly. If the alicyclic and the aliphatic series are considered separately, one observes that, in general, an increase in stability constant follows a decrease in the acid dissociation constant.

Excluding $\text{Ni}(\text{DMG})_2$ and nickel(II) 4-methylnioxime, there appears to be a smooth relationship between the intrinsic solubility constant and nickel-nickel bond distance in the crystals of the nickel(II) complexes of nioxime, 4-isopropylnioxime, 3-methylnioxime, and heptoxime (Table 5 and Figure 1). A similar relationship is shown for the solubility product constant and the nickel-nickel bond distance for the complexes. A long nickel-nickel bond distance results in a weak bond and less interaction between nickel atoms. Consequently, the intrinsic solubility constant of the complex would be expected to increase with increasing nickel-nickel bond distance.

The exceptionally low value of K_2 for nickel(II) isopropyl-nioxime causes K_{sp} to be low and could explain why this complex does not correlate with the solubility product constant. The

reason for the failure of nickel(II) 4-methylnioxime to exhibit a smooth relationship with the other alicyclic vic-dioxime complexes is not known. It is possible that there is an error in the nickel-nickel distance or an error in the intrinsic solubility or both.

$\text{Ni}(\text{DMG})_2$ is much more soluble than the corresponding complexes for the alicyclic vic-dioximes studied. This may be due in part to the nature of the ligand. It may be that $\text{Ni}(\text{DMG})_2$ is more soluble because of greater solvation of the complex. The complexes of nickel diethylglyoxime, $\text{Ni}(\text{DEG})_2$, and nickel dipropylglyoxime, $\text{Ni}(\text{DPG})_2$, are not included on Figure 1 because their x-ray powder patterns indicate that they are not isostructural with $\text{Ni}(\text{DMG})_2$.

The intrinsic solubility of $\text{Ni}(\text{EMG})_2$ is greater than that of $\text{Ni}(\text{DMG})_2$. This is not an unexpected result in view of the fact that $\text{Ni}(\text{EMG})_2$ does not form nickel-nickel bonds⁶. Furthermore, it has been shown⁷ that the crystal of $\text{Ni}(\text{DMG})_2$ is more stable than that of $\text{Ni}(\text{EMG})_2$ by about 10 kcal. and that this difference in the crystal energies is believed to be due to nickel-nickel bonding in the former complex.

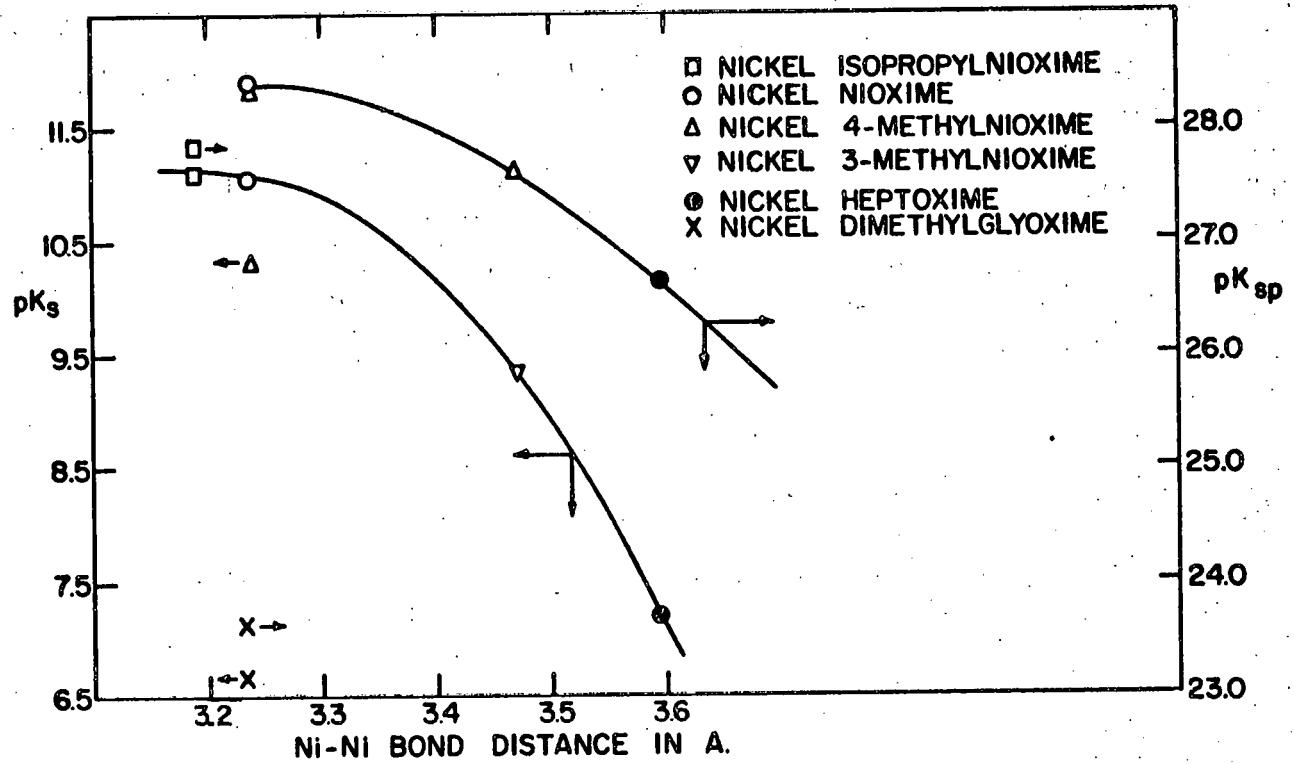


Fig. 1. - Dependence of pK_{sp} and pK_s on nickel-nickel bond distance in several nickel(II)-vic-dioxime complexes.