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ABSTRACT

The dispersion law 1s derived for small amplltude
disturbances of the spatially non-uniform steady state
configuration of & relativistic particle beam of finite
cross section and infinite length passing through a low
temperature dense plasma. First, a macroscopic analysis
is piven in which Maxwell's equations are supplemented
by fluid equations for the beam and plasma effects are
accounted for by means of a scalar conductivity. A
more realistlic treatment of the plasma 1s then obtalned
by introducing a variable tensor conductivity and appro-
priate boundary conditlions, permitting the effects of
Hall currents, density and temperature gradients, and
metal walls to be assessed. Finally, the analysis 1is

refined by treating the beam particles by means of
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the collisionless Boltzmann equatlon while maintaining

the scalar conductivity description of the plasma. Use

of the orbit integral technique for solving the Boltzmann
cquation permits the perturbed beam current to be expressed
as an Integral over the perturbed field variables, and the
relativistic dynamics and the geometry of the configuration
greatly increase the tractabllity of the expressions,
Introduction of appropriate Hankel transforms of the fileld
variables leads to an integral form for lMaxwellts equations
and to the expression of the stability problem as a set of
three linear, coupled integral equations. A formal solution
of these equations 1s given, and the dispersion relation

is seen to appear as a solvabllity condition for the
equations. Asymptotic evaluations of the formal expressions
are given for the case of low frequency, long wavelength
disturbances and high frequency, highly localized dis-

turbances,
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Chapter 1
INTRODUCTION
Discussion of the Stability Problem

The extensive published literature on the stability of

plasma-fleld configurations 1,2

contains relatively few topics
that have been completely analyzed. The subject is more diffi-
cult, both experimentally and theoretically, than hydrodynamic
stability problems and has been less fully explored. One con-
sequence of this 1s that the major theoretical progress in
plasma stability problems has come through improved formalisms
viiich facllitate the posing of questions simple enough to be
trcated analytically, rather than through more elaborate numer-
ical analyses aimed at a complete description of perturbed flows.
The principal achievements have been to analyze the small ampli-
tude behavior of perturbations via normal mode (Laplace trans-
form) techniques 3 and complex variable théory, b-7 to find var-
iational principles suitable for the simpler problem of whether

8-12

or not a configuration 1s stable, and to use asymptotic meth-

ods, both as a means of simplifying complicated equations 11,13,14
and of extracting the approximate content of formal solutions to
equations. 3,15

One additional theoretical difficulty is that the presence

of Instebilities may alter the form of the governing equations, 26
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Howevgr, unstable modes which develop more rapidly than par-
ticle collision rates should be well described, at least in the
linear regime, by the coupled set of Maxwell's equations and
collisionless Boltzmann equations. That 1s, the particles are
described by a distribution functlon £, for each species, the
fields are described byMIi and ‘12, and the system satisfies the
eauatlons

J d
Shryvts I°VP£' 0,

aF

, )
VxE--JC%Q od 7xB - 4‘?’3*{:35,
where
frp e (Ertxp)
ar
ez o/
and
J-z% [oh

In principle, these equatlions are easy to solve. The distribution
functions are constant along particle trajectories, so initial
values suffice to determine the functions at later times, With
the funetions known, the charge density and current density may

be comuted and Maxwell's equations solved. The difficulty 1is
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that the computed fields must agree with the fields used to find

by Thus the task 1s to find non-linear, self-consistent solu-~

ar
tions of the set of equations, 1In general, not enough is known
about particle orbits to permit many solutions to be exhibited,

For stability analyses the problem is simplified by solving
the full set of equations for only the undisturbed state of the
system and using linearized equations to describe departures from
that state. The perturbed distribution functions are then ob-
tained as linear functionals of the perturbed fields, specifi-
cally as time intepgrals of the perturbed flelds which are eval-
uated along the unperturbed particle orbits, and ilaxwell's equa-
tions may be formulated as a set of linear integro-differential
equations or as a set of purely intégral equations. The solution
of lMaxwell's equations then determines the stability of the sys-
tem. Of course, lack of knowledge of particle orbits still se-
verely limits what can be done with this formalism, but, once the
unperturbed particle orbits are known, no additional orbits need
be found for the stability analysis. The major problems for the
linear stabllity theory are to find solutlons for the unperturbed
configuration which are sufficiently close to physical situatlons
of interest and, with these solutions in hand, to analyze llaxwell!s
oquations for the perturbed flelds.

At present 1t has boen possible to complete these tasks only
for infinite, uniform plasma geometries, with and without an ex-~

ternal marnetic fileld present. This work will examine a simple,
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non-uniform geometry produced by a particle beam passing
throurh a plasma. The conflguration forms a natural generall-

zation of the extensively studied 15,17-20

case of a plasma in
a uniform external magnetic fileld. The beam will be assumed to
be highly relativistlic, so that an approximate form of the rel-
ativistic equations of motlon may be used to simplify the parti-
cle dynanics, and composed of electrons, although other particle
species can be treated with nominal modifications in the formal-
ism. As noted asbove, the beam particles will be described by a
collisionless Boltzmann equation. However, the plasma -~ oclectrons,
ions, and neutrals - will be described by simple macroscopic fluld
ocouations. The problem 1is simply too qomplex when both the plasma
and the beam are treated mlcroscopically. loreover, some of the
most interesting modes occur at frequencies which are much larger
than the collision rates for beam particles but much smaller than
plasma collision rates. 7These modes are driven by plasma collis-
lons and cannot be described by collisionless plasma equations.
The equilibrium configuration is assumed to have symmetry
and be invariant to translations in the z direction, the direction
of beam motion. The plasma 1s taken to have an arbltrary degree
of ionization but to be sufficliently dense to neutralize the beam
without appreciable disturbance to 1ts homogeneity. The beam par-

ticles are assumed to satisfy the approximate relativistic equa-

tions of motion
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d I
¥ (e tyrB),
and

v, - -2a(ErtxnB)_

vhere J - (I- u.’/c,")-&

and u is the averare beam veloclty. During most of the work, it
will be assumed that the z velocity of the beam particles is con-
stant, and it is this approximation which permits a simple des-
cristion of the particle orbits.

A substantial body of this work is devoted to a purely
macroscopic analysis of low frequency, long wavelength distur-
bances in which fluld equations rather than Boltzmann's equation
aro used to describe the beam particles. This provides an appro-
priate and simple level of description for these modes, since
they are essentlially macroscopic in nature. It also provides a
limiting case for the microscopic enalysis. Filnally, 1t provides
a tractable model for the assessment of tensor effects in the
plasma conductivity. These are shown to be small, justifying to
some degree the use of a scalar plasma conductivity throughout
the microscopic analysis. However, 1t is desired to treat a wide
rangs of frequencies, so an arbltrary ratlo of conductlon to polar-
izetion curront 1s permitted and a model 1is glven relating this
ratlo to plasma conditlons.

In the unperturbed confipguration, the self-magnetic fileld
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of the beam constrains the beam particles to move in betatron
orblts, and finlte density changes occur over one orbit diameter,
In consequence, particle motlon must be treated very carefully
during the analysis of disturbances. This analysls, culminating
in a2 formal solution of Maxwell's equations and a formal expres-
sion for the dismersion relation, constitutes the principal re-
sult of this work. Unfortunately, it has not been posslible to
extract the explicit content of these expressions for all modes
of disturbance. Asymptotlc methods are therefore used to dis-
cuss limiting cases.

For low frequency, long wavelength disturbances, the equa-
tions yield the macroscoplc results plus small corrcctlon terms.
The modes are driven by the finite plasma conductlvity and have
the characteristic behavior «/~ »n, where 7 is the plasma resis-
tivity, of the non-localized, finite conductivity instablllitles
found by Furth, Rosenbluth, and Killeen. 5h For high frequency,
highly localized disturbances, essentlally electrostatic instabil-
ities are found. However, the self-consistent treatment of par-
ticle orbits yields corrections to analyses treating the beam

21-2},55 In particular, certain

motion as straight line orbilts.
low frequency instabilities predicted by Watson, Bludman, and
Rosenbluth 24 are showvn not to occur, and a more stringent con-
dition for the validity of the analysis 1is found. Not as much
information on the relation between WKB solutions for highly lo-

calized disturbances and the exact solutions has been found here
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as in the work of Frieman, Goldberger, Watson, Vielnberg, and
Rosenbluth 55 on purely straight line orbits., The extension of
their analysis to the present self-consistent treatment of par-
ticle orbits still forms a highly worthwhile problem,

Survey of Relativistic Streaming Phenomena

Under normal circumstances plasmas occurring in nature have
particle distribution functions which are approximately Maxwell-
ian in form. This form is maintained by collisional processes and
has a natural generalization when relativistic thermal energles
are involved. In particular, anisotroples in the distribution of
particle velocities are inhibited by collisions. The present work
deals with the streaming of relativistic electrons through a plas-
ma of moderate temperature - a highly anisotropic configuration.
The study of this configuration is suggested by a review of plase-
ma stability theory, but the relation of this problem to natural
phenomena remains to be discussed., For this purpose a brief des-
cription will be given of several situations in vhich relativistic
streaming of particles does occur and in which the persistence or
stabllity of the streaming motion is of importance to the observed
phenomena.,

When relativistic particle streaming occurs in nature, some
mechanism is required to accelerate the particles. Theoretical
attempts to account for the observed distribution of cosmic ray

particles have put forward a number of mechanisms in which the
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acceleration of particles occurs as a result of fleld configu-
rations set up by large scale events. FFor an observer in general
position, any local anisotropies produced by such acceleration
mechanisms average out, but the earth is not in general position.
It records substantial Increases in cosmic ray intensity during
periods of solar activity. The theory of discharges at neutral
25

voints seems able to explain the connectlon between solar
flares and production of cosmic rays but provides too many par-
ticles if they remain localized in a beam. Presumably, the par-
ticles arc scattered at the solar surface via instabilitles or in
internlanetary space by turbulent magnetic fields.

The process of electron "runaway" seems to be of comnon

occurrence in 100 ev - 1 Kev plasmmtsaé'29

and 1s typically a
by-product of time dependent magnetic fields. The induced elec-
tric field accelerates electrons along B lines, while Coulomb
collisions tend to randomize this directed enerpsy. An analysils 30
predicts that some electrons willl diffuse to a region of veloclty
space where Coulomb encounters are no longer sipgnificant and then
will "run away". ‘hen the electric field stfength exceeds a cor-
tain "eritical" value, the runaway occurs at once and is called
"strong runaway". The detection of 100 Kev to 1 Mev x rays indi-
cates that electrons can reach weskly relatlivistic energles before
escaping from the experimental chamber., The runaway clectrons may

be alded in thelr eccape by instabillities. Unpublished calcula-

tions suggest that veloclty space instabilities should be produced
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by the anisotroplec electron distribution.

The runaway process can also bo used deliberately, and
can form the basis of the deslign of a plasma betatron. 31,32
Such a machine has been run by the CERN group 31 but apparently
has not yet operated in the strong runaway regime necessary for
its efficient use as .a betatron. These and other high-current
vlasma accelerator concepts 33’3h deal with neutralized, self-
constricted beams of relativistic electrons and lead naturally
to studies of the formation, equilibrium properties, and stability
of such confipurations. 34-39 Definitive theoretlical analyses
have not been given, but instabilities appear likely to occur
while the confipguration 1s being formed, as well as afterward In
the steacdy state. Although the vpresent work 1s concerned with an
clectron beam passing through a plasma and not with a beam neu-
tralized by ions only, certain localizea high-frequency distur-
bances which are analyzed here also describe behavior of the
latter configuration and supplement previous stability analy-
ses. 31,306,39

The Astron concept of a thermonuclear reactor Lo is another
conflguration involving the streaming of relativistic electrons.
Hore the electrons are injected into a magnetic mirror geometry,
foraing a current sheet or E-layer which glves rise to a system
of clesed B lines in the experimental chamber. A cold pas is then
brought into the chamber. It 1is then heated to thermonuclear tem-

peratures by collisions with the E-layer and confined by the map-
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netic fleld. Experiments are being designed to test the concept
but have not been conpleted. A considerable amount of theoreti-
cal worlk on the steady state configuration and its stability pro-
perties has been done, however. Ths work encounters severe math-
ematical problems but simnliflied treatments have gilven encour-
aging results.

An experiment which aoproximates the geometry of the present
work has becn proposed for the Astron electron accelerator. hl
The electron beam would be extracted from the accelerator, focused
through sclf-magnetic forces, and passed through a large experi-
mental chanber filled with plasma, If an approximately steady
state confipuration could be attalned in the chamber, its stabil-
ity pronerties would be observed. The experiment should facili-
tate comparison of observed and calculated iInstabllity growth
rates and give observations on the non-linear behavior of distur-
bances which are inaccessible to theory. It is to be expected that
thoe simplest models of vlasma and beam dynamics supplemented by
boundary conditions should suffice for the calculation of growth
rates of many modes of disturbance from the steady state, since
this result 1s found in the present work for the case of an Infln-
ite plasma.

In general, a theoretical analysis of the stabllity of rela-
tivistic streaming phenomena occurring in nature is too difficult
to cerry out in detail. The present work which analyzes distur-

bances from a steady state contalns many features of the proposed
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Astron accelerator experiment, yet it considers an 1dealized
goonetry and can give no description of the experimentally impor-
tant processes of the self-constriction of the beam and the entry
of the beam into the plasma. Thus this work cannot aim at giv-
ing a complete description of any experiment. Its utility liles
in its contribution to plasma stabllity theory of a model which
can be rather fully worked out and which permits the evaluation
of the effects of individual particle trajectories on a wide

class of modes of disturbance.
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Chapter 2
LOW FREQUENCY BEAM INSTABILITIES
Plasma Conductivity Law

The formulation of the present stability problem
as an explicit set of equations for the perturbed field
components requires that the perturbed beam current and
the plasma current be expressed in terms of the perturbed
fields and steady state parameters, The object of this
section 1s to derive such expressions for the plasma
current.

The derivation is based on a simple model of the
plasma dynamics and is carried out in the rest frame of
the steady state plasma. This frame, which is also the
laboratory frame of reference, 1s used throughout the
stability analysis. The plasma is composed of electrons
with mass m, singly charged ions with mass M, and neutral
particles with mass Mg. Gradlents in the density of these
speclies are required to maintain electrical neutrality in
the steady state, but are ignored in the present discussion.
This approximation restricts the admissible ranges of
steady state particle densities. The neutral.particle

density N may be of arbitrary magnitude, but the electron

or lon density R must be much greater than the beam density



Perturbed motlons of the plasma specles are des-
cribed by means of linearized, pressureless hydrodynamie
equations in which momentum transfer between distinct
species 18 accounted for by phenomenological collision
terms. Flexlibllity 1s given to the model by three
arbitrary parameters which permit arbitrary collision
frequencies between particles of distinct frequencies.
"hen all magnetic forces are lgnored, the model glves
a complex scalar conductivity as the ratio of the plasma
current to the perturbed electric fleld.

All time dependences are taken to be of the form
olwt ang perturbed quantities are denoted by

Vo \electron velocity) jé (neutral velocity)

vy (ion velocity) E (electric field).

All magnetic forces are neglected and the linearized

momentum transfer equations become
Lwﬂmx.‘—e'ﬁg—u(x. g) A(v -V
(1)
WMy = eRE -v(¥;- ¥¢) "/“.‘_’.'"!c.)

WMy = oc(ve =¥ o)+ v (¥ V),
vhere o-,/o , and 4/ are talten to be constants characteristic

of the equilibrium plasma and are proportional to the
electron-neutral, electron-ion, and lon-neutral collision

frequencles,
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It is useful to introduce the definitions
Fwo+8 +ilwnim
G =Y+8 + loh M (2)
Hmo ¢V + LwNMJ,
Then Eq. (1) is equivalent to

Hx’ - aVe t vy,
FH!‘;ﬁHx‘-“Hzg-GRHE (3)
-ﬁHz“.G.Hxl = VHX’#‘KHE,

or (FH-d’)}.’a‘wH"“’l)Xa""ﬁE
~(BHsar)ye+ (GH-7VYy,= eAE. (&
Equation (l) may be solved for Yo and vy, giving
vV, = enk FH-BH-d(«+7) ]
MY =LFGH-(«"G+B"H+7*F+2a87)] 5
]
v =_¢F‘E[G’H",6H-/(d+V)
@ a FG_H_(«LG..‘.ﬁvH*'/‘F'.'Z«‘/) *

The plasma current density

4= () (v Ye) (6)

may be obtained by substitution from Eq. (5), giving

= (T \[H(F+G-28)~(w+v)? ]
en_
,! (C— )[FGH-(WG’*A’H'/‘F* ldﬂﬁ-lg' (7)
The conductivity law
j. =<k (8)
may be combined with Eqs. (2) and (7) to yield
o'-[".?] (o{f,/)(\'-\[m+M]*Nh@+wﬁ[m*M]NM! 'I
Le (oB+ v+ Xi[m+ M] + NM, —w rimh MNM, . (9)

+u(ﬁmam[czw]oimNM![pnq+ﬁMNr1,[d¢])
Equation (9) 4s valid for any non-negative values of o, 8 ,

¥", n, H, M, and Ing, but for later use it is convenient
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to give several limiting values of this expression which
are simpler in form,
case I: of=~B8=v= 0 (collisionless plasma)
Eq. (9) becomes
o= (E2)( =) & (10)
Case II: o=yeNw0 (fully ionized plasma)

Eq. (9) becomes

oo (Y25 b o)

where (m+M)
v Emm A

In this case the phase of o 1s approximately O when
MWD w and 1s approximately "(1/2.) when W)V ,
Case III: y/—>eo {(neutrals move with ions)

Eq. (9) becomes

a.(e:i)(ﬁ%_'_ (12)
mo F +N lw+V
where -
g (LM (o).
am(nM+NM)
Here apgain the phase of ¢ is approximately O when V) w

and is approximately —(1/2.) when W)V .
For any positive values of the parameters o, 4, and v
Eq. (9) glves Reo>20 and 1Ime=< 0, or
—(7/z)=phase of o= 0. (13)
Hence the plasma 1s resistive and inductive in general,
The effect of the steady state magnetic fleld, -E-;o’ on

the conductivity tensor will be investigated when ﬂ))lwl
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in Case III. The treatment will be based on the facts
that the ions and neutrals are approximately motionless

end that |w| 1s small. Thus the current is given by
en

b= Yoo (1)
the conductlvity is glven by
o= 'gn'\—c?')dfa’ (15)
and the equations of motlon become
0=~ (eA)[E +(Ye/c) X B )~ («+A) Y- (16)
Combination of these equations gives
i= o-[g-(}/eﬁ)x&.], (17)

which may be solved for j. This is done in cylindrical

coordinates for which

8, =(0, B,(n, 0). (18)
The solution of Eq. (17) for the components of j gives for
this case
", = o'(Er'.' E\
3 0 rpee?)
. (19)
}. = o'EeA

= d(Et-/"Er)\
‘t. - (l"‘/o";
where

- =[db_(r)/cﬁ] .
The description of the plasma current given by Eqs. (9),
(10), (11), (12), and (19) is sufficient for the present
stabllity problem. Attention will now be directed to the

beam dynamics.
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Macroscoplc Beam Equations

A macroscopic description of the beam dynamics is
used here and in Chapter 3 to study the m =1 disturbances
of low frequency and long wavelength. Thls comparatively
simple analysis discusses the instabllity mechanism of such
disturbances and the effect of various plasma conditions on
growth rates. The restriction to m=1 is made solely for
simplicity; other m values may be treated by similar means,
In contrast, the restriction to low frequencies and long
wavelengths 1s essential to the macroscopic treatment.
Orbit effects are important for other types of disturbances
and are best treated by a collisionless Boltzmann equation,

The model used here 1s one in which the beam 1s taken
to be a perfect, lncompressible fluld subject to electro-
magnetic body forces, while plasma effects are accounted
for by a scalar conductivity. Explicit low frequency
approximations are made in liaxwell!s equations. The model
1s used to derive the dispersion law for the disturbances
and to obtain a detalled description of the perturbed
configuration. The dispersion law wlll also be derived
by recthods which do not depend on a specific beam model
but which pgive comparatively little information about the
perturbed configuration.

In this section general field equations and jump
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conditions will be derived for the field variables. A
particular solution will be adopted as the steady state
solution, and the equations wlll be linearized about the
steady state., All equations will be evaluated in c¢ylindrical
coordinates unless otherwise noted, and Gaussian units will
be used throughout. The several sets of fleld variables
will be distinguished as follows: general field variables
wlll have primes as superscripts, and steady state variables
wlll have zeros as subscripts. The variables giving the
devliations from steady state values will have no labels.

It 1s convenlent to denote the field variables by

E’ =electric field

L}
4

B° =mapgnetic field

3

Y =plasma current density

—
]

i’p =beam current density
.I_/:’ = surface current

B’ =beam momentum

3_/ = beam velocilty

o’ =surface normal

/ = beam pressure

o]

‘ =beam particle density.

o]

Tho beam is assumed to have a sharp surface so that n”

and E’ are well defined quantities., All steady state current
comes from the macroscoplic velocity of the beam. Surface
currents appear in the perturbed equations because of the

- 18 =~



small amplitude motion of the beam surface,

The relativistic velocity of the beam causes only
minor changes in the form of the hydrodynamic equations,
A covariant formalism 1s not needed and 1is not used. The
usual vector equations need only be supplemented by the
relativistic rule connecting momentum and velocity. The
charge and rest mass of the electron will be denoted by e

and m respectively. The incompressibility condition becomes
NADAR (20)

wnile the momentum equation becomes

W e p e -opr ) 8-eE (21)
where
d [ ’,
dt ('5{*! V) (22)
and
r_ > 4 ’ -"' /
v'ac[m'-*(P'P)] P’ (23)

It should be emphasized that these equations contain
conditions not likely to be met in practice. Electron-
electron collisions will not be sufficiently numerous to
keep the pressure tensor in scalar form, and no forces will
constrain the beam motion to be strictly incompressible,

In fact, the condition of incompressibility depends on the
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instantaneous transmission of forces and cannot occur in a
basic theory of relativistic fluids. The adequacy of these
equations 1s shovmn by the later microscopic analysis, which
1s free from these objections.

Charge neutrality will be assumed in Maxwell's equations
and displacement currents will be ignored. The equations

become

v-E=0 v-8=0
(24)
N ./
V"E"'t%{" g’ vxg‘-o‘ﬂ"i)'- 41‘{-

Both approximations should be valid when the frequencies
involved are much smaller than the plasma frequency. The
plasma will always be much denser than the beam so that the
rlasma electrons can maintain charge neutrallty without
appreciably changing particle densities.

To complete the equations it 1s necessary to give the
relations between particle currents and other field quan-
tities. The plasma 1s taken to have uniform density and
temperature. llagnetic plasma forces will be ignored. Thus
the plasma current is given by

(W, = <E, (25)
vhere o 13 a constant whose value depends on plasma

parameters., The beam current 1is glven by
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!'3_(5_:—')1/’ 26)

and the surface current is related to the perturbed veloclty
at the beam surface. However, it 1s most convenient to

give this relation after the linearized equations have been
derived.

At the beam surface the fileld variables undergo finite
discontinuities which are constrained by jump condlitions.
The jump conditlions are obtained as in standard treatments
of hydromagnetic equations 42, 43 by integrating the macro-
scopic equations across the surface. Finite contributions
to the integrals come only from the normal component of the
gradient operator. In particular, integrals of field
variables and their hydrodynamic time derivatives contribute
nothing., This implies that relativistic velocities will not
alter the jump conditions. It is convenient to label field
variables which are evaluated just outside and just inside
the surface by the subscripts "out" and "in" and to denote
thelr difference by a bracket. For example, the jump in the
magnetic field is denoted by Qrout'—glin' [QT. The jump

conditions become
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(27)
nx[B]= “«7TK
and
P+ o Kx (Bout B,) =0
A final surface condition 1s given by the equation b3
4 o= nx[wx(vy')- 0] (28)

for the time development of the surface normal,

The steady state configuration is described by an
exact solution of the macrosconlc equations in which the
beam is taken to be an infinite circular cylinder of radius
Ty which has a uniform density n, and a velocity ux~c in
the z direction. A self-magnetic force acts on the beam
and, for steady state conditions, 1s balanced by a radial

pressure gradient. For ré-ro the solutlion is given by
E.=0
B, =27 r(a 10)

.

(i},,= 0



and

where

and

é.gj.(o, 0, 1)
K,=0

ans

p. =mvw(0,0,1)

Y. =‘L(°!°" ‘) (29)
:‘.og('! 0'0)

Po=7j (=)

no - l'l..,

b= -(en.u./c,)

v - 1= (v, c_v)] ’5.. (30)

Vhen r > r, the solutlon is even simpler. The only non-zero

field variable is given by

deviations of field varlables from steady state values,
the perturbed velocity v willl be small, it 1s useful to express

the perturbed momentum p in terms of V.

