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ABSTRACT 

The t ransfer function of a ref lected reac to r has been der ived 

f rom a model which is applicable to all r e a c t o r s . The r e su l t i s 

identical to a bare reac to r t ransfer function at low^ f requencies , 

provided that the neutron lifetime includes the effect of the re f l ec ­

tor . At high frequencies the ref lector in t roduces in effect an addi­

tional group of delayed neutrons . A calculat ion of the effective 

neutron lifetime in the SRE from the theore t ica l r e su l t s was in 

good agreement with the exper imenta l value. 
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I. INTRODUCTION 

Kinetic behavior of a bare r eac to r has been studied extensively, both theo­

re t ica l ly and exper imenta l ly . These studies have show^n that the inhour equation 

and t r ans fe r function der ived from the usual form of the kinet ics equation give 

excellent agreement with exper imenta l r e s u l t s . 

Reflected r e a c t o r s have usual ly been t r ea ted by assuming that the same 

kinet ics equations a re applicable providing that a modified value of the prompt 

neutron lifetime is used w^hich includes the effect of the ref lec tor . Measuremen t s 

of fast t r ans ien t s in the KEWB reac to r , how^ever, indicated empi r ica l ly that 

t r ea tment of the ref lector by an additional delay group (or groups) w^ould give 

bet ter r e s u l t s . 

One theore t i ca l approach to reflected r eac to r kinet ics has been made p r e v i ­

ously. The method was applied to a coupled f a s t - t h e r m a l c r i t i ca l assembly to 

calculate the prompt neutron l ifet ime. The r e su l t s agreed w^ell with other de­

te rmina t ions . However, a t tempts to apply this method to the Sodium Reactor 

Exper iment (SRE) give unreasonable values for the l ifet ime. Fu r the r examina­

tion show^ed that this method is inapplicable to r e a c t o r s with re f lec tors which 

make a la rge contribution to react ivi ty . This r epor t desc r ibes a method of anal­

ys i s which avoids the above difficulty, and is thus applicable to all reflected 

r e a c t o r s . 
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II. DERIVATION OF THE REFLECTED REACTOR TRANSFER FUNCTION 

The genera l equation governing reac to r kinet ics i s : 

Rate of Change _ Product ion Destruct ion ^̂  
of Neutron Density Rate Rate . . . ( 1 ) 

This equation is usually applied to a ba re r eac to r by assuming the "flow d iag ram 

for the neutrons shown in F igure 1. Thus Equation 1 becomes , in the absence of 

a source . 

dn 
dt I^S - 5 

and the associa ted equations for the delayed neutrons a re : 

dC. jS.k , ,n 
1 '̂ 1 eff x.C. dt i * 1 1 

FRRASITIC 
CAPTURE 

PROMPT NEUTRONS 
= ( l - 3 ) k e f f n / i 

PRODUCTION 
RATE = 
l<eff"/J DELAYED 

NEUTRONS 
= e k B f f l / i 

DELAYED 
NEUTRON 
PRECURSORS 

NEUTRON 
- J | DENSITY 

DESTRUCTION 

RATE=n/i 

PRODUCTION RATE 
FROM PRECURSORS 
=rx,C| 

Figure 1. Flow Diagram for Bare 
Reactor PQnetics 

A. PREVIOUS MODEL 

For a reflected r eac to r , the same approach can be used by t rea t ing sepa­

ra te ly the neutrons in the core and the ref lector . How^ever, the neutrons can 

bounce back and forth from core to ref lector many t imes before being finally 

absorbed. Thus the d iagram shown in F igure 2 applies for a reflected r eac to r . 
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PRODUCTION RATE 
= l<Pcnc/J(c 

PROMPT 
NEUTRONS 
=( l -g)kPcnc/ j l c 

PARASITIC 
CAPTURE 

DELAYED NEUTRONS 
= /3kPcnc/Jc 

DELAYED 
NEUTRON 
PRECURSORS 
= C 

NEUTRON 
DENSITY 
= nc 

PRODUCTION RATE 
FROM PREOJRSORS 
= XiCi 

Prnr /Jr 

• LOST . 
'(I-Pr)nr/J( r 

DESTRUCTION 
RATE=nr/j( r 

REFLECTOR 
NEUTRON 
DENSITY 
= nr (l-Pc) 

Pc nc/ i c 

Figure 2. Flow Diagram for Reflected 
Reactor Kinetics 

The definitions of the symbols a re : 

n = neutron density in the core c 

n = neutron density in the ref lector 
r ' 

P = probabil i ty that a neutron will r ema in in the core 

P = probabil i ty that a disappearing ref lector neutron will r eappear in 

the core 

k = infinite mult ipl icat ion constant (k^) for the co re . 

