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EXPERIMENTAL AND COST ANALYSES OF A ONE KILOWATT-HOUR/DAY
DOMESTIC REFRIGERATOR-FREEZER

Edward A. Vineyard James R. Sand

ABSTRACT

Over the past ten years, government regulations for energy standards, coupled with the ultility
industry's promotion of energy-efficient appliances, have prompted appliance manufacturers to
reduce energy consumption in refrigerator-freezers by approximately 40%. Global concerns over
ozone depletion have also required the appliance industry to eliminate CFC-12 and CFC-11 while
concurrently improving energy efficiency to reduce greenhouse emissions. In response to expected
future regulations that will be more stringent, several design options were investigated for improving
the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such
as cabinet and door insulation improvements and a high-efficiency compressor were incorporated
into a prototype refrigerator-freezer cabinet and refrigeration system. Baseline energy consumption
of the original 1996 production refrigerator-freezer, along with cabinet heat load and compressor
calorimeter test results, were extensively documented to provide a firm basis for experimentally
measured energy savings.

The goal for the project was to achieve an energy consumption that is 50% below the 1993 National
Appliance Energy Conservation Act (NAECA) standard for 20 ft(570 |) units. Based on discussions
with manufacturers to determine the most promising energy-saving options, a laboratory prototype
was fabricated and tested to experimentally verify the energy consumption of a unit with vacuum
insulation around the freezer, increased door thicknesses, a high-efficiency compressor, a low-
wattage condenser fan, a larger counterflow evaporator, and adaptive defrost control. The resulting
energy consumption was 0.928 kWh/d, a substantial energy efficiency improvement of 45%
. compared to the 1996 model baseline unit (1.676 kWh/d) and 54% better than the 1993 NAECA
standard for 20 f£ units (2.006 kWh/d). The cost for these improvements was estimated to be
approximately $134 (manufacturer's cost). Since the cost was determined to be so high as to render
the improvements infeasible, a second design was investigated that was more cost-efficient. The
second unit eliminated the vacuum panel insulation and larger counterflow evaporator. The cost-
improved design resulted in an energy consumption of 1.164 kWh/d at a manufacturer's cost
increase of $53. Assuming that there is a 100% markup from manufacturer’s cost, the payback for
this unit is approximately 6.6 years.

INTRODUCTION

In an effort to significantly reduce energy consumption in refrigerator-freezers, an
industry/government Cooperative Research and Development Agreement (CRADA) was established
to evaluate and test design concepts for a domestic unit that is representative of approximately 60%
of the U. S. market. The stated goal of the CRADA is to demonstrate advanced technologies which
reduce, by 50 percent, the 1993 NAECA standard energy consumption for a 20 t* (570 I) top-mount,
automatic-defrost, refrigerator-freezer. For a unit this size, the goal translates to an energy
consumption of 1.003 kWh/d. The general objective of the research is to facilitate the introduction
of efficient appliances by demonstrating design changes that can be effectively incorporated into
new products.

A 1996, 20 ff® (670 1) top-mount, automatic-defrost refrigerator-freezer was selected as the baseline
unit for testing. Since the unit was required to meet the new 1993 NAECA standards, the energy




consumption was quite low (1.676 kWh/d), thus making further reductions in energy consumption
very challenging. Among the energy saving features incorporated into the design of the baseline
unit were a low-wattage evaporator fan, increased insulation thicknesses, and liquid line flange
heaters.

BACKGROUND

Greenhouse gases and their damaging effects on the atmosphere have received increased
attention following the release of scientific data by the United Nations Environment Programme and
World Meteorological Organization that show carbon dioxide to be the main contributor to increased
global warming (UNEP 1991). For domestic refrigerator-freezers operating on alternative
refrigerants such as HFC-134a, the indirect contribution to global warming potential resulting from
the amount of carbon dioxide produced by the power plant in generating electricity to operate a unit
over its lifetime is approximately one hundred times greater than the direct contribution of the
refrigerant alone. Moreover, approximately 62 million new units are manufactured worldwide each
year and hundreds of millions are currently in use (UNEP 1995). ltis anticipated that the production
of refrigerator-freezers will substantially increase in the near future as the result of an increased
demand, especially in developing countries where growth is expected to be on the order of 10 to 15
percent per year for the next few years. Therefore, in response to global concerns over greenhouse
gases, efforts are being made to produce refrigerator-freezers with low energy consumption (Fischer
etal. 1991).

