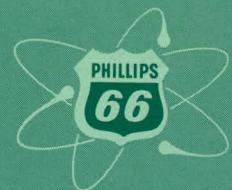


3-25
4463

IDO-14602
January 1963


PHYSICAL PROPERTIES OF NITRATE SOLUTIONS OF
IRON- AND NICKEL-BASE ALLOY NUCLEAR FUELS

MASTER

D. P. Pearson

PHILLIPS
PETROLEUM
COMPANY

ATOMIC ENERGY DIVISION

NATIONAL REACTOR TESTING STATION
US ATOMIC ENERGY COMMISSION

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

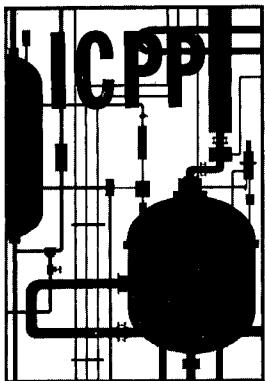
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

PRICE \$.50

Available from the
Office of Technical Services
U. S. Department of Commerce
Washington 25, D. C.

LEGAL NOTICE


This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA

IDO-14602
AEC Research and Development Report
Chemical Separations Processes
for Plutonium and Uranium
TID-4500 (18th Ed.)
Issued: January 31, 1963

PHYSICAL PROPERTIES OF NITRATE SOLUTIONS OF IRON- AND NICKEL-BASE ALLOY
NUCLEAR FUELS

D. P. Pearson

PHILLIPS
PETROLEUM
COMPANY

Atomic Energy Division

Contract AT(10-1)-205

Idaho Operations Office

U. S. ATOMIC ENERGY COMMISSION

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

PHYSICAL PROPERTIES OF NITRATE SOLUTIONS OF IRON- AND NICKEL-BASE ALLOY
NUCLEAR FUELS

D. P. Pearson

A B S T R A C T

Specific gravity, viscosity, electrical conductivity and stability data are given for the dissolver product solutions resulting from the electrodissolution in nitric acid of nuclear fuels with stainless steel or Nichrome cladding.

PHYSICAL PROPERTIES OF NITRATE SOLUTIONS OF IRON- AND NICKEL-BASE ALLOY
NUCLEAR FUELS

D. P. Pearson

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	3
I. SUMMARY.	5
II. INTRODUCTION	5
III. EXPERIMENTAL	5
IV. PHYSICAL PROPERTY DATA	6
A. Solutions of Iron, Chromium, Nickel, and Uranium	6
B. Solutions of Nickel, Chromium, and Uranium	6
C. Equations Describing the Physical Property Data.	10
V. LITERATURE CITED	11
VI. ACKNOWLEDGEMENT.	12
APPENDIX I	13

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	Summary of Physical Property Data for Solutions of Stainless Steel and Uranium in Nitric Acid.	8
2	Summary of Physical Property Data for Solutions of Nichrome in Nitric Acid	9

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
1	Stability of APPR Fuel Dissolver Solution at 25°C.	7
2	Solubility of Iron, Chromium and Nickel Nitrates in Nitric Acid at 25°C	7
3	Stability of Nichrome Fuel Dissolver Solution at 23°C.	7

PHYSICAL PROPERTIES OF NITRATE SOLUTIONS OF IRON- AND NICKEL-BASE ALLOY NUCLEAR FUELS

D. P. Pearson

I. SUMMARY

Physical property data were determined and compiled for the dissolver product solutions which result from the electrodissolution in nitric acid of stainless steel- or Nichrome-clad nuclear fuels. Specific data given are specific gravity, viscosity, electrical conductivity, and stability for solutions simulating the dissolver product from an SM-1 (APPR) fuel element; also the density and electrical conductivity of a solution simulating the dissolver products from 80-20 Nichrome and the stability data for the dissolver solution resulting from the dissolution of HTRE type Nichrome-clad fuel. Equations are given for the relationship of specific gravity to composition in the two nitrate systems.

II. INTRODUCTION

There has been extensive development work completed on the electrodissolution in nitric acid of nuclear fuels clad in iron- or nickel base alloys⁽¹⁻²⁾. The most prominent of these at this time are the Nichrome clad fuels from the HTRE program⁽³⁾ and the stainless steel clad cermet fuels from the Army Package Power Reactor Program⁽¹⁾.