8, = (a0, 1, 0. (31)

The macroscopic equations must be linearlzed in the ‘

Sufficlent accuracy

is given by a first order expansion of the exact relations

and

p=mli-(wre)) " u-p.
(32)
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The bracket 1ls evaluated as
[1- (wy/ @))% = (7 o (w0 /) (33)
and P is given by

p=md (v vy 0T (314)

It is also convenlent to replace the linearized Eq. (26)

by the condition
P =0 (35)

That 1s, beam volume currents are taken to be much smaller
than the surface current. This approximation will be shown
to be valid for long wavelengths., The precise criterion for
its validity is that the wavelengths must be mich longer than
the beam radius. The macroscopic nature of the analysis
has already required that the wavelengths must be much
longer than the betatron length, and for most cases this
restriction is stronger.

The remainder of the linearization 1s straightforward.

Maxwell's equatlions becomne

UxE=-L2 B VxB -470E =0 (36)
= © ot - -

The beam normal 1s constrained by
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& o= nx[nx(vy)n],

(37)
and the hydrodynamlc equations become
vy = 0
d .
m»{-&-v'—g;po-(i.xg)r- enE,
(38)
d 3 , -
w givy = -+ 35 pe(px B),-on.E,
and . 5
m% d.tvi- 3; P—eﬂ.E 9
where
4 _
L(f-v%).
Similarly, the jump conditions are glven by
n-[E]-n.-[B]=0
n,x[§]= 0
(39

l’oin'ﬁ*xin. 20 =0

nox(B]= #7K

and
swp N8 TKXB, =0

The constraint on the perturbed surface current K
vill now be derived. It willl be useful to express the

constraint in terms of 8, the local surface displacement
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vector. The form of Eqs. (36)-(39) insures that the field
variables may be taken to be complex valued functions whose
z,8 , and t dependences are contained in the factor
Z = exp [t v hzse]. (40)

Tither k or « may be chosen arbitrarily, and the other
quantity will be fixed by the disversion law. As Eq. (40)
indicates, only m=1 disturbances will be analyzed. Physical
variables are obtained from the real part of the complex
field variables.

Since surface currents are due to the perturbed motion

of the beam, the vector Alg_has the form
K-".n,)}(b,o,l), . “-l-l)

and the corresponding value of & will be deduced. The

physical variable Re § is given by

Re K_ = e-lm[wt + kl:]).. a cos (9+ Refwt okl])

(42)
_Im[wtlsz.],.a’ o5 Re[dhkz. s B

—sin Refwt+ kz] sin B

By comparison, displacements of amplitude a in the x

and y directions would give
Re K, = o 2% 6

and o \g3)
Re Kr. =J' a sin 9

respectively. Thus 1n rectangular coordinates Re & is
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given by
Rea = a.e_-lmlwt "“-](us Refwt + kz,],-s&n Re [wt +k:.] , 0)

(L)
and & by i[wtok!-]( s
&Tee b, 0) (45)
In cylindrical coordinates Eq. (45) becomes
g=ay(1i,0), (46)
since the relevant unit vectors satisfy
[2+i4]=e®[#4:0]. (W7

The beam surface undergoes a helical displacement a which
leaves its cross-section invariant. For real k the dis-
placement travels in the z direction and has a time dependent
amplitude.

The beam must move with 1ts surface, giving the

cons tr’aint ] 8
v E amm Qs o ( L" )
d—t had

“in
Eqs. (36)-139), (41), (4b), and (48) provide a complete
macroscoplec description of the perturbed beam motion.

They will be analyzed in subsequent sections.
The Solution of Maxwell'!s Equations

Long wavelength solutions of the form (40) will be ob-
tained here for Maxwell's equations and the corresponding Jump

conditions. It is convenient to incorporate the surface

current (41) 1into the curl equations, obtaining
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w0 -

(i) b= vxE

and (49)
oxp-#7cE = /qj_a.)#tf(r—-r.)(o, 01).

These equations mey be combined to gilve

v X (V*E)’(ggz)ﬁ"(%y“hcxo' %) (50)

\lhen Eq. {50) 1is expressed in terms of the auxiliary vector
£(r) defined by

E=pi(), (51)
it becomes & set of ordinary differential equations., Its
z component 1s

j‘-‘r-,- +:—%-—:_-;-h" -Fz

+ik [":-' %’r "Fr (")""S'F‘Fe]

= - Mcwi ")J r—r),
e ( )(52)

where the parameter h is defined by
h*-(ﬂm«)
(4

d .
o Re h)» O: 153)

For long wavelengths (small k) Eq. (52) becomes
- > - Cwh B ) | -r).
e+ &R0 (hsz) L 86-0).

Examination of the components of Eq. (50) shows that

this approximation is valid for wavelengths much longer
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than the beam radius Ty Hence no new restriction on

wavelengths 1s imposed by the transition from Eq. (52) to

Eq. (54).
The set of equations
2 kd * ]
Lld kg (k)= o), (55)

where n=0, 1, 2, ..., are treated in detall in Appendix I,

This information may be used to determine fz(r), since

() =( 2Zhn) g (). (56)

For later use it suffices to give fz(r) in the region

:rérb occupied by the unperturbed plasma. For thils region

Eq. (A-12) of Appendix I gives

%, (v, v) = = (int/2) Hi (the )T, (ih) (57)
and Eq. (56) gives
£ = 7% (a7 wj o f)H(he) T, (i), (58)

The same small k approximatlon gives for the r and §
components of Eq. (50)
Y+ &k O-££ ()] W)= 0
and (59)
-a;{_‘; % "’:9 (P)‘é—fr(r)] + hvﬁ (r) = 0,
The only admissible solution of these equations 1is
£()=0

and (60)
f,(r) =0
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for all r,
The perturbed electromagnetic fields are given in
terms of fz(r) by

E=y(oo, £())

and (61)
8- () (- L5001 £5.00,0).

More explicitly, for r=r, the electromagnetic fields are

given by
E =(.Z’_c_“’_"°—)(.11&a.)ﬂ: ahr.))é(0.0.'J"(\h')) (62)
and

Bg -, (zﬂjoa.) H:(thro))f(--‘,:-'.l: (thr),%';a:("h')a 0), (63)

while the surface current is given by
L(=,'_a.)#(o,o,|).

This completes the derivation of the perturbed electro-

(6l)

magnetlic fields.
Solution of the Hydrodynamic Equations

This section continues the analysis of low frequency,
long wavelength disturbances. Approximate solutions of the
hydrodynamic equations are obtained here. The r dependence
of each field variable 1s denoted by the symbol for the
variable itself, while the z, #, and t dependences are con-
tained in the factor)}. For example, v =}&' v(r). Since
the currents and the electromagnetic flelds are known, the

hydrodynamic equations contain only Y(r) end p(r) as
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varliables,

The electromagnetic body forces are given by

IRMC AR EZIOR2IEN)
and (65)

"e"-E = —(en.)%(o, 0, {_ (r)),

where f,(r) is determined by Eq. (58). Thus the momentum

equations become |
L(w rkw) namv v (r)~ - %P (r)-#(_";_j_:&)% .Fz(..)’

L(w«ku)n.m»./v.(r)=_.§_P(r)+(-‘;—§=-)'.).ér. ﬁz(r)’ (66)

and
L(w+ku.) n.m»./Jv!(r) = -Lkp(r)- (en)F, (). 67)
Tor these equations the inequalitiles
'“"Z | << w
and (68)

ke | < <
define the low frequency, long wavelength region. 1In
this region the velocity v,(r) is much smaller than the
transverse velocity and its precise behavior is not
important, It 1s therefore permissible to replace Eq. (67)

by the more convenient equation

- 31 -



vk mmagi ()= - ikp (Do(2 () L9, (69)
which also gives small vz(r).

Egs. (66) and (69) become in vector notation

L(au+ku.)n.m )./x. = —V}ép(')‘*V(%'—},))f‘r,_(') . (70)

This equation may be vwritten more simply as
=9} B(+) (72)

where the auxiliary variable ¢(r) is defined by
-1 P
¢(r) = [h‘mw{(w+ku.)] [LP (v) +(z,—‘}‘) L,_(r)] . (72)

Eq. (72) relates the functions g(r) and p(r), but either
one may be chosen arbitrarily. No additional constraint

1s provided by Eq. (71), which is satisfied for all g#(r).
Much of this arbitrariness is removed by the incompressi-

bility condition

v" (\' = o.

}; # (73)

This equation has two solutlons, but only one of thenm, 4
#- AJ-‘ (I‘-kf y (7L|_)

satisfies the necessary regularity conditions at r=0,

Since hcrol<<1, an adequate approximation to Eq. (7l) is
given by

#(r)=Cr, (75)
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and y 1s given adequately by
y=cy(hi o)

The constant ﬁ may be determined from the boundary

(76)

conditions (46) and (48). Equation (48) glves

e b i, O)=i(wrku)ap(10), (77)

or
¢ ==\.((J +ku.) .
(78)
The veloclty fleld takes the simple form
x = l(wﬁ ku,) df‘#(l, L-, 0)
d (79)
=E£fa

corresponding to a rigid helical displacement of the entire

beam, and the pressure is given by

R T S .

Thus the hydrodynamic variables and the electromagnetic
fields have been obtained without using the full set of
linearized equations. The remaining equations furnish
constraints which must be examlned for consistency.

Equation (37) for‘a may be written as
orku)n = (0,4 ¥, (D= v, ()-iky (1)), (81)

while the remaining two jump conditlons become
u.n?_(r.)‘t v,(r‘,)- o (82)
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and
p(r,) - a,(.‘wft':r.) = 0.
(83)
These equations complete the set of linearized macroscoplc

equations. Eq. (81) gilves
kvr(r)
n = -—[-(‘u—"-—m—]%(o, O, ‘)’

so that Eq. (82) becomes

-[zf‘t;] v(r)rwlr)=o. (85)

This equation 1s consistent only if
lwl((lku.l,

(8y)

(86)
And provides & more severe restriction than the earlier

condition

o <
(87)

Thus Eq. (86) will be used to define the low frequency
reglion,
Eq. (83) glves the dispersion law for the disturbances,

The equatlion takes the form
a % [nom A4 (wr ku.)’r, + (.11}:';) ur H:(& hr;)J; Lh;)} o,

-w%(d’}:"") (88)
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which may be rewritten as
(n;vr r.") mY, (w+ ku.)y

= (.1.7;-"'&;.*.-.")0— ir H:(Lhy.) Ju("'h'ﬂ]- (89)

Eq. (89) is the dispersion relation. It may be simpli-
fled to

(weku)™= w.'[l— i H, ('1}"’.) J, (ih'.)] )

(90)
where the betatron frequency wjp 1s defined by
y (27e nu”
Wg = (——7‘—m 7T ) (91)

It is useful to compare the various low frequency,
long wavelength restrictions that have been made during
the analysis. The use of a macroscopic analysis requires
that each beam particle should be influenced by quasl-static
electromagnetic filelds durlng the course of one betatron
oscillation, Since the beam has a large macroscopic
velocity, this requirement is most conveniently expressed

as
‘w* ku—\ << wb'

(92)
The approximation of charge neutrality impllies the two

restrictions
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and wp < < o (93)

where «wp is the plasma frequency, while the hydrodynamic

equatlons require that

w|<<lkul.

|| <<kl (9l4)

Finally, the long wavelength approximation may be stated as
[kr, | << L. (95)

Equations (92)-(95) are not independent; they are equivalent
to the lnequalities
‘ku.'((wa,
fw < <lkul,

Ik )<<l
Under most circumstances the third lnequality of Eq. (96)

(96)

and

1s not needed.

It has been assumed that the perturbed beam current
i1s primarily surface current. The consistency of this
assumption will now be shown. The magnitude of the surface

current flow 1is given roughly by

IL=(arir)a.
=(37R) (97)
Similarly, the volume current flow is gilven by
I =7r7 |8V |,
vETR ' > l (98)
Equations (79) and (96) show that
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giving

I |k (#'.r‘ a.
velke | r) 200,

Thus the flow of volume current is much smaller than the
flow of surface current.

For most disturbances

| i Wi (i) 7, ()| = s (101)

which implies that the rate of change of momentum is much
smaller than the pressure gradient. It 1s then reasonable
to ask whether the dispersion law (89) is due to the arti-
ficial form chosen for the pressure tensor. This question

is dealt with in the next section.
A Second Derivation of the Dispersion Law

Here Eq. (89) will be derived from the assumption
that the primary motion of the beam is a rigid helical (m=1)
displacement and that the pressure tensor satisfies a minor
restriction. Secondary eddying motions of the beam are
not excluded, but it is assumed that these motlons account
for a small fraction of the momentum flow. Under these
circumstances the beam volume currents may be neglected
In comparison with surface currents, and Egs. (62) and
(63) for the electromagnetic fields are valid. The dis-
persion relation 1s obtalned by integrating the a com-

ponent of the momentum equation over a beam cross-section,
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The integrand 1s given by the scalar product of the momen-

tum equation and “ef', the complex conjugate of a. As before,

field variables are taken to be complex-valued functions

whose z, 8, and t dependences are contained in the factor
To good approximation the hydrodynamic equations

become
~agef{ws @ == v- P'“‘E**f"é*ixg" (102)

where P 1s a general pressure tensor, and the currents

and electromagnetic fields are given by previous equations.
Equation (102) includes the effects of surface currents and
makes use of the approximation of rigid beam motion

v= 1(w+ku.)g:, (103)

here @ is glven by Eq. (46). The dispersion relation

1s then derived from the expression

—aznmy{weku)f “rdr (5— -2
, . (104)
= 27 [ “rdr(v-P)-2

v, . . *

van,[ rdr (}."p..*i XB-}-% s
in which the integrals are all evaluated from r=0 to
I"=z~0+ to include surface effects,

The pressure term of Eq. (104) will be examined

first. The components of (V.P) are given by



(v- P),= }‘(4‘ 4P, (N + 4P o ()-+Rgl)+ e P'_l(.-))
and (105)

(0-0) = (4 415 (N By ()44 Bglr) +ik R )-
Thus the pressure term becomes

--fo[r.rd,r(v~ P)':;‘

——ama exp-(.um[wt»,kz])f."d,g,_,(qr(.)_;ao(r)) (106)

cave esp-famfwtske))Lrdr k(P ()- Py ().

The total derivative term vanishes, since there 1s no fluld

at r=r°+, and Eq. (106) becomes
2o rer(v-F) &= 0, (107)

provided that

[ 4

[ rar(P,, (r)-‘;P"_(v))= 0. (108)

The weak restriction on the pressure tensor given by Eq.
(108) is assumed to hold for all electron beams. This

assumption should be valid for highly relativistic beans,
silnce cross terms in the pressure tensor are due to var-

lations in the particle velocities, and a large longitudi-

-39-



nal mass inhibits variations in the z velocity. For non-
relativistic beams the assumption may be less satlsfactory.
A similar analyslis of the pressure tensor has been glven
by Rosenbluth, 23 by means of a volume integration over
one wavelength of the beam.
Since the pressure term vanishes, substitution into
Eq. (104) gives
- ;,,f..;r-(.z Im[wt + kz])(n.ﬂ‘ wm »{Xa.w ku.) >
“ .
= 27a’ c;p-(ann[wt - kl])-{ e ["cz(')] (109)
-2ra” exp-(J Imfwt + kzl)[&fj." r:] :
Simplification ylelds
(e v yme (w+ )™

Yy . ) . 110
=(Jﬂ,}-. v, Xl— %4 H.(ihg)l"(thr.))’ ( )

which 1s just Eq. (89). Thus the assumption that the
beam motion 1is essentially rigid and the restriction (108)
on the form of the pressure tensor suffice to derive the

dispersion law,
Analysis of the Dispersion Relation

It is convenient to make use of the definitilons

ls"':(:ff’t"i.“i), Re h>0
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(111)

-2

and
n ()
in re~expressing the dlspersion relation as
(= 1= 7 H} (ihe) T, (ihe). (112)

A complete numerlcal analysis of Eq. (112) would be
straightforward but lengthy. Instead, a number of lim-
iting cases will be treated by analytlic means,

The conductivity ¢ 1s given 1n general by Eq. (9),
but this equation is more complicated than is convenient
for the present analysis. The behavior of o as a function

of w 1is that for small w , ¢ 1is positive, while for

large real w , o has small magnitude, and its phase
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approaches -zt e« This behavior is retained in the two
limiting cases (& fully ionized plasma and a plasma in
which the ions move with the neutrals) which are examlned
here. In both cases it is possible to define a colllision

frequency 1 such that o 1s well approximated by

o= ( )ﬂuu) (113)

Eq. (113) will be taken as the defining equation for ¢¢ in
the subsequent analysis. It 1s also convenlent to define a
normalized collislon frequency w by
w=(5) (114
]

Then h 1s defined by

W )(“’*“' (115)
Case I: w= 0
In this approximation
hr.a (:’.&E_) > 0.

(116)
The function
. W f. A Y
g(x)= ‘WHI(LX)J] ("‘\ (117)
1s a monotonic decreasing function of x for x>0 such that
$(0)=1
and (118)
g(oo)= 0.

Thus the dispersion relation may be written

= 1-ir L () (b)) S o, (119)
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and the major content of the dispersion relation may be
summarized by the equation
Im(w+kw)= 0. (120)

The usual instability problem 1s an initial value
problem in which a disturbance 1s 1imposed on the system at
some specified time, and it is required to find whether any
Fourier components of the disturbance are amplifled or
damped as time progresses. Thls amounts to specifyling real
kX and searching the dispersion relation for complex w, In
this case Eq. (120) gives immediately

Im w=0. (121)
That 1s, the system 1s purely oscillatory - neither damping
nor growth of dlsturbances 1is possible.

It is also possible to 1mpose a periodic disturbance on
the system at some given beam cross-section. Then it is
required to find whether any range of frequencles gives rise
to amplified or attenuated disturbances downstream. This
problem is solved by imposing real «w and searching the
dlspersion relation for complex k. In the present case Eq.

(120) gives
Im k=0, (122)

and neither amplification nor attenuatlion 1s possible. 1In
this approximation the system is completely stable.
Case II: w>>\z' and |hr.‘<< l.

For this case the defining equation for h becomes
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> V'zv .\,
b, "( g XW) (123)

Small argument expansions are used to evaluate the Bessel

functions. An adequate approximation 1s given by
) thy,
7 (ihr.) =(_2,_") ’
i/, o R
Hi(the )= —(fh:;XHE h'e "‘lz‘ b \)’ (12l)

and carH (ihi ) T (ehe) =1+ 4 W3 by |

The dispersion equation may be rewrlitten as

=( X,Ln!fhr) (125)
27w

In the above expressions Any’ refers to the Euler-
Mascheronl constant and has nothing to do with previous
usage of v/ and ﬁ(.

To solve Eq. (125) it 1is helpful to make use of the

fact that the quantity :
k 4
R=(_“LS:X-1n l-‘{ hrb (126)
Zw 2z
1s a very weak function of z. Thus QQ and z are determined
as functions of R and 8 from the equations
N=z4+5 (127)

and

ar-iRa+iRsm 0. (128)

Then the conditlon ,hror<1 must be imposed as a restriction
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on the admissible values of R and s. Finally, for

admissible solutions the logarithmic term in R 1s eval-

uated and the corresponding value of(w,,vt;’yc.'W) 1s determined,
First the initial value problem will be solved. The

parameter s 1s taken to bse real and R is given by
-..L . t DY 4L
0O Z(LR \l R 4LLRS), (129)

\Then lsl((R this becomes

R\, . 23, 257 £is’ 1\,
n—(i—)('-[“ R R OR ] (130)
Growth occurs when Im 1 ¢ 0, or when
2= —f 432 ..(g_s_’ :
R R” (131)

Thus « 1s given by

23k . u."‘(’
W — D> -t ’
w,” R wyR (132)

the phase velocilty Vo is given by

v=— &wﬁkv
P wy R~ ? (133)

and the group velocity vg is given by

blk> L
or
Ls') .
‘9=‘( /" (135)

From Eq. (132) the growth rate & of these dlsturbances may

be vritten as



=(3
of (R )“’5‘ (136)
Thus the waves proparate a dlstance La=-(|\_l,|/d)

-~
downstream in the typical amplification time (d) « This

distance La is given by

= w
L“—(%;)(;-,;), (137)
and is nearly independent of the wavelength of the
disturbance. If R >)»1 this length can be much smaller

than the betatron length l—b'(“’/“"u) .

When lsl)) R, f1 is given by
-ix

O=tfRs e # (138)
For growing waves this becomes
Y
_ JRew ke L [ Rewpk
w=-(uk d——z‘—)"'ﬁ"z“' (139)
Then v, and v_, are given by

p g

Vp""(““"d—z,"&) (140)

y=—{+-E2): )

It is now necessary to investigate the restrictions

and

on R and s imposed by the condition
Ve <<t (142)
This condition may be adequately restated as

RISk << (143)
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lere R wlll be taken to be a free parameter corresponding
to an arbltrary cholce of steady state beam and plasma
parameters, and Eq. (143) will be used to give restrictions
on the range of s allowed in the present treatment. ‘l/hen

R >> |s|, Eqae (143) has the approximate form

8 << |, (1hLiy)
while for ls‘)) R the corresponding approximation gilves
R\s\ << |, (111_5)

For all cases & useful minimum wavelength 1s derived

from the condition

‘s|mu = ” (1}4’6)

P in "(’72):‘“ ) (147)

For disturbances of shorter wavelength it 1s unjustified to

or

neglect the detalls of the 1Internal motion of the beam
particles, This estimate may be used to derive maximum
values for the prowth rates of this type of instabllity.

(As koo in Eqs. (132) and (139) the growth rates diverge.)

When R>> 1 the maximum becomes

@
(—“’a)m = T)\g‘ ? (148)
and for R<<l it becomes
(=)= Vo (% - (149)

The case of a perlodic disturbance can be treated

even more simply. The dispersion relation
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(sz.)‘_= iRz
is to be solved for real z and complex s. This gives
s= ~Zt m;_— e—%’

and amplification occurs when
S -7.4-‘ ———'zl" -y ——-i;' .

The requirement lhro‘2<<1.may be written as

Rzl<< L

Thus k is given by

k-(—ﬂ’c +-‘CJ-—-§-R‘;: i {Rwwg >

and an amplification length L may be deflned by
(-Imk)L =1,

L-(—::)./;L: )

and & minimum length Lpin is given by the betatron

This gives

length Ig.

(150)

(151)

(152)

(153)

(154)

(155)

(156)

The slow wave occurring in the initial value problem

vhen R>>1 and R)») 8 would probably be the easiest of the

above instabilities to observe experimentally. Although

such disturbances would have wavelengths longer than Ly

they would amplify many times before propagating dowvnstream

2 distance Lg. The other dlsturbances are fast waves

which require a much greater distance for amplification.
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Case III: w arbitrary and ‘hr°l>>].
Here the dlspersion relation 1s evaluated through
the use of asymptotic expansions for the Bessel functions,
Sufficlent accuracy 1s given by
J,(ihr)= — eyp hr,,

2N,

(157)
H(the)=~VZEg erp=hres
and
. tf. . =f_1
uf H.(Lh"o) Ju-("h"o) - (FrZ) ’ (158)
The dispersion relation then becomes
Yy (4=
vhere
2 7= vaY.v z
hte ( o )(z-'«w)’ (160)
and is to be solved subject to the condition
LS PYE (161,

A first approximation to a solution of Eq. (159) is

provided by

(_’_‘l;;)= 0, } (162)
and
(z+s) =% 1
(163)

To this approximation the system ls completely stable,

A second approximatlion is obtained by using DLags. (163)

1

and (160) to evaluate (hry)™. If this value of (hry)~*
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satisfies condition (161), substitution into Eq. (159) gives
a small correction to the value of (z+ s) given by Eq.
(163). This procedure gives a fairly accurate solution
of Eq. (159), and the second approximation to (z+ s) exhibilts
growing end damped oscillations. However, Eq. (163) is a
warning that Eq. (159) probably does not contain all the
essential information for this range of parameters. The
beam partlicle orblts are likely to contribute important
effects in this regime, and even the macroscople theory
must be treated more carefully vhen s 1s large.

The corrections to Eq. (163) have roughly the same
form whether s or z 1s real, and only the case of real s
wlll be treated here. Only positive s will be considered,
slnce thils simplifies the analysis without loss of
generality. The roots of Eq. (163) will be denoted by

t

z, eand are glven by

zla-s2i. (164)

Each root gives a corrected value for (hro)'l, which 1s

(hr) ( ) —f:.tl-l—w (165,

The first order corrections zl to the roots are then

given by the equation

(166)

Thus 23~ 1s given by
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- < 3
=T 'f‘*‘e")d L (167)

and the root z-==z°'+ 2y +... 1s stable for all

permissible parameters. ‘then s<1, zl+ is given by

z'e- ("“’o °)\J .—|_;;w (168)

and z = 3z} +-zlfz.. is a stable root., But when s> 1

* _( c s—l)+iw
% " T\Zupe N (- (169)
and z¥ 1s unstable whenever Eq. (161) 1s satisfied; that

is, whenever .
. »
S+ W (79 ¢

| s S (170)

No instabilities occur if
(wpte N |
c* ? (171)

but if

(":’{,:_.) »h (172)
instabilities occur for sufficiently short wavelengths.

