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ABSTRACT 

This r e p o r t p r e s e n t s a g e n e r a l i z e d c o r r e l a t i o n for l iquid 

f r a c t i o n in t w o - p h a s e flow which is p r o p o s e d for use wi th a l l 

f lu ids , inc lud ing l iquid i-netals. The c o r r e l a t i o n i s b a s e d on i s o ­

t h e r m a l , t w o - p h a s e , t w o - c o m p o n e n t l iquid f r ac t i on da ta for 

l iquid m e r c u r y - n i t r o g e n and w a t e r - a i r . Liquid f r a c t i o n i s shown 

to be a funct ion of the M a r t i n e l l i flow m o d u l u s and l i q u i d / g a s 

dens i t y and v i s c o s i t y r a t i o s . Good c o r r e s p o n d e n c e i s i n d i c a t e d 

b e t w e e n the l iquid f r a c t i o n p r e d i c t e d by th i s c o r r e l a t i o n and the 

M a r t i n e l l i - N e l s o n c o r r e l a t i o n for s t e a m , expe r innen ta l da ta for 

s t e a m , and e x p e r i m e n t a l da ta for San towax R, an o r g a n i c coo lan t . 

P r e d i c t i o n of l iquid f r a c t i o n by th i s m e t hod i s shown for sodiunn, 

p o t a s s i u m , rubidiunn, and m e r c u r y . App l i ca t i on of the me thod to 

bo i l ing m e r c u r y , for a r a n g e of t e m p e r a t u r e s and exi t q u a l i t i e s , 

i s d e m o n s t r a t e d for SNAP sys t enns . 
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I. INTRODUCTION 

In the c o - c u r r e n t flow of l iquid and gas (or vapor ) in a p ipe , the f r a c t i o n of 

t o t a l flow a r e a occup ied by the l iquid , i. e. , the l iquid f r a c t i o n , b e a r s s t r o n g l y 

on the h e a t t r a n s f e r and fluid flow c h a r a c t e r i s t i c s of the s y s t e m . E x c e p t for 

the condi t ion w h e r e the d e n s i t i e s of the p h a s e s a r e equa l , the v e l o c i t i e s of the 

p h a s e s a r e d i f fe ren t ; t h e r e f o r e , l iquid f r a c t i o n canno t be c a l c u l a t e d d i r e c t l y 

fronn knowledge of the d e n s i t i e s and we igh t flow r a t e s of the r e s p e c t i v e p h a s e s . 

C o n s e q u e n t l y , l iquid f r a c t i o n in t w o - p h a s e flow usua l l y i s d e t e r m i n e d e x p e r i ­

m e n t a l l y , and then c o r r e l a t e d by s u i t a b l e m e a n s . 

Of the m a n y m e t h o d s a v a i l a b l e for p r e d i c t i n g l iquid f r ac t i on , one of the 

e a r l i e s t w a s tha t p r o p o s e d by M a r t i n e l l i , et a l . in which a wide r a n g e of t w o -

p h a s e , two-connponen t l iquid f r a c t i o n da t a , for a i r and v a r i o u s l i q u i d s , w e r e 
2 

s u c c e s s f u l l y c o r r e l a t e d . L a t e r , L o c k h a r t and M a r t i n e l l i g e n e r a l i z e d the w o r k 

p e r f o r m e d p r e v i o u s l y ; the r e s u l t a n t c o r r e l a t i o n h a s b e c o m e the m o s t wide ly 

a c c e p t e d m e t h o d of p r e d i c t i n g l iquid f r a c t i o n in t w o - p h a s e flow. 

Al though g e n e r a l l y s u c c e s s f u l in p r e d i c t i n g l iquid f r a c t i o n wi th in s a t i s f a c ­

t o r y l i m i t s , and m a j o r t r e n d s c o r r e c t l y , the L o c k h a r t - M a r t i n e l l i c o r r e l a t i o n 
3 

h a s s h o r t c o m i n g s . M a r t i n e l l i - N e l s o n found tha t a f ami ly of l iquid f r a c t i o n 

c u r v e s w a s r e q u i r e d for s t e a m , wi th s a t u r a t i o n p r e s s u r e a s p a r a m e t e r , to c o r ­

r e c t l y p r e d i c t s l i p r a t i o n e a r the c r i t i c a l point i n s t e a d of the s ing le c u r v e p r o -
4 

posed by L o c k h a r t - M a r t i n e l l i . Hughnnark and P r e s s b u r g showed tha t l iquid 

f r a c t i o n , for a n u m b e r of l iquid and gas c o m b i n a t i o n s , depended on t o t a l m a s s 
5 

ve loc i ty in add i t i on to the M a r t i n e l l i flow m o d u l u s . She r modi f ied the 

M a r t i n e l l i - N e l s o n l iquid f r a c t i o n c u r v e s , for s t e a m at low q u a l i t i e s , to p r e c l u d e 

s l ip r a t i o s l e s s than one . 

R e c e n t l y , a n a l y t i c a l t r e a t m e n t s have been m a d e of t w o - p h a s e p r e s s u r e 

d r o p and l iquid f r a c t i o n . The Bankoff Mode l h a s b e e n used s u c c e s s f u l l y for 

s t e a m - w a t e r m i x t u r e s but r e q u i r e s mod i f i c a t i on for u s e wi th o the r fluid c o m b i -
7 

n a t i o n s . L e v y ' s Mode l h a s b e e n app l i ed s u c c e s s f u l l y to s t e a m - w a t e r nn ix tures 

and w a t e r - a i r m i x t u r e s . An e m p i r i c a l equa t ion , involv ing fliiid p r o p e r t i e s , w a s 
Q 

deve loped by von Glahn for p r e d i c t i o n of l iquid f r a c t i o n in s t e a m - w a t e r m i x -
2 3 

t u r e s . The M a r t i n e l l i c o r r e l a t i o n s ' c o m p a r e f a v o r a b l y wi th the l iquid f r a c ­
t ion p r e d i c t e d by each of the above m e t h o d s . In t o t a l , the M a r t i n e l l i f o r m of 
c o r r e l a t i o n , w i th i t s l i m i t a t i o n s , s a t i s f a c t o r i l y p r e d i c t s l iquid f r a c t i o n in 

N A A - S R - 8 1 7 1 
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t w o - p h a s e flow for a wide r a n g e of cond i t ions far m o r e often than i t does not . 

The p r e s e n t c o r r e l a t i o n u s e s the M a r t i n e l l i flow m o d u l u s and an add i t i ona l 

p a r a m e t e r involv ing l i q u i d / g a s d e n s i t y and v i s c o s i t y r a t i o s . 