The differential equations corresponding to this naodel a re : 

dn^ (1 - i3)Pckn^ 
dt . ^ x , a 

P n r r n 

dn (1 - P )n r c c n 

dt 

dC. iS.kP n 1 1 c c 
dt 

X.C. 
1 1 

. . . ( 2 ) 

These equations are ident ical with those der ived by C. E. Cohn. 

Although this model i s a logical one, it does not give c o r r e c t r e su l t s since 

some neutrons a re pe rmi t t ed to go around the "loop" from core to ref lector and 
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back indefinitely without ever being absorbed. One consequence of this i s that 

the c r i t i ca l equation, obtained by setting all t ime der ivat ives in Equation 2 to 

k P + (1 - P )P = 1 c c r 
(2a) 

This is not in agreement with the genera l form of the c r i t i ca l equation 

k £ = 1 

where £ , the net nonleakage probabil i ty, i s some function of P and P^ . The 

d iscrepancy a r i s e s because neutrons returning from the ref lector a re counted 

the same as "new" neutrons from fission. In r e a c t o r s where the ref lector makes 

a large contribution to the react ivi ty , the e r r o r in Equation 2a would be significant. 

B. NEW MODEL 

A model which avoids this difficulty i s shown in F igure 3. In this model , 

neutrons which enter the ref lector are not counted in the core until after their 

FISSION 

PRODUCTION 
RATE=knc/<c 

WRASITIC 
CAPTURE 

(NOTE NMI - /3 )knc /<c + >-|C|) 

N PcN 

PROMPT 
NEUTRONS 
= ( l - ^ ) knc / i c 

DELAYED 
NEUTRONS 
=/3 k nc/jfc 

^ 

DELAYED 
NEUTRON 
PRECURSORS 
= C, 

NEUTRON 
DENSITY 

( l -Pc)N 

REFLECTOR 
NEUTRON 
DENSITY 
= "£ 

DESTRUCTION 
RATE 

DESTRUCTION 

PrHr / i r 

X|C| 

( l -Pr )n r / i r 
LOST 

Figure 3, Modified Flow Diagram for Reflected 
Reactor Kinetics 

final exit from the ref lec tor . Although this does not cor respond to the phys ica l 

si tuation in the r eac to r , it will give c o r r e c t r e su l t s for the kinetic behavior if 

i and J? a re defined as the total length of t ime that neutrons spend in the reflec-
r c 

tor and core , respect ive ly . In other words the total length of t ime spent in the 

two regions is the same in the model as in the r eac to r , but the chronological 

o rder is changed, thus eliminating the " loop." 
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The d i f f e r e n t i a l e q u a t i o n s for t h i s m o d e l a r e : 

dn (1 - i8)kP n P n 
c ' f"' c c ^ r r ^ p 

dt i £ c r^S-f ' 
dn (1 - 8)k( l - P )n 

- ^ - J ^ M i - P ^ ) l^S-/ 

dC. iS.kn 

dt l '^i 1 • . . . (3) 
c ^ ' 

The c r i t i c a l e q u a t i o n , found by s e t t i ng a l l tinae d e r i v a t i v e s to z e r o , i s : 

P + (1 - P )P = 1 , . . . (4) 
c c r j ^ ' 

w^hich now^ h a s the sanae f o r m a s the g e n e r a l c r i t i c a l equa t i on . 

C. D E R I V A T I O N O F T R A N S F E R F U N C T I O N 

To so lve e q u a t i o n 3 for the r e a c t o r t r a n s f e r funct ion , the t i m e - v a r y i n g 

q u a n t i t i e s a r e r e p l a c e d by t h e i r e q u i l i b r i u m v a l u e s p l u s s m a l l v a r i a t i o n s : 

n = n „ + 6n 
c cO c 

n = n _ + 6n 
r rO r 

P - P _ + 6 P c cO c 

k = k + 6k 

C. = C . + 6C. . . . . (5) 
1 l O 1 ^ ' 

T h i s a s s u m e s no v a r i a t i o n in P , wh ich i s r e a s o n a b l e for s m a l l c h a n g e s in the 

c o r e . 

