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I. INTRODUCTION )

Since the invention of the alternating gradient principle and the
subsequent design of the Brookhaven and CERN proton-synchrotrons based on
this principle, there has been a rapid evolution of the mathematical and
physical techniques applicable to charged particle optics. In this report
a maxrix algebra formalism will be used to develop the essential principles
gqverning the design of charged particle beam transport systems, with a
particular emphasis on the-design of high energy magnetic spectrometers.

A notation introduced by John Streibl has been found to be useful in con-
veyling the essential physical principles dictating the design of such
beam transport systems. In particular to first order, the momentum disper-
sion,the momentum resolution, the particie path length, and the necessary
and’ s;fficient conditions for zero dispersion, achromaticity and iso-
chronicity may all be expressed as simple integrals of particular first-
order trajectories (matrix elements) characterizing a system.

This formulation provides direct physical insight into the design of
beam transport systems and charged particle spectrometers. An intuitive
grasp of the mechanisﬁ of second-ofder aberrations also results ffom this
formalism; for ekample, the effect of magnetic symmetry on the minimiz-

ation or elimination of second-order aberrations is immediately apparent.

The équaxioﬁs of motion will be derived and then the matrix formalism
introduced, developed and evolved into useful theorems. It is hoped that
the information supplied will provide the reader with the necessary tools
whereby he can design any bean transport-system or spectrometer suited to

his particular needs.



The theory has been developed to second order in a Taylor expansion [
about a central trajectory, characterizing fhe syétem. This seems to be
adequate for most high energy physics applications. For studying details
beyond second order we have foﬁnd computer ray tracing programs to Be the
best technique for verification of matrix calculations, and aé a means for
fu;ther refinement of the opﬁics if needed.

In the design of actual systems for high energy beam transport sppli-
cations it has proved convénient to express the results Yia a multipole
expansion sbout a central frajectory. In this expansion, the constant
term proportional to the field strength at the central trajectory is the
dipole term. The term proportional to the first derivative of the field
'(with respect to the transverse dimensions) about the central trajectory
is a quadrupole term and the second derivative with respect to the trans- ~
verse dimensions is a sextupole term, etc. -

A considerable design simplifigation results at high energies if tﬁe
dipole, quadrupole and sextupole functions are physically separated such
that cross product terms among them do not appear, aad if the fringing
field effects are small compared to the contributions of the multipole
elements comprising the system. At the risk of over-simplification, the
basic function of the multipole elemepts may be identifieq in the following
way: The purpose of the dipole element(s) is to bend the central trajectory
of the system and disperse the beam — that is, it is the means of provid-
ing the first-order momentum dispersion for the system. @he quadrupol§ f

element(s) generate the first-order imaging. The sextupole terms couple

&



with the second-order aberrations; and a sextupole element introduced
into the system ié é mechanism for minimizing or eliminating a particular
second-order aberration that may have been generafed by dipole or qﬁadru-
pole elementé.

Quadrupole elements may be introduced in any one of three character-
istic forms: (1) via an actual physical quadrupole consisting of four
poles such that a first field derivative exists in the fieid expansion
about the central trajectory; (2) via a rotated input or output face of
a bending magnet; and (3) via a transverse field gradient in the dipole
elements of the system. Clearly any one of these three fundamental mechan-
isms may be uséd as a means of achievihg first-order imaging in a system.
Of course dipole elements will tend to image in the radial bending plane
independent of whether a transverse field derivative does or dées not
exist in the system, but imaging perpendicular to the plane of bend is
not possible without the introduction of a first-field derivative.

In addition to their fundamental purpose, dipoles and quadrupoles
will also introduce higher-order aberrations. If these aberrations are
second order, they may be eliminated or at least modified by the intro-
duction of sextupole elements at appropriate locations.

In regions of zero dispersion, a sextupole will couple ﬁith and
modify only geometric aberrations. Howéver, in a region where momentum
dispersion is present, sextupoles will also cbuple with and modify chro-
matic aberrations.

Similar to the quadfupole, a sextupole element may be generated in one

of several ways. First by incorporating an actual sextupole — that is,



a six-pole magnet -— into the system. Howeyér, any mechanism which intro-
duces a second derivative of the field with respect to the transverse di-
mensions is in effect introducing a sextupole component. Thus & second-
order curved surface on the entrance or exit face of a bending magnet or
a second-order transverse curvature on the pole surfaces of a bending
magnet is also g sextupole component.
As a first illustration of systems possessing dipole, quadrupole and

sextupole elements, consider the n = 1/2 double-focusing spectrometer
which is widely used for low and medium energy physics applications. Clearly
there is a dipolé element resulting from the presence of a magnetic field
component Along the centrél trajectory of the spectromeﬁer. A distributed
quadrupole element exists as a consequence of the An = 1/2 field gradient. - -
In this particular case, since the transverse imaging forces are propor-
tional to \/E and the radial imaging forces are proportional to Jifj_;;
the restoring forces are equal in both planes, hence the reason for the
"double focusing" properties. In addition to the first derivative of the
field n = -(ro/Bc)(aB/ar), there aré usually second- and higher-order
transverse'field derivatives present. The second derivative of the field
B = %(ri/Bo)(azB/ar2) introduces a distributed sextupole along the entire
length of the spectrometer. Thus to second-order a typical n = 1/2 spec-
trometer consists of a single dipole with a distributed quadrupole and
sextupole superimposed along the entire length of the dipole element.
Higher-order multipoles may also be present, but will be ignored in this
discussion. . i

In the precediﬁg example the dipole, quadrupole and sextupole functions

are integrated in the same magnet. However, in many high

-4 -
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energy physics applications it is often more economical to use separate
magnetic elements for each of the multipole functions. As additional ex-
amples, consider the SLAC spectrometers. These instruments provide examples
of solutions which combine the multipole functions into a single magnet as
well as solutions using separate multipole elements. Three spectrometers
have been designed: one for a maximum energy of 1.6 GeV/b»to study large
backward angle scattering processes; a second for 8 GeV/b to study inter-
mediate forward angle production processes, and finally‘a 20-GeV/E spec-
trometer for small forward angle production. All of these instruments are
to be used in conjunction with primary eiectron and gamma-ray energies in
the range of 10-20 GeV/c.

The l.6-GeV/b instrument is a single magnet, bending the central tra-

Jectory a total of 900, thus constituting the dipole contribution to the

~optics of the system. Two "quadrupole" elements are present in the magnet;i.e.,

the input and output pole faces of the magnet are rotated so as to provide
transverse focusing and the 900 bend provides radial focusing via the
‘/1—:—5_ factor characteriétic of any dipole magnet. The net optical result.
is pqintFto—point imagipg in the plane of bend and parallel-to-point imag-
ing in the plane transvérse to the plane of bend. The solid angle an@
resolution requirements~of the l°6-GeV/b spectrometer are such that three
sextupole components are needed to acheive the required performance. In
this application the sextupoles are generated by machiniﬁg an appropriate
transverse second-order curvature on the magnet pole face ét three differ-
ent locations along the 900 tend of the system. In summary, the 1.6-GeV/c
spectrometer consists of one dipole, bending a total of 900, two quadru-~
pole elements and a sextupole triplet with the quadrupole and sextupole
strengths chosen to provide the first- and second-order properties de-

manded:of the system.
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Optically, the 8-GeV/b spectrometer is relatively simple. It consists
of two dipoles, each bending 150 making a total of a 30o bend, and three
quadrupoles (two preceding and one following the dipole elements) to
provide point-to-point imaging in the plane of bend and parallel-to-point
imaging in the plane transverse to the bending plane. The éolid angle and
resolution requirements of the instrument are sufficiently modest that no
sextupole components are needed. The penalty paid for not é.dding sextu-
pole components is that the focal plane angle with respect to the optic
axis at the end of the system is a relatively sﬁall angle (13.70). With
the addition of one sextupole element near the end of the system, fhe
focal plane could have been rotated to a much larger anéle. However, the
13.7O angle was acceptable for the focal plane counter array and
it was ultimately decided to omit the additiohal.sextupole element.

The 20-GeV/b spectrometer is a more complex design. The increased
momentum requires an ;/lBodl twi;e that of the 8-GeV/c spgctrometer. The
final instrument is composed of qur dipole elements (bending magnets), two
bending\in one sense and the other two bending in the opposite sense, so
the beam emanating from the iﬁstrument is parallel to the incident pri-
mary particles. The first-order imaging is achieved via fouf quadrupoles.
The chromatic aberrations generafed by the quadrupoles in fhis system are
more serious than in the 8fGeV/b case because of an intermediate image
required at the midpoint of the system. As a result, the focal plane angle
with respect to the central trajectory would have been in the range of
2-4 degrees. As a consequence, sextupoles were introduced in order to ro-
tate the focal plane to a more satisfactory angle for the counter array.
A finel compromioc placcd thc focal planc anglc at h50 with rcapcet to

-7 -
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B=BENDING MAGNETS
Q=QUADRUPOLE MAGNETS

S=SEXTUPOLE MAGNETS

FIG. 3--20 GeV/c SPECTROMETER 748A2



the optic .axis «of the .gystem via.ﬁhe:introdpction of'whree~sextupoles.

A
Thus the 20-geV/c spectrometer consists of four»dipoles, with an inter-
medisate chSSHover.fdllowinglfﬁe first two}&ipdles;;a quadrupole triplet )
to achieve‘first-order:imaging'and-finally‘é sextnpolg,triplet to compen;
sate for the;chromatic‘aberratiops introduced”by the ‘quadrupoles. Optically,
the 20-GeV/c spectrometer is Mery.simiLar~to the 1.6-GeV/c :spectrometer
and yet physically it is ma&icaily different because of the method .of
introducing the variéus multipole-components,
Having provided .some :representative .examples of spectrometer design,
'We;nOWﬂwish'to'introduce.ana devélop the "theoretical tools for creating
other designs.
?
)

- 10 -



II. A GENERAL FIRST- AND SECOND-ORDER THECRY OF BEAM TRANSPORT OPTICS

The fundamental objective is to study the trajectories described by
charged particles in a static magnetic field. To maintain the desired
generaiity only oﬁe major restriction will be imposed on the field con-
figuration: Relative to a‘plane that will be designated as the magnetic
midplane, the magnetic scélar potential ¢ shall be an odd function in the
transverse coordinate y (the direction perpendicular to the midplane),
ice., O(x,y,t) = - o(x,-y,t). This restriction greatly simplifies the
calculations; and from experience in designing beam transport systems, it
appears that for most applications there is little, if any, advantage to
be gained from a more complicated field pattern. The trajectories will be
described by means of a Taylor's expansion about a particular trajectory
(which iies entirely within the magnetic midplane) designated henceforth
as the central trajectory. Referring to Fig. 4, the coordinate t is the
arc length measured along the central trajectory; and x,y, and t form a
right-handed curvilinear coordinate system. The results will be velid for
describing trajectories lying close to and making small angles with the
central trajectory. |

The basic steps in formulating the solution to the problem are as

follows:

1) A general vector differential equation is derived describing the
trajectory of a charged particle in an arbitrary static magnetic field
which possesses "midplane symmetry."

2) A Taylor's series solution about the central trajectory is then
assumed; this is substituted into the general differential equation and

terms to second-order in the initial conditions are retained.

- 11 -
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3) The first-order coefficients of the Taylor's expansion (for mono-
energetic rays) satisfy homogeneous second-order differential equations
characteristic of simple harmonic oscillator theory; and the first-order
dispersion and the second-order coefficients of the Taylor's series sat-
isfy second-order differential equations having "driving terms."

4) The first-order dispersion term and the second-order coefficients

are then evaluated via a Green's function integral containing the driving

function nf the particulér'coefficient being evaluated and the character-
istic solutions of the homogenequs equations.
In other words, the basic mathematical solution for beam transport
optics is similar to the theory of forced vibrations or to the theory of
the classical harmonic oscillator with driving terms.
It is useful to express the second-order results in terms of the first-
order coefficients of the Taylor's expansion. These first-order coeffi-
cients have a one-to-one correspondence with the following five charactér-
istic first-order trajectories (matrix elements) of the system (identifiéd
by their initial conditions at t = Q); where prime.denotes the derivatiﬁe
with respect to t:
1) The unit sine-like function sx(t)‘ in the plane of bend
(the magnetic nidpléne) where s (0) =0 ; s!(0) =1

2) The unit cosine-likelfunction cx(t) in the plane of bend where
c (0) =1; c!(0) = 0

3) The dispersion function dx(t) in the piane of bend where

dx(o) =0 ; d;(o) =0

- 13 -
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4) The unit sine-like function sy(t) in the non-bend plane where
s =0 ; s! =1
y(g) 03 y(o) |
5) The unit cosine-like function cy(t) in the non-bend plane where

cy(O) =1 ; c&(O) =0

When the transverse position of an arbitrary trajectory at position t is
written as a first-order Taylor's expansion in terms of its initial con-
ditions, the above five quantities are just the coefficients appearing in

the expansion for the transverse coordinates x and y as follows:

x(t)

%, ¢ 5,0 % s o) ()

and

¥(t) = cy(t) y, * sy(t) !

where Xo and. yo are the initial transverse coordinates and xé and

y! are the initial angles (in the paraxial approximation) the arbitrary

JAN . .
ray makes with respect to the central trajectory. 52 is the fractional
o]

momentum deviation of the ray from the central trajectorye. The prime (')

denotes total derivative, along the trajectory, with respect to E.'
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THE VECTOR DIFFERENTIAL EQUATION OF MOTION

We begin with the usual vector relativistic equation of motion for
a. charged particle in a static magnetic field equating the time rate of

change of the momentum to the Lorentz force:
4 ,
P =e(Vx B)

and .imnediately transform this equéﬁion to one in which time.has been ;4
-éliminatedvaé a variable and we are left only with spatiai cdordinates.
The curvilinear-coofdinate system used is shown in Fig.l4 . DNote that
the Qariable t is not time but is the arc distance measured along the
central trajectory. With a}little algebra, the equation .ol wmoulluu is
read®ly transformed to the vector .forms shown below.