P r e d i c t i o n of l iquid f r a c t i o n in i n d u s t r i a l p r o c e s s e s u t i l i z ing t w o - p h a s e 

flow i s of i m p o r t a n c e but g e n e r a l l y i s not c r i t i c a l to s y s t e m p e r f o r m a n c e . 

T h i s i s not so w h e n bo i l ing- f lu id r e a c t o r s o r n u c l e a r p o w e r e d s p a c e s y s t e m s , 

u t i l i z ing a b o i l e r and c o n d e n s e r , a r e c o n s i d e r e d . H e r e a c c u r a t e p r e d i c t i o n of 

l iquid f r a c t i o n i s r e q u i r e d to a t t a i n s y s t e m p e r f o r m a n c e , r e l i a b i l i t y , and we igh t 

o b j e c t i v e s . Al though c o n s i d e r a b l e l iquid f r a c t i o n da ta and m a n y c o r r e l a t i o n s 

a r e a v a i l a b l e for w a t e r and o the r connmonly used f lu ids , v i r t u a l l y no da ta e x i s t 

for l iquid m e t a l s . E x t r a p o l a t i o n of p r e s e n t c o r r e l a t i o n s , wh ich a r e b a s e d p r i ­

m a r i l y on w a t e r , i s diff icul t b e c a u s e the p h y s i c a l p r o p e r t i e s of l iquid m e t a l s 

differ m a r k e d l y f r o m t h o s e of w a t e r . F o r a given t e m p e r a t u r e , the m o s t 

s t r i k i n g d i f f e r ence is the p r e v a l e n c e of e x t r e m e l y high l i q u i d / g a s d e n s i t y r a t i o s 

for l iquid m e t a l s . 

A conven i en t me thod of ob ta in ing l iquid h o l d - u p da ta involving high l iqu id / 

gas d e n s i t y r a t i o s and u t i l i z ing a l iquid m e t a l , i s the u s e of l iquid m e r c u r y -

n i t r o g e n in an i s o t h e r m a l , t w o - p h a s e , t w o - c o m p o n e n t t e s t . Such e x p e r i m e n t a l 
9 . 

da t a w e r e ob ta ined to p r o v i d e a b a s i s for a n a l y s i s and p e r f o r m a n c e p r e d i c t i o n 
for the SNAP 2, n u c l e a r - p o w e r e d , Rank ine cyc l e s p a c e s y s t e m . 

9 
The p r e s e n t c o r r e l a t i o n i s b a s e d on l iquid m e r c u r y - n i t r o g e n da ta and 

11 12 w a t e r - a i r da t a . ' The l i q u i d / g a s d e n s i t y r a t i o s for t h e s e da ta a r e 93 50 and 

665, r e s p e c t i v e l y . S ince the p r e s e n t c o r r e l a t i o n i s of a g e n e r a l i z e d f o r m , and 

the p r o p e r t i e s v a r i a t i o n r a n g e d e s c r i b e d above e n c o n a p a s s e s t ha t for l iquid 

m e t a l s , i t i s p r o p o s e d tha t the c o r r e l a t i o n be used in p r e d i c t i n g l iquid f r a c t i o n 

for l iquid m e t a l s . Whi le v e r i f i c a t i o n of the c o r r e l a t i o n wi th s ing le c o m p o n e n t 

l iquid m e t a l s w a s not p o s s i b l e , b e c a u s e of a l ack of d a t a , good a g r e e m e n t w a s 

ob ta ined for a v a r i e t y of t w o - c o m p o n e n t and s ing le componen t l iquid f r ac t i on 

da t a . 

N A A - S R - 8 1 7 1 
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II. METHOD OF CORRELATION 

A. T W O - P H A S E , T W O - C O M P O N E N T LIQUID F R A C T I O N DATA 

The e x p e r i m e n t a l l iquid f r a c t i o n da ta wh ich s e r v e d a s the b a s i s for the 

g e n e r a l i z e d c o r r e l a t i o n i s i l l u s t r a t e d in F i g u r e 1. Shown i s the c o r r e l a t i o n for 
11 12 w a t e r - a i r by Hewi t t , et a l . •" and the p r e s e n t c o r r e l a t i o n for l iquid m e r c u r y -

9 
n i t r o g e n b a s e d on the da ta of K o e s t e l and K i r a ly . E a c h of the above c o r r e l a ­
t ions shows two d i s t i n c t c u r v e s w h e n R . , the l iquid f r a c t i o n , i s p lo t t ed a g a i n s t 

o 
the M a r t i n e l l i flow m o d u l i , X ^ and X^^ . 

vt t t 
2 

F r o m the flow m o d u l u s X i s def ined a s . 

X = (1) 

w h e " (^£), A P and [-7-f ) a r e the p r e s s u r e d r o p g r a d i e n t s for l iquid flowing 

only and gas flowing only, r e s p e c t i v e l y . F o r the v i s c o u s l i q u i d - t u r b u l e n t gas 

flow r e g i m e 

X 
vt C p , HI W 

, g ^ g g 

0. 5 

' g 

(2) 

w h e r e C i s a c o n s t a n t in the F a n n i n g f r i c t i on p r e s s u r e d r o p e x p r e s s i o n , p i s 

d e n s i t y , fj. is a b s o l u t e v i s c o s i t y , W i s we igh t flow r a t e , and N„ i s R e y n o l d s 

n u m b e r . The s u b s c r i p t s Jl and g r e f e r to the l iquid and gas p h a s e s , r e s p e c t i v e l y . 

A Reyno lds n u m b e r of 2000 o r m o r e , f o r each p h a s e flowing a l o n e , i n d i c a t e s 

t u r b u l e n t flow; l e s s t han 2000, v i s c o u s flow. 

* The t e r m s " g a s " and " v a p o r " a r e used s y n o n y m o u s l y . 
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S i m i l a r l y , for the t u r b u l e n t l i q u i d - t u r b u l e n t gas flow r e g i m e . 

0.5 / vO.l 

(3) 

R . , the l iquid f r a c t i o n , i s def ined a s the f r a c t i o n of p ipe c r o s s s e c t i o n occup ied 

by l iquid in c o - c u r r e n t l i q u i d - g a s flow. S i m i l a r l y , R i s the f r a c t i o n of p ipe 

c r o s s s e c t i o n occup ied by gas in c o - c u r r e n t l i q u i d - g a s flow, and i s equa l to 

1 - R« . T e r m s a r e def ined in the N o m e n c l a t u r e Sec t ion p 33 . 