In addition to the concerns of the global community over greenhouse emissions, refrigerator-
freezers are also required to meet certain minimum energy-efficiency standards set up by the U. S.
Congress and administered by the U.S. Department of Energy (DOE) (NAECA 1987). The initial
standards went into effect January 1, 1990 and have had one revision, in 1993, that resuited in an
average 25% reduction in energy consumption. In the next revision, originally scheduled for 1998,
the standards were expected to require an additional 30% reduction in energy consumption. This
reduction may be decreased to 23% and rescheduled for 2003, depending on the assessment of
the energy penalty for using blowing agents other than HCFCs for the foam used in refrigerator-
freezer insulation (Appliance 1996). An historical chart showing actual and projected improvements
in the electrical energy use of refrigerator-freezers is shown in Fig. 1.

Customer expectations and competitive pressures impose an unwritten set of constraints on
refrigerator-freezers produced in the United States. The excellent characteristics of CFC-12 and
its use over the past fifty years have led to highly efficient and reliable compressors and other
refrigeration system components (UNEP 1991). Studies have shown that refrigerator-freezers give
satisfactory performance for approximately 14 years on average (Appliance 1993). This high degree
of reliability has caused consumers to expect long lifetimes and trouble-free operation from
refrigerator-freezers and all appliances in general. Additionally, refrigerator-freezers have become
a relatively low cost commodity item. Therefore, increased costs associated with efficiency
improvements must be justified on the basis of an improved environment and lower operating cost
to the consumer. Unless consumers are motivated to spend more for efficiency, further
improvements will be hard for manufacturers to justify based on existing market conditions. External
forces, such as rebates, new selling techniques, or standards will be required to further reduce
refrigerator-freezer energy consumption from existing levels and generate markets for high-

efficiency products.




EXPERIMENTAL PLAN

In previous work on this project, a Phase 1 prototype refrigerator-freezer achieved an energy
consumption of 1.413 kWh/d (Vineyard, et al. 1995). The baseline unit for Phase 1 was a 1993
vintage model! with an initial energy consumption of 1.801 kWh/d. Design changes incorporated into
the unit to reduce energy consumption consisted of thicker insulation around the entire cabinet, a
high-efficiency compressor, low-wattage evaporator and condenser fans, an enhanced evaporator,
and a liquid-line shut-off valve. The cabinet heat loss rate was determined to be 224.1 Btu/h (65.7
W), a 9% reduction from the baseline unit (246.0 Btu/h) (72.1 W).

Following discussions with an advisory group comprised of all the major refrigerator-freezer
manufacturers, several options (Table 1) were considered for the Phase 2 effort. The options fall
into three main categories: 1) cabinet heat load reductions; 2) refrigeration system improvements;
and 3) parasitic power reductions. Options 1 and 2, improvements to the cabinet/door insulation
and door gasket, reduce the power requirement by lowering the heat gain to the refrigerated space.
Options 3-6 deal primarily with improving the thermodynamic refrigeration cycle efficiency by using
a high-efficiency compressor, improving heat exchanger effectiveness, and utilizing a different
thermodynamic cycle, such as the Lorenz-Meutzner. Options 7 and 8 reduce the parasitic power
requirements by substituting electrically-commutated direct-current (DC) motors for those presently
used in the evaporator and condenser and by using a long-term defrost control scheme to initiate
defrost based on demand. In the previous Phase 1 effort, most of these options were investigated
both analytically and experimentally. The results showed that major improvements in energy
savings came from cabinet insulation improvements, the high-efficiency compressor, and the low-
wattage fan motors. Therefore, the priorities for this study were those same options along with
adaptive defrost control and heat exchanger improvements. Advanced cycles were the lowest
priority and would not be experimentally investigated unless the project goal could not be achieved

