+

. wue 977681 CoNF-770654 -1

Approved for public release;
distribution is unlimited.

Title: | MAKING CORBA OBJECTS PERSISTENT: THE
OBJECT DATABASE ADAPTER APPROACH

Author(s):| Francisco Carlos R. Reverbel

Submitted to: COOTS '97
Portland, OR
June 1997

AASTER

MAY 0 5 1897
O ST

Los Alamos

NATIONAL LABORATORY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the
U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow
others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article
as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports

academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint
of a publication or guarantee its technical correctness. Form 836 (10/96)

DISTRBUTION OF THS DOCUMENT 1§ UNLMTED
h—







DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employeces, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.







DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.







Making CORBA Objects Persistent: the Object Database Adapter
Approach*

Francisco C. R. Reverbel
reverbel@acl.lanl.gov

1 Introduction

In spite of its remarkable successes in promoting stan-
dards for distributed object systems [13], the Ob-
ject Management Group (OMG) has not yet set-
tled the issue of object persistence in the Object Re-
quest Broker (ORB) environment. The Common Ob-
ject Request Broker Architecture (CORBA) specifi-
cation [6] briefly mentions an Object-Oriented Data-
base Adapter that makes objects stored in an object-
oriented database accessible through the ORB. This
idea is pursued in the Appendix B of the ODMG stan-
dard [1], which identifies a number of issues involved
in using an Object Database Management System
(ODBMS) in a CORBA environment, and proposes
an Object Database Adapter (ODA) to realize the
integration of the ORB with the ODBMS.

Possibly because this proposal was perceived by
many as biased towards object-oriented databases,
and hence distant from the mainstream database
world, no further OMG specifications have contem-
plated the ODA approach. Instead, a Persistence
Object Service (POS), designed to accommodate the
widest possible variety of data stores, was introduced
in {7]. So far POS failed to deliver its promise. At-
tempt to this fact, the OMG recently issued an RFP
for POS version 2.0:

“While the industry posses many products
from OMG members that could be consid-
ered to be in this space, it is clear that virtu-
ally none have compliant POS implementa-
tions in their product roadmaps. Most have
taken the route of point integrations with
ORB products.” ([10], page 20)

Meanwhile, recognition that the ODA approach is
not exclusive to object-oriented databases appears to

*This research was performed at the Advanced Computing
Laboratory of Los Alamos National Laboratory, Los Alamos,
NM 97545, as part of the Sunrise Project.

have grown in the industry. Object-relational map-
pers — systems that map C++ classes/objects into
relational tables/tuples — have been employed to
make relational databases appear as object-oriented
ones. Because such mappers implement an ODBMS
interface on top of a relational system, they extend
to relational databases the applicability of the ODA
approach. The benefits of integrating ORBs and
ODBMS:s include:

Database Heterogeneity. ORB/ODBMS integra-
tion allows the construction of distributed object
databases that can be heterogeneous even with
respect to the DBMS software running on the
database server nodes.

“IDL views”. Access to database objects through
IDL interfaces does not require knowledge of the
database schema: changes in the schema are
transparent to IDL clients. Interfaces can be de-
fined to expose only data items that certain users
are permitted to read or update. Hence IDL in-
terfaces to database objects can play a role anal-
ogous to relational views, both for data indepen-
dence and for authorization purposes.

Language Heterogeneity. Databases can be ac-
cessed by CORBA clients written in any lan-
guage for which a mapping from IDL is defined.

Security. The ORB’s remote method invocation
mechanism requires much less trust in the client
than the data-shipping approach employed by
pure object-oriented DBMSs.

This paper discusses the design and implementa-
tion of an ODA that integrates an ORB and an
ODBMS with C++ bindings. For our purposes, an
ODBMS is a system with programming interfaces
similar to the ones specified in [1]. It may be a pure
object-oriented DBMS (an OODBMS), or a combi-
nation of a relational DBMS and an object-relational

mapper.