1 1 1 2 
The w a t e r - a i r da t a of Hewi t t , e t a l . ' w e r e ob ta ined us ing v e r t i c a l u p -

flow in 1.25-in. d i a m e t e r t u b e . The a n n u l a r flow p a t t e r n p r e v a i l e d i n a l l t e s t s . 

In R e f e r e n c e 11 t h e l iquid h o l d - u p w a s ob ta ined by t r a p p i n g the l i q u i d - g a s m i x ­

t u r e in the t e s t s e c t i o n and w^eighing the l iquid; in R e f e r e n c e 12 the l iquid h o l d ­

up w a s ob ta ined by m e a s u r i n g the liqiiid f i lm t h i c k n e s s . It c a n be s e e n tha t two 

d i s t i n c t c u r v e s a r e i n d i c a t e d by the da t a wi th R . , the l iquid f r a c t i o n , be ing 

about one and o n e - h a l f t i m e s g r e a t e r for the vt flow r e g i m e than for the t t flow 

r e g i m e . The vt flow reginne c u r v e a l s o c o r r e s p o n d s to the L o c k h a r t - M a r t i n e l l i 

c u r v e w h i c h w a s a d v a n c e d a s be ing i ndependen t of flow r e g i m e , i . e . , the s ing le 

c u r v e for R . i s va l id for a l l c o m b i n a t i o n s of v i s c o u s and t u r b u l e n t flow for e a c h 

c o m p o n e n t . The L o c k h a r t - M a r t i n e l l i c u r v e i s b a s e d on da t a ob ta ined e a r l i e r by 

M a r t i n e l l i , e t a l . for a v a r i e t y of fliiid c o m b i n a t i o n s flowing in h o r i z o n t a l t u b e s . 

T h e s e d a t a i nc lude not only the a n n u l a r flow p a t t e r n , bu t a v a r i e t y ( see R e f e r ­

e n c e s 1 for d e s c r i p t i o n s ) of o t h e r c o m m o n l y o b s e r v e d flow p a t t e r n s . Thus the 

t o t a l effect of d i f f e ren t flow p a t t e r n s i s i m p l i c i t in the L o c k h a r t - M a r t i n e l l i 

c u r v e and the good a g r e e m e n t wi th the da t a of Hewi t t e t a l . , for a n n u l a r flow 

only , i n d i c a t e s t h a t s a t i s f a c t o r y p r e d i c t i o n of l iquid f r a c t i o n in i s o t h e r m a l , 

t w o - p h a s e flow i s p o s s i b l e wi thou t d e t a i l e d knowledge of flow p a t t e r n . An a p ­

p a r e n t l y s i m i l a r i n d e p e n d e n c e of t w o - p h a s e p r e s s u r e d r o p on knowledge of flow 
2 

p a t t e r n w a s d e m o n s t r a t e d by L o c k h a r t - M a r t i n e l l i . M o r e d e t a i l e d i n f o r m a t i o n 

on the in f luence of flow p a t t e r n on t w o - p h a s e p r e s s u r e d r o p and liqiiid f r a c t i o n 
13 

i s c o n t a i n e d in the s u r v e y m a d e by V o h r . 

The t w o - l o w e r c u r v e s in F i g u r e 1 r e p r e s e n t the b e s t fit c o r r e l a t i o n of l iqu id 
9* 

f r a c t i o n for m e r c u r y - n i t r o g e n b a s e d on the da t a of K i r a l y and K o e s t e l . 

* The t w o - p h a s e , t w o - c o m p o n e n t p r e s s u r e d r o p da ta of th i s e x p e r i m e n t w e r e 
p r e v i o u s l y c o r r e l a t e d by B a r o c z y and S a n d e r s . 
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The tes t section consisted of a 0.394-in. d iameter , horizontal glass tube. The 

liquid hold-up was obtained by trapping the liq\aid-gas mixture in the tes t s e c ­

tion, using solenoid valves , and then measur ing the liquid volume. It can be 

seen that approximately three t imes grea te r liquid fraction is indicated for the 

vt flow reg ime than for the tt flow reg ime . This is s imi la r to the pat tern shown 
11 12 by Hewitt, et al . * for w a t e r - a i r . Comparison shows that the exper imental 

liquid fraction for liquid mercu ry -n i t rogen is on the o rder of 10% of that p r e ­

dicted by the Lockhar t -Mar t ine l l i curve . As in the case of the liquid fraction 

data of, the liquid mercu ry -n i t rogen data encompass a var ie ty of flow pat terns 

(described in Reference 9) and inherent ly ref lect their effect. Since the tt 

region general ly applies to boiling p r o c e s s e s and pe rmi t s the calculation of an 

additional liquid fraction curve , as explained below, it was chosen for the c o r ­

relat ion. F igure 2 shows R . , the liquid fraction, as a function of X for the 
1112 9 

w a t e r - a i r data ' and the liquid mercu ry -n i t rogen data. The l iquid/gas 

density ra t io for w a t e r - a i r was 665; for liquid mercu ry -n i t rogen , 9350. It is 

proposed that the displacement in the curves is due to p r imar i l y l iquid/gas 

density ra t io , and secondari ly , l iquid/gas viscosi ty ra t io . A somewhat s imi la r 
3 

pa t tern was shown, for s team only, by Mart inel l i -Nelson in which saturat ion 
p r e s s u r e served as the p a r a m e t e r . Here it is proposed that liquid fraction can 
be predicted for any fluid combination when R^ is plotted against X with 

, , , ,u.^^ j - ^ ^ . . . . . . * . v^^.x>,v. , , ^ x . ^ , , a p p e a r i n X . . , i t a p p e a r s 
M ' / / \ P / V l J - / \ p / t t ' ^^ . g / / \ ^ g / V^g/ \^g/ 

possible to express R . in the form of a single equation. 

To es tabl ish an upper l imit curve , the liquid fraction for the two-component 
* 3 

c r i t i ca l condition was calculated in the manner suggested by Mart inel l i -Nelson. 

Using Equation 3 for the condition where the density and viscosi ty ra t ios a r e 

equal, and the re la t ionship that gas fraction, R , is equal to the rat io of gas to 

total weight flow, resul ted in the upper liquid fraction curve shown in Figure 2 

and Figure 1. 

While s t r ic t ly appropr ia te for a single component, it may be reasoned that it 
is also valid, as a l imiting case , for tw^o-component flow for the condition 
where the liquid and gas dens i t ies , and v i scos i t i es , a r e equal. 

