

ANL-6628
Mathematics and Computers
(TID-4500, 18th Ed.)
AEC Research and
Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois

AUTOMATIC FOIL ACTIVITY COUNTING FACILITY
AND DATA-REDUCTION PROGRAM

by

K. E. Plumlee
Reactor Engineering Division

and

M. T. Wiggins
Electronics Division

October 1962

Operated by The University of Chicago
under
Contract W-31-109-eng-38
with the
U. S. Atomic Energy Commission

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

	<u>Page</u>
I. INTRODUCTION	5
II. SUMMARY	5
III. ELECTRONIC DESCRIPTION	6
A. IBM-526 Punch	6
B. Control Circuits.	7
C. Translator	8
D. Sample Changers	15
E. Card Serial Numbers	15
F. Identifiers.	15
G. Scalers.	15
IV. OPERATION OF SYSTEM	16
A. Sample Changers	16
B. Scalers.	16
C. Identifier Chassis.	17
D. Control Chassis.	17
E. Card Punch.	18
F. Cycle Counter	18
G. Operating Check List	18
V. DATA-REDUCTION PROGRAM.	19
A. General Description	19
B. Control of Data Processing	20
1. Sequence of Terms Affecting Branching	20
2. Identification Code Numbers, Data-card Columns 67-72	21
3. Sense Switch Functions	22
4. Problems in Control of Data Processing.	22

TABLE OF CONTENTS

	<u>Page</u>
C. Eight-card Input (8-deck) of Decay Constants, etc	22
D. Resolving Loss Correction.	23
E. Background Correction	23
F. Decay Correction.	24
G. Concurrent Normalization	24
H. Corrected Activity	25
I. Specific Activity.	25
J. Normalized Activity	26
K. Relative Deviation	26
L. Net Deviation.	26
M. Data Plot	27
N. Punched Cards.	27
O. Scaler Identification	27
P. Card Identification	27
Q. Input Data Card Format.	27
REFERENCES.	42

LIST OF FIGURES

<u>No.</u>	<u>Title</u>	<u>Page</u>
1.	Automatic Scalers and Recorder	9
2.	Foil Data Recording Block Diagram.	10
3.	Connecting Circuitry.	11
4.	Time Scalers.	12
5.	Data Scalers and Identifier Circuits.	13
6.	Control Circuitry.	14
7.	Decay Reduction.	28
8.	Traverse Treatment.	29
9.	Traverse Plot	29
10.	Processed Data Plot for Run August 24, 1960 (Scaler 1 only).	40

LIST OF TABLES

<u>No.</u>	<u>Title</u>	<u>Page</u>
I.	FORTRAN Source List for Foil Data Reduction	30-35
II.	Input Data for Run August 24, 1960	36
III.	Processed Data for Run August 24, 1960.	37-39
IV.	Comparison of Concurrent Foil Normalization with Computer Decay Reduction.	41

AUTOMATIC FOIL ACTIVITY COUNTING FACILITY AND DATA-REDUCTION PROGRAM

by

K. E. Plumlee and M. T. Wiggins

I. INTRODUCTION

Critical experimentation often involves large amounts of foil-activation data. The labor and investment necessary for foil-activation counting have generally limited the amount of data obtained. Although several automatic counting systems have been reported,(1-3) additional features were needed for use by the Experimental Physics Section. These may be described as greater flexibility, more freedom from maintenance, and increased convenience of operation.

The increased flexibility included these abilities: to change counting intervals at will; to start or end traverses in any detector chain without complication; to take background counts intermixed at will between foil data; optional preset counting intervals or preset count accumulation; and provision for scaling data from various sources (other than foil-activation measurements).

Maintenance requirements were believed to be minimized by the use of carefully selected trouble-free components, including transistors and canned relays.

Convenience requirements included: output more suitable for computer processing; automatic sensing of the type of count recorded (i.e., background disc, foil holder, or end of traverse marker); and ready availability of data at all stages of processing.

II. SUMMARY

A transistorized automatic counting and recording system was built for the determination of foil-activation data. Output data is on IBM-printed and punched cards which may be processed by a high-speed computer. The computer produces tabular and graphical output, as well as punched data cards which may be used for further processing such as curve fitting.

The foil-activation data are taken from one to six chains operating in unison (normally sample-changer, detector, amplifier, analyzer, scaler, and read-out chains). Circuitry and logic of the system were greatly simplified by the use of a one-second interval marker which initiates and terminates each step of the cycle in full seconds rather than fractional seconds.

The equipment includes provision for optional preset counting interval or preset count accumulation. There are sensing devices to record the kind of measurement made (whether foil activation or background count), plus manual switches which may also specify how individual measurements will be processed later by the computer, on a card-by-card and scaler-by-scaler basis.

Data are processed by an IBM-704 computer programmed to produce plotted traverses as well as tabular data. From 25 to 100 foil-activation measurements per minute may be processed, depending on the number of entries per card and the use of preprocessing equipment.

The data reduction includes many repetitive steps which the computer does very precisely and economically.

III. ELECTRONIC DESCRIPTION

The data read-out system is composed of the following components:

- A. IBM-526 punch;
- B. Control chassis;
- C. Translator;
- D. Sample changers;
- E. Card numberer;
- F. Identifier chassis; and
- G. Scalers.

The description of the various components of the system follow in the order given above. A photograph of the equipment is given in Fig. 1. A block diagram is given in Fig. 2. Circuitry is shown in Figs. 3 through 6. Up to six batches of foils may be processed simultaneously in six automatic sample changers. The foil activities are scaled by six scalers. In addition, there are a cycle counter (Veeder Root Counter), a run-time (1-sec interval) scaler, and a counting-interval time scaler. The scaled data are read out at the end of each counting interval, and are punched and printed on IBM data cards.

A. IBM-526 Punch

The IBM-526 Card Punch is a standard model with very minor modifications necessary to adapt to this system. Connecting circuitry is shown in Fig. 3. Control circuitry is shown in Fig. 6 (Keyboard/Summary Control insert). Data card format is given at the end of section V-Q.

The pick (energizing) of I16, 8, and 36 puts the IBM punch in summary operation. The punch will then step and punch an IBM card, one column at a time, sequentially. The row energized determines the digit punched in a column. The punch will impulse, sequentially and in step with the column punching, one of eighty outgoing lines. (Exactly: if we are to punch, say, in a column No. 8, emitter No. 8 is pulsed.) Normally, a pulse, called "P5 strobe," is applied to the emitter. We have slightly modified the punch in order to put an earlier pulse, P3 strobe, on the emitters. The ending of P3 strobe overlaps the start of P5 strobe.

The space coil is I15. Unlike a typewriter, it is permissible to pick "space" and a character at the same time. The character will punch, and then the card will space.

The punch will return to keyboard or to idle condition with the release of I15 and A21. For the auto-duplication feature of the punch, the punch must be restored to keyboard operation. Although the punch is shifted to the keyboard mode, the punch will continue punching after sensing auto-duplicate in the program card, as if it were still in summary operation.

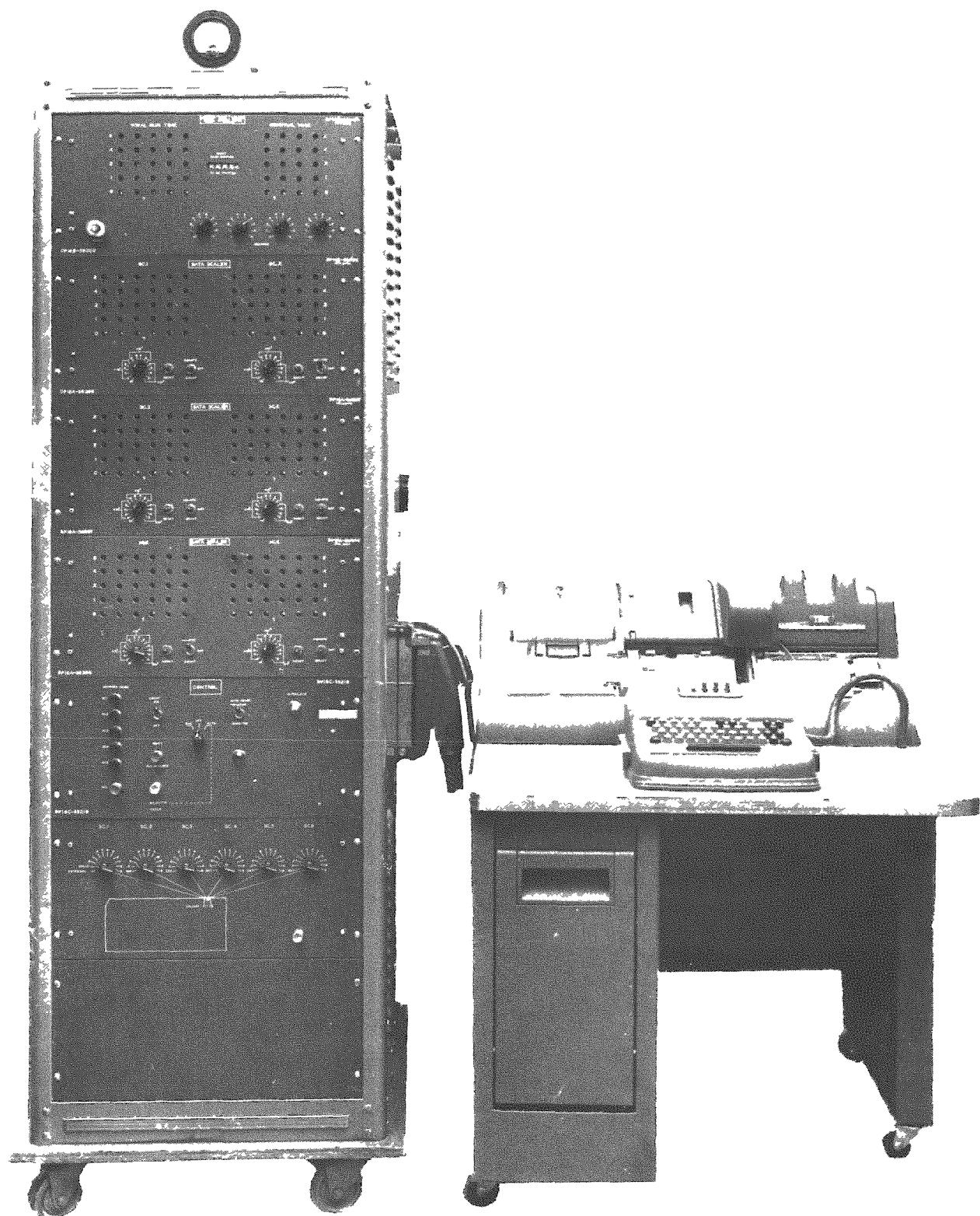
The modifications of the IBM punch, then, are as follows:

The lead connecting (25-7) and (D4) is disconnected. P5 strobe (25-7) and P3 strobe (21-4) are brought out externally thru KBY44 and SP11, and back to the column Emitter Common (D4) as shown. A lead is merged to A21 and brought out externally.

B. Control Circuits

The control chassis activates the various components of the system in proper sequence. It requires that all sample changers reach counting readiness before scaling may commence. It starts and stops the scalers, initiates readout, and signals the sample changers to process the next foil. The sample changers and the card punch are self-contained automatic systems equipped with many of the features required in automation of the facility. Control circuitry is shown in Fig. 2. There are two basic cycles in the auto-mode type of control:

1. the counting cycle, and
2. the read-out cycle.


Both of these cycles are started and terminated exactly on one-second spaced pulses (pulse "D" or "D not"). Assume the system is in the counting cycle. From the count cycle portion of the drawings, it follows that relay SRO is not picked and relay CR is picked. Relay SRO will then be picked by the first "D" pulse after interval time or preset count is picked. (Q4, Q5, and Q6 form an "and" gate.)

When SRO picks, SRO-24 terminates the count cycle. (Note that CR is still picked.) SRO-34 will "trigger off" the IBM-526 punch for a read-out cycle. When the punch reaches column No. 73, emitter line No. 73 resets SRO (by way of AR, AR11, and SRO11). Scalers are reset at this time, and the card numberer advanced one count. The system could begin counting again, except that the earlier column No. 65 drove the CR relay to the not-picked condition. CR can only be picked, and a new count cycle started, when the sample changers have all loaded in the next sample holder to be counted. The first "D not" pulse after closure of w-x is the actual start.

C. Translator

The translator, at the proper time, is required to select the proper digit of information to be punched. In addition, whenever the selected digit is in compact BCD code, the translator must convert this code to the "one line picked in twelve" code that the IBM punch uses.