An ODA based on the ideas presented here was
developed as part of the Sunrise Project! at the Los
Alamos National Laboratory (LANL). This adapter
has been used by the TeleMed system [3] since mid
1995, and is currently employed by other LANL
projects as well. We have implemented it for two
ORBs, Orbix and VisiBroker for C++, with Object-
Store as the underlying ODBMS in both cases. Even
though our implementation work was aimed at a non-
ODMG compliant ODBMS, we report our experience
in ODMG terms whenever possible.

1.1 The Case for an ODA

ODBMSs integrate database capabilities with an
object-oriented programming language. They im-
plement persistent memory, a single-level store ab-
straction of the memory hierarchy. An ODBMS
with C++ bindings provides a persistent address
space for C++ objects, with heap-style alloca-
tion/deallocation. ODBMS programmers manipulate
persistent C+4 objects in the same way they manip-
ulate objects in the transient heap.

Nevertheless, a CORBA server implemented in
C++ cannot simply place in persistent memory the
objects it implements. To have the status of a
CORBA object, a C++ object must be registered
with the ORB, which keeps a per-server-process ta-
ble of active objects. The details of how C++ objects
are registered as CORBA objects are not fully spec-
ified by the current release of CORBA? . In existing
ORBs, CORBA objects are registered upon creation.
The following approaches are currently used by ORB
implementations:

1. A server may create CORBA objects only via
calls to the ORB, usually to the BOA: :create
function.

2. A server can instantiate CORBA objects di-
rectly. The constructor of a CORBA object ex-
ecutes IDL-generated code that registers the ob-
ject with the ORB.

The ODBMS, however, provides an overloaded
form of operator new for persistent object creation.
If the ORB enforces approach 1 above, then there is
clearly no way of placing a CORBA object in per-
sistent memory. If the ORB supports approach 2,
one could naively instantiate “persistent CORBA ob-
jects”. This would not work, because the constructor
of a persistent object is invoked only when the object

1See http://www.acl.lanl.gov/sunrise/sunrise.html.
2This led to portability problems [8], which the OMG is
about to solve [2].

is added to the database. As far as the ORB is con-
cerned, “persistent CORBA objects” stored by other
processes (including previous runs of the same server
program) would not be active.

To make the ORB and the ODBMS work together,
an additional component is necessary. Driven by in-
coming requests, such component should activate ob-
jects that lie dormant in persistent memory. To al-
low on-demand activation of dormant objects, it must
ensure that object references handed out to CORBA
clients contain information on the location of the cor-
responding objects in persistent memory. Hence this
component has to be responsible for the generation
and interpretation of references to persistent objects.
In the OMG ORB architecture these responsibilities
belong to an Object Adapter.

1.2 The Role of the ODA

The primary role of the ODA is to provide CORBA
servers with an application-independent way of mak-
ing CORBA objects persistent. This includes ensur-
ing that references to persistent objects are them-
selves persistent. In CORBA, persistence of object
references means that “a client that has an object ref-
erence can use it at any time without warning, even
if the (object) implementation has been deactivated
or the (server) system has been restarted” [6].

With persistence of object references, it makes per-
fect sense for a client to store an object reference for
later use. References to persistent CORBA objects
implemented by server X can be stored by server Y (a
client of server X), thereby enabling the construction
of ORB-connected multidatabases. In such a mul-
tidatabase, references to remote objects are used to
express relationships between CORBA objects imple-
mented by different servers.

Distributed transactions, in an ORB-connected
multidatabase, should be supported by a TP mon-
itor that implements the Object Transaction Service
(OTS) specified by the OMG [7]. In the absence of
this service®, the ODA has the additional role of en-
suring that operations on persistent objects are en-
compassed by local transactions. It interacts with
the ODBMS to start and commit (or abort) database
transactions.

3Several OODBMSs, including ObjectStore, do not yet sup-
port the resource manager interface required by OTS. This
service might also be absent simply because a particular appli-
cation does not need distributed transactions.




1.3 Organization of this Paper

The next section motivates and presents the general
design of the ODA. Section 3 discusses implementa-
tion issues; Section 4 considers transactions; Section
5 examines the ODA interfaces and their typical us-
age; Section 6 mentions related work; and Section 7
presents concluding remarks.