otherwise.
TEST PROCEDURES

Several tests were conducted to quantify the effects on energy consumption of refrigeration system
and cabinet design changes. All tests were performed on a 20 ft® (570 I) top-mount, automatic-
defrost, refrigerator-freezer with a forced-air condenser and evaporator. The testing included
reverse cabinet heat loss rate measurements, standard nine-point compressor calorimeter
mappings, and 90°F (32.2°C) closed-door, energy-consumption tests as specified in section 8 of the
Association of Home Appliance Manufacturers (AHAM) standard for Household Refrigerators and
Household Freezers (AHAM 1985). The tests were performed in environmental chambers with
airflows and temperature fluctuations within the specifications of the AHAM standard or according
to manufacturers' recommendations for tests where no standard is specified, such as the reverse
heat loss rate tests.

Reverse Cabinet Heat Loss Rate Measurements

Reverse cabinet heat loss rate measurements were made to assess the improvements in cabinet
thermal performance from changes such as vacuum insulation or increased insulation thickness in
the freezer section or doors. The procedure for measuring heat loss rate involves placing a cabinet
in a cold chamber with controlled heat sources and small electrical chassis fans to maintain desired
temperatures in both the freezer and fresh food compartments. The fans are run continuously
during the test to prevent temperature stratification. Each fan draws approximately 6-7 watts of




electricity and has an air circulation rate of 30 cfm (14 I/s), which is assumed to have negligible
effects on the inside-surface heat transfer of the refrigerator-freezer. Temperature and watt
measurements for both refrigerator-freezer compartments along with ambient temperature are
recorded as the cabinet temperatures achieve desired levels. Once the cabinet temperatures
achieve steady-state, data is compiled and averaged for a thirty-minute interval to determine overall
heat loss rates for both compartments.

The heat loss rate is calculated in Btu/h (W) and plotted against the difference between
temperatures inside each compartment and ambient air temperature. Heat loss rates for the freezer
compartment were determined from the following equation:

Qpnz = UAgpz X (Teaz ~Taws) + UAyuL X (Tez -Ter) (1)

where Qg is the heat loss rate for the freezer in Btu/h (W), UAg is the overall freezer compartment
thermal resistivity in Bturh-°F (W/°C), (Tez-Taus) is the temperature difference between the freezer
and ambient in °F (°C), UA,,, is the thermal resistivity of the mullion in Btu/h-°F (W/°C), and (Teqz-
T,) is the temperature difference between the freezer and fresh food compartments in °F (°C). In
a similar manner, the fresh food heat loss rate was determined from the following equation:

Qe = UAee X (Tee-Tawg) - UAwu X (Terz-Tre) - (2)

where Qg is the heat loss rate for the fresh food compartment in Btu/h (W), UA ¢ is the overall
fresh food compartment thermal resistivity in Btu/h-°F (W/°C), and (Tgpz-Taus) is the temperature
difference between the fresh food compartment and ambient in °F (°C)

Tests were initially run with the temperatures in both compartments essentially equal. This allowed
the mullion heat transfer term to be dropped from both equations (1) and (2) so that freezer and
fresh food compartment resistivities could be determined from dividing the power measurement (Q)
by the temperature difference in each compartment (T crz-T ave) OF (Tee=T ane)-Once the compartment
thermal resistivities were known, tests were then performed with large temperature differences
between the freezer and fresh food compartments to determine the mullion thermal resistivity. Plots
were then generated using equations 1 and 2 to represent the heat loss rates in both compartments
for each cabinet and door configuration.