NAA-SR-8171 
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Thus, th ree curves a r e shown in which the pa rame te r I I / I 1 has the 

values 1, 0.00323, and 0.00026, for the two-component c r i t i ca l condition, 

w a t e r - a i r , and liquid mercu ry -n i t rogen , respect ively . The shaded a r e a shows 

the range of the p resen t data while the c ross -ha tched a r ea shows the range of 
2 15 

the Lockhar t -Mar t ine l l i data. The liquid fraction data of Chisholm and Laird 

for w a t e r - a i r flow in a smooth tube general ly fall slightly below the c r o s s -

hatched a r ea . The liquid fraction data of Richardson for w a t e r - a i r flow in 

smooth rec tangular flow sections general ly fall into the c ross -ha tched a r ea . 

Extrapolat ion of the curves beyond the range covered by the p resen t data 

was achieved by assuming a slip rat io of one for ext remely high liqtiid/gas 

weight flow ra t ios (10,000 for w a t e r - a i r ; 100,000 for liquid mercu ry -n i t rogen) , 

and calculating the corresponding liquid fraction for each fluid combination. 

The Lockhar t -Mar t ine l l i curve was then used as a guide in establishing the 

shape of the curves between the l imit of the p resen t data, and the points ca l ­

culated above. Each of the three curves shows that as X i n c r e a s e s , R. in­

c r e a s e s rapidly, initially, and then at a slower r a t e . At very high values of 

X (corresponding to high l iquid/gas weight flow ra t ios ) , R. for all curves 

approaches one. 

A s imi la r general ized corre la t ion for the vt flow regime was not attempted 

as a family of two-component c r i t i ca l curves resxolts, with gas Reynolds num­

ber as a p a r a m e t e r , instead of the single curve for the tt flow reg ime . 

B. GENERALIZED LIQUID FRACTION 

By cross-p lo t t ing the curves in Figure 2, the general ized corre la t ion of 

F igure 3 was obtained showing R . as a function of I — j / ( ) and X 

For given value of X liquid fraction i n c r e a s e s quite rapidly up to I 

* See Section IV for derivat ion of slip ra t io express ion. 
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equa l to abou t 0 . 0 1 ; beyond th i s the r a t e d e c r e a s e s c o n s i d e r a b l y . As X i n ­

c r e a s e s , t he l iquid f r a c t i o n c u r v e s b e c o m e f l a t t e r for a l l v a l u e s of the p a r a m e -

•••(?.)7fe)-
It i s e m p h a s i z e d tha t e a c h of the c u r v e s shown in F i g u r e 3 i s b a s e d on only 

t h r e e p o i n t s , a s ob ta ined f r o m F i g u r e 2. The s h a p e s of the c u r v e s r e s u l t e d f r o m 

a p p r o p r i a t e f a i r i n g b e t w e e n the po in t s and , to c o v e r the r a n g e shown, add i t i ona l ly 

r e f l e c t e x t r a p o l a t i o n belo'w 

v a l u e s l e s s than 0 .00026, and X v a l u e s l e s s t han 0 .05. C o n f i r m a t i o n of the 

c o r r e l a t i o n wi l l r e q u i r e the a c c u m u l a t i o n of s u b s t a n t i a l a m o u n t s of t w o - p h a s e , 

s i n g l e - c o m p o n e n t l iqu id f r a c t i o n da t a . Unti l such t i m e , the c o r r e l a t i o n i s p r o ­

p o s e d for u s e •with l iqu id m e t a l s a s it is of a g e n e r a l i z e d f o r m and a f fo rds good 

a g r e e m e n t wi th a v a r i e t y of e x p e r i m e n t a l l iquid f r a c t i o n d a t a . 

F o r c o m p a r a t i v e p u r p o s e s the r e l a t i v e p o s i t i o n s of s o d i u m , p o t a s s i u m , 

r u b i d i u m , m e r c u r y , and w a t e r a r e shown a t v a r i o u s s a t u r a t i o n t e m p e r a t u r e s . 
17 

The a p p r o p r i a t e l iqu id m e t a l p r o p e r t i e s a r e f r o m W e a t h e r f o r d , et a l . It c an 

be s e e n tha t l iqu id f r a c t i o n for the l iquid m e t a l s g e n e r a l l y c o r r e s p o n d s to t ha t 

of low p r e s s u r e ( l e s s t han 100 p s i a ) s t e a m . F o r c o n v e n i e n c e , t he c o o r d i n a t e s 

of F i g u r e 3 a r e p lo t t ed in T a b l e I for both the g e n e r a l i z e d c o r r e l a t i o n and the 

l iquid m e t a l s . 
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TABLE I 

COORDINATES FOR GENERALIZED LIQUID FRACTION CORRELATION 

R. , Liquid Frac t ion 

/ \0-2 

0.00002 

0.0001 

0.0004 

0.001 

0.004 

0.01 

0.04 

0.10 

1.0 

^tt 

0.01 

0.0018 

0,0043 

0.0050 

0.0056 

0.0058 

0,0060 

0.04 

0.0022 

0.0066 

0.0165 

0.0210 

0.0250 

0.0268 

0.0280 

0.1 

0.0015 

0.0072 

0.0170 

0.0370 

0.0475 

0.0590 

0.0640 

0.0720 

0.2 

0.0012 

0.0054 

0.0180 

0.0345 

0.0650 

0.0840 

0.1050 

0.1170 

0.1400 

0.5 

0.009 

0.030 

0.066 

0.091 

0.134 

0.165 

0.215 

0.242 

0.320 

1 

0.068 

0.104 

0.142 

0.170 

0.222 

0.262 

0.330 

0.380 

0.500 

3 

0.17 

0.23 

0.28 

0.32 

0.39 

0.44 

0.53 

0.60 

0.75 

5 

0.22 

0.29 

0.35 

0.40 

0.48 

0.53 

0.63 

0.70 

0.85 

10 

0.30 

0.38 

0.45 

0.50 

0.58 

0.63 

0.72 

0.78 

0.90 

30 

0.47 

0.57 

0.67 

0.72 

0.80 

0.84 

0.90 

0.92 

0.94 

100 

0.71 

0.79 

0.85 

0.88 

0.92 

0.94 

0.96 

0.98 

0.994 

R , Liquid Fract ion 

Sodium 

1200°F 

1400 

1600 

1800 

2000 

0.0020 

0.0035 

0.0025 

0.0072 

0.0127 

0.0025 

0.0080 

0.0185 

0.0295 

0.0023 

0.0082 

0.0193 

0.0370 

0.0530 

0.016 

0.041 

0.069 

0.094 

0.117 

0.082 

0.116 

0.145 

0.174 

0.200 

0.192 

0.242 

0.285 

0.325 

0.360 

0.25 

0.31 

0.36 

0.40 

0.44 

0.33 

0.40 

0.46 

0.50 

0.55 

0.51 

0.60 

0.67 

0.73 

0.77 

0.75 

0.81 

0.86 

0.88 

0.90 



T A B L E I (Cont. ) 