It is the purpose of this report to compile all of the data on solution density, viscosity, electrical conductivity, and solubility of the dissolver solutions of these fuels which have been obtained at the Idaho Chemical Processing Plant. Data have been reported earlier on the electrochemical properties of Nichrome⁽⁴⁾ and stainless steel⁽⁵⁾ in nitric acid. The formation of precipitates when molybdenum, silicon, or other difficultly soluble elements are present in the alloys has also been studied briefly⁽¹⁾.

These physical property data are required for preparation of the chemical material balances for the process, for calculation of the heat produced during electrodissolution, and for evaluation of the performance of solvent extraction contactors which will use the dissolver product solution as aqueous feed. The conductivity and density data have already been applied to the simultaneous, in-line analysis of the dissolver product solution for nitric acid and metals⁽⁶⁾.

III. EXPERIMENTAL

The solutions used in the measurements and for the stability studies were prepared by weighing reagent or analytical reagent grade salts and reagent grade nitric acid and diluting with distilled water. Selected compositions were checked by colorimetric analysis of the metal constituents and titration of the acid. All saturated solutions (whose

composition had changed since make-up) were analyzed. Correlation of compositions based on the weights of reagents and analytical data on the samples indicates that the compositions were within 1 per cent of the values stated.

Specific gravities were determined by weighing a known volume of solution and comparing to weight of distilled water. Viscosities were determined with Ostwald viscosimeters calibrated with distilled water. All samples were incubated at and measurements made at the temperatures stated with the data, which usually was 25°C.

Conductivities were measured in the usual manner in conventional glass cells in a 25°C oil bath.

IV. PHYSICAL PROPERTY DATA

A. Solutions of Iron, Chromium, Nickel, and Uranium

The specific gravities, viscosities, and electrical conductivities of solutions of nitric acid and iron, chromium, nickel, and uranium nitrates are given in Table 1. The metal ions are present in proportions which represent the dissolver product from a fuel which contains 92 per cent stainless steel and 8 per cent uranium. The stainless steel was assumed to be 19 per cent chromium, 10 per cent nickel, and 71 per cent iron. The stability diagram for this system at 25°C is shown in Figure 1. In Figure 1, the solutions whose compositions are indicated by crosses were unstable or metastable (they crystallized immediately upon seeding). Solutions of compositions indicated by the open circles were observed and found to be stable for longer than two months at 25°C.

Figure 2 shows the solubility curve for various mixtures of iron, chromium and nickel nitrates in nitric acid. The composition and densities of these saturated solutions are given in Appendix I. In Figure 2, the crosses are an arbitrary grouping of the compositions of solutions at equilibrium with at least one salt.

B. Solutions of Nickel, Chromium and Uranium

The specific gravity and electrical conductivity of solutions of nickel and chromium nitrate (in the proportions of 80-20 Nichrome) and nitric acid are shown in Table 2. No uranium was present.

Figure 3 illustrates the stability of Nichrome fuel dissolver product solutions. The metal nitrate concentration of the solutions varied from 50 to 400 grams of total metals per liter (metal ratio: Ni:Cr:U=66.3:16.6:17.0) and the nitric acid concentration varied from 0 to 13M. The solutions were allowed to stand in glass bottles for five months at 23°C. Crystallization of the chromium nitrate occurred in the unstable solutions in less than two weeks. The upper curve of Figure 3 represents the lower limit of metal concentration in solutions from which crystals separated. The lower curve represents the upper composition limit for solutions in which crystallization did not occur.

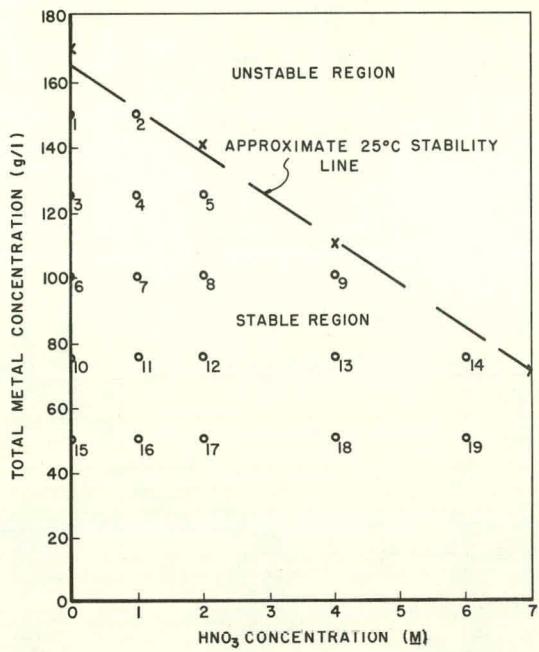


Fig. 1 Stability of APPR Fuel Dissolver Solution at 25°C.

