
LOS ALAMOS SCIENTIFIC LABORATORY
OF THE UNIVERSITY OF CALIFORNIA o LOS ALAMOS NEW MEXICO

A STUDY OF THE STABILITY 

OF A RELATIVISTIC PARTICLE BEAM 

PASSING THROUGH A PLASMA



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



LEGAL NOTICE

This report was prepared as an account of Govern­
ment sponsored work. Neither the United States, nor the 
Commission, nor any person acting on behalf of the Com­
mission:

A. Makes any warranty or representation, expressed 
or implied, with respect to the accuracy, completeness, or 
usefulness of the information contained in this report, or 
that the use of any information, apparatus, method, or pro­
cess disclosed in this report may not infringe privately 
owned rights; or

B. Assumes any liabilities with respect to the use 
of, or for damages resulting from the use of any informa­
tion, apparatus, method, or process disclosed in this re­
port.

As used in the above, “person acting on behalf of the 
Commission” includes any employee or contractor of the 
Commission, or employee of such contractor, to the extent 
that such employee or contractor of the Commission, or 
employee of such contractor prepares, disseminates, or 
provides access to, any information pursuant to his em­
ployment or contract with the Commission, or his employ­
ment with such contractor.

Printed in USA. Price $ 3.00. Available from the
Office of Technical Services 
U. S. Department of Commerce 
Washington 25, D. C.



LA-2802
UC-20, CONTROLLED THERMONUCLEAR
PROCESSES
TID-4500 (18th Ed.)

LOS ALAMOS SCIENTIFIC LABORATORY
OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS NEW MEXICO
REPORT WRITTEN: October 1962 

REPORT DISTRIBUTED: March 4, 1963

A STUDY OF THE STABILITY 
OF A RELATIVISTIC PARTICLE BEAM 

PASSING THROUGH A PLASMA

by

R. C. Mjolsness* *

*Present author address: Space Science Laboratory, General 
Electric Company, King of Prussia, Pennsylvania. Part of 
this work was done at Palmer Physical Laboratory, Prince­
ton, New Jersey.

This report expresses the opinions of the author or 
authors and does not necessarily reflect the opinions 
or views of the Los Alamos Scientific Laboratory.
Because of special circumstances, this report has 
not been edited.

Contract W-7405-ENG. 36 with the U. S. Atomic Energy Commission

i



ABSTRACT

>

The dispersion law is derived for small amplitude 
disturbances of the spatially non-uniform steady state 
configuration of a relativistic particle beam of finite 
cross section and infinite length passing through a low 
temperature dense plasma. First, a macroscopic analysis 
is given in which Maxwell's equations are supplemented 
by fluid equations for the beam and plasma effects are 
accounted for by means of a scalar conductivity. A 
more realistic treatment of the plasma is then obtained 
by introducing a variable tensor conductivity and appro­
priate boundary conditions, permitting the effects of 
Hall currents, density and temperature gradients, and 
metal walls to be assessed. Finally, the analysis is 
refined by treating the beam particles by means of

w Work supported in part by the United States Atomic 
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the collisionless Boltzmann equation while maintaining 
the scalar conductivity description of the plasma. Use 
of the orbit integral technique for solving the Boltzmann 
equation permits the perturbed beam current to be expressed 
as an integral over the perturbed field variables, and the 
relativistic dynamics and the geometry of the configuration 
greatly increase the tractabillty of the expressions. 
Introduction of appropriate Hankel transforms of the field 
variables leads to an Integral form for Maxwell*s equations 
and to the expression of the stability problem as a set of 
three linear, coupled integral equations. A formal solution 
of these equations Is given, and the dispersion relation 
is seen to appear as a solvability condition for the 
equations. Asymptotic evaluations of the formal expressions 
are given for the case of low frequency, long wavelength 
disturbances and high frequency, highly localized dis­
turbances
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Chapter 1

INTRODUCTION

Discussion of the Stability Problem

The extensive published literature on the stability of
1 2plasma-field configurations * contains relatively few topics 

that have been completely analyzed. The subject is more diffi­
cult, both experimentally and theoretically, than hydrodynamic 
stability problems and has been less fully explored. One con­
sequence of this is that the major theoretical progress in 
plasma stability problems has come through improved formalisms 
v/hich facilitate the posing of questions simple enough to be 
treated analytically, rather than through more elaborate numer­
ical analyses aimed at a complete description of perturbed flows. 
The principal achievements have been to analyze the small ampli­
tude behavior of perturbations via normal mode (Laplace trans­
form) techniques ^ and complex variable theory, to find var­

iational principles suitable for the simpler problem of whether 
or not a configuration is stable, and to use asymptotic meth­
ods, both as a means of simplifying complicated equations H*13»ll|- 

and of extracting the approximate content of formal solutions to 
equations. 3*l5

One additional theoretical difficulty is that the presence 
of instabilities may alter the form of the governing equations. ^
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However, unstable modes which develop more rapidly than par­
ticle collision rates should be well described, at least in the 
linear regime, by the coupled set of Maxwell's equations and 
collisionless Boltzmann equations. That is, the particles are 
described by a distribution function f^ for each species, the 
fields are described by E and B, and the system satisfies the 
equations

H A. o.

v • E • » v • B * Q,

V*E . - i; A e> 4^j ♦ C.J-Ae:
dt 3

where

and
A * ^ ^ / J’p«-t.

In principle, these equations are easy to solve. The distribution 
functions are constant along particle trajectories, so initial 
values suffice to determine the functions at later times. With 
the functions known, the charge density and current density may 
be computed and Maxwell's equations solved. The difficulty is
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that the computed fields must agree with the fields used to find 
fa. Thus the task is to find non-linear, self-consistent solu­
tions of the set of equations. In general, not enough is known 
about particle orbits to permit many solutions to be exhibited.

For stability analyses the problem is simplified by solving 
the full set of equations for only the undisturbed state of the 
system and using linearized equations to describe departures from 
that state. The perturbed distribution functions are then ob­
tained as linear functionals of the perturbed fields, specifi­
cally as time integrals of the perturbed fields which are eval­
uated along the unperturbed particle orbits, and Maxwell's equa­
tions may bo formulated as a set of linear integro-differential 
equations or as a set of purely integral equations. The solution 
of Maxwell's equations then determines the stability of the sys­
tem. Of course, lack of knowledge of particle orbits still se­
verely limits v/hat can be done with this formalism, but, once the 
unperturbed particle orbits are known, no additional orbits need 
bo found for the stability analysis. The major problems for the 
linear stability theory are to find solutions for the unperturbed 
configuration which are sufficiently close to physical situations 
of interest and, with these solutions in hand, to analyze Maxwell* 
equations for the perturbed fields.

At present it has boon possible to complete these tasks only 
for infinite, uniform plasma geometries, with and without an ex­
ternal magnetic field present. This work will examine a simple.



non-uniform geometry produced by a particle beam passing 
through a plasma. The configuration forms a natural generali- 
zation of the extensively studied ' case of a plasma in
a uniform external magnetic field. The beam will be assumed to 
be highly relativistic, so that an approximate form of the rel­
ativistic equations of motion may be used to simplify the parti­
cle dynamics, and composed of electrons, although other particle 
species can be treated with nominal modifications in the formal­
ism. As noted above, the beam particles v/ill be described by a 
collisionless Boltzmann equation. Hov/ever, the plasma - electrons, 
ions, and neutrals - v/ill be described by simple macroscopic fluid 
oquations. The problem is simply too complex when both the plasma 
and the beam are treated microscopically. Moreover, some of the 
most interesting modes occur at frequencies which are much larger 
than the collision rates for beam particles but much smaller than 
plasma collision rates. These modes are driven by plasma collis­
ions and cannot be described by collisionless plasma equations.

Tho equilibrium configuration is assumed to have symmetry 
and bo invariant to translations in the z direction, the direction 
of beam motion. The plasma is taken to have an arbitrary degree 
of ionization but to be sufficiently dense to neutralize the beam 
without appreciable disturbance to its homogeneity. The beam par­
ticles are assumed to satisfy the approximate relativistic equa­
tions of motion
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and

and u is tho average beam velocity. During most of the work, it 
will be assumed that the z velocity of the beam particles is con­
stant, and it is this approximation which permits a simple des­
cription of the particle orbits-.

A substantial body of this v/ork is devoted to a purely 
macroscopic analysis of low frequency, long wavelength distur­
bances in v/hich fluid equations rather than Boltzmann's equation 
are used to describe the beam particles. This provides an appro­
priate and simple level of description for these modes, since 
they are essentially macroscopic in nature. It also provides a 
limiting case for the microscopic analysis. Finally, It provides 
a tractable model for the assessment of tensor effects in the 
plasma conductivity. These are shown to be small, justifying to 
some degree the use of a scalar plasma conductivity throughout 
tho microscopic analysis. Hov/ever, It Is desired to treat a v/ide 
range of frequencies, so an arbitrary ratio of conduction to polar­
ization current Is permitted and a model is given relating this 
ratio to plasma conditions.

In the unperturbed configuration, the self-magnetic field
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of the bean constrains the beam particles to move in betatron 
orbits, and finite density changes occur over one orbit diameter. 
In consequence, particle motion must be treated very carefully 
during the analysis of disturbances. This analysis, culminating 
in a formal solution of Maxwell's equations and a formal expres­
sion for the dispersion relation, constitutes the principal re­
sult of this work. Unfortunately, it has not been possible to 
extract the explicit content of these expressions for all modes 
of disturbance. Asymptotic methods are therefore used to dis­
cuss limiting cases.

For low frequency, long v/avelength disturbances, the equa­
tions yield the macroscopic results plus small correction terras. 
The nodes are driven by the finite plasma conductivity and have 
the characteristic behavior rj , where rj is the plasma resis­
tivity, of the non-localized, finite conductivity instabilities 
found by Furth, Rosenbluth, and Killeen. ^ For high frequency, 

highly localized disturbances, essentially electrostatic instabil­
ities are found. However, the self-consistent treatment of par­
ticle orbits yields corrections to analyses treating the beam 
motion as straight line orbits. 21-24>5£ in particular, certain 

low frequency instabilities predicted by V/atson, Bludman, and 
Rosenbluth are shown not to occur, and a more stringent con­
dition for the validity of the analysis is found. Not as much 
information on the relation between WKB solutions for highly lo­
calized disturbances and the exact solutions has been found here
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as in the work of Frleman, Goldberger, Watson, Weinberg, and 
Rosenbluth ^ on purely straight line orbits. The extension of 

their analysis tp tho present self-consistent treatment of par­
ticle orbits still forms a highly v/orthwhile problem.

Survey of Relativistic Streaming Phenomena

Under normal circumstances plasmas occurring in nature have 
particle distribution functions which are approximately Maxwell­
ian in form. This form is maintained by collisional processes and 
has a natural generalization when relativistic thermal energies 
are involved. In particular, anisotropies in the distribution of 
particle velocities are inhibited by collisions. The present v/ork 
deals v/ith the streaming of relativistic electrons through a plas­
ma of moderate temperature - a highly anisotropic configuration. 
The study of this configuration is suggested by a review of plas­
ma stability theory, but the relation of this problem to natural 
phenomena remains to be discussed. For this purpose a brief des­
cription will be given of several situations in which relativistic 
streaming of particles does occur and in which the persistence or 
stability of the streaming motion is of importance to the observed 
phenomena.

When relativistic particle streaming occurs in nature, some 
mechanism is required to accelerate the particles. Theoretical 
attempts to account for the observed distribution of cosmic ray 
particles have put forward a number of mechanisms in v/hich the
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acceleration of particles occurs as a result of field configu­
rations set up by large scale events. For an observer in general 
position, any local anisotropies produced by such acceleration 
mechanisms average out, but the earth is not in general position. 
It records substantial increases in cosmic ray intensity during 
periods of solar activity. The theory of discharges at neutral 
points seems able to explain the connection between solar 
flares and production of cosmic rays but provides too many par­
ticles if they remain localized in a beam. Presumably, the par­
ticles are scattered at the solar surface via instabilities or in 
interplanetary space by turbulent magnetic fields.

The process of electron "runav/ay" seems to be of comnon 
occurrence in 100 ev - 1 Kev plasmas^”^ and is typically a 

by-product of time dependent magnetic fields. The induced elec­
tric field accelerates electrons along B lines, while Coulomb 
collisions tend to randomize this directed energy. An analysis 
predicts that some electrons v/ill diffuse to a region of velocity 
space where Coulomb encounters are no longer significant and then 
will "run away". '.Then the electric field strength exceeds a cer­
tain "critical" value, the runaway occurs at once and is called 
"strong runav/ay". The detection of 100 Kev to 1 Mev x rays' Indi­
cates that electrons can reach weakly relativistic energies before 
escaping from the experimental chamber. The runav/ay electrons may 
be aided in their escape by Instabilities. Unpublished calcula­
tions suggest that velocity space instabilities should be produced
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by tho anisotropic electron distribution.
The runaway process can also bo used deliberately, and 

can form tho basis of tho design of a plasma betatron.
Such a machine has been run by the CERN group ^ but apparently 

has not yet operated in the strong runaway regime necessary for 
its efficient use as a betatron. These and other high-current 
plasma accelerator concepts 33,314- ^oai v/ith neutralized, self- 

constricted beams of relativistic electrons and lead naturally 
to studies of the formation, equilibrium properties, and stability 
of such configurations. 3l}-“39 Definitive theoretical analyses 

have not been given, but instabilities appear likely to occur 
while the configuration is being formed, as v/ell as afterv/ard in 
the steady state. Although the present v/ork is concerned v/ith an 
electron beam passing through a plasma and not with a beam neu­
tralized by ions only, certain localized high-frequency distur­
bances v/hich are analyzed here also describe behavior of the 
latter configuration and supplement previous stability analy­
ses. 3l4-> 3o,39

The Astron concept of a thermonuclear reactor ^ is another 

configuration Involving the streaming of relativistic electrons. 
More the electrons are injected into a magnetic mirror geometry, 
forming a current sheet or E-layer which gives rise to a system 
of closed B lines in the experimental chamber. A cold gas is then 
brought into the chamber. It is then heated to thermonuclear tem­
peratures by collisions with the E-layer and confined by the mag­
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netic field. Experiments are being designed to test the concept 
but have not been completed. A considerable amount of theoreti­
cal work on the steady state configuration and its stability pro­
perties has been done, hov/ever. The work encounters severe math­
ematical problems but simralified treatments have given encour­
aging results.

An experiment which approximates the geometry of the present 
v/ork has been proposed for the Astron electron accelerator. ^

The electron beam would be extracted from the accelerator, focused 
through self-magnetic forces, and passed through a large experi­
mental chamber filled with plasma. If an approximately steady 
state configuration could be attained in the chamber, its stabil­
ity properties would be observed. The experiment should facili­
tate comparison of observed and calculated instability growth 
rates and give observations on the non-linear behavior of distur­
bances which are inaccessible to theory. It is to be expected that 
tho simplest models of plasma and beam dynamics supplemented by 
boundary conditions should suffice for the calculation of growth 
rates of many modes of disturbance from the steady state, since 
this result is found in the present v/ork for the case of an infin­
ite plasma.

In general, a theoretical analysis of the stability of rela­
tivistic streaming phenomena occurring In nature is too difficult 
to carry out in detail. The present work which analyzes distur­
bances from a steady state contains many features of the proposed
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Astron accelerator experiment, yet it considers an idealized 
geometry and can give no description of the experimentally impor­
tant processes of the self-constriction of the beam and the entry 
of the beam into the plasma. Thus this work cannot aim at giv­
ing a complete description of any experiment. Its utility lies 
in its contribution to plasma stability theory of a model v/hich 
can be rather fully worked out and which permits the evaluation 
of the effects of individual particle trajectories on a v/ide 
class of modes of disturbance.
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Chapter 2

LOW FREQUENCY BEAM INSTABILITIES 

Plasma Conductivity Law

The formulation of the present stability problem 
as an explicit set of equations for the perturbed field 
components requires that the perturbed beam current and 
the plasma current be expressed in terms of the perturbed 
fields and steady state parameters. The object of this 
section is to derive such expressions for the plasma 
current.

The derivation is based on a simple model of the 
plasma dynamics and is carried out in the rest frame of 
the steady state plasma. This frame, which is also the 
laboratory frame of reference, is used throughout the 
stability analysis. The plasma is composed of electrons 
with mass m, singly charged ions with mass M, and neutral 
particles with mass Mg. Gradients in the density of these 
species are required to maintain electrical neutrality in 
the steady state, but are ignored in the present discussion. 
This approximation restricts the admissible ranges of 
steady state particle densities. The neutral particle 
density N may be of arbitrary magnitude, but the electron 
or ion density n must be much greater than the beam density

- 12



Perturbed motions of the plasma species are des­
cribed by means of linearized, pressureless hydrodynamic 
equations in v/hich momentum transfer between distinct 
species is accounted for by phenomenological collision 
terms. Flexibility is given to the model by three 
arbitrary parameters v/hich permit arbitrary collision 
frequencies between particles of distinct frequencies.
’.Then all magnetic forces are ignored, the model gives 
a complex scalar conductivity as the ratio of the plasma 
current to the perturbed electric field.

All time dependences are taken to be of the form 
eWt an(j perturbed quantities are denoted by

vQ ielectron velocity) (neutral velocity)
v^ (ion velocity) E (electric field).

All magnetic forces are neglected and the linearized 
momentum transfer equations become

la»n m v. « -eRE “ * (J£. - “ 21 ^
U)^nMv^ eRg-v'(Vi-

« <*(va-Vy),
v/here & , , and y'are taken to be constants characteristic
of the equilibrium plasma and are proportional to the 
electron-neutral, electron-ion, and ion-neutral collision 
frequencies.
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It is useful to introduce the definitions 
F * O' + /8 + Iuj n hn 
Q- =v/>>3 + lutnfA 
H — 0<r + v' + .

Then Eq. (1) is equivalent to

FHv - ^Mv.-cnHE«*J

+ + «nE.
Equation (4-J nay be solved for vQ and v^, giving

iV ,
•LF&H

-enEff
*L.F^H -(«r*-<T +>5*'H > >*• F + « octf ✓)] *

The plasma current density
i=(eiy%s-re)

may be obtained by substitution from Eq. (5)» giving
r(¥ \i(FtG-2/3)-(*+•/)*y»^)* y

* H * ■/* F ♦ / o^d "
The conductivity lav/

i “o'E
%»

may be combined v/ith Eqs. (2) and (7) to yield

I ^ I
(o0+ ctY'+jS-Z/jn Jm ♦ Mj + —«vn mn MN^
+ iui(n»nfiMlof't,v'J

(2)

(3;

(4;

{St

(6)

17)

(8)

(9)

Equation 19) is valid for any non-negative values of & t/6 » 
^• n, II, M, and I.Ig, but for later use it is convenient
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to give several limiting values of this expression which 
are simpler in form.
Case I: o^">d",,->//= 0 (collisionless plasma)

Eq. (9) becomes
i:

Case II: <*«y'«N»0 (fully ionized plasma)
Eq. (9) becomes

or (11)

where
n m M

In this case the phase of o' is approximately 0 when 
i)>>u) and is approximately when <«/»x) .
Case III: ■✓'—*•0 (neutrals move with ions)

Eq. (9) becomes
~-(trUSt nnr>^r»M>NMA __i V'UC'A KM ♦Nl^ )

(12)laJ+O
where (nCn^-M] ♦ NMgj

nw(nM+ HM^)
Hero again the phase of <r is approximately 0 when 0» u> 
and is approximately when a) >> \) .

For any positive values of the parameters C/, jS , and S 
Eq. (9) gives Rt o'i 0 and 0 , or

“(s^j)—phase of o’— 0. (13)
Hence the plasma is resistive and inductive in general.

The effect of the steady state magnetic field, BQ, on
the conductivity tensor will be investigated when i)» M

- 15 -



in Case III. The treatment will be based on the facts 
that the ions and neutrals are approximately motionless 
and that |<j| is small. Thus the current is given by

U4)
the conductivity is given by

(‘rFTc’) of+yj*

and the equations of motion become

Combination of these equations gives
117)

which may be solved for j. This is done in cylindrical 
coordinates for which

&.<.o,o). 118)
The solution of Eq. (I?) for the components of J gives for 
this case

aE. U9)

-ix (I +/*'*')
where

[.rB.l r)/«n]*

The description of the plasma current given by Eqs. 19;, 
UO), 111), (12), and (19) is sufficient for the present 
stability problem. Attention will now be directed to the 
beam dynamics.
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Macroscopic Beam Equations

A macroscopic description of the beam dynamics is 
used here and in Chapter 3 to study the m =1 disturbances 
of low frequency and long wavelength. This comparatively 
simple analysis discusses the instability mechanism of such 
disturbances and the effect of various plasma conditions on 
growth rates. The restriction to m = l is made solely for 
simplicity; other m values may be treated by similar means. 
In contrast, the restriction to low frequencies and long 
wavelengths is essential to the macroscopic treatment.
Orbit effects are important for other types of disturbances 
and are best treated by a collisionless Boltzmann equation.