2 Design Decisions

Our perspective is the one of a third-party imple-
mentor, with no access to ORB and ODBMS internal
interfaces. Accordingly, our ODA is an add-on to the
ORB’s native Object Adapter (OA), rather than a
replacement for it. Figure 1 shows how it fits into the
integrated ORB/ODBMS environment.

r
Object

ODBMS Server

Transient Object

(red) [om]

DL
Skeleton

Native OA

ORB Core

Figure 1: The Object Database Adapter.

Note that the ODBMS is depicted as a separate
entity holding persistent objects. This representation
exposes the three-tiered nature of the ORB/ODBMS
environment: an object implementation — the mid-
dle tier — is at the same time a client of the ODBMS
and a server to CORBA clients. For simplicity, in a
subsequent figure we omit the ODBMS and represent
persistent objects within the CORBA server. The
reader should keep in mind that “persistence within
an object implementation” is a simplified representa-
tion of the architecture in Figure 1.

2.1 What to Place in Persistent Mem-
ory

A CORBA object has two parts: an IDL skeleton*
and a servant. The skeleton consists of ORB-specific
data members and member functions, all of them me-
chanically generated from an IDL specification. It

4We are not considering the case of CORBA objects imple-
mented with the Dynamical Skeleton Interface.

is an instance of a skeleton class, a server-side dis-
patcher generated by the IDL translator. The ser-
vant®, sometimes called implementation object, en-
compasses the data members and member functions
actually defined by the object implementor. It is an
instance of a servant class, also know as implementa-
tion class, provided by the server writer.

The data members in the servant part of a CORBA
object are relevant to the application, the ones in the
skeleton part are relevant to the ORB only. If we
employ an ODBMS to make CORBA objects persis-
tent, we should certainly keep their servant parts in
persistent memory. Should we also place their skele-
ton parts in persistent memory? An obvious reason
for not doing so is waste of database space, specially
in the case of fine-grained objects®. Stronger reasons
are:

ORB Independence. Keeping ORB-specific data
members in persistent memory ties the data-
base to a particular ORB implementation. As
ORB products evolve, these data members may
change with ORB releases. Databases with
ORB-specific information would then have to go
through a schema evolution process.

Performance. Assuming that CORBA objects are
reference counted’, the skeleton part of a
CORBA object holds its reference count, which
is updated by the primitives duplicate and
release. Placing reference counts in persistent
memory means encompassing these primitives by
update transactions. Every operation that re-
ceives or returns a reference to a persistent ob-
ject would then require an update transaction,
because parameter passing involves duplicate
and release calls.

Only the servant parts of CORBA objects should
be placed in persistent memory. As the ODA acti-
vates and deactivates objects, it should dynamically
instantiate and release their skeleton parts, allocated
in transient memory. These observations lead us to a
clear choice with respect to the relationship between
skeletons and servants.

5We prefer this term, introduced in [4, 2], because imple-
mentation object is easily confused with object implementation
— a CORBA server, in the OMG terminology.

6Besides ORB-specific data members, the skeleton part of a
CORBA object typically has a pair of hidden vbase and vtable
pointers for each interface class in the object’s inheritance chain
up to CORBA: :0bject.

7 Although CORBA does not specify such implementation
details, most (if not all) ORB implementations keep a reference
count per object.




2.2 Delegation, Not Inheritance

Figure 2 shows the alternatives commonly used to
connect the parts of a CORBA object. In the inher-
itance approach, the object implementor derives ser-
vant classes from IDL-generated skeleton classes. In
the delegation approach, also known as tie approach,
instances of IDL-generated skeleton classes are called
tie objects, or simply ties. Each tie holds a refer-
ence to a servant to which it delegates operations.
While inheritance imposes identical lifetimes to both
parts of a CORBA object, delegation allows servants
to outlive their skeleton objects. We therefore choose
delegation as the interface implementation approach
supported by the ODA.

Servant Object

Skelston Object Servant Object
Inherited Skeloton
Suf t

b-object
; 3
. .-"".
=]

Operation Delegation

‘The Inheritance Approach The Delegation Approach

Figure 2: Interface implementation approaches.