The tests were conducted using temperature differences across the cabinet walls comparable to
those attained in the 90°F (32.2°C) closed-door test procedure where the refrigerator-freezer works
to maintain cold internal temperatures in a warm room. In order to achieve the temperature
differences, it was necessary to maintain the chamber at 0°F (-17.8°C). Since the thermal
conductivity of insulating foam generally decreases with decreasing temperatures, this procedure
could slightly underestimate actual cabinet heat loss rates (ASHRAE 1989). In addition, the reverse
cabinet heat loss measurement employed in this study may not accurately measure the heat
leakage through the gasket region. Heat leakage in the gasket area is a function of the airflow
inside the freezer. Since the evaporator fan was not running, the heat leakage rate might be higher
than the measured values for all the tests. However, the relative differences between the test
results for the different insulation configurations should be approximately the same. The procedure
used in this study was chosen because it allowed a determination of heat leakage rates for both the
freezer and fresh food compartments.




Compressor Calorimeter Mappings

Reductions in the total cabinet heat load along with efficiency improvements required corresponding
changes in the capacity and design of the compressor. In order to determine the extent of these
changes, the original and high-efficiency compressors were tested using a nine-point compressor
calorimeter procedure to generate compressor maps. In this procedure, compressor operating
characteristics, including refrigeration capacity and energy efficiency ratios (EERs) are determined
at each point in a matrix of 110°F (43.3°C), 120°F (48.9°C), and 130°F (54.4°C) condensing
temperatures and -20°F (-28.9°C), -10°F (-23.3°C), and 0°F (-17.8°C) evaporating temperatures.
Also specified in the test procedure are a 90°F (32.2°C) ambient temperature for the compressor,
superheating of the suction gas to 90°F (32.2°C), and subcooling of the liquid refrigerant line to
90°F (32.2°C) before throttled expansion. The nine-point maps generated from the tests are used
to estimate changes in refrigerator-freezer energy consumption when using the high-efficiency
compressor.

Energy-Consumption Tests

System performance for the baseline and enhanced cabinets was assessed using the standard
90°F (32.2°C) closed-door test procedure. In this procedure, the refrigerator-freezer is operated
at two different control settings in a 90°F =+ 1°F (32.2 + 0.6°C) environmental chamber. Energy use
and compartment temperatures are measured from the onset of one defrost cycle to the beginning
of the next defrost. The test points are then used to calculate the energy consumption over a 24
hour period based upon a reference 5°F (-15.0°C) freezer temperature and 45°F (7.2°C) fresh food
temperature. Other requirements of the test procedure are an outlet voltage level of 115 + 1 volt
AC to the refrigerator-freezer and an air circulation rate of less than 50 ft/min (15 m/min) in the
environmental chamber. The high ambient temperature, 90°F (32.2°C) is used to simulate the
contribution of door openings and food loadings. Comparisons of field performance to closed-door
test ratings indicate the laboratory procedure is a quite valid indication of energy use in field service
(Meier and Jansky 1993). Previous refrigerator-freezer testing indicated that the test procedure with
two different thermostat settings gives a broader indication of appliance performance at different
ambients and internal operating conditions as opposed to a single-point test (Sand et al. 1993).

EXPERIMENTAL RESULTS

The experimental approach emphasized hardware changes that can be incorporated into a
conventional refrigerator-freezer design, which is defined as a unit with a single, fan-forced
evaporator and condenser, single-speed compressor, and operating with a pure refrigerant.
Changes centering on a conventional design are considered to be more acceptable to
manufacturers because they would require less retooling and have greater reliability. In addition,
a conventional design is more likely to be accepted by consumers since it would cost less to
implement than a nonconventional design change, such as a dual evaporator system with
nonazeotropic refrigerant mixtures. ’

Reverse Heat Loss Results

Steady state heat loss measurements were performed on two separate cabinets, a baseline
refrigerator-freezer cabinet and an enhanced cabinet with vacuum insulation panels foamed around
the freezer section. In addition to the standard doors, which were 1-inch (2.5 cm) thick, three sets
of doors with varying degrees of insulation improvements were tested on the baseline cabinet. The
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door improvements consisted of the following: thick doors (2 inches) (5.1 cm), 1-inch (2.5 cm) thick
vacuum insulation panels foamed into standard doors, and 1-inch (2.5 cm) thick vacuum insulation
panels foamed into thick doors. For the tests with the enhanced cabinet, standard doors and thick
doors with no vacuum insulation panels were investigated.