Our normal operation is to have the emitter pulse (combination P3 strobe and P5 strobe), to pick a call-out relay assigned to an emitter line. The pick of this relay straps the digit information to four BCD lines. These lines, in turn, drive four translator relays. Contacts of the translator relays drive the ten punch magnet lines. The contacts are pulsed and only pulsed by P5 strobe. The set-up time allowed, then, is the time between the start of P3 strobe and the start of P5 strobe.

Neg. No. 143-464

Fig. 1. Automatic Scalers and Recorder

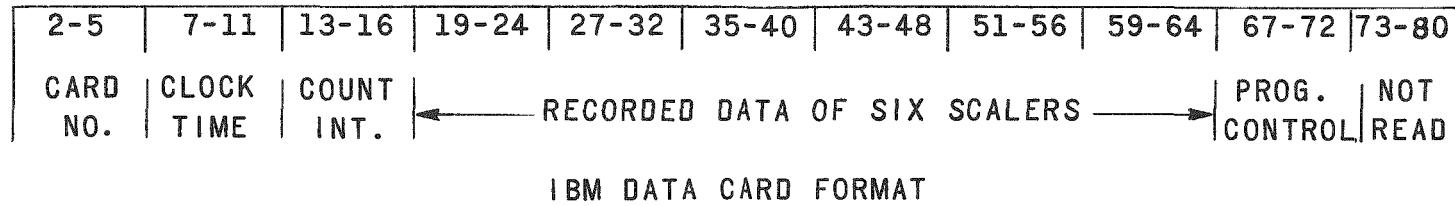
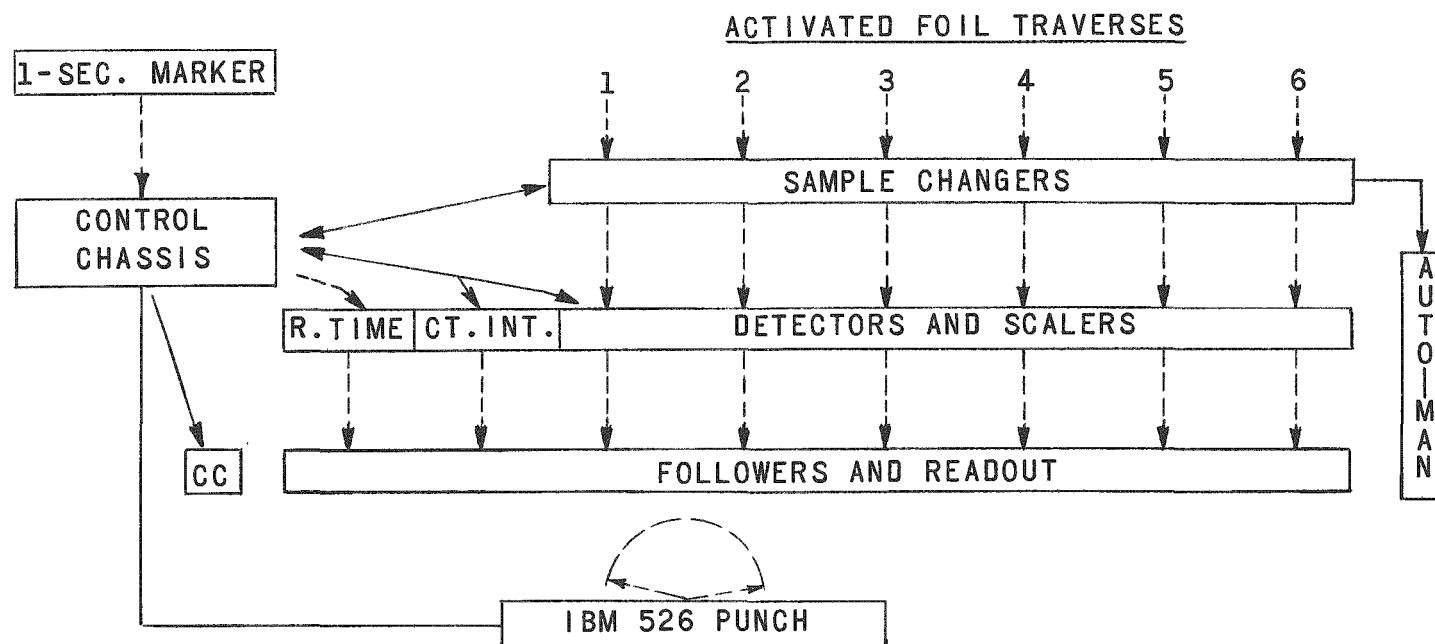
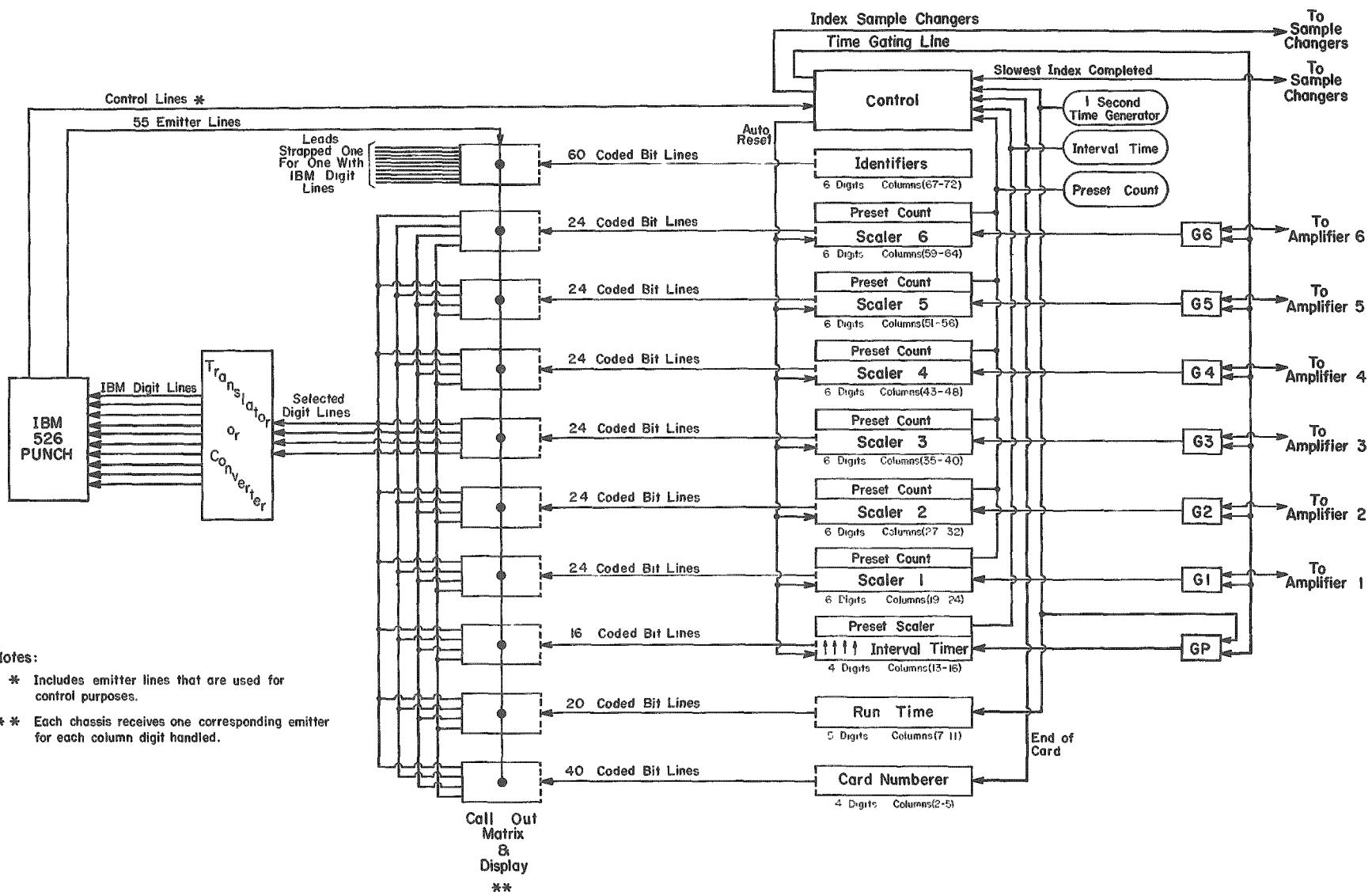
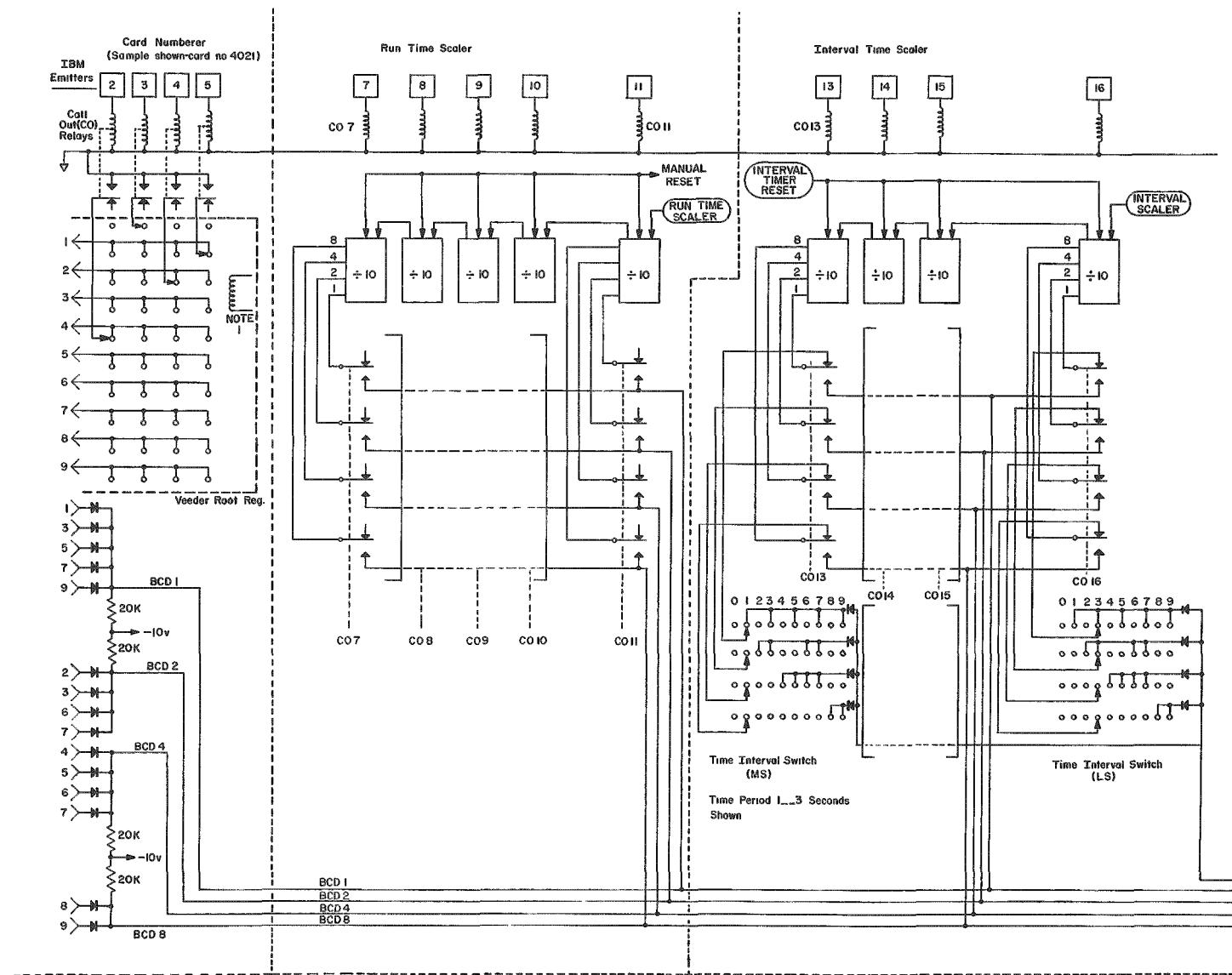