Let e ©be the charge of the particle, V its speed, P its’
momentum magnitude, ‘2. its position vector, and T the,diéténce tra-
versed. The unit tangent vector of the trajectory is ‘qudT; "Thus, the
vélocity;and meomentum of the particle are, respectively, QQE/HE)V and

(QEATP)P. The vector ‘equation of motien then beccmes:

or

PE +a-ﬂ? (a—T) = e (d_x§ P

where B 1is the magnetic induction. Then, since the derivative of a
unit vector is perpendicular to the unit wvector, (d%i/dTa)'iS'perpen-

dicular to .dE/dT . It follows that dP/dT = O; that is, P is'a

- 20 -
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constant of the motion as expected from the fact that the magnetic force

is always perpendicular to the velocity in a static magnetic field.

( xg). (1)

THE COORDINATE SYSTEM

The final result is:

eI

ar

oo
e

The general right-handed curvilinear coordinate system (x, v, t)
used is illustrated in Fig. 4. A point 0 on the central trajectory
is designated the origin. The direction of motion of particles on the
central trajectory is designated the positive direction of the coordinate

; .

t + A point A on the central trajectory is specified by the arc
length t measured along that curve from the origin O +to point A.
The two sides of‘the magnetic symmetry-plane are designated the positive
and negative sides by the sign of the coordinate y . To specify an
érbitrary point B which lies in the symmetry-plane, we construct a
line segment from that point to the central trajectory (which also lies
in the symmetry-plane) intersecting the latter perpendicularly at A ;
the point A provides one coordinate t ; the second coordinate x is
the length of the line segment BA, combined with a sigh (+) or (-)
according as an observer, on the positive side of the symmetry-plane,
facing in the positive direction of the central trajectory, finds the ’
point on the left or right side. In other words, x, y and t form a
right-handed curvilinear coordinate system. To specify a point C which
lies off the symmetry-plane, we construct a line segment from the point

to the plane, interscebing the latter perpendicularly at B ; then

- 21 -



B provides the two coordinates, t‘ and x ; the third coordinate y

is the length of the line segment CB.

A

We now define three mutually perpendicular unit vectors (%X, y, €).

A~

t 1s tangent to the central trajectory and directed in the positive
t-direction at the point A corresponding to the coordinate t ; x

i1s perpendicular to the principal trajectory at the same point, parallel
to the symmetry-plane, and directed in the positive x-direction. &

is perpendicular to the symmetry-plane, and directed away from that plane
on its positive side. The unit vectors (;; ;, %) constitute a right-

handed system and satisfy the relations

X=yXt
" A &
y=1tXx (2)
t=xXy

The coordinate +t 1is the primary independent variable, and we shall
use the prime to indicate the operation d/dt. The unit vectors depend

only on the coordinate t, and from differential vector calculus, we may

write
X' = ht
y' =0 (3)
o= - nx
where h(t) = %: ig the curvature of the central trajectory at point
¢

A defined as positive as shown in Fig. k.
The equation of motion may now be rewritten in terms of the curvi-
linear coordinates defined above. To facilitate this, it is convenient

to express d:T/d:T and deg/ﬁfre in the follow;ing forms:

- 922 -



®T 1 d 3')
ar® 7' 4t (T'
or
azr 1 T d
(Tc)z ™ = "I.': _ § oo - (Tl)2
ar? (T1)2 at

The equation of motion now takes the form

™" . i EL' i (T')Z _& T (TI X B) (4)
- 2 ()2 gt P e -

In this coordinate system, the differential line element is given by:

dT = %dx + yay + (L+hx)tdt

ey,

and

(ar)2 = a7+ aT = & + dy® + (1l+hx)® at?

By differentiation of these equations with respect to t, it follows that:

T2 = x'2 ¢+ y'2 4 (1+hx)®

(T')2 = x'x" + y'y" + (1+hx){(hx'+h'x)

N
gl

b3

N ra) N
= xx' + yy' + (L+hx) t
and ‘

"= ="+ X'x! o+ I+ Pyt o+ (L+hx)Er o+ E(nx'+h'x)
Use of the differential vector relations of Eq. (3), reduces the expres-
sion for T" +to
| T T" = %" - h(1hx)l+ yy" + E[enx + hix)
The vector equation of motion may now be separated into its component

parts; the result is:

- 23 -
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X

(7*)®

{[xg - B - K Loyt <1+h>s><h5<'+h'x>]}

-~ .
# 3Ly - =
(T*)

[x'x" + y'y" + (l+hx)(hx'+h'x)]}
(5)

+ & {(2hx'+h"x) - %—l—*%)— [x'x" + v'y" + (1+hx)(hx'+h'x)j}
. o

€ 1 2 = & m {A' 1 _ Dr(: _ ot
5 T‘(EL“ x E) 5 T xly B, (l+h.x)By] + y[(1+hx)BX P Bt]

ct>

+ [x'By - y'BX]}. .

Note that in this form, no approximations have been made; the

equation of motion is still wvalid to all orders in the variables x and

y and their derivatives.

If now we retain only terms through second order in x and Yy and

their derivatives and note that (T')2 = 1+hX + «es, the x and y com-

ponents of the equation of motion become

x" - n(1+hx) - x'(hx'+n'x) = 3 T [y'B, - (l+hx)By]

(6)
y"' - y'(hx'+h'x) = % T'[(l+hX)Bx - X'Bt]

The equation of motion of the central orbit is readily obtained by
setting x and y and their derivatives equal to zero. We thus obtain:

P

_ & = _9
h = P By(o,o,t) or Bp " (7)

This result will be useful for simplifying the final equations of motion.

PO is the momentum of a particle on the central trajectory. Note that

this equation establishes the sign convention between h, e, and By .
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EXPANDED FORM OF A MAGNETIC FIELD HAVING MEDIAN PLANE SYMMETRY

We now evolve the field camponents of a static magnetic field
possessing median or midplane symmetry. We define median plane symmetry
as follows: Relative to the plane containing the central trajectory,
the magnetic scalar potential' ¢ 1is an odd function in y ; i.e.,
o(x,y,t) = - o(x, ;-y,t). Stated in terms of the magnetic field com-

ponents B

- By and Bt’ this is equivalent to saying that:

Bx(x:y’t) = - BX(X: —y,‘t)

B (x,v,t B (x,~-v,t
y.( 2 Y ) y( 2=y )

and
Bt(x,y,t) = - Bt(x:'Y:t)

It follows immediately that on the midplane Bx = Bt = 0 and only By
remains non-zero; in other words, on the midplanc Ji is always nqrmal

to the plane. As such, any trajectory initially lying in the midplane

will remain in the midplane throughout the system.

The expanded form of abmagnetic field with median Plane symmetry has
been worked out by many people; however, a convenient and comprehensible
reference is not always available. L. C. Teng2 has provided us with such
a reference which is reproduced essentially in its original form in the
following paragraphs. ,

For the magnetic field in vaéuum, the field may be expressed in.
terms of a scalar potential ¢ by JE = ;Z ¢.* The scalar potential will

be expanded in the curvilinear coordinates about the central trajectory

lying in the median plane y = O. The curvilinear coordinates have been

* B
For convenience, we omit the minus sign since we are restricting

the problem to static magnetic fields.
- 25 -
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. defined in Pig. 1 where x 1is the outward normal distance in the median
plane away from the central trajectory, y is the perpendicular distance
from the median plane, t is the distance along the central trajectory,

and h ='h(f) is the curvature of the central trajectory. As stated
previously, these coordinates (x, y, and t) form a right-handed orthogonal

curvilinear coordinate system.

Since the existenée of the median plane requires that ¢ be an odd functio

of y, i.e., ¢(x,y,t) = - ¢(x,-y,t); the most general expanded form of ¢ may

be expressed as follows:

%2 3
= A. + A - + A - + oo o0
CP(X,y’,t) (A + 11X 12 2° 13 3% y
2 3 :
X
A A A ~T uou\ L + eee 8
* ( s0 T Pl T EH (8)
[+9] [+ o]
— n am+1
=) ) Penayn s
am+1,n n! (2m+1)!
m=0 n=o
where the coefficients A are functions of +t.
2m+1, 1

In this coordinate system, the differential line element 4T 1is

given by

aT® = ax2® + dy® + (1+hx)? (at)2 (9)

and the lLaplace equation has the form

19 op! % . 1 o r 1 99]_
VEp = (T+x) 3x [(l+hx) EE?EJ + - * ) 3¢ Lm&] =0 (10)

Substitution of (8)into(10) gives the following recursion formula for

the coefficients:
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-A
am+3,n

1
2m+1,n

4+ (3n+1)hA

+ 3nhA

1

2m+1,0~1

am+1,n+1

- nh'A!?

+ n(3n-1)n3A

Zm+i,n

+ 3n(n-1)n%3A

2111+3, n-1

where prime means It

+
Sam+1,n-1

A
2m+1,n+2

+ n(n-1)%n>A

o3
m+3,n-2 + n(n 1)(n-2)h~ A

am+1,n-1

2m+3,n-

(11)

x.

L s and where it is understood that all coefficients

A with one or more negative subscripts are zero. This recursion formula

expresses all the coefficients in terms of the midplane tield By(x,o,t);

where 3B
Al = (———X> . = functions of t. -
s S
x .

X=0

y=o
Since ¢ 1is an odd function of y , on the median plane we have
By = Bt = 0. The normal (in x direction) derivatives of“BY on the

reference curve defines

.—)
magnetic field B over the whole space.

are expressed in terms of ¢

o0
AR AN

m=0

iwle

n=o

i1

1 %9 1
t 1+hx) ot  (1+hx)

explicitly by B = N or

n _a2m+l
X

+1,n+1 nt (2m+l)?

& 2
em)!

Zm+1,n Nt

m=0 n=Q
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E._ y2m+:.

By over the entire median plane, hence the

The components of the field

b (amI)?

(12)

(13)



¢
~%

where By 1is not expressed in a pure power expansion form. This form

can be obtained straightforwardly by expandipg ljhx in a power series
of hx and multiplying out the two series; however, there does not seem
to be any advantage gained over the form given in Eq.(lB).

The coefficients up to the 6th degree terms in x and y are given

explicitly below from Eq. (11)

A =-A" -A -nhA

30 10 12 11
A = -A" 4+ 2pA" +h'A' - A -hA + h3

31 11 lQ 10 13 12 11
A =-A" + L4nA" 4+ 2n'A' - 6n®PA" - 6hh'A' - A -hA  +2n°A - 2n7A

32 12 11 11 10 10 14 13 12 1
A = - A" 4+ 6hA" + 3n'A' - 18n2A" - 18hh'A' 4+ 24KPA" 4+ 36n2h'A!

33 13 12 12 11 11 10 10

-A -hA +3n%A - 6h°A + 6h*A (14)
15 14 13 12 11

A =A"" 4 2a" - 2nA" +h"A  + Un®A" 4+ 5hn'A' + A+ 2hA

50 10 12 11 11 10 10 14 13

- h® + hA
12 11

A — AIHI - )-I-hA"" - 6h|A| [ . )'I'h"A" - hi t 'Ai + 2A" - 6hA" _ 2h,A|

51 11 10 10 10 10 © 13 12 12

+h"A  + 100%A" + Thh'A' - 4hh"A - 3h'3A -~ 16h°A"
12 1l 1l 11 : 11 10

20h®h'A' + A  + 2hA - 3n3A h3 - 3nt
9 10 15 ’ 14 3 13 * 3 A12 3h All (15)

’

In the special case when the field has cylindrical symmetry about §,

= a constant for the reference

gl o

we can choose a circle with radius po =

curve., The coefficients A oL 1 in Eq. (8) and the curvature h of the
2174y \
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reference curve are then all independent of t. Egs. (14) and (15) are

greatly simplified by putting all terms with primed quantities equal to

ZEYXO.