Cabinet heat loss rates for the baseline cabinet with the standard doors and door insulation
improvements are shown in Figure 2. The heat loss rates are determined from equations 1 and 2
using compartment and mullion UAs calculated from measurements made under steady-state
conditions. The compartment heat loss rates are in Btu/h (W) and plotted for temperature
differences between the ambient and compartment of 45°F (25°C) in the fresh food section and
85°F (47.2°C) in the freezer section. These temperature differences are representative of those
for the freezer and fresh food compartments when using the 90°F (32.2°C) closed-door test
procedure. Figure 3 shows the cabinet heat loss results for the enhanced cabinet with the standard
and thick doors.

The cabinet heat loss rates are summarized in Table 2 along with Qgz/Qoy ratios for a refrigerator-
freezer. The experimental results indicate that the baseline cabinet heat loss rate was reduced
6.4% (195.2 to 182.7 Btu/h) (567.2 to 53.5 W) by replacing the standard doors with thick doors.

. Using 1-inch (2.5) thick vacuum panels and foaming them into standard doors resulted in the

cabinet heat loss rate being reduced from 195.2 to 173.7 Btu/h (567.2 to 50.9 W), an 11.0%
reduction. Finally, when 1-inch (2.5) thick vacuum panels were foamed into a thick door, the
cabinet heat loss rate was reduced by 12.3%.

Examining the individual compartments, the additional insulation and vacuum panels appear to have

the most benefit in the fresh food section, lowering the heat loss rate by as much as 20.7%. By

contrast, the maximum improvement in the freezer section was less than half that amount (8.3%).

For the enhanced cabinet, vacuum panels foamed around the entire freezer section resulted in an
overall cabinet heat loss rate of 165.9 Btu/h (48.6 W), or 15.0% lower than the baseline cabinet.
Tests were also performed with thick doors on the enhanced cabinet resuiting in a 20.4% reduction
in the overall cabinet heat loss rate (195.2 versus 155.3 Btu/h) (57.2 versus 45.5 W). While the
cabinet heat loss rate could have been reduced even further by using vacuum panel doors, the
additional cost ($53.52) would have been prohibitive. Therefore, that configuration was not tested.

Compressor Calorimeter Results

Nine-point calorimeter tests were used to determine the performance over a range of operating
temperatures for the baseline compressor used in the production refrigerator-freezer and the high-
efficiency compressor used in the modified units. The high-efficiency compressor is a variable-
speed model that can be run at speeds from 2200-3600 rpm with only minor variations in EER. For
these tests, the compressor was run at the lowest speed (2200 rpm). The resulting compressor
maps, shown graphically in Figure 4, are used as inputs for modeling analyses. From the data in
Figure 4, one can determine that, at the standard rating point for a -10°F (-23.3°C) evaporator and
a 130°F (54.4°C) condenser, the EER for the baseline compressor is 4.28 while that of the high-
efficiency compressor is 5.73, a 33.9% increase in EER. .

The refrigeration capacity of the high-efficiency compressor was approximately 523 Btu/h (153.2 W)

or 10.9% less than the baseline compressor (587 Btu/h) (172.0 W) it replaced. The high-efficiency
compressor was run at the lowest speed possible in attempts to achieve reasonable run times once
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additional insulation was added to the cabinet doors and vacuum panel insulation was added to the
freezer section. Using a compressor whose capacity is much greater than the load would have
resulted in short, frequent compressor runs that increase system cycling losses.

