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Abstract. To distinguish between chaotic and noisy processes, we analyze one- and two-dimensional chaotic
mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one
to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small
compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, we consider the
fractal fuzzy sets whose o-cuts are fractals, arising in the context of a quadratic mapping in the extended complex
plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables us to decide in favor of

chaotic or noisy evolution.
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1. Introduction

When studying chaos in fuzzy dynamical systems, one
faces two fascinating challenges. The first one, also
encountered in crisp dynamical systems, is how to dis-
tinguish between chaos and noise. The second one con-
cerns the various ways a fuzzy chaos can be brought
about. A systematic study of chaos in fuzzy dynamical
systems has been initiated by Kloeden [1}, Diamond
[2], and Diamond and co-workers [3]. The mathemati-
cal definitions of chaos rely on positive topological
entropy, sensitive dependence on initial conditions, and
positive Liapunov exponents. When transcribed to
dynamical fuzzy systems, the definition of chaos
invokes the notion of topological entropy; roughly
speaking, a system is chaotic if the trajectories are mix-
ing.

Although fuzzy dynamics often applies the
extension principle to define mappings of fuzzy sets,
other fuzzification schemes allowing one to extend
chaotic evolution to the domain of fuzzy sets are
possible. For example, Buckley and Hayashi [4]
discuss two simple methods, in which one either varies
the parameters of the underlying fuzzy set (e.g. three
numbers defining a triangular fuzzy set) or chaotically
changes the fuzzy set by varying its shape and support.
Chaotic dynamic operating on fuzzy truth values has

been a subject of an article by Grim [5]. Even within .

the framework of the extension principle, different
fuzzification schemes based on the notion of s- and r-
norms are possible, leading to the mapping of levels of

the level sets [6].

The goal of this paper is twofold. First, we apply
the predictive ability of a fuzzy controller to
distinguish chaotic and noisy behavior in a one-
dimensional time series; to this end, we use a well-
known example from the number theory. Second, we
turn to two-dimensional systems, subject to a
quadratic mapping in a complex plane, which leads to
a Julia set, an attractor in the space of compact sets
with Hausdorff metric [7]. Based on the extension
principle, Fridrich [8] investigated the relationship
between the initial and asymptotic membership
functions for one-dimensional quadratic mappings.
Here we apply the extension principle to the inverse
function algorithm. Two-dimensional iterated fuzzy
set systems have earlier been studied by Cabrell et al.
[9] in a different context. If we preserve the notion of
level sets, we arrive at a novel description of the
Hausdorff dimension, given in terms of a fuzzy set.
The membership function of this fuzzy set is a
constant when the chaotic system is perturbed by an
additive noise and all the points of the iterated system
are accounted for; on the other hand, in the absence of
noise, the fuzzy set provides a quantitative measure
allowing one to distinguish chaotic from noisy
mappings.
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2. Ergodic and chaotic time series

Can a chaotic time series be distinguished from a ran-
dom one? We don’t know, but random and ergodic time
series are different.

If m is a measure on space E, consider
transformations T of E into itself. T is said to be
measure preserving, if m(T'lA) = m(A). A is invariant
under T in case T 'A = A. T is ergodic if it is measure
preserving and if each invariant set is trivial in the
sense of having a measure of either 0 or 1 [10].

For ergodic transformations, the sequence of
iterates of a point is uniformly dense in space. This
means that, starting with a point p at time 0, one asks
for the frequency with which the iterates of p fall into
A. In the limit of infinitely many iterates, for almost
every point p this frequency is equal to the relative
measure of the region. In mathematical terms, the
ergodic theorem reads

1 i m(A)
thwﬁg L'e) = 28 (1)

where I, is the indicator function of A.

Among different applications, the ergodic theorem
has found remarkable use in number theory,
especially in the context of continued fractions. Let
x [0, 1], then the continued fraction expansion of x is

x=__ 1 )

where the partial quotients a,, are positive integers. The
transformation

) = )lc_ E] , | 3)

where [1/x] denotes the integer part of 1/x, gives the
fractional part of 1/x; it preserves the Gauss measure

1
mA) = long i @)

Note that the integers {a,} in Eq. (2) can be expressed
in terms of the function T(x). If a(x) = [1/x], and a,(x) =
alTx), n=1,2, ..., then a(x), ay(x), ... are just the par-
tial quotients in the continued fraction expansion of x.