The model used here is one in which the beam is taken 
to be a perfect, incompressible fluid subject to electro­
magnetic body forces, while plasma effects are accounted 
for by a scalar conductivity. Explicit low frequency 
approximations are made in Maxwell's equations. The model 
is used to derive the dispersion law for the disturbances 
and to obtain a detailed description of the perturbed 
configuration. The dispersion law will also be derived 
by methods which do not depend on a specific beam model 
but which give comparatively little information about the 
perturbed configuration.

In this section general field equations and jump
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conditions will be derived for the field variables. A 
particular solution will be adopted as the steady state 
solution, and the equations will be linearized about the 
steady state. All equations will be evaluated in cylindrical 
coordinates unless otherwise noted, and Gaussian units will 
be used throughout. The several sets of field variables 
will be distinguished as follows: general field variables 
will have primes as superscripts, and steady state variables 
will have zeros as subscripts. The variables giving the 
deviations from steady state values will have no labels.

It is convenient to denote the field variables by 
E/ = electric field 
B7 s= magnetic field 
h)' = plasma current density
j' =beam current density 
K7 = surface current4M
p' = beam momentumAM
Y = beam velocityAM
ri7 = surface normalm

p' = beam pressure 
n' =beam particle density.

The beam is assumed to have a sharp surface so that n' 
and K'are well defined quantities. All steady state current 
comes from the macroscopic velocity of the beam. Surface 
currents appear in the perturbed equations because of the
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small amplitude motion of the beam surface.
The relativistic velocity of the beam causes only 

minor changes in the form of the hydrodynamic equations.
A covariant formalism is not needed and is not used. The 
usual vector equations need only be supplemented by the 
relativistic rule connecting momentum and velocity. The 
charge and rest mass of the electron will be denoted by e 
and m respectively. The Incompressibility condition becomes

V- v' = 0, (20)
while the momentum equation becomes

n' lit P7 w ~

v/here

and
v' - c [mV + ( p ^ p ')] V. (23}

It should be emphasized that these equations contain 
conditions not likely to be met in practice. Electron- 
electron collisions will not be sufficiently numerous to 
keep the pressure tensor in scalar form, and no forces will 
constrain the beam motion to be strictly incompressible.
In fact, the condition of Incompressibility depends on the
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instantaneous transmission of forces and cannot occur in a 
basic theory of relativistic fluids. The adequacy of these 
equations is shown by the later microscopic analysis, which 
is free from these objections.

Charge neutrality will be assumed in Maxwell's equations 
and displacement currents will be ignored. The equations 
become

v o ^7 • B' * 0
[2k)

Both approximations should be valid when the frequencies 
involved are much smaller than the plasma frequency. The 
plasma will always be much denser than the beam so that the 
plasma electrons can maintain charge neutrality without 
appreciably changing particle densities.

To complete the equations it is necessary to give the 
relations betv/een particle currents and other field quan­
tities. The plasma is taken to have uniform density and 
temperature. Magnetic plasma forces will be ignored. Thus 
the plasma current is given by

where tr is a constant whose value depends on plasma 
parameters. The beam current is given by

20 -



9 (26)

and the surface current is related to the perturbed velocity 
at the beam surface. Hov/ever, it is most convenient to 
give this relation after the linearized equations have been 
derived.

At the beam surface the field variables undergo finite 
discontinuities which are constrained by jump conditions.
The jump conditions are obtained as in standard treatments 
of hydromagnetic equations ^ by integrating the macro­
scopic equations across the surface. Finite contributions 
to the integrals come only from the normal component of the 
gradient operator. In particular, integrals of field 
variables and their hydrodynamic time derivatives contribute 
nothing. This implies that relativistic velocities will not 
alter the jump conditions. It is convenient to label field 
variables which are evaluated just outside and just inside 
the surface by the subscripts "out” and "in" and to denote 
their difference by a bracket. For example, the jump in the 
magnetic field is denoted by B7 Qut -B' - [b'J. The jump
conditions become

21



0

n'x [■£.']> 0
(27)

and
0.

A final surface condition is given by the equation ^

4V= n'x (Vx (w')* n'la* ^ « l- v ~ j (2d)

for the time development of the surface normal.
The steady state configuration is described by an 

exact solution of the macroscopic equations in which the 
beam is taken to be an infinite circular cylinder of radius 
rQ v/hich has a uniform density nQ and a velocity u«c in 
the z direction. A self-magnetic force acts on the beam 
and, for steady state conditions, is balanced by a radial 
pressure gradient. For r ^r0 the solution is given by

E =» 0
6. (l i.°)

0V* 0

22



K.-o
f. * 0, 0,

V. » u. ( 0, 0, 0

n.-(u °'0)

p. - ^ rV)

and
- n.^»

where
i. “ -(ew.u/o)

and < -[i-(u,v*>rr4

(29J

130)

V/hen r > r0 the solution is even simpler. The only non-zero 
field variable is given by

6.=* (ot«)/:/')(•• °) • 131}

The macroscopic equations must be linearized in the 
deviations of field variables from steady state values. Since 
the perturbed velocity v will be small, it is useful to express 
the perturbed momentum p in terms of v. Sufficient accuracyAM
is given by a first order expansion of the exact relations

P - (w w-p.
** •*

and 132)
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W = V + v.

The bracket is evaluated as
[.-(w-ZO]-^ A v'KA*) (33)

and p is given by
p = ™>/(vr,

(34)

It is also convenient to replace the linearized Eq. (26) 
by the condition

(35)
That is, bean volume currents are taken to be much smaller 
than the surface current. This approximation will be shown 
to be valid for long wavelengths. The precise criterion for 
its validity is that the wavelengths must be much longer than 
the beam radius. The macroscopic nature of the analysis 
has already required that the wavelengths must be much 
longer than the betatron length, and for most cases this 
restriction is stronger.

The remainder of the linearization is straightforward. 
Maxwell's equations become

v • E = o V • B * 0

Vx B - o"E » Ol
(36)

The beam normal is constrained by
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(37)
i-;-r,.x[r.4vv).n.]i

and the hydrodynamic equations become
V> ar 0

Vr= !?P+0.*£)r-en-g-

and ™<3feV*- P-en.Ex ’

v/here
d*=(jt * u'fc) ’

Similarly, the jump conditions are given by 
".-[£]-n.*[§] * 0 

n. x[E]= 0

2. - 0

and
*. xCB]-

/ ^p. r». ^ K x B. In * 0.f in ** «•

(38)

(39)

The constraint on the perturbed surface current IC 
will now be derived. It will be useful to express the 
constraint in terms of a, the local surface displacement
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vector. The form of Eqs. (36)-(39) insures that the field 
variables may be taken to be complex valued functions whose 
z, 0 , and t dependences are contained in the factor

« eitp + Ur + 0j. (40)
Either k or u) may be chosen arbitrarily, and the other 
quantity will be fixed by the dispersion law. As Eq. (40) 
indicates, only m*=l disturbances will be analyzed. Physical 
variables are obtained from the real part of the complex 
field variables.

Since surface currents are due to the perturbed motion 
of the beam, the vector K has the form

K-l'a«. pi-f 0,0,1), (41)

and the corresponding value of a will be deduced. The 
physical variable Re K is given by

"Imfojt +-
l

+U4]

Re K_ = e " ^o. cos (&+Re[u>t*kz]j)

Ji cu cos ReJcjt + coe 0 
-Sin Re[ajtt Uz] sin 0 J

By comparison, displacements of amplitude a in the x

(42)

and y directions would give
R«.KX- 8

and (43)
Re Kx *= j a, sin 9

respectively. Thus in rectangular coordinates Re is
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given by
Re cl = a.e,m (Ww

and a by
ikS)

In cylindrical coordinates Eq. (li$) becomes
^ 0)»

since the relevant unit vectors satisfy
147;

The beam surface undergoes a helical displacement a which 
leaves its cross-section invariant. For real k the dis­
placement travels in the z direction and has a time dependent 
amplitude.

The beam must move with its surface, giving the 
constraint 148;V in
Eqs. 136;-i39;» 141;» ^46;, and (48; provide a complete 
macroscopic description of the perturbed beam motion. 
They will be analyzed in subsequent sections.

The Solution of Maxwell's Equations

Long wavelength solutions of the form 140; will be ob­
tained here for Maxwell's equations and the corresponding Jump 
conditions. It is convenient to incorporate the surface 
current (41J into the curl equations, obtaining
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£>= Va E

and vxb J('r-r»)(°, o, •)•
V ***“

These equations may be combined to give

(49)

VX (vx E)*(^!i)£-- 0-!)-
(Soj

Y/hen Eq. {$0) is expressed in terms of the auxiliary vector 
f(r) defined by

E=^£(r)» (5i;

it becomes a set of ordinary differential equations. Its 
z component is

where the parameter h is defined by

and « ,Re. h> 0.
For long wavelengths (small k) Eq. (52J becomes

♦ f 3--V '■It(-)-

(52;

(53)

(54)

Examination of the components of Eq. (50; shows that 
this approximation is valid for wavelengths much longer
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Hence no new restriction onthan the beam radius r0. 
wavelengths is imposed by the transition from Eq. (52) to 
Eq. (54).

The set of equations

r dr
S-'-'kM-VM. (55)

where nasO, 1, 2, .are treated in detail in Appendix I.
This information may be used to determine f_(r), sincez

‘56)

For later use it suffices to give f (r) in the regionz
r^r0 occupied by the unperturbed plasma. For this region 
Eq. (A-12) of Appendix I gives

S', (r, r.) = - (irt/Q (chr) (57)
and Eq. (56) gives

{z(r)= a./c^ H16 K*;') j; 6 (58)
The same small k approximation gives for the r and 6 

components of Eq. (50)

and

The only admissible solution of these equations is

and
*r(0= 0 
*9 (-) * 0

(59)

(60)
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for all r
The perturbed electromagnetic fields are given In

terms of f (r) zv
and (6l)

More explicitly, for r5Sr0 the electromagnetic fields are
given by E=(^-yu^oa.)H; {62)

H Yihro),
and

while the surface current is given by

(64)
This completes the derivation of the perturbed electro­
magnetic fields.

Solution of the Hydrodynamic Equations

This section continues the analysis of low frequency, 
long wavelength disturbances. Approximate solutions of the 
hydrodynamic equations are obtained here. The r dependence 
of each field variable is denoted by the symbol for the 
variable itself, while the z, 8, and t dependences are con­
tained in the factor^*. For example, £ =s')^"ZST)* Since 
the currents and the electromagnetic fields are known, the 
hydrodynamic equations contain only v(r) and p(r) as
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variables

and

The electromagnetic body forces are given by

-en# | - (en#) /- ( 0, 0, f (r)),

165)

where f„(r) is determined by Eq. (58). Thus the momentum z
equations become

tku.) n.KMV^V (r)mr - ZrP W +

i(u><-ku)n.im/'v (r) (66)

and Uu.) n.«0'»/3Vx(»') ea-ckp^O” (*')•
(6?)

I^or these equations the inequalities
| fcSt | < < u.

and (68)
|kr | < < |

define the low frequency, long wavelength region. In 
this region the velocity vz(r) is much smaller than the 
transverse velocity and its precise behavior is not 
important. It Is therefore permissible to replace Eq. (6?) 
by the more convenient equation
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(69)
which also gives small v (r).z

Eqs. (66) and (69) become in vector notation

L(uj+ ku.)nfc*n >^v =• — p+ ~uj ’

i. (u>+ku) - t^p W *(zrj^ ^J[r),

(70)

This equation may be written more simply as
v = v^-/(0»

where the auxiliary variable ^(r) is defined by 
^(0 * [^wi>/(a>*-ku.)J '[ip(0 +({Sr$ •

(71)

(72)

Eq. (72) relates the functions r) and p(r), but either
one may be chosen arbitrarily. Ko additional constraint 
is provided by Eq. (71)» which is satisfied for all ^f(r) • 
Much of this arbitrariness is removed by the incompressi­
bility condition

(73)

This equation has two solutions, but only one of them,
^•AT, (74)

satisfies the necessary regularity conditions at rasO.
Since Jkroj<<l, an adequate approximation to Eq. (74) i-8 

given by rf(r)«Cr,
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and v is given adequately by
U 0).

AThe constant A may be determined from the boundary 
conditions (lj.6) and 14-8J • Equation 14-8) gives

176)

177)
or

178)
The velocity field takes the simple form

v *= i. [uJ ■* ku^ 6)
179)

corresponding to a rigid helical displacement of the entire 
beam, and the pressure is given by

p „ Ay-fn.m<(o> + i-i.1' Hj (tk)T, (chr)]. ^ qq ^

Thus the hydrodynamic variables and the electromagnetic 
fields have been obtained without using the full set of 
linearized equations. The remaining equations furnish 
constraints which must be examined for consistency.

Equation (37) for n may be written as
Ve W-"r Vr(,r)>-''kVr(r})> (81)

while the remaining two jump conditions become
unt (r.) + vr (>-„)- 0 (82)
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and
?( r»)-*'(*'*’i~'r,)xs0-

183;

These equations complete the set of linearized macroscopic 
equations. Eq. (81) gives

I84;

so that Eq. (82) becomes

(85)

This equation is consistent only if
ku.|.

(86)
and provides a more severe restriction than the earlier 
condition

&ro < < u,.
(87)

Thus Eq. (86) will be used to define the low frequency 
region.

Eq. (83) gives the dispersion law for the disturbances. 
The equation takes the form

[nom (o^ ku.)Vr. + (thr)J
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v/hich may be rewritten as

C m.‘w' r.v) (m>+ 189;

Eq. (89) is the dispersion relation. It may be simpli­
fied to

tk) x.Ok)],
190;

where the betatron frequency ojb is defined by

cd, y (9D

It Is useful to compare the various low frequency, 
long wavelength restrictions that have been made during 
the analysis. The use of a macroscopic analysis requires 
that each beam particle should be influenced by quasi-static 
electromagnetic fields during the course of one betatron 
oscillation. Since the beam has a large macroscopic 
velocity, this requirement is most conveniently expressed 
as Jcl»+ ku.1 < < .

(92)

The approximation of charge neutrality Implies the two 
restrictions

| co | u>f
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where cdy, is the plasma frequency, while the hydrodynamic 
equations require that

|<u| < <|Uu.|. 194)
Finally, the long wavelength approximation may be stated as

|kr.|<< I. 195)
Equations (92)-l95) are not independent; they are equivalent 
to the inequalities

|ku.U< w&,
1 cj (< < | kal, 
|kr.|<<|.

(96)and

Under most circumstances the third inequality of Eq. (96) 
is not needed.

It has been assumed that the perturbed beam current 
is primarily surface current. The consistency of this 
assumption will now be shown. The magnitude of the surface 
current flow is given roughly by

(97)
Similarly, the volume current flow is given by

I ec. tfr *" (98)
Equations (79) and (96) show that



giving

(100)

Thus the flow of volume current is much smaller than the 
flow of surface current.

For most disturbances
|cirH:(LhOT,(chr0)|*l, 1101)

which implies that the rate of change of momentum is much 
smaller than the pressure gradient. It is then reasonable 
to ask whether the dispersion law (89) is due to the arti­
ficial form chosen for the pressure tensor. This question 
is dealt with in the next section.

A Second Derivation of the Dispersion Law

Here Eq. (89) will be derived from the assumption 
that the primary motion of the beam is a rigid helical (m*l) 
displacement and that the pressure tensor satisfies a minor 
restriction. Secondary eddying motions of the beam are 
not excluded, but it is assumed that these motions account 
for a small fraction of the momentum flow. Under these 
circumstances the beam volume currents may be neglected 
in comparison with surface currents, and Eqs. (62) and 
(63) for the electromagnetic fields are valid. The dis­
persion relation is obtained by integrating the £ com­
ponent of the momentum equation over a beam cross-section.
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The integrand is given by the scalar product of the momen- 
tum equation and j?, the complex conjugate of a. As before, 
field variables are taken to be complex-valued functions 
whose z, B , and t dependences are contained in the factor

To good approximation the hydrodynamic equations 
become

-rv*,v'(k>+ Uu.) a, ~ - V (102}

where P is a general pressure tensor, and the currents 
and electromagnetic fields are given by previous equations. 
Equation (102) includes the effects of surface currents and 
makes use of the approximation of rigid beam motion

v= (103)

where is given by Eq. (46) • The dispersion relation 
is then derived from the expression

-J &nm vC(u>+'r<^r (fir * fir*)

+JX/ ’rdr(/.X B+ji *&.)\*r#.

(101).)

in which the integrals are all evaluated from r*0 to 
r“ro+ to lnclude surface effects.

The pressure term of Eq. (101).) will be examined 
first. The components of (VP) are given by
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(v. p)r- W-f P«W)

and (105)

(V p)6-)/•(+ it-iu (OK P„ (04 pwco * A P.JO).

Thus the pressure term becomes

V^CvP)-^*

—jLir** e»p-^>llm[ft/t+ *r<Lr ^(P^CO- ‘-Paz^-

The total derivative term vanishes, since there is no fluid 
at r=r0+, and Eq. (106) becomes

r*rdx{^7 • P) ‘ j£*~ 0> 1107^

provided that

•f "WP„(0-^P»t(0)» 0. (108)

The v/eak restriction on the pressure tensor given by Eq. 
(108) is assumed to hold for all electron beams. This 
assumption should be valid for highly relativistic beams, 
since cross terms in the pressure tensor are due to var­
iations in the particle velocities, and a large longitudi­
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nal mass inhibits variations in the z velocity. For non- 
relativistic beams the assumption may be less satisfactory. 
A similar analysis of the pressure tensor has been given 
by Rosenbluth, ^ by means of a volume integration over 
one wavelength of the beam.

Since the pressure term vanishes, substitution into 
Eq. (IOI4.) gives

-ZaSm+f-fc lm\uak + m ku,) ^

-Zifa?enp-(-iImfurt *0 J-

Sin^lification yields
Cr»)+^*L)>

= (u 1- tir HJx

which is just Eq. (89). Thus the assumption that the 
beam motion is essentially rigid and the restriction (108) 
on the form of the pressure tensor suffice to derive the 
dispersion law.

Analysis of the Dispersion Relation 

It is convenient to make use of the definitions
r=(Wgifii),Reh>0

1109)

(110)
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(Ill)

in re-expressing the dispersion relation as

11% | _ i-TH! (^0 ^ (H2)

A complete numerical analysis of Eq. (112) would be 
straightforward but lengthy. Instead, a number of lim­
iting cases will be treated by analytic means.

The conductivity d is given in general by Eq. (9)» 
but this equation is more complicated than is convenient 
for the present analysis. The behavior of o' as a function 
of u> is that for small , o' is positive, while for 
large real tJ , o' has small magnitude, and its phase

- Ill -



approaches • This behavior is retained in the two 
limiting cases (a fully ionized plasma and a plasma in 
which the ions move v/ith the neutrals) which are examined 
here. In both cases it is possible to define a collision 
frequency -i) such that o' is well approximated by

U13)

Eq. (113) will be taken as the defining equation for o' in 
the subsequent analysis. It is also convenient to define a 
normalized collision frequency w by

Then h is defined by

W- (•a^)ySr) ■
Case I: w- 0

In this approximation

(114-)

(115)

(116)
The function

(117)
is a monotonic decreasing function of x for x>0 such that

j'C0)-*
and (118)I'M- °-
Thus the dispersion relation may be written

if - l- ^H,1 (ihO > o, (119)



and the major content of the dispersion relation may be
summarized by the equation

Im(uyi-ku,)= 0. (120)

The usual instability problem Is an initial value 
problem in v/hich a disturbance is imposed on the system at 
some specified time, and it is required to find whether any 
Fourier components of the disturbance are amplified or 
damped as time progresses. This amounts to specifying real 
k and searching the dispersion relation for complex cn . in 
this case Eq. (120) gives immediately

lm id * 0. (121)
That Is, the system is purely oscillatory - neither damping 
nor growth of disturbances is possible.

It is also possible to Impose a periodic disturbance on 
the system at some given beam cross-section. Then It is 
required to find v/hether any range of frequencies gives rise 
to amplified or attenuated disturbances downstream. This 
problem is solved by Imposing real and searching the 
dispersion relation for complex k. In the present case Eq. 
(120) gives

lm k« 0, (122)
and neither amplification nor attenuation is possible. In 
this approximation the system is completely stable.
Case II: w>>|*.J and | hr j << I-

For this case the defining equation for h becomes



(123)
Small argument expansions are used to evaluate the Bessel 
functions. An adequate approximation is given by

and

=(4^) ■

,irHl,(Ar0)j;(1hr„) = l + 'i; ^r0 ^ro|

(121}.)

The dispersion equation may be rewritten as

A IT.. (125)

In the above expressions Jin y/ refers to the Euler- 
Mascheroni constant and has nothing to do with previous 
usage of -*/ and yf'.

To solve Eq. (125) it is helpful to make use of the 
fact that the quantity

U26)

is a very weak function of z. Thus A and z are determined
as functions of R and s from the equations

A** *-*sand
c*r-iRn.+».Rs»o.

(127)

(128)
Then the condition |hr0|«l must be imposed as a restriction



on the admissible values of R and s. Finally, for 
admissible solutions the logarithmic term in R is eval­
uated and the corresponding value is determined.