FIELD EXPANSION TO SECOND-ORDER ONLY

If the field expansion is terminated with the second order terms,
the results may be considerably simplified. For this case, the scalar

potential ¢ and the field 2 =Y ¢ become;

3
! + oo

o]

w

(v v +) = (A \ 1 2
olx,y;t) (Aid + Al.lx + 51 Alax + oeed) ¥+ (ABO, + oees)

anBy
A:Ln = a'n = functions of t only
X
X=0
y=0
and
A =-[A" +nA +A ]
30 10 11 12

where prime means the total derivetive with respect to t. Then

B=Y® from which

[V

' d
Bx(x,y,t) = g(}lz— = Auy + Alaxy + oeee

IS _ - 1 2 1 2 6
5% = Alo +Allx + Y Alax + 5T Asoy + e (16)

By(x)YSt)
B.(x,¥,%t) = L %E=Z l"y[A'y*“A'.Xy*']
ARIREAZ (I+hx) Ot 1+hx 10 11 St

By inspection it is evident that Ex,By and Bt are all expressed in

terms of Alo’ 1-\.':Ll and A - and their derivatives with respect to t.
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Consider then By on the midplane only

1

- 1 2
By(x,o,t) =A _*A x4+ =7 Alzx Foeee
dipole gquadrupole sextupole ete (17)
) 1 %8
Vx=o x X=o * %% |x=o
y=o . y=o

The successive derivatives identify the terms as being dipole,
quadrupole, sextupole, octupole, etc., in the expansion of the field.
To eliminate the necessity of continually writing these derivatives, it
is useful to express the midpiane field in fterms of dimensionless quan-

tities n(t), B(t), etc., or

By(x,o,t) = By(o,o,t) [1 - nhx + %% + yh%%> + ... ) (18)

where as before h(t) = l/p0 and n,B and 7y are functions of t.

Direct comparison of Egs. (17) and (18) yields

1 6By>] 1 <623&>~
n=-f—1{(—L and B = — (19)
hB <8x |x=c 21h2By =2

X=0
J dy=0 Cdy=o .

We now make use of Eq. (7), the equation of motion of the central

trajectory;

hP_
B (0,0,t) = — .,
y

e

Combining Eqs. (7) and (19), the coefficients of the field expansions



become

3B ‘ P
A = = -ph®( —
1 3% |x=o e /)
y=0
2 .
N 1 ) B, o EE
ST A = T T = Bh
2¢ a2 2 dx® Ix=o0 e
' y= (20)

H?.
(6]
il
jm
——
1 d
‘® 1O
S

>—
1

v' 1 1.2 PO
-[onhh' + n' n ](T—) .

e

To second order the expansions for the magnetic field components

may now be expressed in the form:

P
B (x,7,%) = = [-nn®y + 2B’y + ...]
Po 1
B (x,7,t) = = [h-ohc+ B0%%% - 5 (8" - nb® + 2607)y" + ... ]
) i e . : . .
1:’O 1 1.2 ' I.
B, (x,y,t) = == [b'y - (0’0" + 20hh" + bh')xy + ...] (21)

where Po is the momentum of the central trajectory.



IDENTIFICATION OF n AND B WITH PURE
QUADRUPOLE AND SEXTUPOLE FIELDS

The scalar potential of a pure quadrupole field in cylindrical and
in rectangular coordinates is given by:

B r° B xy
. 0 .
sin 20 = (22a)

2a a

where Bo is the field at the pole, a 1is the radius of the gquadrupole
aperture and r and & are the cylindrical coordinates, such that

x =rcos @ and y =r sin & From B %XCP , 1t follows that

Boy Box
B = — and B = —— (22v)
X Yy .
a a

3B B P
_J =2 (2

ox [x=0 a
y=0

we define a quantity ki as follows:

BB e

Similarly for a pure sextupole field,

B r° B
¢ = 2 sin 30 = -2 [3&Fy - y7]
3a° 3a2
(k)
op 2B xy B
B, = — = —2 and B = — (& - y?)
X ox a~ Y g2
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where Bo is the field at the pole and a is the radius of the sextu-

pole aperture.

Using the third of Egs. (20) and (2L)

we define a quantity ki as follows:
B e ) B 1) ‘ A
2 =pn® = () (—)=(=2 -—/ (25)
S a’ PO . \a Bp . o S

These definitions, Egs. (23) and (25), are useful in the derivation of

the equations of motion and the matrix elements for pure quadrupnle and

sextupole fields.

THE EQUATIONS OF MOTION IN THEIR FINAL FORM TO SECOND ORDER

Having derived Eq. (21), we are now in a position to substitute in-
to the general second-order equations of motion, Eq. (6). Combining
Eq. (6) (the equation of motion) with the expanded field components of
Eq. (21), we find for x |

P , -
x"-h(1+hx) -x ' (hx'+h'x) = —= T'{(1+hx)[-h+nh2x - Bhx%+ %(h" -nh”+28h>)y?]
. st

+h'YYy 4.
and for y

P
y& y' (x'+h'x) = =2 T {—x'h'y - (1+hx) [nbh®y - 28h%xy] + ...
P }
Note that we have eliminated the charge of the particle e in the
equations of motion. This has resulted from the use of the equation of
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i
2

motion of the central trajectory.
Inserting a second-order expansion for ' = (x'Z + y'? + (1+hx)3)
and letting
o Fo |
—_ = =1 -5+5 +...., (26)
P Po(l + 8)

we Tinally express the djfferential equations for x and y to second-

order as follows:
2 +h'xx' + % hx'? + (2-n)h®x®

x"+(1-n)h®x = h® + (2n-1-B)h’x
- %(h"—nh3+26h3)y2 +h'yy' hy'Z - ne?
+ higher-order terms (27)
y"+nh%y = 2(B-n)h’xy + h'xy' - h'x'y + hx'y' + nhZyd
(28)

+ higher-order terms

From Egs. (27) and (28) the familiar equations of motion for the

firct-order terms may be extracted:
x" + (1-n)b®x = hd and y" + nh%y = 0 (29)
Substituting kz = - nh® from Eq. (23) into Egs. (27) and (28)

and taking the limit h —O0, h' — 0 and h" — 0, we find the second-order

equations of motion for a pure quadrupole field

<" + kK°x = k°xb
q a
" 2 2
- K = =K
y o qyﬁ



where | B e B 1
CHREE -
: * &/ Po- a / \Beg |

Similarly, to find the second-order equations of motion for a pure sex-
tupole field, we make use of Eq. (25) Bh° = ki and, again, take the
limit h —0, h' =0 and h" —0. The results are:

x" +_k§(x2 -y°) = 0

y"- 2k§xy 0

5 5 Ba- e B 1 :
e TP <—2><P—O> <—2> <—- > (31)
\a . a Bpo

THE DESCRIPTION OF THE TRAJECTORIES.
THE COEFFICIENTS OF THE TAYLOR'S EXPANSION.

where

The deviation of an arbitrary trajectory from the central trajectory
is described by expressing x and y as functions of t. The expres-
sions will also contain ké, Yo xé, yé and &, where the subscript o
indicates that the quantity is evaluated at t = O; these five boundary
values will have the value zero for the central trajeétory itgelf. The
procedure for expressing x and y as a five-f'old Taylor expansion will
be considered in a general way using these boundary values, and detailed

formulas will be developed for the calculations of the coefficients

through the quadratic terms. The expansions are written:

= I f A 1 v X) K A oV X
x.z(x|xoyoxo vy 8 x gy o x Tyl ® -
(32)
N KN i,V X) KN b,V X
y=2 (ylxo Yo Xo Yo D)X ¥ %5 ¥, B
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Here, the parentheses are symbols for thé Taylor coefficients; the first
part of the symbol identifies the coordinate represented by the expansion,
and the second indicates the term in quéstion. These coefficients are
functions of t to be determined. The symbol y indicates summation over
. zero and all positive integer values of the exponents k, A, p, v, X 3
however, the detailed calculations will involve only the terms up to the
second power. The constant term is zero, and the terms that would indi-

cate a coupling between the coordinates x and y are also zero; this

results from the midplane symmetry. Thus we have

(x[1) = (yj1) =0
5 (xy)) = (rlx) =0 ; (33)
(xly)) = (r]x)) =0

Here, the first line is a consequence of choosing the central trajectory
as the reference axis, while the second and third lines follow directly
from considerations of symmetry, or more formally, from the formulas at
the end of this section.

As mentioned in the introduction, it is convenient to introduce the

following abbreviations for the first-order Taylor coefficients:

(xlxo) cx(t) (xlxé) sx(t) (xl&) = d(t)

blr) = e (®)  Gly) = s (8 e
° y o) v
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Retaining terms to second-order and using Egs. (33) and (34); the

Taylor's expansions of Eq. (32) reduce to the following terms :

c s .4
X X X
’ -
X = (x|xo)xo + (X'Xé)xé + (x,8)6

y 2y.,.2 ' E y
+ (X‘XO)XO + (xlxoxo)zoxé + (xlxoﬁ)xoa

12y 12 ' Yot 2152
+ (x x! )xo + (XIXOS)XOS. + (xla )8

&2 o+ Ky ylyyl v x|y ®yeE

and-

c S
A : M
o — .
= y ] 1
v= (v v, + lyiw)

Cir |y g ‘ ' g ! '
+ xgydxy, + lxgylxyl + (|xly)xiy,

+ x|y ply s+ (v]v:0)y!8 (35)

Substituting these expansions into Egs. (27) and (28), we derive a dif-
ferential equation for each of the first- and second§order coefficients
contained in thé Taylor's expansions for x and y: When this is done,

a systematic pattern evolves: namely,

" 2

¢" + kK% =o¢ ¢" + k¢ =o¢
x X X y Yy

s +¥%°s =o s" ¥ X3 =o0
X X X y ¥y

1i 1t

% * Ka = f, % * k;q_y . (36)

It
H
1]
L)

where ki = (1-n)h® and k? = nh® for the x and y motioms,
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respectively. The first two of these equations represent the eduations
of motion for the first-order monoene?getic terms sx, Cx’ sy and. cy.
That there are two solutions, one for ¢ and one for s, is a manifes-
tation of the fact that the differential equation is second-or&er; hence,
the two solutions differ only by the initial conditions of the character-
istic s and c¢ functions. The third differential equation for q is
a typé form which represents the solution for the first-order dispersidn
d.X and for any one of the coefficients of the second-order sberrations
in the system where the driving term f has a characteristic form for
each of these coefficients. The driving function f for each aberration
is obtained from the substitution of the Taylor's expansions of Eq. (35)
into the general differential Eqs. (27) and (28).

The coefficients satisfy the boundary conditions:

c(0) =1 e'(0) =0
s(d) =0 8'(0) =1
: (37)
a(o) =0 a'(o) =0
a(0) =0 q'(0) =0

The driving term  1is a polynomial, peculiar to the particular q,
whose terms are the coefficients of order less than that of q, and their
derivatives. The coefficients in these polynomials are themselvéslpoly-
nomials in h, h', ..., with coefficients that are linear functiong of

n, B, ... . For example, for- q = (xlxi), we have

f = (2n-1-B) h3c§ +h'e c! + % hc};2 ; (38)

In Table I, page 43, are listed the f functions for the remaiping linear
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coefficient, the momentum dispersion d(t) and all of the non-zero quad-
ratic coefficients, shown in Eq. (35), which represent the second-order
aberrations of a system.

The coefficients ¢ and s (With identical subscripts) satisfy the
same differential equation which has the form of the homogeheous equation
of an harmonic oscillator. Here, the stiffness k% is a function of t
and may be of either sign. In view of their boundary conditions, it is
natural to consider ¢ and s as the analog§ of the two fundamental
solutions of a simple harmonic oscillator, namely cos wt and (sin wt)/w.
The function ¢ 1is the response of the hypothétical oscillator when,
starting at equilibrium and at rest, it is subjected to a driving force f.

The stiffness parameters ki and ki represent the converging
powers of the field for the two respective coordinates. It is possible
for either to be negative, in which case, it actually represents a di-

verging effect. Addition of k- and K> yields

Ky K =0 | (39)

For a specific magnitude of h, ki and ki may be varied by adjusting
n, but the total converging power is unchanged; any increase in one con-
verging power is at the éxpense of the other. The total converging
power is positive; this fact admits the possibility of double-focusing.
A special case of interest is provided by the uniform field; here
h = constant and n = 0; then kz =12 and k; = 0. Thus, there is a
converging effect for x resulting in the faﬁiliar semicircular focus-

ing, which is accompanied by no convergence or divergence of .
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Another important special case is given by n = 1/2; here,
ki = ki = h2/2. Thus, both coordinates experience an identical positive
convergence, and cx =c and sX = sy; that is, in the linear approxi-

y
matioﬁ, the two coordinates behave identically, and if the trajectory
continues through a sufficiently extended field, a double focus is
produced.

The method of solution of the equations for ¢ andv s will not he
discussed here, since they are standard differential equations. The
most suitable approach to the problem must be determined in each case.
In many cases it will be a satisfactory approximation to consider h
and n, and fherefore k= also, as piecewise-uniform. Then, ¢ and s
are represented in each interval of uniformity by a sinusoidal function,
a hyperbolic function, or a linear function of t or simply a constant.

Using BEq« (36), it follows for either the x or y motions that:

%E (cs' -c's) =0

Upon integrating and using the initial conditions on ¢ and s in
Eq. (37), we find 4
cs' -c's = 1. . (%0)
This expression is just the determinant of the first-order transport
matrix representing either the x or ¥y equations of motion. It can
be demonstrated that the fact thét the determinant is equal to one is
equivalent to Liouville's theorem which states that phase areas are con-

served throughout the system in either the x or y plane motions.
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The first-order dispersion and each of the coefficients of the

second-order aberrations (represented by the symbol q) are evaluated using

the Green's function integral t
a= [e(rete,m ar (1)
where © ]
a(t,r) = s(t)e(r) - s(7)e(t) (42)
or

| ‘t
e = s(t) f £(r)e(r) dr - c(t)/f(‘r)s('r) ar . (43)

To verify the correctness of this result, we differentiate Eq. (43) and
make use of Eg. (40) and the first two of Eq.'s 36 to establish an identity

with the last of Eq.'s 36. Thus:

It

'(t)/ e(r)elr) dr - o' (t) ff(T)sm ar (bka)

ql

o)
1

"o f 4 g"(t) ff( Ye(r) ar - c"(t)f £(r)s(r) dr

s -1 (44p)

This along with the obvious results g(o) =0 [Eq. (43)] and q'(o) =0
[Eq. (4ka)] shows that Eq. (43) is the desired solution of the differen-
tial equation for‘g.