2.3 Pseudopersistence
Our decisions can be summarized as follows:

e The ODA supports persistent CORBA objects
implemented with the delegation approach.

e Object implementations keep only servants in
persistent memory.

e The ODA is responsible for dynamically instan-
tiating and releasing transient ties to persistent
servants, so that full CORBA objects are avail-
able whenever they are needed.

Even though “persistent CORBA objects” are not
fully kept in persistent memory, to their clients they
appear as long-lived objects. Accordingly, we call this
scheme pseudopersistence. In what follows a pseudo-
persistent tie, or simply p-tie, is a transient tie to a
persistent servant.

Figure 3 illustrates the pseudopersistence scheme.
A request to a dormant object arrives through the
ORB core (1), causing an upcall to an ODA-provided
object activation function. The id field of the target
object reference is passed as a parameter to this func-
tion. This id contains a stringfied ODBMS reference
(dRef) to a persistent servant. The ODA extracts

the d_Ref from the id and passes it as an argument
to an instantiation function (2}, which constructs the
target CORBA object as a p-tie to the servant speci-
fied by the d_Ref. The incoming request then reaches
the target object as an upcall through the IDL skele-
ton (3). At the end of the operation, another upcall to
the ODA (4) causes the target object to be released.

] ]
Object Implementation

CORBA Object / orva OEpoet
.
M S
Gé}
\. E: w
. . mﬁw 3. Method
Activation ODA " Handler Invecation
' iDL
! Skeleton
Native OA
ORB Core
1. Request
Arrival
———
Object

Object Id

Figure 3: The pseudopersistence scheme.

The object activation upcall in Figure 3 is trig-
gered by an incoming request is a dormant object.
Upcalls also happen in the case of dormant objects
referenced by request parameters, or by strings passed
to string to_object.

3 Implementation Issues

The ODA is implemented as a library that uses and
extends the services of the native OA. It requires
changes on the IDL translation process, which now
must be ODA-aware. These changes, as well as the
actions of the ODA library, are examined below.

3.1 IDL Translation Issues

e Any tie class has a data member that references
the servant to which ties delegate operations.
This data member is usually a C++ pointer or




reference. In the case of a p-tie class, however, it
must be a d_Ref.

¢ Code to support the management of p-ties by
the ODA library must be generated within every
p-tie class. In our implementation, p-tie con-
structors and destructors perform ODA-related
actions. Moreover, each p-tie class makes avail-
able to the ODA library a static function for p-tie
instantiation.

The constructor of a p-tie class embeds into the
p-tie’s id a stringfied d_Ref to the p-tie’s servant.
It also registers the p-tie with the ODA library; the
p-tie will be eventually unregistered by its destructor.
The p-tie instantiation function receives a d_Ref to
a persistent servant and creates a new p-tie to the
servant.

Special translation requirements do not necessar-
ily mean another IDL translator. Our ODA imple-
mentation actually employs the IDL translator pro-
vided by the ORB, complementing it with macros.
The object implementor annotates the server code
with ODA-defined directives, which macro-expand
into p-tie class definitions. These directives are typi-
cally placed in server header files.

3.2 ODA Actions

¢ The ODA library receives object activation up-
calls from the native OA, forwarding each such
upcall to the appropriate p-tie instantiation func-
tion.

e At the end of every operation, after any results
were marshaled into a reply message, the ODA
library issues release calls on all p-ties instan-
tiated while the current request was being ser-
viced.

Because the number of servants in a database is
potentially very large, a CORBA server cannot keep
in-memory ties to all the persistent servants it touches
during its execution. The last item above addresses
the need of releasing p-ties from time to time. Each
p-tie is instantiated with a “net reference count” of
zero — an initial reference count of one, plus a pend-
ing release call, to be performed by the ODA at the
end of the operation. Unless the servant code issues
duplicate calls on them, p-ties have short lifetime:
they exist while a request is being serviced. Whenever
a discarded p-tie is needed again, an equivalent to it
will be instantiated by an object activation upcall.