First the initial value problem will be solved. The 
parameter s is taken to be real and R is given by

A-£(cRifR"-.ARs)
1129)

When |s|<<R this becomes

Growth occurs when Im XI < 0, or when

Thus cj is given by

the phase velocity vp is given by

and the group velocity v is given byO

U30;

U31)

(132)

(133)

(134)

(135)
From Eq. (132) the growth rate 0£ of these disturbances may 
be written as



(136)
Thus the waves propagate a distance 
downstream in the typical amplification time (<*)
distance L is given by &

This

(137)

and is nearly independent of the wavelength of the 
disturbance. If R >> 1 this length can be much smaller 
than the betatron length L6-(u/uiB) .

When |s|>>R, 11 is given by

For grov/ing waves this becomes

u)- -(.k-i/Hpi Ricu»^k

Then vp and Vg are given by

(138)

(139)

(140)

and

(Dp.)
It is now necessary to investigate the restrictions 

on R and s imposed by the condition
|kV)<< '• (142)

This condition may be adequately restated as
R-fe}- < < '•

(143)
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Here R will be taken to be a free parameter corresponding 
to an arbitrary choice of steady state beam and plasma 
parameters, and Eq. (li}3) will be used to give restrictions 
on the range of s allowed in the present treatment. ’.Then 
R >> |s|» Eq. (li).3J has the approximate form

6V4<I, 1114)
while for |s|>> R the corresponding approximation gives

R|s|«l. (li^j

For all cases a useful minimum wavelength is derived 
from the condition

or
1114-7 J

For disturbances of shorter wavelength it is unjustified to 
neglect the details of the internal motion of the beam 
particles. This estimate may be used to derive maximum 
values for the growth rates of this type of instability.
(As k-v®® in Eqs. (132) and (139) th® growth rates diverge.) 
When R»1 the maximum becomes

= x-’ (Hi-84
and for R«1 it becomes

IHAJl (149)
The case of a periodic disturbance can be treated 

even more simply. The dispersion relation
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U50)
(s+x.)*”= cRx

is to be solved for real z and complex s
s-

and amplification occurs v/hen

This gives

U5U

(152)

The requirement jhro|^<< 1 may be written as

|Rz|<< I. U53)

Thus k is given by

and an an^lification length L may be defined by

Tliis gives

U54-)

U55)

(156)
and a minimum length Lmin Is given by the betatron 
length Lg.

The slow wave occurring in the initial value problem 
v/hen R»1 and R» s would probably be the easiest of the 
above instabilities to observe experimentally. Although 
such disturbances v/ould have wavelengths longer than Lg 
they v/ould amplify many times before propagating downstream 
a distance Lg. The other disturbances are fast waves 
which require a much greater distance for amplification.
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Case III: w arbitrary and |hr0|» 1
Here the dispersion relation is evaluated through 

the use of asymptotic expansions for the Bessel functions.
Sufficient accuracy is given by

c,p l,r-

wp-Viti.
and iir H', (ik) iK)=(tJj) •

U57;

1158)
The dispersion relation then becomes

(z+s)v= '"(‘hr),

v/here
U59)

H60)

and is to be solved subject to the condition
|^V|»\. (l6l)

A first approximation to a solution of Eq. (13>9) is 
provided by

(162)
and

(*+*)=1 '• 1163)

To this approximation the system is completely stable.
A second approximation is obtained by using Eqs. (163) 
and 1160) to evaluate (hr0)"'1'. If this value of (hr0)-^
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satisfies condition (l6l), substitution into Eq. (1^9) gives 
a small correction to the value of (z-ts) given by Eq.
(163). This procedure gives a fairly accurate solution 
of Eq. (1$9), and the second approximation to (z+s) exhibits 
growing and damped oscillations. However, Eq. (163) is a 
y/arning that Eq. 1159) probably does not contain all the 
essential information for this range of parameters. The 
beam particle orbits are likely to contribute important 
effects in this regime, and even the macroscopic theory 
must be treated more carefully v/hen s is large.

The corrections to Eq. (163) have roughly the same 
form whether s or z is real, and only the case of real s 
will be treated here. Only positive s will be considered, 
since this simplifies the analysis without loss of 
generality. The roots of Eq. (163) will be denoted by 
z.* and are given by

(l6*»

Each root gives a corrected value for (hr0)“^, which is

U65)
The first order corrections z-j* to the roots are then 
given by the equation

U66)
Thus z;l~ is given by

- 50 -



116?;
NV- / ^ \ ^ x' [*'UJ9r*J\J *♦•»

and the root z“«sZq”+ z^“+... is stable for all
permissible parameters. '.Then s<l, z^+ is given by

+ / c- \ fn-s^-i^x. ='Viw6WVO-s) a68;
and z = z0-t-z^ t-... is a stable root. But when s> 1

’ U69;
and z+ is unstable whenever Eq. (l6l) is satisfied; that 
is, whenever

S-1+i.w | . ‘‘VC
a-1

No instabilities occur if
V.. ^ 1✓ V ^ V(t&j*

(170;

1171;
but if

(U'^° ) ^ U72;

Instabilities occur for sufficiently short wavelengths.
Such instabilities are fast waves with rather small growth 
rates.
Case IV: w arbitrary and Jhr(J«l

In this case the dispersion relation becomes
> U73J

r-G&X-MM)-

v /v y H74)
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This equation is to be solved subject to the condition

(175)

but the restrictions imposed by Eq. (1?5) will not be dis­
cussed in detail here.

For the initial value problem P and s are parameters 
and Eq. (173) becomes a cubic equation

*+Us-i.w)z.v+(sv- P—iiws)z-i.wsv- O

for z. This equation has been solved numerically for a 
set of values of P and s. The behavior of solutions may 
be summarized as follows: for small s, |z| is also small, 
and the unstable solution behaves as in Case II when

. Both |z j and the growth rate are Increasing 
functions of s, and the instability Is a slow wave. When 
|z|a£ w the instability changes from a slow wave to a fast 
wave, the growth rate becomes a decreasing function of s, 
and |z| remains an increasing function of s. As s Increases 
further, the system tends to the stability predicted in 
Case I when |zj)>w. For all s only one root of Eq. (176) 
is unstable.

For periodic disturbances P and z are positive and 
E<1* (173) becomes

S*’ + .Zx5+(xv-£~W 0,
v 1 (177)
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which has the amplified root

s -z -I-PT*
x— i w (179)

Again, the instabilities come from the finite collision 
rate w, and by liq. 1175) require many betatron lengths for 
amplification. This case has also been analyzed by Cooper 
and Raether. ^

Summary of the Chapter

A macroscopic analysis has been given of the m«=l 
disturbances of a uniform relativistic electron beam which 
is imbedded in a dense, uniform plasma. Such disturbances 
correspond to a gross motion of the beam and may be expected 
to give the worst instabilities. The electromagnetic effects 
of the plasma have been accounted for by a scalar conductivity 
whose phase is a measure of the relative importance of col- 
lisional and inertial forces in the plasma. A simple hydro- 
dynamic model has been used for the beam dynamics.

The analysis is valid only for low frequencies and long 
wavelengths. The region of validity is established by exam­
ination of the macroscopic equations. The beam disturbance 
consists primarily of a rigid helical displacement which 
travels in the z direction with a time dependent amplitude. 
Approximate analysis shows that eddying motions in the beam
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are of secondary importance. The major electromagnetic 
effects of this displacement are due to the corresponding 
surface currents. Che plasma attempts to screen out these 
currents through a flow of volume current, and the resul­
tant electromagnetic fields give rise to a drag force on 
the beam. The phase of this velocity-dependent force is 
such as to give instabilities v/hen collision rates are 
large and to give completely oscillatory behavior under 
collisionless conditions. This is in marked contrast to 
the case analyzed by Finkelstein and Sturrock ^ of a 
relativistic electron beam neutralized by an ion beam. In 
that case maximum instability rates occur under collision­
less conditions. For the modes discussed here cu , the 
resistivity, as in the non-localized finite conductivity 
instabilities found by Furth, Hosenbluth, and Killeen.

The dispersion law for these distxirbances is obtained 
by summing the electromagnetic and the inertial beam forces 
over the beam cross-section. A non-zero contribution comes 
from the component in the direction of the beam displacement, 
and this gives the dispersion relation. Under quite general 
conditions the pressure tensor does not contribute to the 
dispersion relation. Hov/ever, in the non-relativistic regime 
a more detailed calculation may be necessary. The dispersion 
relation has also been obtained by an analysis of the specific 
hydrodynamic model assumed for the beam dynamics.
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Chapter 3

FURTHER ANALYSIS OF THE LOW FREQUENCY INSTABILITY 

A Treatment of Hall Currents

7,/hen the self-magnetic field of the beam Is large, 
the plasma conductivity tensor becomes highly non-diagonal 
and the analysis of m =1 disturbances in Chapter 2 is not 
valid. This defect is remedied here by introducing a 
tensor conductivity into the electromagnetic field equations 
but otherv/ise using the same hydrodynamic description of the 
beam motion. As before, the dispersion law is found most 
easily by integrating the ji component of the momentum 
equations, but here the determination of the perturbed 
electromagnetic fields is more difficult. The dispersion 
law is similar in form to the one obtained earlier and will 
not be analyzed in detail. The discussion given here and 
in the following section is based on the work of Enoch,

opLongmire, and Mjolsness.
The treatment is again confined to low frequency, long 

wavelength disturbances, but the analysis of these distur­
bances is considerably more intricate. The equations 
governing the perturbed electric fields become coupled 
ordinary differential equations whose form implies that 
all components of f are non-zero. Thus a more complex
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electrostatic body force acts on the beam and gives rise 
to an additional term in the dispersion law. Although the 
perturbed magnetic field

b (1)

has an additional term, the magnetic forces

jo* £*(-&-1)10; **(r)’

and (2)
^» b. - o'°)

«%w.

are unaltered in form and differ only through changes in
the values of f (r).z

It is convenient to reduce the problem to the solution 
of Maxwell’s equations by obtaining the dispersion relation 
in terms of an arbitrary vector f^r). This is most con­
veniently done, as in the second method of Chapter 2, by 
integrating the scalar product of ^ and the approximate 
momentum equation

-<a,+ ku.y'nom>^= -(v• P)+(j.*£^ *£>)-(3)

over a beam cross-section. The pressure term is again 
assumed to vanish, and the result is
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-z oT e*p -(zlm[a) + Uu.])rv*'rv"i>/(a; i-ku.y

s OU ex

(W

A simple rearrangement gives

^X<y(c^r-^M 15

‘(r^)/"'^ .(yo-rf.c^

v/hich may be evaluated explicitly, once f(r) has been«**
determined. The last term in Eq. (5) represents the con­
tribution of the electrostatic body force and did not 
appear in Chapter 2.

The coupling of Maxwell's equations is provided 
by the plasma current, v/hich takes the form
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<*v • i^-)

(6)4)pe - crEe

when the self-magnetic field effects are included. Unless 
otherwise noted, the analysis will be restricted to 
collision dominated plasmas for which is positive. The 
volume Maxwell equations may be summarized by

(7)

where (J)-. is given by Eq. (6). These equations must be 
supplemented by regularity conditions at r»0 and r*»oo 

and by the surface conditions
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’’MOta -0

^ fjOaui-lb ^(0;n * 0

=r 0

and

at r«r0.
For long wavelengths the components of Eq. (7) take 

the form

and

where h Is defined as before. The definitions
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and (10)

are Introduced in order to facilitate the reduction of
Sq. (9) to a pair of coupled differential equations for
f (r) and the auxiliary field variable X(r), where X(r) z
is defined by

x(0=[K('h Hi)

The first two components of Eq. (9) may be rewritten as

and

^ / >»\— (• V )

ax
d.r

(12)

and may be used to eliminate the explicit appearance of
f (r) and fa(r). Thus successive substitutions yieldr o

,yrx* t ,
(13)
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v/hich becomes, after rearrangement.
HX ■» NrXfhvN-fx. U4>

Further simplification eliminates the explicit appearance
of f (r) from the third component of Eq. (9)• This cora- r
ponent may be rewritten as

. - . vr . i v (-f*. .
(15)

and may be reduced to the form
Hi-NX. (16)

Equations (llj.) and (l6) will replace Eq. (9) in the 
subsequent analysis. Boundary conditions on X(r) may be 
obtained from Eq. (8) and are given by

~ (Oin * 0
and ,

~ A.(r.)ou.t ~ ^ MOin “ °-
0-rc *

Exact solutions of these equations may be found 
for r*£r0 where

N«N<> = (ar^«^/en).

For r>rQ N is given by
N_ O N,N Ja—a— s ^ 5

(17)

(18)

(19)

and the equations become much more difficult. Two approx­
imate solutions are presented below as Case I and Case II.
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Case I: an underestimate of the magnetic coupling
No approximations are needed to solve Eqs. (lij.) and 

(l6) when r<rQ. Solutions will be obtained in the form

\(r) = b-P^(r) (20)
where b is a constant. The equations then become

and
(H-N.k)fx(0=o,

(21)

and consistency requires that
NX- N/|,-l,rN0= o. (22)

The two roots
b1 = ^(n0 ± /Tv^Ttr)

(23)

of Eq. (22) insure th$t a complete solution of Eqs. (ll|.) 
and (16) may be given in the form (20). However, the 
requirement that the fields be regular at r»0 restricts 
the admissible solutions to

and (2I4.)
XW = b^T,(aV) + b-A-;j;((i%)

where S is defined by

and the quantities A*- are arbitrary constants.
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The determination of A* is necessary for the explicit
evaluation of the dispersion law (5) and requires that the 
field variables be known for r>rQ. This knowledge is not 
easily obtained, since the exact equations (14-) and (16) 
are too difficult to solve analytically when r>ro. In 
this section approximate values of the field variables will 
be obtained analytically from Eq. (l6) and a modification 
of Eq. (llj.) v/hich leaves the equation unaltered at r=» rD 
and generates correct asymptotic behavior v/hen r is large.

The appropriate modification is derived most readily 
from Eq. (12). In this equation the denominator (i* 

is a measure of the magnetic coupling due to Hall currents. 
This coupling will be systematically underestimated by 
replacing the denominator by Its value ' at

r — r0. The approximation is formally equivalent to the 
assumption that the radial conductivity varies as

(25)

while the theta conductivity remains fixed. With this 
modification the steps leading to Eq. (ll|.) yield instead

(26)

Equations (l6) and (26) form the basis of the following 
discussion.
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Solutions to these equations are again sought in the
form (20),

and

and the equations become

(2?)

Consistency requires that b must satisfy the equation

N O, (28)

whose roots b^ are given as before by Eq. (23) . Again, 

a complete set of solutions may be found in the form (20), 
but here regularity conditions at r = oo restrict the 
admissible solutions to

Hp- (ihr)

and (29)
xM - k’C’H',. thr) * I-'C-H)- O").

v/here p * is given by

and the quantities C*’ are arbitrary constants.
The constants A* and C * are determined from the 

boundary conditions (8) and (1?) at r—rQ. When NqC* 0 
this procedure leads to the results of Chapter 2. When
N0 is large, i.e. when N02» |h2|, the asymptotic

- 64 -



expressions

i*= *(■♦£)

-■ - -m'-*)

= N.(' + 7c) (30)

r r
N

NJ i

and

may be used to simplify the calculations, and an 
analysis of this case is given in Appendix II. V/hen 
N0r0<<l the fields and the dispersion law are unchanged 
from Chapter 2. That is, the self-magnetic field must 
still be considered small; the parameter NQro is a 
measure of the strength of the self-magnetic field and 
must reach the value N0rQ ca i before the Hall currents 
contribute significant effects. V/hen N0r0 >> 1 the per­
turbed electric field is given to good approximation by
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f.(0-

and the additional term in the dispersion lav/ is given by

(3D

(32)

Thus the Hall currents do not alter the longitudinal com­
ponent of the electric field but contribute to the transverse 
fields. It is convenient to rewrite Eq. {$) as

no tf'r0Vhi \/ ■* Ku.)^

(33.

+(^fr*^K# Ar r &(r)~ ^(r} ’

Use of Eq. (32) and the identity
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/ rv V enr. \/ | V-ir^o . \v -'N.; “VTA ° Ao'z'r^KznoA *-» 'v
(34)

then shows that.the corrections to the dispersion law from 
the transverse fields are negligible. Thus the present approx­
imation indicates that the Hall currents have a small (or 
negligible) effect on the dispersion law.
Case II: an overestimate of the magnetic coupling

As in Case I Eq. (24) provides an exact solution for 
f (r) and X(r) when r^rOJ and Eq. (l6) is retained even 
when r>r0, but here the denominator 0 v*T of Eq. (12) 

is replaced by its value 1 at r-co. This gives an over­
estimate of the magnetic coupling and is equivalent to 
allowing the radial conductivity to vary as

(35)

while keeping the theta conductivity fixed. This approxi­
mation leads to a second modification of Eq. (14) which is

(36)

The analysis given here is based on Eqs. (l6) and (36) for
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r >rQ and is complementary to the analysis of Case I. Since 
the two cases make opposite approximations to Eq. (II4-) , the 
effect of the approximations may be assessed by comparing the 
two dispersion laws.

Solutions are again sought in the form (20). The 
equations then become

H *. r~ *■

and
hff b ^ *

(37)

v/hich requires that
(38)

A complete set of solutions may be generated by this 
technique, but as in Case I the admissible solutions are 
restricted to be of the form

f2W-cX, (>)* oV-M

and (39)
xM - hcV. (^-hcX-O)

where
\[ • ± Nor-8br

and the quantities C are arbitrary constants. Thus the 
solution differs from Eq. (29) of Case I in the order of the 
Hankel functions and in the ratio between fz*(r) and ^(r). 

The constants A* and C4, are determined from the
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boundary conditions (8) and (17) but must be re-evaluated
for this case. This is done in Appendix III for the regime
Ko^» |h2| in which the asymptotic expressions (30) are

valid. The opposite case No—0 will yield no difference
from Chapter 2. The discussion is also restricted to
those low frequency, long wavelength disturbances for
which |hr0|«l. The results are quite similar to those
of Case I. V/hen N r << 1 the Hall currents do not affecto o
the fields or the dispersion law. When N0r0» 1 and 
|Nor0hro|<< 1 the perturbed electric field is well approx­
imated by

(40)

and

while the electrostatic term of the dispersion law is 
given by

Comparison with Eq. (33) shows that the electrostatic

(4i)

- 69 -



term is again negligible. Thus the longitudinal electric 
field and the dispersion law are unchanged from Chapter 2.

neither of the approximate treatments given in this 
section shows a modification of the dispersion lav/ due to 
the presence of Hall currents, although these currents do 
affect the values of the transverse electric fields. Since 
the two approximations correspond to an underestimate and 
an overestimate of the magnetic coupling in Eq. (12), it is 
very likely that if Hall currents do alter the dispersion 
lav/, the alteration is quite small. An independent approx­
imate treatment given in the next section supports this 
conclusion and indicates that the principal effect v/hen 
jhr0J<<l is to alter the value of the logarithmic term 

of the dispersion law.

A Second Treatment of Hall Currents

The approximation methods of the previous section 
v/ere adopted for purely mathematical reasons: the exact 
equations were too difficult to use directly, but a 
technique of underestimating and overestimating the diffi­
cult term led to solvable sets of equations and provided 
a check on the errors in the treatment. Here physical 
arguments are used to suggest a rather different approxi­
mation scheme which is then considered in detail. The
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scheme is based on the observation that when r^rr0 and 
Jhro|<<l the values of the perturbed fields depend very 
weakly on the presence of the plasma; since the skin 
depth is much larger than rD, screening currents become 
effective only at large radial distances, and the main 
effect is simply the field resulting from the surface dis­
placement of a beam in vacuo. This suggests that the per­
turbed fields should be well approximated by solving 
Maxwell's equations with fixed sources. That is, the 
vacuum fields should be calculated and substituted into the 
conductivity law (6). The result is then used as the 
fixed current source in Maxwell's equations. Since this 
method does not treat the plasma screening effect adequately, 
it is necessary to join these fields to the correct asymp­
totic fields at some r=r . The asymptotic fields of Chapter 
2 may be used for the matching if rp>'> r0» since the mag­
nitude of the Hall currents will then be negligible when 
r^Tp. A consistent approximation results, provided that 
the fields depend weakly on the value of In this section
only the component f_(r) of the perturbed electric field willz
be derived, since the preceding analysis has shown that it 
is extremely unlikely that the transverse fields contribute 
significantly to the dispersion law.

The single non-zero component, fz,°(r), of the vacuum
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electric field must satisfy the equation

and regularity conditions at r = 0 and r»co. From these
f °(r) is uniquely determined to be z

(b-2)

and
^°(0 ^)t- *or r>

(43)

Substitution into Eq. (6) gives for the plasma current

and
( N _ -- 2!----  fjLrZ, 0, Ll-\ for r>rt.

p ^ ^ */0+(n7,’v)] V ^ r/

(44)

Equation (44) used in Eq. (7), and the z component 
determining f„(r) becomesZ

for r& ra
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and (45)

rot r.±r±y

For this equation the most general solution which also 
satisfies the necessary regularity conditions at r-»0 is

and (4-6)
A-i far r* y,

A -where A, A, and 6 are arbitrary constants. For convenience, 
the homogeneous solution fz°(r) has been extracted from the 
remaining homogeneous terms in Eq. (4-6) . Finally, the 
asymptotic form of the field has been determined in Chapter 
2 to be

■fa( r ) * C H J (>hr) -for > •'p » (4-7)

v/ith C an arbitrary constant, provided that rp>>rQ.
The constants are determined from the usual boundary 

conditions at r-«r0
^(0out -^(Oin - 0

- 73 -



and
iM'-U *•)’

(48)

and from the field matching conditions at r — r

■P- ( t'p)«ut — (O •«

and -£rfMU-&FW*-°-
(to)

Equations (I4.8) and (49) suffice to determine the four
A tconstants A, A, d and C uniquely. However, the requirement 

that the solution should depend weakly on r^ imposes the 
further condition

lUpl<< 1

on the choice of r^. This permits the expansions

and
£ K (ikO l,rl)

(50)

(5D

to be used in Eq. (49)» and only under these circumstances 
will the equations have acceptable solutions.