Fig. 2. Foil Data Recording Block Diagram

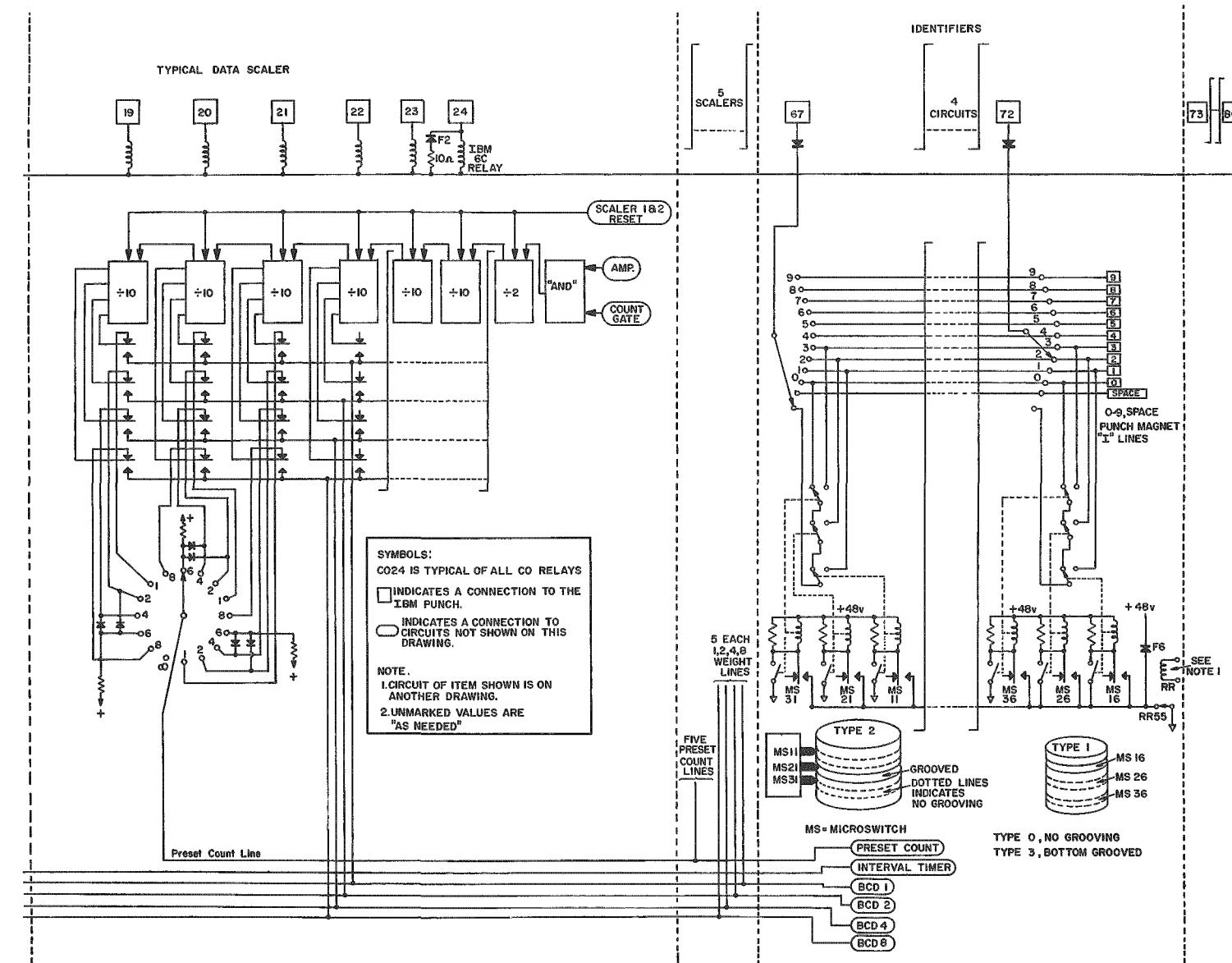

Neg. No. 143-824

Fig. 3. Connecting Circuitry

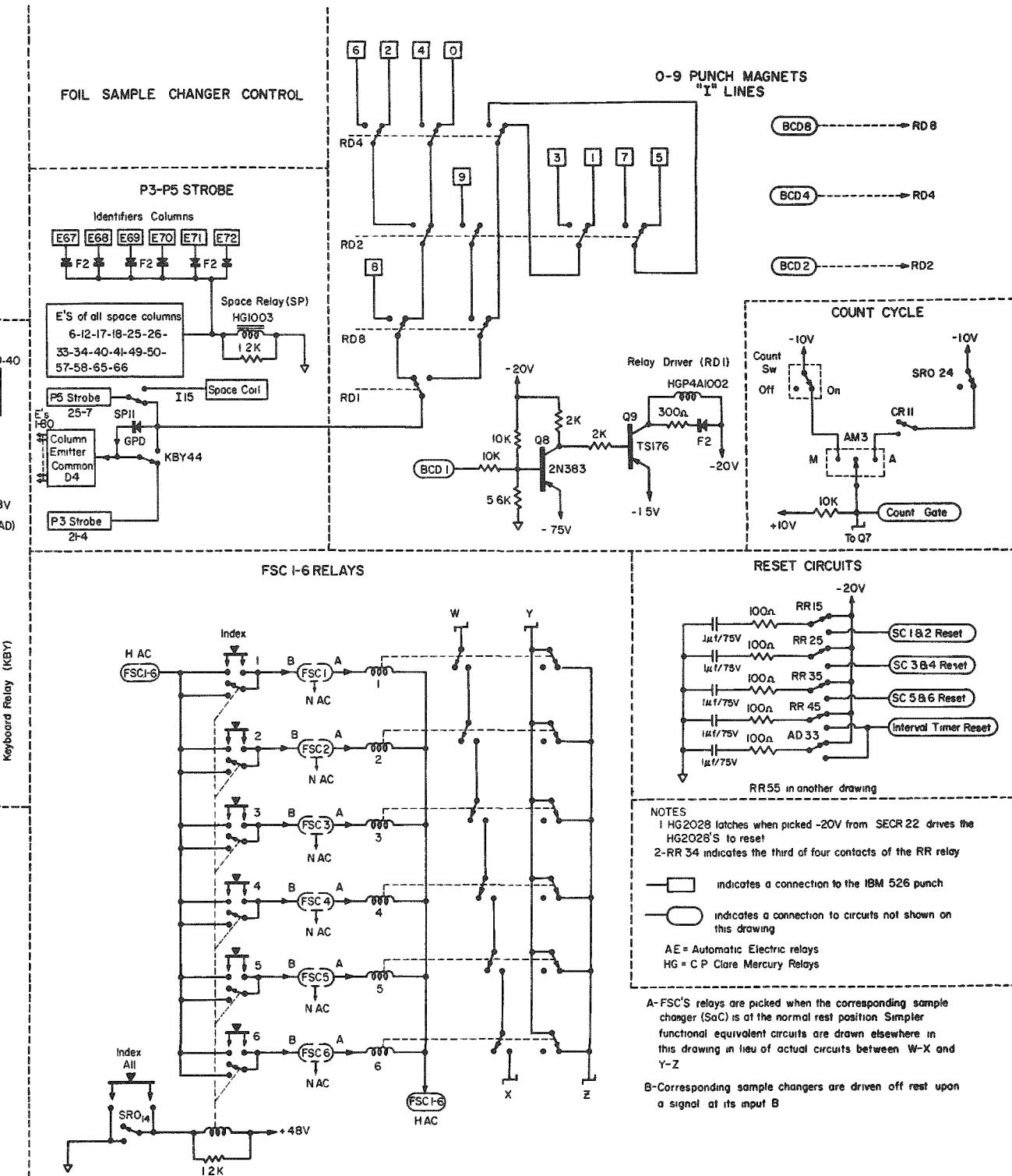
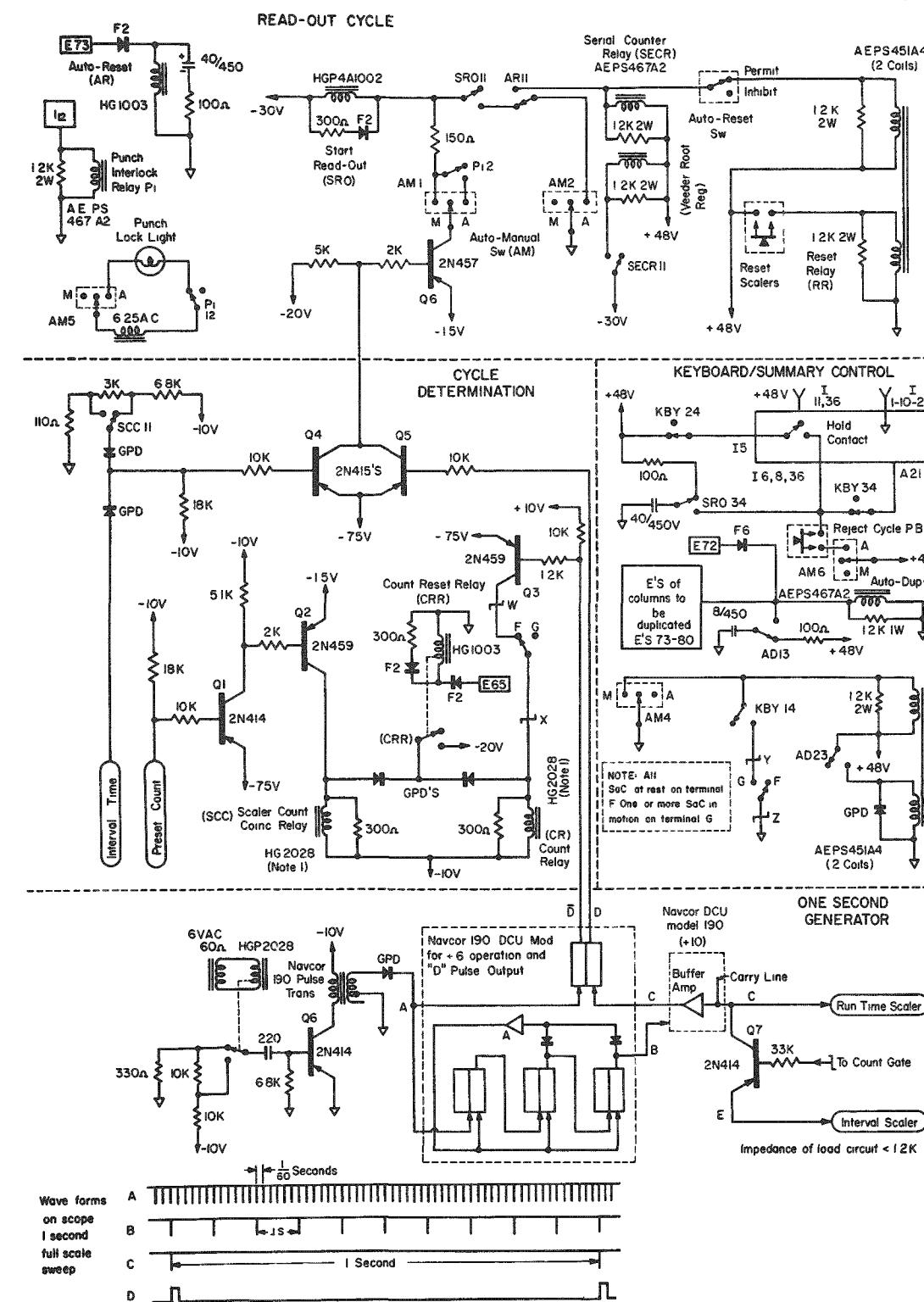


Neg. No. 143-826

Fig. 4. Time Scalers

Neg. No. 143-825

Fig. 5. Data Scalers and Identifier Circuits

When no information at all is being supplied to the translator relays, RD1 tongue is tied to punch magnet "zero." P5 strobe must be removed, therefore, from the translator when a blank column (space) is to be put/left on the IBM card. This is done by SP11. The problem does not exist for auto-duplicate operation, only because the IBM-526 punch, itself, internally blocks a P5 strobe signal when auto-duplicating.

D. Sample Changers

The Nuclear-Chicago sample changers (7) are nearly self-contained circuit-wise. Once driven off "home" by action of contact SRO-14, they will continue the sample-changing process until completed. After all of the changers have completed a change of samples, points w-x will be closed while an open circuit will exist between points y and z. Closing w-x is necessary to start a new count cycle; opening of y-z is needed to open keyboard "hold" so that SRO pick may later terminate the count cycle and start a new read-out cycle.

E. Card Serial Numbers

The Veeder Root register has an outgoing line for every digit number plus a common line for every digit position. The ten-line output is decoded to standard BCD code. The Veeder-Root count, which was produced by emitter No. 73 of the previous read-out cycle, is the count read-out by emitter pulses 2 through 5 of the present read-out cycle.