The e q u i l i b r i u m v a l u e s , wh ich a r e the v a l u e s at c r i t i c a l i t y , a l s o s a t i s fy 

E q u a t i o n 3 . T h u s , s u b s t i t u t i n g E q u a t i o n 5 in to E q u a t i o n 3, s u b t r a c t i n g E q u a t i o n 

•with the c r i t i c a l v a l u e s i n s e r t e d , n e g l e c t i n g the p r o d u c t s of d i f f e r e n t i a l s , and 

t ak ing L a p l a c e t r a n s f o r m s , g i v e s : 
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6n 
sfin 

c 1 (1 - g) 
c i H 

c c 

P ^k-6n + n - ( P _6k + k - 6 P ) cO 0 c 0 cO 0 c 

+ 
P 6n r - + ) X.(C._6P + P „6C.) , 

/ , 1 lO c cO 1 ' 

r c 

.^Xj( + > A . | ( 1 - P ^ Q ) 6 C . - C . Q S P ^ 

i3. 
s6C. = - X.6C. +-i^ (n _6k + k-6n ) . 

1 1 X £ cv V c c 
(6) 

The las t one of Equation 6 yields 

6C. = 
1 

^ . (n^06k^k^6n^ ) 
. . ( 7 ) 

However, n ^6kcanbe neglected since at low frequencies it i s much snaaller than 

k 5n , and at higher frequencies both t e r m s are negligible. (This same approxi-

mation is made in the derivat ion of the bare r eac to r t ransfe r function. ) 

C._ in Equation 6 is the equilil 

dC. /d t = 0 , k = k- and n = n „; so 

C._ in Equation 6 is the equi l ibr ium solution of the thi rd of Equations 3 where 

cO' 

X.C._ = 
1 lO 

^1 0 cO 
. . ( 8 ) 

Now^ using Equation 8 in the f i r s t t^vo equations of 6, solving the second for 6n 

and substituting the resu l t and Equation 7 into the f i r s t of Equation 6 gives: 
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6n 

n cO 

1 (1 - g)ko 
S + J - - -£ 

c c 
^cO-^ 

( 1 - ^ c o ) ^ ; 
i s + 1 
r 

(1 cO r 
cO £ s r + 1 

V^i^i 
ZJ^i 

(1 -S) 
£ 

P ^6k + k ^ 6 P cO 0 c 

P (1 
r i3) 

£ {£ s + 1) c r ' 
(1 Peo)Sk - %6P^ 

eV^c 
1 - i s + 1 r . . . ( 9 ) 

w h e r e a l l t e r m s invo lv ing 6n h a v e b e e n t a k e n to the left hand s i d e . 

The t e r m 

^K 
P ^ + 

(1 - P n ) P cO r 
cO J? s + 1 

r 

c a n be c o m b i n e d w^ith the t e r m inc lud ing the s u m m a t i o n , s i n c e j3 = y j3., y i e ld ing : 

( 1 - P 
P + 

cO £ s + 
r 

Now, in t h i s t e r m only , l e t (i s + 1) = 1. Al though t h i s i s va l id only at low 

f r e q u e n c i e s , at h i g h e r f r e q u e n c i e s the e n t i r e t e r m i s v e r y s m a l l , so the e r r o r 

in the t r a n s f e r funct ion i s l e s s than 1% at any f r e q u e n c y . T h i s a p p r o x i m a t i o n 

i s e q u i v a l e n t to n e g l e c t i n g the a d d i t i o n a l d e l a y of the r e f l e c t o r on the d e l a y e d 

n e u t r o n s w^hich e n t e r the r e f l e c t o r . 

F r o m E q u a t i o n 4 

c P - + k (1 - P - ) P = 1 , 
o cO o cO r ' 
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so solving Equation 9 for 6n/n^ gives , letting X = 1/i , and 1 - j3 = 1: 

- P _6k + k_6P + on cO 0 c c 

(1 - P - )P 6k - P k_6P J cO r r 0 c 
i (s +X ) r r 

n cO 
s i 1 + 

^ o ( 1 - P ^)P , \—^ j3. cO r . 1 \ ^1 
( s + X ) £ / s + X . 

r r ' c Z f 1 

. (10) 

Equation 4 impl ies that 

so, 

k _ = k P + k(l - P )P , 
eff c c ' r ' 

6k 
6p = eff = P^^6k + k^6P + (1 - P „ , ) P 6 k - P k_6P^ , . . . ( 1 1 ) 

k , . " cO""" • '"0""c ' ^" " cO'" r""" ' r " 0 " ' c 
eff^ 

assuining, as before, no change in P . 