The probability of finding an integer k£ in the
sequence ay, dy, ds,... 1s given as

oL [+’
PR = 3l g[k(k+2)] )

taking F to interval (0,1); A to be the interval ’%
that is the set on which a4(x) = &, and the measure 0
Gauss measure, given by Eq. (4). For example, for k =
1,2,3,4, 5, we get p(1) = 0.4150, p(2) = 0.1690, p(3) =
0.0931, p(4) = 0.0589, and p(5) = 0.0406.

Any sequence of natural numbers drawn form the
probability distribution of the quotients of the
continued fraction corresponding to an irrational
number represents a typical sequence, in the sense that
almost all sequences of quotients have this
distribution. On the other hand, some numbers lead to
sequences of quotients that are not ergodic. For

Eguation (5) is obtained from the ergodic th(coremlby

example, the quotients corresponding to (45 -1)/2
are all equal to 1. In the same vein, a sequence of
uniformly distributed integers will have more large
numbers than allowed by the probability distribution
of quotients.

These comments lead to a method allowing one to
distinguish an ergodic from a random sequence. After
constructing the rules based on the ergodic sequence,
we register the forecast error for ergodic and random
sequences, thus obtaining a classification tool.

In forecasting error using fuzzy rule-based system
(FRBS) [11] with lag vector of length 6, rules are
obtained for ergodic and random sequences, drawn
from a set of random numbers with the probability
distribution given by Eq. (5) and from a uniformly
distributed set of numbers, respectively.

Fig. 1 Ergodic and chaotic time series.




The ergodic sequence (left) is too irregular for
FRBS to be captured in rules. The random sequence
(right) shows “anomalies” where large integers occur.

3. Spaces of fractals and fuzzy sets

Let (€2, d) be a complete metric space with metric d.
Denote by 3(Q2) the space whose points are the com-
pact subsets of 2, other than the empty set. For x € Q
and B e 3(QQ) define the distance from the point x to the
set B:

d(x, B) = Min{d(x,y): ye B} , (6)

and the separation between the sets A, B € 3(H) :

d(A, B) = Max{d(x,B):x A} . @)

Then the Hausdorff metric between A and B, defined as

dy(A, By = Max{d(A, B), d(B,A)} , (8)

yields a metric space of fractals (JI(Q), dp) . lfw;, i =1,
2, ..., n denotes an iterated function system of contract-
ing mappings of €2, then the ftransformation
W: 3(Q) - 3(QY), defined by

WB) = & w(B) | )

i=1

for all Be3(Q), is a contraction mapping on
(3(Q), dy) . Its unique fixed point is called an attractor
of the iterated function system [12].

The space of fuzzy sets D(Q2) on 2 is defined as
the set of upper semicontinuous and normal mappings
u: Q—->[0,1]. For O<a <1, the level set is a crisp
set [u]a = {x € Q: u(x) 2a}; a metric on D({2) can
be defined as

d(u,v) = dg([ul”, [v1%) . (10)

When the contractive operator is defined on
(D(Y), d,) , its unique fixed point defines a fuzzy set

attractor [9].

In fuzzy sets theory, a fuzzy set defined on a
Cartesian product of crisp set is called a fuzzy relation.
In the case of a Cartesian product of two crisp sets, an
image analogy has proved fruitful in visualization of
fuzzy sets: grey or color levels of an image admit a
natural representation in terms of fuzzy sets.

4. Julia set

Quadratic Julia sets arise from sequences of complex
numbers defined iteratively by the relation

Zyeq =25 +C, (11)

where c is a complex number. Fixing ¢, while varying
the initial point zg, we may look for the values of z, for
which the sequence z, remains bounded. These values
form the filled Julia set (or prisoner’s set) X ; the Julia
J. set consists of the boundary points of K. Equiva-
lently, J, can be defined as the closure of the set of
repelling periodic points of the mapping

F@) = 2 +¢ | (12)

associated with Eq. (11).