System Results

Of the eight options under consideration for reducing the energy consumption of the refrigerator-
freezer, only five were required to achieve the goal of a 50% energy savings. Those five options
were: 1) cabinet and door insulation enhancements; 2) a high-efficiency compressor; 3) a low-
wattage condenser fan; 4) adaptive defrost control; and 5) a larger evaporator with a counterflow
arrangement. Option number 5, a larger condenser with a counterflow arrangement, would have
been the next design change to be introduced had it been necessary to achieve further savings.
The other modifications, door gasket improvements and an advanced cycle design were low priority
items due to their additional complexity and difficulties in incorporating them into a commercially-
manufactured cabinet. However, they would have been addressed if the goal had not been
achieved. .

Energy consumption tests were initially performed on the baseline cabinet according to section 8
of the AHAM Standard for Household Refrigerators and Household Freezers (AHAM 1985). The
results, Table 3, show that the energy consumption was 1.676 kWh/d. The DOE standard for a unit
of this type and size is 2.006 kWh/d. Thus, the baseline cabinet is 16.5% below the DOE standard.

Next, an enhanced cabinet with vacuum insulation panels foamed around the freezer section was
tested. In addition to the vacuum insulation, the unit also was assembled with a larger counterflow
evaporator. The daily energy consumption for that unit was 1.533 kWh/d, an 8.5% reduction from
the baseline unit and 23.6% lower than the DOE standard.

Following completion of the energy consumption tests on the enhanced cabinet, the unit was
modified by exchanging the standard doors for ones that were 2 inches (5.1 cm) thick and by
replacing the existing condenser fans and compressor with a low-wattage fan and a high-efficiency
compressor (5.73 EER). In addition, a long-term defrost control algorithm was used to further
reduce the energy consumption. The results for all the improvements, Table 3, show that the
energy consumption was reduced from 1.533 kWh/d to 0.928 kWh/d, a savings of 39.5%. Relative
to the baseline unit and NAECA standards, the results represent a 44.6% improvement (1.676 to
0.928 kWh/d) and 53.8% improvement (2.006 to 0.928 kWh/d), respectively.

An additional design configuration was assembled by replacing the existing compressor and

- condenser fan on the baseline unit with the high-efficiency compressor and low-wattage condenser

fan. In addition, the standard doors were replaced with the 2-inch (5.1 cm) thick doors and a long-
term defrost control algorithm was utilized. Although the energy consumption for this configuration
was expected to be moderately higher than the enhanced cabinet model, the design changes were
expected to be more cost-effective. The resulting energy consumption for the unit was 1.164
kWh/d, a 30.5% reduction from the baseline unit and 42.0% lower than NAECA standards.

Cost Analysis
In order to obtain a cost/benefit ratio of the energy-saving features, it was necessary to estimate the

cost for each design change (Table 4). Most of this information was obtained from a study on the
cost-efficiency of design options in support of the proposed 1998 DOE standards (Hakim and Turiel,
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1996). In that study, costs were collected from several refrigerator-freezer manufacturers and
averaged to protect the confidentiality of the data. In addition to that information, manufacturer's
costs were estimated by the suppliers for the high-efficiency compressor and vacuum panel
insulation based on the added electronics and square footage of insulation added to the freezer

section.

Using the information from Table 4, the estimated manufacturer's cost increase for the 0.928
KWh/day design is $134.33. This estimate is based on using a high-efficiency condenser fan
($4.50), adaptive defrost control ($7.15), an increased evaporator area ($3.11), 2-inch (5.1 cm) thick
doors ($6.73), a 5.73 EER high-efficiency compressor ($35.00), and vacuum panel insulation
around the freezer section ($77.84). The energy savings from all these features is 273 kKWhiyr,
relative to the baseline unit (1.676 vs. 0.928 kWh/d). Based on an average cost for electricity of
$0.0867/kWh, the annual savings is $23.67. Doubling the manufacturers cost to arrive at an
estimated cost to the consumer gives a payback of 11.4 years ($268.66/$23.676 per year), which
is considered too long for most consumers.