COORDINATES F O R G E N E R A L I Z E D LIQUID F R A C T I O N CORRELATION 

INJ 

> 
I 

to 
I 
00 

P o t a s s i u m 

lOOO-F 

1200 

1400 

1600 

1800 

2000 

R u b i d i u m 

1000 

1200 

1400 

1600 

1800 

M e r c u r y 

600°F 

800 

1000 

1200 

1400 

0.01 

0.0020 

0 .0038 

0.0046 

0.0050 

0.0013 

0.0032 

0.0044 

0 .0048 

0.0025 

0.0045 

0.0050 

0.0054 

0.04 

0.0020 

0 .0075 

0.0140 

0.0181 

0.0205 

0.0050 

0.0117 

0 .0168 

0 .0198 

0.0011 

0.0090 

0 .0175 

0.0212 

0 .0235 

0.1 

0 .0014 

0 .0068 

0.0190 

0 .0318 

0.0410 

0 .0465 

0.0037 

0 .0138 

0.0272 

0 .0375 

0 .0445 

0.0043 

0.0220 

0 .0395 

0.0490 

0.0540 

^ i 

0.2 

0 .005 

0.017 

0.038 

0.057 

0.071 

0.082 

0.011 

0.029 

0.050 

0.066 

0.078 

0.012 

0.043 

0.069 

0.086 

0.097 

Liquid 

0.5 

0.028 

0 .065 

0.095 

0.120 

0.144 

0.162 

0.050 

0.084 

0.111 

0.135 

0.156 

0.05 

0.10 

0.14 

0.17 

0.19 

F r a c t i o n 

1 

0.102 

0.140 

0 .175 

0 .205 

0 .235 

0.260 

0.12 

0.16 

0.20 

0.22 

0 .25 

0.13 

0 .18 

0.23 

0.27 

0.30 

3 

0.22 

0 .28 

0.32 

0.37 

0.40 

0.44 

0 .25 

0 .31 

0.35 

0 .39 

0.42 

0.26 

0.33 

0.40 

0.45 

0.49 

5 

0.28 

0.35 

0.40 

0.45 

0.41 

0.53 

0.32 

0.39 

0.44 

0.48 

0.51 

0.33 

0.42 

0.49 

0.54 

0.58 

10 

0.37 

0.45 

0.51 

0.56 

0.60 

0.63 

0.42 

0.48 

0.54 

0.58 

0.62 

0.42 

0.52 

0.59 

0.64 

0.68 

30 

0.56 

0.66 

0.73 

0 .78 

0.81 

0.84 

0.62 

0.71 

0.76 

0.80 

0.83 

0.63 

0.74 

0.81 

0.85 

0.88 

100= Xtt 

0.79 

0.85 

0.88 

0.91 

0.92 

0.94 

0.83 

0.88 

0.90 

0.92 

0.94 

0.83 

0.89 

0.92 

0 .94 

0.96 



111. COMPARISON OF EXPERIMENTAL AND PREDICTED LIQUID FRACTION 

To tes t the validity of the general ized cor re la t ion , it was compared to the 
3 

Mar t ine l l i -Nelson cor re la t ion for s team; the s team void fraction data of Isbin 

et al . , Larson , M a r c h a t e r r e , and Egen et al . ; and the void fraction 
22 

data of Bergonzoli and Halfen, for Santowax R. 

F igure 4 shows that an agreement is general ly obtained between the 

Mart inel l i -Nelson cor re la t ion for s team and the presen t cor re la t ion with the 

g rea tes t difference occuring at a tmospher ic p r e s s u r e . The difference a r i s e s 

from the Mart ine l l i -Nelson assumption that the liquid fraction data of References 

1 and 2 for w a t e r - a i r ( l iquid/gas density ra t io about 600) would correspond to 

that of a tmospher ic p r e s s u r e s team (liquid/gas density ra t io of 1600). Since 

the p resen t cor re la t ion takes into account the proper l iquid/gas density and 

viscosi ty r a t i o s , sma l l e r liquid fraction is predicted by it than by the 

Mar t ine l l i -Nelson corre la t ion . 

Figure 5 shows the compar ison between exper imental void fraction data for 

s team, w^ithout heat addition, and the p resen t cor re la t ion . The data of Isbin, 

et al . at a tmospher ic p r e s s u r e , and Larson at 1000 psia , a r e shown to be 

in agreement with the cor re la t ion . Comparison of the cor re la t ion with the s team 
20 void fraction data of M a r c h a t e r r e , at 11 5 ps ia and 614 psia , is shown in F ig -

21 u res 6 and 7, and in F igure 8 for the data of Egen, et al. , at 2000 psia. 

These data were obtained in a boiling sys tem; here too, an agreement is 

indicated. 

22 

The void fraction data of Bergonzoli and Halfen, obtained by boiling 

Santowax R, an organic coolant, were compared to the cor re la t ion and the r e -

svlt is shown in Figure 9. Very good agreement is shown as the average a b ­

solute deviation, for th i r ty - seven t e s t s , is only about 7%. This is especial ly 

significant in that the p a r a m e t e r , — ) / I ) , for the Santowax R data was 

1 2 general ly about four t imes g rea te r than the data of Hewitt et al . * That i s , the 

Santowax R tes t conditions were much c loser to the c r i t i ca l point than the data 

used to develop the general ized cor re la t ion . The good agreement obtained b e ­

tween the cor re la t ion and the Santowax R data, and the 2000 psia s team data of 

NAA-SR-8171 
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Egen, et al . , lends some support to the co r r ec tnes s of the liquid fraction 

curves in the region where the p a r a m e t e r , I — j / i — I , approaches 1. 
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IV. APPLICATION OF CORRELATION TO BOILING MERCURY 

The use of m e r c u r y as the working fluid in nuclear space pow^er s y s t e m s , 

such as SNAP 2, makes for par t icu la r in te res t . In addition, the very high 

density of liquid m e r c u r y (approximately 780 Ib /cu ft) makes the predict ion of 

working fluid inventory in two-phase components , such as boi lers and condensers , 

of considerable impor tance . Thus the general ized corre la t ion was utilized to 

predic t the local liquid fraction, the length-average liquid fraction, the length-

average mixture density, slip ra t io , and the momentum p r e s s u r e drop mul t i ­

plier for boiling m e r c u r y at t empe ra tu r e s of 800 to 1400°F, and exit qualities 

of 0.1 to 1. 