F. Identifiers

For each sample changer, there is a set of three microswitches which senses the sample holder as it is moving from the input stack to the counting station. If the holder is grooved, a microswitch rolling lever "drops in" the groove, and triggers a corresponding relay. These relays are decoded into the ten punch magnet lines, directly. (The card numberer and the identifiers were designed at a different time, which accounts for the different way of handling the coding. Either way is satisfactory.) The decoding relays are latching, the resetting action being initiated by emitter No. 73. Insofar as the IBM punch will reach and finish punching columns 67 through 72 before the sample holder now traveling from the input stack to the counting station reaches the microswitch, the IBM punch will punch out the latched information from the sample holder that has just been counted. (This sample holder is traveling from counting station to output stack, at this time.)

G. Scalers

All scalers are straightforward. The run-time scaler is never auto-reset and never gated. Since a read-out cycle is always started on a one-second marker, the run-time scaler will not receive another pulse until one

second after SRO pick. The run-time scaler is read out in less than one second after SRO is picked, however. The recorded run time, then, is the time when counting actually stopped.

IV. OPERATION OF SYSTEM

A. Sample Changers

One or more sample changers or a facsimile must be connected into the system to obtain automatic cycling. The system requires that at least one changer be in the "Time Select" mode and "auto" count selection.⁽⁷⁾ All changers which are inoperative must have the "counting light" on. Any unused changer may be disconnected, but a wired dummy connector must replace the sample-changer connector to satisfy the "counting light"-on requirement. The heavily shielded sample changer⁽⁶⁾ and the facsimile each satisfies these requirements when operating.

Selection of the changer depends on the operation planned. The heavily shielded model is recommended for counting hard-gamma activities; however, it is less convenient and trouble-free than the Nuclear of Chicago Model C110-B sample changers. Selection of a sample changer for a given traverse may be based on the background count rate, on variability of background with traverse position in the stacks, on accuracy of foil position, or on speed of operation. The heavily shielded changer cycles in 13 sec and restacks in a minimum of 10 sec (+5 sec/planchet). The C110-B models⁽⁷⁾ require about 15 sec/cycle and about 30 sec (+10 sec/planchet) when restacking. The C110-B changers are less subject to positioning errors; they have identifier sense switches added to mark background planchets, and they have more modes of operation. They are generally used for β and soft- γ counting. Shielding is 2-in.-thick lead in a specially built shield.

The facsimile circuit consists primarily of a pneumatic time-delay relay which requires 5 sec to reclose. This circuit simulates the "time select" mode and also the "counting on" circuit signal except for an interval of 5 sec commencing with read-out. This is necessary to maintain proper sequence when operating without sample changers. The 5-sec interval permits completion of read-out and reset.

B. Scalers

The six data scalers each include six commercial,⁽⁸⁾ transistorized,* plug-in decade units with ANL-designed light and read-out followers. Since these are 100- kc decade units, a single, unrecorded 1- mc binary precedes

*These units require well-matched transistors for replacements. Stock orders do not assure satisfactory replacements.

them. This leaves an error of $(\pm \frac{1}{2})$ in the recorded count. The error is generally less than would be anticipated because of resolution losses if the incoming data were introduced directly into the 100-kc decade units.

The data scalers are assembled in pairs and may be switched to operate as three 12-decade scalers instead of six 6-decade scalers. Preset count switches permit selection of 1, 2, 4, 6, 8, or ∞ on the three higher decades of each scaler. Scaling continues until the next one-second marker following the preset count.

There is a reset toggle and a selector switch for off, on, or remote operation. Negative pulses (-10 to -50 v) of approximately one-microsecond duration may be scaled.

The run-time scaler is a five-decade scaler with a manual reset button only. It scales each one-second interval. The interval time scaler is a four-decade scaler with automatic reset and gang manual reset. It starts and resets with automatic counting. It may be preset to counting intervals of 1 to 9,999 sec.

The one-second interval marker consists of a 60-cps input marker derived from the ac power line, a modified (scale-of-six) and a standard (scale-of-ten) decade units.⁽⁸⁾

C. Identifier Chassis

The identifier chassis contains six manual switches which permit the operator to preselect the numbers punched into IBM card columns 67 through 72. There are also "space" (or blank) and "external control" positions. Each "external control" relay may be latched into a sense switch installed on a Nuclear of Chicago sample changer, and permits automatic recording of background and end-of-traverse planchets. The use of these numbers for program control is discussed in Section V-B-2.

D. Control Chassis

The control chassis contains the sequencing circuitry for automatic and manual gang operation of the system. Automatic operation commences after the sample changers are in station for counting, the rack door is closed, the card punch is ready (the first card must be rejected manually to turn out the red interlock light), and the control (Man-off-auto) switch is in the automatic position.

Counting intervals may be terminated by either preset time or preset count accumulation. The interval time scaler (scaling one count per second from the one-second marker) and one or more data scalers may (one or all) be preset to terminate counting intervals. Whichever reaches the preset accumulation first ends the count and initiates read-out for the

entire system. The data and time scalers may both be preset to obtain adequate counting statistics and short counting intervals with the more active foils of a traverse and yet permit no counting interval of a less active foil to exceed a preset time (see V, G. Concurrent Normalization).

E. Card Punch

The IBM-526 card punch is necessary to the automatic cycle. In addition to the card punch being turned on, its program drum must be engaged, the added toggle switch (auto-other) must be turned to its automatic position, the auto-feed and auto-duplicate switches must be on, there must be cards in the input side, and one card must then be rejected by depressing the release button. The card punch may be used to terminate an unattended run by limiting the card supply.

The program drum controls the operation of the punch. The program card has the "1" row (numeric shift) punched to facilitate data recording from columns 1 through 72 (or 80). The "0" row is punched in columns 73 and 74 to initiate copying from the preceding card. The "12" row may be punched in columns 73 to 80 for field definition.

F. Cycle Counter

A Veeder-Root five-digit counter is advanced each time the scalers reset automatically (i.e., on completion of read out). The counter may be reset by access through the time chassis; however, this is rarely done. The left digit is not read out, but the other four appear as a serial number on each card, permitting card identification, filing, and sorting. This serial number is examined by the IBM-704 computer during data reduction to determine if the data card will be blank. In the event that the recorded four digits of the serial number are blank or zero, the computer will treat this card as the end of a deck.

G. Operating Check List

1. Record length of reactor run for foil irradiation. This will be required as RRT(I) for each scaler on the 6th card of 8-deck.
2. Turn on main power switch if not already on.
3. Record time elapsed TC(I) from end of irradiation to start of clock run-time scaler CRT. This is required for each scaler, on the 7th card of 8-deck.
4. Place traverse foils in selected sample changers with background and end-of-traverse planchets included as desired, leaving sample changers on and operable.

5. Clear interlock lights on control chassis.
 - a. Rack door closed (green light on).
 - b. Card punch on and operating (red light off).
6. Select timing interval (or preset count).
7. Turn control switch to automatic.
8. Dial identifier chassis selector switches as required for first card and reset if needed as counting progresses.
9. Check first card punched and printed.
 - a. Did serial number and scalers record correctly?
 - b. It may be worthwhile to note on this card the reactor run, date, traverse in each sample changer, voltage, gain, discriminator settings, and time of day.
 - c. Columns 74 through 80 will be copied from one card to the next and may be used for run number, date, or any other information of seven digits or less.
10. Check card supply before leaving system unattended.
11. After completing counting, punch out 8-card deck.
12. Assemble 8-card deck and data cards (see Section V.B.4.). End of data-card deck is fixed by inserting a blank card.
13. Submit cards, computing time request, and instructions for running problem to IBM-704 computer staff.

V. DATA-REDUCTION PROGRAM

A. General Description

The FORTRAN II program for the IBM-704 computer produces tabulated and plotted data.⁽¹¹⁾ The program includes resolving loss correction, background subtraction, decay correction or alternatively concurrent normalization, deviation estimates, traverse normalization, and several choices in plotting. The program permits selection of different decay constants, resolution time, run time, etc., in each of the traverses being processed. These are accessible at any point during data processing (i.e., can be changed). The high degree of flexibility in handling as many as six scalers recorded on one data card leaves room for human errors; consequently, some care is necessary in setting up data for processing. The reward is in reducing days or weeks of tedious data treatment into a few minutes of computer time.

The FORTRAN source deck list is given in Table I. The flow charts in Figs. 7 to 9 indicate the more important branch points of the program. There are some 72 frequency statements in the list, which should indicate the variety of considerations affecting program control.

This program requires storage space of 22,170 words in the memory (not including 15 subroutines) and accommodates up to 360-card decks. An earlier version required storage of 6,440 words (not including 13 subroutines) but was restricted to 90-card (maximum length) data decks. There is no limit on the number of decks which may be processed. The instructions require 1,583 words of storage; however some curtailment is possible if storage is tight or read-in time must be curtailed. Drastic curtailment could be achieved by limiting the number of alternatives available in data processing.

B. Control of Data Processing

1. Sequence of Terms Affecting Branching

Branching is determined by the FORTRAN source list terms NUM(NO), NOS, IDC(I), NIL(I,NO), and DC(I) in sequence. The card serial number NUM(NO) \neq zero holds the program in saturated activity computation or associated branches (see Fig. 7). If zero or blank, that operation terminates and traverse processing commences (see Fig. 8). NOS, supplied via the 8-deck, is the number of scalers to be treated. Any data from scalers numbered higher than NOS will be omitted. Alternatively, one may set DC(I) = zero (or two) to skip all data from a given scaler (I). If any traverse data output is desired from scaler (I), it is necessary that DC(I) \neq zero (or two) in the end of a data-card deck. The use of DC(I) = unity or two is discussed in Section V-G, Concurrent Normalization. NIL(I,NO) is discussed under IDC(I) Code No. 2, below.

2. Identification Code Numbers, Data-card Columns 67-72

The identification code IDC(I) gives card-by-card and scaler-by-scaler control of computer processing. Column 67 applies to scaler No. 1, 68 to No. 2, etc. The following code numbers are used:

No. 1 indicates a background count which will be weighted by a factor BKW into the background count rate applied to subsequent scaler data. The use of this number results in a zero in the processed data table and omission from the plot. This may be recorded automatically by placing a No. 1 plastic disc between foil holders (and the identifier switch on external control).

No. 2 identifies a redetermination of background count rate, to replace the current value entirely. This too results in a zero in the processed data table and omission from the plot.

No. 3 in any column from 67 to 66 + NOS results in the next eight data cards being read as an 8-deck without interruption of traverses in the tabular and graphical output. Misuse of IDC(I) = 3 will inevitably ruin subsequent computations, until corrected.

No. 4 indicates end of traverse. This may be recorded automatically via a No. 4 plastic disc. In order to skip subsequent data from scaler (I) after appearance of an IDC(I) = 4, a term NIL(I,NO), which is normally zero, is set to unity. This term remains unity as processing continues until an IDC(I) other than zero, blank, or space occurs, at which point it reverts to zero. Data from scaler (I) are omitted entirely as long as NIL(I,NO) = 1. This branch separates traverse tabulations and plots, and saves computer time with unused scalers.

No. 5 identifies a standard foil to which the traverse will be normalized. If this is not the most active foil in the traverse, the larger points will be plotted full-scale as well as the standard foil. If no standard foil is indicated, the computer will select the most active foil and normalize thereto, generally resulting in only one full-scale point in each traverse.

No. 6 deletes data for the indicated scaler one point at a time. This produces a zero or a blank in the processed data output and is omitted from the data plot.

No. 7 produces double-spaced point in plot.

No. 8 produces triple-spaced point in plot.

No. 9 permits overprint in plot, using (X) rather than (*) for the overprinted point or points. This applies only to program control operation of the off-line printer, which is not advanced.

3. Sense Switch Functions

The six sense switches of the IBM-704 are used as follows in controlling data processing.

No. 1, while machine program is read, determines whether input data will be from magnetic tape No. 1 (sense switch No. 1 down - via INTAP 1 subroutine) or from on-line card reader (sense switch No. 1 up).

No. 1, while starting after PAUSE 6, determines re-entry point after completing a data-card deck. If up, the next eight cards are read as an 8-deck. If down, the constants from the most recent 8-deck are retained. This is necessary if a blank card or other inadvertent event should terminate a data card deck prematurely. It is rarely needed.

No. 2 down permits on-line printout (data sampling) but slows up computation. This does not apply to graphical output. It does not interfere with normal output on magnetic tape No. 2.

No. 3 down requires foil weights or calibration cards (see V-I, -J, -K- and L).

No. 4 down omits graph of output traverses.

No. 5 down produces punched cards from 1401 (off-line) data processor.(10)

No. 6 down produces detailed output of terms computed by IBM-704. This output is on Tape No. 3. It is slow and only a brief interval is usually needed to permit an evaluation of performance.