A breakdown of the energy savings from each design change is shown in Table 5. The magnitude
of energy savings is affected by the order in which improvements are made. The order shown in
table 5 is the order that changes were actually made to the baseline unit. Two of the entries, the
condenser fan and adaptive defrost energy savings, were calculated rather than experimentally
tested. The condenser fan savings was determined from multiplying the difference in the fan
wattages of the production fan (11.6 W) and the low-wattage fan (2.7 W) by the number of hours
of run time (44.2%). The savings for the adaptive defrost control was calculated from experimental
data using the procedure outlined in section 8 of the AHAM Standard for Household Refrigerators
and Household Freezers. The results show that the low-wattage condenser fan, thicker doors, and
adaptive defrost control had paybacks in the range of 3.0 - 4.1 years. The high-efficiency
compressor required 7.7 years to payback. The worst payback period was for the vacuum panel
insulationfincreased evaporator area combination which needed almost 36 years to payback, clearly
an unacceptable alternative. For all the scenarios, it was assumed that the consumer cost was
twice the manufacturer's cost.

Since the payback was determined to be too long for the unit to be economically feasible, a second
unit was assembled at a much lower cost. The estimated manufacturer's incremental cost for this
unit is $53.38 based on using a high-efficiency condenser fan ($4.50), adaptive defrost control
($7.15), 2-inch (5.1 cm) thick doors ($6.73), and a 5.73 EER high-efficiency compressor ($35.00).
The energy savings for this unit is 187 kWh/yr (1.676 vs. 1.164 kWh/d). Using a cost for electricity
of $0.0867/kWh, the annual savings is $16.22. The payback, assuming the consumer cost is twice

that of the manufacturer's cost, is 6.6 years.

CONCLUSIONS

Two significant accomplishments were realized from the project. First, it was shown to be
technically feasible to build an extremely low energy-consuming 20 ft® refrigerator-freezer. It would
have been possible to reduce the energy consumption even further had the vacuum panel doors
been used. There were, however, two drawbacks to the unit; 1) the costs were prohibitively high
and; 2) the compressor run time was 100 low, indicating that we needed a much smaller compressor,
probably in the 400 - 450 Btu/h (117-132 W) range. Compressors in this capacity range traditionally
have much lower EERs than those in the 700 - 800 Btu/h (205 -234 W) range. Thus, improving the
efficiency of small capacity compressors would appear to be a high priority for reducing energy




consumption in future refrigerator-freezers. This assumes that some form of cabinet improvement,
such as vacuum insulation, thicker insulation, or door gasket improvements, will be used to
significantly reduce the cabinet heat gain. At present, vacuum insulation, while an excellent
technology, still appears too costly. In addition, vacuum panel insulations remain unproven in terms
of long term reliability and heat transfer degradation over time; two factors that must be addressed.
Instead of being used to reduce the energy consumption, a more appropriate application for vacuum
panel insulations in refrigerator-freezers appears to be in the area of gaining additional food storage
volume by reducing the insulation volume in areas where it is thickest, such as the doors.

The second, and most promising accomplishment, was the cost-improved refrigerator-freezer,
resulting in a 1.164 kWh/day energy consumption. Based on the results from the low-energy
refrigerator-freezer (Table 5) indicating that the vacuum panel insulation and increased area
evaporator were not cost-effective, a second unit was assembled without these features. The new
unit achieved a low energy consumption with a reasonable additional cost. The cost of this unit
could be reduced even more by using a production compressor with a slightly lower EER than the
high-efficiency compressor. Using a compressor with an EER in the 5.2 - 5.3 range would increase
the energy consumption to approximately 1.25 kWh/d. The additional cost for the unit would be
around $18 or $36 to the consumer. The unit would save 155 kWh/yr for a savings of $13.44
annually. The payback on a unit like this would be less than 3 years, which should be even more
appealing to consumers than the 6.6 year payback for the 1.164 kWh/day version.