The sys tem considered consis ts of a s t ra ight horizontal tube of uniform 

c r o s s section into w^hich the re en te rs liquid at sa turat ion conditions. The liquid 

and vapor content a r e in thermodynamic equil ibrium and the heat of vaporization 

is constant. All heat t ransfer to the tube r e su l t s in the formation of vapor and 

each phase, when flowing alone in the pipe, is in the turbulent condition (tt flow 

reg ime) . It i s assumed that essent ia l ly stat ic conditions exist at any point in 

the boiling length. This pe rmi t s the use of two-phase , two-component liquid 
3 

fraction data, as originally suggested by Mar t ine l l i -Nelson, for single compo­
nent flow in which a change of phase is occurr ing. The vapor flow ra te W , at a 
point z in the boiling length is 

•'o 

* Evidently the assumption of the tt flow reg ime existing everywhere in the 
boiling length is not valid at the all liquid entrance section and the vapor exit 
section for a quality of 1. However, the liquid fraction at these points is 
known to be one and ze ro , respect ive ly . In addition, under cer ta in conditions, 
the re may be sections where the turbulent l iquid-viscous gas flow regime (tv) 
may exist and other sect ions where the viscous l iquid-turbulent gas flow 
reg ime (vt) may exist . Although dependent on flow r a t e s , fluid p rope r t i e s , 
and sys tem geometry, the tv flow reg ime is most likely to occur in the init ial 
section of the boiling length while the vt flow reg ime is mos t likely to occur 
in la t te r portion of the boiling length. In boiling p r o c e s s e s , the tv and vt flow 
reg imes usually exist over smal l port ions of the boiling length and, although 
data for these flow reg imes is not included h e r e , the liquid fraction can be 
es t imated by interpolation between the known liquid fractions existing on ei ther 
side of these a r e a s . 
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where X. is the latent heat of vaporizat ion, (Q/A ) is the heat ilxxs. and is a 

function of z , and P is the wetted pe r ime te r . For the case of uniform heat 
w 

flux the vapor flow ra te is proport ional to the boiling length, or W = Kz . The 
o 

v a p o r we igh t flow r a t e a t the end of the bo i l ing s e c t i o n i s (W ) - KL = W_,x . 
& o 

C o m b i n i n g t h e s e e x p r e s s i o n s r e s u l t s in 

^g = ^T-o ( x ) ' (5) 

where W_, is the total flow r a t e , x is the exit quality, z is a point in the boiling 

section, and L is the boiling length. Since W, , the liquid flow r a t e , at any 

point is equal to W~ - W , the l iquid/vapor flow ra te ra t io can be expressed a s . 

W i 
W 

Substituting the above express ion into equation 3 r e su l t s in. 

(6) 

^ t t 
ô (X) 

(7) 

For any heat flux distr ibution other than the \iniform case descr ibed above, the 

same method applies as long as^rr— can be expressed as a fvmction of I-r ) • 
g 

Utilizing Table I, for m e r c u r y . F igure 10 was plotted showing R. as a 

function of X for saturat ion t e m p e r a t u r e s of 600, 800, 1000, 1200, and 1400°F. 

By choosing values of ( y ) from 0.001 to 1, and then using Equation 7, F igure 

10, and the appropr ia te physical p roper t i es of m e r c u r y for 800, 1000, 1200, 

and 1400°F, R. was obtained for exit qualities of 0 .1 , 0.3, 0.75, and 1. For 
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a g iven t e m p e r a t u r e , the v a p o r and l iquid d e n s i t i e s and v i s c o s i t i e s w e r e a s ­

s u m e d to be c o n s t a n t t h r o u g h the bo i l ing l eng th . 

F i g u r e 11 show^s l iquid f r a c t i o n a s a funct ion of the r e l a t i v e l o c a t i o n in t h e 

bo i l ing l eng th for ex i t q u a l i t i e s of 0 . 1 , 0 . 3 , 0 .75 , and 1, for bo i l ing t e m p e r a ­

t u r e s of 800 and 1400°F. The l iquid f r a c t i o n c u r v e s for 1000 and 1200°F l i e 

i n t e r m e d i a t e to t h o s e show^n in F i g u r e 11. At 800°F bo i l ing t e m p e r a t u r e the 

bu lk of the l iquid f r a c t i o n d i s t r i b u t i o n o c c u r s in the i n i t i a l p o r t i o n of the bo i l ing 

l eng th . T h i s i s e s p e c i a l l y ev iden t for an ex i t qua l i ty of 1 w^here about 90% of 

the t o t a l l iqu id f r a c t i o n i s c o n c e n t r a t e d in the f i r s t 25% of the bo i l ing l eng th . 

F o r l o w e r ex i t q u a l i t i e s t h i s t r e n d i s s t i l l in e v i d e n c e but i s l e s s p r o n o u n c e d . 

A s bo i l ing t e m p e r a t u r e i s i n c r e a s e d , l iqu id f r a c t i o n t e n d s to be m o r e u n i f o r m l y 

d i s t r i b u t e d wi th g r e a t e r l iquid f r a c t i o n ex tan t a t a l l po in t s in the boi l ing l eng th . 

The l iquid f r a c t i o n d i s t r i b u t i o n s for 800, 1000, 1200, and 1400°F w e r e 

g r a p h i c a l l y i n t e g r a t e d to ob ta in the l e n g t h - a v e r a g e l iquid f r a c t i o n for the e n t i r e 

bo i l ing s e c t i o n . F i g u r e 12 shows the l e n g t h - a v e r a g e l iquid f r a c t i o n a s a f u n c ­

t ion of ex i t qua l i ty and bo i l ing t e n n p e r a t u r e . The d a s h e d c u r v e s be low a qua l i ty 

of 0.1 a r e e x t r a p o l a t e d . F o r an ex i t qua l i ty of 0 .2 , R . i n c r e a s e s f r o m 0.096 

to 0.352 by i n c r e a s i n g the bo i l ing t e m p e r a t u r e f r o m 800 to 1400°F. F o r a 

bo i l ing t e m p e r a t u r e of 1000°F, R . i n c r e a s e s f r o m 0.06 to 0.27 w h e n the exi t 

qua l i ty d e c r e a s e s frona 1 to 0 . 1 . Tha t i s , a t en - fo ld r e d u c t i o n in ex i t qua l i ty 

r e s u l t s in only 4 .5 t i m e s a s g r e a t l e n g t h - a v e r a g e l iquid f r a c t i o n . 