The driving terms tabulated in Table I, combined with Egs. (43) and
(44), complete the solution of the general second-order theory. It now
remains to find explicit solutions for specific systems or elements of
systems. This will be done in later. sections of this report.

It will be seen from Table I that several coefficients are absent,
including the linear terms that would represent a coupling between x and
y. The absence of these terms is a direct conseqﬁ;nce of the initial
assumption of midplane symmetry. If midplane symmetry is destroyed any
or all of these missing terms may appear in the solution.
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TABLE I
The Driving Terms for the Coefficients

Listed in the first column are the coefficients in the expressions for the coordinates x and y; they are
indicated by means of the notation introduced in Eq. (32); in addition, the abbreviations given in Eq. (34) are used.
Feor general considerations, g has been used to represent any one of these coefficients. Listed in the second
column are the corresponding driving functions f, which are related to the coefficients as shown by Eq. (36), This
list includes all those functions f for the linear and quadratic coefficients which do not vanish identically.

q f
dx = (X196) h

x| x(z)) + (2n-1 - B)h3c,2( + h'cXc)‘( +‘£hc}'{2
(x| x X0} +2@2n -1 - {i)hscxsX +h'le.s! +ers ) +he's) )
(x| 6x o) @ - n)hzcx + 2(2n -1 - B)hscxd + h' (cxd‘ + c}'{d) + he 'Xd'
x| X(,)Z) + 2n-1- B)h3s;2( + h's s, _'_'l2hs),{2
(x| éx(')) 2 - n)hzsx + 2(2n -1 - ,8)h3sxd + h'(sxd' + s)‘(d) + hs)‘{d'
x|62) |-h+ @-np’d + (@n-1-pp’d + h'dd’ +3 hd'?
(x| yi) +5 (b - nh° + 2/3h3)c§ + h'eel \ 1 hc),}z
‘(x| Yo ¥o) + (h" - nh° +2ﬁh3)cysy + h' (cys}', + c)"sy) o hcg,sgf
(x|Y(')2) ‘+—; (b - nh® + 23}13)332, *n's s 1 hs},lz



TABLE I - Continued

q
(y|x0yo) 28 —n)hchCY h'(cxcgf ) °>'¢°y')_ + hc;(C}"
(ylxoy(')) 28 - n)h'acxsy h"(cxss" . c)'{sy) + hc)'(SS"
~(y.|x(')yo) 2(B —.n)h'gs)'(cy h'(sxc)', - s:)'(cy) + hs)‘(cg’
@ |%33) 206 - mhs, 5, WS, - ss) o+ hsls!
(v] 6v,) m’e + 28 -nmh'c d be,d’ - 6ld)  + hold
(Y'I 53’(',) nhzsy + 2(B - n)hgs&d h'(syd' - sgrd) + -hs;’d'



TRANSFORMATION FROM CURVILINEAR COORDINATES TO A RECTANGULAR
COORDINATE SYSTEM AND "TRANSPORT" NOTATION

All results so far have been expressed in terms of the general curvi-
linear coordinate system (x,y,t). It is useful to transform these results
to the local rectangular coordinate system (x,y,z), shown in Fig.. 4, to
facilitate matching boundary conditions between the various components
ccmprising a beam transport system. This is accomplished by introducing
the coordinates 6 and ¢ defined as the x and y slopes in the local rec-

tangular system:

o . & _ ox__x'
T dz ~ z' T 1+ hx
(45)
p = W - ¥ o _¥__
dz 7! 1 + hx

where, as before, prime mezns the derivative with respect to t.

Note that 6 = tan 6 and ¢ = tan @, are correct to second order,
so that in the present discussion 6 and ¢ may be considered as angles
felative to the local z-axis.

Using these definitions and those of Egs. (34) and (35), it is now
possible to express the Taylor's expansions for x, 8, y and ¢ in
terms of the rectangular coordinate system. For the sake of complete-
ness and to clearly define the notation used, the complete Taylor's ex-'
pansions for x, 8, y, and ¢ at the end of a system as a function of the

initial variables are given below:

“x Sx dy
P P ) et
x = (k%)% + (x]65)6 + (x]8)8
+ (xlxi)xi + (x[xoeo)xoeo + (x|x06)xo6

+ (x165)65 + (x]6,8)6.8 + (x|5%)s2

24\, 2
+ x|y )vs + (2|79, )70, + (x|92)e2
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c! s! S ar
X X

X . .
6 = (6|xo)xo + (9190)90 + (6]8)8
2y .2 ' '
+ (Q]XO.)XO + (leoeo)xoeo + (Q]XOS)XOS
2\n2 232
+ (9|eo_)9O + (ekeoa)eoa + (0]5%)5
2\, 2 2y, 2
+ (0)y)vs + (Bly e )y e, + (6]e)a]
C ' S
A A
y = (y]y,)v, + (vle v,
+ (Y= v )xy, + (rlx o )x 0, + (¥[8 y )8y,

+ (vjo @)oo, + (vly®lyd  + (v]odled
c! s
y y
A— ——
Co o= (oly )y, L+ (oo e,
+ (@)x y )x vy, + (@]x 0 )x o + (916 y )0y,
+ (0169 )6 0, + (@ly 8)y s  + (pjo e s . (k6)

Using the definitions of Eq. (45), the coefficients appearing in Eq.
(46) may be easily related to those appearing in Eq. (35). At the same

timé, we will introduce the abbreviated notétién used in the Stanford
TRANSPORT Program3 where the subscript 1 means 'x; 2 means 6, 3 means y;
4 means @, and 6 means &. The subscript 5 is the path length difference
4 vetween an arbitrary ray and tﬁe central trajector&. The symbol

Rij will be used to signify a first-order matrix element and the
symbol T will signify a second-order matrix element. Thus,

ijk
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we may write Eg. (46) in the general form

x, = Z R, x,(0) +22 T, J(O)xk(O) (47)
Jj= J=1 k=j
where
x =x, x =0, x =y, x =¢,%x =4 and x =5
1 2 3 4 5 6

denotes the subscript notation.
Using Eq. (45) defining 6 and ¢ , we find the following identities

among the various matrix element definitions:

For the Taylor's expansions

R
11

R
12

R
16

T
111

T

1i2 .

T
116

T
122

T
126

T
166

T
133

T
134

- T
144

T'or thc

R
21

R
22

K
26

n

for x we have;
(x]xo) = c,
(x]@o) = (x]xé) =s_
(x|d) = d.
(x]x2)

(x]xOGO) = (x]xoxé) + h(O)sX

(x]x_5)
(x]9§) =
(X|906)
(x]5%)
(x)¥3)
(x]y @)
(x]92)

6 teorms we have:

(0]x,)

(ele,)
(6]5) =

(x]%%)

= (x]xé&)

= (x]y )

(x]¥!%)

(x| x,)

1

('] %))
(x'®) =

47 o

(48)



T, = (e|x§) = (x’lxi) - h(t)e c!

T, = (e|xoeo) = (x'lxoxé) + h(O)s; - h(t)[cxs; +'c£sx]

T, .= (elxos) = (x’IXOS) - h(t)[cxd; +cld ]

T = (e|e§) = (x']xéz) - h(t)s_s!

T226 = (e|eoa) = (x’]xéa) - h(t)[sxd; + s;dx]

T, = (618%) = (x']8%) - h(t)a a!

T, = Olyg) = (x'|yg)

T, = 01y 9,) = (x'|yyg)

T, = @le)) =1y (49)

For the y terms in the Taylor'!s expansion:

R, = ly,) = ¢
R, = (vjo,) = (v)yl) = 5,
T, = Wlxy,)
T . = WIx2) = (vixyy) + B(O)s,
T, = 016y,) = (vixty,)
T, = 19.2,) = (v]xlyy)
T, .o = (7]7,8)
T, = ]93) = (ylyg®)

- (50)

and finally for the ¢ terms we have:

R_=(0ly,) = (0ly) = & Gy

— 1
o) = Cx

R
44

]
]

(@lo) = (vy'1¥) = sy



T,.5 = @lxy,) = (77)xy,) - ht)e el
T, = @1x0) = (r'lxyl) + n(0)s) - h(t)e, s
T = (@16y,) = (v xy,) - h(t)s el
T, = (@16.9,) = (v'Ixly}) - n(t)s st
r s Ol = (e aes,
. T44s = (<Pl<90§) = (y'lyc')S) - h(t)s}v’dx (51)

'All of the above terms are understood to be evaluated at the terminal
point of the system except for the quantity h(0) which is to be
evaluated at the beginning of the system. In practice, h(0) will
usually be equal to h(t); but to retain generality in the formalism

we show them as being different hére.

All non-listed matrix elements are identically equal to zero.

FIRST- AND SECOND-ORDER MATRIX FORMALISM OF BEAM TRANSPORT OPTICS

The solution of first-order beam transport problems using matrix

h,5,6
225 However, it does not seem

algebra has been extensively documented.
to be generally known that matrix methods may be used to solve second-
andzhigher—order beam transport problems. A general proof of thé validity
of:extending matrix algebra to include second-order terms has been given
by Broﬁn, Belbeoch, and Bouhin;7 the results of which are summarized
bélow in the notation of this report and in "TRANSPORT" notation.
Consider again Eq. (47). From Ref. 3, the matrix formalism may be
logically extended to include second-order terms by extending the defini-

tion of the column matrices xi and Xj in the first-order matrix algebra

to include the second-order terms as shown in Tables II, III, IV and V.
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In addition it is necessary to calculate and include the coefficients

shown in the lower right-hand portion of the square matrix such that the

set of simultaneous equations representéd by Tables II through V are valid. _
Note that the second-order equations, represenfed by the lower right-hand
portion of the matrix, are derived in a straightforward manner from the
first-order equations, represented by the upper left-hand portion of the
matrix., For example, consider the matrix in Table II; we see from row 1

that

X=¢X + 86 + d0d + second-order terms.
X 0 X 0 X
Hence, row I is derived directly by squaring the above equation as follows:
= = (c X + 568 +d b)e
X o X 0 X

02x2 +2c s X9 +2¢cd4dx398
x 0 XX 00 XX O

1]

+ 520 + 25 4 6 & + d38°
X O X X O X

The remaining rows are derived in a similar manner.

If now xl = Rlxo represents the complete first- and second-order trans-

formation from O to 1 in a beam transport system and X, = R2xl is the trans-

formation from 1 to 2, then the first- and second-order transformation from

0 to 2 is simply Xy = szl = R2Rlxo; where Rl

as shown in Tables II and III in our notation or as shown in Tables IV and V

and R2 are matrices fabricated

in "TRANSPORT" notation.

“
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(x|x06)

TABLE II

(x{g)

(xleoa)

(x|5?)

Tormulation of the second-order matrix for the bhend (x)-plqpe..;

373-i-A
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TABLE III

(v [ (ixy) | (vlxe,) | (rleyy) | (view) | vy d) | (vies 1 [ Yy i}
P (olo_y,) P
X XOyO
P X%
%y %
% %
yo ¥y 0
5 R

-

Formulation of the second-order matrix for the non-bend-(y) plane.
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TABLE IV

ro
| x R _[R _[R T T T T T T T T T x
i 11| 12| 1s 111 12 116 122 126 166 133 134 144 0
] R R R T T T T T T T T T 6
21| 22| 26 21 2:2 216 222 226 266 233 234 244 0
(3] 0 0 1 0 0 0 0 0 0 0 0] 0 s}
IS R® 2R R 2R R R2 2R R RZ - 0 0 0 X
11 11 12 11 16 12 12 16 16 o
11R22 1 st
1
x6 11R21 +R R +R R etc. 0 0 0 XOG
12 21 16 21
o) xd
o)
.92 Q 92
o)
1 65 05
o)
3% 82
2 2
y yo
yo | Y@
2 2
0 wo
L

Formulation of second-order matrix in the bend (x)-plane using TRANSPORT notation.
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—‘ P
y R R T T T T T T y -T
23 | 34 313 314 323 324 336 346 o
) R I E T T T T T T )
43 44 413 414 423 424 436 446 o
—
Xy - R R R R - 'R R R Xy
‘ 11 33 11 34 12 33 12 34 16 33 16 34 o' 0
R R R R etc.
xP ) 11 43 11 a4 12 43 x_ocPo
% ebyoi
6p | eo¢o
yo . RAS
¢ - ¢05
_ _ L

Formulation of second-order matrix in non-bend (y)-plans using TRANSPCRT notation.




ITI. REDUCTION OF THE GENERAL FIRST- AND SECOND-ORDER THEORY
TO THE CASE OF THE IDEAL MAGNET

Part II of this report was devoted to the derivation of the general
second-order differential equations of motion of charged particles in a
static magnetic field. In Part II no restrictions were placed on the
variation of the field along the central orbit, i.e., h,n, and B were
assumed to be functions of t. As such, the final results were left in
either a differential equation form or expressed in terms of an integrél
containing the driving function f(t), and a Green's function G(t,T)
deri?ed from the first-order solutions of the homogeneous equations.