Such instabilities are fast waves with rather small growth
rates,

Case IV: w arbitrary and ,hr4<<1

In this case the dispersion relation becomes

(=+s) =P (Ew) (173)
where > v
P (e ) tn|Ehr: )
.(‘ ¢ ) ( B (171)
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This equatlion 1s to be solved subject to the condltion
=
PlEm| <<, (175)

but the restrictions imposed by Eq. (175) will not be dis-
cussed in detall here.

For the initial value problem P and s are parameters
and Eq. (173) becomes a cublec equation

z’+ (.z.s - a.w)z_"+(s’- P-o2 st)z-i.ws“- o)

(176)
for z. This equation has been solved numerically for a
set of values of P and s. The behavior of solutions may
be summarized as follows: for small s, Izl is also small,
end the unstable solution behaves as in Case II when
R= % >>s . Both |z| and the growth rate are increasing
functions of 8, and the instability 1s a slow wave. Vhen
|z)x w the instability changes from & slow wave to a fast
wave, the pgrowth rate becomes a decreasing function of s,
and |z| remains an increasing function of s. As s 1lncreases
further, the system tends to the stability predicted in
Case I when lzl))w. For all s only one root of Eq. (176)
is unstable.

For periodlic disturbances P and z are positive and
Eq. (173) becomes

s”+dzs +<z"-£’;w)= 0,

(177)
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which has the amplifled root

s=-2-lzEm (178)

Again, the instabilities come from the finite collision

rate w, and by lq. (175) require many betatron lengths for
amplification. This case has also been analyzed by Cooper
and Raether, b

Summary of the Chapter

A macroscopic analysis has been given of the m=1

disturbances of a uniform relativistic electron beam which

18 imbedded in a dense, uniform plasma., Such disturbances
correspond to a gross motlion of the beam and may be expected
to give the worst instabllities. The electromagnetic effects
of the plasma have been accounted for by a scalar conductivity
vhose phase is a measure of the relative importance of col=-
lisional and inertial forces'in the plasma. A simple hydro-
dynamic model has been used for the beam dynamics.

The analysis is valid only for low frequencies and long
wavelengths., The reglon of validity is established by exam=-
ination of the macroscoplc equations. The beam disturbance
consists primarily of a rigid helical displacement which
travels in the z direction with a time dependent amplitude.

Approximate analysis shows that eddylng motlions in the beam
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are of secondary imnortance. The major electromagnetic
effects of this displacement are due to the corresponding
surface currents. The plasna attempts to screen out these
currents throurh a flow of volume current, and the resul-
tant electromarnctic flelds give rise to a drag force on
the beam. The nhase of this velocity-dependent force 1s
such as to glve instabilities when collision rates are
large and to plve completely oscillatory behavior under
collisionless conditions. This 1s in marked contrast to
the case analyzed by Minkelstein and Sturrock 39 of a
relativistic electron beam neutralized by an ion beam. In
that case maximum instability rates occur under collision-
less conditions. For the modes dlscussed here aJ~w7 , the
resistivity, as in the non-localized flnite conductivity
instabilities found by Furth, Rosenbluth, and Killeen. sk
The dispersion law for these disturbances is obtalned
by summing the electromagnetic and the inertial beam forces
over the beam cross-section. A non-zero contributlion comes
from the component in the direction of the beam displacement,
and this pives the dispersion relation. Under quite general
conditions the pressure tensor does not contribute to the
dispersion relatlon. However, in the non-relativistic regime
a more detalled calculation may be necessary. The dispersion
rolation has also been obtalned by an analysis of the specific

hydrodynamic model assumed for the beam dynamics,
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Chapter 3
FURTIIER ANALYSIS OF THE LOW FREQUENCY INSTABILITY
A Treatment of Hall Currents

When the self-magnetic field of the beam 1s larpge,
the plasma conductlvity tensor becomes highly non-diagonal
and the analysls of m=1 disturbances in Chapter 2 1s not
valid. This defect 1is remedled here by introducing a
tensor conductivity into the electromagnetic field equations
but otherwlse using the same hydrodynamic description of the
beam motion., As before, the dispersion law 1s found most
easily by integrating the & component of the momentum
equations, but here the determination of'the perturbed
electromagnetic fields is more difficult. The dispersion
law is similar in form to the one obtained earlier and will
not be analyzed in detail. The discussion given here and
In the following sectlion is based on the work of Enoch,
Longmire, and Mjolsness. 22

The treatment is agaln confined to low frequency, long
wavelength disturbances, but the analysis of these distur-
bances 1s considerably more intricate., The equatlons
governing the perturbed electric fields become coupled

ordinary differentlal equations whose form implies that

all components ong are non-zero. Thus a more complex
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electrostatic body force acts on the beam and glves rise
to an additional term in the dispersion law. Although the

perturbed magnetic fleld
- ' d -
B (SHELOrELOEEHO-HE)
has an additional term, the magnetic forces

i B (S i(E O 400.0)

and (2}

§ *P= (Z’J:”) d(r—r)y (-4 0,9)

are unaltered in form and differ only through changes in
the values of fz(r).

It is convenient to reduce the problem to the solution
of Maxwell's equations by obtaining the dispersion relation
in terms of an arbitrary vector‘aﬂr). This is most con-
venlently done, as in the second method of Chapter 2, by
integrating the scalar product of‘grand the approxlmate

momentum equation
Lwekinma=—(v-P)r(fxBrixB)-enE (3

over a beam cross-section. The pressure term is agaln

assumed to vanish, and the result is
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~2 a” exp —(2. Im[w + ku.])ll.‘tf A C +ku)”
(27jn)" 1 w
= w'yexr zIm[w+ '(u]) 27rie ) f dr & d .f (.-) .

(%_) IR r(£6)-58,()

A simple rearrangsment gives
noqrg*m{(mlm)”
=(2em7 ’,’) (AT )4 () (5)
+(Z;7'!=) jo"‘d,— .-(g(y)-d'-o(r)),

vhich may be evaluated explicitly, once i(r) has been
determined. The last term in Eq. (5) represents the con-
tribution of the electrostatic body force and did not
appear in Chapter 2.

The coupling of Maxwell's equations 1is provided

by the plasma current, which takes the form
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pr lr,b'
(")Pg = G’Eo (6)
:._ Er 2
(J»)Pz ( I*/"'? )
where — <°’bo(')
o= (T

wvhen the self-magnetic fleld effects are included. Unless
otherwise noted, the analysis will be restricted to
collision dominated plasmas for which & 1s positive. The

volume Maxwell equations may be summarized by
4w\ /[ :
V"(V ".E) *(—z—)(‘@‘,‘o’ (7)

where (J), is given by Eq. (6). These equations must be
"
supplemented by regularity conditions at r=0 and r=oo

and by the surface conditions

":'_(r,)od; "'F,(’%)'m =0
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‘Fa(c)ut “f.(".);. =0

'pg(ro)ou* —'Fz("o)in =0 (8)
—_‘(('oux d,r't( 2in=0

dr 'ﬁg(';)out -%f,(% in= 0

and
S, (W - L) (—“—’C-i"i’-t)

at r==r°.

For long wavelengths the components of Eq. (7) take

the form

R CRY; ()] [‘ SOLAAL ’] 0, -

- AL & O-HLO] () -0,

and

d* id 2 {4, (v)—puf, (¥)
- == +—;a?—-";_];z(r)+h [—W/:f';!—' =0,

where h 1s defined as before. The definitions
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and (10)

are introduced in order to facllitate the reduction of
Eq. (9) to a palr of coupled differential equations for
fz(r) gnd the auxiliary field variable A(r), where A(r)

1s defined by

M= [L4 () E5 50 (11)

The first two components of Eq. (9) may be rewritten as
y -k G tphe)
(1+7)
and (12)
dx _ v
o .%’
and may be used to eliminate the explicit appearance of

fr(r) and fo(r). Thus successive substitutions yield
d »[¢
Fa(8N)-vIFEr]
- E

(13)
.Hﬁb&g%g;:LA+hvﬁ?4;)
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which becomes, after rearrangement,

- N A+h"NE .
HA = NA+h"Nt, (1)

Further simplification eliminates the explicit appearance
of fr(r) from the third component of Eq. (9). This com-

ponent may be rewritten as

- - L 4 v (‘Fz.—c'Fr)
HF:. h 'Fz'”' (|+/a-") ? (15)

and may be reduced to the form

HEf = N\ (16)

Equations (1l}) and (16) will replace Eq. (9) in the
subsequent analysis. Boundary conditions on A(r) may be

obtained from Eq. (8) and are given by
l(ro)out -x('o)i" =0
(17)

and

A (out = 4 A()n =0

Exact solutions of these equations may be found

for resr, where
N=N, = (zrj e /eh).

For r>r, N 1s glven by

ML T (19)

rr r

(18)

and the equations become much more difficult. Two approx-

imate solutions are presented below as Case I and Case II.
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Case I: an underestimate of the magnetic coupling
No approximations are needed to solve Eqs. (1) and

(16) when r< T, Solutions will be obtalned in the form

AN =bf (20)
wvhere b 1s a2 constant. The equations then become
W No
(H—NO‘Y-T—')‘FZ(') =0
and (21)

(H" Nog“z(") =0,
and consistency requires that

N_b™- N7 b-h"N,= 0. (22)
The two roots '

* = 5(n 2 R w)

(23)

of Eq. (22) insure that a complete solution of Egs. (1h)
and (16) 'may be given in the form (20). However, the
requirement that the flelds be regular at r=0 restricts

the admissible solutions to

‘Pz.(") = A*J; (l‘*r)'f A—J‘(QJ-,-)
and (2,_!_)
A =b*ATT(8")+ bR, (;5'..)

=
where 4 1is defined by
E
d¥=\h"+ N bt ond Red™>o0,
+
and the quantities A are arbltrary constants,
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The determination of AY 1s necessary for the explicit
evaluation of the dispersion law (5) and requires that the
field variables be known for r)vro. This knowledge 1s not
easily obtained, since the exact equations (1li) and (16)
are too difficult to solve analytically when r)ro. In
this section approximate values of the fleld variables will
be obtained analytically from Eq. (16) and a modification
of Eq. (1L) which leaves the equation unaltered at r=Tr,
and generates correct asymptotic behavior when r 1s large.

The appropriate modification 1is derived most readily
from Eq. (12). In this equation the denominator (lf/b’)-'
is a measure of the magnetic coupling due to Hall currents.

This coupling willl be systematically underestimated by

-1
replacing the denomlnator by its value (lf/ﬂbr) at
r=r,. The approximation 1s formally equlvalent to the
assumptlion that the radial conduetivity o] varles as

k 4
- |+
% ‘[ Vo | (25)

while the theta conductlivity remains fixed. With this

modification the steps leading to Eq. (1lli) yleld instead

HA = No-'-q;';l-rhr—?#ﬂ_' (26)

Equations (16) and (26) form the basis of the following

discussion,
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Solutions to these equations are agaln sought in the

form (20), and the equations become

=N (N + 22
HE, =N, (s - br") f

and H&- N (%) ‘{z. (27)

Conslstency requires that b must satisfy the equation

N,(b=N,b-F) = o, (28)

x
whose roots b~ are given as before by Eq. (23). Again,
a complete set of solutions may be found in the form (20),
but here regularity conditlons at r =oo restrict the

admisslble solutlons to
! . -yt .
'Fz(r)-C’HP'-(Lhr)'fC HP-(J\F)
and (29)
X(r) - B*C* H‘rﬂ (ihr) + L—C-H;’- (i.hv-) ’
vhere p¥ 1s given by

ft-(l r,"Nob")i,

p 4
and the quantities C are arbltrary constants,
The constants A® and ¢* are determined from the
boundary conditions (8) and (17) at r=r_. Vhen N0

thls procedure leads to the results of Chapter 2. Vhen

N, is large, i.e. when N°2» }hzl, the asymptotic
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expressions

§ = N(1+ %:,) | (30)
-
5= v

f* = (l s Nr 7 ‘-"'v.")\t

and

may be used to simplify the calculations, and an
analysis of this case is given in Appendix II. When
N°r°<< 1l the flelds and the dispersion law are unchanged
from Chapter 2. That 18, the self-magnetic field must
still be considered small; the parameter Noro is a
measure of the strength of the self-magnetic field and
must reach the value Nyr, ¢ 1 before the Hall currents
contribute significant effects. When Horo > 1 the per-

turbed electric fleld is gilven to good approximation by
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£00= (55 ,)# (v)* ("“"“' y }r?&
Fy (== ﬁi'f) £.(x)

—(27miwa ; L in lhr,‘ r
(0= (‘T—’l-)(”zh" ‘z ’
and the addlitional term in the dispersion law 1s given by

(s e (Lr(r)_-.r. (,»

(7;.- en, [4'( ),(Zw‘twa.ro f)]

Thus the Hall currents do not alter the longltudinal com-

(31)

(32)

ponent of the electric fleld but contribute to the transverse

fields. It is convenient to rewrite Eq. (5) as

n, ﬂ’r:'m{ (w* ku,)y

(-\.'ﬂ'l’o )[‘F =)+ (za’cwa—n .] (33)

()L e (RO-4,6);

Use of Eq. (32) and the 1dentlty
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(=) -G = e CE)

-,{-( ::)(_ e a,%) (3l

then shows that the corrections to the dispersion law from
the transverse fields are negligible., Thus the present approx-
imation indicates that the Hall currents have a small (or
negligible) effect on the dispersion law.
Case II: an overestimate of the magnetic coupling

As 1n Cese I Eq. (2&) provides an exact solution for
£,(r) and A(r) vhen r=r,, and Eq. (16) 1s retained even
vhen r >r,, but here the denominator (l*/l»’)-' of Eq. (12)
1s replaced by its value 1 at r=co. This gives an over=-
ostimate of the magnetic coupling and 1s equivalent to

allowingz the radial conductivity to vary as

=) (35)

vhile keeping the theta conductivity fixed. Thls approxi-

mation leads to a second modification of Eq. (1llj) which is

r N, .
HA =W 2ot (36)

The analysis given here is based on Eqs. (16) and (36) for
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r)ro and 1s complementary to the analysis of Case I. Since
the two cases make opposite approximations to Eq. (1), the
effect of the approximations may be assessed by comparing the
two dispersion laws.

Solutions are again sought in the form (20). The

equations then become

and N (37)

which requires that

b= th. (38)
A complete set of solutions may be generated by this
technique, but as in Case I the admlisslble solutions are

restricted to be of the form
£,(¢) =C*H}» (chr)+ CH.- (i)

and (39)
Ar) = ’\C*H;, (ihl')—hC’H:‘- (i.hr)

vhere

n®= 1 £ N b,

b 4
and the quantitles C are arbltrary constants. Thus the
solution differs from Eq. (29) of Case I in the order of the
b 4
Hankel functions and in the ratlo between f, (r) and )F(r).

T
The constants A and Ct' are determined from the
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boundary conditions (8) and (17) but must be re-evaluated
for this case. This 1s done in Appendix III for the regime
1\!02 » \hzl in which the asymptotic expressions (30) are
valld. The opposite case No'-"-O will yileld no difference
from Chapter 2. The dlscussion 1s also restricted to

those low frequency, long wavelength disturbances for
wvhich 'hrOI <<1l. The results are qulte similar to those

of Case I. Vhen I\Ior°<< 1 the Hall currents do not affect
the flelds or the dispersion law. When N°r°>) 1 and
INOrohro'<<l the perturbed electric field is well approx-

imated by
Foo(u) (e ) 30
fo=- (?‘—) f2(=)

(4o)

and

£ --(Z”Lwa' d’ I+E'-|\vl;,ﬁﬂ|%hgbr,

while the electrostatic term of the dispersion law 1s

glven by

) "o (4, )
- (e (ER).

Comparison with Eq. (33) shows that the electrostatic
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term is again negligible. Thus the longitudinal electriec
field and the dispersion law are unchanged from Chapter 2,
Telther of the approximate treatments given in this

section shows a modification of the dispersion law due to
the presence of Hall currents, although these currents do
affect the values of the transverse electric fields. Since
the two approximations correspond to an underestimate and
an overestimate of the magnetic coupling in Eq. (12), it 1is
very likely that 1f Hall currents do alter the dispersion
law, the alteration 1s qulte small. An independent approx-
imate treatment glven in the next section supports this
conclusion and indicates that the principal effect when
’hro’<(l 1s to alter the value of the logarithmic term

of the dispersion law.
A Second Treatment of Hall Currents

The approximation methods of the previous section
were adopted for purely mathematical reasons: the exact
equations were too difficult to use directly, but a
technique of underestimating and overestimating the diffi-
cult term led to solvable sets of equatlons and provided
a check on the errors in the treatment. Here physical
arguments are used to suggest a rather different approxi-

mation scheme which 1s then considered in detail. The
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scheme 1s based on the observatlon that when rﬁ%ro and
thrJ((].the values of the perturbed flelds depend very
weakly on the presence of the plasma; slnce the skin

depth 1s much larger than Ty screening currents become
effective only at large radial distances, and the main
effect is simply the field resulting from the surface dis-
placement of a beam in vacuo. This suggests that the per-
turbed flelds should be well approximated by solving
Maxwell's equations with fixed sources. That 1s, the

vacuum fi1elds should be calculated and substituted into the
conductivity law (6). The result 1s then used as the

fixed current source in laxwell's equations. Since this
method does not treat the plasma screening effect adequately,
1t 1s necessary to joln these flelds to the correct asymp-
totic flelds at some r==rp. The agsymptotlic fields of Chapter
2 may be used for the matching if gp>> b since the mag-
nitude of the Hall currents will then be negligible when
r>yr , A consistent anproximation results, provided that

p
the fields depend weakly on the value of r_ ., In this section

p

- only the component fz(r) of the perturbed electric field will
be derived, since the preceding analysls has shown that it

is extremely unlikely that the transverse fields contribute
significantly to the dispersion law.

The single non-zero component, fzo(r), of the vacuum
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electric fleld must satisfy the equation
> 1 d 1 LT e é(r—r. 2

and recularity condltions at r=0 and r=ococ, From these

fzo(r) 1s uniquely determined to be

4'7_(.«)=- ZC‘J» J;o)r Ior r< LN

and (43)
£°(r)--(———"‘“’” r)— for rov

<

Substitution into Eq. (6) gives for the plasma current

G {25 S (L7 0) o e

and (4ly)
() zTLu)a I) (Nl_n o, -—) for r>r,.

s

P

[+(N7¢)]

Equation (l4li) is used in Eq. (7), and the z component

determining f,(r) becomes

g 4 | » (we .
o + - ' "'r';,) ‘F‘z(r)-—"l (‘21 L b N:) for r&a
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and ()45)

* ) ) ; v &r.,.
%—; %—?‘;——;)'Fz(r).:_]"’(é_'%‘i‘:_b T*—;_"T:) for n&rs P

For this equation the most general solutlon whilch also

satisfies the necessary regularity conditions at r=0 is
- Zﬂ‘uud. 7 ilwar re
() ( 3 ° Zc.NV *X

and (L46)

) +r’N°")+Ar for r< v,

£ ) (e - (e e _er)ﬁﬂ [0 ;;‘1,)}-‘; for e réns

where A, ﬁ, and d are arbitrary constants. For convenience,
the homogeneous solution fzo(r) has been extracted from the
remaining homogeneous terms in Eq. (L46). Finally, the

asymptotic form of the field has been determined in Chapter

2 to be

L) =cH (b)) For > ns wn

with C an arbiltrary constant, provided that rp) > Ty
The constants are determined from the usual boundary

conditions at re=r,

‘F&( r’\out = .rg, ('-)l'n =0
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and (48)

d wriwa o
& (Wor — % (Wum (22 L))
and from the fleld matching conditions at r--rp

£(r)ee — ‘r:_("P)in -0

and

- (49)
Td;_ ""z(’v)out - %r} 'cz. (r?)“‘ =0.
P

Equations (I;8) and (Li9) suffice to determine the four
constants A, K, d and ¢ uniquely. However, the requirement
that the solution should depend weakly on rp Imposes the

further condition

p"'Pl << | (50)
on the choice of rp. This permits the expansions
Hi(ihe) = =(Z)* 5 h'r'lnl.‘z/hrl)
and (51)

L i) = (- £ e )

to be used in Eq. (L49), and only under these circumstances
will the equations have acceptable soclutions.
The solution of Egs. (48) and (1,9) is given in

Appendix IV. As before, when N, r,<<1 the fields and the
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dispersion law are unchanged from Chapter 2. Vhen Noro>7 1
2 2. L

and rp » No T (and, in consequence, Norohrol<< 1) the

equations possess solutions which depend weakly on rp, and

fz(r) is well approximated by

THORNEC I (BF; Wl by TN J)- (52)

This 1is a modification of the field

£y {23 Yo 4] o

of Chapter 2 and gives rise to the modified dispersion law

(w k)= w (a5 b IW"'])(-’E—-)

(sh)
The modificatlion amounts to an Ilncrease in the effective
beam radius in the logarithmlic term, corresponding to the
fact that the Hall currents inhibit the flow of plasma
current near the beam so that the screening currents must
flow at larger radii.

Clearly, the analysis as presented offers no declsive
way to choose between the concluslon of the present section
(modification of the value of the logarithmic term) and of
the previous section (no change in the dispersion law).

The treatment of the present section, however, has a much

stronger physical rationale and 1s probably to be preferred.
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Nelther analysis makes specific use of the condition

that ¢ be positive. Thus the treatments should be valid
for arbitrary o.

Effects Due to Plasma Temperature Gradients

The previous sections have shown that the analysils
of Chapter 2 adequately descrlibes those low frequency,
long wavelength disturbances for which lhro|<<l provided
that the plasma steady state 1s uniform in space. However,
the assumption of spatial uniformity is not likely to be &
good approximation to many experimental situations. For
this reason various methods for relaxing the assumption
w1ll be 1lnvestigated here and in following sections. No
attempt 1s made to follow the complex hydrodynamic behavior
of the plasma., Instead, 1t 1s assumed that the electro-
magnetic properties of the plasma are adequately represen-
ted by a tensor conductivity whose coefficients may depend
on position.

In this section the analysis 1s confined to plasmas
for which ¢ >0 and disturbances for which |hr°|<<l. It
1s assumoed that the plasma temperature 1s esgssentially
constant for r<:ro and decreases monotonically a&s r in-
croeases when.r'>r°. It 1s also assumed either that Noro<< l
holds or that the plasma density 1s essentlally constant.

Under these circumstances tensor conductlvity effects may
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be 1lgnored, and the scalar conductivity depends on posiltion
through its dependence on plasma temperature. These assump-
tions do not glve a fully self-consistent account of the
complicated plasma colllisional processes, but they do
provide a tractable model of the processes which approxi-
mates experimental situations in which an appreciable amount
of the plasma 1s created by lonlzation from the beam.

A specific model

o/(r)=c for rey,

and (42)
a’(r) -d(“'* "AT:::) for >

where

0[1*/87_ "

is used for the position (temperature) dependent scalar
conductivity 0(r). This simplifies the analysils consider-
ably, but still gives results whilch are typlcal of a
ceneral monotonic variation of d{r) which approaches a
limiting value after several beam radil. The analysis is
quite similar to Chapter 2. The fleld f,(r) must satisfy

the equations
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and (43)

[_a:u_g__n__w_m]; -0 fu o,
d"’ r d’ 34 r'r z

as well as the usual boundary conditlions. The admlissible
solutions of Zq. (L3) are

r;_(«): AJ:(ihr) for re ry

and (hh)
f; (r)= A‘H:I (id.‘\r) for r>r,

where

viv,

h-r[l+/6'k'nrlczli-%76 o

and the constant A is determined to be

(45)

17/,
iriwa Hn(m‘hr‘) .
A- c & I d' HI Hl d_ J-
['—dT n” Tadr ‘]r-r.
Advantage may be taken of the facts that ,hro’<<l
and n=>]1 by evaluating the Bessel functions as in Appendix

II. The results are
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7, (ine) = (5=

&3 ()= (51)

H"‘(;hr)=-(;§'g:)(|+—h(¢' *'1..|“tw|)

(46)

H! (ihe) - )(H‘Lhr(ct /J)Jmlzhr)

and

—-H (W)l (vr« h

X _.!_Iq" '1&\, ‘/kr> .
Combination yields the denominator

d 1 d 2 ! viv j« / ‘"’
Jl- an_Hn_:rl =(’ "X L >
[ dar dr ]"’. o /6 l )

the coefficient

A- —(i%:—?—}.Xl + 4 o{'k":'—eﬂlf hr.D,

(48)

and the fileld
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£()-(2zigen ;,)(H;;-d*m,w’.g ;,,,Dzﬂ:)..