4. Problems in Control of Data Processing

Limitations in data processing arise from difficulty in indicating to the computer which branches are required. Most faults are the result of oversights in preparing data cards for reduction. These can be avoided by following a systematic pattern. The computer can readily process card-by-card and scaler-by-scaler controlled data. Some difficulty was encountered in writing the FORTRAN program so as to obtain consistent traverse treatment (see Fig. 8). Traverses for all scalers may be skipped if the decay constant for the last (NOS) scaler is zero or two. Earlier efforts failed to assure that all the traverses of a given scaler would be treated.

Automatic recording of background planchets and end-of-traverse planchets is very helpful, but further automation would be desirable. Decisions which affect large blocks of data require the attention of a technician or a physicist. Decay constants, resolving times, efficiencies, and other accessible constants must be supplied. The use of magnetic tape input vs. cards, and the selection from various modes of output must be indicated.

Although individual users tend to fall into patterns which require only a few 8-decks, the total number used in data reduction is quite large. Some users make up new 8-decks each time data are to be processed. Others change one or two items and duplicate the remainder. A user may follow a rigid routine requiring only one set of eight cards.

C. Eight-card Input (8-Deck) of Decay Constants, etc.

See statements 403-14, 60, 98.

Accessible constants of the FORTRAN program are included in an eight-card deck or 8-deck. This deck may be called in after any data card by punching an IDC(I) code No. 3 in the control column of any appropriate

scaler. This revision does not interrupt traverses, but does show in the tabulated output of corrected activities.

1st Card - Title, any 72 characters may be entered here. This title heads output data tables, etc.

2nd Card - Specifies number of scalers (NOS); a fractional background weight adjustment (BKW, values usually between 0.00 and 1.00); coefficients of resolving correction equation (A, B and C); and scaler data multiplier (D) (see card 5, also items D, E, F, G).

3rd Card - Decay constants, up to six, for each scaler [DC(I)].

4th Card - Counter efficiencies for each scaler [EFC(I)]. If saturated activities are desired supply $EFC(I)/DC(I)$ instead (see F and H).

5th Card - Initial background count rate for each scaler [BK(,1)].

6th Card - Reactor run time of foils for each scaler [RRT(I)].

7th Card - Time corrections TC(I) which the computer will add to the clock time (CRT) read from data cards. The sums of CRT and TC(I) should equal the time elapsed between the end of the irradiation and the end of the counting interval for each foil.

8th Card - Resolving time for each scaler [DT(I)].

D. Resolving Loss Correction

See statements 7, 15, 470, 71, 481, 482.

The resolving intervals are specified for each scaler on the eighth card of the 8-deck. They are carried as DT(I) throughout the FORTRAN program. Three constants of a polynomial equation (A, B, and C) are specified on the second card of the 8-deck. The corrected count is computed by the following formulation:

$$[\text{Corrected Count}] = [\text{Actual Count}] \{1 + AM(DT) + BM^2(DT)^2 + CM^3(DT)^3\},$$

where M is the count rate (actual count/counting interval). The actual count is the product of the recorded scaler datum DATA(I,NC) and the multiplier D. The resolving loss correction precedes background count rate correction. The equation permits use of standard expressions for resolving loss corrections.

E. Background Correction

See statements 7, 12, 41, 43, 46, 48, 51, 53, 570, 471, 483, 85, 214, 215, and 241.

The computer carries forward a background count rate $BK(I,1)$ which is multiplied by the counting interval $CT(NO)$ and the multiplier D . This is subtracted from each count, $D \times DATA(I,NO)$, after resolution loss correction. The background rate is involved in other computations as well. $BK(I,NO)$ is stored for each scaler datum processed, except for the $NO = 1$ location which always is the current adjustment and will correspond with the value supplied for the last NO read rather than the first. The values stored as $BK(I,1)$ are initially supplied by the 5th card of the 8-deck. These values may be replaced by background counts identified by $IDC(I)$ code No. 2. They may be adjusted by background counts identified by $IDC(I)$ code No. 1, each count being weighted by the factor BKW and the preceding value by the factor $(1-BKW)$.

F. Decay Correction

See statements 8, 70, 571, 472, 477, 73, 76, 77, 79, 4201, and 202.

Decay constants are specified on the third card of the 8-deck. They are carried as $DC(I)$, one for each scaler, in the FORTRAN program. If $DC(I)$ is unity or two, this results in concurrent normalization branch treatment. Otherwise, the following takes place. Datum is multiplied by the scaling factor (D) from the second card of the 8-deck. Resolution loss and background corrections are applied. The resulting term is divided by (TJ) , below, and stored as $SACT(I,NO)$. The value actually stored may be $V\sum_a \phi / \lambda$ or it may be saturated activity $V\sum_a \phi = n\sigma_a \phi$. See H: Corrected Activity, and 4th card of 8-deck.

$$TJ = EFC(I) [\exp(-\lambda t_1) - \exp(-\lambda t_2)] [\exp(-\lambda t_3) - 1.0]$$

$t_1 = CRT + TC(I) =$ time elapsed from end of irradiation to end of counting interval.

$t_2 = t_1 + RRT(I) = t_1$ plus the irradiation time.

$t_3 = CT(NO) =$ the counting interval, read from each data card.

$\lambda = DC(I) =$ the decay constant of foil.

$EFC(I)$ is the counting efficiency or inter-scaler calibration (see E. and H.).

It should be noted that the term TJ is computed only once in the event that adjacent scalers have identical decay constants. In the rather unusual event that $RRT(I)$ or $TC(I)$ are not the same, but the decay constants are, it is necessary to shade the decay constants by altering the sixth significant figure. This will result in recomputation of TJ .

G. Concurrent Normalization

See statements 472, 487.

If indicated by decay constant DC(I) = 1.0, foil data will be normalized against concurrently counted standard foils,⁽²⁾ rather than decay corrected. This option is used with uranium fission product activities for which no single half-life is generally counted. One or more sample changers are turned off after insertion of reference foils for repetitive counting. Counting intervals may be terminated by preset count, preset time, or by both. Data from these foils are recorded along with concurrently counted traverses in operating sample changers. The normalizing foils are indicated by decay constants DC(I) = 2.0. It is not necessary to process this type of data in a computer. If the reference foil is preset count, traverses may be plotted from the data cards without further decay correction.

The standard deviations of the normalizing foils should be added to the tabulated columns for relative deviation and net deviation since the computer does not compute deviations for concurrent normalizing foils.

A comparison is given in Table IV of corrected activities for a single traverse of known half-life. The concurrent normalized data scatter about the decay-corrected data with the standard deviation expected from counting statistics of the reference foil. The scatter could have been reduced by the use of two or three reference foils rather than one.

Resolving loss adjustment and background subtraction are made with all concurrent normalized foils and standards. No provision was made for differences in counter efficiencies, since the technique requires carefully matched counter chains and the normalization is heavily dependent on a fixed proportionality being maintained between scalers.

H. Corrected Activity

See statements 4-18, 476-97.

The tabulated activities include resolving loss corrections, background subtraction, and decay correction. These are the tabulated terms SACT(I,NO). In order to obtain saturated activities ($V\sum_a \phi$ or $n\sigma_a \phi$), it is necessary to insert for counter efficiency (card No. 4 of 8-deck) the term (counter efficiency/decay constant); otherwise, the output will be $V\sum_a \phi/\lambda$ (see E. and F.).

I. Specific Activity

See statements 204-4223.

The tabulated specific activities utilize foil intercalibration, weight, volume, or cross-section information if supplied. The computed result may be either intercalibrated activity, specific activity, or flux, depending on the information supplied by the experimenter. The computer divides the corrected activity by a term W(LN) supplied as described below.

The use of this feature is controlled by sense switch No. 3. If up, no change is made in the corrected activity. If down, the computer reads cards (or tape) to obtain foil weights (or cross sections), four per card, plus standard deviation data for each weight. Consequently, these cards follow the blank card terminating a data deck. The weights must be in sequence as the foil data are processed. This commences with the first foil in the first sample changer used, proceeds through the foils in that changer, and on to the next sample changer.

J. Normalized Activity

See statements 221-233, 239.

If a standard foil is indicated by an IDC(I) code No. 5, the traverse in which it is included will be normalized to this standard foil. If none is indicated, the computer selects the most active foil of the traverse for normalization. See item L.

K. Relative Deviation

See statements 2, 4, 214, 215, 4215, 4217.

The tabulated relative deviations are computed as follows:⁽⁹⁾

$$\text{Relative Deviation} = \frac{(\text{Count} + \text{Background})^{\frac{1}{2}}}{(\text{Count} - \text{Background})}.$$

If foil weight errors WE(LN) are supplied, these are treated in statements 216 and 217, adding to the relative deviation.

L. Net Deviation

See statements 237, 238.

Net deviation combines the relative deviations involved in traverse normalization. The entry of the normalizing foil, having a normalized activity of unity, will be $\sqrt{2}$ times the relative deviation of the single foil represented, and should be ignored.

M. Data Plot⁽⁵⁾

See statements 244, 246-256.

Since IBM off-line printout is 120 columns in width, columns 20 through 120 are used for a data plot, and the magnitudes of the points are tabulated alongside. Therefore, the points may plot on 100 equal increments from zero to 100% of the normalized curve. If an off-scale point is encountered, it will be plotted full-scale, but the printed number will be correct. Each point plotted is in the nearest column, and the maximum plotting error is \pm a half-column in amplitude if the point is on-scale.

Spacing can be controlled by use of the IDC(I) code numbers (columns 67 through 72 of the input data cards). See item V - B., Control of Data Processing, and Fig. 9.

The plot may be omitted by depressing sense switch No. 4, when desired.

N. Punched Cards⁽¹⁰⁾

See statements 257, 3258-3263.

Traverse output data may be punched, when needed on IBM cards, by depressing sense switch No. 5. The cards are obtained by off-line equipment, an IBM 1401 data-processing unit which punches any line initiated by a letter (P) in the first column. The format includes the serial number from the parent input data card, the increment between this and the preceding datum point, the specific activity, and the relative error.

O. Scaler Identification

The subscript (I) designates the scaler being treated at any point in the FORTRAN program. The data columns are treated arbitrarily, and scalers are counted from left to right as recorded on the data card.

P. Card Identification

Data cards are counted in sequence beginning with the first card of each deck of data cards. The 8-deck input cards are not counted. The sequence number is used for terminating loops and storing data.

The serial number punched into each data card by the automatic counter system is for the user's convenience. This serial number must be some number other than zero since the computer program interprets a zero serial number as a blank card terminating a data deck.

Q. Input Data Card Format

The data cards prepared by the automatic system include the following information.

<u>Column No.</u>	<u>Type of Information</u>	<u>FORTRAN Term</u>
1	unused (blank)	Read with Cols. 1-5
2 - 5	Card serial No.	NUM(NO)
6	unused (blank)	Read with Cols. 6-11
7 - 11	Clock time	CRT
12	unused (blank)	Read with Cols. 12-16

<u>Column No.</u>	<u>Type of Information</u>	<u>FORTRAN Term</u>
13 - 16	Counting interval	CT (NO)
17 & 18	unused (blank)	Read with Cols. 17-24
19 - 24	Data Scaler #1	DATA (1,NO)
25 & 26	unused (blank)	Read with Cols. 25-32
27 - 32	Data Scaler #2	DATA (2,NO)
33 & 34	unused (blank)	Read with Cols. 33-40
35 - 40	Data Scaler #3	DATA (3,NO)
41 & 42	unused (blank)	Read with Cols. 41-48
43 - 48	Data Scaler #4	DATA (4,NO)
49 & 50	unused (blank)	Read with Cols. 49-56
51 - 56	Data Scaler #5	DATA (5,NO)
57 & 58	unused (blank)	Read with Cols. 57-64
59 - 64	Data Scaler #6	DATA (6,NO)
65 & 66	unused (blank)	
67 - 72	Program control	IDC(1) to IDC(6)
73 - 80	Any	Not read by 704 computer

If a scaler overflows, it is satisfactory to punch the appropriate number into an unused column.