A simple algorithm that produces a Julia set of the
quadratic mapping (12) relies on the fact that the Julia
set for is an attractor of an iterated function system,

consisting of two functions f(2) = Jz-c and

F»(2) = —Jz—c, which are just the functions inverse to

F. In the inverse iteration method, a fixed initial point
Zg is iterated by selecting either f; or f, with equal
probability of 0.5; the sequence {z,: n =0, 1, 2, ...}
converges to the attractor of the iterated function
system. We use the inverse iteration method to study
the transformation of an initial fuzzy set of a simple
form.

The escape set, defined as the complement of the
prisoner’s set, can be divided into equipotential sets by
using an escape time algorithm: the escape time for a
point z outside of K| is the first n for which gz, in Eq.
(10) has modulus greater than a given radius R.
Whereas an equipotential set is by definition an
invariant of the iterative mapping (12), it is no longer
so when Eqg. (11) is supplemented by an additive noise
term. This leads to a different mapping in the space of
fuzzy sets than the mapping resulting from the
extension principle.

4.1, Julia set: Inverse iteration method

In the simplest formulation, based on the classic exten-
sion principle [1], a mapping f: 2 — Q induces a fuzz-
ification f: D(QY) = D(QY), defined on the space D(Q))
of fuzzy sets on a set (2, as




(f1)O) = supfu(®: xef M} (13)

A simple fuzzification scheme relies on the
definition of level sets and the resolution theorem, by

virtue of which, -any fuzzy set, X = > u(x)/x, can be

represented as

X= U afu” (14)
o € [0,1]

In Eq. (14); [«]* is interpreted as a fuzzy set with a
membership function whose value is unity. The resolu-
tion theorem reduces the transformations of fuzzy sets
to interval arithmetic. Under broad conditions, spelled
out in Ref. {2], the level sets satisfy the following trans-
formation rule

[ful” = Alu]™ . (15)

Equation (15) remains valid even for a more general
fuzzification schemes, known as I'-fuzzification [2].
The chaotic properties of a dynamical systems can
be quantified in terms of the Hausdorff dimension,
whose fractional values indicate the existence of
chaos. The dimension may be viewed as a measure of
information necessary to specify the location within a
given accuracy [13]. Mathematically, if N(e) is the
number of cubes of side £ in a p-dimensional space
needed to cover the set, the Hausdorff dimension 4 is

h = lim logN(e)/log(1/¢) . (16)
€->0

In the following we use the Hausdorff dimension to
characterize the chaotic behavior of different level sets
of a fuzzy set.

For ¢ = 0.238489 + i 0.519198 (i = J~1) the
resulting Julia set is shown in Fig 2. In the absence of
noise, the attractor resembles a one-dimensional curve
with the Hausdorff dimension close to unity. We now
supplement the iterative equations of the inverse
iteration method with an additive uniform noise of
strength g. This implies that, at each step, the real and
imaginary parts of the square root are supplemented
by a random number from the interval (0, 1)
multiplied by ¢. As the iteration process is more and
more perturbed by noise, the attractor is gradually
being filled, with its Hausdorff dimension approaching
the value of 2; see Fig. 3.
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Fig. 2 Julia set for the complex parameter ¢ =
0.238489 +i 0.51919800.

Fig. 3 Noise-perturbed Julia set. The noise strength
q=0.2; casin Fig. 2.

As in Ref. [6], we now construct an initial fuzzy
set X having the form of a quadrilateral pyramid with
base area in the form of a square with half-side of 2.0
around the origin; the apex of the pyramid is a point
with coordinates (0, 0, 1) in the x,y,z-space. This fuzzy
set is subject to the quadratic transformation given by
Eq. (12), applied to X by virtue of the extension
principle. The extension principle is used in the form
of Eq. (15), which tells us to apply the quadratic
transformation to the level sets. The Hausdorff
dimension of the resulting level sets is shown in Fig. 4
as a function of the level set size for different noise




strengths. The a-cut size is expressed in terms of the
half-size of the underlying square, whereas the noise
strength g refers, once again, to the multiplicative
factor scaling the additive white noise. During the
course of the iterating process, we drop the points
falling outside of the level set boundaries. For this
reason, for small values of «, the Hausdorff dimension
approaches zero: after many iterations there are only
few points left.