* Whi le in m a n y c a s e s the bo i l ing p r e s s u r e d r o p m a y be a s u b s t a n t i a l p o r t i o n 
of the i n i t i a l s t a t i c p r e s s u r e , the a s s u m p t i o n of c o n s t a n t p r o p e r t i e s wi l l not 
p r o d u c e s ign i f i can t e r r o r in the p r e d i c t i o n of l iquid f r a c t i o n . Th i s i s due to 
the cond i t ion t h a t the bulk of the l iquid f r a c t i o n d i s t r i b u t i o n o c c u r s in the 
i n i t i a l p o r t i o n of the bo i l ing l eng th wh i l e the g r e a t e s t p o r t i o n of the bo i l ing 
p r e s s u r e d r o p o c c u r s in the l a t t e r p o r t i o n of the bo i l ing l eng th . Thus the 
g r e a t e s t effect on p r o p e r t y c h a n g e s (gas d e n s i t y , p r i m a r i l y ) o c c u r s in the 
low l iquid f r a c t i o n d i s t r i b u t i o n a r e a . Of c o u r s e , if the p r e s s u r e d i s t r i b u t i o n 
i s known, the a p p r o p r i a t e l iquid f r a c t i o n c u r v e s c a n be u s e d . 

** Note t h a t a l l the l iquid f r a c t i o n c u r v e s for ex i t qua l i ty l e s s t han 1 a r e m e r e l y 
e n l a r g e m e n t s of a p o r t i o n of the x = 1 c u r v e . T h a t i s , the l iquid f r a c t i o n 

a t the end of the bo i l ing s e c t i o n | y = 11 for an ex i t qua l i ty of 0 . 1 , i s the s a m e 

z 
a s the l iquid f r a c t i o n a t y = 0 . 1 , for an ex i t qua l i ty of 1. A s i m i l a r condi t ion 

ho lds for the s l i p r a t i o c u r v e s shown in F i g u r e 14. 
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The length-average nnixture density, p , is expressed as 
m 

Pm = ^ i P i + < l - ^ i ) P g ' («^ 

where R, is the length-average liquid fraction, p . and p a r e the densi t ies of 

the liquid and gas phases , respect ively . Using the length-average liquid f r a c ­

tion information of Figure 12, the length-average naixture density was ca lcu­

lated by means of equation 8; the res\ i l ts a r e shown in Figure 13. For an exit 

quality of 0.2, the curves show that p i nc r ea se s rap id ly ' with boiling t e m p e r ­

a ture going from 76 Ib /cu ft, at 800°F, to 272 Ib /cu ft at 1400°F. At 1000°F, 

p i nc r ea se s from 48 Ib /cu ft to 210 Ib /cu ft w^hen the exit quality dec r ea se s 

from 1 to 0 .1 . That i s , a ten-fold reduction in exit quality r e su l t s in only 4.4 

t imes as great length-average mixture density. This indicates that low-exi t -

quality boi le rs may offer advantages in weight reduction. 

Consider a uniform heat flux forced convection m e r c u r y boiler which is to 

operate at 1200°F. F r o m Figure 13, length-average mixture density, for an 

exit quality of 1, is 76 Ib /cu ft; for an exit quality of 0 .1 , it is 285 Ib/cu ft. If 

the average heat flux over the boiling length for the boiler with an exit quality 

of 1 is 10,000 BTU/hr ft , it nnay be assumed, because of nucleate boiling, that 

the average heat flux for the boiler with an exit qiiality of 0.1 will be about 
2 

100,000 BTU/hr ft . Fo r a given vapor weight flow r a t e , the low-exit-qual i ty 

boiler will thus r equ i re one-tenth the surface a r e a of the high-exi t-qual i ty 

boi ler . For equal tube size in each case , the requi red m e r c u r y inventory for 

( 28 5 1 \ 
-/ X TTT) , or 37.5% of that requi red by 

the high-exi t -qual i ty boi ler . An additional weight saving will be rea l ized b e ­

cause of the decreased tube length of the low^-exit-quality boi ler . Of course , 

the low-exi t-qual i ty boi ler r equ i re s a vapor-liqiiid separa to r , a r e t u r n l ine, 

and a rec i rcu la t ing pump; the w^eight of these components may largely negate 

the m e r c u r y inventory weight saving. In an actual ca se , a complete sys tem 

analysis is requi red for proper evaluation and conaparison of the tw ô sy s t ems . 

* For exit qualit ies l e s s than 0 .1 , the length-average mixture density approaches , 
and even exceeds , the density of commonly used tube m a t e r i a l s . 
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Figure 13 may also be used to determine the p r e s s u r e difference, due to mixture 

gravity head, for a ver t ica l boi ler . This is especial ly innportant for deternnining 

the driving p r e s s u r e in the case of a natural c i rculat ion boi ler , but is also inn­

portant in cor rec t ing boiling p r e s s u r e - d r o p readings in a forced circulat ion, 

ver t ica l boi ler . 

Utilizing the liquid fraction distr ibution computed previously (Figure 11) the 

slip ra t io was calculated for exit qualities of 0 .1 , 0,3, and 0.75, and 1 for t e m -

V 
pe ra tu res of 800, 1000, 1200, and 1400°F. The slip r a t io , ^ , is defined as 

l 

the ra t io of gas velocity to liquid velocity in two-phase flow .̂ The gas velocity 

is . 

W 
V = = (9^ 
^g p „ A ( l - R . ) ' ^^' 

w h e r e W i s the gas flow r a t e , p i s t he gas d e n s i t y , A i s the flow c r o s s sec ­

t i ona l a r e a , and R . i s the l iquid f r ac t ion . S i m i l a r l y , the l iquid ve loc i ty i s . 

w h e r e W. i s the l iquid flow r a t e , and p , i s the l iquid dens i t y . Using the above 

equa t ions the e x p r e s s i o n for s l i p r a t i o beconnes , 

V W p . R . 
- g - = g -̂  i _ , (11) 
^i ^ i P g ^ - ^ i ) * 

F i g u r e 14 shows s l i p r a t i o a s a funct ion of r e l a t i v e l oca t i on in the bo i l ing l eng th 

and ex i t qua l i ty , for bo i l ing t e m p e r a t u r e s of 800, 1000, 1200, and 1400°F. Sl ip 

r a t i o i n c r e a s e s v e r y r a p i d l y in the i n i t i a l p o r t i o n of the bo i l ing l eng th and t h e r e ­

a f t e r i n c r e a s e s a t a s l o w e r r a t e . At 800°F, i n c r e a s i n g ex i t qua l i ty fronn 0.1 to 

0.7 5 i n c r e a s e s the ex i t s l i p r a t i o f r o m 8 to 12. At h i g h e r bo i l ing t e m p e r a t u r e s 

the g e n e r a l t r e n d i s the s a m e excep t for a m o r e un i fo rm i n c r e a s e in s l i p r a t i o 

and for l o w e r s l i p r a t i o s e v e r y w h e r e . The l a t t e r i s the c o m b i n e d r e s u l t of two 
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oppos ing i n f l u e n c e s : As bo i l ing t e m p e r a t u r e i n c r e a s e s for a g iven ex i t qua l i ty . 