The solution of Eqs. (48) and (49) is given in 
Appendix IV. As before, v/hen N0r0«l the fields and the
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dispersion law are unchanged from Chapter 2. When NQro>> 1
and r N ^r ^ (and, in consequence. In r hrj << 1) the 

p oo loool
equations possess solutions which depend weakly on r , and 
fz(r) is well approximated by

t W - *• i l^wj)- (S2)

This is a modification of the field

f*.(r) = (53)

of Chapter 2 and gives rise to the modified dispersion law

]](iTL') ■ (^}

The modification amounts to an increase in the effective 
beam radius in the logarithmic term, corresponding to the 
fact that the Hall currents inhibit the flow of plasma 
current near the beam so that the screening currents must 
flow at larger radii.

Clearly, the analysis as presented offers no decisive 
way to choose between the conclusion of the present section 
(modification of the value of the logarithmic term) and of 
the previous section (no change in the dispersion law).
The treatment of the present section, however, has a much 
stronger physical rationale and is probably to be preferred.
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Neither analysis makes specific use of the condition 
that o' be positive. Thus the treatments should be valid 
for arbitrary o'.

Effects Due to Plasma Temperature Gradients

The previous sections have shown that the analysis 
of Chapter 2 adequately describes those low frequency, 
long wavelength disturbances for v/hich Jhro|«l provided 

that the plasma steady state is uniform in space. However, 
the assumption of spatial uniformity is not likely to be a 
good approximation to many experimental situations. For 
this reason various methods for relaxing the assumption 
will be investigated here and in following sections. No 
attempt is made to follow the complex hydrodynamic behavior 
of the plasma. Instead, it is assumed that the electro­
magnetic properties of the plasma are adequately represen­
ted by a tensor conductivity whose coefficients may depend 
on position.

In this section the analysis is confined to plasmas
for v/hich o'> 0 and disturbances for v/hich |hro|«l. It

Is assumed that the plasma temperature is essentially
constant for r<r and decreases monotonically as r in-o
creases when r >r„. It is also assumed either that N r << 1o o o
holds or that the plasma density is essentially constant. 
Under these circumstances tensor conductivity effects may
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be ignored, and the scalar conductivity depends on position 
through its dependence on plasma temperature. These assump­
tions do not give a fully self-consistent account of the 
complicated plasma collisional processes, but they do 
provide a tractable model of the processes v/hich approxi­
mates experimental situations in which an appreciable amount 
of the plasma is created by ionization from the beam.

A specific model

O-'(»*'<* for r^r.

0*2)and

where
o^/r " I.

is used for the position (temperature) dependent scalar 
conductivity Cf^r) . This simplifies the analysis consider­
ably, but still gives results which are typical of a 
general monotonic variation of d^r) v/hich approaches a 
limiting value after several beam radii. The analysis is 
quite similar to Chapter 2. The field fz(r) must satisfy 
the equations
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Hf =0 r — ra

and

dT ._L A
r dir

(43)

as well as the usual boundary conditions. The admissible 
solutions of Eq. (43) are

(^(r) = A J (ihr) for *4=. r0

and (44)
(k) = A nj, ftockr) for r>ro,

where

h - [l I + r« »

and the constant A is detemined to be

Advantage may be taken of the facts that |hr0|«l 
and noil by evaluating the Bessel functions as in Appendix 
II. The results are
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h: (*o - -

m; (ii-o - - v')-*-|£H)*

Ui-6)

and

Combination yields the denominator

T <L < -h: i

the coefficient
^ * t- o^V-Hr k*l)’

(47)

(48)

and the field
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(49)JL Vr> iJ^lL.
Jt (Ar)

Evaluation of the dispersion relation leads to the expression

(50)

as corapared to the corresponding expression 
n0-rrum/0 (uj^ ka) - if h ["in hra |J

(5D

of Chapter 2. Since |ku| dominates (uj) the decrease in
-Vconductivity increases the growth rate by the factor o' > 1 

for fixed k. V/hen the plasma is primarily produced by the 
beam, this increase can be large.

The assertion that Eq. ($0) is typical for monotonic 
variations of c/^r) is supported by the second special case

<j'/(r)= O' Ur r., r. < r
(52)

&'(r) =<*''<? Ur

where
)kH< 4

which also leads to Eq. (50). Further support comes from 
the physical consideration that the right hand side of 
Eq. (52) is produced by plasma screening currents which 
flow primarily at distances R of the order
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|hR|ct l. (53)

At these distances the conductivity has essentially 
reached its final value oCyb't and this final value should 
appear in the dispersion law.

Effects Due to Plasma Density Gradients

A second idealized model of the plasma collisional
processes will be considered in the present section. The
model is also restricted to collision dominated plasmas
for which o'> 0 and to disturbances for which jhroj<:<l, but

here the plasma temperature is assumed to be constant over
all space while the plasma density varies monotonically,
being constant for r-^r^ and decreasing as r increases for
r > r . Thus the model isolates the effects due to the o
density gradients which occur, for example, v/hen ionization 
from the beam produces an appreciable amount of the plasma. 
Since the scalar part of the conductivity tensor is density 
independent in this regime, all density gradient effects are 
due to the parameteroccurring in the non-diagonal 
part of the tensor and are negligible v/hen N0rQ<<l. The 
treatment is therefore restricted to beam parameters for 
v/hich N0r0 >> 1 in order to exhibit these effects most clearly. 
For analytical convenience the specific model
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n'O) - " -for r ^ r.

and (54)v
n -for r,.

Is chosen for the position dependent plasma density n^r). 
The resulting problem is sufficiently similar to the cases 
discussed earlier in the chapter that not all details of the 
present discussion need be given.

The behavior of the fields f_(r) and X(r) is again 
described by Eqs. (II4.) and (16), but in this case N«*N0 for 
all r. Thus the solution furnished by Eq. (24) for r< rQ 
must be supplemented by the solution

^(0 = c'H;(.rr)t c-hK^'O

x^Vh;
(55)and

and cf^are given by Eq. (30) for r>rQ.where b These
solutions have the necessary regularity properties at r = 0
and r-00, and the constants A* and C^ are determined, as
usual, from the boundary conditions at r=r0. The calcula­
tion is very similar to Case B of Appendix II, and yields

Z.1T i u) ol,
o
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and (56)

A (zr it*)4U

As before, the dispersion relation may be evaluated
to sufficient accuracy when f (r) Is known for r^r_. Promz o
Eq. (56) this field is given by

kT r £ ^Ir ^I)
(57)

for r—r0, and to good approximation

^ 6)f-X'-lv [■sTc])" (58)

The dispersion relation becomes

(59)
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instead of Eq. (51)» as in Chapter 2. Since N0r0 >> 1 
and since |ku|»|^j Eq. (59) implies that the growth rate 
for fixed k is larger when a density gradient is present. 
The reduction (for fixed 6J) in the drag force exerted on 
the beam has a simple physical explanation. A strong self- 
magnetic field inhibits the flow of screening currents and 
the density gradient extends this effect to larger radii. 
Thus the screening currents tend to flow at larger radii, 
and their reaction on the beam is weaker.

The Effect of Metal Walls on Growth Rates

The stabilizing effect of metal walls on pinched 
discharges has been known for some time. ^”4-8 ^ similar

effect occurs in the present configuration and is discussed 
below. Both the analysis and the dispersion law are some- 
v/hat different from the standard results on pinch stabil­
ity; ^ the analysis makes use of the methods of Chapter 2, 

although the metal walls impose somev/hat different boundary 
conditions on the problem, while the dispersion law is in­
fluenced by the presence of a conducting medium surrounding 
the beam.

It is assumed, as in Chapter 2, that a scalar conduc­
tivity o' gives an adequate account of the electromagnetic 
properties of the plasma, and attention will be restricted
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to those disturbances for v/hich |hr0|<<l. No restriction 
will be placed on the phase of the conductivity. A per­
fectly conducting wall is assumed to exist at r*=R>r0.
The field f_(r) is determined by the same differential 
equation for r^=R, the usual boundary conditions at r=rQ, 
regularity conditions at r=0, and by the condition

'UR)-0- (60)

Thus the field takes the form 

■fx C*-) A -for

and (6l)

where the constants A, C, and D are determined from the 
conditions

» D3;(^r.)-AT, (^r.)-O
(62)

and

Equation (62) readily yields
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(63)

so that the constant A is given by

-f

(64.)

the field fz(r) is given for r^rQ by

and the dispersion relation becomes

('ne^r/r«v/)(u;+- ku.)V
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The betatron frequency may be used to simplify this 
expression to

(6?)

The equation reduces to Eq. (90) of Chapter 2 v/hen jhRj» 1, 
since the ratio

(68)

becomes exponentially small, and gives an account of the 
stabilizing effect of the walls when JhnJ is smaller. The 

full analysis of Eq. (6?) is rather lengthy and is not 
carried out here. Instead, the stabilization effect will 
be exhibited by a treatment of the limiting case |hRj«l. 

Small argument expansions may then be used for all Bessel 
functions, and the relations

|kV|«i 
|ir R1<< 1 (69)

where
hy *4*' i u)o"

are useful in estimating the size of the terms involved. 
The relevant expansions are
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and combination gives

Thus the dispersion relation becomes

(70)

(71)

(72)

For fixed k Eq. (72) is simply a quadratic equation 
in cJ and its exact solution is readily obtained. However, 
it suffices for present purposes to determine co as an ex­
pansion <o0+o)t , where 04 satisfies the zero*'*1 order
equation
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(73)

and the correction cu. is obtained from
Z (cv. f U) 04 = o^vA ziritf CO. (7ii-)

The two roots of these equations are given by

and (75)

and the instability appears in u),. V/hen <f is purely 
imaginary (a collisionless plasma), the system is stable, 
as before. V/hen o' has a positive real part, the system 
is stable for wavelengths for v/hich

or (76)

and unstable for shorter wavelengths. For such wavelengths 
Eq. (75) may be used to compute growth rates provided that

<<!• (77)
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Otherwise, Eq. (72) must be solved more accurately.
This analysis has shown that one effect of metal 

walls is the suppression of long wavelength instabilities. 
However, it does not follow that the maximum instability 
growth rate has been reduced. Growth rates still vary 
from 0 to about but in this case they are associated 
with a finite range of wavelengths.

Arbitrary Beam Density Profiles

The analysis of Chapter 2 is not greatly dependent 
on the assumption of a uniform, sharp-edged beam. Ar­
bitrary density profiles (in particular, the Bennett 
profile, which would be expected on statistical grounds) 
may be treated by similar methods. For disturbances such 
that Jhr0|« 1 the treatment leads to a dispersion law

similar to Eq. (173) of Chapter 2. The analysis has been
2"}given by Rosenbluth J and will not be repeated here.

Summary of the Chapter

The low frequency, long v/avelength instabilities 
of Chapter 2 are subject to many influences not studied 
in that chapter. The present chapter gives a somev/hat more 
realistic treatment of the background plasma and examines 
the resultant modifications in the dispersion lav/ for the 
disturbances. Subsequent chapters v/ill study the modifi­

- 90 -



cations due to the microscopic beam particle motion.
When the self-magnetic field of the beam is large, the 

tensor character of the plasma conductivity becomes very 
pronounced and requires a separate treatment. An approxi­
mate analysis of this problem is given in the first portion 
of the chapter. It shows that while the pattern of plasma 
current flow is greatly altered by the Hall currents, the 
dispersion relation is not. The precise alteration of the 
law has net been established, but it is probable that the 
dominant effect appears in the logarithmic term of the 
dispersion law as an apparent increase in the beam diameter.

A crude analysis is given of the effects of plasma 
density and temperature gradients. It is found that for 
o'> 0 and Jhr0|«l the dominant effect in each case is to 
decrease the drag force for fixed co and thus to increase 
instability rates for fixed k. For temperature gradients 
the scalar conductivity is smaller in the region where 
screening currents flow, so that the currents extend to 
larger distances and react back on the plasma less strongly. 
For density gradients the screening currents also flow at 
larger distances, but the effect is due to the inhibition 
of current flow near the beam by the large self-magnetic 
field.

The suppression of long wavelength instabilities by 
conducting walls is also illustrated. The effect does not
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reduce maximum growth rates but it does eliminate those 
instabilities which would be most effective in disrupting 
the gross motion of the beam. Finally, the extension of 
the analysis to arbitrary beam density profiles is indicated 
but not developed in detail.
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Chapter ij.

A MICROSCOPIC ANALYSIS OP THE CONFIGURATION 

Method of Analysis

In this configuration the perturbing electromagnetic 
fields affect beam particles and the background plasma 
in quite different ways. Beam particles have a large z 
velocity and undergo rapid, large amplitude oscillations. 
They sample fields in large regions of space, and their 
response is markedly non-local. In contrast, plasma 
particles have no systematic motion and, to good approxi­
mation, respond locally to fields. Thus the preceding 
analyses of the configuration have treated the beam 
dynamics and the plasma dynamics asymmetrically, describing 
the beam dynamics in greater detail. In the following 
microscopic analysis, this asymmetry is even more pro­
nounced. A relativistic collisionless Boltzmann equation 
will be used to describe the beam dynamics, while a scalar 
conductivity will summarize the relevant plasma dynamics.

This treatment of the plasma fails at very high 
frequencies, primarily because the beam neutralization 
is not adequately described. However, such frequencies 
are much larger than the betatron frequency, and the 
model is applicable to a broad range of disturbances.
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including certain well localized, very high frequency 
disturbances. Ho attempt will be made to increase the 
complexity of the plasma model, since severe mathematical 
problems are encountered with the present model, and 
since previous work suggests that the neglected effects 
are small.

An analysis based on the use of a collisionless 
Boltzmann equation for. beam particles has sufficient 
accuracy to describe disturbances of any frequency and 
wavelength, provided that the grov/th rate of these dis­
turbances is larger than the collision rate of the beam 
particles. The analysis is simplified by using a non- 
manifestly covariant formalism and by adopting the 
approximate relativistic beam dynamics developed in 
Chapter 2. This two-nass approximation is applicable to 
highly relativistic beams, and the longitudinal mass 
is assumed to be infinite, except when very high frequency 
disturbances are considered. These approximations greatly 
increase the mathematical tractability of the model without 
sacrificing much accuracy in the description of the beam 
dynamics.

The basic equations of the model are first v/ritten 
down in detail. An equilibrium solution having the macro­
scopic properties specified in Chapter 2 is obtained, and 
the beam particle orbits are computed. The stability
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problem Is then formulated by linearizing the equations 
about this equilibrium solution. Maxwell's equations are 
unchanged in form, but the perturbed distribution function 
is obtained as a certain integral of the perturbed fields over 
equilibrium particle orbits. These orbits correspond to 
betatron oscillations of the beam particles and are respon­
sible for the macroscopic beam pressure. The configuration 
is not well described by the standard orbit theory approxi­
mations, since the orbit size is comparable to the beam 
diameter.

Appropriate field variables for the stability 
analysis are suggested by a closer examination of Max­
well's equations. The perturbed current is separated into 
plasma current, which is incorporated into the homogeneous 
field equations, and an unspecified second current, which 
is treated as a driving term. As before, all physical 
quantities are assumed to have their t, z, and 6 dependence 
contained in the factor

(1)

but here m may take on any integer value. This permits 
Maxwell's equations to be written as a set of coupled 
ordinary differential equations. By proper choice of 
variables, the equations are separated and solved in the 
form of integrals v/hich depend on the second current.
These solutions become integral equations when the second
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current is calculated from the perturbed beam distribution 
function. The stability problem is thus simplified by a 
transformation from differential-integral form to purely 
integral form.

A lengthy evaluation of the perturbed beam current is 
then given in order to display the integral equations in 
simple, explicit form. A reduced set of equations is 
also obtained by assuming that the transverse beam velo­
city is much smaller than c. Solutions are found for the 
equations and reduced equations, and in both cases the 
dispersion relation appears as a condition that the 
equations be solvable. A detailed examination of the 
results is given in the next chapter.

Formulation of the Stability Problem

The labeling of field variables will follow the 
conventions established in Chapter 2, unless otherwise 
stated. Both rectangular and cylindrical coordinates 
v/ill be used during the analysis, and conventional 
notation is adopted for coordinates; e.g..

j; - (*> t**)
(2)and

denote the position and velocity of beam particles in 
rectangular coordinates. It will be convenient to
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denote the parts of vectors v/hich are parallel to and 
perpendicular to the z axis by the subscripts // and JL 
respectively. To eliminate confusion with the beam 
particle velocities, the symbols v', v0 , and v v/ill 
be used for the macroscopic beam velocities. The general 
beam particle distribution function is denoted by f'and 
is chosen to depend on the variables t, r, and v. Other 
definitions will be introduced as needed.

Maxwell’s equations and the plasma conductivity 
law - - Eqs. (2I4.) and (25) of Chapter 2 - - must be 
supplemented by the Boltzmann equation and by the relation

(3)

betv/een f and the beam current. As before, it is assumed
that the beam particles are electrons. The collisionless 
Boltzmann equation has the general form

and states that f is constant along particle trajectories.
The time derivatives and are
determined by the two-mass approximation to the relativistic 
particle dynamics and are evaluated as



and (5)

In this chapter the last part of Eq. (5) is replaced by 
the simpler condition

(6)

(I.e., the longitudinal mass mv^ia assumed to be 

infinite). The Boltzmann equation then becomes

17)

The relativistic invariance implicit in Eq. (!}.) has 
been lost in Eq. (7)> but a very good approximation to 
the dynamics of highly relativistic, low temperature 
electron beams has been retained.

When Ey and B/ are known, first integrals of Eqs.
(5) and (6) may be found. Any function of such constants 
of the motion is a solution of Eq. (7)• Solutions 
corresponding to the equilibrium configuration of 
Chapter 2 are obtained by finding constants of the motion 
associated with the equilibrium electromagnetic fields
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and B. = v X A ,

where

and

A =A(0(°,
A(')-C23^)

A^=(2^)r.% >(•/'.) f" ->•

18)

and by finding a function of these constants v/hich has 
the macroscopic properties necessary for self-consistency. 
That is, the beam must be entirely confined to the region 
r^r0 and must have a uniform density nQ and a macroscopic 
velocity V0-(o, O, u-j in this region. It is assumed, 
as usual, that the plasma neutralizes the beam without 
appreciably affecting its own uniformity. In rectangular 
coordinates the magnetic field takes the form

(9)

while the equations of motion become

i a/*x — 0,

°'

0 - O,and (10)

- 99 -



where r AZJP'e'U u-v,. \"( •"< A

Constants of the motion

and
“ VX + ^ X >

0C3 - V *'+

(ID

are obtained by inspection, and the combinations
ft m at.

j3^ - + - v/ + »i*' r’'and (12)

have the symmetry properties required by the config­
uration.

The constants ft and ft^are used to construct solu­
tions of Eq. (7) having the required macroscopic proper­
ties. This is done by finding solutions f of the form

{ O'* VxV> V-) “ » (13)

v/here Iiq satisfies the conditions
v..^ o.

and

JcLv. lio( vt) = I,

J = «->

(llj.)
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and g satisfies
J*. * o

and (15)

^ ~ a -i.
j -/or r at
O ■fo*' *■ > C '

The function h0 is not uniquely detemined by Eq. (lij.) . 

For simplicity, the solution
K- * (v*.~ “•) (16)

will be adopted, corresponding to a beam with no longi­
tudinal temperature. Other admissible choices for ho
will not be considered explicitly, since they would not 
change the instability analysis appreciably. The form 
of gQ is much more strongly limited by Eq. (15)• The 
integral condition may be rewritten as

jCr» •PrfM-r ^ r - ^ (1
- 0 -for IT >rm ,

v/hich, together with the positivity of gQ, forces gQ to 
have the form of a delta function centered about ^ r,.V*

The simplest such solution.

(18)

is the one adopted. The beam is thus forced by Eq. (15) 
to have no transverse temperature. The form chosen for
h permits v to be eliminated from g by means of the o 1 z “o
identity
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(19)Uf_

where. the betatron frequency, is defined by

and £« is given by (20)

The absence of thermal effects does not imply the 
absence of beam pressure (i.e., of momentum transfer). 
Momentum is carried by the macroscopic beam motion; but 
the individual betatron oscillations of beam particles 
also transfer momentum, and this effect is quite similar 
to a thermal pressure. A comparison betv/een the pressure 
tensor

/ o o 
0/0 
o o I (21)

obtained in Chapter 2 and the tensor
(P* ). /dv, ■ly' (v/- 4 ')/ <

V

o

(22)

computed from fQ verifies again that the present equilibrium 
configuration reproduces the macroscopic features of the
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previous confipuration. It also indicates that the 
pressure is due to microscopic particle motions of a non- 
thermal nature. The discrepancy in the values of is
of no great importance, since this component is not needed 
for the analysis of low frequency, long wavelength dis­
turbances .