At low frequencies the numera tor in Equation 10 i s therefore 6p. At higher 

frequencies the numera tor i s a dynamic react iv i ty , in which a change in the 

probabil i ty of neutrons escaping to the ref lector i s affected by the frequency of 

the change. This i s physical ly reasonable , since a very fast change will have 

l e s s effect due to the delay associa ted w^ith the ref lec tor . 

Thus the t ransfer function of a ref lected reac to r i s : 

G (s) = r 
^"c/"c0 

6P/B 

s£ 
c 

|8 

k -(1 - P - )P „ Y^i3. / j3 
1 + _cO^ c 0 l _ r + J . \ _Li_l. 

i (s +X ) c r £ / s +X. 
£.—' ] 

(12) 

D. DISCUSSION 

At low frequencies where 00 « l/£ , the trajisfer function i s ident ical to the 

bare reac tor t ransfer function: 
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G(s) = 

si* 
i3 '^4-3 y^^^ 

. . ( 13 ) 

providing that ŵ e define 

i* = £ + k -(1 - P - )P i c cO cO' r r (14) 

Thus the effective l ifetime i s the core lifetime plus the ref lector lifetime weighted 

by the fract ion of neutrons w^hich enter and r e t u r n from the ref lec tor . 

At higher frequencies the ref lec tor in effect in t roduces a seventh group of 

delayed neutrons: 

G (s) = r 
1 

£ s 
c 

^ 

i=7 

^4 
i = l 

where 

^ 7 = ^ r - T " ' 

^=W^-^c0)^: 

Note that in Equation 15, 

L=6 

P 
i = l 

. . ( 15 ) 

i. e. , it does not include the neutrons from the ref lec tor . This is physical ly 

reasonable because the delay assoc ia ted with the ref lector i s very much shor te r 

than that of the r e a l delay groups . Thus the react ivi ty requ i red for p rompt 

c r i t ica l i ty i s not radical ly changed by the p re sence of a ref lec tor . 
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Figure 4 shows aplo t of the t ransfe r function of a typ ica l g raph i t e -modera ted 

and -ref lected the rma l r eac to r , in which £ and £ a re the same order of magn i ­

tude. In this ca se , the only per turba t ion of the ba re r eac to r t ransfe r function i s 

well above the region usual ly considered for lifetime m e a s u r e m e n t s . Ho-wever, 

if the ref lector lifetime is much longer than the core l ifet ime, then the t ransfe r 

function may be dis tor ted in the region of the jp /̂j3 break-off, and the ba re r eac to r 

t ransfer function would not r e p r e s e n t an adequate approximation. 

< 

-100 

-120 

IQl I02 

FREQUENCY(cps) 

Figure 4. Reflected Reactor Transfer Function 

The t ransfe r function der ived above i s ident ical to that of Cohn except for 

the express ion for effective l i fet ime, as d iscussed in the following section. 
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III. CALCULATION O F i * AND 8̂̂ ^̂  IN THE SRE 

A calculat ion of i* and j3 ^r for the second core loading of the SRE was used 

for compar i son with the r e su l t s of the t rans fe r function m e a s u r e m e n t . The 

method was a combination of the r e su l t s from the preceeding der ivat ion w^ith a 
3 two-group analys is of the kinet ics of a bare r e a c t o r , which yields the follow^ing 

express ions : 

'^eff^^^^d) ' •••^^^^ 

. . . ( 1 7 ) 

where 

k j = effective mult ipl icat ion constant for delayed neutrons 

-̂  f> ^ fY, ~ pi 'ompt neutron lifetime in the core for fast and t h e r m a l groups , 

respec t ive ly 

£ - total mean prompt neutron lifetime in the core 

E l - = f ission c r o s s section in fast group 

E l = total r emova l c r o s s section f rom fast group 
r 

\> = number of f ission neutrons per f ission. 