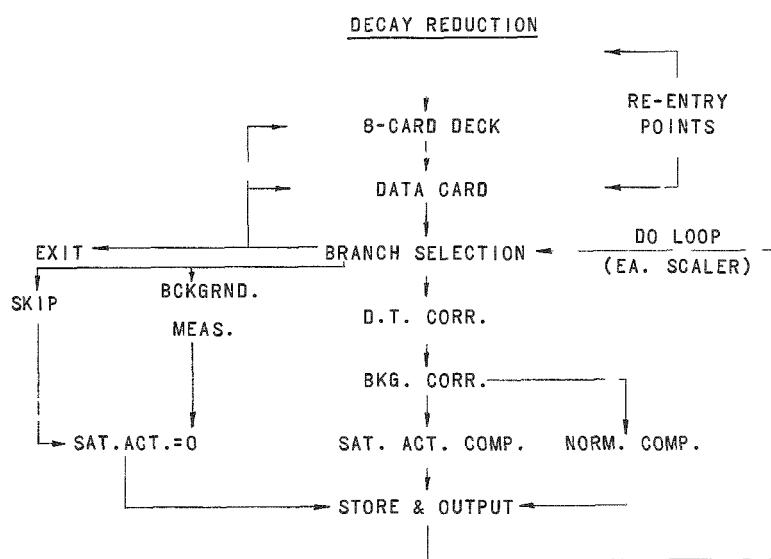


Fig. 7. Decay Reduction

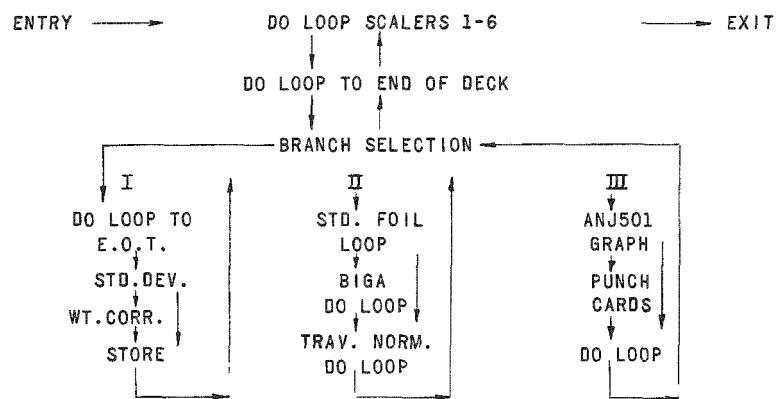
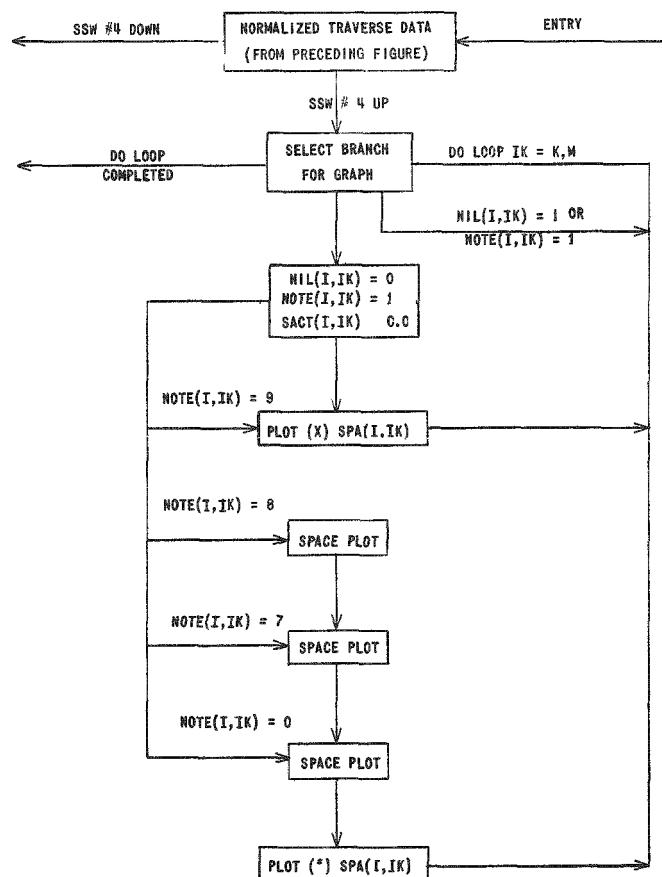



Fig. 8. Traverse Treatment

NOTE: PLOT IS BY AN J501 FORTRAN II
GRAPH-PLOTTING SUBROUTINE, ANL-6161, C. E. COHN,
MAY, 1960

Fig. 9. Traverse Plot

Table I
FORTRAN SOURCE LIST FOR FOIL DATA REDUCTION

```

C ANL 807/RE-202 FORTRAN SOURCE PROGRAM FOR FOIL DATA DECAY REDUCTION
130 DIMENSIONDC(6),EFC(6),RRT(6),TC(6),DT(6),IDC(6),NOT(6),W(4),BK(6,3
   X60),LOC(6,360),SACT(6,360),NIL(6,360),ER(6,360),SPA(6,360),WE(4),N
   XUM(360),CT(360),DATA(6,360),CACT(360),NOTE(6,360),TITLE(12)
2 IF(SENSESWITCH1)3,4
3 CALLINTAPI(1)
S 4 STZ NO
403 READ103,(TITLE(I),I=1,12)
404 IF(SENSESWITCH2)5,6
5 PRINT1031,(TITLE(I),I=1,12)
6 WRITEOUTPUTTAPE2,1031,(TITLE(I),I=1,12)
7 READ104,NOS,BKW,A,B,C,D
8 READ105,(DC(I),I=1,NOS)
9 READ105,(EFC(I),I=1,NOS)
10 IF(SENSESWITCH2)11,411
11 PRINT134
411 WRITEOUTPUTTAPE2,134
412 D0413I=1,6
S 413 STZ NOT(I)
12 READ105,(BK(I,1),I=1,NOS)
13 READ107,(RRT(I),I=1,NOS)
14 READ107,(TC(I),I=1,NOS)
15 READ105,(DT(I),I=1,NOS)
17 NO=NO+1
18 READ108,NUM(NO),CRT,CT(NO),(DATA(I,NO),I=1,6),(IDC(I),I=1,6)
36 IF(NUM(NO))37,201,37
S 37 STZ NATE
38 D097I=1,NOS
S 39 STZ NOTE(I,NO)
S 40 STZ LOC(I,NO)
41 IF(IDC(I)-1)69,45,42
S 42 STZ NOT(I)
43 IF(IDC(I)-3)51,60,44
44 IF(IDC(I)-5)56,62,444
444 IF(IDC(I)-7)95,445,445
445 NOTE(I,NO)=IDC(I)
446 GOT070
S 45 STZ NOT(I)
46 BK(I,NO)=BK(I,1)-BK(I,1)*BKW+DATA(I,NO)*BKW/CT(NO)
48 BK(I,1)=BK(I,NO)
49 GOT094
51 BK(I,NO)=DATA(I,NO)/CT(NO)
53 BK(I,1)=BK(I,NO)
54 GOT094
56 NOT(I)=1
57 GOT095
60 NATE=1
61 GOT070

```

```

62 LOC(I,NO)=NO
63 GOT070
69 IF(NOT(I))70,70,94
70 IF(DC(I))570,96,570
570 BK(I,NO)=BK(I,1)
571 IF(DC(I)-2.)370,96,370
370 DATC=D*DATA(I,NO)
470 DAT=DT(I)/CT(NO)
71 DATR=DATC+A*DATC**2+B*DATC**2*DATC**3+C*DATC**3*DATC**4
471 DATB=DATR-D*BK(I,NO)*CT(NO)
472 IF(DC(I)-1.)72,473,72
S 473 STZ SACT(I,NO)
S 474 STZ X
S 475 STZ Y
476 D0486JK=1,NOS
477 IF(DC(JK)-2.)486,478,486
478 IF(IDC(JK)-6)479,486,479
479 IF(DATA(JK,NO))486,486,480
480 DATM=D*DATA(JK,NO)
481 DATN=DT(JK)/CT(NO)
482 DATO=DATM+A*DATN+DATM**2+B*DATN**2*DATM**3+C*DATN**3*DATM**4
483 DATP=DATO-D*BK(JK,1)*CT(NO)
484 X=X+1.
485 Y=Y+DATB/DATP
486 CONTINUE
487 SACT(I,NO)=Y/X
488 GOT083
72 IF(I-1)75,75,73
73 IF(DC(I-1)-DC(I))75,773,75
773 KMN=I-1
74 IF(SACT(KMN,NO))75,75,82
S 75 STZ TJ
76 TA=0.0-DC(I)*TC(I)-DC(I)*CRT
77 TB=TA-DC(I)*RRT(I)
78 TF=EXPF(TA)-EXPF(TB)
79 TG=DC(I)*CT(NO)
80 TH=EXPF(TG)-1.0
81 TJ=EFC(I)*TF*TH
82 SACT(I,NO)=DATB/TJ
S 83 STZNIL(I,NO)
84 IF(SENSESWITCH6)85,97
85 WRITEOUTPUTAPE3,135,NO,NUM(NO),I,NIL(I,NO),SACT(I,NO),BK(I,NO),DA
    XTC,DAT,DATR,DATB,TA,TB,TF,TG,TH,TJ
86 GOT097
94 NOTE(I,NO)=1
95 NIL(I,NO)=NOT(I)
S 96 STZ SACT(I,NO)
97 CONTINUE

```

```
497 IF(SENSESWITCH2)498,499
498 PRINT133,NO,NUM(NO),(SACT(I,NO),I=1,NOS)
499 WRITEOUTPUTTAPE2,133,NO,NUM(NO),(SACT(I,NO),I=1,NOS)
 98 IF(NATE)17,17,403
201 DO260I=1,NOS
4201 IF(IDC(I)-2.)202,260,202
202 IF(IDC(I))203,260,203
S 203 STZ J
204 K=1
205 IF(SENSESWITCH3)207,209
207 READ120,(W(N),WE(N),N=1,4)
208 LN=1
209 DO259M=1,NO
S 210 STZ SPA(I,M)
211 IF(NO-M)221,221,212
212 IF(NIL(I,M))213,213,4228
213 IF(SACT(I,M))259,259,214
214 EA=(D*DATA(I,M))+(D*BK(I,M)*CT(M))
215 EB=(D*DATA(I,M))-(D*BK(I,M)*CT(M))
4215 IF(SENSESWITCH3)216,4216
4216 EC=EA/EB**2
4217 ER(I,M)=SQRTF(EC)
4218 SPA(I,M)=SACT(I,M)
4219 GOT0259
216 EC=EA/EB**2+WE(LN)**2
217 ER(I,M)=SQRTF(EC)
218 SPA(I,M)=SACT(I,M)/W(LN)
219 LN=LN+1
220 IF(LN-4)259,259,4221
4221 READ120,(W(N),WE(N),N=1,4)
4222 LN=1
4223 GOT0259
4228 KMN=M-1
4229 IF(NIL(I,KMN))221,221,259
221 J=J+1
222 IF(J-M)224,228,228
224 IF(J-LOC(I,J))221,226,221
226 LOK=J
227 GOT04233
228 BIGA=SPA(I,K)
229 DO233L=K,M
230 IF(BIGA-SPA(I,L))231,233,233
231 BIGA=SPA(I,L)
232 LOK=L
233 CONTINUE
3233 IF(K-2)4233,235,3234
3234 IF(KM-20)3235,4233,4233
3235 IF(KM-5)235,3236,3236
```

```
3236 IF(SENSESWITCH2)3237,3238
3237 PRINT121
3238 WRITEOUTPUTTAPE2,121
3239 KM=KM+M-K
3240 GOT0235
4233 IF(SENSESWITCH2)4234,4235
4234 PRINT 1031,(TITLE(I),I=1,12)
5234 PRINT 121
4235 WRITEOUTPUTTAPE2,1031,(TITLE(I),I=1,12)
4236 WRITEOUTPUTTAPE2,121
4237 KM=M-K
235 D0243KI=K,M
S5235 STZ CACT(KI)
236 IF(SPA(I,KI))243,243,237
237 ERS=ER(I,KI)**2+ER(I,LOK)**2
238 ERR=SQRTF(ERS)
239 CACT(KI)=SPA(I,KI)/SPA(I,LOK)
240 IF(SENSESWITCH2)241,242
241 PRINT123,KI,NUM(KI),SACT(I,KI),SPA(I,KI),ER(I,KI),CACT(KI),ERR,
XBK(I,KI),I,DATA(I,KI)
242 WRITEOUTPUTTAPE2,123,KI,NUM(KI),SACT(I,KI),SPA(I,KI),ER(I,KI),
XCACT(KI),ERR,BK(I,KI),I,DATA(I,KI)
243 CONTINUE
244 IF(SENSESWITCH4)257,3245
3245 IF(KM-20)4246,4246,4245
4245 WRITEOUTPUTTAPE2,1031
GOT0245
4246 KM=KM+2+2
245 WRITEOUTPUTTAPE2,132,K,NUM(K),M,NUM(M),I
246 D0256 IK=K,M
247 IF(NIL(I,IK))4247,4247,4250
4247 IF(CACT(IK)-1.)4252,4252,4248
4248 CAC=1.
4249 GOT0248
4250 KM=KM-1
4251 GOT0256
4252 CAC=CACT(IK)
248 IF(NOTE(I,IK)-1)254,4250,249
249 IF(NOTE(I,IK)-8)253,252,250
250 CALLGRAPH(XFIXF(200.*CAC),2,1HX)
251 GOT0256
252 WRITEOUTPUTTAPE2,139
4253 KM=KM+1
253 WRITEOUTPUTTAPE2,139
4254 KM=KM+1
254 WRITEOUTPUTTAPE2,138,IK,NUM(IK),CACT(IK)
255 CALLGRAPH(XFIXF(200.*CAC),2,1H*)
256 CONTINUE
```



```

      X      50      60      70      80      90      100/
137 FORMAT(112H END OF DECK-START NEXT DATA DECK WITH SSW-1 UP UNLESS
      XREQUESTED. SSW-1 DN RETAINS CONSTANTS FROM PRECFDING DECK/1H/)
138 FORMAT(I4,I7,F7.4,102H +
      X
      X
139 FORMAT(120H
      X
      X
140 FORMAT(99H+
      X      -CARDS PUNCHED FOR TRAVERSE/8HP-SCALER,I2,6H,  SEQ
      X,16,3H TO,16,7H,  CARD,I6,3H TO,I6)
142 FORMAT(31HOPLOT OF TRAVERSE STARTING SEQ.,I3,9H, CARD NO,I5,12H EN
      XDING SEQ.,I3,9H CARD NO,I5,8H SCALER,I2/120H      0
      X      10      20      30      40      50      60
      X    70      80      90      100/120H  SEQ. CARD  N-ACT +
      X    +      +      +      +      +      +      +      +      +
      X    +      +      +      +      +      +
131 FREQUENCY10(1,5),38(5),41(10,1,1),69(0,1,1),70(0,1,1),472(5,1,1),4
      X76(5),477(5,1,1),478(1,1,1),479(0,1,1),72(0,1,3),73(5,1,5),84(1,9)
      X,497(1,9),98(0,5,1),201(6),205(1,9),209(50),211(0,1,50),212(0,1,1)
      X,213(0,1,1),4215(1,9),220(3,1,1),4229(0,1,1),222(9,1,0),224(9,1,0)
      X,229(25),230(1,1,3),4233(1,5),236(0,1,1),240(1,5),257(1,1),244(1,5
      X),246(25),247(0,1,1),249(5,1,1),3259(25),74(0,1,50),3233(1,1,9),32
      X34(9,1,2),3235(3,1,9),3236(1,5),3244(3,1,9),3245(9,1,1),4247(9,1,0
      X),4257(9,1,1),4259(0,1,1),404(1,5),412(5),43(1,1,5),44(1,1,3),444(
      X1,1,1),571(5,1,1),269(0,1),4201(5,1,1),202(0,1,5),235(25),248(1,1,
      X1),36(0,1,50)
      END(0,1,0,0,1)