The particle orbits responsible for the beam pressure 
are obtained from the equations

X-*- a*e'x ” °»

" °»
and (23)

The particle motions are composed of a uniform velocity 
in the z direction and oscillations (betatron oscillations) 
at the betatron frequency in the x and y directions.

A jSolutions for time t • t •*■ t which have the form

and

v/here
and

$-x(t)» x SOI

(2k)

^ -

V t Y = M
* fr 3

take on the initial conditions r and v at time t andAM,

describe all possible equilibrium orbits of the beam par-
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tides
The stability problem is formulated, as usual, by 

giving the linear equations which govern small departures 
from the equilibrium configuration. The equations 
governing the plasma current and the electromagnetic 
fields are already in linear form and are unchanged 
for the stability analysis, but the Boltzmann equation 
becomes

(25)

This equation states that v/hen the perturbed electro­
magnetic fields are known, the time derivative of the 
perturbed distribution function f, evaluated along the 
equilibrium particle orbits, is a known function. If, 
in addition, f is known at some instant of time, it may 
be found at any other instant by integrating Eq. (25) 
along the equilibrium orbits given by Eq. (21}.) . This 
technique may always be used in the search for instabil­
ities; since solutions with exponentially growing time 
dependences are sought, f at time —is necessarily 
zero. Thus f at time t is given by
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(26)*(t

v/here all quantities In the integrand are evaluated at
A /time t« t+ t ; that is, the quantities t, r, and v are

A A Areplaced by the values t, r, and v specified in Eq.
(2i|.) and its derivative. The integral may be simplified 
to the form

I * (27)

where

since gQ and hQ are constants of the motion. The per­
turbed current, needed for solving I-'axv/ell's equations, 
is then given by
*c f. 4)* (28)

This equation requires an extensive evaluation before 
it is helpful in obtaining an explicit solution of 
Maxwell's equations, but before this is done, it is 
useful to examine the structure of Maxwell's equations 
more closely.
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Integral Form for Maxwell's Equations

The discussion of Maxwell's equations will be 
carried out using cylindrical coordinates and adopting 
f(r), defined by

(29)
for the basic variable. The magnetic field

is obt-ained from the curl E equation, the plasma con­
ductivity lav/ becomes

and the second current is denoted by
(3D

k(32) 
The follov/ing reduction is based solely on the fact that 
the t, z, and Q dependences of all field variables are 
contained in the factor however, when the stability 
problem is analyzed further, j will be taken to be the 
beam current.

The curl B equation yields the basic equation 
governing f(r), namely.
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(33)

The divergence equations are needed only as initial 
conditions, and, for the instability problem, are 
satisfied identically at time t«-»®. The first term 
of Eq. (33) gives an awkward coupling of the components 
of f(r), as shown by

|vx(vx)^£)J

[v»(vi/£)]e-^(VVv (3i<.)

and

These expressions may be simplified by isolating the 
terms ^ jf'(r) and^V*^"£) > and by making use of

the conventions

and

The first result is

(35)
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jj^- ^ ^ (v -f) f i

=/{^+ ^)»

and
x(vx /-f |^ - ^+ i^(^* £)+(^ ■ T a? •■ ZT •

This increasing similarity among the components of 
Vx(yx}^£_') may be exploited by introducing the 

definitions

k-i-J-')

and using the operator identity

(37)
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(39)

The +, and z components of Eq. (33) then yield

and

The only complicating feature of Eq. (39) i-s the coupling 
furnished by (v.-£)- This is eliminated by use of the 
condition

(4o)

obtained from the divergence of Eq. (33). The field 
equations then take the form

and their solution is straightforward.
The fields must be finite at r«=0 and zero at 

r«ioo and can thus be obtained by integration from the



Green's functions of Appendix I. For simplicity the 
results are expressed in terms of the Hankel transforms

and (1^2)

rather than of the fields themselves. The notation and 
conventions of Appendix I v/ill be adopted; in particular, 
the condition

Rc.l>> o (4-3)
is imposed, and the solutions may be expressed as

and

The equations for F*(Jk) may be simplified by the identities

~ fn 4uu
and (4-5)

^1-, M

no



provided that the second current vanishes more rapidly 
than as r-><*». Substitution into Eq. (41|.) then yields

(46)
and'

This gives a simple, explicit solution for the fields 
when the second current is known. For the stability 
problem the current is known only in terms of the 
perturbed fields, and Eq. (46) leads to a set of integral 
equations for and F_(*). A single integration of
Eq. (46) yields an analogous set of equations for the 
variables f1(r) and f_(r). The set is less useful for 
the stability problem, hov/ever, and will not be given 
explicitly.

Evaluation of Perturbed Currents

An extensive reduction of Eq. (28) is needed 
to obtain explicit formulae expressing the currents 
j"» 3Z> and (v j) as integrals over and m

As a first step the current is separated into local and
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non-local parts. To do this, the orbit integral of Eq 
(28) must be examined. The expressions

_Lv x ft = — F £a* Sj. u*>vi j

and (47)

are obtained from Eqs. (1), (29), and (30) for the 
electromagnetic fields and may be simplified by means of 
the hydrodynamic time derivative

v/hich is valid for the orbit integral 
integrand to be written as

(48)

This permits the

• eV—~ J iui
V*. d. C (49)

Afor time t, with a similar expression holding for time t.
The time derivative is easily integrated, since v is az

Aconstant of the motion and Ez vanishes at time t«»—®o.
The current then takes the form

(50)

which gives the required decomposition
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(51)
The evaluation of the local current

t
is quite simple. Symmetry requires that be zero,
while | is given by

(52)

(53)

The result is a close approximation to the surface current 
encountered in Chapter 2.

A direct evaluation of the non-local current is
A Aquite difficult; r and 0 are awkward to compute, and the 

integrand has a very complex form. Thus a subsidiary 
decomposition of the integrand

z i- v~h’-i(v£’’v E') (5k)
into plane waves is adopted, permitting the direct 
use of rectangular coordinates and simplifying the 
form of the integrand. The decomposition is suggested 
by the identities
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The definitions
J +

U'-J* “* P

It ** JL *».n yJ

p.

imply that

_j£i- cos & = -*•

and yield the decomposition
EW^'-V'V, F'We^"^

and
E * e

The further identity
V - V - <-V

[V ± iv |i 
X

Ti.9

(56)

(57)

(58)

(59)
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and 2q. (53) permit Eq. (51}-) to be written as

&'I) ;(kz+*t) V Pz. m z.' 9

(60)

which depends only on rectangular position and velocity 
coordinates and is thus readily evaluated at time £ by 

means of Eq. (21}.).
It is also convenient to introduce the variables 

s, v, and \ , the frequency /L , and the phase ^ by 
means of the definitions

and

s -

X - *)-P

ci(kx + o>t)

Use of Eq. (2l}_) then yields

(61)
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'V-V

[v, i wj ’ [v, 1 ivJ“* 5' “i [< 1 ‘d “si.n s

= e
icef titL 1»_ jve tos s<-0 :

(62)

and

tsJlr cos J co» a sLn s»

and takes the forme-i)

/* a \ - ‘As.-; iir cos «J cos s i{lv/u^tos X sm s
He e

where
H- Y, Pw I;(1)+ j(v«-““ms^ F W

+^(veiaCcoss-a;BrsLnsJe l^|_( F (-^*

(63)

The integrand may be written in more convenient form 
by introducing the operator identity

p = e5n#Pn
(61i_)
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and the definitions
h- y* Pm *~ukr ***•) ^ ^

COS S—«kb*' *i« ^rn-l ^ ("O

and
K“K(v,^, vu,r, s)

;jlf cos 3 cos * c (cv/‘tJ^) «» X- »
He'

This leads to the expressions
tii »e-D-/-,“ »<

(65)

(66)

for the integrand and

for the non-local current. The perturbed current thus 
has the form assumed in the reduction of Maxwell's 
equations, and v/ill be expressed as a set of integrals 
over the Hankel transforms.

Further reduction is needed to obtain Eq. (6?) in 
explicit form. Fortunately, certain of the integrals are 
easy to carry out. The components
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and (68)

where

and

n-n(^)-e^)

K« k(v, oc, u., (69)

may be simplified by an integration by parts which 
eliminates the derivative of the delta function. Attention 
will be restricted to the region r^.r0, since the currents 
are otherwise zero. The necessary identities are

w k* j(»- ^ V‘'X' *v ^)K

(v^)K y««/ C. 8

and (70)

where . •_ Ijtr <«s o ttft sn..o-R-e
K^R^vtc^R R Jje+ -ia -1\ i&r atsi co»s st)n s

o ' *
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aK ‘(4)sen 3 x K
i-8*- cos lews tos X Sin a ^

R. * *in *[w*-i F^1)'f>«.-iF ^)J

r’ =f »» »p ,F'W>

(71)

and
H" = £oos 3 f7*^)-

The components become

I

and (72)

and are simplified by carrying out the and cJ integra­
tions, interchanging the order by means of the relations

ec — \+&

and ^J[ (73)

The calculation is facilitated by introducing the 
definitions

A :Lj£2m--^
V mj J
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-«o

\-S~jui*o

(74-J

and •• e/6
ijBt t»S X sin *

Using this notation ^ ^ becomes

-^-Al^T sinsLF ^|+iit ainsfos xXj
-0!^1 sin 3 LFt^) lU ^

^AjrcoasLFT^, ci^Vjfo-e'V^^cia —X)(J

^-AJtc.5 *LFt<^.1 A^J&eV^ ^ -3 “sXX]
(7^J

and <f*H becomes
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-(g^T 5in%LFV)[l,„ “5VAj

■i./t cos'X

-J

-(to)T s‘''’'3 L,,W[3-h “5X^J

D '
(76)

(xfz)T“3 ^ ^iins

.LFli)[jM *»» “> M}

The i and "X. integrations are independent, and each one 

may be carried out. The basic integral

— Je.f V/ ~dx . ''r
JUT e a (77)

yields

t icS

± lT ±i v cos s)^

(JIf cos s) -Cor -*-

-.j►n (ilr COS s) -for
c Jhn (-Gr cos s) -for +

1 r • (-?>• cos -for —
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2V e d (/■*■ ^9 » ) +»w+l f f tnf| ' S

= - X (-£*- COS S 
1*1-1 '

ij ± vC /r= - “s s) for +

t cXQf-e, cos

178)

and

= <o5 5)for“i

^etiX/£_ = cj(-^ sin s),

ce s X ^ V ’

sin sin s^J,

sin s uSy- ilZe. sin S sin sj,
sin 3 co s sin s^-JU, sin s Ti-k- sin

• = - X sin
Cre^^'^'cos Br sijn s)+'^(^c 5tn *)|a

which is sufficient for the evaluation of the current. 
Substitution into Eqs. (75) and (76) then gives
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h--(^r)LF WTA .cn » ^ (e, sin ,) (Ar „3 s)

-(z)LF«T Jlr Sin s sin 'K> (* r COS s)
3ios)_ie sin s sin *K> COS sj+ COS3

{A)lf-(«)t j2r sin^s 3T Sin ^J?r cos 3^

sin s cos s sin US (79>

'n * (^t)LI;W Uc sin 5 4i* s)^-i (ir “4-s)

-f4-)Lr^'

{iy-m

jZi- sinvs I(* C sin sj (jjr cos 

•—Jit, sin s cos s sin CoS s^

Jr Sin 9 cos

[>e ^ (it 9i« sj-ic. Sin s J(ifc Sin s)]j (ir us s)—<03 3
and

)Vn"■ Ur-. J
Uw l, (t-. “ ’)- i v* 3

-4 3'"5 F'(9:L-I (ir. “5 9

\_fJl)TAt^ Sins jCA sin cos 5^
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JLf 3^5 rf-it SU13)T ^ (Mx cos s')
♦ JZe. sin s cos s Sin a) w5 5^.

LF-(i)T JLr 3tn>'s
-A sen s

r(it sin sj^_( (ircos a) 

cos a ^

These expressions may be brought to simpler form by
evaluating the brackets occurring after terras of the 
form Lrt(2). The brackets are numbered consecu­
tively and are given by

[

[ ] -
3 '

[ j = ■ Ti fSin 5

V-

[ ] -

m 5 -»• I
CoS S

stncos )

sin s 
CO s s

m sin^s 
Cos S

—n s-) J J
Cos S J ' * 9

7

and
c fSinsJj) + f ”

^ i my ^ cos s y

(80)
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An Integration by parts is used to remove the derivative 
with respect to s, and the currents become

stnxs 1 I^F*•(<?)+ F~(lJj-iQ. sinj

si.n » F

and (81)

1 u. tc/ J TL & O

- 2: sin ^ ^ • “* S)+P^R-I^5 WS ^

U °Vj^TL «n s Tftt- “S A)'

f{m^n^f\SL> F-(*b ia(rtah F~(^

The total current is determined from Eqs. (5l)» (53J» 

and (8l) and, to facilitate the stability analysis, is
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written in the form

f(^)p* sin 3 £ (f)+ iflL ^ s[F+^~

F>}J

and

(82)

•f (i;)-y* dsiiU^1 ^(r; cos s)
/ .00

+^klk^/“dsiila s Xfe <«S s)

’("^r)^^/,*0pd^dsUlelAS5in S^IPt SLn S)^*^P'“SS)'

^-jpc F(f)^f‘(f)-F-(P)jl
(83)

These expressions are used in the evaluation of

(84)
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The contributions of J are assessed by means of the 
identities

J (pr cos*)

dr
^(pt sins). sin s J" ^pfc sin s)

p£ cos s sin s X ^p£ sin s^= ^ sin s JT^pC sin 

pr sins|^+( (pr MSsJ-^fpr cos ^£±jJ?r ^ 5)

pr cos sfJK,+, (pr ^pr £os s)J=Zw ‘L 405 s)

and -(l^Tj[F+^+ r^p)]= T*l\’

where i\ denotes the bracket occurring in Eq. (83). 
Substitutions then yield

■(^jcyrS ^ ■

-J-J^ (pr COS s)p£ cos s sin s x(p£ sin s) "( j

(85)

7r{ (p6 5tn s)fr sin"s l Ifki (r£os s)_ 0,5 5)J
^Xfpt sin s) sin sprcos sfj^ t F"J

dsineJl5f ^(sios ^p£ 5ir,4);r»^r“S5)/^

(86)
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and the derivative with respect to s is again removed 
by an integration by parts. This permit's the divergence 
to be written in the simple form

1(0-/* ^i(r°ws s)

(87)

A lengthy reduction has led to Eqs. (82), (83), and 
(8?) for the perturbed currents. These equations evalu­
ate the currents appearing in Eq. (i^6) in terms of 

+integrals of P and P ; substitution gives rise to a setz
of integral equations for the Hankel transforms. The 
formulation and solution of these equations completes the 
stability analysis. '.Then the Hankel transforms F~ and Pz
are known, all other perturbed quantities may be evaluated.

Integral Equations for the Stability Problem

The r' integrations occurring in Eq. (ij.6) actually 

run from 0 to r0, since the currents are zero for r>r0.

- 128



This permits the form of the iptegrands to be simplified 
by introducing the new variable ft , defined by

r7 — cos jifj

and
(88)

in place of r^. It is also convenient to define the 
operators

i ■ n. ^-p)

sin ^ Cos cT (p»i sin s 5^)^ (ft CDS S C03

and (89)
A» • An(i>p')

=J *" ty CoS y J (p£ sin S sin (pr CoS S cos ^ CS 
/) I ^

With these conventions the substitution of Eqs. (82), 
(83), and (8?) into Eq. {1+6) yields
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Thus the stability problem has been expressed by Eqs. (90) 
and (91). These equations are not complete as they stand 
but are completed by Eq. (89) for the operators Am and 
P and by the relationsmti

■f^(r CO5 S) *= a/* p^p (p*I 605 S)^L (p)

and

i (r. ttS,)FV
♦ if00?*? «*s) f="^>)

for f and f_. r z

Reduced Integral Equations

(92)

An expansion procedure is suggested by the 
presence in Eqs. (90) and (91) of the small parameter 
f ^ (0-^ q• The equations may be replaced by an 
infinite number of simpler equations by expanding the 
operators and field variables in powers of 4. and 
equating the coefficients of the resulting power series 
to zero. The procedure is made definite by using the 
relations F __ •

X.
-Cr0~p'i~k~-'kr.~ 1 
A—I (93)
CaJ
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and n — A — |Mil •*»
to classify the terms appearing in the equations. A 
theory of the equations could be developed by estimating 
the degree of approximation to the true solutions pro­
vided by n terms of the series solutions and by solving
for the series expansion of F~ and P . Only part ofz
this program will be carried out. Since £ is small 
whenever the approximations made in the relativistic 
dynamics are valid, the major content of the theory

4" Vishould appear in the zero order equations. For this 
reason attention is first directed to the derivation and 
solution of these equations. The field variables are 
expanded in the form

and r (4) = f*
(94)
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where, as before.

^ ^(p*; * sCn (pt; cos s «» p() {Ur o»s .

Thus the problem has been reduced to the solution of a 
single integral equation - Eq. (96) - for P_0(^). The 
variables may then be obtained by integration.

The structure of Eq. (96) becomes clearer when it 
is written in compact form with the aid of the functions

(J(r+ h-) *
m(p)-(ftr0-£dsiti€ Jw(pr.a>ss)]

(97)

and
MS

. J^pr sir, s Stn ^ ^(pr a,-5 5 0js^)7(^r a,s j/)

and the operators

o

an4 N ./“JpN(i,p).

The equation takes the form
F (Jl)- W/^dpAAfp) F (p)+/0°dpNfX.p)F(p),

(98)

(99)
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where, for convenience, the superscript on the field 
variable has been ignored, and in usual operator notation 
this becomes

F = GrMF+- NF .
(100)

The similarity of Eq. (100) to Fredholm*s equation of the 
second kind suggests that a solution be sought in the form 

F = Cr+ N<T + NN<T*- ••••
= L N J(qr, (101)

where, as usual,
N°Cr = Gr(i)

and (102)
NJGr»/°clpi.../ dP.

when j)0. Of course, the right hand side of Eq. (101) 
could just as well be multiplied by a constant factor, 
since Eq. (100) is linear. Substitution of the trial 
solution into Eq. (100) yields

f N^q-Mr + N^Or 
tm° <r°

r1

(103)

or
N°<t = MN

r° (lOl].)
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For arbitrary choice of parameters - in particular, for 
arbitrary values of k and - Eq. (lOlf) will not be satisfied. 
Hence this condition plays the role of a solvability condition 
for the problem and is, in fact, the dispersion relation.
The formal dispersion relation is thus given by

i-n aan'g-,
r° (105)

where

and

MN*Q- <r(p)
©

/AN'cr'/jp/jf, -fin

when j^O. This equation is, in a sense, the final result 
of the analysis, since it gives a method for testing which 
values of co and k lead to admissible disturbances. How­
ever, the content of the equation is certainly not in 
explicit form, and explicit results will be obtained in the 
next chapter.

Solution of the Coupled Integral Equations

The full integral equations - Eqs. (90) and (91) - 
have a more complex structure, because of the coupling 
between the various field variables. However, their form 
is sufficiently similar to Eq. (96) to permit an iteration 
solution and a dispersion relation to be obtained in an 
analogous manner. This can be seen more clearly by intro­
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ducing functions and operators which permit the equations 
to be written in the more compact form

♦(KJ^kV-kT)

and
F!(/ ) - £ d (-£)(tF_ *■ k” F *V t F )

where the expression

is independent o£ jt* . This may be done conveniently

(106)

with the aid of the functions



t/p)» p[j, co5s)] ’

K (X p) p/* dst Afc Sin s/^dd CDS ^ •

X sens sin (pi; cosS as^^r cos^), (10?)

2±(ApVttK't^p)

^(~^' c,s“lfctnSsi',3 / V

‘^p^;^(p,; st,,ssin^)^ll:/(ps “5s“s/)^£((a«s^)

= ctK«.(^p)+^±^p,i s,:n5»

•^.r) H K7i, p)^)cT [« ^

and
MUp)- <K-(t. -^-(---^V1)]'

where the operator Q*" is defined by the equation for Z*.

The various operator expressions appearing in Eq. (106) 
are then obtained by multiplying the corresponding
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functions and field variables and integrating over all 
positive values of p. For example, typical terms are 
given by

KY*-/“«l.K*(J,p)Ft(r).
o *

mV-/” dp M±(J- p) f"(p)'

(108J

The variable p which appears in these expressions is, of 
course, a dummy variable and may be relabeled. This 
freedom will be made use of in the specification of the 
iteration solution.