3.3 Caching P-ties

Releasing all p-ties at the end of every operation
appears unreasonable, since the ODA only needs to
ensure that these p-ties will be eventually released.
Postponing their destruction would avoid the costs
of successive p-tie reinstantiations. Qur ODA imple-
mentation actually caches the last NV p-ties it instan-
tiated, where N is a configurable parameter. At the
end of every operation, the ODA brings the number
of p-ties down to N + 46, keeping the most recent ones.
(The é accounts for any duplicate calls that might
have been issued by the servant code.)

Caching p-ties makes sense if the ODBMS ensures
that their d_ Ref data members remain valid across
transactions. So far we have ignored database trans-
actions, this topic will be discussed in 4. Let us as-
sume, by now, that transactions are started and com-
mitted (or aborted) by means external to the CORBA
server, and that each operation is encompassed by an
individual transaction.

Does a d_Ref from transient to persistent memory
retain its validity across transactions? The ODMG
standard leaves the answer to the discretion of the
ODBMS implementor. In most ODBMSs, such a ref-
erence cannot be used in between transactions, but
does remain valid across transactions. This being the
case, the ODA should cache p-ties.

With caching, the servant code must have a way
of forcing the removal of objects from the cache. Ac-
cordingly, the ODA provides a function that receives
a CORBA::Object.ptr and immediately deletes the
corresponding p-tie. This function, ODA: :Delete, is
intended to be called by destructors of persistent ser-
vants, with the purpose of avoiding dangling p-ties.

3.4 Converting Servants into CORBA
Objects

The ODA must provide the servant code with the
means for obtaining a CORBA object given its ser-
vant. For each association (interface, servant_class)
there is an ODA-generated function that takes a
d_Ref to a servant and returns a reference (of type
interface_ptr) to the corresponding CORBA object.
To avoid multiple p-ties to a servant, this function is
not implemented as a mere call to p-tie instantiate. It
first checks it if a p-tie to the servant already exists,
then it returns a duplicated reference to either an
existing p-tie or a newly instantiated one.

A non-standard bind function, present in various
ORBs, could be used to perform the check mentioned
above. Given a d_Ref to a servant, one would convert
it to string and obtain an id, which would then be




passed as an argument to bind. The ODA does not
use this approach. Instead, it keeps pairs

{d Ref, p-tie-address)

in its own table of active p-ties, which it hashes by
d_Refs with a hash function provided by the ODBMS.

3.5 Usage of Non-standard ORB and
ODBMS Features

The ODA relies on the delegation approach, which
is mentioned — but not mandated — by CORBA.
Orbix and VisiBroker are examples of commercially
available ORBs that support delegation. Both admit
direct instantiation of ties, automatically registering
newly instantiated ties as active CORBA objects.

Because the current release of CORBA describes
object activation in very general terms, ORB imple-
mentations vary widely on their support to object
activation® The ODA builds upon the native QA’s
object activation capabilities. Its Orbix implemen-
tation uses a LoaderClass instance; the VisiBroker
implementation uses an Activator.

Various ORBs provide non-standard “event han-
dling” or “request/reply intercepting” facilities®. The
ODA needs such a facility both to release p-ties and to
manage database transactions in the absence of OTS
(see 4). Its Orbix implementation uses a Filter; the
VisiBroker implementation uses an EventHandler.

From the ODBMS, the ODA requires a means of
converting d_Refs to strings and vice-versa. Although
supported by many ODBMSs, this feature is not in
the ODMG standard.

4 Transactions

Any access to persistent memory has to be performed
within a transaction. Leaving to the servant code the
responsibility of starting and committing (or abort-
ing) transactions is not an option, because accesses
to persistent memory happen both before and after
the servant code is called:

¢ In order to delegate an operation to its servant,
a p-tie must access persistent memory. The p-tie
must dereference its d.Ref data member, which
points to persistent memory.

8The OMG is working actively to correct this situation [8,
2.
9The OMG has recently introduced request level intercep-
tors {9] as an extension to the ORB core, but the standard
facility is not yet available in existing ORBs.

e Marshaling of operation results into a reply mes-
sage may involve accesses to persistent memory.