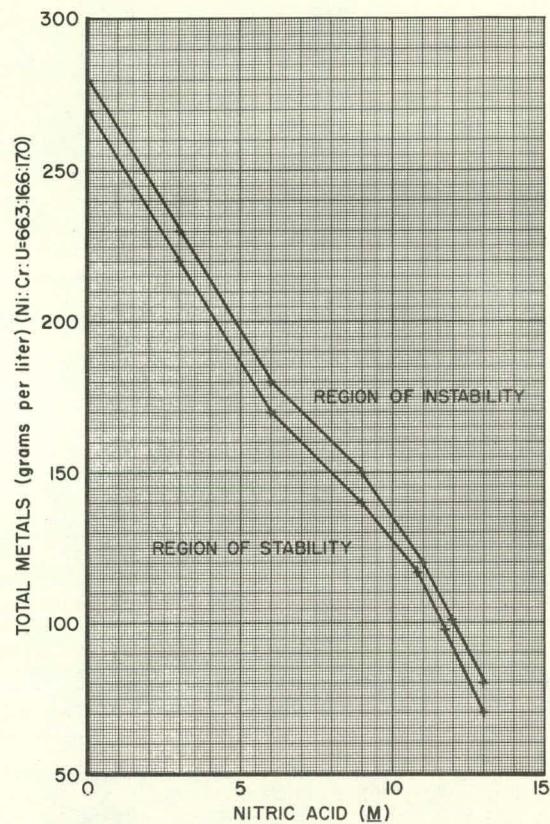


Fig. 3 Stability of Nichrome Fuel Dissolver Solution at 23°C.

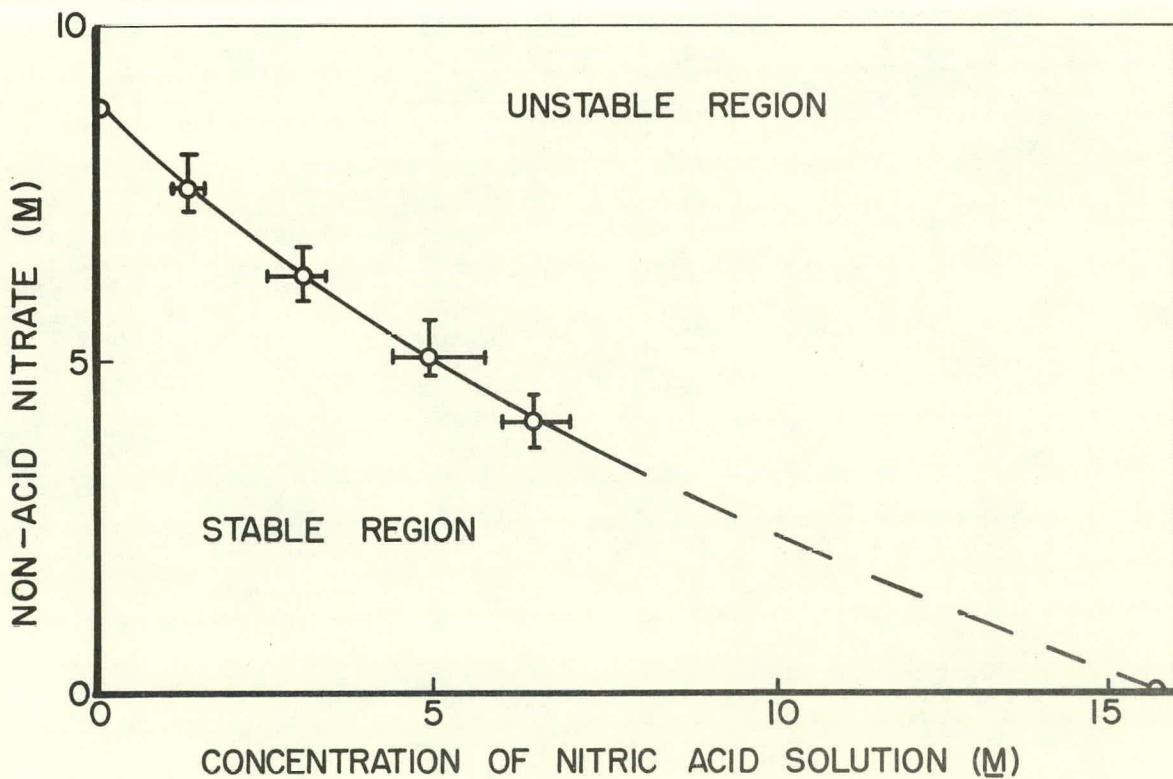


Fig. 2 Solubility of Iron, Chromium and Nickel Nitrates in Nitric Acid at 25°C.