We note that, for g = 0, the inverse iteration results
in a fuzzy set whose each level set is a fractal. Such a
fuzzy set can naturally be termed a fractal fuzzy set.
As g increases, the o-cuts become uniformly filled;
the chaotic properties of the attractor become
truncated [14].
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Fig. 4 Hausdorff dimension for the level sets
resulting from the inverse iteration method as a
function of the a-cut size for different noise values.

4.2. Julia set: forward iteration

The inverse iteration method relies on the backward
iteration: one selects one of the two possible preimages
of a given point in the complex plane. The forward iter-
ation maps each point either to the interior of the Julia
set (prisoner’s set) or to its exterior (escape set). The
escaping points can be studied by calculating the escape
time, related to the potential of the Julia set. By virtue
of the Riemann mapping theorem, the potential of any
connected prisoner’s set is can be brought into a one-to-
one correspondence with the potential of a unit disk.
Viewed from this perspective, the different potential
values of the escape set can be interpreted as levels of a
fuzzy set in two dimensions.

More precisely, let £ denote a target set consisting
of the points in the complex plane whose distance

from the origin is larger than a given value R,
supplemented by the point at infinity:

L={zeC:lz>R}u {wo} . (17)

Define iteratively a sequence of inverse images of I,
demoted as Z,, n = 0, 1, 2, .., with I, =E,
I = F‘I(EO) , .., where the function F is defined by
Eq. (12). 1t can readily be shown [7] that £, can be
defined as the set of points whose orbits need at most 7
iterations to reach Z. Theregions L, = Z,,,\ £, have
orbits which reach X in exactly n + 1 iterations.

In the following we restrict our attention to 16
levels. After normalization to unity, the level sets
define a fractal fuzzy set; that is, a fuzzy set whose
levels are fractals (cf. Sec 4.1). Figure 5 shows the
level set of o = 0.31 (level 5) whose Hausdorff
dimension turns out to be 1.4906. Again, we perturb
the iteration process by the additive noise terms scaled
by g, resulting for g = 1.0, in a level set illustrated in
Fig. 6 with Hausdorff dimension of 1.8767.

Fig. 5 Level set, identified with the o-cut for o =
0.25, of the Julia set defined as the set of points in
the complex plane requiring 4 iterations to reach a
large target set. Hausdorff dimension & of this level
set is 1.4906.

In Fig 7, we show the Hausdorff dimension as a func-
tion of the a-cut size, depicted for different noise lev-
els. It can be seen that, for a close to unity (large escape
times) and high noise values, the Haosdorff dimension
of the level sets drops to small fractional values: most
points are lost due to the random perturbations of the
trajectory. Had we retained the points that escape the
level sets due to noise, the Hausdorff dimension of the
level set would tend to the constant value of 2, typical
of two-dimensional geometric objects.




Fig. 6 Noise-perturbed (g = 1.0) a-cut of Fig. 5.
Hausdorff dimension # = 1.8767.

As stressed in Ref [6], Fig. 7 demonstrates that the
properties of an iterated mapping in two dimensions
can be described in terms of a fuzzy set that provides
the measure of the Hausdorff dimension for different o-
cuts. The fuzzy set is constructed by normalizing the
values of the Hausdorff dimension to unity.
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Fig. 7 Hausdorff dimension as a function of level
set size for different noise values.

The shape of the membership function of this
fuzzy set should tell us the difference between noise-
dominated and chaos-dominated iterative mappings.

5. Conclusions

To distinguish between noisy and chaotic mappings, we
analyzed both-one and two-dimensional systems. In
one-dimension, the application of the fuzzy rule-based
system allows us to detect anomalies in an ergodic
mapping, thus distinguishing this mapping from a set of
numbers drawn from a uniform distribution. In two
dimensions, we have focused on the quadratic map-
pings in the complex plane, having a Julia set as an
attractor. The Hausdorff dimension, considered as a
function of the a-cut size, can be regarded as a fuzzy set
whose functional form encodes the chaotic or noisy fea-
tures of the mapping.
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