CLOSING REMARKS

American manufacturers of domestic refrigerator-freezers have established an enviable record of
consistent improvements in the energy efficiency of their product. Wide-spread use of this
appliance as a result of its efficiency, convenience, and reliable performance have made it a target
for additional refinement, but, clearly, the margins for improving performance are reaching a point
of diminishing retums. Switching to a design that performs well in standardized energy-consumption
tests, but sacrifices many of the convenient and dependable features of this essential appliance
would be a mistake for an established industry.

Clearly, there is a rationale for retaining many familiar aspects of a product design that has been
refined and used for thirty years. However, some changes are needed to further reduce energy
consumption and produce appliances that are more environmentally acceptable. Many of the
design options that could have a significant effect on the energy use of a refrigerator-freezer have
been clearly identified and are technologically available. In virtually every instance, however,
substitution of components with improved efficiency is accompanied by increases in unit hardware
cost. In addition, a proven product is being replaced with one whose reliability has not been
determined.
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Table 1. Design Options for Improving the Energy Efficiency of a

Refigerator—Freezer

OPTION NUMBER DESIGN CHANGE

Option 1 Improved cabinet and door insulation

Qption 2 Reduced door gasl{et losses

Option 3 High-efficiency compressor substitution

Option 4 Increased evaporator size with counterflow arrangement
Option 5 Increased condenser size with counterflow arrangement
Option 6 Advanced cycle with zeotropic hydrocarbon mixture
Option 7 Low-wattage fan motors

Qption 8 Adaptive defrost control

Table 2. Summary of Reverse Heat Loss Tests
90° F ambient, 5° F Freezer, 45° F Fresh Food Compartment

Description Qrecnrood | Quotar Percent | Queezer
(Btu/hr) |(Btu/mr) |Qyeezed/ Qo | Reduction |(Btu/hr
Base Cabinet: ’
w/standard doors (1 inch) 103.4 91.8 195.2 0.53 —
withick doors (2 inches) 94.8 87.9 182.7 0.52 6.4
w/vacuum panels in standard doors (1 inch) 95.1 78.6 173.7 0.55 11.0
w/vacuum panels in thicker doors (2 inches) 98.4 72.8 171.2 0.57 123
Enhanced Cabinet:
w/vacuum panels around freezer section 86.4 79.5 165.9 0.52 15.0
w/vacuum panels around freezer section + doors | 80.3 75.0 155.3 0.52 20.4
(2 inches)
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Table 3. Energy Consumption and Cost Information

Description

Energy
Consumption
(kWh/d)

Percent
Run Time

Manufacturer’s
Cost Increase
(dollars)

Baseline unit

1.676

44.2%

Baseline unit with 2-inch
thick doors, 5.73 EER
compressor, low-
wattage condenser fan,
and adaptive defrost

1.164

47.6%

53.38

Enhanced cabinet
(vacuum panels around
freezer section) with 2-
inch thick doors, 5.73
EER compressor, low-
wattage condenser fan,
larger evaporator, and
adaptive defrost control

0.928

36.5%

134.33

Table 4. Manufacturer’s Cost Increase for Design Changes

Design Change Manufacturer’s Cost Increase
(dollars)

Low-wattage condenser fan $4.50

Increased evaporator area $3.11

Vacuum panels around freezer $77.84

section |

2-inch thick doors $6.73

High-EER compressor $35.00

Adaptive defrost control $7.15
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Table 5 - Cost Analysis for Design Options

Case Design Annual Annual Cost Consumer | Payback
Changes | Energy Energy Savings Cost (years)
Use Savings (dollars/yr) | (dollars)
(kWh/yr) | (kWhlyr)
A Baseline 612 - - - -
Unit

B A+ vacuum 560 52 451 161.90 35.9
insulation
around
freezer,
increased
evaporator
area

(] B+ low- 525 35 3.03 - 9.00 3.0
wattage
condenser
fan

D C+5.73 420 105 9.10 70.00 7.7
EER
compressor

E D+ 2-inch 379 41 3.55 13.46 3.8
thick doors

F E+ adaptive 339 40 3.47 14.30 4.1
defrost
control
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Fig. 3. Reverse heat loss results for enhanced cabinet
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