We now limit the geﬁerality of the prbblem by assuming h, n, and B to be
constants over the interval of integration With this restriction, the
solutions to the homogeneous differential equation[:Eq.(36)of Section II]

are the following simple trigonometric functions:

cx(t) = cos k.t sx(t) = ¢ sin kxt
X
1
c (t) =cos k ¢t s(t) =—sink t
y (&) y 7 E Sy (52)
where now

k> = (1-p)h> , k> = ph°® and h = —=
X ¥ . p_

become constants of the motion. po is the radius of curvature of the
central trajectory.

The solution of the inhoﬁogeneous differential equations gthe third
of Egs. (36)] for the remaining matrix elements is solved as indicated
in Part II, using the Green's functions integral Eq. (415 and the driving
functions listed in Table I. With the restrictions that kx and ky are
constants, the Green's functions reduce to the following siﬁple trigono-

metric forms:
- 55 -



1 R
Gx(t,T) = sin kx(t-f)
X
and
G (,7) = = sin k (t-1) ‘ ‘ /
v ky_ Y . . 53)

The resulting matrix elements are tabulated below in terms of the ke&
integrals listed in Table VI, the five characteristic first-order matrix

elements s , ¢, d , ¢, and s and the constants h, n, and'B.
xT Tk xT Ty Y A

The constants n and B are defined by the midplane field expansion

(Eq.(18)of section II:

By(x,o,t) = By(o,o,t) [l - nhx + Bh2x2 + 7h3x3 + ...] (18)
or from Eq.(19)of section II:

1 /3B ) 1. 82B
n=-|l—|-L and B = 2y : (19)
hBy ox /| x=0 21h2B ox~ /| x=o

y=0 y=0
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TABULATION OF THE FIRST- AND SECOND-CRDER MATRIX ELEMENTS
FOR AN IDEAL MAGNET IN TEEMS OF THE KEY INTEGRALS LISTED IN TABLE VI

Ry = (x|x)) = e (t) =cos k% Definitions:

Fip = (xleo) = s, (t) = % sin kb ki = (1-n)n° =

Fig = (x[8) = a(t) - k% 1-c (&) K = SN
X

T = (x|x§) - (2n-1-B)n3 1., + %kih I,

®, = (xlx6) = hs (%) + 2(en-1-)d 1, - K n I,

o= (xlx®) = (2-n)h° I, * 2(2n-1-p)h> I - ki n® L op

Tiop = (Xlei) = (2n-1-8)n° Lo ¥ : - L

Tog = (xl88) = (2-n)n° I, + 2(2a-1-B)n0 I 0 + B I,

%, g6 = (x|87) = -n Lo * (2-n)hZ Lg + (2n-1-B)n3 Lgg + % n3 I o0

Ty (el - Pr Ly - Fn I

“134 T (x|yo¢'o) - 26 b’ T13u

Touy = (xlq’i) = B b Ly - % h L,
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21

22

Rog

211
212
216
222 ~
226
Tog6 =
233 ~

234 ~

Togy =

(6]x2)
(olx,8,)
(e]x,3)
(el6.)
(ele 3)
(e]s%)
(ely2)
(ely 2,

(el92)

(t)

s (t)

a_(t)

K-N-N-‘

R s;(t)

20

(2-n)h I

(2-n)h I

21

22 F

(2n-1-)n3
2(2n-1-B)n>
+ 2(2n-1-B)h3
(2n-1-8)n3

+ 2(2n-1-8)h3

+ (em)n® Ig + (2n-1-B)n>

H
+

211
212
216
222
226
Toge *
233 ~
234

Ieuh -

i+

-

- e

|-

=

~
=

n

=
[ay

NWI\) "
=

n

I

h cx(t)c
hi’cx(t)s
h[cx(t)d

s (t)s

"
- higx(t)d

dx(t)d

- K - M-

]

»

NN -

(%)
(6) + e (t)s (6);
(t) + c;(t)dx(t)}
(+)

(8) + 5 (£)a(t)

()



_Gg_

33

R3)+

313
31k
323
324
336

1‘3%

1

]

(vly,)

(vlo)

(vlx_y,)
(vlx @)
(vlov,)
(vle @)
(ylyob)

(vle )

fl

cy(t)

sy(t)

h'sy(t)-

cos k t
y

%NWH

sink t
y

2(5-n)h3
2(B-n)h>
2(6-n)h3
2(B-n)h3
2(B-n)n3

2({3—n)h3

H

313

H

31k

H

323

H

32k

H

336

I31|6

n

+ k

LB \ VI

k h T
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By, =

Tyy3 =

(¢ly,)

(ole,)

CIESN
(¢|x6¢o)
(eley )
CIERW
(oly_5)

(¢l 3)

(¢]
—
ot
p
L}

1
by
n
—
ct
~

L0]
—
ct
e
]
Q
P
ct
~—

\V]

k

"

®

n

ko B Doy

<

h Ih23

n

ky h Ihlh

b Dys

ky h I’+2ll-

2
h Iu23

cx(t)c;(t)

(t)

4

[N

h cx(t}s

h sx(t)c; (t)

o

L

h s (t)s.(t)

(5%)



TABLE VI

Tabulation of Key Integrals Required for the Numerical Evaluation

of the Second-Order Aberrations of Ideal Magnets

The results are expressed in terms of the five characteristic first order
matrix elements sx(t), cx(t), dx(t), cy(t) and sy(t) and the quantities h and
n (assumed to be constant for the ideal magnet over the interval of integration
7 =0 to 7 =t). The path length of the central trajectory is t. From the
solutions of the differential equations (Eq. 29 of Section II), the first order matrix

elements for the ideal magnet are:

—_ — _1_ 3 =£ -
c () = cos k_t s (t) = K o k t d (1) % (1 cx(t)>
X
1
¢ (t) =cos k_ t s (t) = = k t
y() y y() ky sin y
where k2 =(1-n) h2 k2 = nh2 and_h=—-1—
X y - P,

Py is the radius of curvature of the central trajectory.
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10

11

12

16

111

112

116

122

126

t

/

(o)

t

t

J

o

o

t

o

t

o

t
= f cx(T) dx(:r)Gx(t, T)dr = % <Ili-1111> =

(o]

.

~.

d ()
Gx(t, T)dr = h

f ¢ (1)G t, T)dr = 1 ts (0

0

5 ()G &, 7)dr = ﬁ <sx<t> - tcx(t>>
z |

d ()G, &, T)dT = k—};- <110 'Ill>- =

X

2

(

xw‘ml =3

d_ )
()G, 1)dr = 3 (sx(o + —";—)

2 1 \_ 1
8, (NGt m)d7 == (110‘1111> -3
X B ¢

k

sx(T) dx(T)Gx(t, r)dr =

X

h

k

2
X

Xt)

. g _
= f cx('r)sx(’r)Gx(t, T)dr =% sx(t) (——ﬁ—->

d ®

=

b

2
X

h

;

T2

t

Ls -1 <s§(t) + 7"1__>}

sxrt>>

d_)

<I12 - I112> =

L

k

2
X

|

1
2

2k

X

< 5, [t -tcx(t)> - 31; s, (1 <

d, ()
h

)

h
K

6k

X

[sx(t) +2s_(te, (t) - 3tcx(t)J
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L. o h2 1?4 (4O 1 2 |
L6 = / dinGyt.mdr =7 (-2 +hyy ) =25 |5 (=) +3 50 - ts,0
o X X

—
"

¢ d_(t) k2 d_(t)
2 (% y 2 P D 2
133 f ey (1) Gyt 7)dr = < ey <sy ®-2— >“ Lo K liaa = Lo - Ky lgy
o ) X y

o p5 y N

t /
_ _ _ 1
1134 - f Cy(T) Sy(T)GX(t, A)d'r - kz 4k2 (Sy(t)cy(t) - Sx(t)>

t
d_(t)
2 1 2 X
o]

t.

_ _d _
L, = I,=% f G, (t, T)dr = 5 (1
: ,
d / 1
121 = L1 & f cx('r)Gx(t,T‘;d'r =5 (sx(t) + tcx(t)>
0 A
t .
L, = I..=-3 [ s(nG.tndr= = ts_t)=1
22 12° d@ xtT) g 2 “Sx 11
0
t
L. = 1,.=3 (amc.trd =2 (s -te
26 16 x\ T/ x5 o2 \ X' x
Q X
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211

216

222

226

266

233

234

212 ~

011

Il

L16

I} 92

126

Lies

I'.

133

a4

112

a [ 2 s 0
= E CX(T)GX(t,T)dT = 3 1+ 2CX(t)

(o]
d t 1,2 d
E{ f CX(T)SX(T)GX(t’ T)d'r =‘ .§. 2s x(t) _ E

0

t
N te_(t) s_(t) 2s_(t)c_(t)
h

de CX(T)dX(T) GX(t’ T)d’r =. ; ; + g _ X . x
© X

d / 2 9 dx(t)
EfSX(T)GX(t’T)dT = 3 Sx(t) 5
9}

1 (a0
Sx(M)d (1) Gy (t, T)dr = k—}; Sts () - 2 s2(h +%< x )
X

2o
Q
,\.,_.,

L 2 [,
%}/daﬂ%ﬁmm7=1? %%m+§sﬂa%m-mﬁo
¥e) X
g b 2k
I /cy('r) G, (t,T)dr = s, (t) -?ﬁp <Sy(t)0y(t) - Sx(t))
: -

4 1

t
e (1)s_(1)G_(t, T)dr = —-—
[4) X y

| 205(1:) -l-c @

Do

=
w
<
< N

k2 - 4k®
x" Ty
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244

~-

t

¢y (N Gy (t, T)dr

s,(1) Gy (¢, T dr

2
L. =f 5,(T)Gylt, Tydr =

t
= [ exmieymG i mar =

o

t

(o)

t
=f 5 (T (1) Gyt )T =

(o)

-J

(o)

t

Sx(T)ys(T) G,

1

k2 - 4K2
x Ny

k2
X

fCX(T)Sy(’T)Gy(t,T)d'rz 5 1

K2 - 4k2
x Ty

t)dr =

1
2

1

K2 - 4k2
X y

2

______E?:_ [sy(t) ey - sx(t)]
y

1—2- ,/s ) - te (t)>
ky \ 7

[ 2 _

A
2
X

[ 0 <1-cx(t))

[
25, (e ) - s ) ( 1+ cx(t)>]

oy
2
L<k

> 5,0 (1 + cx(t)> - s eyt | +

9

2

k” -4k
X y

k

2
X

- 5,08,

k2
X

1
2

5

2

k” - 4k
X y

d_)

1 2 X
e (4
y .

5,0
2
X
d_(t)
X
2c, (1) < =

2
> - 2ky 5, () sy(t)

> - 5,05, (0

|
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-t
h

- - _ h
's36 ch(T)dX(T)GY(t’T)dT Y <I33'1313>_ K2 [
o X .

N+

" 1 2. .
5,.() - LTE;_- <cy(t) (1—cx(t)) - 2k]s, (0 sy(t))J

t

h h
Ty - f 5y (7) A (1) Gyt ) dr = = <134_1314> - [ig <sy(t)—tcy(t)>—k2_zk2 [2sx(t>cy<t) -5, (1+cx<t>)]J
0 X X y X 'y

t
d .
140 = IE%O = X fGy(t,'r)dT = sy(t)
0

t
d / : _1
b = & f cy(T)Gy(t,,T)dT =3 [Sy(t) + tcy(t)]
o

43

-1, = & Ll
Iy =Ty = § Sy(T)Gy(’C,.T)d'r = ztsy(t)'_lgg

.

t
1413 = 1513 = ad- f CX(T)C.},(T)Gy(t', T)dr = ———kz f 4k2' é{i - 2k§> sx(t)cy(t) - kf, sy(t) <1 + cx(t)>}
0 X L

r

; t ,
Ly = Uy, = f ¢ (T)5,() G (t, T)dr = ;{-2—%;1(—2 <k}2{ - 2k§> 5,050 - ¢ ) (1 ) Cx(t))} \
(o] X vy

Qu

-

Do

c_(t)

¢ -
, k
d , - 1 . : ‘
Lios = Iyos = & D/ sx('T)Cy(‘T)Gy(t, T)dT ZkT—_:kT | 2<k2> cy(t) <1+cx(t)>-cx|_t)cy(t) —k?,sx(t)sy(t)J +_kL2_
X y L X X
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_ d _ 1 2 X
[ Sx(7)8y (1) Gy (1, T) AT = 57 [cy(t)sx(t) - e, s, () - 2k s () ( : >]

x Ty :

ot

Tgog = T304 = &
(o]
t s_(t)
- = 4 - h [t 1 2 2
1436 = 1336 = 3 of cy('r)dx('r)Gy(t,T)dT ki [2 cy(t) + =5 +k3_ 4k§ 4 [kysy(t) <1+cx(t)> - (kx— 2k}2,)sx(t)cy(til]
t
ts_ ()
_ ' _ g =£ )’ _ 1 2_ 2
a6 = Tag6 = 3 J SyM MGyt Tydr =5 [ PR [<kx 2ky> Sx(t)s,© -c O <l’cx(t)>ﬂ
X X y
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Matrix Elements for a Pure Quadrupole Field

For a pure quadrupole, the matrix elements are derived from those of

' o
the general case by letting B = O, k‘i = ké and k}er = - k;, where

'B /1
gt () ()
q a \ Bp

and then taking the limit h---0. The results are:

Rll = COS kqt
1 .
R12 = -1;— sin kqt
q
T = z ktsink t
116 2 q q
1. g
Tl26 = p—i sin kq_t “ 3 cos kqt
R2l = --k(.i sin kq_t
R.~ =rcos k t
22 q
T. = [k t k t +sin k ti
216 5 qu cos q sin a
1 .
T226. =5 kqt sin kqt
R = cosh k. t
33 °° q
R = 2 sinh kK ¢
34 Ky a
T =-Lkt sinh k.t
336 2 "q q
T =£isinhkt-tcoshkt1
346 T 2 kq g q_j '
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Ry =k, simh k¢
th’ = cosh kqt
k
Tyz6 = - - [kqt cosh k t + sinh kq’c}
Tyug = - -12- k b sinh kb (55)

all non-listed matrix elements are identically zero.