3, (ihr) (49)

=

Evaluation of the dispersion relatlon leads to the expression

e (w0 b} = Qo”"’v)y“‘""[‘i‘ I%""l] (50)

as compared to the correspondlng expression

n7” ' mv, (wf ku)v'= (J‘o ﬂ"’.‘)y W [’.,in% hr. |] (51)

of Chapter 2. Since \kul dominateslwlthe decrease in
conductivity increases the growth rate by the factor of’) 1
for fixed k. VWhen the plasma is primarily produced by the
beam, this Increase can be large.

The assertion that Eq. (50) is typical for monotonic
varigtions of d'(r) 18 supported by the second special case

/(=0 for r& v, <,

(52)
d’(r): o ¢ for > ho»

where

\hr.‘<< I

which also leads to Eq. (50). Further support comes from
the physical consideration that the right hand side of
Eq. (52) 1s produced by plasma screening currents which

flow primarily at distances R of the order
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[hR |2 1. (53)

At these distances the conductivity has essentially
reached its final value af&; and this final value should

appear in the dispersion law.
Effects Due to Plasma Density Gradilents

A second 1ideallzed model of the plasma collisional
processes will be considered in the present section. The
model is also restricted to collision dominated plasmas
for which 0) 0 and to disturbances for which 'hrJ<<<1, but
here the plasma temperature is assumed to be constant over
all space while the plasma density varies monotonically,
being constant for r<.ro and decreasing as r increases for
x“)ro. Thus the model isolates the effects due to the
density gradients which occur, for example, when lonization
from the beam produces an appreciable amount of the plasma.
Since the scalar part of the conductivity tensor 1s density
independent in this regime, all denslty gradlent effects are
due to the parameteg/u-occurring in the non-diagonal
part of the tensor and are negligible when Noro<<1l. The
treatment 1s therefore restricted to beam parameters for

vhich Nyry») 1 in order to exhibit these effects most clearly.

For analytical convenlence the specific model
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o

n'(r) =

and . (54)
n’(r)" A _V._,: for ¥,

r

3

i1s chosen for the position dependent plasma density n’(r).
The resulting problem 1ls sufficlently similar to the cases
discussed earlier in the chapter that not all details of the
present dlscussion need be glven.

The behavior of the fields f,(r) and A(r) is again
described by Egs. (14) and (16), but in this case N=N, for
all r., Thus the solution furnished by Eq. (2) for r< r,

must be supplemented by the solution
1 (T - 1 -

HOFPCHEW I HCD

and (55)
+,* .ot ~c~H'(id8” '
x()= b TH: (87 e THI(7),
) 4 t

where b and J " are given by Eq. (30) for r>r,. These
solutions have the necessary regularity properties at r=0
and r=co, and the constants A* and ¢c* are determined, as

usual, from the boundary conditions at r=r The calcula-

on

tion is very similar to Case B of Appendix II, and ylelds

Ae-(Ezimee ) (- 45 ) iraHl (87)
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and (56)
e (221 *X’L)(” Al u.,\/s,r)(

As before, the dispersion relation may be evaluated
to sufficient accuracy when fz(r) is known for r=< r,. From

Eq. (56) this field is given by

£ (- )__ Zfrtww )(__:+LEL”ln’/Lr)

(57)
. . v 1. ¢+ :
(el
for rt-‘-ro, and to good approximation
2riwa [ _." [ r for r<r,. (58)
ﬂ(')“(—-:'—*')(' ik [ND r
The dispersion relation becomes
> v . \d VL" 2
rir il ohe) = (7 ) ¥ [ 59
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instead of Eq. (51), as in Chapter 2. Since Nyr >> 1

and since Iku‘))la), Eq. (59) implies that the growth rate
for fixed k is larger when a density gradient is present.
The reduction (for fixedw) in the drag force exerted on
the beam has a simple physical explenation. A strong self-
magnetic fleld inhibits the flow of screening currents and
the density gradlent extends this effect to larger radil.
Thus the screening currents tend to flow at larger radii,

and their reaction on the beam is weaker,
The Effect of Metal Walls on Growth Rates

The staebllizing effect of metal walls on pilnched
discharges has been known for some time, L5-48 A similar
effect occurs in the present configuration and is discussed
below. PRoth the analysis and the dispersion law are some-
vhat different from the standard results on pinch stabil-
ity; L6 the analysis makes use of the methods of Chapter 2,
although the metal walls impose somewhat different boundary
conditions on the problem, while the dlspersion law 1s in-
fluenced by the presence of a conducting medium surrounding
the bean.

It is assumed, as in Chapter 2, that a scalar conduc-
tivity o gives an adequate account of the electromagnetic

properties of the plasma, and attention will be restricted
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to those disturbances for which ‘hr°|<<l. No restriction
will be placed on the phase of the conductivity. A per-
fectly conducting wall is assumed to exist at r=R) Ty
The field fz(r) 13 determined by the same differential
equation for r=R, the usual boundary conditions at r=r,,

regularity conditions at r=0, and by the condition

Thus the field takes the form

f‘(r)u AJ;(L"\I’) for ravr,

and (61)
£ ()= CH,(ihr)# DI (ch) for ner<h,

where the constants A, C, and D are determined from the

conditions
CH, (.‘.hR)-r DJ:(L\\R)- 0

cH:(Lhr.) + D7, (ihr)- AT, (Lhr,)-o
(62)

and

(i) D 7(ihe)- A T(thr)- (0% ).

&I?-

Equation (62) readily yields
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A=D = _(é%aze_z f.) i H! (ihr,)

mnd __H',(LhR)
so that the constant A is glven by
N re '\, '-r_T\'."\"o '
A,_(_{‘Lé‘.."‘;__h)cﬂ[H'(thc TI:-(Lg-hT'\))‘H'(LhR)],

the field fz(r) is given for rséro by

#,(r)-_-_(.é%% f) ;er;(ahr)[H:(thn)-%Hz(ihR)}

and the dispersion relation becomes
(n e, Yw v ke)”

= 2(7 e (—ir T(he)H, (ihg)—%%‘% H:(ahn)]).
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The betatron frequency w, may be used to simplify this
expression to

(s k.,);w;(._ mq(ahr,)[H:(ehg)-%%-H:(ahR)D.

(67)

The equation reduces to Eq. (90) of Chapter 2 when ,th))l,
since the ratio
1/
H‘(lhR’

(68)
7, (ihR)

becomes exponentlally small, and gives an account of the
stabllizing effect of the walls when ‘hR‘ 1s smaller. The
full analysls of Eq. (67) 1is rather lengthy and is not
carried out here. Instead, the stabllization effect will
be exhibited by a treatment of the limlting case ,hR,((l.
Small arpument expansions may then be used for all Bessel
.functions, and the relations

DAY

|h” R7|<< | (69)

and i
MRS :{,

?

where _
h'/ #7 L wo’
<

are useful in estimating the size of the terms involved.

The relevant expansions are
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3,(ihe) =(H2)
1 (0= ()

H:(ihr;)--<,,i,°)('*7':“v’°yj"l%“"') (70)

T R )

and combination gives

(13:((‘\%)"':(‘-,"0):(' +7‘: h'.;”_,bq‘;'—/ht;D

and (71)
(b)) () - (et 'Jlnl*’hRD

Thus the dispersion relation becomes

G""““) " ( ) “‘Y%(K)] | (72)

For fixed k Eq. (72) is simply a quadratic equation
in w and 1ts exact solution is readily obtained. However,
it suffices for present purposes to determine w as an ex-
pansion Www,tw,r,,,, where «, satisfies the zeroth order

equation
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» v ".v
(k)= wy’ % (73)
and the correction «, 1s obtained from
R\27io
2 ) erm o ()2 (7l)

The two roots of these equations are given by

*eckut (“)g\r")

and (75)
iy (e (H)555)-

and the instability appears in «),. VWhen ¢ 1s purely

Imaginary (a collisionless plasma), the system is stable,
as before., When o has a posltive real part, the system

1s stable for wavelengths for which

Wy
ku<<}§§'€>

or (76)

)~>2AVR(7i$:—>

and unstable for shorter wavelengths. For such wavelengths

Eq. (75) may be used to compute growth rates provided that

(_““n_'%[mrﬂn ](ﬁg« } (77)
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Otherwise, Eq. (72) must be solved more accurately.

This analysis has shown that one effect of metal
walls 1s the suppression of long wavelength instabilitles,.
However, it does not follow that the maximum instabllity
growth rate has been reduced. Growth rates still vary
from O to about &), but in this case they are assoclated

with a finite range of wavelengths.
Arbitrary Beam Density Profiles

The analysis of Chapter 2 1is not greatly dependent
on the agssumption of & uniform, sharp~edged beam. Ar=-
bitrary density profiles (in particular, the Bennett
profile, which would be expected on statistical grounds)
may be treated by similar methods. For disturbances such
that lhrJ((].the treatment leads to a dispersion law
similar to Eq. (173) of Chapter 2. The analysis has been

given by Rosenbluth e3 and will not be repeated here.
Summary of the Chapter

The low frequency, long wavelength instabllitiles
of Chapter 2 are subject to many influences not studled
in that chapter. The present chapter glves a somevhat more
realistic treatment of the background plasma and examines
the resultant modifications in the dispersion law for the

disturbances. Subsequent chapters willl study the modifi-
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cations due to the microscopic beam particle motion.

When the self-magnetic field of the beam 1s large, the
tensor character of the plasma conductlivity becomes very
pronounced and requires a separate treatment. An approxl-
mate analysls of this problem is given in the first portion
of the chapter. It shows that while the pattern of plasma
current flow is greatly altered by the Hall currents, the
dispersion relatlon 1s not. The precise alteratlon of the
lew has nct been established, but 1t 1s probable that the
dominant effect appears in the logarithmic term of the
dispersion law as an apparent lncrease in the beam diameter.

A crude analysis 1s given of the effects of plasma
density and temperature gradlents. It 1s found that for
0°>0 and lhrol<<1 the dominant effect in each case 1s to
decrease the drag force for fixed «w and thus to increase
instability rates for fixed k. For temperature gradlents
the scalar conductivity is smaller in the region where
screening currents flow, so that the currents extend to
larger distances and react back on the plasma less strongly.
For density gradients the screening currents also flow at
larpger distances, but the effect is due to the inhibition
of current flow near the beam by the large self-magnetic
field.

The suppression of long wavelength instabilitles by

conducting walls is also 1llustrated., The effect does not
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reduce maximum growth rates but it does elimlnate those
instabilitlies which would be most effective in disrupting
the gross motion of the beam. Finally, the extension of
the analysis to arbitrary beam density proflles is indicated
but not developed in detail.
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Chapter I
A IIICROSCOPIC ANALYSIS OF THE CONFIGURATION
Method of Analysis

In this configuration the perturbing electromagnetic
flields affect beam particles and the background plasma
in quite different ways. Beam particles have a large z
velocity and underro raplild, large amplitude oscilllations.
They sample fields in larpge regions of space, and their
response 1s markedly non-local. In contrast, plasma
particles have no systematlc motion and, to good approxi-
mation, respond locally to fields. Thus the preceding
analyses of the confisuration have treated the beam
dynamics and the plasma dynamics asymmetrically, describing
the beam dynamics in greater detail, In the following
nicroscoplic analysis, thls asymmetry is even more pro-
nounced., A reclativistic coilisionless Boltzmann equation
will be used to describe the beam dynamics, whlle a scalar
conductivity will summarize the relevant plasma dynamics.

This treatment of the plasma faills at very high
frequencies, primarily because the beam neutralization
1s not adequately described. IHowever, such frequencies
are much larger than the betatron frequency, and the

model 1s applicable to a broad range of disturbances,
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including certain well localized, very high frequency
disturbances. 1lo attempt wlll be made to increase the
complexity of the plasma model, since severe mathematical
problems are encountered with the present model, and
since previous work sugpgests that the neglected effects
are small.

An analysis based on the use of a collisionléss
Boltzmann equation for beam particles has sufficient
accuracy to describe disturbances of any freguency and
wavelength, provided that the growth rate of these dis-
turbances 1s larger than the collislon rate of the beam
particles., The analysls is simplified by using a non-
manifestly covarlant formalism and by adopting the
approximate relativistic beam dynamics developed in
Chapter 2. This two-mass approximation is applicable to
highly reletivistic beams, and the longltudinal mass mzﬁ
1s assumed to be infinite, except when very h}gh frequency
disturbances are considered., These appnroximations greatly
increase the mathematical tractability of the model without
sacrificing much accuracy In the description of the beam
dynamics,

The basic equations of the model are first written
dovn in detall. An equilibrium solution having the macro-
scopic properties specified in Chapter 2 1s obtained, and

the beam particle orbits are computed. The stability
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problem is then formulated by linearizing the equations
about this equilibrium solution. Maxwell's equations are
unchanged in form, but the perturbed distribution function
is obtained as a certain integral of the perturbed fields over
equilibrium particle orbits. These orblts correspond to
betatron oscillations of the beam particles and are respon-
sible for the macroscopic beam pressure. The configuration
is not well described by the standard orbit theory approxi-
mations, since the orbilt size is comparable to the beam
dlameter.

Appropriate field variables for the stability
analysls are suggested by a closer examination of Max-
well's equations. The perturbed current 1s separated into
plasma current, which 1s incorporated into the homogeneous
f1eld equations, and an unspecified second current, which
is treated as a driving term. As before, all physical
quantities are assumed to have their t, z, and # dependence

contalined in the factor

W = exp i(wt'kzo-ma)’ (1)
but here m may take on any integer value. Thls permilts
Maxwellt's equations to be wrltten as a set of coupled
ordinary differentlial equations. By proper cholce of
variables, the equations are separated and solved in the
form of integrals which depend on the second current.

These solutions become integral equations when the second
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current is calculated from the perturbed beam distribution
function. The stability problem 1s thus simplified by a
transformation from differentiasl-integral form to purely
integral Torm.

A lenathy evaluation of the perturbed beam current 1s
hen given in order to display the integral equations in
slmple, explicit form. A reduced set of equatlions 1is
also obtained by assuming that the transverse beam velo-
city is much smaller than ¢. Solutions are found for the
equations and reduced equations, and in both cases the
dispersion relation appears as a condition that the
eonations be solvable. A detalled examinetion of the

results is given in the next chapter.
Formulation of the Stabillity Problem

The labeling of field varlables will follow the
conventions established in Chapter 2, unless otherwise
stated. Both rectangular and cylindridal coordinates
will be used during the analysis, and conventional
notation 1s adopted for coordinates; e.g.,
2 (% ¢7)

and (2)
< T (v" v;’v‘)

denote the position and veloclty of beam particles in

rectangular coordinates. It will be convenient to
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denote the parts of vectors which are parallel to and
perpendicular to the z axls by the subscripts / and AL
respectively. To eliminate confusion with the beam

particle velocities, the symbols ¥’, Y, , and ‘Y will
be used for the macroscopic beam velocitles. The general
bean particle distribution function is denoted by r'and
is chosen to depend on the variables t,‘£, and,x. Other
definitions will be introduced as needed.

Maxwell's equations and the plasma conductivity

law - - Egs. (2L) and (25) of Chapter 2 - - must be

supplemented by the Boltzmann equation and by the relation
-/
¢ =—(¢/c.)fd.’vlf’ (3)
between f' and the beam current. As before, it 1is assumed

that the beam particles are electrons. The collislonless

Boltzmann equation has the general form

F(wsy f’+(zi-x'vx)f"0 ()

and states that f' 1s constant along particle trajectories,
The time derivatives (d/dt)r and (d/dt)y are
determined by the two-mass approximation to the relativistic

particle dynamics and are evaluated as

d

—

r
t“

-V’
L3
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e (9 IR

and %F-!" - -(T"'-'V.-,—XEQ tv xy). . (5)

In this chapter the last part of Eq. (5) 1s replaced by

the simpler condltion

d 6
a—x"— (o] ( )
3
(L.e., the longitudinal mass mv, 1is assumed to be
infinite). The Boltzmann equation then becomes
d,y.v)f-[2 Ly axB]. ‘o 0.
(_&- +y-v)f (;Z-X[E M "..._L VX*)'F (7)

The relativistic invariance implicit in Eq. (l) has
been lost in Eq. (7), but & very good approximation to
the dynamics of highly relativistic, low temperature
electron béams has been retained.

When‘gl andlgf are known, first integrals of Egs,
(5) and (6) may be found. Any function of such constants
of the motion is a solution of Egq. (7). Solutions
corresponding to the equilibrium configuration of
Chapter 2 are obtained by finding constants of the motion
associated with the equilibrium electronagnetic fields

E =0

s,
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and B, = vxA,
where
é = A(r)(o, 0, ')a
(8)
JOR G MR
and

<

A(r) = _”:E‘_r"—‘t)r‘*.p ln(r/r.) for ryr,,

and by finding a function of these constants which has
the macroscopic propertles necessary for self-consistency.
That 1is, the beam must be entirely confined to the region
:réqb and must have a uniform density n, and a macroscople
velocity V% -(0. o, u—) in this region. It 1is assumed,
as usual, that the plasma neutralizes the beam without

appreciably affecting its own uniformity. In rectangular

coordinates the magnetic fileld takes the form
27eN,w —
[ e CR (9)

while the equations of motlon become
.).( fuJ.vK - 0,
§reEs

and (10)

[ ]
v = 0,
E
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where

o~ s)

Constants of the motion

MI = Vo

o« = vxy"' “J-Yxr) (11)
and > vv -

M, = V,- + W, av.

are obtained by inspection, and the combinations

b~ &

and . - v (12)
ﬂv-dv*“,.v“‘-’-“’. "

have the symmetry properties required by the config-
uration,

The constants/i and ﬁLare used to construct solu-
tions of Eq. (7) having the required macroscopic proper-

ties. This is done by finding solutlons fo of the form

£(n v %) =nh(8)s04.), (13)

wvhere h0 gsatisfles the conditlons
h, > O,

Jav ho(v) =, (1)

and

.fd.V,_V,_ “\°(V,_) = W,
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and 8, satisfies

£ ™o
and (15)

Jdvxdv#gocd,)- | for ren

-0 for r>r.
The function h, is not uniquely determined by Eq. (1l).
For simpliclity, the solutlon
h, = 8 (v - v) (16)

will be adopted, corresponding to a beam with no longi=-
tudinal temperature. Other admissible choices for h°

will not be considered explicitly, since they would not
change the Instability analysis appreciably. The form

of 8, 1s much more strongly limited by Eg. (15). The

integral condition may be rewritten as
[~ oo d

=0 forrd>r,
vhich, together with the posltivity of Bos forces g, to
have the form of a delta function centered aboutlﬁa=a4'nf.

The simplest such solution,
g= (e’ [-])s (18)

1s the one adopted. The beam is thus forced by Eq. (15)
to have no transverse temperature. The form chosen for
ho permlits v, to be eliminated from By by means of the

identity
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s=F (- ), (19)

where.«)p, the betatron frequency, 1s defined by

W (BTN &
(3 —, <"

and £ 1s given by (20)

E=rT=r",

The absence of thermal effects does not imply the
absence of beam pressure (i.e., of momentum transfer),
Vomentun is carried by the macroscopic beam motion; but
the individual betatron oscillations of beam particles

also transfer momentum, and this effect is quite similar

to a thermal pressure. A comparison between the pressure

(P)-7p ¢ (7 2o,
: o o / (21)

obtained in Chaptef 2 and the tensor

tensor

¢ » L 4 » o
(P.‘,j): n."'( fdvx dv,“g. (V.L - w:g, ) A V'Va_
%Vx v O
A S
(22)
TeTfs o o
=7k (5 4 o
o o o

computed from fo verlifices agaln that the present equllibrium

conflpuration reproduces the macroscopic features of the
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previous confipuration. It also lndicates that the
nressure is due to microscoplc particle motions of a non-

L]
thermal nature. The discrepvancy in the values of P is

zz
of no great importance, since this component 1s not needed
Tfor the analysis of low frequency, long wavelenpgth dis-
turbances.

The particle orbits responsible for the beam pressure
are obtained from the equations

Rﬂ-u@;l - O,

g_+q;%.= o,
and s _o. (23)
The particle motions are composed of a uniform velocity
in the z direction and oscillations (betatron oscillations)

at the betatron frequency in the x and y directions.

A
Solutions for time t=t+t’ which have the form

Q-x("t\)cx 7Y a-b't”-(v‘/wb) sen %f'

A A .

Fr e @y o ¥ (/) wt (2ly)
and

foz(f)ezry ¥
vReTe e x4 g &n
and

> >_ T "J
g [T

take on the 1nitial conditions‘a_and‘x at time t and

describe all possible equilibrium orbits of the beam par-
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ticles.

The stability problem is formulated, as usual, by
miving the linear equations which govern small departures
from the equilibrium configuration. The equations
cgoverning the plasma current and the electromagnetic
flelds are already in linear form and are unchanged
for the stability analysis, but the Boltzmann equation

becomes

e w (R uxd), ¥

-G)Eee8) ]t

This equation states that when the perturbed electro-

(25)

magnetic fields are lknovn, the time derivative of the
perturbed distribution function f, evaluated along the
equilibrium particle orbits, is a known function. 1If,
in addition, £ 1is known at some Iinstant of time, 1t may
be found at any other instant by inteprating Eq. (25)
along the equilibrium orbits given by Eq. (2l}). This
technique may always be used In the search for instabil-
itles; since solutions with exponentlally growing time
dependences are sourht, f at time —-oo 1s necessarily

zero, Thus f at time t is given by
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A

F(toga v)-(&)/ ar[Er£exB)-v; IE, (26)

vhere all quantities in the integrand are evaluated at
time t= t+ t’; that is, the quantitles t, r, and v are
replaced by the values %, g, andlﬁ specified in Eq.

(2ly) and its derivative. The integral may be simplified

to the form
fo(ezme Yo 4t (B tinB). )

where
’ a 7- L 4 >

'9. = bv&"Q(vJ- wb & )’

since g, and h  are constants of the motion. The per-

turbed current, needed for solving liaxwellt!s equations,

is then given by
. > 3 . A . A A A
(B ehg L oo tdod) e

This equation requlres an extensive evaluation before
1t 1s helpful in obtaining an explicit solution of
Maxwell!'s eaquations, but bvefore this is done, it is
useful to examine the structure of llaxwell's equatlons

more closely.,
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Integral Form for Maxwell!'s Equatlons

The discussion of Maxwell's equations will be
carried out using cylindrical coordinates and adopting

f(r), defined by

E-}ki(r). (29)
for the basic variable. The magnetlic fleld
- (30)

,(%)&(L’_'L{;;kfe,ak{.%ﬁ, %51;...%-@'_{>

is obtalned from the curl E equation, the plasma con-
ductivity law becomes
- (31)

and the second current is denoted by

=) (32)
The following reduction 1s based solely on the fact that
the t, z, and € dependences of all field variables are
contained in the factor yL; however, when the stabillity
problem 1s analyzed further,'i will be taken to be the
beam current. '

The curl B equation ylelds the basic equation

governing f(r), namely,
£y 3
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IH(vx¥. f)'(ﬁ’tﬁ“’"%;)f f."(“tw)fj(')' (33)

The divergence equations are needed only as initial
conditions, and, for the instability problem, are
satisfled identically at time t=—-ee. The first term
of Eq. (33) gives an awkward coupling of the components

of.g(r), as shown by

These expressions may be simplified by 1sclating the
terns ‘\"f(') and (v/"f) , and by making use of

the conventions
(o B (o bl
| =¥ (wf)

and (35)
(46 =# (2 §)-

The first result 1is
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[vx(vx}"fl f(k\(*i(v f) mr. d{.—%]{*%‘%‘ﬂ),

[vx(vx)hfﬂ /(kf ""Vwc)*[ L1d J %I.)'

and

vX(vx#-Fl )/‘(’& fu T"T"&F :;)‘()

This increasing simllarity among the components of

VX(VX#:E‘) may be explolted by introducing the

definltions

and .'Lﬁo

=

and using the operator identity
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d 14, g-L.
ar v’ ' (38)

The +, -, and z components of Eq. (33) then yleld
* * pvs L) A
Q¥ = a'(s; D) |

Qo f = A‘(V.'f)*(igﬂ)i—’ (39)

. 2 AL A WIS
Q. - ik(g£)EZ2g,
The only complicating feature of Eq. (39) is the coupling

furnished by'Gz-i). This is eliminated by use of the

condition

(k) D= (Y ) o

obtained from the divergence of Eq. (33). The field

equations then take the form

Q. £ = ()i 4154
Qo F= (7 éﬂf‘&“*‘% (1)
and QN‘ ‘C’_ =(_4Zz_ré_g_)(d:z + ka_%%’l)’

and thelr solutlon 1is straightforward.
The fields must be finite at r=0 and zero at

raeco and can thus be obtained by integration from the
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Green's functions of Appendix I. For simplicity the

results are expressed in terms of the Hankel transforms
o= +
_F’(ﬂ)=‘[ rd.rJ—mx. (Lr)": (r)

and | (42)
F(Q=/"rr] ()L (),

rather than of the flelds themselves. The notation and
conventions of Appendix I will be adopted; in particular,

the condition
Reh> 0 (13)

1s imposed, and the solutions may be expressed as

F (2)- (f‘frcu))/ e’ G, (£,r )[b_( )"kv;,*(v J’]

P,

and | (4dy)
< oo ’ X -m ( *}
P T e )
The equations for Ft(ﬂa) may be simplified by the identitles
.[ ’d.r'J (l' )['—z- T] Ve J)-—f rfdv (v d’)[m Jmﬂ('ﬂ')

o N
and (45)

L] @I B\ = T })[d,, =, @)
=+ LTF4 T (2r Xv‘!‘.)’
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provided that the second current venishes more rapidly

than r?Z as r4eo. Substitution into Eq. (l)y) then ylelds

F@=-LE e e e Terk

Fie)-- 2% ] rde? [T (&)t TiEwT "'XWJ
(46)

and

L[ e L O )]

This gives a simple, explicit solutlon for the filelds
when the second current is known. For the stability
problem the current 1s known only in terms of the
perturbed fields, and Eq. (L16) leads to a set of integral
equations for F*(f) and E;Cq. A single integration of
Eq. (46) ylelds an analogous set of equations for the
variables fI(r) and fz(r). The set 1s less useful for
the stabllity problem, however, and will not be given
explicitly.