This solution is found more readily by writing 
Eq. (106) in vector form as

where
(109)

Kf =/“dpK(-i,p)I(P),
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and
p’iu.p) *y>f) z-Hp)

K(i,p)- ( -PT-«.p) -z'Up)

Kr(Ap) K (i,p)

The linearity of these equations suggests using the 
vector t

(110)

(111)

where olf , <*., & are arbitrary constants, as a first
approximation to the solution and then seeking a solu­
tion in the form oo nrw-z k j.

h»o
-j.W+Kj-+KK}-^ ■ " •

where for n ^ 0 the terms in the sum are defined by

K V '-/~dP, ■ ^“dp» K('t’ - K^-l ’ Of V ■ (112)
Substitution into Eq. (109) yields

(113)

or

f* KV « a- (j)L t, • K 4. + Z. K 4.

(iii».)

- 139 -



where

and equating the components of Eq. (lllj.) yields
(l-RW -Rat-Rot «o v •' i v v a 5

(f M=0 „«.«
f-.OeH^W’0’0)*’

frU)-(q o)*,

j3U) = (q,o, «~U)) .

(115)

and

Non-zero constants <£ , and ot will satisfy Eq. (115) 
if and only if

('-*,) -K 
-R. O-RJ -R.

-R. -t ('-R.) (116)

- i-(R.*R *R)-

Thus the condition
|-R1+R^R3,

(117)
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where R -I t- K\r
/ **o •«* »

• ***

and, for n^ 0,

t. K V . /“ Jp/ “Jp, - /“dp.i fp) • K(p- P.>'KCp..,. r„)j.(p„),AM | ^ 1 *o • *' ««■ *
gives the dispersion relation for the full set of 
integral equations,. It is again a scalar relation 
between a) and k, and its detailed content will be ex­
plored in the next chapter. When it is satisfied, the 
solution is specified by the restriction

°S " ^ “ °*a » (118)
and the field variables depend on one arbitrary multi­
plicative constant, as before. It may be seen by inspection 
that Eq. (118) reduces to Eq. (10j?) if 6 is replaced by 0 
throughout Eq, (118).

First Order Corrections to the Reduced Integral Equations

The solution of the full integral equations may be 
used to check the accuracy of the reduced integral equations. 
In particular, the dispersion relation (11?) may be seen 
to be a direct generalization of Eq. (105). However, it 
is also convenient to assess the rate of convergence of
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the perturbation expansion by obtaining the first-order 
fields and comparing them with the zero*'*1 order results. 
This is done in the present section.

Direct substitution into Eqs. (90) and (91) yields 
for the first order equations

(jC.’v k”) ^
+^.1(roco5S)fcP)

(119)

t'Cjis-.j
(jT+ K-)

o iflo
dstflc Stn S fr - At" -- ~|zpr F°(p)

and
F'(i) - (^(i ) / “Jf M (f) F' (p)^“dp N(-f, p) F'(p)t i(Je)j

(120)
where , Pn , Cf{JL\ M(p) and N(i,p^ are given by 
Eqs. (89) and (97), and I)(j£) is given by

•L,(r- “* s)f7p)

+“5s)f(p)
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rr-f-fekAfl /-^/•jPau“to«. a A
(121)

, ( a[FYf)- ^“[F/fp) ’ftpl) •

Use of Eq. (95) permits J)(x) to be evaluated more concisely 
as

where

r)-/>"<feiae “ss)|

pdp A\(p) F Cp)
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or. In obvious notation.

(123)
't'faHere use has been made of the zero 11 order dispersion 

relation - Eq. (105) - in the simplification of A(/-) . 
Actually, the dispersion relation has infinitely many 
higher order terms, but these do not affect the calculation 
to this order. They must, of course, be accounted for in 
the complete perturbation solution. This point is discussed 
further after the corrected dispersion relation has been 
displayed.

The structure of Eqs. (119) and (120) is quite similar 
to that of the zero*'*1 order equations; after F (£) is 

determined from Eq. (120), Is obtained by integra­
tion. However, the form of Eq. (120) requires that the 
dispersion relation (105) for the zero*'*1 order equations 
be modified. That is, the relation between and k is 
a function of 6 , and Eq. (105) provides only a first 
approximation to the relation. The required modification 
is readily obtained if Eqs. (100) and (120) are combined 
into the single equation

(i24)

and solutions are sought in the form
F‘-f NnGr



and (125)F n"H.
*■ «»o

thThus, the zero order solution is unchanged, except for 
the dispersion relation, and substitution into Eq. (12lj.) 
yields

G-+Z NHH
*•*!

V Bx0 h-o /
(126)

n^h^i nwh

or
<r{l

\ti*< MN Cr+el MN H + en-*o (127)

The corrected dispersion relation is then given by
mnhh, (128)

where OJA), M(p) and lU^,p) are given by Eq. (97)

>



O
N « I,

and, for example,

* O ®
A direct calculation shows that the right hand side of 
Eq. (128) consists of the first two terms of the power 
series expansion in 6 of the right hand side of Eq. (118). 
Thus, the perturbation theory builds up the correct dis- 
persion relation, tern by term, the n approximation 
giving a dispersion relation which is correct up to terms 
of order €■*.

Summary of the Chapter

The stability problem has been analyzed on a 
microscopic level by use of Maxwell’s equations and 
the collisionless Boltzmann equation. Certain Hankel 
transforms of the perturbed electric field were adopted 
as the basic field variables, and the perturbed beam 
current was expressed in terms of these variables. The 
integral form of Maxwell's equations then led to three 
linear, coupled integral equations v/hich govern the
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development of disturbances. The equations are solved 
by expressing the field variables In the form of Infinite 
series whose typical terms are n-fold integrals of fairly 
complex structure, and a scalar dispersion relation of 
the same general nature is obtained as a condition that 
the equations be solvable. The solutions, but not the 
dispersion relation, depend on one arbitrary multiplica­
tive constant, which may be related to the amplitude of 
the disturbance.

The equations and the field variables are also 
expanded in powers of > and the integral
equations are replaced by an infinite set of integral 
equations of simpler structure. The first two sets of 
equations are written out explicitly, and series solutions 
for the corresponding field variables are obtained. A 
dispersion relation is again obtained as a solvability 
condition, and, as expected, the fields and dispersion 
relation form the first two terns of series expansions 
of the exact solution and dispersion relation in powers 
of 6 . Since the parameter 6- is small whenever the 
analysis of the chapter is valid, it is to be expected 
that most results of physical importance v/ill be obtained 
from the first terms of these expansions.

V/hile the reduction of the stability problem to
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integral equations has been given in detail, only the 
general structure of the solution and the dispersion 
relation has been displayed. Knov/ledge about the detailed 
behavior of disturbances is also desirable, and this 
v/ill be obtained by asymptotic methods in the next 
chapter.
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Chapter 5

EXAMINATION OF SOLUTIONS

Evaluation of Iterations

Case I: reduced integral equations
These comparatively simple equations are used to 

develop the methods needed for an analysis of the general 
equations, but they are also of interest as a good approxi­
mation to the physical situation. Here attention centers 
on the detailed evaluation of the series solution obtained 
in the previous chapter. Rather difficult integrals appear 
in this process, and their exact evaluation has not been 
feasible. Instead, approximate values and estimates of 
error are obtained by asymptotic methods.

The mathematical complexity of the analysis becomes 
clear when the first terms of the solution

oO j
F =£ N Q-

r°
(i)

are examined. The first term
N*Gr - <HJ0

-
(2)

is simple enough and corresponds to the field obtained from 
the macroscopic analysis of Chapter 2. Hov/ever, the next
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term

and the operators T and R are given by 
T%/ dsifte. sin =>

and

involves the internal structure of the beam and Illustrates 
the typical difficulties encountered by an exact treatment. 
The p integration may be carried out without difficulty by 
use of formula (5>0), p. in th® book Tables of Integral 
Transforms, Vol. II, ^0 an<j application of the relations

-tm a.

and (4)

connecting Bessel functions and modified Bessel functions 
in the right half plane. The result is
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The remaining integrals are quite troublesome to carry 
through, since quite accurate values are needed for the 
dispersion relation and for use in subsequent iterations. 
Further analysis will be restricted to asymptotic regimes.
In this section only the case |hro|<r< 1 v/ill be analyzed.

This corresponds to a low frequency, long wavelength 
regime in which the skin depth is much larger than the 
beam radius. Under these conditions the internal structure 
of the beam should be fairly unimportant, providing only 
minor corrections to the macroscopic analysis.

When m^O the major content of Eq. (5) may be displayed 
by regrouping powers of hrQ to establish the size of the 
term and then introducing the limiting process hro-> 0 in 
that part of the term which is of order one. Specific silly, 
Eq. (5) is replaced by

v/here Sonine's first finite integral has been used to
integration. By introducing (for smy m)
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(7)

this term may be written more compactly as

NQ- — 's J (8)

and its order of macnitude is readily established. The 
constant d3 is of order one, while Sm is of order one when
m is even and of order 1 v/hen m is odd. Thus in any
12? a case K G is of order h r^ with respect to N G, and when

m is odd it is smaller. Of course, a full evaluation of
n'g would yield an infinite series in hro, while Eq. (8)
yields merely the dominant term for this regime. However, 
the expression is quite useful for establishing the size 
of effects due to internal beam structure, while its very 
simple form permits subsequent iterations of the N operation 
to be evaluated to the same level of approximation.

The next term H^G is obtained by use of (37)» p. 53» 
T.I.T. and of Sonine's first finite integral as

(9)
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^Mr.)
Sr.

]■

To compare this term with II G, the corresponding limiting
process hrQ-v 0 should be carried out, even though in this 
term there is no difficulty in performing the necessary 
integrations. The result is

"11 /v* V'* rJl Jr. J
(10)

J... (^)
JL*r

or
N>(T= (ID

(12)

This leads iimnediately to the induction formula

and completes the evaluation of Pz Ur. Collecting terms 
and inserting an arbitrary multiplicative constant yields 
when Jd^ SmJ< 1 and m/ 0

(13)

“y yan expression valid up through terms of order hr • The
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assumption that | dj Sm|<; 1 is necessary for the convergence 
of the series and must be verified from the dispersion 
relation, but it is, in fact, correct for this regime.

The physical effects due to the beam structure are 
seen more directly by examining the electric field fz(r), 
the Hankel transform of Eq. (13)• However, the small hr0 
approximation implies that F„ (-^) is determined inaccurately 
when-# is small and that fz(r) will be determined inaccurate­
ly when r is large. Attention is therefore restricted to the 
interior region r^ rQ for which |hrj«l is also satisfied.
For this region Sq. (13) is accurate enough, and direct 
integration yields

This equation is somewhat deceptive, though, since
the small hrQ approximation has not been introduced into
the first term. All meaningful terms in Eq. (li^.) may be
obtained by expanding the Bessel functions and retaining

2 2only terms of order h r0 or lower. This will be done 
explicitly for m = l to facilitate comparison with the 
macroscopic theory. A simple substitution yields

the internal beam motion is seenand, since
to induce only minor corrections to the perturbed electric
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field in this regime.
The dispersion relation, Eq. (105) of the last chapter, 

is also readily evaluated. Use of Eqs. (13) and (15) 
with A= 1 yields for ra= 1

r

-J duCLe. cossp + ^-co3
(16)

or to good approximation

v/here <^1- iiLl: 
ku. h>

and

The dominant terms of this equation form the dispersion 
relation of Chapter 2, and the other terms are corrections 
due to the finite wave number of the perturbation and to 
the microscopic properties of the beam particles. The cor­
rections to the dispersion law are readily obtained and 
will not be given explicitly.

More generally, substitution of Eq..(13) with A= 1 
into Eq. (105) yields for the dispersion relation when 
m >1
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I--
(18)

a result which contains the small hr0 approximation in the 
second term only. The meaningful terms are again extracted 
by making this approximation in the first term, and 
this yields the final expression

> . ifls Yn dsifle. s

(19)

which is correct up to order h r^. The algebraic conse­
quences of this dispersion relation are readily obtained 
and v/ill not be given explicitly. One qualitative feature 
of interest results from the identification of the first 
line on the right of Eq. (19) as the effect of macroscopic 
motion and the second line as the effect of internal beam 
motion. It then follows that the internal contribution is 
much smaller than the macroscopic contribution when m is 
odd but is comparable to the macroscopic contribution when 

m is even.
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Case II: coupled integral equations
To facilitate comparison with the preceding analysis,

the first terms of the solution
oo n

n-o
(20)

are evaluated by similar techniques, and the arbitrary 
multiplicative constant oct is chosen to be

(21)
The first term

•M4 \

where

and

(r* f)

(22)

again corresponds to the macroscopic field, while the 
higher terms represent corrections due to the internal 
beam particle motion.

The next term ic'g must again be evaluated by
*\M.

asymptotic methods and, since the expressions are quite 
complex, the term will be given in component form. The 
full term is given by
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[k^] = ^“4 jK^(4p)dlp<T(p)_K (Ap)d1p(r(p)-,-Kj4p)^p)j,

[KiT- *[~d? [pUp)dpQ<p)-/M"(i,p)d(pCf(P)^z\l3p)(HpjJ, (23)

and
[KV]'.-;J“jP[p'(ApMpCr(p)-M'(4r)d,F^r)tz'(-4f)^r)j’

which uses the definitions established by Eq. (107), 
Chapter Attention is again restricted to the case 
Jhr0|«l, m^l, and the small hr0 approximation adopted 
in the previous section will be applied to the evaluation 
of Eq. (23). The z component is readily obtained by means 
of previous results as
[K's]j[l+1p^Cr(f)

and the parameter

\ (25)

is seen to be a measure of the coupling provided by the 
full integral equations. The other two components are
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somewhat more cumbersome and are given by

[K k] - ±[i^ Q Pr*Stn5 * (26)

where as before
j,—

and
Q J dsiCle.'"^S/f cos^ sin^ stir*s sir>^ •

* it» (p^ “*5 (Ir.0,5 ?) •

Here the first term may be obtained as before, but the 
second term requires investigation. Use of (5l)» P» 56, of 
T.I.T. yields for the p integration

co5S)
“ +^ri> Stn^stos^l^ ^ (hr (osj/i cos

:s(c^)iir^hi(^,»)ll(''^ 3in? cos f cos

(27)

and substitution into Eq. (26) followed by the small JhrI °
approximation yields

^/^dpQ (i,p)^pr; suos Grff)
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where for meaningful results only the dominant terms of 
the first bracket should be used in final evaluations.
This leads to the final expression

(29)

Subsequent iterations may be carried out by similar 
techniques. Hov/ever, for comparison with the results for 
the reduced Integral equation, it is sufficient to compare 
the dispersion relation calculated from Eqs. (22), (2i|.), 
and (29) with the approximate form of Eq. (18)

(30)
, 'y v |h - kj (^^^5m sirTsjj

which results from keeping only the first two iterations 
In the expression for Pz^)'.

To facilitate comparison with Eq. (30), it is con­
venient to write the present dispersion relation in the
form ,-r

I— — = J) + J ,
\r •

v/here
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iila daL/le, sin

and 
3>

5j(jnr

=> {l^ “5 3)- Ih^’j

f * --•}

■S'jsiO.^Lr, »/" “» =)- J ,(P5 “=
“ ^ T "t k)/‘d-«.‘ stn S'
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corresponding again to a separation into macroscopic 
and internal beam effects. The p integrations in D2 may 
be carried out, yielding the simpler expression

where n -o iQs n n' 5 dsLQs. sin * cosh' -00

It is to be noted that when m = 1 the factor m-1 in the 
denominator of the last term on the right is to be replaced 
by 1.

When the small j^oj aPProxima,tion is used to evalu­

ate as

3 ■ i;(-r)(^r-)Uil"s)^.l
(33)
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It is seen that the parameter

(34)

Is a measure of the additional contribution to the dis­
persion relation provided by the full Integral equations. 
Of course, X and X( are very similar quantities and give 
essentially the same measure of the strength of coupling 
inherent in the equations. Similarly, examination of the 
size of the terms on the right of Eq. (32) shows that the 
parameters X,

and (35)

serve to indicate the size of the corrections to the 
internal term of Eq. (30). However, X,, need not be con­
sidered explicitly, since the previous dispersion relation 
analyses show that |X>| < jX( J . The value of | | is
not so simply related to /xj - It is larger by a factor 
W\ than |X,| - and X3 must be kept as an independent
measure of the magnitude of corrections to Eq. (30). For 
the most unstable disturbances, [XJ is small, but for long 
wavelength disturbances of slow growth rate, |X3 I may reach
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appreciable size
The analysis of the previous section indicates that 

the higher terms of Sq. (20), ignored in the derivation 
of Eqs. (31) and (32), should be of minor importance for 
the dispersion lav;. The scale of the corrections to the 
dispersion law may be estimated by using the previous 
dispersion relation to evaluate X( and A-3 as functions of 
k. For more complete information, Eqs. (31) and (32) 
should be solved numerically after evaluating the Bessel 
functions by retaining dominant terms. This v/ill be done 
here for m= 1 disturbances only. Hov/ever, other m values 
give rise to similar analyses.

An analysis of m =1 disturbances is given in order 
to clarify the nature of the corrections to the dispersion 
law. Attention is restricted to the |hr0|<.<. 1, |(I^| << 1 

regime. The dominant terms of the dispersion relation become 
for this case

v/here

(36)

Thus the dispersion law may be simplified to

(37)
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Fairly complete evaluations of instability growth 
rates as functions of k may be made by solving Eq. 137)
under the assumption that two terms dominate the equation 
and then using the solution to estimate the range of 
wavelengths in the regime for which the third term is 
negligible. The assumption that the equation is dominated 
by the previous macroscopic terms

(38)
leads to the restrictions

and

for admissible v/avelengths and yields the previously 
calculated growth rates in this range. These wavelengths 
correspond to the shortest wavelengths of the jhr0|« 1 

regime and yield the most rapid grov/th rates.
For wavelengths not meeting the conditions of Eq. (39)» 

other terms dominate the dispersion relation. However, the 
only other solution which satisfies all requirements for 
consistency comes from the equation

(4-0)
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This leads to the dispersion law

<;
,%)' A-(^<rr.y(%r )k- (Ip.)^{iC-rcrr,

corresponding to a stable oscillation provided that the 
wavelength is sufficiently long. For the reasonable beam 
condition ^ < < y the condition for the validity
of Eqs. (I4.O) and (ip.) may be expressed very simply as

Ik»: <
(W't r.) \ - J (k2)

Otheiwffise, slightly more complex restrictions on kro appear.
The above analysis may be generalized by removing the 

restriction M <<1. In particular, for the opposite limit 
|fiT|» i, the orbit integrals in the dominant terms of the 

dispersion relation become
i.Q.3f tUS O’’ I

and (14-3)
i-Q»

/uf d»i.Cle^ sen a «■ .a c
n*--! ' n

and the dispersion relation takes the form
kvI- V_ _L . L k I /^6r‘V
V xi- xi - J

v/here, as usual.
tv- —) 

•V

(44)

(45)
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Tho last terra of the dispersion relation again has little 
influence on the structure of solutions, and Eq. (Ijlj.) may 
be approximated by

Consistent solutions to Eq. ([(.6) may be found for a 
v/ider range of wavelengths than was the case for Eq. (37) . 
However, all solutions are highly damped and hence are of 
little interest for an analysis of instabilities. In 
addition, the dispersion relation v/as derived under the 
assumption that the disturbances were grov/ing waves. A 
prediction of only stable or damped roots may thus be taken 
seriously, but a determination of rates of damping should 
be made from a formalism that is derived from an initial 
value problem. For these reasons the solutions to Eq. (4-6) 
will not be given explicitly.

This analysis has led to a fairly detailed description 
of m= 1 disturbances in the jhr0|<< 1 regime. For wave­

lengths shorter than the betatron length, this regime yields 
no growing v/aves. At intermediate wavelengths a highly 
unstable disturbance occurs, and its behavior is governed 
primarily by macroscopic equations. Hov/ever, at longer 
v/avelengths additional terms come into play, stabilizing 
the mode.
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Explicit expressions have been given here and in the 
analysis of Case I for the formal solutions and formal 
dispersion relations obtained in the last chapter. Thus 
when |hr0J<< 1 physical quantities may be calculated with 

high precision. However, the corrections to the macro­
scopic analysis are fairly small, and not all quantities 
are evaluated explicitly. Instead, sufficient detail is 
given to illustrate the convergence of the formal solutions 
and display their physical properties.

The corresponding analysis for first order corrections 
to the reduced Integral equations may be carried out by 
similar techniques. The details of this process will not 
be given, since no qualitatively new features appear in the 
results.

Surface Dominated Perturbations

The asymptotic analysis of the previous section has 
established that when |hr0|<<l the dominant terms of the 

dispersion relation come from the first term of the 
Iteration solution, and correspond physically to surface 
current driven disturbances. Since much of the tractabil- 
ity of this analysis Is due to the dominance of surface 

terms, it is desirable to exploit this dominance more 

generally by finding all solutions for v/hich the effects
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of surface currents control the development of perturba­
tions. Of course, solutions for which |hro|<<l will lead 

back to the principal results of the preceding section, but 
other solutions require a separate investigation. The full 
integral equations serve as a starting point for the dis­
cussion.

The regime is specified by using Eq. (22) to describe 
the perturbed electric field, leading to the truncated 
dispersion relation
' - Ok)1 (‘■'"i 3)]+ p

(47)

as may be seen from the term of Eq. (31) • Solutions 
to this equation provide an acceptable analysis of the 
dispersion relation provided that the remaining terms of 
the dispersion relation are found to be small when the 
solutions are used to evaluate them. When J^oj << 1 

this condition is met, yielding, with minor modifications, 
the analysis of the preceding section. This will not be 
discussed further here.