Matrix Elements for a Pure Sextupole Field

For a pure sextupole, the matrix elements are derived from

those of the general case by letting

3 L2 1% 1
Ph” = ks’\ 2/",BD}
Vo

Uj.

o]

and then taking the limit h — 0. The results are:

R, =1
R12 =t
\
Ti11 = - %e'k: 6
T2 = - % K+
Tiop = - 1i2 ki "
T)55 = % ks £2
Ty g = % k: 3
Ty = T3 k§ ¢*
Rpy = ©
R = 1

22 ' - 69 -
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Tu13

Q

t

[QUN /A

T = k

eV

t

[V ]

k

T423

(56)

= 24243
= 3kt

Tyoy

All non-listed matrix elements are identically zero.
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First- and Second-Order Matrix Elements for a Curved, Inclined Magnetic
Field Boundary. Fringing Field Effects.

Matrix elements for the fringing fields of bending magnets have

7,8

been derived using an impulse approximation.'’~ These computations com-
bined‘with a correction term? to the R}_l_3 element (to correct for the
finite extent of actual fringing fields) have produced results which are
in substantial agreement with precise ray tracing calculations and with
experimental measurements made on actual magnets.

We introduce four new variables (illustrated in Fig.11l); the angle
of inclination Bl of the entrance face of a bending magnet, the radius of
curvature Rl of the entrance face, the angle of inclination ﬁ2 of the

exit face, and the radius of curvature Ré of the exit face. The sign con-

vention of Bl and 62 is considered positive for positive focusing in the

transverse (y) direction. The sign convention for R, and R. is positive

1 2
if the field boundary is convex outward; (a positive R represents a nega-
tive sextupole component of strength kiL = - (g%) seCBB)o The sign con-

ventions adopted here are in agreement with Penner,h and Brown, Belbeoch,
and Bounin.7
The results of these calculations yield the following matrix elements

for the fringing fields of the entrance face of a bending magnet:

Ryp =1t
Rip -0
h, 2
T3 = -3 fan By
n 2
T133 .— -2- sec Bl



_aL-

NA
N

oD
on
Fl—=

: ~ 7%8AI5
‘. R

FIG. 11--FIZLD BOUNDARIES FOR BENDING MAGNETS

The TRANSPORT sign conventions for x, B, R and h are all positive as shown in-:the figure.
The positive y direction is out of the paper. Positivé B's imply'transverse focusing.
Positive R's (convex curvatures) represent negative sextupole camponents of strength

S = (- g% )seCBB. (See page Ti.)
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1 .
Rpp = - g =htanp)
X
Byp =1
o3 2
Téll = 2R1 sec Bl - nh~ tan 51
2
Topp =0 tan By
2 1. 2

T233 =h (n + 5 + ten Bl) tan Bl -

2
T234 = - h tan Bl
Ryz =1
n — 2
1313 = h tan Bl
R, =-2=-htan (B - V)

b3 7 T f 7 1 1
y
h 3. 2

T413 = - ﬁz sec bl + Zh ntan 61

2
Typy = - b tan” By
_ _ 2
Th23 = - h sec Bl

2

Th36 =h tan Bl _hq& sec (Bl - ¢1)

h sec3 B

éﬁ 1

(57)

All nonlisted matrix elements are equal to zero. The quantity wl is the

correction to the transverse focal length when the finite extent of the

fringing fields are included.
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W = thg (sec 31)(1 + sin® 61) + higher order terms in (hg)

where g = the distance between the poles of the magnet at the central

orbit (i.e., the magnet gap) and

dz

K1=.:Z° By(z) [Z]:e_ By(z)]

O

By(z) is the magnitude of the fringing field on the magnetic mid-
plane at a position z. 2z is the perpendiculér distance measured from the
eptrance face of the magnet to the point in question. See Fig. 11l. Bo is
the asymptotic value of By(z) well inside thHe magnet entrance. Typical values
of K1 @pr actual'magnets may range froﬁ 0.3 to 1.0 depending upon the detailed
shape of the magnet profile and the location of the energizing coils.

The matrix elements for the fringing fields of the exit face of a

bending magnet are:

Rp=1t
Bip =0

2
Ty =3 tan B

D

Ty33 = -5 %€ By

1 ,
Ry, = - 7 = h tan B,

X
Ry, = 1

h 3 o 1, 2
Tyyq = §§5 sec” B, - N (n + 5 tan 62).tan B,
T . = - h tan- B
012 = an Py



S IR B SB LI
T233 =h(n - 5 tan 62) tan 32 5%, sec 62
2
T23)+_hta.n 62
Ryg =4
R3)+_O
2
R, =->=-h tean(p, - v,)
43~ TF 7 2~ "2
y
th = 1
Tu13=-i?2—sec3 62+h2(2n+sec2 62) tan 52
2
Thlh = h tan 52
o 2 \
Th23 = h sec 62
2 .
Tyq6 = B ton By - hy, sec” (By - W) (58)

All nonlisted matrix elements are zero.

Yo = K hg sec 62(1 + sin 62) + higher order terms in (hg)

and Ki is evaluated for the exit fringing field.
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Matrix Elements for a Drift Distance

For a drift distance of length L, the matrix elements are simply
as follows:

Rip =Ry, = L

All remaining first- and second-order matrix elements are zero.



IV. SOME USEFUL FIRST-ORDER OPTICAL RESULTS DERIVED FROM

10,1
THE GENERAL THEORY OF SECTION II.- ° 1

We have shown in Section II, Eg. (47), that beam transport optics
may be reduced to a process of matrix multiplication. To first-order,

this is represented by the matrix equation

.6 :
x;(t) =ZRijxj(°) | o (59)

J=1 ‘ N

where

x1=x x2=8 x3=y xu=¢ x5=ﬁ and x6=5

We have also proved that the determinant |R|=l results from the basic
equétion of motion and is & manifestation of Liouville's theorem of
conservetion of phase space volume.

The six simultaneous linear equations represented by Eq.(59) may

be expanded in matrix form as follows:

- - ~ -
x(t)ER R 0 0 0316 rx

11 12 o

8(t) Boy |Bos | O 0 0 | Ryg o,
t 0 0 |r R o} 0

v(t) B33 |Rsy Y,

o(t) 0 0 R,_B Ry, | © 0 ¢

Yt) Rsl ng 0 0 1 356 %o

&(t) 0 o | o 0 0 1 S (é0)

where the transformation is from an initial position T = o to a final
position T = t.
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The zero elements R = R = R

13 = Ryy= Rog = Ry = By = Ryp =By = Ryp= Ryg=Ry= 0
in the R matrix are a direct consequence of midplane symmetry. If midplane
symmetry is destroyed, these elements will in general become non-zero. The
zero elements in column five occur because the variables x, 6; Y, 9, and &
are independent of the path length difference 4. The zero's in row six
result from the fact that we have restricted the problem to static magnetic
fields, i.e., the scalar momentum is a constant of the_motioh.

We have already attached a physical significance to the non-zero
matrix elements in the first four rows 1n terms of their identification
with characteristic first-order trajectories. We now wish to relate the
elements appearing in column six with those in row five and calculate
both sets in terms of simple integralé of the characteristic first-order
elements Cx(t) = Rll and sx(t) = Ry e
of the Green's function integral, Eq. (43) of Section II,’and of the expres-

In order to do this, we make use

sion for the differential path length in curvilinear coordinates
‘ 1/2
ar = |(ax)? + (dy)2 + (1+hx)2 (dt)e] (61)

used in the derivation of the equation of motion.

First-Order Dispersion

The spatial dispersion dx(t) of a system at position t is derived
using the Green's function integral,Eg. (U43),and the driving term f = h(v)

for the dispersion (see Table I). The result is

t L
0 (8) = ryg = 5,0) [ e (mnmar- o6 [ o (numar (6)
(o] (@]

where T is the variable of integration. Note that h(<t)dr = d% is the

differential angle of bend of the central trajectory at any point in the
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system. Thus first-order dispersion is generated only in regions where
~the central trajectory is deflected (i.e., in dipole elements.) The
angular dispersion is obtained by direct differentiation of dx(t) with

respect to t;

t t
NORE N ENON L EOLREIONY EEVOROINE
(o] o
' vhere
c;c(t) = R,y 8nd s_(t) = Ry,

First-Order Path Length

The first-order path length difference is obtained by expanding
Eq. (61) and retaining oply the first-order term, i.e.,

4 - /ﬂo = (T - t) = / x(T) h(T)dT + higher order terms

o]

from which
t t t
1= X f c (%) h(v)ar + o f s () h(v)av + %o + 5 / a_(t) n(v)ar
o J S

= R_..%x + R._

51% * Rsgf + 4, + Rog® (k)

56

Inspection of Egs.(62), (63), and (64) yields the following useful
theorems:

Achromaticity: A system is defined as being achroamatic if

1 - .
dx(t) = dx(t) = 0. Therefore it follows from Eq's.(62) and (63) that the

necessary and sufficient conditions for achromaticity are that

t t
f s (%) B(v)ar - [ ¢ (%) B()as = 0 (65)

0 (o)
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By comparing Eq. (64) with Eq. (65), we note that if a system is achro-
matic, all particles of the same momentum will have equal (first—order)

path lengths through the system.

Isochronicity: It is somewhat unfortunate that this word has been

used in the literature Lco mean equal path lengths since equal path lengths
only imply equal transit times for highly relativistic particles. Never=-
theless, from Eq. (64), the necessary and sufficient conditions that the
first-order path length of all particles (independent of their initial

momenta) will be the same through a system are that

t

ot t ,
/cx('r) h(r) dr = /SX(T) h(T? dr = / dx(T) h(t) dr = 0 (66)

L)
(o]

First-Order Imaging

First-order point-to-point imaging in the x plane occurs when x(t)

is independent of the initial angle 60. This can only be so when
sx(t) =Ry, = O. (67)

Similarly first-order point-to—point imeging occurs in the y plane when
t) =R, = O, (
sy( ) 3k (68)
First-order parallel-to-point imaging occurs in the x plane when x(t)
is' independent of the initial particle position X, e This will occur

only if ‘
¢ (t) =R, =0, O (69)

and correspondingly in the y plane, parallel-to-point imaging occurs

when | - ey(t) =Rgy 0. | (70)
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Magnification

For point-to—point imaging in the x-plane, the magnification is

given by
M r; _}E(;bl ={R = le (t)
bl p4 1l pia
o
and in the y plane by My = R33 = -cy(t) , ( 71)

First-Order Momentum Resolution

For point-to-point imaging the first-order momentum resolving
power Ry (not to be confused with the matrix R) is the ratio of the
momentum dispersion to the image size: Thus

a_(t)

cx(t) xo'

Ri6
Rll xo

Rl=

For point-to—point imaging ( sx(t) = O) using Eq. ( 62), the dispersien

at an image is

| o
a () = - et f 5 (%) n(v)as (72)
(o]

from which the first-order momentum resolving pov?er Rl becomes -

a ()| | e (4-2)
Rl XO = w -= [ SX(T) h(T) dr =0—0[de =-—-—0;-—— (73)

where xO is the total source size.

Zero Dispersion

For point-to-point imaging, using Eg. (72), the necessary and

sufficient condition for zero dispersion at an image is
. .
/ 5 (%) h(7)dr = 0 (7%)

6
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For parallel to point imaging, (i.e., cx(t) = 0), the condition for gero.

dispersion at the imageris

/ cx-(f)' h(t)dt = 0, (75)

Focal Length

It can be readily demonstrated from simple lens theoryl* that the

physical interpretations of REl and Rh3 are:
! 1 ' 1 .
cx(t) = R2l = - 'i.-; and cy(t) = RLB = - :—t,; (76)

where fx and fy are the system focal lengths in the x and y planes

respectively between T = O and T = t.



Evaluation of the First-Order Matrix for Ideal Magnets

From the results of Section 11T, we conclude that for an ideal magnet
tﬁe matrix elements of R are simple trigonometric or hyperbolic functions.