Evaluation of Perturbed Currents

An extensive reduction of Eq. (28) is needed
to obtain explicit formulae expressing the currents
x
it J,» and (v -J) as integrals over F (1) and E_(I)

As a first step the current is separated into local and
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non-local parts. To do this, the orbit integral of Eq.

(28) must be examined. The expressions

{-:Xu"b‘—f - V E

and (47)
Ly, (xnxp)= %(XL'E A>— o (.‘!A—‘VL) E

are obtained from Zgs. (1), (29), and (30) for the
electromagnetic filelds and may be simplified by means of

the hYdrodynamic time derivative

-2 de(uw)

= i(w + kv) *(.!;'VJ.)

which is valid for the orbit integral. Thils permits the

(48)

integrand to be written as

(B e B) (2 B S wE (49)

A
for time t, with a similar expression holdlng for time t.
The time derivative 1s easlly Integrated, since vz is a
A
constant of the motion and Ez vanishes at time to-oo.

The current then takes the form

.i (%ﬁ)fd- vy hg [ k- (‘“"“")f 4t )] (50)

wvhich gives the required decomposition
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O (51)

“L e

The evaluation of the local current

ey MO 52

I
is quite simple. Symmetry requires that iL be zero,

while f‘L is given by

b (";‘%_‘%') ﬂ(’).[“d":flvj'* S(VI- w."cr)
- (2) L) E) (53)
=_%Xfa'§l':))8(r_ ...) i

The result i1s a close approximation to the surface current
encountered 1in Chapter 2.
A direct evaluatlion of the non-local current 1s

quite difficult; ; and 3 are awlkward to compute, and the
integrand has a very complex form. Thus a subsidiary
decomposition of the Integrand

y-E=v E~ %(V—E’f v E_) (5L)
into plane waves ls adopted, permlitting the direct
use of rectangular coordlnates and simplifying the
form of the inteprand. The decomposition 1is suggested

by the identities
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E=ri()

- ) L (0T, (2) (55)

. v0-Z) 0 s 849
ei(kz*utz[“iu!&rgi(L)°‘"(8 'Z‘)e 2- .

The definitions

B=4+ 6,
k=L ws f
k*=L sin g (56)
and E ] J;”del‘[uffem (6-£)
imply that
Lresdakxeky (57)
and yield the decomposition
=3 ea(kuwt)erae pmﬂ F!(ﬂ)e&(k'“k‘})
and .- e;(kuwt) ‘3... E(L)ei(k'“’k**)- (>0
The further identity
R (59)



and Zg. (58) permit Eq. (5l) to be written as

(x-) ==ty B Ear)e ki

z mZ

p 7] 7 KXt (6 )
*'Z \‘—ivz’]em F"(L)-o-[vxfiv’j E‘_'ra)e'(k kg’) , 0

i

whlch depends only on rectangular position and velocity

coordinates and 1s thus readlly evaluated at time /t\ by
means of Eq. (2l).

It 1s also convenient to introduce the variables
s, v, & and A, the frequency fl, and the phaseﬂ by

means of the definitions
S = “/atl
v = x4

z T

V= Vve

x=w-d=(x+6)-B

ﬁ .(‘."":‘kaz)
B

and ; aec(szwt).

(61)

Use of Eq. (2lj) then yields
(kt+t) = (kl*“’t>*ﬁ 35
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A
Vp= Vo

[0 b4 «c?] = [Vx 4 iv.‘_]cos S- w, [x t iy_]a‘m s -

. Lol
= ei -8 [ve wS s-u)br sin sJa

and
kv+k

(k.ﬁokl%)=(k'x+k,7_)cos s +( ' :)b »%) sin s

c0r cos d cos s *(%!-)m X sin s,
B

A
and (_\25) talkes the form
ifts = ilr cos dcos s i(ﬂv/uh)ma A sins
¢

(&.E)-)}e He

where (63)
-8_

H- va F (J_)f é-(ve' ¥ s 3-wyr SN s)¢ Pm.... Ff'(l)
+i—(vea¢cos s-wyr sin s) ewr’m_‘ F-(L)_

The Integrand may be written in more convenlent form

by introducing the operator identity

P"‘;_LGepn

: o Z n(@-Z (6l)
-e,ma,of ld.ﬂ..[ 7%@ ( “')
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and the definitlons
H=v P (1)*- (vc-ucoss-wbr oéns)Pm" F‘.(L)

-o-é-(vcu o3 S—w,r $ins Pm-l F-(l)

and (65)

KeR(%e, %59
=Heih cos d cas s e;(q'_\/ug) cos k sins

This leads to the expressions
A ins o
..".'\E)'-)ée K (66)

for the integrand and

D) ok e [ nan P RE ) o

ll‘_

for the non-local current. The perturbed current thus
has the form assumed 1In the reduction of iflaxwell's
equations, and will be expressed as a set of lntegrals
over the Hankel transforms.

Further reduction is needed to obtain Eq. (67) in
explicit form. Fortunately, certain of the integrals are

easy to carry out. 'The components

i (ﬁv:‘:)f 10 L8 5 L K (v )
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and (68)
B o),

where

- w o kw\
n-ﬂ(u): “JB )
and K = .Z(V, oL,,r, 5), (69)
may be simplified by an integration by parts which
eliﬁinates the derivative of the delta function. Attention

willl be restricted to the region r=r,, Since the currents

are otherwise zero. The necessary 1dentitles are

.[udvv Kg; 3 (v’-— w:bj:-.!m ng(v'-w;t.'Xl +V -g—,;)K

and (70)

where
clr wsgus s

(o et s gy o
i m b e,
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2K (_"-_!'_,)s(.h s ws A K

v “\wy
. i~ ilr co 3 (av/wp)cos X sin s
,.[6“R+,¢ lR]" * wsse(/ ) ’
R = uP F(j’)'z"‘”a' sin [Pmo-l F*(l)*Pm-l F-(“Q)J’
Y mz (71)
=k s s P F(2)
and
R- = f—gua s Pmﬂ F*(ﬂ).
The components become
t > . s La7y, zid[_._ l)K]
n *(—i—{:!t:)—!;dsﬂe . zr © (v’bv Vewgt
and (72)
s ( _') .é_
J’xn (‘m:‘/.bu))f dsfle ( = [K] [%DVK]V'UBQ

and are simplified by carrying out the of and J integra-

tions, interchanging the oider by means of the relations
of = A+

7 % o
and .[Lvdd.[u"dx:’[" JJ[ d\. (73)

The calculation 1s facilitated by introducing the

)
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T'f.dS-QC-Lm ’
L=j°O-£dl,

e ad mt’—z
- 7 A,

T
LB

(7h)

#geCIPCO&gm’s

b

and ¢_eiﬂc s A sin 3

+

Using this notationJ: becomes

o (e "f][at“‘(wﬂa s o)
_(ZA_:_)T s'msLF(I{Dmle. A]:Gr. L(HLE:. anscosx)fi"]
() ranstilefy. < e e e )]
(L)rasslFUp,, < et ite s o)) (75

,(_Z_)Tus sLF (f[]) e3er¢8¢][ At (& ide sins usl)¢]

and JZN beconmes
o (PR g o[ OR ¢frw»...¢p
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(cs

\T sins L, @), 8, |[Gite wsn 4]

( )Tsm SLFWP,, 2 |[Gile e 4]
( ﬁ )r sin's LF (1)[M ][G Le wsx}éJ (76)
(

ﬁs“"-" LLF D, e-is;ér][Go.-m(' rile sins os X);KJ

The 3 and 7\1ntegratiohs are lndependent, and each one

>T ws s LF'(I)P,,,_, edf‘,][cna(' vide sins s D4 |-

may be carried out. The basic integral

. 7 . .
j dx pX sn(x—z-)asy(osx, ecp-; J-m (*)
) 27 © P

(77)

yields

:Dme.tigﬂ; -t La;”i‘ (lr s s),

me) eﬁ.s%r = LJ;;L (ﬂl— @s s) Io' *

=-iJ (f,r' ws 5) for -
m .

wre A T ws s for s

=-—LJ—M_Z(.&— wss) for -,
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D e-.-XenS/d' -7 (1.— cos 5)"0r+

m+| me|
= - ];_l(lr (4.1} s):or-,
i £:d
-y & € /rz —J—mﬂ (.Qr cos s) for +

= J;-' (,er w0s s);or—,
Grgt R f{c = LJ" (.ﬁf. sin s),
Ges A /& = ;_J;(lesin 5),
Getilws X/Q{ ,%_[.,I(le sin 9+J;(l; sins)J,
G'eu\(ndr_ sin slos\>{= ifle sins I(ﬂc sin s),
q(zu'le sins cos 7\> ?fa =2 I@e sin s)—_ﬂe. sins ];(.Qe. sin s),
. Getzd./a - _J;(_ﬁf_ sin s),
G—e.tuxoos A }{ = 2"‘—[— J;(ﬂa sin s)-rJ;(af— sin 5)],

(78)

and

rZix

6’?— O+ Lecscnsms))y{‘ -(-——&ZzﬂiXJ;'J;’ ezésms {)

=’d sins J;(,ef. sins)’.

which 1s sufficient for the evaluation of the current.

Substitution into Egs. (75) and (76) then gives
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e g o T e )T, 0

f(‘:i)LF’(l)T IEQ;— sin s I(.QL sin s J.‘mz (.lr cos s) ]
3

tcss [3 J (1& Sin -’)-,Qe sin s I(Ie sin s)]J'm‘ (Qr Cos

Le sins w3 s J(Le sin 993;*'(_0,.' s

+(-2—)LF'(2)T sin s J: (lb sin s)J; (lr o3 3)
+ N (79

‘_N - (_é.:z)l_g([) Tle sins I(_Qb Sin S)J:“_| (1r ws 5)

_(.é_> L Ff(ﬂ)T CQ,. sin'S I(.Qe sin s) J:" (.lr cos s) :]
)

_--,Qc. sin s ws S J;(ﬂf_ sin S)J:n—l (ﬂr ©s s

«(—é— LF (0T 0 sis U;(Jc sin s J;_Z(L- ws s) ‘
Eos 5[83;(1.& sin s)..,Qg_ sma]"(ﬂe sin s):’I'__. (Ir @ss),
and '

j',_n =(A‘;‘£(:_:'_°§TL ffz 0T (.lr. cos a)- Lwyr, sin3 F*(!;)J;” (&, os s)]

-,’i v, sin s F‘(L) J;n_. (ﬂt; s s)

w”
B

_(A “':’)Lfi(l)ta‘.' sins ]“(ﬂe sin S)J;‘ (.Qr s 5)
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*—(Z,A“- )L F*(-Q)T [ﬂ* sin’s Jl—("g"' SL""’)J;MI (Lr s 5) )J

wp +de sin 3 ws s I, (Je sin3) 3, (Lr o3

Aw - A 3in”s T(ﬂe sin syJ__ (,Qr ws 5)
'(zwn 6>LF (I)T[-,;& sin s c'os s J (12 ZH'SD J;'(fr s s) .

These expressions may be brought to simpler form by
evaluating the brackets occurring after terms of the

form LF*(L). The brackets are numbered consecu-

tively and are given by

[ ]2 (e TL (o320 1,
[ ] = _-;a—g (SLnsIJ;*.)+(L_:_:_2.Y_SS__"J_ J:]"mﬂ )

2
J = &5 (pema T ) o (=2o 2T

3

] ]; -2 [fsins IJ,,_)+(_-_=:\L=_~L>I T

Cos 3

[ ] - A T
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An integration by parts 1s used to remove the derivative

with respect to s, and the currents become

Az wpy o
d.u - .t(% )TLT(J-& sins J',' (.¢r ws s)

o'W

ws s

(..m sin”s * l)(pf(1)+ F)-asns(F0)-F(2)
- (’fﬁ)la sinsF (2)

and (81)

}zn = (“’b"‘g("'-)\TL B w‘: r° l‘;(!,)]'m(lr. s s) ]

R w /

- 4 sin 5<F T, (@ cos pFE)T, ez e .-9
i |

(_'fﬂ_f_X___)TL sins T(lt, sms)] (ﬂ- ws .s)

7w/ \“p &

(7.‘:5—% (0 F(0))-0(Fey F'(l))
- eE
The total current is determined from LEgs. (51), (53),

and (81) and, to facilitate the stability analysis, is
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written in the form :
{22 ()L Tpep L dsine g e =0T, pr s 9)-
( “')Po; sins E_(F)HQSMS[F*(?)' F_(P)]

“h%

_(m sin'st| [F+(P)+ F-(P)]

WS s

(82)

and

‘(*’"”z-"" i ("":‘L-“) ()L dsine L s con )
L+stina ins#n s -E_(t; s s)
+(%§X—£;z)[ ”Pdr!;dsmcmssm sJ| (pE sin s).Tn( pr s S)-

(b )Pr F(p)s [FG)-F ()]
N s L)

(83)

(OS S5

These expressions are used in the evaluation of
o d,; im ik j
@ )=t ari ()2 () ik,

“thi, e (e S (5 CFY (8
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+
The contributions of J~ are assessed by means of the

identities

(5:1@7'&&] mz| (Prw’5)=+f’“’~55 J (rr wss)
E;I.(Fe sins).-. % sin s J'"(Pe, sins)

P£ ws s sin s J:(PE sin5)= % sin s J"(Pc sin s)

(85)
pr sin 5[‘);“’ (Pr WS 5)- J;--I(P' cos 5)]-,6 %J;(Pr @5 5)

pr cos S[Jmu (Prmss)+ J;H (Pr cos s)]=lm3;" (rr ws s)

wa (o= [F () F Y- ()

where { } denotes the bracket ocecurring in Eq. (83).
Substitutions then yleld

(e %”—’“-‘l]ff[%-‘—"lﬁ]f)
( )j F“PJ dsine™

_‘E-J"" (pr s s)pe cos s sins .T(Pe sin s) {}
rT(pe sins)pr sin”s (N G cos s)- JE"_|(F7- wss)] | (86)
(e sin ) sinsprass[1, I o] FTF)

b
r

=(wa f PdP,f deine 5573_(5«:15 T(PE sms).T (Prws 5)()

u?
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and the derlivative with respect to s 1is agaln removed
by an integration by parts. This permits the divergence

to be written in the simple form

e ) M=) () S dsine L (r wn)

o(_b_af Jsaﬂe ssin 5{(0; ws s)
(87)
<‘U; w\ o, _ O3 .
ur)e)—ey P(JPJ dsifle  sin SJ;(PE. sin S}Tm(lﬂ, ©Ss 5).
B —oo

Gy RO OREC
~(m22=\F'6)r ()]

A lengthy reduction has led to Egs. (82), (83), and

(87) for the perturbed currents. These equations evalu-
ate the currents appearing in Eq. (}/6) in terms of
Integrals of Ft‘ and Fz; substitution gives rise to a set
of integral equations for the Hankel transforms. The
formulation and solution of these equatlons completes the
stability analysis. Yhen the Hankel transforms F¥ and Fz

are knovmn, all other perturbed quantities may be evaluated.
Integral Equations for the Stabllity Problem

The r' integrations occurring in Eq. (I46) actually

4
run from 0 to Ty, 8ince the currents are zero for r>r,,
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This permits the form of the integrands to be simplified

by introducing the new variable ﬁ s defined by

r’—rc wS %,

£ = r, sing,
(88)
end oepe Z
in place of r”’. It 1s also convenient to define the
operators
M=r (Lp)
=‘f%d¢ sin f ws ¢ I(p'% sin s sin 5’)3;,(?‘; w”“”f):{;(b’o “59‘)
and (89)
AI\ = A"(IJP)

=,/‘%al}£ (os/dJ"(p': sins sin y!)J;(Pr; 0S5 ws 9-];1 (lr, ws ;‘)

With these conventions the substitution of Eqs. (82),
(83), and (87) into Eq. (446) yields

[~ :
Fi(1)= 1(J‘w_——mﬂ)—) 'EL (r.)— i‘dslnztns -E_(r‘ s s)

(@ hYh- k‘)

w

r o «Q
+<w° )j dsifle si:s‘fr(!; ©s s)
- o0 _J

V-
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(L7 + W) ‘oo
— ]
. Zps sins F )+ ,DA sin s [F'(p)-F €“_
mE lAEF.‘ w msin s ¢_ ﬁm&vv.v F A_LH_

dabsns , frE@va(2EE - ()
AtU-. AT.‘ FYV m m snsS +
Raeae

@S S

and

) = r..\NHSN\n_nu/l r)- [*dsi n..b.mh r. wsS l
AQ A@ar.x_ﬁﬁ\ £(x) .m..a_ SRR

+A& o mm..bnu mmh (r, s mV

w

ﬁ. oo
bk r\sZ s _

?‘ 5@, .&\ 1?\ dsife A
ERACRUCS oS0

. -Aﬁlliumﬁu F(p)+ F(p)]
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Thus the stabllity problem has been expressed by Eqs. (90)
and (91)., These equatlions are not complete as they stand
but are completed by Eq. .(89) for the operators &, 6  and

r'“ and by the relations
m

Fg(r. s s)=[“rdr '.l;(pt; ws s)f':_(P)

and (92)
£ (ness)=% J " pep TG ws ) F'p)
2 Tpdp T (proces s)F(p)
for fr and fz.

Reduced Integral Equations

An expansion procedure is suggested by the
presence in Eqs. (90) and (91) of the small parameter
f‘(war./ w) . The equatlons may be replaced by an
infinite number of simpler equations by expanding the
operators and field variables in powers of € and
equating the coefflcients of the resulting power series

to zero. The procedure 1s made definite by using the

relations Ft~ F |
_Qr -— :~ hr —vk"~|
[-] FO [ (-]
P (93)
w ~wh
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and ~ A ~
1™ B ™

to classify the terms appearing in the equatlions. A
theory of the equations could be developed by estimating
the degree of approximation to the true solutions pro-
vided by n terms of the series solutions and by solving
for the series expansion of Fz' and Fz' Only part of
this program will be carried out. Since € 1s small
whenever the approximations made in the relativistiec
dynamics are valid, the major content of the theory

should appear in the zeroth

order equations. For this
reason attention 1is first directed to the derivation and
solution of these equations. The field variasbles are
expanded in the form

FE(2)=E* @)+ € (D ..

and

£(0)= £ (@) R/ (Dres (o

and direct evaluation yields the zeroth

° PY Qs po
(1)_-% L(e)-Sdste £ (nos S)] (95)

order equations

- (2) ("'Z‘T (ﬂr “‘b[ ( )‘[:dsiflemsf_:('; ws s)]

(2 » ‘I‘X“y

kT (wk /w dpor, F Qs
Zr‘i ( / )} f -Z’th—)_f) :[‘ds Qe suns Ah\ 2 (96)
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where, as before,
A = fEagasgT (b sine snd)T (pr wss ws )T, (5 0 4).

Thus the problem has been reduced to the solutlon of a

single integral equation - Eq. (96) = for onw). The

variables Fot_(f«) may then be obtained by integration.
The structure of Egq. (96) becomes clearer when 1t

is written in compact form with the ald of the functions
J..(L2r)
2) = _.m_(__e.__
&2 2=+ h”) °

» o ‘-n.s
M-, () Lo T ]

and . X p
NQ,P)'(% *gsite " sin s [*df us 4.
+ - Ao 4

.J;(P.; sins sin #)Jm (pr, s s wsﬁ)J;(Ig s ﬂ)

and the operators

M= [T dp M(p)

and N ,J”JP N(I, P). (98)

The equatlion takes the form
F(8)= G0,/ M(p) FL(p)+S “dpNLD) . (p), (99)
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where, for convenience, the superscript on the fleld
variable has been ignored, and in usual operator notation

this becomes

Fz =&ME+N€_.
(100)

The similarity of Eq. (100) to Fredholm!s equation of the

second kind suggests that a solution be sought in the form
FeGtrNG+NNGH+ -
-

-5 N, (101)
.= O
where, as usual, '
NG = G (£)
and (102)

NJG—*,ZOAP‘ ...,fa% N(2.p)-Np_ PG ()

when j ) 0. Of course, the right hand side of Egq. (101)
could just as well be multiplied by a constant factor,
since Eq. (100) is linear. Substitutlon of the trial
solution into Eq. (100) ylelds

i N'G=GME NiG+NT Ng

i=° ¢° Fe
| | (103)
-Gy MNGI NG,
i ¢!
or - &
NG = G-GE mnG.
' (204)
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For arbitrary choice of parameters - in particular, for
arbitrary values of k and @ - Eq. (10L) will not be satisfied.
Hence this condition plays the role of a solvability condition
for the problem and is, in fact, the dlspersion relation.

The formal dispersion relation is thus given by

— ¢
|=3 MNIG,
-0 (105)

where MNG =f°°dr M(f) G’(f)
and

MN&CT=1,F dr»f dp, ---‘.ﬁl’g MpIN(p, f-)“‘N(r}" ’7})6'("&'\

when j ) 0. This equation 1s, in a sense, the final result
of the analysis, since it glves a method for testing which
values of w and k lead to admissible disturbances. How-
'ever, the content of the equation is certainly not in
explicit form, and explicit results will be obtained in the

next chapter.
Solution of the Coupled Integral Equations

The full integral equations - Egs. (90) and (91) -
have a more complex structure, because of the coupling
between the various fileld varlables. However, their form
is sufficiently similar to Eq. (96) to permit an iteration
solution and a dispersion relation to berbtained in an

analogous manner. This can be seen more clearly by intro-
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ducing functions and operators which permit the equations

to be written in the more compact form
F(£)-a ()b b Feb F)
(K E+KF+KF)
and (106)

Fit)-xd Lo (2XbF +b F b F7)
HZ'E P MF )

where the expressilon
(b, E+b'Fb F7)

is independent of _£ . This may be done conveniently
with the aid of the functions
a,(L)s zh J:m(—.l,;!,

(L7+ WY h=k7)
d = [ik
v \w /)

d = ;(uLIQ/“L)
> bk (w ke

-4,
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Lz(P)= P[J'; (Pg)—‘!:dsdn&ms:l; (P'; a»ss)] s

b* (P)= 'L‘(:B—G% P,f° dsifte Msins J;t, (pr, s 3),

h™- k™ (‘“k/“')-, sl ¢_ NS “ ws
KL p)- Y k’)JP/ dsie s JEdf wsg-

'ZP.; .T(P.; sins sin ¢)J.;(pl; @wsS (os¢).-{;(1'; cosﬁ), (207)

IRC P

ZI(IJP)" da—Kz_ (‘a’ P)
o ls 2
(Y s gt

Z,PO;J;(PQ sin s sin;d)J;t' (Ps usscos¢)3.;t’ab;cosf)

=d, Kz(l’P) +Qi,a pra Sins,

PlLp) =4, K () {2 )a" [in sina-(mpz 2t

and
b 4 . >
+ - “pt . . m s(in"S5 t|
M-(ij)——-dyK (I:P)"'( m )Q [—cﬂsms— s S .)]’
where the operator Qt is defined by the equation for Zt.
The various operator expressions appearing in Eq. (106)

are then obtained by mulﬁiplying the corresponding
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functions and field variables and integrating over all

positive values of p. For example, typlcal terms are

given by
b F =T dpb () FL(p)-
K'F= S "dp K (L:p) F*(p) (108)

and MIF;,[” dp Mt(l, P) F~(p)-

The variable p which appears in these expressions is, of
course, a dummy variable and may be relabeled. This
freedom will be made use of in the specification of the
iteration solution,
This solution 1s found more readily by writing
Eq. (106) in vector form as
F)= o ()Xt E)+KE, (109)
where R _ t
F@)-(F@,F.L) .
t
2 (8)=(dLa(£),-d La(D), a_(,e) ,

boFe "k (IEG):

ns

BRGORIONION

b
KE = S dp K(Lp)E (p)
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and

PlLp)  M(Bp) Z(Lp)
K(‘Qa P) = "P-("Z’ P) = M—(ﬂ: P) - Z_('ZJ P)
K'(Lp) Klp K &p)

The linearity of these equatlons suggests using the

vector t
- £
3 ()< d, Lo (£),- 64 Lo (0), & =( » ’ (110)
where of ,» %, O_‘, are arbitrary constants, as a first
approximation to the solution and then seeking a solu-
tion in the form
o0 n
F-2 Ky
h+~0 i
(111)

=3'(!_)+Ka_+ Kth veee o
where for n)0 the terms in the sum are defined by
n oo oo
Cd I 0

Substitution into Eq. (109) yields

O

T Kp-2 (DL LK+ IKy (113)
N ?(1)"3‘:(1 :Z:é Knﬂﬁ:)’ (11l)

Abs
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and equating the components of Eq. (1lh) ylelds
(\-R)x -R £ -R & = 0
| > 8 3

._R.aL‘ (I—R‘_)oc’—R, x =0

(115)
-R oL|-R,oL’(I—R3) o - o,
where oo " .
.= . . [ - '*2‘:‘3:
R) gob" ) ..?l Tt
t
 (£)=(4, 22 (£), 0,0)
= +
- 5 (0-(g -4 La(L), 0) ,
and - ¢
$,()=(00,a (L)) .
Non-zero constants «, o« and of will satisfy Eq. (115)
if and only 1if
(l—Rg) —Rv —RB
o= | -R  (-R) -R,
-R -k (1-R,) (116)
= '—-(R""R“fR’).
Thus the condition
=R +R_ +R_
o2 (117)
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where

b 'K.1-.' J ”ka(r)°l-t- (p)

-~ ¢

and, for n)O0,
.& ‘ Kn?} = l./'“ AP»[ “dP. ﬁ_/‘”dp,.h (P) ) K(P’ P.)"-K(P.,-,’ rn).a’"(rn)’

gives the dispersion relation for the full set of

integral equations. It 1s again a scalar relation

between ) and k, and its detalled content will be ex-

plored in the next chapter. Vhen it 1s satisfied, the

solution 1is specifiled by the restriction ,
of = 0 =0y, (118)

and the fileld varlables depend on one arbitrary multi-

plicative constant, as before. It may be seen by inspection

that Eq. (118) reduces to Eq. (105) if € is replaced by O

throughout Eq. (118).