Table 1
Summary of Physical Property Data for Solutions of Stainless Steel and
Uranium in Nitric Acid

		$\text{HNO}_3, \text{ M}$				
		0	1	2	4	6
	50	1.1504(a) 1.5577(b) 122 (c) 280 (d)	1.1823 1.6229 264 477	1.2079 1.6693 376 665	1.2735 1.9860 470 836	1.3291 2.2961 478 873
Total Metal g/l	75	1.2284 2.2483 132 306	1.2546 2.2962 222 433	1.2855 2.4368 290 555	1.3440 2.8238 349 671	1.3952 3.2571 350 690
	100	1.2982 2.9092 125 303	1.3256 3.4165 178 382	1.3547 3.6433 220 459	1.4097 4.2782 250 571	
	125	1.3689 4.4481 108 280		1.4262 4.9858 137 325		
	150	1.4381 6.8321 87 248	1.4634 7.4115 102 271			

(a) $\rho^{25/25}$
(b) $\eta^{25^\circ, \text{cp}}$
(c) $10^3 L_{25^\circ\text{C}}$
(d) $10^3 L_{80^\circ\text{C}}$

Metal consists of 92 per cent stainless steel, 8 per cent uranium by weight.

Stainless steel consists of 19 per cent Cr. 10 per cent Ni, 71 per cent Fe by weight.

Eq. wt. of metal = 20.43

Eq. fraction U in metal 0.0138

Table 2
Summary of Physical Property Data for Solution of Nichrome in Nitric Acid.

		HNO ₃ , Eq/l								
		0	1	2	3	4	5	6	7	8
"NiCr-NO ₃ " Eq/l	0	1.000	1.0337	1.0669	1.0996	1.1322 ^(a)	1.1634	1.1925	1.2232	1.2507
		0	329	562	714	805 ^(b)	849	856	844	816
						1.23 ^(c)				
	1	1.0724	1.1055	1.1368	1.1683	1.1995	1.2303	1.2574		
		67	312	488	601	662	689	691	668	
					1.29					
	2		1.1736	1.2044	1.2345	1.2656	1.2951			
		103	286	422	498	540	552	538		
	3		1.2414	1.2731		1.3328				
		257	347	407	426					
			1.52		1.54					
	4	1.2769	1.3081	1.3393	1.3673	1.3946				
		131	225	286	320	333				
				1.68	1.73					
	5		1.3729	1.4040	1.4319					
		188	225	245						
				1.88						
	6		1.4391	1.4650						
		113	149	175						
			2.10							
	7		1.5016							
		116								
	8	1.5392								
		74								

(a) $\rho^{25/25}$

"NiCr" consists of 80 per cent Ni, 20 per cent Cr, by weight. Eq. wt. = 26.95

(b) $10^3 L_{25^\circ}$

(c) The change in conductance with temperature is applicable between 25° and 45°C.

(c) $\frac{d \ln L}{d t} \times 100$

C. Equations Describing the Physical Property Data

In three cases where the measurements were extensive enough, analytical expressions were derived to represent the data.

For the specific gravity of solutions of nitric acid and the nitrate salts of iron, chromium, and nickel (in 18-8 stainless steel proportions) and uranium, the following expression represents the data of Table 1:

$$\rho^{25/25^\circ} = 1.0000 + 0.0029x + 0.0310y \quad (\pm 0.005) \text{ where } y \\ \leq 6 \text{M} \text{ and } x \leq 150 \text{ g/l}$$

An expression of greater precision for the same data is:

$$\rho^{25/25^\circ} = 1.0000 + 0.00309x + 0.0344y - 0.00000115x^2 \\ - 0.0000493xy - 0.000381y^2 \quad (\pm 0.0012)$$

The viscosities in this system are represented by:

$$\eta^{25^\circ} = 0.89 - 0.0103x + 0.10ly + 0.000323x^2 + 0.00144xy \\ (\pm 0.14) \text{ where } x \leq 125 \text{ g/l and } 1 < y \leq 6$$

In all of the above equations x represents the concentration of total metals in grams per liter and y represents the concentration of nitric acid in moles per liter.

For nitrate dissolver solutions of Nichrome the following expressions may be used for the density:

$$\rho^{25/25^\circ} = 1.0000 + 0.0678z + 0.0322y \quad (\pm 0.004)$$

$$\rho^{25/25^\circ} = 1.0000 + 0.0717z + 0.0345y - 0.00055z^2 \\ - 0.00090yz - 0.00040y^2 \quad (\pm 0.0009)$$

Here z is the concentration of nickel and chromium (in 80-20 Nichrome proportions) in equivalents per liter and y is the nitric acid concentration in moles per liter.