Equation 16 can be applied d i rec t ly to the SRE, since the ref lec tor affects 

B rr only in the value of k , . Since k , i s ident ical to k .. except for the fast non-^eff ^ d d eff ^ 
leakage probabi l i ty , then for a c r i t i ca l r eac to r where k ^̂  = 1: 

where T and r , a re the f ission to t h e r m a l ages for p rompt and delayed neut rons , 
c "? 

respect ive ly , and B is the effective buckling for a ref lected r eac to r . The values 
4 2 

of T were obtained by the usua l method, and B was de te rmined from a two-group 
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7 

calculation on the reflected reac to r by requir ing that e"-^ "̂ eff [where T rr 
= (1 - j3)T + |8T , ] give the c o r r e c t fast nonleakage probabil i ty. Using these 

values , k , = 1.058 and l3 . . = 0.0069. ' d '^eff 

The calculation of i* used the resu l t s of the derivat ion of the reflected t rans­

fer function: 

i* = i + k _(1 - P _)P £ c cO cO r r (14) 

The value of £ is obtained from Equation 17 with: 

£ 
1 

^ ^ v,^/s + D , ^ B 2 , , 
thi a , th c i ' 

Xg y2m 
fth JE7 VET 

.v th V fissi sion 

. . . ( 1 8 ) 

whe re : 

E 

th = average velocity of t h e r m a l neutrons 

S^ V , D^h = t h e r m a l absorpt ion c r o s s section and diffusion coefficient, 

respect ive ly , in the core 

X = mean free path of fast neutrons 

m = m a s s of neutron = 1.66 x 10 gm 

^ = logari thmic dec remen t of energy lost pe r col l is ion 

1̂ , E^. . = energy of t he rma l and fission neut rons , respect ively th ' fission °' } r J 
2 

B = geometr ic buckling of ba re core : 

B ^2.405 ' 

I co re 

IT 
H 

(19) 
corei 
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6 - 4 
Us ing p r e v i o u s l y r e p o r t e d v a l u e s for the S R E , i , = 5. 1 x 10 s e c and i^ , 
= 0.5 X lO" s e c . 

The t e r m E j / S j i s the f r a c t i o n of n e u t r o n s wh ich c a u s e s f i s s i o n s b e f o r e 

b e c o m i n g t h e r m a l . T h i s va lue i s v e r y dif f icul t to c a l c u l a t e a c c u r a t e l y in the 

SRE. A rough e s t i m a t e w a s m a d e u s i n g the inf in i te d i lu t ion r e s o n a n c e i n t e g r a l 
235 for U a s the e f fec t ive c r o s s s e c t i o n in the fuel , and t h e n c o m p u t i n g a fuel 

r e s o n a n c e d i s a d v a n t a g e f a c t o r by the s a m e m e t h o d a s i s u s e d for t h e r m a l flux 

c a l c u l a t i o n s . The r e s u l t w a s S i £ / E i = 0 .06 . Us ing the above v a l u e s i n E q u a ­

t ion 17: 

£ = 4 .8 X 10"^ s e c . 
c 

The t h e r m a l n e u t r o n l i f e t ime in the r e f l e c t o r w^as o b t a i n e d by a Monte C a r l o 

c a l c u l a t i o n w h i c h fo l lowed 200 n e u t r o n s i n j e c t e d in to the r e f l e c t o r . T h i s c a l c u l a ­

t ion showed t h a t the a v e r a g e n u m b e r of m e a n f r ee p a t h s t r a v e l e d b e f o r e r e t u r n i n g 

to the c o r e i s 17, and the p r o b a b i l i t y of r e t u r n i s 0 .89 . A s i m i l a r c a l c u l a t i o n 

showed t h a t the n e u t r o n s l e av ing the r e f l e c t o r have a p r o b a b i l i t y of 0.60 of r e ­

t u r n i n g a g a i n to the r e f l e c t o r be fo re be ing a b s o r b e d in the c o r e . 

L e t f be the p r o b a b i l i t y t h a t a r e f l e c t o r n e u t r o n w i l l r e t u r n to the c o r e , and 

l e t f be the p r o b a b i l i t y t h a t a n e u t r o n l eav ing the r e f l e c t o r w i l l r e t u r n to the 

r e f l e c t o r b e f o r e be ing a b s o r b e d i n the c o r e . Then the p r o b a b i l i t y of m a k i n g 

e x a c t l y one p a s s t h r o u g h the r e f l e c t o r and r e t u r n i n g to the c o r e i s f (1 - f ). 