```

Table II
INPUT DATA FOR RUN OF AUGUST 24, 1960

Table III
PROCESSED DATA FOR RUN AUGUST 24, 1960
A - Decay Corrected Data

AUG 24, 1960 DY TRAVERSSES SCI,2,4							(CORRECTED)
SEQ	CARD NO	SCALER 1	SCALER 2	SCALER 3	SCALER 4	SCALER 5	SCALER 6
1	148	0.7391149E 07	0.2881063E 08	0.	0.7119694E 08		
2	149	0.9854719E 07	0.3575029E 08	0.	0.7524068E 08		
3	150	0.1302299E 08	0.4373306E 08	0.	0.7283165E 08		
4	151	0.1623653E 08	0.4922512E 08	0.	0.6506136E 08		
5	152	0.2034488E 08	0.5268061E 08	0.	0.5269433E 08		
6	153	0.2717693E 08	0.5734992E 08	0.	0.3151509E 08		
7	154	0.3446589E 08	0.6226259E 08	0.	0.9745199E 07		
8	155	0.4014941E 08	0.6592540E 08	0.	0.8789352E 07		
9	156	0.4866964E 08	0.7118188E 08	0.	0.2952781E 08		
10	157	0.5685767E 08	0.7265273E 08	0.	0.5056295E 08		
11	158	0.5757956E 08	0.7727411E 08	0.	0.6464107E 08		
12	159	0.6019877E 08	0.7394826E 08	0.	0.7634768E 08		
13	160	0.6051006E 08	0.7942860E 08	0.	0.8282402E 08		
14	161	0.5453075E 08	0.7683995E 08	0.	0.8453537E 08		
15	162	0.4486149E 08	0.7725583E 08	0.	0.8463096E 08		
16	163	0.2882625E 08	0.7274291E 08	0.	0.7416647E 08		
17	164	0.7329618E 07	0.7515669E 08	0.	0.6439119E 08		
18	165	0.6793347E 07	0.7283044E 08	0.	0.4741903E 08		
19	166	0.2564836E 08	0.6587943E 08	0.	0.2613680E 08		
20	167	0.43553401E 08	0.6204766E 08	0.	0.7613064E 07		
21	168	0.5751764E 08	0.5780396E 08	0.	0.1063949E 08		
22	169	0.6645639E 08	0.5307408E 08	0.	0.3345203E 08		
23	170	0.7411939E 08	0.4786780E 08	0.	0.5042649E 08		
24	171	0.7829201E 08	0.3970743E 08	0.	0.6391131E 08		
25	172	0.7351980E 08	0.3339428E 08	0.	0.6723907E 08		
26	173	0.6807969E 08	0.2649058E 08	0.	0.6755704E 08		
27	174	0.5704441E 08	0.2006633E 08	0.	0.6672010E 08		
28	175	0.4084803E 08	0.	0.	0.		
29	176	0.2506372E 08	-0.9024774E 05	0.	0.		
AUG 24, 1960 DY TRAVERSE 1,2,3,4,5,6							(CORRECTED)
SEQ	CARD NO	SCALER 1	SCALER 2	SCALER 3	SCALER 4	SCALER 5	SCALER 6
30	177	0.6645261E 07	0.	0.	0.	0.	0.1281716F 09
31	178	0.7920997F 07	0.1317144E 09	0.9680597E 07	0.1163461E 09	0.8778717E 08	0.1263995F 08
32	179	0.2933458E 08	0.1276461E 09	0.1285648E 08	0.8505887E 08	0.9373648E 08	0.1291614F 08
33	180	0.4541752E 08	0.1181836E 09	0.1697415E 08	0.4902182E 08	0.9144977E 08	0.1306443F 08
34	181	0.5238274E 08	0.1108409E 09	0.2121774E 08	0.1429899E 08	0.8229907E 08	0.1336695F 08
35	182	0.6002897E 08	0.1033915E 09	0.2667740E 08	0.1892285E 08	0.6708186E 08	0.1389823F 08
36	183	0.6261280E 08	0.9645841E 08	0.3575144E 08	0.6344412E 08	0.4019966E 08	0.1332151F 08
37	184	0.5990592E 08	0.8666536E 08	0.4557190E 08	0.9500514E 08	0.1209923E 08	0.1284768E 08
38	185	0.5945678E 08	0.7323286E 08	0.5343884E 08	0.1220141E 09	0.1092929E 08	0.1339340F 08
39	186	0.4971743E 08	0.6096927E 08	0.6578362E 08	0.1278712E 09	0.3858974E 08	0.1397864F 08
40	187	0.4075714E 08	0.4970956E 08	0.7669344E 08	0.1314877E 09	0.6697487E 08	0.
41	188	0.3338830E 08	0.	0.	0.	0.	0.
42	189	0.2528575E 08	0.	0.	0.	0.	0.
43	190	0.1978799E 08	0.	0.	0.	0.	0.
44	191	0.1519039E 08	0.	0.	0.	0.	0.
45	192	0.1125927E 08	0.	0.	0.	0.	0.
46	193	0.7993512E 07	0.	0.	0.	0.	0.
47	194	0.5535377E 07	0.	0.	0.	0.	0.

Table III

B - Traverse of Scaler #1

AUG	24, 1960	DY	TRaverse	1,2,3,4,5,6	NO.	CARD	COR.ACT.	SPA(SENSESWS3)	REL.DEV.	NORM. ACT.	NET DEV.	BCKGR,CPS	SCALER	SCALER DATA
1	148	0.7391149E 07	0.7391149E 07	0.1881E-01	0.9440490E-01	0.1990E-01	0.10000E 01	1	1939.					
2	149	0.9854719E 07	0.9854719E 07	0.1607E-01	0.1258713E-00	0.1734E-01	0.10000E 01	1	2477.					
3	150	0.1302299E 08	0.1302299E 08	0.1386E-01	0.1663387E-00	0.1532E-01	0.10000E 01	1	3155.					
4	151	0.1623653E 08	0.1623653E 08	0.1239E-01	0.2073843E-00	0.1400E-01	0.10000E 01	1	3818.					
5	152	0.2034488E 08	0.2034488E 08	0.1106E-01	0.2598590E-00	0.1284E-01	0.10000E 01	1	4652.					
6	153	0.2717693E 08	0.2717693E 08	0.9565E-02	0.3471226E-00	0.1158E-01	0.10000E 01	1	6040.					
7	154	0.3446589E 08	0.3446589E 08	0.8516E-02	0.4402223E-00	0.1073E-01	0.10000E 01	1	7473.					
8	155	0.4014941E 08	0.4014941E 08	0.7936E-02	0.5128162E 00	0.1027E-01	0.10000F 01	1	8520.					
9	156	0.4866964E 08	0.4866964E 08	0.7247E-02	0.6216426E 00	0.9750E-02	0.10000E 01	1	10104.					
10	157	0.5685767E 08	0.5685767E 08	0.6750E-02	0.7262257E 00	0.9386E-02	0.10000E 01	1	11561.					
11	158	0.5757956E 08	0.5757956E 08	0.6769E-02	0.7354462E 00	0.9400E-02	0.10000E 01	1	11499.					
12	159	0.6019877E 08	0.6019877E 08	0.6677E-02	0.7689005E 00	0.9334E-02	0.10000E 01	1	11801.					
13	160	0.6051006E 08	0.6051006E 08	0.6722E-02	0.7728766E 00	0.9366E-02	0.10000E 01	1	11652.					
14	161	0.5453075E 08	0.5453075E 08	0.7161E-02	0.6965047E 00	0.9686E-02	0.10000E 01	1	10336.					
15	162	0.4486149E 08	0.4486149E 08	0.8002E-02	0.5730022E 00	0.1032E-01	0.10000E 01	1	8390.					
16	163	0.2882625E 08	0.2882625E 08	0.1021E-01	0.3681889E-00	0.1211E-01	0.10000E 01	1	5369.					
17	164	0.7329618E 07	0.7329618E 07	0.2252E-01	0.9361898E-01	0.2345E-01	0.10000E 01	1	1491.					
18	165	0.6793347E 07	0.6793347E 07	0.2388E-01	0.8676936E-01	0.2476E-01	0.10000E 01	1	1375.					
19	166	0.2564836E 08	0.2564836E 08	0.1119E-01	0.3275987E-00	0.1296E-01	0.10000E 01	1	4556.					
20	167	0.4353401E 08	0.4353401E 08	0.8524E-02	0.5560467E 00	0.1073E-01	0.10000E 01	1	7460.					
21	168	0.5751764E 08	0.5751764E 08	0.7439E-02	0.7346553E 00	0.9893E-02	0.10000E 01	1	9619.					
22	169	0.6645639E 08	0.6645639E 08	0.6967E-02	0.8488273E 00	0.9543E-02	0.10000E 01	1	10887.					
23	170	0.7411939E 08	0.7411939E 08	0.6647E-02	0.9467044E 00	0.9312E-02	0.10000E 01	1	11905.					
24	171	0.7829201E 08	0.7829201E 08	0.6522E-02	0.1000000E 01	0.9223E-02	0.10000E 01	1	12342.					
25	172	0.7351980E 08	0.7351980E 08	0.6800E-02	0.9390460E 00	0.9422E-02	0.10000E 01	1	11398.					
26	173	0.6807969E 08	0.6807969E 08	0.7143E-02	0.8695612E 00	0.9673E-02	0.10000E 01	1	10384.					
27	174	0.5704441E 08	0.5704441E 08	0.7906E-02	0.7286109E 00	0.1025E-01	0.10000E 01	1	8581.					
28	175	0.4084805E 08	0.4084805E 08	0.7941E-02	0.5217395E 00	0.1028E-01	0.10000E 01	1	8789.					
29	176	0.2506372E 08	0.2506372E 08	0.1059E-01	0.3201313E-00	0.1243E-01	0.10000E 01	1	5298.					
30	177	0.6645261E 07	0.6645261E 07	0.2382E-01	0.8487790E-01	0.2469E-01	0.10000E 01	1	1591.					
31	178	0.7920997E 07	0.7920997E 07	0.2161E-01	0.1011725E-00	0.2257E-01	0.10000E 01	1	1799.					
32	179	0.2933458E 08	0.2933458E 08	0.1014E-01	0.3746817E-00	0.1205E-01	0.10000E 01	1	5707.					
33	180	0.4541752E 08	0.4541752E 08	0.8114E-02	0.5801041E 00	0.1041E-01	0.10000E 01	1	8454.					
34	181	0.5238274E 08	0.5238274E 08	0.7626E-02	0.6690688E 00	0.1003E-01	0.10000E 01	1	9460.					
35	182	0.6002897E 08	0.6002897E 08	0.7195E-02	0.7667318E 00	0.9711E-02	0.10000E 01	1	10525.					
36	183	0.6261280E 08	0.6261280E 08	0.7135E-02	0.7997343E 00	0.9667E-02	0.10000E 01	1	10689.					
37	184	0.5990592E 08	0.5990592E 08	0.7406E-02	0.7651601E 00	0.9868E-02	0.10000E 01	1	9982.					
38	185	0.5945678E 08	0.5945678E 08	0.7539E-02	0.7594233E 00	0.9969E-02	0.10000E 01	1	9660.					
39	186	0.4971743E 08	0.4971743E 08	0.8411E-02	0.6350256E 00	0.1064E-01	0.10000E 01	1	7924.					
40	187	0.4075714E 08	0.4075714E 08	0.9499E-02	0.5205786E 00	0.1152E-01	0.10000E 01	1	6388.					
41	188	0.3338830E 08	0.3338830E 08	0.1075E-01	0.4264585E-00	0.1258E-01	0.10000E 01	1	5158.					
42	189	0.2528575E 08	0.2528575E 08	0.1276E-01	0.3229672E-00	0.1433E-01	0.10000E 01	1	3884.					
43	190	0.1978779E 08	0.1978779E 08	0.1494E-01	0.2527460E-00	0.1630E-01	0.10000E 01	1	3032.					
44	191	0.1519039E 08	0.1519039E 08	0.1779E-01	0.1940223E-00	0.1895E-01	0.10000E 01	1	2343.					
45	192	0.1125927E 08	0.1125927E 08	0.2184E-01	0.1438112E-00	0.2279E-01	0.10000E 01	1	1775.					
46	193	0.7993512E 07	0.7993512E 07	0.2790E-01	0.1020987E-00	0.2865E-01	0.10000E 01	1	1320.					
47	194	0.5535377E 07	0.5535377E 07	0.3689E-01	0.7070168E-01	0.3746E-01	0.10000E 01	1	988.					