Usage of OTS [7] would ensure that not just ser-
vant method execution, but also request dispatching
and parameter marshaling would be performed within
transactions. Since QTS interacts directly with the
local resource manager (the ODBMS), transactions
would be started and committed (or aborted) by
means external to the CORBA server.

If OTS is absent, the ODA must take the responsi-
bility of starting and committing (or aborting) local
transactions. Not with the aim of performing dis-
tributed two-phase commit, but just to ensure that
a transaction will be active whenever an operation is
dispatched, and will remain active till the operation
results are marshaled into a reply message. We did
not have OTS, so this was our scenario.

4.1 Support to Local Transactions

The ODA manages local transactions by employing
ORB-specific “event handling” or “request/reply in-
tercepting” facilities. Its default transaction mode
is transaction per operation: an “incoming request
pre-marshal” handler starts a transaction as soon as
a request arrives, an “outgoing reply post-marshal”
handler ends the transaction just before the reply is
sent. The servant code may specify if the current
transaction will be committed or aborted at the end
of the operation. By default, the ODA commits the
transaction. Under control of the servant code, the
ODA may also switch to another transaction mode,
which allows multiple operations to be grouped into
a single transaction.

Because ObjectStore requires the transaction type
(read-only or update) to be specified when a trans-
action starts, update operations must be registered
with the ODA. Registration of update operations is
typically done by the server mainline. By default, the
ODA starts read-only transactions. In the case of op-
erations previously registered as update operations,
it starts update transactions.

5 ODA Interfaces and Usage

The CORBA server interacts with the ODA through
a very small API. Besides ODA-generated functions
that return an interface_ptr given a d_Ref and vice-
versa, there are just a few static functions available
to the server code:

e ODA::initialize

e 0ODA::register npdate_ops



ODA: :Delete

0ODA: :multi op_transactionmode
¢ ODA::abort.transaction
e ODA::commit_transaction

Note that there is no specific function to create or ac-
tivate a persistent CORBA object: object activation
may occur as a side effect of the conversion of a d_Ref
into CORBA object reference.

Given an interface class X and a persistent servant
class X_i to which X delegates operations, the function

X_ptr ODAX.i_to X(const d_Ref<X_i>&);

translates a d_Ref<X_i> into the corresponding X_ptr.
This function, defined at the file scope, is generated
by the ODA directive that “ties together” X and X_i.
A member function of the ODA-generated p-tie class
performs the reverse translation (to d_Ref<X.i>).

The ODA is not an intrusive presence in the
programming environment. In our experience, the
vast majority of ODA calls is performed to obtain
an interface_ptr from a d_Ref. Except for these,
ODA calls are relatively rare in the server code.
ODA::initialize is called by the server’s mainline
only. Calls to ODA: :register update_ops typically
appear only in the server’s mainline only, and would
not be necessary in the case of an ODMG-compliant
ODBMS. ODA::Delete is invoked from destructors of
persistent servant classes. In the default transaction
mode, servants do not normally call transaction man-
agement functions.

5.1 Server Organization

Persistent relationships between CORBA objects
within a server are actually realized by relationships
between their corresponding servants. When travers-
ing database relationships or performing a database
query, the servant code deals only with persistent ser-
vants, not with full CORBA objects. Such a traver-
sal or query is therefore executed at ODBMS speeds.
Consider, for example, the case of an operation that
performs a search for a particular object within a col-
lection of objects. The whole search is performed at
the ODBMS level, without CORBA-activating any
of the objects of the collection. Its result, a d_Ref
to particular servant, is then converted to CORBA
object reference and passed back to the client. When
the servant code calls the ODA to perform such a
conversion, it obtains a duplicated reference to a
CORBA object managed by the ODA. Whether this
object was just activated or was already in the ODA

cache is irrelevant to the servant code, which in ei-
ther case assumes the responsibility of releasing the
reference.

Persistent relationships between CORBA objects
in different servers are realized via stringfied CORBA
references stored in persistent memory. These ref-
erences must be explicitly converted back to its na-
tive form for usage. Note that any database con-
taining CORBA object references is ORB-dependent,
because these references are ORB-dependent. ORB
independence is lost when we move on to an ORB-
connected multidatabase.