The general result for an element of length L is

cos k T L sin kL 0 0 0 2 [1-cos x L
X k X 2 X
X k
X
-k sink L|ecos k T 0 0 (EdﬂnkL
X X X k b
X
1.
0] 0 cos k L - sin k L 0]
Y ky y
R =
0 0 -k sin k L| cos k L 0
y v y
2
B oin kD [ B [1-cos kL 0 0 1| B[k L-sin k L
k X 2 X 3 X X
X k k
X X
0 0 0 0 0 1
(17)
where for a dipole (bending) magnet, we have defined !
¥ - (1-n) h°  and k5 = ph® .
x vy

For a pure quadrupole, the R matrix is evaluated by letting

K> = k° and ko =

X a y q

and taking the limiting case

‘B 1
K2 = - g = <—9 <——>
4 a Bp

R matrix for a quadrupeole is:

h—0, where

Taking these limits, the
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cos k L
q

-k sink L
q a

0]

Note that the trigonometric and hyperbolic functions will interchange if the

sighd of Bo is reversed.

The R Matrix Transformed to the Principal Planes

cosh k L
q

k sinh k L
a a

0
0
ﬁL sinh de
q
cosh k L,
a
0
0

(78)

The positions 7Z of the principal planes of a magnetic element (measured from its

ends towards the center of the element) may be derived from the following matrix equation:

1101 010fO

Roy

PP

1x

X

X

1

0

-7

1

2% 0 0
0| O
1 -Z2y
o] 1
0| O
0] O

0]

0 1|2
0 0
0 0
IR
0 0
0 0
1 0
. } Rll-l
ex R21
Ro,-1
s - o33

1x

1

O‘

0]

0

0

(80)



For the ideal magnet, the general result for the transformation

matrix R
pp

0
Rop © 0
h .
- sin ka
X
0

and because of symmetry

N
1
N
fl

and

7 =7
y ly

Correspondingly for the ideal quadrupole, RPp

between the principal planes is

-k sin k L
y y

1 (ka)
K n\72

X

()
-lg: tan( 5

i

K2=k
X

No)

0
h .
T sin kiL
X
0
0
2
h_ [kL - sinkL]
k3 X X
X
1
' (81)
(&2)

is derived by letting

Y-
q

and taking the limit h-—O0 for each of the matrix elements. ‘
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the result is:

1 0 0 0 0 0
=k ®&in kqp 1 0 0 0 0
0 0 1 0 0 0
R =
2y 0 0 |k simh kI |1 | o o0
0 o} 0 0 1 0
0 0 0 0 0 1
(83)
where now :
‘ k L
= 1 2
a
1 k L _
7 == tanh - o (84)
y kq 2 .

- 86 -



V. SOME GENERAL SECOND-ORDER THECOREMS DERIVED FROM
THE GENERAL TIIRORY COF SECTION II

We have established in Section II that any cecond-order aberration
coefficient q may be evaluated via the Green's function integrel, Eq.(43),

i.,e.,

t ' t
q(t) = s(t)/ f(t)e(t)dr - c(t)‘/ f(t)s(r)dr
(o 0

A second-order aberration may therefore be determined as soon as a first-
order solution for the system has been established since the polynomial
expressions for the driving terms f(T) have all been expre;sed as func-
tions of the characteristic first-order matrix elements (Table I). Usually
one is interested in knowing the value of the aberration at an image point
of which there are two cases of interest; point-to-point imaging s(t) =0
and parallel-to-point imaging c(t) = O.

Thus for point-to-point imaging:

t
q.=-c(t) | £(r)s(r)a(r)
J

where T =t is the location of an image and |c(t)‘A= M is the first-

order spatial magnification at the image, and for parallel-to-point imaging;
‘ .
a = s(t) [ 2(r)e(x)a(r)
' o

where T =t 1is the position of the image and s(t) is the angular dis-
persion at the image.
If a system possesses first-order optical symmetries, then it can be

immediately determined if a given second-order aberration is identically
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zero as a consequence of the first-order symmetry. We observe

that for point-to-point imaging a second-order aberration coefficient ¢
will be identically'zero if the product of the corrésponding driving term
f(t) and the first-order matrix element s(t) form an odd function about
the midpoint of the system.

As an example of this, consider the transformation between principal
planes for the two symmetric achromatic systems illustrated in Fig.12 and
Fig.13 . We assume in both cases that the elements of the system have been
chosen such as to transform an initial parallel beam of particles into a
final parallel beam; i.e. , R2 = - L =. 0 for midplane trajectoriés°

1 f
X

We further assume parallel-to-point imaging at the midpoint of the system.
With these assumptions, the first-order matrix transformation for midplane

trajectories between principal planes is:

x(t) | -1 0 07 [x(0)
x'(¢)] =} 0 -1 © x'(0)
5(t) 0O 0 1 5(0)

= - = ! = ! = -
Thus cx(t) = -1, sx(t) 0, cx(t) 0, sX(t) 1, and of course
dx(t) = dé(t) = Q0. fAbout the midpoint of the system, the following sym-
metries exist for the characteristic first-order matrix elements and for
the curvature h(rt) = g; of the central trajectory; we classify them as
ol .

being either odd or even functions about the midpoint of the system. The

results are:

1
I
1]

dd h =
CX(T) o Sx(T) even dx(T) even (t) = even

odd h'(7) = odd

c;(T) even s;(r) odd di(T)
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FIG. 12--THREE-BENDING MAGNET ACHROMATIC SYSTEM.
A AND B ARE LOCATIONS OF PRINCIPAL PLANES
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FIG. 13--ACHROMATIC SYSTEM WITH QUADRUPOLE AT CENTER TO ACHIEVE ACHROMATIC
IMAGING. THE PRINCIPAL PLANES ARE LOCATED AT CENTERS OF THE BENDING MAGNETS



&3

As a consequence of these symmetries, the following second-order coeffi-

cients are uniquely zero for the transformation between principal planes.
(x|x x*) = (x]x8) = (x'|<2) = (x'|x'®) = (x'|x'®) «x'|8°) = 0
oo o o} o] o

This result is valid independent of the details of the fringing fields of

the magnets provided symmetry exists about the midpoint.
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Secénd-Order Optical Symmetries in n = 1/2 Magngtic Systems

In magnetic-dptical systems composed of n = 1/2 magnets having
normal entry and exit of the central trajectory (i.e., nonrotated entrance
and exit faces), several general mathematical relatiohships result from
the n =1/2 symmetry. Since ki = (1-n) h"  and ks = nhg, for n=1/2
it follows that CX(T) = Cy(T) and sx(r) = Sy(T) at any position T
along the system; thus as is well known, an n = 1/2 system possesses
first-order double focusing properties.

In addition to the above first-order results, at any point t in an
n = 1/2 system, the sums of the following second-order aberration coeffi-
cients are constants independent of the distribution or magnitude of the

sextupole components throughout the system:

(9}
(x|xé“) + (xlyé2) = a constant independent of Bh3.
2(x|x§) + (y]xoyo) = a constant independent of Bh3.
(x|xoxé) + (y|xoyé) = a constant independent of Bh3.
(xlxoﬁ) + (nyOS) = a constant independent of Bh3.
2(x|x52) + (ylxéyé) = a constant independent of Bh3.
‘ XX + (yly = g constant independent o .
(x]x!® Bt tant independent of Ph
X|X + (x|y = a constant independent o .
(|§) (i tant independent of Bh>
i 3
1 1y _
(xlxoxo) + (x[yoyo) = a constant independent of Bh-. (85)
Similarly,
2 2 . 3
(x'|xé ) + (x'|yg ) = a constant independent of Bh”.
'2(x'|x§) + (y'|x0y0)= a constant independent of Bh3.
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constant independent of Bh3.

(x'1xx!) + (y'|xy!) = a

(x'|x08) + (y'[yOB) = a constant independent of Bn°.
“ 2(x'|xé2) + (y'|xéyé) = a constant independent of Bh,

(x'lxé&) + (y'lyé&) = a constant independent of Bh3.

(x'lxi) + (x'lyi) = a constant independent of Bh.

a constant independent of Bn>, (86)

(x'1x ) + (x'|y_y!)
Of the above relations, the first is perhaps the most interesting in that
1t shows the impossibility of simultaneously eliminating both the (x|x52)
and (x|y82) aberrations in an n = 1/2 system; i.e., either (x|x82) or
(xlyé2) may be eliminated by the appropriate choice of sextupole elements

but not both.

o

g

- 93 -



VI. AN APPROXIMATE EVALUATION COF THE SECOND-ORTER ABERRATIONS
FOR HIGH ENERGY PHYSICS '

Quite often it is desirable to estimate the magnitude of‘variops.
second-order aberrations ip a proposed system to obtain insight into what
constitutes an optimum solution to a given problem. A considerable simpli-
fication occurs in the formalism in the high-energy limit where P is
much much greater than the transverse amplitudes'of the first-order tra-
jectqries and where the dipole, quadrupole and sextupole functions are
physically separated inté individual elements. It is also assumed that
fringing-fiela effects are small compared to the contributions of the
various multipole elements.

Under these circumstances, the'second-order chromatic aberrations
are generated predominately in the quadrupole elements; the geometric
aberrations are generated in the dipole elements (bending magnets); and,
depending upon their location in the system, the sextupole elements couple
with either the chromatic or geometric aberrations or both.

We have tabulated in Tables VII, VIII and IX the approximate formulae
for the high-energy limit for three cases of interest; point-to-point
imaging in the x (bend) plane, TableVII; point-to-point imaging in the y
(nonbend) plane, TableVIII; and parallel-to-point imaging in the y plane,
Table IX.

For the purpose of clearly illustrating the physical principles in-
volved, we assume that the amplitudes of the characteristic first-order
matrix elements cx, Sx’ dx’ cy, and sy are constant within any given'

Quadrupole or sextupole element, and we define the strengths of the



gquadrupole and sextupole elements as follows:

1

L
2 2 1
k_ dt =k L =

J Ta qaa £,

where L(_;_l is the effective length of the quadrupolc and where
l/fq = kq sin qu is the reciprocal of the focal length of the qth quad-

th
rupole; and for the J sextupole of length Ls’ we define its strength as

L
/ k2 dT = k? L .= S - °
o 3 S 08 J

The results are tabulated in the tables in terms of integrals over the
bending magnets and summations over the guadrupole and sextupole elements.
Note that under these circumstances the quadrupole and sextupole contri-
butions to the aberration coefficients are proportional to the amplitudes
of ;che characteristic firs*-order trajectories within these elements,
whereas the dipole contributions are proportional to the derivatives of
the first-order trajectories within the dipole elements.

As an example of the above concepts, we shall calculate the angle

between the momentum focal plane and the central trajectory for some re-
presentative cases.
For point-to-point imaging, it may be readily verified that

i

<dx(i) - 1 f Sxda Rlxor
tan \IJ' = - 3 7 = .(Q.____'__)__ = r———y,
Cxtlj (Xi | Xoa) Xi | x06 Xil Xo6

(87)

where the subscript o refers to the object plane and the subscript i

to the image plane,
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Iet us now consider some representative gquadrupole configurations and
assume that the bending magnets are placed in a region having a large am-
plitude of the unit sine-like function S, (so as to optimize the first-
order momentum resolving power Rl)o
Case I

Consider the simple quadrupole configuration shown in FigolA:with
tﬁe bending magnets located in the region between the quadrupoles and

s! 20 in this region. For these conditions, f, = {,, s =4. at the
X 1 17 "x 1

quadrupoles, and f 4. From Table VII, we have:

2 =73
~ . si 4&1’
(Xi|X86) = - CX(l) ; ?-; = - Cx(i)’&l <l + Z/;) = ’?/l(l + MX)

where we make use of the fact that ({B/ﬁl) =M = - cx(i). M_ is the

first-order magnification of the system.

Henec, i
f sxdoz a
an ¥ (XilX587 (1 + MX) ( )
Qase 11

For a single quadrupole, Fig.15, the result is similar
Ko
tan ¥ = (89)
1+ Mki

except for the factor K « 1 resulting from the fact that sx cannot
have the same amplitude in the beﬁding magnets as it does in the quadru-
pole. Therefore i

fstL:K/P,oz .
o X 1
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N

i

(Y[ sxdoz o
tan Y = =

(xilx;)a) 1+ M)

fi Sx

: FOCAL
2 PLANE

_— 1\
V

377-1-A

FIG. 14-- Focal plane tilt for symmetric quadrupole doublet spectrometer.
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¥ = GiMy FOCAL
PLANE

/%\ L

- -4 ——

377-2-A_

FIG. 15--Focal plane tilt for a quadrupole singlet spectrometer..
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Case III
Now let us consider a symmetric four-quadrupole array, Fig. 16 , such

that we have an intcrmcdiotc imeges Then

(xijx!d) = - 2cx(i)'ﬁl [1 + (%l/£3) J = twice that for Case I,
because of symmetry, Cx(i) = M& = 1. Thus, we conclude

tan ¥ = - Qf2 [1 + (&l//ﬁB)] " (90)

In other words, the intermediate image has introduced a factor of two in

the denominator and has changed the sign of V.
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tan ¥ = - a/2[1+@ /0]

—

1 2 f2 1
V V I B A
l ‘ ‘ FOCAL
H—zz I/ /00 SN A /A

377-3-A

FIG. 16--TFocal plane tilt for a symmetric array of 4 quadrupoles.
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TABLE VIT

Applying the Greens' function solution, Eq. (22), in the high-energy limit as de-
fined above for point-to-point imaging in the X(bend) plane, the second-order

c (i)Z Sjcxsx

matrix eleraents reduce to:

i
(xlxz) = . %cx(i)/c;czsxda
()

+

(x lxox'o) = - c ()