Table III
C - Punched-Card Output of Scaler #1

AUG 24, 1960 DY TRAVERSE 1,2,3,4,5,6
-SCALER 1, SEQ 1 TO 48, CARD 148 TO -0

P 148 1 0.73911492E 07 0.18805756E-01
P 149 1 0.98547193E 07 0.16067420E-01
P 150 1 0.13022988E 08 0.13860336E-01
P 151 1 0.16236534E 08 0.12388576E-01
P 152 1 0.20344885E 08 0.11063441E-01
P 153 1 0.27176928E 08 0.95645479E-02
P 154 1 0.34465889E 08 0.85163599E-02
P 155 1 0.40149406E 08 0.79363335E-02
P 156 1 0.48669644E 08 0.72473176E-02
P 157 1 0.56857669E 08 0.67497946E-02
P 158 1 0.57579563E 08 0.67689197E-02
P 159 1 0.60198767E 08 0.66772600E-02
P 160 1 0.60510062E 08 0.67220150E-02
P 161 1 0.54530755E 08 0.71607132E-02
P 162 1 0.44861493E 08 0.80019839E-02
P 163 1 0.28826249E 08 0.10208620E-01
P 164 1 0.73296180E 07 0.22523224E-01
P 165 1 0.67933474E 07 0.23882919E-01
P 166 1 0.25648360E 08 0.11194844E-01
P 167 1 0.43534010E 08 0.85243792E-02
P 168 1 0.57517635E 08 0.74389875E-02
P 169 1 0.66456392E 08 0.69668461E-02
P 170 1 0.741119391E 08 0.66465454E-02
P 171 1 0.78292007E 08 0.65219605E-02
P 172 1 0.73519800E 08 0.68004255E-02
P 173 1 0.68079693E 08 0.71431788E-02
P 174 1 0.57044412E 08 0.79060789E-02
P 175 1 0.40848032E 08 0.79412070E-02
P 176 1 0.25063723E 08 0.10585349E-01
P 177 1 0.66452610E 07 0.23817957E-01
P 178 1 0.79209972E 07 0.21611732E-01
P 179 1 0.29334582E 08 0.10135786E-01
P 180 1 0.45417517E 08 0.81136741E-02
P 181 1 0.52382736E 08 0.76263096E-02
P 182 1 0.60028973E 08 0.71950801E-02
P 183 1 0.62612801E 08 0.71349402E-02
P 184 1 0.59905921E 08 0.74055739E-02
P 185 1 0.59456778E 08 0.75394353E-02
P 186 1 0.49717430E 08 0.84109230E-02
P 187 1 0.40757143E 08 0.94985757E-02
P 188 1 0.33388295E 08 0.10753361E-01
P 189 1 0.25285748E 08 0.12761826E-01
P 190 1 0.19787993E 08 0.14940213E-01
P 191 1 0.15190393E 08 0.17793657E-01
P 192 1 0.11259269E 08 0.21837455E-01
P 193 1 0.79935122E 07 0.27902450E-01
P 194 1 0.55353765E 07 0.36885399E-01
P -0 1 0.

-CARDS PUNCHED FOR TRAVERSE

Figure 10. Processed Data Plot for Run of August 24, 1960
(Scaler 1 only)

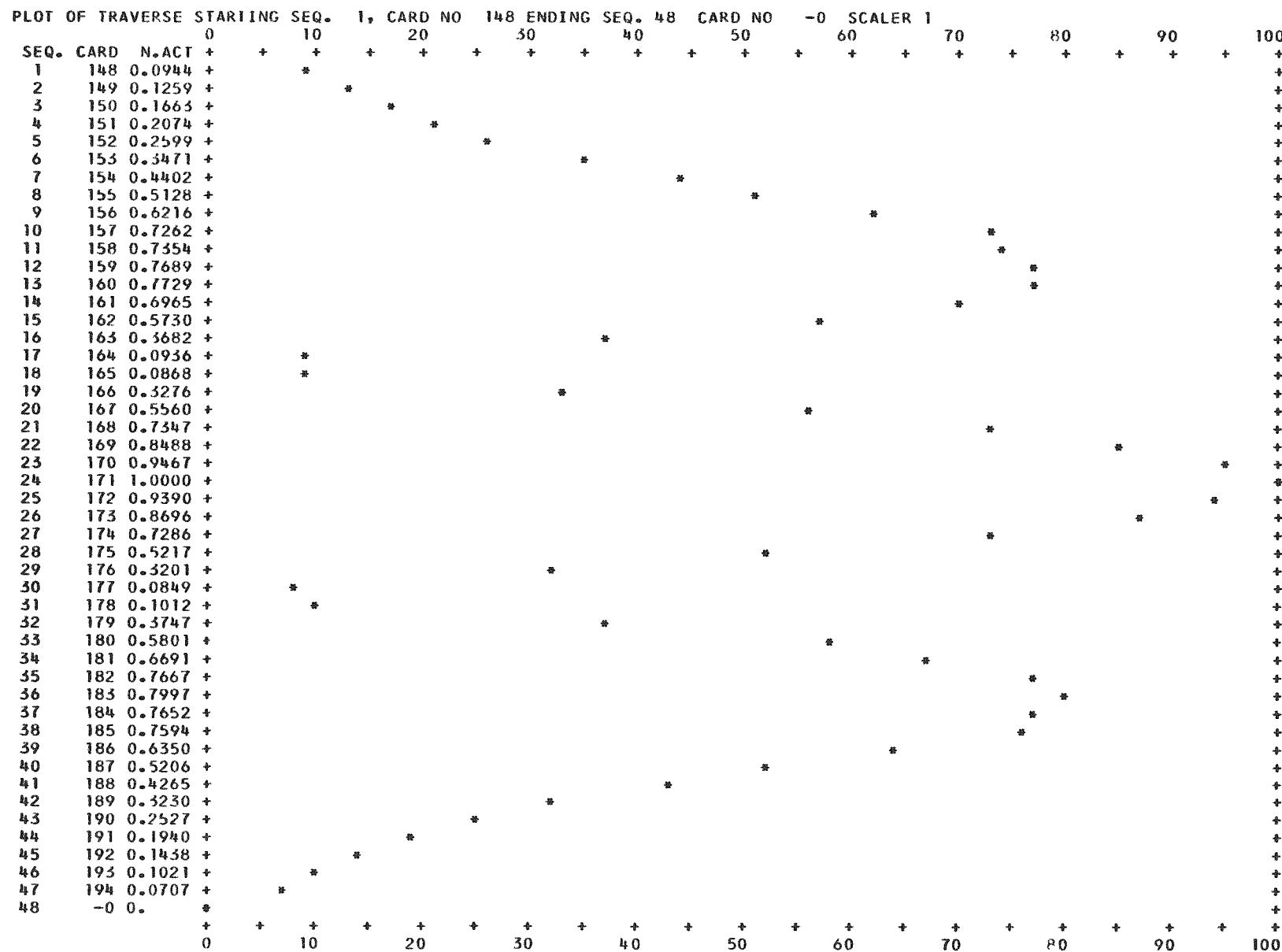


Table IV

COMPARISON OF CONCURRENT FOIL NORMALIZATION
WITH COMPUTER DECAY REDUCTION

<u>Scaler Data</u>	<u>Concurrent Normalized</u>	<u>Computer Decay Corr.</u>	<u>Per Cent Deviation</u>
94,228	1.000	0.995	+0.5
92,412	0.981	0.979	+0.3
89,988	0.955	0.960	-0.5
94,102	0.999	1.000	-0.1
90,736	0.963	0.968	-0.5
82,784	0.879	0.886	-0.8
77,220	0.819	0.817	+0.2
71,280	0.756	0.758	-0.3
60,904	0.646	0.650	-0.6
50,940	0.541	0.538	+0.6
37,384	0.397	0.396	+0.2
27,884	0.296	0.296	0.0

Normalizing Foil Counted: 80,000 counts/interval

REFERENCES

1. K. E. Relf, Counting Thousands of Samples in 12 Hours Automatically, Nucleonics, 15 (4), 86-89 (1957).
2. H. A. Morewitz and R. F. Valentine, A System of Obtaining and Reducing Neutron Flux Data from Critical Assemblies, Nucl. Sci. and Eng., 4, 73-81 (1958).
3. R. T. Frost and E. B. Fehr, Automatic Neutron Flux Scanner, Nucleonics, 14 (3), 84-88 (1956).
4. Rossi and Staub, Ionization Chambers and Counters, McGraw-Hill Book Company, Inc., New York, USA (1949).
5. C. E. Cohn, FORTRAN Programming Techniques for Graph Plotting on the IBM-704 Computer, ANL-6161 (May 1960).
6. R. J. Armani, Detector Operation and Background Studies of an Automatic Foil Changing System, ANL Internal Memorandum, RED-EPM Memo No. 81 (Oct 28, 1960).
7. Nuclear Chicago Corporation, Model C110-B Automatic Sample Changer Preliminary Manual Serial No. 550 and Above.
8. Navigation Computer Corporation Decimal Binary Counter Model AS 190A
9. A. J. Freedman and E. C. Anderson, Low Level Counting Techniques, Nucleonics, 10 (8) 57 (1952)
10. N. A. Clark, Sense Switch Controlled Peripheral Equipment Simulator ANI-115, ANL Internal Report (July 1961).
11. K. E. Plumlee and M. T. Wiggins, Foil Activation Data Handling with Automatic Counters and a High Speed Computer, Trans. Am. Nuc. Soc., 4, 1, p. 62, Session 13-8, June 1961.