5.2 Servant Inheritance

Consider the IDL interfaces below.

interface X {

I

interface X1 : X {

}

interface X2 : X {

};

interface Y {
readonly attribute X x;

};

Interface X defines operations that are common to
both X1 and X2. Attribute x of Y has interface type
X; its most derived interface may be either X1 or X2.

A natural organization for the corresponding per-
sistent servant classes'® would be:

10We adopt the convention of naming servant classes by ap-
pending an “_.i” (for “implementation”) to the corresponding
interface names.




class X_.i : public dObject {

// abstract class

1

class Xi.i : public Xi {

}

class X2.i : public X.i {

};

class Y_.i :
public:
Xptr x0;

public d_Object {

private:
d Ref<X_i> x.i;

};

X_i is an abstract class: any instance of this class is
an instance of either X1_i or X2_i. Class Y_i holds an
ODBMS reference to an instance of X_i in its private
data member x_i. The attribute accessor Y_i::x()
returns a CORBA reference the object whose servant
is x_1.

Note, however, that there is no ODA-generated
function that takes a d_Ref<X_i> and returns an
X ptr. The ODA provides this conversion function
only when the interface skeleton and the servant class
are tied together by delegation. This is never the
case for an inherited servant class, such as X_i. In
the example above, there are ODA-generated conver-
sion functions from d_Ref<X1_i> to X1_ptr and from
d Ref<X2_i> to X2_ptr.

ODA users solve this problem by defining a virtual
member function, say get X_ptr(), in class X_i. This
function, declared as pure virtual in X_i, is redefined
by the derived classes X1_i and X2_i as below:

X ptr Xi.i::get Xptr() {
return ODAX1_i to.X1i(d Ref<X1.i>(this)):

}

X.ptr X2_i::get X_ptr() {
return ODA_X2_i to X2(d Ref<X2_i>(this));

}

If the servant inheritance chain were longer, all ab-
stract servant classes would define get X ptr() as
pure virtual.

6 Related Work

The work about to be concluded at the OMG, in
the context of the ORB Portability Enhancement
RFP [8, 2], will reduce the ODA dependencies on
non-standard ORB features. The ODA is easily im-
plementable on top of the Server Framework Adapter
(SFA) proposed in [2]. Moreover, our pseudopersis-
tence scheme is essentially a realization of the ODMG
model for SFA, as outlined in the Appendix C of [2].

A number of ORB and ODBMS vendors has an-
nounced plans for the integration of their products;
some of these integrated solutions are already being
delivered. Probably the first one was Iona Tech-
nologies’s Orbix+ObjectStore Adapter (OOSA) [5],
whose beta release became available by late 1995.
Since then, Iona has integrated Orbix with Versant,
and has announced plans for integrating Orbix with
02 and Persistence.

Iona’s OOSA takes advantage of the particular way
CORBA objects are laid out by the ORB. In Orbix,
not all data encapsulated by a CORBA::0bject in-
stance appears directly in its data members. Instead,
a data member of CORBA: :0bject points to an aux-
iliary object. Some of the “logical” data members of
CORBA: :Object are actually in this auxiliary object.
The object reference count is one of them.

Unlike the ODA, which stores only servants, OOSA
actually stores CORBA objects in ObjectStore data-
bases. A CORBA object, however, is not stored in
their entirety: to avoid the performance penalty of
having object reference counts in persistent mem-
ory, OOSA does not store the auxiliary object in the
database. Instead, it dynamically instantiates auxil-
iary objects as persistent CORBA objects are made
available in ObjectStore’s client cache. When such
an auxiliary object is instantiated, the corresponding
CORBA object is inserted into the per-process ta-
ble of active objects maintained by Orbix. This ap-
proach allows persistent CORBA objects to be imple-
mented either by inheritance or by delegation. It also
allows object relationships to be expressed in terms of
CORBA objects, not just at the servant level. Its dis-
advantages are some waste of database space, ORB-
dependent databases, and the performance penalty of
object activations triggered by database accesses.