First Order Corrections to the Reduced Integral Equations

The solution of the full integral equations may be
used to check the accuracy of the reduced integral equations.
In particular, the dispersion relation (117) may be seen
to be a direct generalization of Eq. (105). However, it

1s also convenient to assess the rate of convergence of
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the perturbation expansion by obtaining the first-order

th order results,

fields and comparing them with the zero
This 1s done in the present section.
Direct substitution into Lqs. (90) and (91) yields

for the first order equations

P ¢ SR Pl (e T, e T )

r Sr +
s MR 1y [amne [T o)D)

(119)
+ J;‘_' (P"o 05 s) E—(P)

b

o Qs wh A, rF°
-(%;:-E;)L—J dsifle sms[’:‘t"" o (h—F) ]zPoE_ (F)

and

F(0-6O) "ML "9 NLRE P, o)

where A , I, G), M(P) and N(l,P) are given by
Egs. (89) and (97), and D(£) is given by

ey Gw( )/ deine™ [ pip G;,KP'- w2 3)E (¢)

+J;_'(P¢; mss)f-(PL

- 12 -



> | > k as
*BL- i.x(;/..?]/ ppu_deicie sin= & e

(-2 )

Use of Eq. (95) permits ;D(,L) to be evaluated more concisely

as

])(,c)=—cT(1( )j dsine /‘PdPA(r)G-(P)[ J &z‘,

Pf;uss

Ewk)(‘&%g TS e 2o sApi()A,

where
A(J-) =(—‘i1;:'—_!‘é';)»[”|>dp EO(PIJ’;(PQ)—:{;’JSLﬂemJ;(Pf s 52

=-"‘—:"——[ “pdp MG F(p)

%)
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or, in obvious notation,
D(£)- o« G (£) +H(2). (123)

Here use has been made of the zeroth

order dispersion
relation - Eq. (105) = in the simplification of A(L).
Actually, the dispersion relation has infinitely many
higher order terms, but these do not affect the calculation
to this order. They must, of course, be accounted for 1in
the complete perturbation solutlion. This point 1s discussed
further after the corrected dispersion relation has been
displayed.

The structure of Egs. (119) and (120) 1s quite similar

]
th rder equations; after F (£) 1s

to that of the zero
x

determined from Eq. (120), ﬁ' (1) is obtained by integra-

tion. However, the form of Eq. (120) requires that the

dispersion relation (105) for the zero R

order equations
be modified. That 1s, the relation between w and k is

a function of € , and Eq. (105) provides only a first
aporoximation to the relation. The required modification
1s readily obtalned if Eqs. (100) and (120) are combined

into the single equation

E’fer;_'-GM(F‘-'::,ep;')+Nr:_°+eoch+eH+enri' (121,)

and solutions are sought in the form

F_'-a-f NnGr

nso
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and — . (125)
F's=Y NH.
= n=o

Thus, the zeroth ordor solution 1s unchanged, except for

the dispersion relation, and substitution into Eq. (12))

yields
G+Z N"G-+6H+éf.N"H
n=y h=
- ((MEN"G+eME N'Hsex) (126)
+5 NG H+e°z°|N"H
n-j ne
or

T MN'Grel MNHreo
n=o nse (127)

The corrected dispersion relation 1s then given by
n oo "
hfﬁ’\N G_féau-éhz MN H, (128)
n:zo b4

where G{&), M(p) and N(£,p) are given by Eq. (97)

(79 4
P Bo)’

A(,Z)v( cht

y --(rfl'ﬁf dsine f/' pdp AG) G(r)[dx J'(x)] corg e’
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> v oo o » LS
M-~ [EEG L e L e 2= hPEDA, 29

N =1,

and, for example,
MNH= [ Tdp [ =dp .. [ “dp, M(EIN(p,p,)--N(p, P, )H(p,).

A direct calculatlon shows that the right hand side of

Eq. (128) consists of the first two terms of the power
series expansion in € of the right hand side of Eq. (118).
Thus, the perturbation theory builds up the correct dis-

persion relation, term by term, the nth

approximation
giving a dispersion relation which 1s correct up to terms

of order €'
Summary of the Chapter

The stability problem has been analyzed on a
microscoplic level by use of Laxwell's equatlions and
the collisionless Boltzmann equation. Certain Hankel
transforms of the perturbed electric fileld were adopted
as the basic field variables, and the perturbed beam
current was expressed in terms of these varlables. The
Integral form of Maxwell's equations then led to three

linear, coupled intepral equations which govern the
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development of disturbances. The equations are solved
by expressing the fleld varlables in the form of Infinite
serles whose typlcal terms are n-~fold integfals of falrly
complex structure, and a scalar dispersion relation of
the same general nature 1s obtalned as a condltion that
the equations be solvable. The solutlons, but not the
dispersion relation, depend on one arbltrary multiplica-
tive constant, which may be related to the amplitude of
the disturbance.

The equations and the fleld variables are also
expanded in powers of € =(wpr, /u) , and the integral
equations are replaced by an iInfinite set of integral
equations of simpler structure. The first two sets of
equations aré wrltten out explicitly, and series solutions
for the corresponding field variables are obtalned. A
dispersion relation is again obtained as a solvabllity
condition, and, as expected, the flelds and dispersion
relation form the first two terms of series expansions
of the exact solution and dispersion relation in powers
of € . Since the parameter € is small whenever the
analysis of the chapter 1s valid, 1t is to be expected
that most results of physical importance will be obtained
from the first terms of these expansions.

YWhile the reduction of the stabllity problem to
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integral equations has been given in detail, only the
general structure of the solution and the dispersion
relation has been displayed. Xnowledge about the detalled
behavior of disturbances 1s also desirable, and this

will be obtained by asymptotic methods in the next

chapter.
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Chapter 5
EXAMINATION OF SOLUTIONS
Evaluation of Iterations

Case I: reduced integral equations

These comparatively simple equations are used to
develop the methods needed for an analysis of the general
equations, but they are also of interest as a good approxi-
mation to the physical situation. Here attentlon centers
on the detalled evaluation of the series solution obtained
in the previous chapter. Rather difflicult integrals appear
in this process, and their exact evaluation has not been
feasible. Instead, approximate values and estimates of
error are obtained by asymptotic methods.

The mathematical complexity of the analysis becomes
clear when the first terms of the solution

-5 NG (1)
}-o

are examined. The first term
NG = G(2)
I (Qro) (2)

(,ny l‘r)
is simple enough and corresponds to the field obtained from

the macroscoplc analysis of Chapter 2. However, the next
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term
N’G (d TR (], qu Jp ?r)I(Pr ms#coss)}'(});sm/ sin 5) (3)

vhere

wk /e
4, ‘“[Lr- c

and the operators T and R are given by
° Qs
T=/ dsie” sins
‘oo

and

z
R:A["cl}{ cas/,

involves the internal structure of the beam and illustrates
the typlcal difficultles encountered by an exact treatment.
The p Integration may be carried out without difficulty by
use of formula (50), p. 55 in the book Tables of Integral

Transforms, Vol. II, 50 and applicatlion of the relations
-
- -—um 2, .
Im(z_) e J;(tz-)
and (L)

K (- L e Ey ()

connecting Bessel functions and modified Bessel functions

in the right half plane. The result is

Niﬁ_z_[MJTR J;(ll; w:f){((hg ms/ ma‘%J;(Lhro sing sin s) . (5)

(L7 +h)
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The remaining integrals are quite troublesome to carry
through, since quilte accurate values are needed for the
dispersion relation and for use in subsequent iterations,
Further analysls wlll be restricted to asymptotic regimes.
In this section only the case lhrorail wlll be analyzed.
This corresponds to a low frequency, long wavelength
regime in which the skin depth is much larger than the
beam radius. Under these conditlons the internal structure
of the beam should be falrly unimportant, providing only
minor corrections to the macroscopic analysis.

When m# 0 the major content of Eq. (5) may be displayed
by regrouping powers of hro to establlsh the size of the
term and then introducing the limiting process hr6+ 0 in
that part of the term which 1s of order one. Specifically,

Eq. (5) is replaced by

NG = -AB(J%')M TRLL_J) ark, ( ):,[ ihr; s /m{-%’y(iu; sen;sm)

hr, 20

v v - z " r
.-ds(—‘"-a—:—)Tsinsmo s‘_o/lz‘dyf sin & cos “,gi%ri’f)

d [ (Zm )(j “aine Cain’s ws s]lvw

-00

(6)

vhere Sonine's first finite integral has been used to

effect'mua;{ integration. By introducing (for any m)
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5 =/°dsu’1¢, 'nss"mya cosm-s, (7)
M e

this term may be written more compactly as
L,
NCT-—(T;:) Fn-_d(__)_] (8)

and its order of mapgnitude is readily established. The
constant 4, 1s of order one, while Sm is of order one when
m is even and of order N << 1 when m is odd. Thus in any
case H'G is of order h2r°2 with respect to NOG, and when
m 1s odd it is smaller. Of course, a full evaluation of
1'e woula yield an infinite seriles in hro, while Eq. (8)
yields merely the dominant term for this regime. However,
the expresslon is qulte useful for establlishing the size
of effects due to internal beam structure, while its very
simple form permits subsequent iterations of the NN operation
to be evaluated to the same level of approximation.

The next term N G is obtained by use of (37), p. 53,

T.I.T. and of Sonine's first finite integral as
f )( Tary (pra 5 st
NG—‘—(ﬂ’ L zm)TRJ .Qr cos,{)‘/ JPZP G&Lﬁ_))LGr ms;‘ass)T(P Sn;‘&-n-‘)

-— (JB Y%Q(."?IE:-)T sin3ws's / dg sing wsm}‘ J, (Jr ‘05 (9)

>4
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To compare this term with H'G, the corresponding limiting

process hr,—+ 0 should be carried out, even though in this

term there 1is no difflculty in performing the necessary

integrations. The result 1s
W\ L (er,
N G‘—( hr—":o >, > —m” )
£ *" Jrc

,_("" d 5 ME)—
Am ™l

or

NG= 4,5, NG

This leads immedlately to the induction formula

k
‘( ‘\Vror J- (.,Qr;) e
N qt_(Z,m )(435”‘) [—m‘—-———j’; ]«fakml 12,3...

(10)

(11)

(12)

and completes the evaluation of FZL£¥. Collecting terms

and inserting an arbitrary multiplicative constant ylelds

when

q, sm|<1 and m#0

(B ERER )

an expression valid up through terms of order h r;”
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assumption that 'dasmr:l is necessary for the convergence
of the series and must be verifled from the dispersion
relation, but it 1is, in fact, correct for this regime.

The physical effects due to the beam structure are
seen more directly by examining the electric fileld fz(r),
the IHankel transform of Eq. (13). However, the small hr
approximation implies that FZ@l) is determined insccurately
vhen £ is small and that fz(r) will be determlned inaccurate-
ly when r 1s large. Attention is therefore restricted to the
interior region r< r  for which lhrl{<l is also satisfiled.
For this reglon Eq. (13) 1is accurate enough, and direct

integration yields

g_(,).A[-g (ike I(L»){N(Mﬂ) o [ DJ (14)

This equation 1s somewhat deceptive, though, since
the small hr, approximation has not been introduced into
the first term. All meaningful terms 1in Eq. (1) may be
obtained by expanding the Bessel functlions and retaining

2r,2 or lower. This will be done

only terms of order h™r
explicitly for m=1 to facilitate comparison with the

macroscopic theory. A simple substltutlon yields

fl(,).%A(g;X[n%r(ﬂ;(gu.;)-Ha*(z-— — '( z—,—:) (15)

and, since \Q3%F4ﬂi<l’ the Internal beam motion 1s seen

to induce only minor corrections to the perturbed electric
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field in this regime.

The dispersion relation, Eq. (105) of the last chapter,
i1s also readily evaluated. Use of Egs. (13) and (15)
with A=1 yields for m=1

IS BT W SV A N R |
| i l+2'h. (L'K) 3 h'r, (T:Q:E£>

—:{: dsiQe.LQscpss[' + ih’nw(z{h;)-%-%y@-w’f’j

(16)

or to good approximation

. -Q_F | I » » e | 1» 7 +LI_ »f_L:"
O-(l-—-ﬂ (-'———’ ,>Zl1|;14<—2—l‘1';)-? ;61—435' 7()_) - (7

A — _._..._—-rf\l
where = ke |
and 2 A

~ L
q ¥ = nn

The dominant terms of this equation form the dispersion
relation of Chapter 2, and the other terms are corrections
due to the finite wave number of the perturbation and to
the microscopic properties of the beam particles. The cor-
reétions to the dispersion law are readily obtained and
will not be given explicitly.

' llore generally, substitution of Eq..(13) with A=1
into Eq. (105) ylelds for the dispersion relation when
m>1
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W (b (se) amine T ()

. —L;;('M)JL_J”E f-rosadtirsfon s

a result which contains the small hr, approximation in the

(18)

second term only. The meaningful terms are again extracted
by making this approximation in the first term, and

this ylelds the final expression

L* SV e "i"'or | ils m ,] h"lv( | _(os*s)]
V=1 —;Q Z,(M"-l) “m ‘_{st"ﬂ'& @s 3 [m-1] [m+1]
(19)

e NdsSe ke
L#m%%ﬂ) I-d 5‘}

{ls
—‘f dsile cos 5(\*"‘ sin 5)_]

which 1s correct up to order h2r02. The algebraic conse-
quences of this dispersion relation are readily obtained
and willl not be given explicitly. One qualitative feature
of interest results from the identification of the first
line on the right of Eq. (19) as the effect of macroscopic
motion and the second line as the effect of internal beam
motion. It then follows that the internal contribution is
mich smaller than the macroscopic contribution when m 1s

odd but 1s comparable to the macroscoplic contribution when

m is even.
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Case II: coupled integral equations
To facilitate comparison with the preceding analysis,

the first terms of the solution

- LK @

are evaluated by similar techniques, and the arbltrary

multiplicative constant o, is chosen to be

- x(-%)- (21)

The first term

t
Ky - (446(0),-42G(), 6(0) .

where (22)
I (1)
£) ~mx" °7
G(£) (T
and - i%ﬂ

arain corresponds to the macrpscopic fileld, while the
higher terms represent corrections due to the internal
beam particle motion.

The next term Kié must again be evaluated by
asymptotic methods and, since the expressions are quite
complex, the term willl be giveh in component form. The

full term is given by
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[Ks] - f “eb [K ) 4p G @)K LA PG 6 KPP

[ 9]* j d [PYJI,P)d.pG(f)—M'(LP)d.PG(p)fzzl,r)(r(p)_], (23)

Ll

and
[K'g]l-é PP GO-MT Pdp G()+Z (4 F)q@],

which uses the definitions established by Eq. (107),
Chapter lj. Attention is again restricted to the case
‘hro\<<1, m=1, and the small hr, approximation adopted

in the previous section will be applied to the evaluatlon
of Eq. (23). The z component is readily obtalned by means

of previous resﬁlts as

[Ke] - 0)]d 4K (47 G ()

[ T —"i’—)][“(f} . (24)

SRS = e S

and the parameter

ok i [ «p%
i i~ v (25)

13 seen to be a measure of the coupling provided by the

full integral equations. The other two components are
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somewhat more cumbersome and are given by
IR I EICO] (AL RS RS

where as before

ot (aJ/ u..)
T )

and

Qt<LP)=(w _[’____J dsiqe’ J 2«J¢ cosfsm¢a:(|>!;sms sm,&)_

LrhT =

'J;‘t‘(Pv;coss msyf)J;tl(ln; ms;‘).

Here the first term may be obtained as before, but the
second term requires investipgation. Use of (51), p. 56, of

T.I.T. ylelds for the p Iintegration

,.[“’JPZFT; %_—%E)—J:(Pn; sing sin S)J;n (pn;cosy cos.s)

- ';.‘Z,h'; Km(hg\):’;(lng scn#scn 3)]:‘“’:.| (‘n; (95¢ s s) (27)

- the )ty (he) T (chg singh sin2) T (chiy s g con's)

and substitution into Eq. (26) followed by the small ’hro\

approximation yilelds

° “dPQt(*QJP)Z pr; sins Gf(f')
[Lhr)wru (Lhr)J (thr]( I dsmn. %ins m"tl{,[ l;,;(.b- ]’ (28)
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where for meaningful results only the dominant terms of
the first bracket should be used in final evaluations.

This leads to the final expression
' Y ik A T\ o, s . w][J, (lro)
[Kg]:!ﬁwi— %‘(:'5_')] (&191“;_; Jdsine” 305 03 ﬂm?r*

0 {a tRT e (15)
-ﬁ(H;(ihr;){m(ith%SladsiﬂL ;in sos = mj.a'r J

(29)

Subsequent iterations may be carrlied out by simillar
technlques. However, for comparison with the results for
the reduced integral equation, it is sufficient to compare
the dispersion relation calculated from Eags. (22), (2l),

and (29) with the approximate form of Eq. (18)

- %\_: = mrH:n (ibv;{{(iht;) - ,{o d :iﬂefﬂs.]'m( the, wos s)]

v > » | o : > ° (Qs ik
- JLLF:M‘:’)}[/ dsmgtaim swsms][l—,f dsille msns(lom sin s)]
4M(MV|) hy— l(y -e0 -oco

which results from keeping only the flrst two iterations

(30)

in the expression for F‘z-(«L).
To facilitate comparison with Eq. (30), it is con-
venlent to write the present dispersion relation in the

form L-y

where
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:DI-ZAZ”JPP[J; ((»’;)—é cf:i.ﬂ.c J'(Pr coas) P*h'

(::X »f Jat.ﬂe, *sin a,f dpp [J (Pr‘coss) J'(fru,,]':m’*(ghrii

(31)

° i
=L7)’H;(i’7':)[3;(i.ln;)-§[°dbtﬂ¢ s.];(v;ho;wasil
X .) ..17‘ ! hr ,faf:n.ﬂ.e °5t_nal§'m(ihg(oas-z_|(ib;mss]

:o;—ﬁ»,i'i @ ) | i e o™ |

h by b ke
T, (pr3)
Z,f JPP[‘T (Pr)—'j JSLQD .T( r, w03 )]_m__.P -

*[H —‘é— —;;%— Xﬁt—] suﬂc:nssinrs msmaJ-
Linas™ srapp*[z;xm ) 1 (o e

MELIE ](_a;),,w (b)) dineTins:

.‘[ dpp J (J‘f)[;f dscﬂo “sin s'os 5]J (Pl"(psg)._ma- 2 ()

_J (»hr)[‘f c‘sd).c, %sins’ w3 5JJ (P,; coss)_:_xg_(f’_z)
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corresponding agaln to a separation into macroscoplc
and internal beam effects. The p integrations in D2 may

be carried out, yielding the simpler expression

s Ny

Ll\tﬂ“’ra “I'; ‘lrr.’-p'.-“"rou' r | '_3
e o el

where n ° s n n’
fSl=,f dsifle sin s ws .
b -co
It 1s to be noted that when m=1 the factor m-1 in the
denominator of the last term on the right is to be replaced
by 1.
When the small

hro‘ approximation is used to evalu-

ate Dl as

- ”L(i"c)[%. mr,)[l—s:]* %(’%)F%){-'(‘h‘)sl'& > (33)
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it 1is seen that the parameter

wo I
Ay -i,k— I'.E(__:_o) (34)
1s a measure of the additional contribution to the dis-
persion relation provided by the full integral equations.
Of course, A and 11 are very similar quantities and gilve
essentlally the same measure of the strength of coupling
inherent in the equations. Similarly, examination of the

size of the terms on the right of 1Eq. (32) shows that the

parameters A,

e (@) )
and (35)

_ wg 15\
AT ( w)

serve to 1indicate the size of the correctlions to the

internal term of Eq. (30). However, A_ need not be con-
sidered expliclitly, since the previous dispersion relation
analyses show that ll$, < ll‘, . The value of '13, is
not so simply related to I&, - it 1s larger by a factor

»r r r
‘k//t l than ‘)ﬂ‘ - and A, must be kept as an independent
measure of the magnitude of corrections to Eq. (30). TFor

the most unstable disturbances, llbl is small, but for long

wavelength disturbances of slow growth rate, llbl may reach
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appreclable size.

The analysis of the previous section indicates that
the higher terms of Eq. (20), ignored in the derivation
of Eqs. (31) and (32), should be of minor importance for
the dispersion law. The scale of the corrections to the
dispersion law may be estimated by using the previous
dispersion relation to evaluate kﬁ and 13 as functions of
k. For more complete information, Egs. (31) and (32)-
should be solved numerically after evaluating the Bessel
functions by retaining dominant terms. This willl be done
here for m=1 disturbances only. However, other m values
give rise to similar analyses.

An analysis of m=1 disturbances is given in order
to clarify the nature of the corrections to the dispersion
law. Attention is restricted to the lhror<<.l, “lr'<<.l
regime. The domlinant terms of the dlspersion relation become

for this case

1]

o~ k5 afex), Vﬂﬁﬂ—*(““)y,
W\ w ) e A\« (36)

Ln %‘m,.

where A= -’j?j

Thus the dispersion law may be simplified to

rr _ Nn* k,z w “‘B';
AW -0 h*r‘,*(“é)(w ) (37)
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Fairly complete evaluations of instability growth
rates as functions of k may be made by solving Eq. (37)
under the assumption that two terms dominate the equation
and then using the solutlon to estimate the range of
wavelengths in the regime for which the third term 1s
negligible. The assumptlon that the equation 1s dominated
by the previous macroscoplc terms

Ahr" - Q7 (38)

leads to the restrictions
w) r
‘<";< <( auf),

> wB': "
kr, << A"#70or,\——) > (39)

and keSS I /“b':)r

(wro";)\ u
for admlssible wavelengths and ylelds the previously
calculated growth rates 1n this range. These wavelengths
correspond to the shortest wavelengths of the )hrol<< 1l
regime and yleld the most rapid growth rates.

For wavelengths not meeting the conditions of Eq. (39),
other terms dominate the dlspersion relation. However, the
only other solution which satisfies all requirements for
consistency comes from the equation

v - ‘
AR @%}r‘) (49)
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This leads to the diépersion law

&) iy G- | W

correspondingz to a stable oscillation provided that the

wavelength 1s sufficiently long. For the reasonable beam

condition << #70 A | the condition for the validity

of Eqs. (}j0) and (lj1) may be expressed very simply as

ke, < <(¢_",an) (w'ff )Y- | (42)

Otherwise, slightly more complex restrictions on kro appear,

The above analysls may be generalized by removing the
restriction rﬂf|<<'l. In particular, for the opposite limit
|Q7|>> 1, the orbit integrals in the dominant terms of the
dispersion relation become

T !