+

/
)
i ®x5x

(x|%,3) = - c (& / c;(d;{sxda 2c (1)E Schsxdx - cx(i) E 7

0

1 2 . 3
-3 ¢, / s;{ sxdoz + CX(I)E Sjsx
]

n

(]2,

o
: A sz
(xlxbd) = - cx(i)/ s! d's da + 2c (1)28 -c (1) =
_ j X x f
o ; q
2 c\((i) f 2 sxdx
(xld-‘) ? - J (a;‘) s da + ¢ (I)ESJXX c (1)Z—fq—-
o q
1
2
(x]‘y;) F o ,,3/ cglz sxda - ¢ (i)zsjc
¢ j
i
( xlyoy")) = cx(1) / c&s&sxda - 2 (1)Zsjcysysx
o
/i.
A >l 2
(xlyoz) = 5 e (b .{.4 s& s_da - c (1) ZSJ v x
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TABLE VIII
For-point-to-point imaging in the y (non-bend) plane, Eq. (23), the high-energy

limit yields:

(y]xoyo)-?f ) / cjoys dar - 2 (1)2 1,08y,

(ylxoya) = - cy(i) / c;(s'ysyda - 2c (1)ZSchsy
[¢]
'i

(ylxgy 0T - / siovs da - ch(i)ZSjsxcysy
o i
i

(ylx:)y:)) T - ) / systs da - 2 (1)Z:sJ X5y
[¢]

c. s
..\/o(;l = - Cyi’i)/ 0ydxsydoz 2c (1) E Scydxsy + cy(i) E —%;X
A ru

L
<
o—
e
l

- > >
= _ cy(l) / sydxsydoz 2c (1) Sdesy + cy(x) > I
o q q
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TABLE IX
For parallel-(line) -to—boint imaging in the y (non-bend) plane, Eq. (24), the

high energy limit yields:

(ylxoyo T s (1)/ cle! c da + 25 (1)2 i c,c y
(leoy'o) ER (1) / clsvc doz + 2s (i) E Schsycy‘
J
i
sy(i) / s;(cslcyda + ZSy(i) E Sjsxcf,
0 j
s (1)/ sv stc da + 2sy(i)Z:Sjsxsycy
] .

' | 2

=, . . ) 2. _ . %y

¥[¥o0) =+ 5,0 / cydieyda + 2Sy(l)Z:Sjcydx Sy(l)z T
- j q

n

EAA)

n

(RN

8 C
7 = s (i i - i
(y] y58) T+ 5,0 [sidre da + 2sy(1)Zsjsycydx 5,0 Z—X-qu
j q
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VII A FIRST-ORDER MATRIX PHASE ELLIPSE FORMALISM

FOR BEAM TRANSPORT OPTICS

In accelerators and in external beam transport systems, the behavior of an
individual particle is often of less concern than is the behavior of a bundle of
particles " the BEAM" of which an individual particle is a member. An ex-
tension of the first-order matrix algebra of Eq. (59), page 77, provides a
useful and convenient means for defining and transforming this "BEAM!'" through
a beam transport system. We éssumé tha’c the bundle of rays constitﬁting ;che'
BEAM may be adequately represented in phase space by an ellipsoid whose

coordinates are the six parameters

introduced previously in this report.

The validity and interpretation of this phase ellipse formalism must be
ascertained for each system being designed. For charged particle beams in
or emanating from acchelerators, the assumption of representing the BEAM by
an ellipsoid usually corresponds reasonably well with physical_reality. For
other applicatic;ns, _suéh as charged particle spectrometers, considerable '
caution must be exercised in the use of the phase ellipse [urmalilsm.

For the remainder of this discussion, we shall assume that (to first-
order) it is valid to represent the actual distribution of a bundie of rays by
an ellipsoid in 6—dimensional phase space, where the projection of the el-
lipsoid in any two dimensions (for example; x and 6) is an ellipse. To simplify
the discussion, we shall proceed by first formulating the matrix equation of ‘

a two-dimensional ellipse, derive and discuss its properties and then generalize

the result to an n(n = 6) dimensional ellipsoid.
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Matrix Equation for an Ellipse

Consider a two-dimensional real, positive definite, symmetric matrix,

o (o

11 12 .
o = ’ : (91)
%2 %2
and, its inverse
%2 " %2
0'_1 =_1_ A ;
lol
-
12 91

where we define |0'| as the determinant of o.

Define the column matrix or "vector"

X
X = (0 ; (92)

and, its transpose

T
X" -(x 8.
.Then,
xTolx- (93)
i.e., v
o x2-2cr X0 + o 02=|0’|

22 12 11

is the equation of an ellipse in X, # space.

Transformation Properties of the Ellipse Under a Coordinate Rotation

Let us now study the transformation . properties of ocunder a coordinate
rotation. Suppose we define the coordinates Xy 90 as those corresponding to

the directions of the major and minor axes of an ellipse. Then, the equation
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of this ellipse is

T —1 . L. - .
X0 0'0 X0 =1 (94)
where
) A1 o
XO = 5 0'0 = >
§ 00 0 To9
and
0'22 0
0_-1 _ 1
0 |0'0| 6
A1

from which the equation of the ellipse in an expanded algebraic form is

2 _
%92% * %11 9 ld“’ll"'zz
oY
xg
B_—" + — = 1 ) (95)
11 %32

From the type form Eq. (95), we conclude that the area of the ellipse is

oj=

1
— — 2
A= n(oy,9,,)° = | (96)
and :
0-11 = X2 . .
max
\ C1))

09 = max
Now, consider a rotation of the codrdinate system from the X, 00 axes to
the Xy, 6, axes by an angle « via the matrix equation
X, = MX0
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A

where

M= » (98)

sino cosa

is the coordinate rotation matrix. For this matrix

We may therefore rewrite Eq. (94) in the following forms:

-1

T. T . T -1 -1 ~
XOM M 0'0 M MXO— 1
or
T T. -1
(MX)) ™ (MogM™) ™~ (MX) = 1 |
or; finally
T -1
X107 X =1 99
where

o, = Mo MT=M0' M_1

1 0 0 (100)

Since the determinant of the product of two matrices is equal to the product of
the determinants, it follows that:
-1 -1
o] oo™ = [} oo M7 = [ |
The area of the ellipse is a constant under a coordinate rotation, therefore,

we conclude that the invariant equation for the area of the ellipse is:
b lol
A=rloy|2=n || (101)

independent of the orientation of the coordinate system.
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Phase Ellipse Transformations Through a Beam Transport System

We have shown in previous sections (e.g., Eq. (59), page 77) that the physics -

of heam transport optics may be reduced to a process of matrix multiplication.

X, = RX, : (102)

where the matrix R describes the action of the magnetic system on the particle
coordinates. We have also proved that the differential equations of motion re-
quire that the déterminant
|R| =1
" We . further note that for any matrix
R | = |RT | .

If now we begin with an arbitrary phase space ellipse represehted

by the matrix )
1 %o
U'l =
T2 %2

the inverse of which is

022 ~712
ol. 1
1 o]

~O12 11

The equation of this ellipse in Xl coordinate phase space is

T -1
X9 X

A

1 (103)

The less-than sign is now added to include all the phase points (particles) inside

the ellipse. .
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If now we rewrite this equation as follows:

-1
T T T & -1_-1 < _
X; R R o R OBX 21

(Rx, )" (RoyRT) ™ (Rx))% 1

or, finally

y X,=1 (104)

this is the equation of an ellipse in the X, coordinate system; where

T
o, =Roy R | | (105)

is the transformation relating o, to oy -

Using the property IRI = |RT| = 1, we immediately copclude that
Io-z I = lall hence, the phase area is preserved. We see then that the fact
that |R : = 1 is equivalent to Liouville's theorem of phase space conservation,

Some General Properties of an Ellipse

Consider the general ellipse
xTolx=1
We have already verified that the area of the ellipse is
1
A=mo| 2
The maximum values of x and #are simply

xma.x - ivoil and Omax = iVUZZ (106)

The x intercepts at 8= 0 are

2
log
_ 12 _  / 2
= E\Voq1 - =% 0'1(1-1‘12) (107)

in 0-2 9 1
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where we define
(108)

and the 0 intercepts at x= 0 are

9. ==+ \o jﬁ—i\/' 1-r2 . 109
int = * Vg ~ g T EVOop(l-T)) (109)

A

From which the area of an ellipse may be expressed in the following additional

forms: '

6

ax” (110)

1
= -2-.__'
A= Tlo|?= mx 0

int = ™int
The physical interpretation of the phase ellipse parameters are shown in

Fig. 17 for the two dimensional case.

Generalization to an n-Dimensional Ellipsoid
The two dimensional results may be generalized to n dimensions by ex- : ~
panding the column matrix X (Eq. (92)) to include all six of the phase space

variables as follows: ' ~

X [

O e 5 < o

— -

and also expanding O to a six by six symmetric array. Equation (93) then becomes

the equation of a six dimensional ellipsoid whose volume is

n/2

— s ol .
F(E + 1)
The phase ellipse in any two dimensions (e.g., x and 6) is a projection of the .

general six dimensional ellipsoid.
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int

CENTROID san

A Two Dimensional BEAM Phase Ellipse
Fig. 17
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The beain matrix carried in the computer for a TRANSPORT calculation

has the following construction:

X, 0 y K .8
X %1
0 Oo1 %3
y o33 Y3z 33
¢ o341 Tig 043 Tyy
2 %1 O59 %53 054 %5
8 61 09 T3 Tg4 T65 %6

The matrix is symmetric so that only a triangle 6f elements is neéded.

In the printed otitput this matrix has a somewhadt different format for ease

of interpretation:

X. 0. ¥ ) 2
X ~f0'11 CM
6 ‘/—05'2 MR X5y
y \[0'33 cM 1‘31 rdA
¢ xfo;l4 MR i o Yyq
¢ V55 CM Ty ¥52 Y53 Th4
’ V% Pc,j Tei T2 T3 Te4 Te5

The units are always piinted with the matrix.
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Physical Interpretation of the Phase Kllipse Formalism

For the six-dimensional BEAM matrix, the physical interpretation of

¢

the \/Oii's is as follows:

X :
‘[0'11 = n'zlax = The maximum (half)-width of the beam envelope in the
x(bend) plane.
| Omax
‘[0-22 =—a = The maximum (half)-angular divergence of the beam
envelope in the x(bend) plane.
Ymax
Vo, = = The maximum (hall)-height of the beam envelope.

33 2

P max
\/-0'4 i The maximum (half) -angular divergence of the beam
envelope in the y(hon-bend)-plane.

/]
\/0'5 5= ,mzax = % the longitudinal extent of the bunch of particles.
Vo, = 8 _ The half-width L (A_p) of the momentum interval being
66 2 2\ p

transmitted by the system.

The units appearing next to the \/'oi i's in a TRANSPORT printout sheet are the
units chosen for the initial X, 0,5 ¢ Land d = % coordinates at the be-
ginning of the data set via the units Card entry.

The physical interpretation of the off-diagonal terms in the beam matrix
are as shown in Fig. 17 . The magnitude of these off-diagonal térms are a
mea:sure of the orientation of the ellipsoid. A case of particular interest in any
given plane (e.g., x and #) is when the off-diagonal terms are equal to zero
(i.e., an erect ellipse). This éorresponds to a so-called "waist'" in the BEAM.

It is important to understand correctly the meaning of a waist: For an

existing beam, it is the location of the minimum beam size in a given region of

the system (i.e., there may be several waists in an entire beam transport

- 113 -



system). It 1s not the minimum'béém size that can be achieved at a particular
physical location; nor does a waist ly_ecessarily coincide with the fifst-order

image (R12é0 or R,,=0) of a system. Only in the limit of zero phase space area

34
do these three quantities occur at the same location. A useful criterion that deter-
mines the physical proximity of these quantities is the following: Suppose a system
has been adjusted to provide the smallest spot size possible at a given fixed loca-
tion, then if the size of the beam at the principal planes of an optical systerﬁ is
large compared to its size at the waist, at the first-order image, or at the mini-
mum spot size, then the location of these three quantities will closely coincide;
if, on the other hand, the size of the beam does not change substantially throughout
the system, then the locations of a waist, the minimum size and the first-order
image may (and usually will) differ substantially. *
If an arbitrary beam transport system is reduced to the most elementary
first-order form of representing it as an initial drift distance, followed by a , Y
lens action between two principal planes, and a final drift distance; then we
observe that there are only two basic phase ellipse transformations of interest.
(1) An arbitrary DRIFT distance and
(2) A LENS action
Each of the;se elementary cases are illustrated on Fig. 18 for both a
parallogram as well as ellipse phase space transformations. Note that a

DRIFT followed by a LENS action is not necessarily equal to a LENS action

followed by a DRIFT; i.e., the matrices do not necessarily commute.

*
See the appendix of Ref. 3 for a more extensive discussion of this general -
subject.
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X, =x. +L g
* DRIFT __ ~ j 170 0
00 1 091=0+ 00
D
1 A
D A
5,
8; /:7
4/ ——
4 2 X0 _ 2 xl
6 .
C £ B C Ea

LENS ACTION

A
B
x2=x0+0
X
-__0
6= -1 *Y%

DRIFT : 1}"1
U‘ //

o 2
_< = CENTRAL TRAJECTORY
A — | — 4

\3

1

2

PRINCIPAL PLANES 3
OF LENS 2

PRINCIPAL PLANES

OF LENS 3
135882

Fig. 18
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