V LITERATURE CITED

1. Slansky, C. M., K. L. Rohde, H. T. Hahn, Review of Research and Development at the Idaho Chemical Processing Plant on the Electrolytic Dissolution of Nuclear Fuel, IDO-14535, February (1961).
2. Slansky, C. M., M. W. Roberts, K. L. Rohde, Nuclear Science and Engineering: 12, 33-38 (1962), Electrolytic Dissolution of Reactor Fuels.
3. Roberts, M. W., Laboratory Studies for HTRE Fuel Reprocessing, IDO-14523, June (1961).
4. Aylward, J. R., and E. M. Whitener, Electrolytic Dissolution of Nuclear Fuels, Part II, Nichrome in Nitrate Solutions, IDO-14575, December (1961).
5. Aylward, J. R., and E. M. Whitener, Electrolytic Dissolution of Nuclear Fuels, Part III, Stainless Steel (304) in Nitrate Solutions, IDO-14584.
6. Pearson, D. P., The Inline Analysis of Electrolytic Dissolver Solutions for Nitric Acid and Salt Concentrations, (In Press)

VI. ACKNOWLEDGEMENT


The data reported here were derived from measurements made and compiled by C. E. May, D. P. Pearson, and M. W. Roberts.

Appendix I

Density and Composition of Various Saturated Solutions of Iron, Chromium, Nickel and Uranium Nitrates in Nitric Acid.

Sample	D _{25°}	HNO ₃ (M) ³	Fe (M)	Cr (M)	Ni (M)	U (M)	Total NO ₃ (M)	Non-acid NO ₃ (M)
I - 101	-	0	0.600	0.56	2.51	0.279	9.06	9.06
102	1.655	1.8	0.508	0.44	2.11	0.455	9.77	7.97
103	1.649	3.6	0.385	0.33	1.84	0.533	10.5	6.89
104	1.710	5.3	0.296	0.24	1.46	0.906	11.6	6.33
105	1.684	6.8	0.253	0.20	1.23	0.856	12.3	5.52
II - 101	1.521	0	0.689	0.548	2.54	0	8.79	8.79
102	1.578	2.08	0.551	0.486	2.46		10.1	8.03
103	1.561	4.16	0.456	0.405	2.13		11.0	6.84
104	1.540	6.16	0.379	0.333	1.77		11.8	5.68
105	1.523	7.86	0.332	0.281	1.54		12.8	4.91
111	1.490	1.16	1.79	0.147	0.688		8.35	7.19
115	1.512	1.48	1.31	0.235	1.36		8.83	7.35
112	1.586	1.10	0.152	0.132	3.63		9.21	8.11
116	1.567	1.45	0.299	0.275	3.04		9.25	7.80
113	1.474	1.42	0.150	1.80	0.700		8.67	7.25
117	1.510	1.65	0.288	1.26	1.38		9.03	7.38
121	1.454	2.80	1.34	0.152	0.696		8.67	5.87
125	1.490	3.29	0.964	0.241	1.27		9.45	6.16
122	1.547	2.49	0.133	0.125	2.97		9.20	6.71
126	1.535	3.21	0.276	0.252	2.44		9.67	6.46
123	1.460	2.88	0.148	1.45	0.654		8.98	6.10
127	1.491	3.42	0.277	0.896	1.25		9.44	6.02
131	1.451	4.77	1.13	0.114	0.608		9.72	4.95
135	1.477	5.45	0.711	0.161	1.16		10.4	4.94
132	1.518	4.36	0.133	0.116	2.43		9.97	5.61
136	1.511	5.43	0.246	0.229	1.97		10.8	5.36
133	1.447	5.23	0.114	1.06	0.628		10.0	4.78
137	1.474	5.76	0.224	0.602	1.18		10.6	4.84
141	1.433	6.66	0.812	0.117	0.559		10.6	3.91
145	1.469	6.41	0.579	0.103	1.04		10.5	4.12
142	1.495	6.08	0.131	0.105	1.90		10.6	4.51
146	1.493	6.45	0.206	0.186	1.50		10.6	4.18
143	1.430	6.27	0.233	0.716	0.610		10.4	4.07
147	1.461	7.01	0.144	0.440	0.993		10.7	3.74

PHILLIPS
PETROLEUM
COMPANY

ATOMIC ENERGY DIVISION