F o r two p a s s e s , the p r o b a b i l i t y i s f f f (1 - f ), e t c . T h u s the t o t a l m e a n d i s ­

t a n c e t r a v e l e d in the r e f l e c t o r b e f o r e f ina l ly be ing a b s o r b e d in the c o r e i s : 

f (1 - f )d + (f f )f (1 - f )2d + (f f ) (f f )f (1 - f )3d + . . . •Q _ r c r r e r c r ' r c r c r c r 
r ~ f ( l - f ) + f f f ( l - f ) + f f f f f ( l - f ) + . . . 

r c r c r c r c r c r c 

d 
"" , . . . ( 2 0 ) 

w h e r e 

1 - f f 
r c 

d = m e a n d i s t a n c e t r a v e l e d d u r i n g one p a s s t h r o u g h the r e f l e c t o r 

D = m e a n t o t a l d i s t a n c e t r a v e l e d in the r e f l e c t o r b e f o r e the f ina l r e t u r n r 
to the c o r e . 
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Thus the lifetime of t he rma l neutrons in the reflector is 

D d 

\ h ^ ^ ^ V t h < ^ ' - V c ) ' '"^''^ 

where V , is the mean velocity of t he rma l neutrons in the ref lector . 

Neutrons which spend t ime in the ref lector only as fast neutrons have the 

same lifetime as those w^hich remain in the core , since the slo-wing-down t imes 

in the core and ref lector a r e the same. Fo r computational ease this effect i s 

taken into account by assuming that the slowing-down t ime in the ref lector is 

ze ro , and that a neutron which slows down in the ref lector has the same lifetime 

in the core as those which slow down in the co re . 

The Monte Carlo calculat ion indicated that about 25% of the fast neutrons 

which enter the ref lector never appear there as a t he rma l neutron, so for these 

neutrons £ = 0 . The remaining 75% of those which enter as fast neutrons also 

appear there as t he rma l neut rons , and have the same mean lifetime in the r e ­

flector as those which f i rs t enter as t he rma l neut rons . The probabil i ty that a 

neutron will r emain in the core i s : 

•BrTT 
P 

^0 1 + L^B ^ c 
> 

and the probabil i ty of entering the ref lector as a fast neutron i s : 

P = l - e - ^ c T > 

so the probabil i ty of f i rs t entering as a t he rma l neutron i s : 

( L ^ B ^ e - ^ c ^ " ^ 
P,, = (1 - p ) - P = ^—- — 

th ^ cO' f J ^ j^2g 2 
c 
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Therefore , the naean ' l ifetime in the ref lec tor i s obtained by weighting the 

respect ive l i fet imes by the fraction of neutrons: 

£ = 
( : 

{-\') 
•B^^T] 

1 -
e ^ 

1 + L^B ^ c 

0.25(0) + 0 . 7 5 ( i 
thy 

2 2 1 + L'^B ^ c 
2 .9 (10 ) " sec 

•Br T • th 

2 2 1 + L B ^ c 

Using this and the calculated lifetime in the core in Equation 14: 

- 4 
£'•' = 5 .5(10) sec 

7 - 4 2 
This a g r e e s very well with the exper imenta l value of 5.2(10) sec. Cohn's 
express ion for the effective lifetime is (in the p resen t notation): 

£ -f k -(1 - P - )P i c cO cO r r 

^cO^cO 

-4 
yielding a value of i* = 7.2(10) sec , which is not in agreenaent with the expe r i ­
mental value. Thus, the p resen t der ivat ion yields a be t te r value for the effective 
neutron l ifet ime. 
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IV. CONCLUSIONS 

a) Bare r eac to r kinet ics provides an accura te method of t reat ing ref lected 

r e a c t o r s at frequencies m o r e than one decade below the b reak f r e ­

quency of the ref lec tor , which is about 1000 cps for graphite r e f l ec to r s . 

b) At higher frequency the ref lector in t roduces , in effect, an additional 

group of delayed neu t rons . 

c) The react ivi ty corresponding to prompt cr i t ica l i ty is not affected by 

the ref lec tor . 

d) The method of calculating prompt neutron lifetime d i scussed in this 

r epo r t yields r e su l t s in good agreement w^ith exper iment . 

NAA-SR-7263 
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