— d e c r e a s e s wh i l e -̂  
P 1 

R . V 
„ i n c r e a s e s ; t he ne t r e s u l t i s a d e c r e a s e in- i r^ . (See 
^ i ^ i 

E q u a t i o n 11.) 

The g e n e r a t i o n of v a p o r d u r i n g f o r c e d c i r c u l a t i o n bo i l ing p r o d u c e s a s u b ­

s t a n t i a l a c c e l e r a t i o n of the fluid s t r e ann . The c h a n g e of m o m e n t u m of the l iquid 

and gas s t r e a m s r e s u l t s in a p r e s s u r e d r o p wh ich i s in add i t i on to the f r i c t i o n 

p r e s s u r e d r o p . The monnen tum p r e s s u r e d r o p i s u s u a l l y a s u b s t a n t i a l p o r t i o n 

of the o v e r a l l bo i l ing p r e s s u r e d r o p excep t in the c a s e of h igh l e n g t h to d i a m e t e r 

r a t i o b o i l e r s w h i c h p r o d u c e d r y v a p o r . T h i s s e c t i o n d e s c r i b e s the m e t h o d by 

wh ich the m o m e n t u m p r e s s u r e d r o p , for bo i l ing m e r c u r y , nnay be de t e rnn ined . 

The p r e s s u r e d r o p r e s u l t i n g f r o m the change of m o m e n t u m of the fluid 
3 

s t r eann d u r i n g bo i l ing c a n be e x p r e s s e d a s . 

(AP) 
M 

1 
Ag 

W ^ ( l - x^)(V^) + W^(x^) (V ) - W^(V^ ) 
o ° o 

(12) 

w h e r e ( A P ) ^ i s t h e m o m e n t u m p r e s s u r e d r o p , W _ i s t h e t o t a l flow, x i s t he 

ex i t qua l i ty , A i s the p ipe flow c r o s s - s e c t i o n , and V i s ve loc i ty . The s u b s c r i p t s 

i and g r e f e r to the l iquid and gas p h a s e s , r e s p e c t i v e l y ; t he s u b s c r i p t s T and 

o r e f e r to to t a l and ex i t , r e s p e c t i v e l y . Subs t i tu t ion of E q u a t i o n 9 for (V ) , and 
^ o 

and E q u a t i o n 10 for (V. ) r e s u l t s in , 
o 

A P. M 
( l - - o ) ^ P i 

g (RJ 

X 

( R , ) 
(13) 

A P 
M 

(14) 

w h e r e r c o r r e s p o n d s to the t e r m s con ta ined in the p a r e n t h e s i s of Equa t ion 13. 
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Equation 13 accounts for the different liquid and gas velocit ies and is the 
3 

express ion proposed by Mart ine l l i -Nelson for boiling water . The nnultiplier r , 

shown in Figure 15 was obtained by using the exit liquid fraction calculated p r e ­

viously (See Figure 11 at z / L = 1), for various exit qualities and by substituting 

the appropr ia te values into Equation 13. F igure 15 shows r as a fxinction of 

nnercury boiling tennperature (800 to 1400°F) and exit quality (x = 0 . 1 to 1). 
3 ° 

Compar ison with the r values of Mart ine l l i -Nelson for s team show that the 

p resen t values a r e substantial ly l ess for identical values of p . / p . The p r i -

nnary reason for this is the much higher liquid density, p . , for m e r c u r y as 

connpared to wate r . 
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NOMENCLATURE 

2 
A = surface a r ea of pipe, ft 

2 
A = c ross sectional a rea of pipe, ft 

C = constant in friction factor equation = 0.046 (turbulent flow); = 16 

(viscous flow) 

D = hydraulic d iameter of pipe, ft 

8 2 

g = gravitat ional acce lera t ion = 4.18 x 10 f t /hr 

K = constant 

L = total length of boi ler , ft 

G = m a s s velocity, I b / h r - s q f t 

Nj^ = Reynolds number of gas based on pipe dianneter - G D/fx 

Np^ = Reynolds nunnber of liquid based on pipe dianneter = G D/ | J I . 

(AP/AL) = p r e s s u r e drop gradient due to gas flowing at r a t e W with a density 

p , Ib / sq ft-ft 

(AP/AL) - p r e s s u r e drop gradient due to liquid flowing at r a t e W. with a 

density p . , I b / sq ft-ft 

A P / A L = p r e s s u r e drop gradient , Ib / sq ft-ft 

AP = p r e s s u r e drop, I b / sq ft 

P = wetted perinneter , ft 
w ^ 

Q = heat t ransfe r r a t e , b tu /h r 

r = monnentunn p r e s s u r e drop mult ipl ier = — 
Pi 

(1 - ^o) , / P i \ ^o^ 

( ; 
o ° o 

R = fraction of pipe c r o s s section occupied by gas = 1 - R 
g 

R. = fraction of pipe c r o s s section occupied by liquid 

V = velocity, f t /hr 

W_ = total weight flow (including gas and liquid), Ib /hr 

W = gas flow ra t e , Ib /hr 

W. =: liquid flow r a t e , Ib /hr 
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X = nnixture quality = W /(W + W. ) 

/ w \0 -9 / \ 0 . 5 , \0 .1 
I^A /Pe\ /^i\ X,. = two-phase flow modulus = ( -r—- I ( —2. j [ — ) 

X = two-phase flow nnodulus 
S ^ i Pg ̂ ^ i \ 

v t ^ /TVT \ 0 . 4 V C W P , fJL 
/ IM \ \ g g l"i f^g M 

z = length along boi ler , ft 

p = density of gas , Ib /cu ft 

p . = density of liquid, Ib/cu ft 

[I = absolute viscosi ty of gas , lb / f t -hr 

\x. = absolute viscosi ty of liquid, Ib/ f t -hr 

X. = heat of vaporization, Btu/ lb 

SUBSCRIPTS 

g = gas 

i = liquid 

nn = mixture 

o = exit 

t = turbulent 

V = viscous 

T = total 

TP = two phase 

tt = turbulent l iquid-turbulent gas 

vt = viscous l iquid-turbulent gas 

SUPERSCRIPTS 

— = average value, from integrat ion over ent i re boiling leng 
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