° Qs 0
/j dsifle s > ==
‘oo 7 Q

1 nr
and (43)
° Qs 0 .
-;Jo‘ dsille sins = ;2’;' = ;2. >

and the dispersion relation takes the form
LA N I G S VLY A Y
‘\Y';’ 47 Q v\ « / Fiilg w ? ()-IJ-}-)
where, as usual,

(4""")( i'Xz;)**’ (35 (w) (145)
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Tho last term of the dispersion relation agailn has little
influence on the structure of solutions, and Eq. (Ll) may

be approximated by
|- Kem (ke Yept) | .
- h"‘rv 0 rl:" w [¢)e “-I-é)

Consistent solutions to Eq. (I6) may be found for a
wider range of wavelengths than was the case for Eq. (37).
However, all solutions are highly damped and hence are of
little interest for an analysis of instabilitlies. 1In
addiﬁion, the dlspersion relation was derlived under the
ﬁssumption that the disturbances were growing waves, A
prediction of only stable or damped roots may thus be taken
seriously, but a determination of restes of damping should
be made from a formallism that 1s derived from an initial
value problem, For these reasons the solutions to Eq. (ué)
will not be piven explicitly.

This analysis has led to a falrly detalled description
of m=1 disturbances in the ,hro‘<< 1 regime. For wave-
lengths shorter than the betatron length, thils regime yields
no growlng waves. At Intermedlate wavelengths a highly
unstable disturbance occurs, and 1lts behavior is governed
primarily by macroscopic equations., However, at longer
wavelengths additional terms come into play, stabllizing

the mode,
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Explicit expressions have been given here and in the
enalysis of Case I for the formal solutions and formal
dispersion relations obtained in the last chapter. Thus
when Ihro|<< 1 physical quantities may be calcglated with
high precislion. However, the corrections to the macro-
scopic analysls are fairly small, and not all quantities
are evaluated explicitly. Instead, sufficlent detall 1is
given to 1llustrate the convergence of the formal solutions
and dilsplay their physical properties.,

Thé corresponding analysis for first order corrections
to the reduced integral equations may be carried out by
similar techniques. The detalls of this process will not
be given, since no qualitatively new features appear in the

results,
Surface Dominated Perturbations

The asymptotic analysis of the previous section has
established that when ,hr°,<<1.the dominant terms of the
disversion relation come from the filrst term of the
iteratlon solution, and correspond physically to surface
current driven disturbances. Since much of the tractabll-
ity of thils analysis 1s due to the dominance of surface
terms, 1t 1s desirable to explolt this dominance more

generally by finding all solutlons for which the effects
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of surface currents control the development of perturba-
tions. Of course, solutions for which ‘hrol<< 1l will lead
back to the principal results of the preceding section, but
other solutions require a separate investigation. The full
integral equations serve as a starting point for the dis-

cussion.
The regime 1s specified by using Eq. (22) to describe
the perturbed electric field, leading to the truncated

disnersion relation
Qs -
1= ifHL(th{{(dhc)_{!‘o%siﬂz J;(i.‘n: ®3 5)]+_%:

| L7)
| _%_(“{_t_f_) ;W’H:“(Lhc)f{oods t"quﬂ.asw 3[{H(¢hg coss)-{'(ihfao s)],

as may be seen from the Dy term of Eq. (31). Solutlons
to thls equatlion provide an acceptable analysis of the
dispersion relation provided that the remaining terms of
the dlspersion relation are found to be small when the
solutions are used to evaluate them. When lhr°|~<< 1
this condition is met, yielding, with minor modifications,
the analysis of the preceding section. This will not be
discussed further here.

To find other solutions requires the use of either
intermediate or large values of 'hrol and leads immediately

to the consideratlion of high frequency disturbances. Little
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information is gained by simply making a large ' hro‘ approxi-
mation in Eq. (}47), however, since one cannot use asymptotic
formulae for all values of s in carrylng out the orbit
integrals. Instead, the fact that large lhrol implies large
lQl sugpgests an approximate method for evaluating the orbit
integrals accurately and simply, making it possible to extract
the major new content of Eq. (L7) quickly. The method is
simply to express the integrals 1n the form of a power series
1n.f1—' by use of integration by parts techniques and to
obtain approximate expressions by truncating the series at
the _0:2' term, Thils yilelds for general p

_,’{:A:,C.Qe,bna; ihr, cos 5)=3;(‘-}";)*%}' J;I(il'";)
and (L8)

40‘15;'0_.:(165&“ s J;<‘ hr, @s s)= —("Z- J';(.,\-n;),

where the prime indicates differentiation with respect to
the argument of Jp. The dispersion relation then takes

the form

- "'.'—’-'-5-+—'.'—_l‘_'5_ “Jr’) irH (c rJ-/.;hr}- AN
| (_Q") Q(hr;,)(!:. I”Hm(ho)m( o) P 19)

The investigation of Eq. (49) may now be carried out

through approximate evaluations of the Bessel functions,
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When lhro|<<:l the equation becomes for m#0

E t:"; -4 tfr,(“bf) (50)

in agreement with Eq. (lli). The additional term in Eq. (Ll)
represents the dominant contribution of higher iterations
in the formal series. As before, there are no growing
disturbances for this regime.

The dlspersion relatlion may also be simplified when

Ihr°'>> 1 by means of the asymptotic formulae

Ja(the )= (Zrﬂl’h%)*e i
and B _— (51)
NEYR LA

For this case Eq. (l19) again reduces to Eq. (50) but now

the equation 1s to be solved subjJect to the conditions
[Qf>> 1
(52)

d
= [be]>> 1

Solutions are easily obtalned for wavelengths such that
kr°>) 1, but correspond to hipghly damped disturbances.
Thus, the unstable modes of the high frequency, short
wavelength resime are not dominated by conditions at the
surface of the beam.

The analysils of surface domlnated perturbations has
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been stralightforward and has increased the range of wave-
lengths for which explicit dispersion laws have been ex-
tracted from the formal dispersion relation. No further
growing modes have been found, but a general method for
evaluating high frequency orbit integrals has been derived
In the course of the discusslon. This method will be used
to treat the wlde class of extremely localized disturbances

in the following sections.
Analysls of Localized High Frequency Disturbances

While the dispersion relatlion for the coupled integral
equations - Eq. (117) of Chapter li - may be investigated
directly 1In the high frequency regime by evaluating the
orbit integrals to order Q7 and then continuing the
eanalysis, this procedure is not an efficient way to extract
the dominant terms of the dlspersion relatlion for localized
disturbances. One reason for this is that no clear-cut
method 1s provided for determining in advance the relatlive
sizes of certaln terms. In addition, the whole procedure
keeps very close track of the contributions of the surface
terms, even though for locallzed dlsturbances they will play
no role in the final expression for the dispersion law,

Instead, the orbilt integrals appearing in the origlnal
expression of the perturbed distributlon function f in terms

of the perturbed electrlic fiseld will be evaluated by the
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above asymptotlc method. The perturbed cgrrents are then
derived by integration, and no difficulty as to the ordering
of terms arises. For localized disturbances the surface
current is discarded, and the derivation and analysis of the
dispersion relation are then straightforward.

It is also convenlent to work with a plane wave decom=-
position of the electric field and to carry out the analysis
in rectangular coordinates. Thus the perturbed electric
field takes the form

£ f
where (53)
(R F.E)
and 4 ilkxrlogrkzsut)

and the previously employed fleld varilables F tilb and
FZLZJ may be obtained by adding such plane waves, as in
Eqs. (55) - (58) of Chapter li. The perturbed distribution

function then takes the form

A

R A e o O A

vhere the caret indicates that the designated varliable is to
A
be evaluated at time t =t-+t/by means of the equilibrium
' A
beam orbilts, IExpansion of ;{ ylelds in previously estab-

lished notation
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_ ifis i(kk+kg),
p-pe e (55)
suggesting the asymptotic method to be used in evaluating
the orbit integral in Eq. (54). Since the h  function will
later impose the restriction _(—)_'.Q » an expansion in
powers of _(—).4 is equivalent to an expression in _Q-'
Howsver, since the dynamic variables are expressed in terms

of t’ rather than s, it 1s also convenlent to obtaln the

Q expansion by means of the general formulae

S B0 4@ (g 0 )

and (56)

S0 (R0 ) YO

where / c’

- -ZZ; .
- -2
which are correct to order ,Q « When use is made of
the equilibrium beam orbits, this procedure yields the

final result

,F(,Len h°?.¢ (vf';+vF) ,__‘lﬁ_(l:‘vwkv }l["(kv”k'vip*-

T f P @y Wy —.5.= +

v S5k ky)

(57)
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GF ?F((%a}%:;(ulv; kv p)

| (kves kv 1 (kvrkoy,
+V F(-f_l— “) &) -_5_ a/o" Y) r(kl,ﬂ‘L?}))

—

The velocity integrations necessary to obtain the
perturbed current from Eq. (57) are effected more readlily
" by use of the nreviously defined coordinates v and o« .
Derivatives of delta functlions are again removed by integra-
tion by parts procedures, and the z component of the current

1s specified by the expression

'(4%9“))&; {ﬁ:/’_:;"))g,[ ’Zx{{g[ ]:}v:o-‘[’:lvg <y ]}, (58)

where

- ;:_S( f—abﬁS')

and [ ] denotes the expression in brackets in Eq. (57) but
with v, replaced by u and Ve and vy expressed in terms

of v and &, Direct evaluation ylelds the identity

LT ;;Xk.fi*'«,@)-(‘}i’e)(*@*&’?)
) Gaeale

(59)
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and substitution and rearrangement in Eq. (58) results in

(i) - 2 e F e b T 8
[(Lnt:) {_&Xaﬁcxgﬁxkg)y. )

For the study of highly localized disturbances, this ex-

pression may be simplified further. Such disturbances
are formed by a superposition of plane waves involving
wave numbers in the range Vk”+ k> v, => | in a
fashion which 1limits the entire disturbance to a reglon

r << ro. For these conditiops the surface current given
by Eq. (60) 1is of no interest and may be discarded from

the start. The relevant current then becomes
¢ . L"" L: gt LJi*L,_F
B P [Ced S SEVEA CALIA| PR

Similarly, the x component of the current is speci-

fied by

27
. ) %, oo d ¢ ,
’(W—;-“))*x i '(’LW—’.&Q:) 8/ deas ) Tdy (L ])

(62)

and the corresponding identity
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—wss[][ v (Q,Xku-la vF.( ‘)k( F*}

v3 31> | y ] :
+<Qwa’ ﬂﬁ""")ﬁ*zk‘kff (63)
_(“-v wF
N w,
leads to |
p 7]
A el Rl SR
(6l
+(—§)[(Jk‘x+|\_})ﬁ+z,k?ﬁtl
Again, further simplifications result from the restrictions
LA
|l >> (65)
and re < n

which apply to highly localized disturbances. To good
approximation Eq. (6l) may be replaced by the expression

(ﬁ_"_%‘. {gﬂ);[u— F.(?I, 2% lc)f;+kk,|;]ﬁi:)g_] (66)
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in which the entire dependence on posltlion 1s contained

in the factor yf o A slmilar argument then ylelds for j
e\ 4re 1]1.%3 +
'(%159')‘1,’ e f«ro) [(” )F"(ﬂ)[( k ZL‘)F ks ( )](67)

It is seen from Egs. (61), (66), and (67) that for
highly localized disturbances, the factor ﬂ'governs the
entire spatial dependence of the perturbed beam current.
In fact, the beam response to a perturbling electromagnetic
field may be characterized by a frequency and wavelength
dependent tensor conductivity. This, together with the

frequency dependent scalar conductivity law
M’u) - — Aridar fF (68)
& < st

for the plasma current, where ¢’ is given in Chapter 2,
indicates that the dispersion law for these disturbances
may be found by a simple Fourler analysls of laxwell's
equatlions.

Each Fourler component may therefore be analyzed
separately, and, wlthout loss of generality, for each com~
ponent a coordinate system may be adopted for vhich kx=-0.

In this system the beam current becomes

Nz _(ir_e_n.),;[( e k70T )E- F]
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_<4z¢/m))aL (#r/e he 7,'[(|+[:+ YA ’] )*] (69)

o) oK)

while the relevant ilaxwell's equations may be written in

the form
?»
») ) AW :
(‘E:" V"B*?f“(%’rb ¢ (‘/ﬂ;"))t-o
o P A
and (70)

() vxp (kkF E L -(K W) F%’LL'E'L'VE-V'

Substitution of Eqs. (68) and (69) into Eq. (70) then ylelds
a set of three linear homogeneous equations for the com-
ponents of F, and the solvability condition for the system

i1s given by the determinant

>
Mok ihl- _k.k-(éi‘_ YL
0
rv b
& '*"* Yees)
h™s w"‘-r

*( I+J—Lr wa) =Q (71)

L%

ku. w > » k Y &
-k k=) B o (ke Y “es
' (%) e 0 hok (Que) e
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where h2 is now defined by
-

¢ )
'\V- '*l”'f' kr+ (44”‘ qu’)_ ’

[ e

d 2
an * W&’no (72

“hy T ,M;?

is the transverse plasma frequency for beam particles.
The simplest roots of Eq. (71) are obtained from

the yy element of the determinant and satisfy the equatilion
> kg
ez pllrz ke I=5)- (73)

They correspond to transverse electromagnetlc-disturbances

and are stable. This may be seen from a perturbastion solu-

tion of Eq. (73) using

"
L’l.fihﬁ; =0

< (74)
as a flrst approximation. This 1s Just the propagation
equation for a transverse wave in a two component plasma,
and inspectlon indicates 1its stabllity. As expected,
hicgher order terms malntain this stability.

The remaining roots of Eq. (71) are determined from

[F=k3 2250 gol 3w) aefi)=

A,’w(’vy/\(tf) f ﬂ* ‘“‘)( ) (75)
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However, the individual terms of Eq. (71) are accurate
only to order.f[,: Thus Eq. (75) must be expanded in
powers of.Qf', and terms of higher order than“n:’must be
discarded as spurlous. Retention of all admlissible terms

ylelds after rearrangement

(e b L)) |
G e e pemd)

which serves as the basié dispersion relation for unstable

“5(76)

e

localized disturbances. The content of this equation 1s
nore readily explored by noting that the first apd third
teras of the equation have roughly similar structure,
but the third term 1s much smaller. The dominant part

of <« 13 therefore calculated from the simpler equation

(s “"Ik O]t ol] e WXNX::) “6.o (1)

which follows from Eq. (76) by neglecting the third term

and letting u equal c. Approximate solutions are found
from the dominant terms of Eq. (77) and their range of
valldlty is established from the correction terms of Egs,
(76) and (77).
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Only those solutions of Eq. (77) which satisfy the
constraints of Eq. (65) are of interest, and, again, the
rates of growth of disturbances or the absence of growing
solutions are reliably predicted by thls analysls, but
rates of damping require further study. Vhen \Mo’wo/o,«la’%:fl’

Eq.' (77) is solvable only for wavelengths satisfying the

inequality

Y > > > r

La*k"’))wr’ (78)
where u)r is the background plasma frequency, and glves

rise to a stable oscillation but no unstable modes,
Similarly, when |w"/c/’|<<,4/rdwo/c,| , the dispersion

relation is solvable only under the conditions
> r
w s a + a, 7.)
» ?
:“-3—-’—4-4’.*"-,‘)

“bu
(—‘:5—';}< < ke, (79)
«w
and r
(ﬁ%}f—ra’p; << L.r';v+ L'»;r< <, Wa‘f:'

where i) 1s the collision frequency, corresponding to a

14

hichly damped wave,

Unstable modes are most readlily found by an asymptotic
analysls based on the condition (47‘4.‘«/0"/@)::: w’/ c” . For
this 1t 1s useful to adopt dimensionless varlables, changing

the scaling frequency from uJB to wbl_' The variables

«)

Z T ——

“p1
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bl
a - ke ,
“pi (80)
o . ke
! w
bi
and € - LNz.—z-:

i
are suitable, and multiplication of Eq. (77) by <c7/¢uh;)

leads directly to the expression

> > >
> -2 - Z
> T e —— y—2_—_ = 0
é HEH s +(z+a-»),‘ é (zo-a_)" (81)

for the dlspersion relation. The restrictions

|=+a|ss1
and > (82)

a’+r a">

~
1

‘ “ur

then characterize the regime of high frequency, localized
disturbances and provide conditions that acceptable
solutions of Eq. (81) must meet. The range of frequencies
for which (M"cu)o/c.)zwyo’ 1s specified by the con-~
dition |e]<< 1, which surpests that the term of 1q. (81)
quadratic in € be discarded, and application of the

restrictions of Eq. (82) yields for these frequencles the

approxinate dispersion relation

- 183 -



>

(a7 "")é * “‘y(:;a)* -9 (83)

or, on rearrangement,
>
l‘ iNz+ a, ___'____,.. (BL‘_)
=* 4.”4» a® (z +a.)

Use of the definitions of Eq. (80) and of the value of ¢

determined in Chapter 2 leads to the expression of N as a
comparatively simple ratlional function of z, whose coef-
ficlients depend on the particular plasma and beam conditions

under study. Since for any given disturbance a and a, are

1
known numbers, Eq. (8l) may be written as a polynomial
equation for z whose coefficients depend on the plasma and
beam parameters and on the mode of disturbance. Solutions
may be obtained numerically to any desired order of accuracy,
but 1t then requires a lengthy parameter study to establish
the behavior of the unsteble disturbances. TFor this much
detall it would be best to return directly to Egq. (81) and
solve a slightly more compllicated equatlion for z. 1In
addition, for very high frequency instabllities, 1t would

be désirable to take into account the effects of charge
neﬁtralization by modifying the derivation of o to include
the fact that the plasma electron density 1is H-—no instead
of i. ‘“his would involve only minor modification of the
final expression for o.

owever, a full nunerical analysis of the dispersion
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relation 1s not needed to establish the major characteristics
of the unstable disturbances in this regime. It suffices to
assume that the conductivity 1s due to electron inertia and

electron collisions, so that
rd’— | ‘
N=(—"-—w ,> T (85)

where
v

1) 1s the colllsion frequency and a$ 1s the plasma frequency
of the background plasma, and to search for solutions in

the limiting cases of inertlal and collisional dominance of
the conductivity. Since the plasma 1s much denser than the

bemn,a/'> v « s which further simplifies the search for

»
P by
solutions,
Vthen Izl’%/‘ or, more preclsely, when |Im'z,>g/m,
the collisional frequency plays no significant role in

governing disturbances, and the dispersion relation is well

approximated by the equation

w. » ' a—‘,' l
- :‘:f);-*(a:m») T (86)

The dilsturbances are thus governed by an equation identical

in form with the dispersion relation for one-dimensional
electrostatic modes of the two beam configuration, even
thourh in this case the wave vector 1s not parallel to the

z axis. Thils type of dlspersion relation has been extenslvely
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studled 51-53 and gives rise to & contlnuum of unstable
disturbances, including some with very rapid growth rates.
The more rapidly growing solutions are most readlly exhibited

by means of the auxiliary variables

W T (87)
r

bl '
and G- v, »

for which Eq. (86) talkes the form

l s — + > (88)
w”  (eeb)”

where Gr’P‘ <[

Solutions are sought under the conditions b~1l and w=<-b,

and the most unstable mode is found to be glven by

» >
wrepre [Z(T‘T)‘”b “’f] o9

corresponding to

A 2 (90)

w

The rate of growth is fairly lnsensitive to k values in
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this nelghborhood, and growth remains large for a wlde

range of k, provided that

w k>~
b '
u/r << l&'r-o- k'
and (91)

Yw .—‘><< L ’<"'oy-

For somewhat larger wavelengths, the mode remains unstable,

“’b.l.

but its structure is altered by the other terms of the

dispersion relation.

then the collision rate satlsfles the lnequalitles

(wu_“f’ << ')<<“jr’ (92)

the conductivity is still controlled primarily by inertls,

but the disperslion relation becomes

ks

G
- _‘l“_<""[l°/wv]> ey )

A substitution of the form w=:-l+g,bel+g leads

to the equation

G _ ...
(z +-£)r a? (9&)

with solution

and - =<l+'9>)(_f—) Ll k> x % (éS)
il (' v 5) e e %TZT)(?) “u?
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yielding a slower but still large growth rate. VWhen

£ << 1,
) k"
<7’?) S (%)

(%X__L__L_<<Lr +k7e7

the unstable mode 1is well descrlbed by Eq. (95), but again

the mode persists 1n modified form for somewhat larger
wavelengths,
WWhen the conductivity 1is collision dominated, N is

real, and the solutions of

<N a,” \ ,
- z= *(a.l"-f a’) (z-r-a.)" (97)

are much altered in form. !Highly damped solutlions of

Bq. (97) satisfy the restrictions necessary for consis-

tency, but the growing solution, described approximately by

- o '}. J2'-
T e a
zr-a +e (-d—‘;::-) (W) ’ (98)

fails to satisfy the high frequency condition.,fll))\
which is needed to derive the disperslion relation and 1is

thus not admissible.
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In summary, the dispersion relation Eq. (76) govern-
ing high frequency, well localized disturbances has been
investigated analytically by examinatlon of approximate
solutions to the equation. Numerous damped solutions
exist, but essentially only one unstable mode is permltted.
This dlsturbance 1s essentlially of electrostatic type for
very short wavelengths, while for longer wavelengths,
its structure is modified by other terms in the dispersion
relation.

This analysis may bo compared with the work of
Bludman, Watson, and Rosenbluth, 53 which gives a non
self-consistent analysis of the beam problem, ignoring the
curvature of the beam particle orbits. When the longltu=-
dinal mass of the beam particles 1is taken to be infinite,
their dispersion relation corresponds to Eq. (88) or Eq. (93),
in contrast to Eq. (76). This has two effects. The
additional terms of Eq. (76) cause some modification to
the structure of the unstable modes. In addition, the
frequency restrictions leading to Eq. (76), as well as
the more complex structure of the equation, make a valld
solution much more difficult to achieve. Thus, the more
slowly growing disturbances predicted by thelr equation
do not form valid approximate solutions to Eq. (76).

The treatment of high {requency, highly localized
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disturbances 1s genefalized in the next sectlion to include
self-consistently the effects due to the finiteness of the
beam particle longlitudinal mass. Aside from an increased
alpgebralc complexity, the discussion is quite similar to

the present section.

The Effect of Finlite Longltudinal Mass on Localized,

High Frequency Disturbances

For highly relativistie beams, the infinite longi-
tudinal mass approximutxon adopted throughout this work
provides a good description of the orblts of beam particles,
However, the approximation does ignore a small energy
interchange that takes place between the longitudinal and
transverse particle motions, and for the high frequency,
highly localized disturbances studied in the previous
section, thls interchange could give rise to resonance
effects missed in that analysls. Such effects are studled
here by retaining first corrections to the perturbed
distribution function and the unperturbed orbits due to
the finiteness of the longitudinal mass, re-evaluating
the perturbed current and rederiving the dispersion
relation. A similar high frequency approximation is
adopted for the evaluation of orbit integrals.

The perturbed distribution function f now takes the
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form '$ = F +-r 2

vhere

{ (m‘/tw _/{o dt’ (aukv E-’-OF) kvf?})zz (99)

{;(_M;a::)j dt?g w+Lv+Lv>Fk F+v Fﬂ

However, the two orbit integrals of Eq. (99) do not have

and

the same significance. The finiteness of the longitudinal
mass 13 to be talren into account by evaluating the per-
turbed currents to first order in cdbuy s Where

w . 2re’n (100)
bi mv’ 2

-4

corresponds to a longitudinal plasma frequency for the
beam particles., Since f2 is essentlally proportional
t0¢db;: the orbit integrals 1n its expression may be
evaluated as in the previous section, assuming that the

longitudinal mass 1s infinite, yielding
{fere o he % 1 —(k‘v:+k d (m-ltv +L )F—L( Ff-VF
e N{JQU fiu@ fiuﬁ’
(101)

_(ﬁ[@ L EkGE+ ¢ F)|

In contrast, the expression for fy, while formally
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identical to Eq. (54), must be evaluated along modified
orblits in order to exhibit the effects of finite longitu-
dinal mass. The orbits may be obtalned exactly for a
sharp-edged beam, and an adequate description is provided

by the equatlons of motion

. 3 rr
VI A ]+__‘_‘)J!'___— ,
X B e

v Tyl s __‘3‘”5«:”'*
V}' -‘da a' fe> ? (102)

and v
v ,u_:iﬂL(xv +yv ),
z 2™ x z. &

corresponding to

L =
L “pu '
Vz:(l.<|+—‘;:‘———_cj;'—‘>

and
> > *r L
= E
WY T T (103)
where w T
. » S Zon_|r o+ ']
“ * “B 6" /6 e* L°® "

Thus, there 1s a small coupling of longitudinal and
transverse particle enersgy and a small shift in the
osclllation frequency - both position dependent effects.
Otherwise, the same hich frequency approximetion for the

orbit integrals may be carried throupgh, ylelding
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-(-;(‘_‘:"-_L;‘a)# [( ko) (Lwhv) (‘-‘-‘25-1) }KE*' F)

Dy ub Yy

[epeaegheyr)
[wg ko), (& ’}{;“‘3)]“5

Q,5 Ilué

’( :j:) [_S:l%:_fb—} z &EL_J'}F” F) .(10L)
b“r-ﬁ%—w £7)
’{m{‘xi)" Ee 2 (FrEp{ss V,,}

" 3’;"; (_'ﬁi:,) \‘.A(L e t(,o,)—1

. vk Yo e N |
\\ ;j<'}£; ‘z(iis ;itev y zJ /)

— -
The integratlons necessary to obtain the perturbed

current may be carried out by similar techniques, and the

resulting expressions are evaluated up to terms of order

kdl
(Z and ui“

agaln possible to choose k2= 0, discard surface currents

and evaluate volume currents to zeroth order in the

For highly localized disturbances 1t is

parameter (r;/ror). A lengthy calculation then ylelds
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[ .3 k7 k w
'('_5—“))**'—(—_ ¢ gtz ﬂ’)ﬁ’(awa)i]
b" r ? yk,"' F.kk
-— D.ﬁ 8 nq— X _Q" z ?