To find other solutions requires the use of either 
intermediate or large values of |hr0 | and leads immediately 

to the consideration of high frequency disturbances. Little
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Information is gained by simply making a large | hr0| approxi­
mation in Eq. (Ij.?)* however, since one cannot use asymptotic 
formulae for all values of s in carrying out the orbit 
integrals. Instead, the fact that large j^oj imPlles large 
|Q| suggests an approximate method for evaluating the orbit 
Integrals accurately and simply, making it possible to extract 
the major new content of Eq. (L)-7) quickly. The method is 
simply to express the integrals in the form of a power series 
in ir' by use of Integration by parts techniques and to 

obtain approximate expressions by truncating the series at 
the /L term. This yields for general p

J JiCne. (iKr)

and (1|.8)

^ dstHe- sins
'~CK=i • '

where the prime indicates differentiation with respect to
the argument of Jp. The dispersion relation then takes 
the form

The investigation of Eq. (4-9) may now be carried out 
through approximate evaluations of the Bessel functions.
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When hro|<< 1 the equation becomes for m ^0

(50)

in agreement with Eq. (41}-) • The additional term in Eq. (44-) 
represents the dominant contribution of higher iterations 
in the formal series. As before, there are no growing 
disturbances for this regime.

The dispersion relation may also be simplified when 
lhr0|>> 1 by means of the asymptotic formulae

(5Dand

For this case Eq. (4-9) again reduces to Eq. (5>0) but now 
the equation is to be solved subject to the conditions

|0|>> i 
| Hr. | > > I • (52)and

Solutions are easily obtained for wavelengths such that 
kro>>l, but correspond to highly damped disturbances. 
Thus, the unstable modes of the high frequency, short 
wavelength regime are not dominated by conditions at the 
surface of the beam.

The analysis of surface dominated perturbations has
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been straightforward and has Increased the range of wave­
lengths for which explicit dispersion laws have been ex­
tracted from the formal dispersion relation. No further 
grov/ing modes have been found, but a general method for 
evaluating high frequency orbit integrals has been derived 
in the course of the discussion. This method will be used 
to treat the wide class of extremely localized disturbances 
in the following sections.

Analysis of Localized High Frequency Disturbances

While the dispersion relation for the coupled integral 
equations - Eq. (117) of Chapter ij. - may be investigated 
directly in the high frequency regime by evaluating the 
orbit integrals to order XI v and then continuing the 
analysis, this procedure is not an efficient way to extract 
the dominant terms of the dispersion relation for localized 
disturbances. One reason for this is that no clear-cut 
method is provided for determining in advance the relative 
sizes of certain terms. In addition, the whole procedure 
keeps very close track of the contributions of the surface 
terms, even though for localized disturbances they will play 
no role in the final expression for the dispersion law.

Instead, the orbit integrals appearing in the original 
expression of the perturbed distribution function f in terms 
of the perturbed electric field will be evaluated by the
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above asymptotic method. The perturbed currents are then 
derived by integration, and no difficulty as to the ordering 
of terms arises. Por localized disturbances the surface 
current is discarded, and the derivation and analysis of the 
dispersion relation are then straightforward.

It is also convenient to work with a plane wave decom­
position of the electric field and to carry out the analysis 
in rectangular coordinates. Thus the perturbed electric 
field takes the form

E> F***. ‘VM. /
(53)

7, '*)

where

and

and the previously employed field variables P ±X«0 and
may be obtained by adding such plane waves, as in z

Eqs. (55) - (58) of Chapter ij.. The perturbed distribution 
function then takes the form

where the caret indicates that the designated variable is to
/be evaluated at time t * t + t by means of the equilibrium 

beam orbits. Expansion of p yields In previously estab­
lished notation
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(55)

suggesting the asymptotic method to be used in evaluating
the orbit integral in Eq. (54)• Since the hQ function will
later impose the restriction .a-n , an expansion in
powers of il"' is equivalent to an expression in _Q 1 .

However, since the dynamic variables are expressed in terms 
/of t rather than s, it is also convenient to obtain the 

expansion by means of the general formulae

1 Vi f

and (56)
/V/1* £(*')■ -^5.(o) 'fe)

whore / d

which are correct to order tL • When use is made of 
the equilibrium beam orbits, this procedure yields the 
final result

Y
(57)
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The velocity integrations necessary to obtain the 
perturbed current from Eq. (57) are effected more readily 
by use of the previously defined coordinates v and OC . 
Derivatives of delta functions are again removed by integra­
tion by parts procedures, and the z component of the current 
is specified by the expression

>ir
(58)

where

and [ 3 denotes the expression in brackets in Eq. (57) but 

with vz replaced by u and v^ and v^ expressed in terms 
of v and . Direct evaluation yields the identity

■ f >
(59)
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and substitution and rearrangement in Eq. (58) results in

-^pTF3
(60)

For the study of highly localized disturbances, this ex­
pression may be simplified further. Such disturbances 
are formed by a superposition of plane waves involving 
v/ave numbers in the range \j I*,7" +• IcJ" ^ 7^ I in a 
fashion which limits the entire disturbance to a region 
r < < ro« For these conditions the surface current given 
by Eq. (60) is of no interest and may be discarded from 
the start. The relevant current then becomes

(61)

Similarly, the x component of the current is speci­
fied by

OC
(62)

and the corresponding identity
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/V~i

-fe) u.1

leads to

f('^)[(jk''u^)F'‘'z^Fj-]

(63)

. (64.)

Again, further simplifications result from the restrictions

and

re* kt t 
|nv| > > 1 

>- < < %

(65)

which apply to highly localized disturbances. To good 
approximation Eq. (64) may be replaced by the expression

(66)
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In which the entire dependence on position is contained 
in the factor ft . A similar argument then yields for j

It Is seen from Eqs. (6l), (66), and (6?) that for 
highly localized disturbances, the factor governs the 
entire spatial dependence of the perturbed beam current.
In fact, the beam response to a perturbing electromagnetic 
field may be characterized by a frequency and wavelength 
dependent tensor conductivity. This, together with the 
frequency dependent scalar conductivity law

(68)

for the plasma current, where o' is given in Chapter 2, 
indicates that the dispersion law for these disturbances 
may be found by a simple Fourier analysis of Maxwells 
equations.

Each Fourier component may therefore be analyzed 
separately, and, without loss of generality, for each com­
ponent a coordinate system may be adopted for v/hich k = 0. 
In this system the beam current becomes
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while the relevant Maxwell's equations may be written in 
the form

and 170 J
(-£-)v*6-(V L-F , -(K”* \xy-

Substitution of Eqs. (68) and (69) into Eq. (70) then yields 
a set of three linear homogeneous equations for the com­
ponents of F, and the solvability condition for the system
is given by the determinant

0

O
\r*

0

.k k-(i±} “h?
0
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where Yi is now defined by

i ,K

and
ct->, HnV'

{72)

is the transverse plasma frequency for beam particles.
The simplest roots of Eq. (71) are obtained from 

the yy element of the determinant and satisfy the equation

\r+ ~bj- o. (73)

They correspond to transverse electromagnetic-disturbances 
and are stable. This may be seen from a perturbation solu­

tion of Eq. (73) using

= 0o (714-)

as a first approximation. This is just the propagation 
equation for a transverse wave in a two component plasma, 
and inspection indicates its stability. As expected, 
higher order terms maintain this stability.

The remaining roots of Eq. (71) are determined from 
r~i"r i “'u-*”. i a . 3 -vir-ir,*- lt i



However, the Individual terms of Eq. (71) are accurate 
- >-only to order XI . Thus Eq. (75) must be expanded in 

powers of D. , and terms of higher order than must be 
discarded as spurious. Retention of all admissible terms 
yields after rearrangement

v/hich serves as the basic dispersion relation for unstable
localized disturbances. The content of this equation is 
more readily explored by noting that the first ir>d third 
terms of the equation have roughly similar structure, 
but the third term is much smaller. The dominant part 
of cJ is therefore calculated from the simpler equation

\ ^
(77)

which follows from Eq. (76) by neglecting the third term 
and letting u equal c. Approximate solutions are found 
from the dominant terms of Eq. (77) and their range of 
validity is established from the correction terms of Eqs. 
(76) and (77).
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Only those solutions of Eq. (77) which satisfy the 
constraints of Eq. (65) are of interest, and, again, the 
rates of grov/th of disturbances or the absence of growing 
solutions are reliably predicted by this analysis, but 
rates of damping require further study. When »
Eq. (77) is solvable’ only for wavelengths satisfying the 
inequality

(78)
where is the background plasma frequency, and gives 
rise to a stable oscillation but no unstable modes. 
Similarly, when | | < < J | , the dispersion
relation is solvable only under the conditions

and

V

(79)

where t) is the collision frequency, corresponding to a 
highly damped wave.

Unstable modes are most readily found by an asymptotic 
analysis based on the condition uJct/ c-^=- co*/ . Por

this it is useful to adopt dimensionless variables, changing 
the scaling frequency from t<J to uj .D oJ— The variables



N *- 4-7r<j'<^ -----  ,
UJ bj_

CL

CLi
k,C

cxJbJ-

(80J

and 6 l N Z- - Z-
•v-

are suitable, and multiplication of Eq. 
leads directly to the expression

(77) by

€U + = 0 (81)

for the dispersion relation. The restrictions
^-*•*'1 >> I

and j- (82)
A + ^ ^ —----I cu r'rti. ®

then characterize the regime of high frequency, localized 
disturbances and provide conditions that acceptable 
solutions of Eq. (8l) must meet. The range of frequencies 
for which ccJcc/c-^ » is specified by the con­
dition J&|4< 1, which suggests that the term of Eq. (8l) 

quadratic in 6 be discarded, and application of the 
restrictions of Eq. (02) yields for these frequencies the 
approximate dispersion relation
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(z +a-)>' (83)4) 7

or, on rearrangement.

Use of the definitions of Eq. (80) and of the value of o' 
determined in Chapter 2 leads to the expression of N as a 
comparatively simple rational function of z, whose coef­
ficients depend on the particular plasma and beam conditions 
under study. Since for any given disturbance a and a^ are 
known numbers, Eq. (8I4.) may be v/ritten as a polynomial 
equation for z v/hose coefficients depend on the plasma and 
beam parameters and on the mode of disturbance. Solutions 
may be obtained numerically to any desired order of accuracy, 
but it then requires a lengthy parameter study to establish 
the behavior of the unstable disturbances. Por this much 
detail it would be best to return directly to Eq. (8l) and 
solve a slightly more complicated equation for z. In 
addition, for very high frequency instabilities, It would 
be desirable to take into account the effects of charge 
neutralization by modifying the derivation of o' to include 
the fact that the plasma electron density Is n -nc instead 
of h. This would involve only minor modification of the 
final expression for o' .

However, a full numerical analysis of the dispersion
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relation is not needed to establish the major characteristics 
of the unstable disturbances in this regime. It suffices to 
assume that the conductivity is due to electron inertia and 
electron collisions, so that

N-fcO—L_
KjlVA*£: (85)

where

IxL
l) is the collision frequency and tt> is the plasma frequency 

of the background plasma, and to search for solutions in 
the limiting cases of inertial and collisional dominance of 
the conductivity. Since the plasma is much denser than the 
beam, t which further simplifies the search for
solutions.

When |z or, more precisely, when

the collisional frequency plays no significant role in 
governing disturbances, and the dispersion relation is well 
approximated by the equation

v-/’—7 (86)

The disturbances are thus governed by an equation identical 
in form with the dispersion relation for one-dimensional 
electrostatic modes of the two beam configuration, even 
though in this case the wave vector is not parallel to the 
z axis. This type of dispersion relation has been extensively
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51-53studied ^ and gives rise to a continuum of unstable 
disturbances, including some with very rapid growth rates.
The more rapidly growing solutions are most readily exhibited 
by means of the auxiliary variables

L

W * fai.
CdJ (87)

and

for which Eq. (86) takes the foi*m

where

4-
(tv.tr

5

Gr*< < (•

(88)

Solutions are sought under the conditions bc^l and «v»=-b, 
and the most unstable mode is found to be given by

= -<c/ e. (89)

corresponding to
I; . . (90)

U.

The rate of grov/th is fairly insensitive to k values in
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this neighborhood, and grov/th remains large for a v/ide 
range of k, provided that

UJ.
< < k1

vr* k-
and (9D

For somev/hat larger wavelengths, the mode remains unstable, 
but its structure is altered by the other terms of the 
dispersion relation.

'.Then the collision rate satisfies the inequalities

ih< “-r (92)

the conductivity is still controlled primarily by inertia, 
but the dispersion relation becomes

I
w VW-^AP] j (w+b)-

A substitution of the form b

to the equation

(93)

leads

(s>+ jlY p
(9k)

with solution

and
k:

CO =

O-t^)

(95)
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yielding a slower but still large growth rate. When

iV < < I*

(- 9 (96)

and

the unstable mode is well described by Eq. (95)» but again 
the node persists in modified form for somev/hat larger 
wavelengths.

When the conductivity is collision dominated, N is 
real, and the solutions of

(97)

are much altered in form. Highly damped solutions of 
2q. (97) satisfy the restrictions necessary for consis­
tency, but the growing solution, described approximately by

fails to satisfy the high frequency condition
which is needed to derive the dispersion relation and is 
thus not admissible.
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In summary, the dispersion relation Eq. (76) govern­
ing high frequency, well localized disturbances has been 
investigated analytically by examination of approximate 
solutions to the equation. Numerous damped solutions 
exist, but essentially only one unstable mode is pemitted. 
This disturbance is essentially of electrostatic type for 
very short wavelengths, while for longer wavelengths, 
its structure is modified by other terms in the dispersion 
relation.

This analysis may bo compared with the work of 
Bludman, Watson, and Rosenbluth, ^ which gives a non 

self-consistent analysis of the beam problem, ignoring the 
curvature of the beam particle orbits. When the longitu­
dinal mass of the beam particles is taken to be infinite, 
their dispersion relation corresponds to Eq. (88) or Eq. (93)» 
in contrast to Eq. (76). This has two effects. The 
additional terms of Eq. (?6) cause some modification to 
the structure of the unstable modes. In addition, the 
frequency restrictions leading to Eq. (76), as well as 
the more complex structure of the equation, make a valid 
solution much more difficult to achieve. Thus, the more 
slowly grov/ing disturbances predicted by their equation 
do not form valid approximate solutions to Eq. (76).

The treatment of high frequency, highly localized
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disturbances is generalized in the next section to include 
self-consistently the effects due to the finiteness of the 
beam particle longitudinal mass. Aside from an increased 
algebraic complexity, the discussion is quite similar to 
the present section.

The Effect of Finite Longitudinal Mass on Localized,
High Frequency Disturbances

For highly relativistic beams, the infinite longi­
tudinal mass approximation adopted throughout this work 
provides a good description of the orbits of beam particles. 
Hov/ever, the approximation does ignore a small energy 
interchange that takes place between the longitudinal and 
transverse particle motions, and for the high frequency, 
highly localized disturbances studied in the previous 
section, this interchange could give rise to resonance 
effects missed in that analysis. Such effects are studied 
here by retaining first corrections to the perturbed 
distribution function and the unperturbed orbits due to 

the finiteness of the longitudinal mass, re-evaluating 
the perturbed current and rederiving the dispersion 
relation. A similar high frequency approximation is 
adopted for the evaluation of orbit integrals.

The perturbed distribution function f now takes the
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form 7

v/here

Yo f+ 0
•A x ^ ^ 'x 1 ^

and

However, the two orbit integrals of Eq. (99) 6° not have 
the same significance. The finiteness of the longitudinal 
mass is to be taken into account by evaluating the per­
turbed currents to first order in bll where

cu
bll

■/zre- rig (100)

corresponds to a longitudinal plasma frequency for the
beam particles. Since f^ is essentially proportional

rto > the orbit integrals in its expression may be
evaluated as in the previous section, assuming that the

\
longitudinal mass is infinite, yielding
f-Avg>°yrr J

^V —I

(101)

In contrast, the expression for fj, while formally
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Identical to Eq. (54-) > roust be evaluated along modified 
orbits in order to exhibit the effects of finite longitu­
dinal mass. The orbits may be obtained exactly for a 
sharp-edged beam, and an adequate description is provided 
by the equations of motion

Vx ' " X

IP *(' 3~v>V>''ku
fo* (102)

and
V * u. --
*■ Z,

ii-i xv + u v y* i

corresponding to

V = U. z.
and

v + v 
X M

= (103)

where

Thus, there Is a small coupling of longitudinal and 
transverse particle energy and a small shift in the 

oscillation frequency - both position dependent effects. 
Otherwise, the same high frequency approximation for the 
orbit integrals may be carried through, yielding
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The integrations necessary to obtain the perturbed
current may be carried out by similar techniques, and the
resulting expressions are evaluated up to terms of order 

>-H and £6^^ . For highly localized disturbances it is 
again possible to choose 0, discard surface currents 
and evaluate volume currents to zero^*1 order in the 
parameter (r/r ). A lengthy calculation then yields
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f.AL
X ^

and

(10$)

To this approximation the entire spatial dependence 
of the perturbed current is again contained in the factor 
P , so that substitution of Eq. (10$) into Eq. (70) yields 
the dispersion relation directly. As before, the unstable 
modes are obtained from the x and z components of Eq. (70), 
and the relevant dispersion relation is obtained from the 
determinant
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However, to achieve consistency with the previous analysis, 
Eq. (106) must be expanded and evaluated up to terms of 
order IT and^b(| . This yields after simplification

- O.
(107)

r( 'tor Cai r cAK^X 71.V:

No new unstable modes are predicted by this equation, 
but the instabilities found in the previous section are 
somewhat modified by the additional terms of Eq. (107).
The dimensionless variables of Eq. (80) are again intro-
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duced, and the unstable modes are well determined from the 
approximate dispersion relation

(108)

where

For the case

j8 * ^ - V'
cubi.

|lm zj>yt, Eq. (108) yields the solution

which shows that the maximum Instability growth rate is 
increased by the additional terms in the dispersion law. 
Similar results may be obtained for neighboring wavelengths, 
both for this case and for regimes satisfying Eq. (92).
The analysis shows that the previously obtained growth 
rates are somewhat modified but that no change appears In 
the character of the Instabilities.

Summary of the Chapter

The formal solutions obtained in the previous chapter 
are examined in detail In the low frequency, long wave­
length and the high frequency, short wavelength limits.
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In the first case the iterations in the formal solution 
are carried out, and their convergence is shown. The 
dispersion relation is also obtained and is analyzed in 
detail for the case m*=l. The analysis is carried through 
for both the reduced integral equations and the full set of 
coupled integral equations. Corrections to the macroscopic 
dispersion relation appear, and, in particular, long wave­
lengths are stabilized.

For the high frequency, short wavelength disturbances, 
it is convenient to use asymptotic methods in the evalu­
ation of the perturbed current, obtaining, for highly 
localized disturbances, expressions which lead directly to 
an algebraic dispersion relation. The fields and currents 
are resolved into three dimensional Fourier components, and 
the stability of each component is examined separately.
The dispersion relation yields, in addition to stable and 
damped oscillations, unstable modes which are similar in 
structure to the two beam electrostatic instability. The 
analysis is repeated under the assumption that the longi­
tudinal beam mass is finite but large, and corrections to 
the dispersion relation are obtained. The finiteness of 
the longitudinal mass affects the growth rates of instabil­
ities but not their general character.

- 197 -



ACKNOWLEDGMENT

It is a pleasure to acknowledge the assistance of 
E. A. Prieman during the course of the work. Special 
thanks is due to C. L. Longmire, J. Enoch, W. B. Riesen- 
feld, and D. A. Baker for discussions clarifying the 
physics and the mathematics of the problem and to D. A. 
Baker for extensive help in proofreading the manuscript.

- 198 -



REFERENCES

1. F. H. Clauser, Symposium of Plasma Dynamics (Addison- 
Wesley Publishing Company, Inc., Reading, Mass., i960). 
Bibliography, p. 28?.

2. J. D. Ramer, Bibliography on Plasma Physics and Magneto­
hydrodynamics and Their Applications to Controlled 
Thermonuclear Reactions (Engineering and Physical 
Sciences Library, University of Maryland, i960).

3. L. Landau, J. Phys. (USSR) 10, 25 (194-6).
4-. C. Backus, J. Math. Phys. 1^ 178 (i960).
5. K. M. Case, Ann. Phys. 7» 34-9 (1959) •
6. N. G. Van Kampen, Physica 21, 94-9 (1955) •
7. N. G. Van Kampen, Physica 23, 64-1 (1957).
8. I. B. Bernstein, E. A. Frieman, M. D. Kruskal and 

R. M. Kulsrud, Proc. Roy. Soc. A 244-, 17 (1958) •
9. R. U. Bussard, Thesis (Princeton University, 1961).

10. E. A. Frieman and M. Rotenberg, Revs. Modern Phys. 32,
898 (i960).

11. M. N. Rosenbluth and N. Rostocker, Paper No. 34-9»
Second United Nations International Conference on the 
Peaceful Uses of Atomic Energy, Vol. 31.