7 Concluding Remarks

We have presented the design and implementation of
an ODA that allows execution of database traver-
sals and queries at the full speed of the underlying
ODBMS. Only what needs to be persistent is kept



in persistent memory; ODA users are not forced to
store ORB-specific information persistently. Data-
bases are ORB-independent unless the user explicitly
places ORB-specific data (such as stringfied object
references) in persistent memory. Finally, the ODA
design appears to be general enough to be applica-
ble to any ODBMS. ObjectStore’s virtual memory-
based architecture makes it different from all other
ODBMSs in many aspects. That the ODA design
can be described in ODMG terms, and yet be im-
plemented for ObjectStore, is strong evidence of its
applicability to any ODBMS.

The ODA’s pseudopersistence scheme appears to
be an optimal solution for integrated ORB/ODBMS
environments in which object relationships are mostly
confined within a CORBA server. In such a scenario,
there is no reason to express database relationships at
the CORBA level, as they are much more efficiently
realized at the servant level.

The motivation for representing database relation-
ships at the CORBA level might arise in the context
of an ORB-connected multidatabase with many cross-
server references. Expressing persistent relationships
between objects in different servers via stringfied
CORBA references placed in persistent memory may
be inconvenient in this case. Consider, for example,
a situation in which it would be desirable for a server
to have a persistent and homogeneous collection of
object references, whose elements may refer to either
local or remote objects. This is not possible in the
pseudopersistence scheme. Instead of a uniform col-
lection, two distinct sub-collections must be used: one
with d_Refs to local servants, other with stringfied
CORBA references to remote objects. Intra-server
references and inter-server references could be uni-
fied if the Object Adapter provided support for per-
sistently representing both at the CORBA level. To
be useful, this unification should allow transparent
use of stored CORBA references to invoke methods
on possibly remote objects. Note, however, that in-
curring the cost of such a unification — the perfor-
mance penalty of expressing intra-server references
at the CORBA level — would be worthwhile only
if cross-server references occurred much more than
inter-server references.

References

[1] R. G. G. Cattell, editor. The Object Data-

base Standard: ODMG-93, Release 1.2. Morgan
Kaufmann, 1996.

[2] DEC, Expersoft, HP, IBM, ICL, IONA, Novell,
SunSoft, and Telefénica I4+D. ORB Portabil-
ity Joint Submission, Draft 5. OMG Document
orbos/96-12-02, December 1996.

[3] D. W. Forslund and others. Full reference to be
provided later.

[4] Hewlett-Packard, IBM, Novell, and SunSoft.
Server Framework Specification. OMG Docu-
ment orbos/96-05-03, May 1996.

[5] Tona Technologies. Object+ObjectStore Adapter
— Beta Release Documentation. Dublin, Ire-
land, 1995.

[6] Object Management Group. The Common Ob-
ject Reguest Broker: Architecture and Specifica-
tion. Revision 2.0, July 1995.

[7] Object Management Group. CORBAservices:
Common Object Services Specification. Revised
Edition, March 1995. Updated November 1996.

[8] Object Management Group. ORB Portability
Enhancement RFP. OMG Document 95-06-26,
June 1995.

[9] Object Management Group. CORBASecurity.
Version 1.1, OMG Document Numbers 96-08-03
through 96-08-06, July 1996.

[10] Object Management Group. Persistent Ob-
ject Service, version 2.0 — Request For Pro-
posal. OMG Document orbos/96-12-07, Decem-
ber 1996.

[11] F. C. R. Reverbel. Object Database Adapter Pro-
grammer’s Guide and Reference Manual. Ad-
vanced Computing Laboratory, Los Alamos Na-
tional Laboratory, Los Alamos, NM, August
1996.

[12] F. C. R. Reverbel. Persistence in Distributed Ob-
ject Systems: ORB/ODBMS Integration. PhD
thesis, University of New Mexico, Computer Sci-
ence Department, Albuquerque, NM, May 1996.

[13] S. Vinosky. Corba: Integrating diverse applica-
tions within heterogeneous environments. IEEE
Communications, 14(2), February 1997.