;(__ﬁr__r:‘a))t-zg < ) [(*Ev*z, X }] (105)
(ol 355

and

. . v 4 ki
2ok (;w)'i]

a0l [ K )r Rk F]

\ zc’o—/ Qw"r"' _Q_" z .0.’- X

To thls approximation the entire spatlal dependence

~ of the perturbed current 1s again contained in the factor
;5, so that substitution of Eq. (105) into Eq. (70) ylelds
the disperslon relation directly. As before, the unstable
modes are obtalned from the x and z components of Eq. (70),

and the relevant dispersion relation is obtained from the

determlnant
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. 0,(106)

>, > > |+3‘<“'|;" _ l‘u e | kK
ket e ) WO (”0*) (zhc:)—fF
+ w""rr’ _E;-z(“@r"?_'f:_
2 N\ &\ w ) O
> > w r k >
ko ke _'a:~_> R RART Y (_L)
! e \Ney il
+ﬁub:2i) +( Mlﬁ g
\ ZQ_," _Q’ > ?r:- Q‘k

However, to achleve conslstency with the previous analysis,

Bq. (106) must be expanded and evaluated up to terms of

orderf{ &ndau%:. This yields after simplification
r ——
+ udf___)'4ﬂ%ub' w” k+k (_k__|+£h——-
P “t N
“bn x k> 9(‘”&'3)]
Zo" o D."

N 2

r
LI foud ™
Q\

’\“‘b/[ e”

> >
ke YL\, Awe, @
f P o P o>

(g ) Tl |
-

No new unstable modes are predicted by this equation,

(107)

but the instabilities found in the previous section are

somewhat modified by the addlitional terms of Eq.

(107).

The dimensionless variables of Eq. (80) are again intro-
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duced, and the unstable modes are well determined from the

approximate dispersion relation

(& Nz - ZrXa.,’;- af*ﬁ(—zz—*;;-,_>+(a.‘r+/gw’)(—z-§;—§_ - 0, (108)

where *>

For the case |Im zh;a, Eq. (108) yields the solution

a’:

e BT ) T

which shows that the maximum instabllity growth rate is
increased by the additional terms in the dispersion law.
Similar results may be obtained for neighboring wavelengths,
both for this case and for regimes satisfying Eq. (92).

The analysis shows that the previously obtalned growth
rates are somewhat modified but that no change appears in

the character of the instabilitles.
Summary of the Chapter

The formal solutlions obtalned in the previous chapter
are examined In detall in the low frequency, long wave-

length and the high frequency, short wavelength limits.
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In the first case the lterations in the formal solution

are carried out, and thelr convergence l1ls shown. The
dispersion relation is also obtalned and 1s analyzed in
detall for the case m=1. The analysis is carried through
for both the reduced integral equations and the full set of
coupled integral equations. Correctlons to the macroscoplc
dispersion relation appear, and, in particular, long wave-

lengths are stabllized.

For the high frequency, short wavelength disturbances,
it 1s convenlent to use asymptotic methods in the evalu-
ation of the perturbed current, obtaining, for highly
localized disturbances, expressions which lead directly to
an algebralc dispersion relatlion. The flelds and currents
are resolved Iinto ﬁhree dimensional Fourier components, and
the stability of each component is examined separately.

The dispersion relation yields, in addition to stable and
damped oscillations, unstable modes which are similar in
structure to the two beam electrostatic instability. The
analysis 1s repeated under the assumption that the longl-
tudinal beam mass is finite but large, and correctlons to
the dispersion relation are obtained. The finiteness of
the longitudinal mass affects the growth rates of instabll-

ities but not their general character,

-1()7_
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APPENDIX T

In thls sectlion an explicit evaluation is glven
of the set of Green's functions gn(r,ro) and their
Hankel transforms
Gn(JL,r,)=.£°°rdrJ'n(lr)gn(n r.) (A-1)
for use in the text of the paper. The Green's functions

satisfy the equation
19 \d >
[-J-— + —:'- i—--‘J:—HJg,, (1, r)= L,-’ §(r-r),

qr* r.r (A-2)

the syrmetry condition

9 (r'ro):gn(ro’r),

" (a-3)
and the boundary conditions

lim |g,(r, r)< oo

reo (A=l)
and

ry oo (A-5)

for n=0,1,2, ... and Re h>0. A stralghtforward construction
of gn(r,ro) is given and Gncz,ro) 1s then obtained by

inspection.,

The functions gn(r,ro) may be obtalned from solutions

of Bessel's equation

4 Lé__i-h‘] -
FERE Ll PAURL "

by 1mposing two extra conditlons on gn(r,ro). These are

im gnlnr)=lim ¢, (r,r)=0

rr; -

(A-7)

- A=l -



and
T sl st (e
(A-8)

The only wey to satisfy both Eg. (A-b6) and mg. (A-L) 1s to
choose yn-ClJn(ihr). Simllarly, a simultaneous solution
_Sf BEqs. (A-6) and (A-5) must be glven by yn=02}%(ihr) .
This sugrests that gn(r,ro) should be teken to be of the
form _y”(,-,.;)g_;pu:_'(chn)Jn(ahr) for vr<r,

= 27, (che)) Hy (i) for r>¢ (4-9)
vhere D 1s an undetermined constant. Such a cholce satisfles
Eas. (A-3), (a-L), (A-5), and (A-7) identically and satisfies
Eq. (A-2) for r;‘ro. %hen D is chosen so that Eq. (A-8) is
satisfled, the required Green's functions will have been
constructed.

At this point 1t is useful to recall the relatlon
4 4 iy
ANOFANOREAOF-RAOLE ¥ (A-10)
. which is given on p. 76 of C. . ‘Watson's book, Bessel

Functions. TFFor present purposes this relation may be restated

as

AT TG IR GO OO | - eeet

From this it follows at once that the correct cholce of D
is D=- tW/Z) and that gn(r,ro) is given for all n=0,1,2,...

o .9;‘(":".)""(‘7/2) H:, (;h';) Jn(ihl) for r<¢ r,

""(‘.7/2)3;,(""'2 H:, ("h") for ryn . (a-12)

- A=2 =



A direct calculation of G,(f,r,) from Eq. (A-12) and
definition (A-l) could now be given, since the integrals
involved are all known. However, it 1s simpler to make

use of the relation
L3407, uo[injlhg\]:1,,(hr)K,,(hr,\=(m/z) H (i), Gihe) for rer,
=1, (hK, (hr) =G T, (ihr)Hi(ihr) for v,

which is given In the Bateman Manuscript Project book,

(A-13)

Tables of Intepgral Transforms (TIT), Vol. 2, p. 49. When

Egs. (A-1l) and (A~12) are kept in mind, the immediate result

of applying a Hankel transform to both sides of Eq. (A-13) is

- [35) o

The results of this section are summarized by Egs.
(A-12) and (A-1ll). These equations furnish sufficient

information about the Green's functions for the requirements

of the paper.

- A-3 =~



APPENDIX II

The perturbed electric field of Case I, Chapter 3,
will be derived here for large No' For convenlence, the
discussion 1s restricted to disturbances for which
'h2r02l<<1. The general form of the fleld 1s prescribed
by Eagqs. (24) and (29), but the constants must be determined
from the boundary conditions (8) and (17). This ylelds
fz(r) and A(r) directly, while fr(r) and fe(r) are easily
obtained from A(r). A complete description of the field
wlll be given for the reglon rf&ro only, since this 1s
sufficient for the analysls of the dispersion law.

The derivation is facilitated by the definitions

LE= 3 (i6%0), M2 £ T (87|

] . ] . -l
RE = Hia (ihr), and S¥= S H, ()] (A-15)

r—r;

These may be used to express the boundary conditions as
(CTR*™-ATLY) + (CTR™—ATL) =0
b*(C," R*™—A" L’)*b'(c,‘ RT— A~ L.‘) = 0
br(Cr 8T =ATM)BTCT ST=ATL) = O (a-16)
(e 51— arm) (- o= A°C) =(2Tiee 1)



and a simple reduction gives
(b= b erst—ArmY) = b (EZ22% )
(R —A*L) =0
and (A-17)
(b™-b) ("5 —ATM) = V(ﬂi‘:%io)
(c-rR=-A"L)=0.

These equations may be solved by inspection yielding

A= (b‘-——b*) (S*L’i: RTA®) ( LT J’o) (4-18)

and

L lwa. .
A (b*—b' (s — R"M)( J") (A-19)

The expression for AT 1is readily evaluated without
further approximations. The leading term is obtained

directly from Eq. (30) and becomes
b+ 3 (‘ HV .
b'- b/ N" (A-20)

Small argument expansions may be used to evaluate the other

quantities, since |nro|<<1 ana ,J}o[«]hro]. An excellent

approximation to L~ and 1~ is provided by

c-(4)

- A-S5 =~



and (a-21)

The evaluation of R and ST 1is more intricate, and is

based on the approximations

H:+Ap (ix)’.:‘. H:(Lx) +AP[—%—1; H;(EX)]P-;'J
‘ i ix\~P
Hp (ix) z-?(P-’)-’(‘f') ’ (4-22)

and

[ H60] = @)l

vhich are valid when[AP'<<].and lx,<<1. Substitution

gives

H;,- (ihr) = —(;‘r

+.L Y ,LI .__{ r +-L .«&4 /_hr
end a direct evaluation yields

R™ = -(7’2;\ ".X’ + h"r:'.l.n’% hr, D,

-G -
(s"U-R"M)= (%’ET%—" )(' "z m‘yhl%hr"b’

- A< =



and

R =4 L W% "nl L he ).
(5C—R-M) ('?}’X' rzhw "0"‘2. hr“)
Combining terms yields the expression
- [Amiwa . h” Ll VL
A =( < &‘XI"‘ N:’Xl*zl‘nnn‘zh':lXJ-)’ (A"25)

which may be rewritten as

- _(27:;«:&0‘. })('- _T{'E;)(l + -'i I\Yr“'lnl% thm . (A-26)

The evaluation of A" 1s more difficult, and the
calculations will be given for two limiting cases only.

Case A: Moro <<1

For this reglme p* becomes

P* - | +"%: N,vrov"' % hvrov,
(a-27)

J’ro<<l, and small argument expansions may be used to
evaluate all quantities defined by Eq. (A-15). The deri-

vation is similar to the derivation of Eq. (A-25) and

yields
H;,f (ihr) = —(Z)(t+ [Fe=r’- N alE hr]),

() (= N e ),

7hr,

- A-7 -



5= —H’rz [T g N b ) (a-28)

(57L- R*M7) <z~ )Q_L[;,*%Nr’]j,,l%;,,;b,

L)Y

Substitutlion then ylelds

A <¢7’«.wa, *)( )( 3N, .u;: xnl/kr}ég

(A-29)

or

(e X Xl— NrX'*z” % “')T(«‘)

Equations (A=-26) and (4A-30) may be used to obtain the

(A-30)

field variables in the form of an expansion in powers of

the parameter (hZ/NOZ). Direct substitution yields for

=
I’—I’o

. . ¥
ﬁx(.)= - (_f_z;_:_ﬂ.)f:. d" H__I__Z L‘vr.-rjﬁ\{_lqroDr fq_Nb_‘"-)
and (A-31)
b
h
X(r): O+ O(_ﬁr).
Thus to good approximation the other components of the

- A=8 =



electric field are given by

) =4,0)=0, (4-32)
and the new term in the dispersion relation becomes

(7;%)/0' " ,(,cr (,)-#9('))- 0. (A-33)

Since fz(r) is unchanged from Chapter 2, the dispersion
law 1s unaltered.
Case B: Noro}) 1
In this case the conditions Anro > 1 and p' >y 1

requlre that different techniques be used for the deter-
mination of A'. Good approximate values for L* and M*
are obtained from the asymptotic expansion

d*r

Ler\_ tLe _ 3
J:("8 r)_ \’z”‘Nor ' 8N°l’

* O(N—'v:'r : (A-32)

The result is

étr.
L+= Le : f— J
V.foNo"o 8N°"°

and (A-33)

{ tN.r, e
M’g(_;_) o

Similarly, the expansions

I h”




and

. () =) 2 - Ol

are used to evaluate RY and s* and yield

. NPT W
R'= - [scn ;*ﬂ(-p“)/] (t;m) ['- :-N:"o]
(N vo thro y A
s'= (_"‘:')[ s;nbr':‘;r‘(— p’),l]( 2. ) [‘- i“/:‘::oJ .

Combining terms ylelds the denominator

dr
+y t R,’Mf)c_zNR* T e * ‘_J’ 5
(S L- ° 27 N1, EN,,

and A" becomes
A __(zm.u)..,r &)( N.'.,X ):r(.é*r O(E'T-E-.a

Direct substitution gives the field variables

1.0 (B - sl 5

J (e67r)
~(azimere Y G) 35

and

- A-10 -
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(a-38)



A(r)=N (-‘-3_’—’-:-:’_“1‘1’2. "X_——)(' +-LI\ 'Jm,lh,)rlffé‘rl

3 (i67%)

(Zmﬂua.r &) )(N.l ;35';‘;::3) .

The component I‘o (r) is most readily determined from the

equation
£ oo dy
(S (A=39)
and 1s given by
. ¢ . v v +
A (e ticeu 2
(A-40)
N, (BT JZ)(NO ):r( e )T 3 (:8%).
Similarly, the component fr(r) is determined from
.‘:' =_(NQ‘Y.-+—:-)—&:X~NOV-FZ (A=l1)

and 1s given by
.F'(,)-_ —‘N- .é_’ﬁ_“_’!;.&'o)(l fi—b’r:ﬂo\,l{h"op

e [ » (18" (A-42)
e IR ()

- A-11 =~



Equations (A-38), (A-}j0), and (A-L2) may be used to

evaluate the dispersion law (5). To good approximation

£ (2)= ~(azsean Yiep el i),

(A-}43)
so that the magnetic term of Eq. (5) 1is unchanged from
Chapter 2. The additional term

<Z£_"_) S ,(L'(,)_;Lo(r))
=(Z50) = £
H(Efrag)Ezesi) e I o

| 7 en, \(zr':wa’j.).f%dr%;[rj;(idfrx

M CA ) °

may be evaluated by using the identity
I8~ (3 ) 3, (idr) (A-4S5)

to obtain the approximate value

(2 [ " o (4,01 H0))
= [7 en))r; (v ) (zﬂ'cwar &o?] (A-116)

- A-1l2 -



Although this additlonal term 1s non-zero, its value may
be shown to be negligibly small in comparison with the

magnetlc term.
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APPENDIX III

The perturbed electrlc flelds of Case II, Chapter 3,
wlll be obtalned here for the regime N02>>| hz‘ and
‘hzrozl« 1. The flelds will be glven in detail for

the reglon r<r and the evaluation 1s quite similar to

o’
the treatment in Appendix II. General formulas will be
derived for the coefficients At; the flelds will then be

evaluated in two limiting cases.

It is convenient to introduce the definitions

vEeHa (ihr) and WE= % H « (ihr) . (A=47)

r=r,

By use of Eqs. (A-15) and (A-47) the boundary conditions

may be written as
(CTVT+CTV)=(ATLTATL) = 0

cr V= V) —(b"ATLT +EATL) = 0
h( )= ) (A-48)

h(CT W= C W) ~(PAM + EAM) = 0

and

(Crwr e Cow) (AT M7+ A” M) = (L )

Equation (A-48) may be solved for AT 1in three steps. First,

the equation is rewritten as the two palrs of equations

th.'v*'[(h"b*) A.'L*-f(h-fb—) A- L-] = 0
and
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zherwr=[(heB)ATM* e (heb)A"M]=h (s t.,),
and N
2he V= [(h-b*)A" LT+(h-b)A"LT]= 0 (3-19)

and . ; ‘
2he-w=[(h-b)AT M+(h- B)AM]- h(2Z t.,) ;

which are then reduced to the single pair of equations

O R AL B EE

e . (A-50)
(h=b" WLV "M+ (h-b W=V M)A = hV'( e &).

Finally, At 1s determined from Eq. (A-50) to be

A+ 4w ) W (b= VWLV M)~(he V(W= 'M]]
(h+b%)( h—b‘XW*L*~V*M*)(W‘L"-V"M‘)]
[—(m b h~b WL — VMW=V M)

and (A-51)

(M;wa. ) h[(he BV (WHL-V M) {h-b* )V Hw-L=vmr)
[(h + b)Y h-b)(wrLr-vme(we L—V‘M")J

~(ne b7)(h- b)Y WL -V MWL Ay

+
For simplicity the explicit evaluation of A~ will be
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glven for two limlting cases only.
Case A: Noro<< 1
For thls case small argument expansions may be used

to evaluate all Bessel functions, and the expansion

x_ 1
=gy (a-52)

insures that (A-22) may be used to evaluate the Hankel

functions. The result 1s

idir,
Z

LY =

M*= 3>

H'y (hv)=- (w’h >(| + [h ¥ N rkr] ,Q.,I/}...) (A-53)

n
o) D ),

and

»|

am l)

The needed combinations of these functions are easily

i (YT b

obtained and are glven by

(wa,._ver)_:(j;{*)(‘ Ji-Nor"hcln’%"\r;D,
(wri - "’M‘) (-7-‘8 )(1 -3 N, b 1n|:£ lnr.D,
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(wer-vem= @) el
(W= v-m7) =(ZE- j('*_N'hrbl“hrD

(A-54)

and

A= —<N‘*h{r ) l‘(b* v)

where A 1s defined as the denominator appearing in Eq.

(A=-51). The quantities Ai are then readlly evaluated as

Afg(ﬂé‘!—&- }o)(ﬁb;—xl— 1"‘:,)0 + é W 2n l Y hrb(?-')
and (A-55)
A= (ﬂiﬁ%ﬁ-‘o)(l— -ﬁ;_)(l +-£~ hvl;ylnl% hr; 0(7}.:) .
Yhen r.‘:ro substitution gives for the fleld variables
,C,_(,)._. _(a.ﬂ‘;m })(1 + -'Zh"r:h‘%hn;D l’fO(%)

and (A-56)

A(r)=0+ O(—,—z‘f;—)

Thus the flelds and the dispersion law are unchanged from

Chapter 2.
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Case B: N.r > 1 and lNorohro\<<l

Equations (A-53) and (A-5l;) of Case A may be used
here, except that all quantities involving L ¥ and M*+
must be re-evaluated. The asymptotic series for the
relevant Bessel functlion is used, and a fairly good approx-

imation 1s given by

. 0t
b L e.‘a e
L= Z#N,r,
M+= N°L+,

(wrtr-vm) = N+ 2l o)

(W*L* +M) N L+(__F_X| + L [h’r — N, hr]ﬂnl hr’) (A-57)

and
_‘_{Hr D
2' L

J"{ v)N L h( br— B’)(H-i—h"qtln

Equation (A-51) may now be evaluated as

,(Mcwa«r JX N,",/( )T( T )

and (A-58)

- ()

o

f
Thus the only difference between Eq. (A-58) and the A~ of

Case B, Appendix II, is in A+ s which 1s twice as large here.
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Thls means that very small modifications in Eqs. (A-38)-(A-L46)
give the fileld variables

.pz ()= __( AT iwar ‘:°)('—-£::Xl +J; hr ol h-;b%—é—:%%

_(¢mowa.rs "o)(—hN:T)(N' \) (tg?)

and (A-59)
A= N, (gm0 o ) TETD
W )R Ty
the transverse Tialds
()= (R v g )

< . I‘id*r!
+(‘/7$)w &“)r T.(id*",)

vy (id?r
M (N.l ro)y(“”‘é/wa‘ (f °> ? ;::E Li‘* rZ)

and (A=60)

£() = (B2 ) 44 WR L[S,

(_.L_ V(W’" —-d.o T(r:;+r)%';3:(id'r)7
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and the electrostatic term of the dlspersion law

(F)L e (0= 500

- (%:E:N_":_'E)[-F,_(r.)+(_____—‘/'”:/“’“'" )]

(A-61)

Equations (A-59) and (A-61) contribute corrections to the
dlspersion law of Chapter 2, but these correctlons are
negligibly small. The present treatment indicates that
while Hall currents affect the values of the perturbed
fields, they do not greatly affect the dispersion law for
the disturbances,

The case lNorohrJ > 1 is also of interest, but it

involves lengthy analysis and will not be considered here.
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APPENDIX IV

The mathematical problem involved in evaluating

£,(r) from Eqs. (46)-(449) of Chapter 3 is to determine the

A
constants A, A, (5', and C from four equations which are

linear in A, A, and C but non-linear in d. This is done

A
here. The first step is to express A and A in terms of 4.

Substitution of Eq. (Ui6) into Eq. (I18) gives

(g (Yo Tl

- b Y R0

and

e o o [F i)

= K #»wa.h)[ . h“')ﬂ,\(uN" "+ N ,] + A,

Ae

A
which gives for A and A

i
a=-w (e ) | [0 w ) (- )

- N:v ry b(' + N°yroy)

- A-21 =~
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and (A-63)

A= b Mi‘) ,.‘N-Y'-'“Z”[JY(” N."’r.“)] +('— R_L""_*)

2¢ °

* N'M.-:& o (' M N°v'-’) |
L (] o

V/hen Noro <<l the flelds and the dispersion law are
unchanged from Chapter 2. For this reason only the case
Noro>> 1 is treated in detail below. Other conditions on
parameters will be imposed In the course of the dlscussion
in order to obtaln a solutlon which depends weakly on rp.

The constant A 1s well approximated in this range by

_ hvl’.v 27 i | ‘0“[_4_)"' err]’
A= (z )( c Jh) (N,'. tete (A-6l)
but the constant & must be determined from Eq. (49) before

fz(r) can be evaluated. The conditions

rP b S r,

and (A-65)
}hrp| < |

have already been imposed on rp. Thus Eq. (49) may be

evaluated as
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-c(——HﬁrP (' +zh “""|%/'L"P|)
A

_ A 27iwe \ "

- —'F-( < ‘h) P

- Lz (e N [+ T‘L-;)J

e

and (A-66)

vy v v~
-'C’(—?r’ih':?- I—‘z':h rr,ﬂ“(-zl)rPD

A v
=___A___z.7rawa.t' %
r < ° "P

P

. @ . v ¥ A‘» |+_r£'__.)]+zr » .
S T go) (r,,-N, " )1"["’( VL)
P

The constants C and & glven by Eq. (A-66) depend

weakly on Ty only when

ASSILEAS (a-67)
For this case approximate values of C and d may be found

by equating separately the terms of Eq. (A-66) which involve
log rp and the terms which are independent of this expression.,

This procedure glves the equations
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‘(;g'; d/) z "r'rr“e”'%/;"r

A Gt U -"-"')*“"[J’(—N?:T:“”)]

and (A-68)

(o))

which have the approximate solution

=(7}z‘r’: 27 wa to)

[ >4

and (A-69)
3Nr h,-

It is perhaps worth noticing that Egqs. (A-65) and (A-67)

?“l\

topgether imply the restriction
}N.*.‘-r.|<< ! (A-70)

which must be satisfied 1If the approximation procedure is to

yield acceptable results.
The fileld f,(r) 1s now readily determined to be

'F'_(r)- _(_‘?/_’:g_"_h loéb’;'h{l%b,:,my—pr
- e (A () e )

(A-71)
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and is thus well approximated by the equation

£()- (B Yo gr el b))

(A~72)
Comparison with the field
y . Y v w/
{(r)e - (BZiwe | |+-Ll.r,!m2-kr.D
(= bk | (A-73)

of Chapter 2 shows that the main effect of Hall currents
is to increase the effective beam radius in the argument

of the logarithm.
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