12. P. A. Sturrock, Ann. Phys. 4:* 306 (1958).
13. N. Bogoliubov, Problems of Dynamical Theory in Statis­

tical Physics, AEC-tr-3852.

- 199 "



14-. M. N. Rosenbluth and N. Rostocker, Phys. Fluids 
1 (I960).

15. I. B. Bernstein, Phys. Rev. 109, 10 (1958).
16. A simple example of such behavior has been exhibited 

by A. Lenard and reported at the Second Annual Meeting 
of the Division of Plasma Physics. Bull. Am. Phys.
Soc. Series II 6, 189 d96l) .

17* J. E. Drummond, Thesis (Stanford University, 1956).
18. E. P. Gross, Phys. Rev. 82, 232 (195D.
19. E. G. Harris, ORNL - 2728.
20. A. G. Sitenko and K. N. Stepanov, Soviet Phys.-JETP 4;*

512 (1957).
21. G. Ascoli, unpublished.
22. J. Enoch, C. L. Longmire and R. C. MJolsness, unpublished.
23. M. N. Rosenbluth, Phys. Fluids 3, 932 (I960).
24.. K. M. Watson, S. A. Bludman and M. IT. Rosenbluth, Phys. 

Fluids 3, 741 and 747 (i960).
25. R. G. Giovanelli, Mon. Not. R. Astr. Soc. 107 , 338 (194-7).
26. A. M. Adrianov, 0. A. Bazilevskaja, S. I. Braginski,

B. G. Baznev, IT. G. Kovalski, I. M. Podgorny, Yu. G. 
Prokhorov, N. V. Philippov, T. I. Filippova,
S. Khraschevski and V. A. Khrabrov, Paper No. 2301,
Second United Nations International Conference on the 
Peaceful Uses of Atomic Energy, Vol. 32.

200



27. V/. Bernstein, P. P. Chen, M. A. Heald and A. Z. Kranz,
Paper No. 358, op. cit.

28. G. N. Harding, A. N. Dellis, A. Gibson, B. Jones, D. J. 
Lees, R. VY. P. McV/hirter, S. A. Ramsden and D. Ward,
Paper No. 1520, op. cit.

29. E. M. Little, W. E. Quinn and P. L. Ribe, submitted to 
Phys. Fluids.

30. H. Dreicer, Phys. Rev. 238 (1959) and 117, 329 (I960).
31. J. G. Linhart, P. Grateau, E. R. Harrison, C. Llaisonnier,

P. Schneider and A. Schoch, International Conference
on High Energy Acceleration and Instrumentation CERN
1959, P. 139.

32. K. C. Rogers, D. Pinkelstein, L. Ferrari, D. Caulfield,
I. Mansfield and G. Brucker, op. cit., p. lil-9.

33. W. H. Bennett, Paper No. 3I4-6, Second United Nations 
International Conference on the Peaceful Uses of Atomic 
Energy, Vol. 32.

34-. G. J. Budker, CERN Symposium on High Energy Accelerators 
and Pion Physics 1956, p. 68.

35. W. H. Bennett, Phys. Rev. 98, 1584- (1955) and 4-5, 890 
(1934-) •

36. J. G. Linhart, Proc. Roy. Soc. 24-9, 318 (1959),
37. J. G. Linhart and A. Schoch, Nuclear Instruments and 

Methods Ij., 332 (1959) •

201



38. J. Enoch, Midwestern Universities Research Report MURA- 
311 (1957).

39. D. Pinkelstein and P. A. Sturrock, Plasma Physics 
(McGraw-Hill Book Company, Inc., New York, 1961)
Ch. 8, p. 22l\..

Ij.0. K. C. Christofilos. Paper No. 2l|l|.6, Second United 
Nations International Conference on the Peaceful 
Uses of Atomic Energy* Vol. 32.

IjJL. N. C. Christof ilos, private communication.
42. M. D. Kruskal and M. Schwarzchlld, Proc. Roy. Soc.

A 223, 348 (1954).
43. M. D. Kruskal and J. L. Tuck, Proc. Roy. Soc. A 245*

222 (1958).
44* D* H. Cooper and M. Raether, Report 1-100, Coordinated 

Science Laboratory, University of Illinois (1961).
45. J. L. Tuck, USAEC Document WASH-146, P* 4& (1953).
46. M. Rosenbluth, Los Alamos Report LA-2030 (1956).
47. V. D. Shafranov, J. Nuclear Energy £, 86 (1957).
48. R. J. Taylor, Proc. Phys. Soc. B 70, 1049 (1958).
49. E. Jahnke and P. Emde, Tables of Functions (Dover 

Publications, New York, 1946), p. 149*
50. Bateman Manuscript Project, A. Erdelyi, Editor,

Tables of Integral Transforms, Vol. II (McGraw-Hill 
Book Company, Inc., New York, N. Y., 1954), P* 55*

202



Hereafter this volume will be referred to in the
text as T. I. T.

51. 0. Buneman, Phys. Rev. Il5» 503 (1959).
52. J. D. Jackson, J. Nuclear Energy, pt. C, 1, 171 (i960).
53. S. A. Bludman, K. M. V/atson, and M. N. Rosenbluth,

Phys. Fluids 2* 7^7 (i960).
54-» H.P. Furth, M. Rosenbluth and J. Killeen, Finite Resistivity 

Instabilities of a Sheet Pinch, submitted to Phys. Fluids. 
55« B.A. Frieman, M.L. Goldberger, K.H. Watson, S. Weinberg 

and M.N. Rosenbluth, Phys. Fluids 5> 196(1962).

- 203 -



APPENDIX I

In 'this section an explicit evaluation is given
of the set of Green's functions g (r.r^) and their°n o'
Hankel transforms

Jn(i-r)^n(r, ro) U-i)

for use in the text of the paper. The Green's functions
satisfy the equation

[iL + J- ^__Jll-hMrr (> r)=+- S(r-r),r dr r*- Ji’nro^ r. '

the syr.imetry condition
$„(r.O = S,n<r-'r>»

and the boundary conditions
iim ro))< 00

(A-2)

(A-3)

r->o (A-4)
and

'•m ^n(r, ro) = r
r-y 00 IA-5)

for n = 0,1,2, ... and Re h>0. A straightforward construction 
of gn(r,r0) is given and Gn CA,r0 ) is then obtained by 
inspection.

The functions gn(r,r0) may be obtained from solutions 
of Bessel's equation

L.drk r dr r J -'r> (A-6)
by imposing two extra conditions on gn(r,r0). These are

,im r5n(r. O-I'm _ 0 = 0
r-v r r-y r (A-7)

A-l



and lirn -r ? r0" Um - -T & ('r'r'»)'m T"^ ^ + dt sn\ * J h-f ^ djr°n \ / U
(A-8)

The only way to satisfy both Eq. (A-6; and r,q. (A-Ij.) is to
choose yn-> C^Jn(ihr). Similarly, a simultaneous solution
of Eqs. (A-6) and (A-S) must be given by y =-C0H^(ihr).

n ^ n
This suggests that g (r,rn) should be taken to be of then
rorm AC-.q- wlC1"-.)J"(iKr) ^ ^ •

= jo; (:li*-o) Hj,^) t°r r>5 (A-9)
where D is an undetermined constant. Such a choice satisfies 
Eqs. (A-3), (A-ii.), (A-5), and (A-7) identically and satisfies 
Eq. (A-2) for t^v0. when D is chosen so that Eq. (A-8) is 
satisfied, the required Green's functions will have been 
constructed.

At this point it is useful to recall the relation
V«)-YnM|i JnW-#T> (A-10)

which is given on p. ?6 of G. II. Watson's book, Bessel 
Functions. For present purposes this relation may be restated

(A-ll)

From this it follows at once that the correct choice of D 
is and that gn(r,ro) is given for all n«»0,l,2, ...

— -for K<r.
(A-12)

4n(r>r.) ('hr‘) Jn (r<r*

- A-2



A direct calculation of Gn(^,r0) from Eq. (A-12) and 
definition (A-l) could now be given, since the integrals 
involved are all known. However, it is simpler to make 
use of the relation

^ r<r.
L-fiVh’-J (A-13)

-InMK>r) =(i-ft/4) J„(.KOH^iKr) Wr>r ,

which is given in the Bateman Manuscript Project book.
Tables of Integral Transforms (TIT), Vol. 2, p. 4.9. When 
Eqs. (A-l) and (A-12) are kept In mind, the immediate result 
of applying a Hankel transform to both sides of Eq. (A-13) is

(A-lij.;

The results of this section are summarized by Eqs. 
(A-12) and (A-llf) . These equations furnish sufficient 
information about the Green's functions for the requirements 
of the paper.
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APPENDIX II

The perturbed electric field of Case I, Chapter 3» 
will be derived here for large N . For convenience, the 
discussion is restricted to disturbances for v/hich 
h^ro^J<<l. The general form of the field is prescribed 

by Eqs. (21}-) and (29)» hut the constants must be determined 
from the boundary conditions (8) and (17). This yields 
f_(r) and \(r) directly, v/hile f^v) and fn (r) are easily 
obtained from X(r). A complete description of the field 
will be given for the region r—rQ only, since this is 
sufficient for the analysis of the dispersion law.

The derivation is facilitated by the definitions

These may be used to express the boundary conditions as
- (c-pt-a-l-) _ 0

b*(C’ R'- A" L”) - b-( C- R-- A- L-) - 0
bT(C’ S'-A-L-) = o u_l6)
(c* S’- A’M’) » (C- S'-A" L') *

- A-l}. -



and a simple reduction gives

( b"- A* =

(c? fV ~ A-*" O - o

and (A-l?)
( b-*-- b~j(c“ 5"- A- W) = b (---- -- ----

(C-R’-A-L-) - 0.

These equations may be solved by inspection yielding
a-*- — / b~ \ i \H \ b'- b+J (5^L^ - K^AN-) «l. foj

and
A- =/ b-*- \_______R___________  / 4C&-(.<*><*' • \

Vb+-b~/(5-L~— V. ^ ®°/

(A-18)

l A-19)

The expression for A- is readily evaluated without 
further approximations. The leading term is obtained 
directly from Eq. (30) and becomes

(A-20)

Small argument expansions may be used to evaluate the other 
quantities, since Jhr0|<<l and J<f r0J << Jhr0J . An excellent 

approximation to L— and I.l- is provided by

IT =

- A-5 -



and (A-21)
M

The evaluation of R and S is more intricate, 
based on the approximations

h;+apO)^ Hl,(i*)+Ap[^Hp(ix)J^i>

HpClx) at-^(p-»)/(--) ?y

and

v;hich are valid \vhen(Ap|<<l and |x|^<l. Substitution 
gives

and is

(A-22)

(A-23)

and a direct evaluation yields

s_=(w)>
(S- L-- R-M^) = (^-^I » i k]).

(A-2l|.)
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and

(S

Combining terms yields the expression
a-- ^hVi"^h#);

(A-25J

which may be rewritten as

/r- *i l,VAl^ ' u-26,

The evaluation of A+ is more difficult, and the
calculations will be given for two limiting cases only.
Case A: ILr <<1 o o

For this regime p+ becomes

I N.V,r. + 4- KVr v.
(A-27)

cf*ro<<l, and small argument expansions may be used to 
evaluate all quantities defined by Eq. (A-l5). The deri­
vation is similar to the derivation of Eq. (A-2f?) and 
yields
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(A-28)

) -i l^’-l1- /[■■'■■ '''■■'i!-'|l.!.;'-i)

and

Substitution then yields

(A-29)

or
A*- -(KiJga.j.)(Xj(,-3U.j)^

(A-30)

Equations (A-26) and (A-30) may be used to obtain the 
field variables in the form of an expansion in powers of 
the parameter {h^/N^) . Direct substitution yields for

r — ro
q(.)- - $ * * ,’V-Hrk'--i> * Cfmr)

and
\(r)= 0 *■

(A-31)

Thus to good approximation the other components of the

- a-8 -



electric field are given by

trl') (A-32)

and the new term in the dispersion relation becomes

(A-33)

Since f_(r) is unchanged from Chapter 2, the dispersion z
law is unaltered.
Case B: II r >> 1 o o .

In this case the conditions <5 r0 >> 1 and p* >> 1 
require that different techniques be used for the deter­
mination of A+. Good approximate values for L"*’ and 
are obtained from the asymptotic expansion

. <rvi e
\[z^Uor

I- (A-32)

The result is

and
tN.r„ -Z—)

(A-33)

Similarly, the expansions

( I + .-bl\
N.7

- A-9 -



and (A-34)Hp. (.hr") = -[.« ['' 4*7. * ^(N'd

are used to evaluate R+ and S+ and yield

and

_ r 1 , , i (^hiVV.- x^sil° Lsin ^ Z J L •^N,r0J

Combining terms yields the denominator

(sV- R’»a*) - -zN-^ ’

and A* becomes

(A-35)

(A-36)

(A-37)

Direct substitution gives the field variables

^i Wu»aro

and IA-38)
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X(r)- N.^ ^ ^ l"tj)

Kl (\ ^ ^^- 1 ^ —)- •
” N® \ O W\ N.’- /V N. *i/ J, (cS+rJ

^042)

The coitponent f (r) is most readily determined from 
equation

i a 
h-*' IC7\

and is given by

- tC-4^25-#1 "i^lr H)

_L/z^ca>q. A/jA. £.7t(lS + A.
N0V^ Nc-o j ^ V >

Similarly, the component fr(r) is determined from

-P„ = ~ + ■r) x ~ N® ^

and is given by

c. <fe
I . \ / I N

the

(A-39)

(A-i).0)

(A-41)

(A-ij2)



Equations (A-38) , (A-lj.0), and (A-li-2) may be used to 
evaluate the dispersion law (5). To good approximation

-f
(A-43)

so that the magnetic term of Eq. {$) is unchanged from 
Chapter 2. The additional term

(A-ijig

may be evaluated by using the identity

to obtain the approximate value

(a-45)

(a-46)
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Although this additional term is non-zero, its value may 
be shown to be negligibly small in comparison with the 
magnetic term.

ft
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APPENDIX III

The perturbed electric fields of Case II, Chapter 3,
2 I 2|will be obtained here for the regime Nq » | h j and 

Jh2r0^J<<l. The fields will be given in detail for 

the region r^r0, and the evaluation is quite similar to 
the treatment in Appendix II. General formulas will be 
derived for the coefficients A*; the fields will then be 
evaluated in two limiting cases.

It is convenient to Introduce the definitions
V±^H\ (ihr ) and. W* = (ihr) (A-l}.7)

By use of Eqs. (A-15) and (A-4-7) the boundary conditions 
may be written as

fc-V^C-V-)-(A + L^A'L-) =0

k (cr V' - c"V") -(b+A V♦ ITA~L") = o 

^ (c+ - C- W-) -ib-A'M') - 0
(A-48)

and
(c'W* + c-*r) -(/r A- M-) - /-) •

Equation (A-I4.8) may be solved for A in three steps. First, 
the equation is rewritten as the two pairs of equations

;>hC*V'-[Mr)A’LM^t>-)A-L-.]= 0

and

- A-llj. -



ZUC+W'-fa*AtM++(^+1")4 J=

and . ._,_zV,C-V-[(h-l.+)A+L++(Vi-b')A L]-0 (A-49)

Z^C'W-[(^-^+)A+ b )A Alj- /o) >

which are then reduced to the single pair of equations

and (a-50)
(l1_fXw'L"'-VM+)Ai'+('h-b-Xw-L--VA\")4" = hV'^^—

Finally, A~ is determined from Eq. (A-50) to be

ui cu
Cs

k[( k- b~) v tw~L~-v~Ai')-( u b~) vYw^r-vXj)
(u bjfb-b"Xw+L+-v wXw"L--\rAr)'
-<b+b-Xb-b^W-Lr- y-AV)('w+r-V+M-)

(A-51)

'Miojo. A b L(K-^ VYw-L^V-Mj .
^ r(b+b+Xf’-b"Xw+L+-V+-M^W-L--V-M“)'

-{h+ b-)(h- b+Xw-L+-V-M^W+L--V^

For simplicity the explicit evaluation of A“ v;ill be

- A-15 -



given for two limiting cases only
Case A: NQr << 1

For this case small argument expansions may be used 
to evaluate all Bessel functions, and the expansion

n*- i± ir Nor. K (A-52)

insures that (A-22) may be used to evaluate the Hankel 
functions. The result is

U*rmL1

fA:

Zj

(a..)-+
v--(^)0+

(A-53)

and

The needed combinations of these functions are easily 
obtained and are given by

(wt l»- vrM’) - 1

(w- L-- v*/*) -(*=£.) ('-tN-K Hi ‘"■•I) >

- A-l6 -



(A-54)

Cw-f - V-W*)=(£—)(' fiN-r‘hr- Hi M)>

(w-l-- V-M-)

and

v/here A is defined as the denominator appearing in Eq. 
(A-5>1). The quantities A* are then readily evaluated as

and IA-55)
a-=(*^.X'--£)(' ^ |(t)

'.Mien r^:r0 substitution gives for the field variables

CM- k|)^0(-^)

and
x(0-o + 0(jffr)-

(a-56)

Thus the fields and the dispersion law are unchanged from 
Chapter 2.
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Case B: H0r0» 1 and |Nor0hrJj«l
Equations (A-53) and (A-5i}-) of Case A may be used 

here, except that all quantities involving L *" and M+’ 
must be re-evaluated. The asymptotic series for the 
relevant Bessel function is used, and a fairly good approx­
imation is given by

l e
L “ vl2^Nora 

/V\+* N.l-+,

(w-L*-V-AV) = + i[hVr-’'* N.r.,,'-]J!,,lrhr-!)>

(W+L*-Vrt) - N LY^t-X1 " N^nl^r-i)’ <A-S7)

and

Equation (A-5l) may now be evaluated as

and (A-58)

Thus the only difference between Eq. (A-58) and the A of 
Case B, Appendix II, is in a"*" , which is twice as large here.
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This means that very small modifications in Eqs. (A-38)-(A-ij.6) 
give the field variables

*>)=—^ kvA-ii" Kt)

i,—5 '•AN’-Jk'.)

jrCcj'Q

and

xx-)-
f^naar. ■ \/ kvy_i_\iM!rL, N.(,—-z: *-ATc;(.n.%I TiOi-O

the transverse fields

and

(a-59)

i (-) —(-^r^ i-X ♦ t hV-vi"| ^H)

H ^ «V J;(i^r0)

VN.^JV ^ «V r

yo=-y ("“/-X1 ykv-^|fkr|)

(a-6o)
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and the electrostatic term of the disoersion law

(A-6l)

Equations (A-59) an^ (A-6l) contribute corrections to the 
dispersion law of Chapter 2, but these corrections are 
negligibly small. The present treatment indicates that 
while Hall currents affect the values of the perturbed 
fields, they do not greatly affect the dispersion lav/ for 
the disturbances.

The case IN r hr I >> 1 is also of interest, but it I o o o|
involves lengthy analysis and will not be considered here.
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APPENDIX IV

The mathematical problem involved in evaluating 
f„(r) from Eqs. (1^.6)-(ii.9) of Chapter 3 is to determine the 
constants A, A, cJ, and C from four equations which are 
linear in A, A, and C but non-linear in c£. This is done

A ,here. The first step is to express A and A in terms of <5. 
Substitution of Eq. (1^.6) into Eq. (1^8) gives

A

- j-Xw1)-*" (' **A

and (A-62)

♦ n; rfh[r(i * AA

/ ® a
+ A,

v;hich gives for A and A

A.-hV(^j.) P 0 ^ N-r.-)] ','(l N„* r> )

A-21 -



and (A-63)

A i vA--h •̂ {-T^n -N/r/ApY” N/v)]H'~ «•'•;•)

V/hen NQro «1 the fields and the dispersion law are
unchanged from Chapter 2. For this reason only the case
Nr >> 1 is treated in detail below. Other conditions on o o
parameters will be imposed in the course of the discussion
in order to obtain a solution which depends weakly on r .P
The constant A is well approximated in this range by

(A-eij.)

but the constant & must be determined from Eq. (4-9) before
f (r) can be evaluated. The conditions z

rP >>

and (A-65)
Kl1

have already been imposed on r^. Thus Eq. (4-9) may be 
evaluated as
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;

i 'fHrSi)

)J
and (A-66)

The constants C and S given by Eq. (A-66) depend 
v/eakly on Tp only when

>pV>>Nor/. (A-67)

For this case approximate values of C and <f may be found
by equating separately the terms of Eq. (A-66) which involve
log r and the terms which are independent of this expression. 3?
This procedure gives the equations

- A-23 -



and
(' z.

(a-68)

V

which have the approximate solution
6 - ^

and (A-69)

It is perhaps worth noticing that Eqs. (A-65) and (A-67) 
together imply the restriction

|v.k|<< I, (A-70)

which must be satisfied if the approximation procedure is to 
yield acceptable results.

The field fz(r) is now readily determined to be

(A-7D
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and is thus well approximated by the equation

t

9
4

Comparison with the field

(a-72)

U-7^)

of Chapter 2 shows that the main effect of Hall currents 
is to increase the effective beam radius in the argument 
of the logarithm.

- A-25 -


