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I. INI'RO:OOCTION 

Since the invention of the alternating gradient principle and the 

subsequent design of the Brookhaven and CERN proton-synchrotrons based on 

this principle, there has been a rapid evolution of the mathematical and 

physical techniques applicable to charged particle optics. In this report 

a matrix algebra formalism will be used to develop the essential principles 

governing the design of charged particle beam transport systems, with a 

particular emphasis on the design of high energy magnetic spectrometers. 

A notation introduced by John Streib1 has been found to be useful in con-

veying the essential physical principles dictating the design of such 

beam transport systems. In particular to first order, the momentum disper­

sion,the momentum resolution, the particle path length, and the necessary 

and· sufficient conditions for zero dispersion, achromaticity and iso-

chrond.city mey all be expressed as simple integrals of particular first­

order trajectories (matrix elements) characterizing a system. 

This formulation provides.direct physical insight into the design of 

beam transport systems and charged particle spectrometers. An intuitive 

grasp of the mechanism of second-order aberrations also results from this 

formalism; for example, the effect of magnetic symmetry on the minimiz-

ation or elimination of second-order aberrations is immediately apparent. 

The equations of motion will be derived. and then the matrix formalism 

introd,uced, develo'J)ed and evolved into useful theorems. It is hoped that 

the information supplied will provide· the reader with the necessary tools 

whereby he can design any beam transport system or spectrometer suited to 

his particular needs. 
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The theory has been developed to second order in a Taylor expansion 

about a central trajectory, characterizing the system. This seems.to be 

adequate for most high energy physics applications. For studying details 

beyond second order we have found computer ray tracing programs to be the 

best technique for verification of matrix calculations, and as a means for 

further refinement of the optics if needed. 

In the design of actual systems for high energy beam transport appli-

cations it has proved convenient to express the results via a multipole 

expansion about a central trajectory. In this expansion, the constant 

term proportional to the field strength at the central trajectory is the 

dipole term. The term proportional to the first derivative of the field 

(with respect to the transverse dimensions) about the central trajectory I 

is a quadrupole term and the second derivative with respect to the trans-

verse dimensions is a sextupole term, etc. 

A considerable design simplification results at high energles if the 

dipole, quadrupole and sextupole functions are physically separated such 

that cross product terms among them do not appear, ~1d if the fringing 

field effects are small compared to the contributions of the multipole 

elements comprising the system. At the risk of over-simplification, the 

basic function of the multipole elements may be ident:l.fied in the following 
. . 

way: The purpose of the dipole element(s) is to bend the ~entrA.l trajP.r:t.o:cy 

of the system and disperse the beam- that is, it is the means of provid-

ing the first-order momentum dispersion for the system. The quadrupole 
f 

element(s) generate the first-order imaging. The sextupole terms couple .. 
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with the second-order aberrations; and a sextupole element introduced 

into the system is a mechanism for minimizing or eliminating a particular 

second-order aberration that may have been generated by dipole or quadru­

pole elements. 

Quadrupole elements may be introduced in any one of three character­

istic forms: (1) via an actual physical quadrupole consisting of four 

poles such that a first field derivative exists in the field expansion 

about the central trajectory; (2) via a rotated input or output face of 

a bending magnet; and (3) via a transverse field gradient in the dipole 

elements of the systemo Clearly any one of these three fundamental mechan­

isms may be used as a means of achieving first-order imaging in a system. 

Of course dipole elements will tend to image in the radial bending plane 

independent of whether a transverse field derivative does or does not 

exist in the system, but imaging perpendicular to the plane of bend is 

not possible without the introduction of a first-field derivative. 

In addition to their fundamental purpose, dipoles and quadrupoles 

will also introduce higher-order aberrations. If these aberrations are 

second order, they may be eliminated or at least modified by the intro­

duction of sextupole elements at appropriate locations. 

In regions of zero dispersion, a sextupole will couple with and 

modify only geometric aberrations. However, in a region where momentum 

dispersion is present, sextupoles will also couple with and modify chro­

matic aberrations. 

Similar to the quadrupole, a sextupole element may be generated in one 

of several ways. First by incorporating an actual sextupole - that is, 

- 3 -



~ six-pole magnet into the system. However, any mechanism which intro-

duces a second derivative of the field with,respect to the transverse di-

mensions is. in effect introducing a sextupole component. Thus· a second-

order curved surface on the entrance or exit face of a bending magnet or 

a second-order transverse curvature on the pole surfaces of a bending 

magnet is also a sextupole component. 

AB a first illustration of systems possessing dipole, ·quadrupole and 

sextupole elements, consider the n = 1/2 double -focusing spectrometer . 

which is widely used for low and medium energy physics applications. Clearly 

there is a dipole element resulting from the presence of a magnetic field 

component along the central trajectory of the spectrometer. A distributed 

quadrupole element exists as a consequence of the n = 1/2 field gradient. 

In this particular case, since the transverse.imaging fo~ces are propor­

tional to ~ and the radial imaging forces are proportional to Jl - n, 

the restoring forces are equal in both planes, hence the reason for the 

"double focusing" properties. In addition to the first derivative of the 

field n = -(r0/B~dB/dr), there are usually second- .and higher-orde~ 

transverse field derivatives present. The second derivative of the field_ 

P = !2 (r2/B )(d2 B/dr
2

) introduces a distributed sextupole along the entire 
0 0 

length of the spectrometer. Thus to second-order a typical n = 1/2 spec-

trometer consists of a single dipole with a distributed q~drupole and 

sextupole superimposed along the entire length of the dipole element. 

Higher-order multipoles may also be present, but will be ignored in this 

discussion. 

In the preceding exam~le the dipole, quadrupole and sextupole functions 

are integrated in the same magnet. However, in many high 

- 4 -

... 



'·~ 

.•. 

energy physics applications it is often more economical to use separate 

magnetic elements for each of the multipole functionso As additional ex-

amples, consider the SLAC spectrometers. These instruments provide examples 

of solutions which combine the multipole functions into a single magnet as 

well as solutions using separate multipole elementso Three spectrometers 

have been designed: one for a maximum energy of lo6 GeV/c to study large 

backward angle scattering processes; a second for 8 GeV/c to study inter­

mediate forward angle production processes, and finally a 20-GeV/c spec-

trometer for small forward angle production. All of these instruments are 

to be used in conjunction with primary electron and gamma-ray energies in 

the range of 10-20 GeV /co 

The 1.6-GeV /c instrument is a single magnet, bending the central tra­

o jectory a total of 90 , thus constituting the dipole contribution to the 

optics of the system. Two "quadr1.1polen elements are present in the magnet; i.e., 

the input and output pole faces of the magnet are rotated so as to provide 

transverse focusing and the 90° bend provides radial focusing via the 

Jl - n factor characteristic of any dipole magnet. The net optical result. 

is point._to-point imaging in the plane of bend and parallel-to-point imag-

ing in the plane transverse to the plane of bendo The solid angle and 

resolution requirements· of the lo6-GeV/c spectrometer are such that three 

sextupole components are needed to acheive the required performance. In 

this application the sextupoles are generated by machining an appropriate 

transverse second-order curvature on the magnet pole face at three differ­

ent locations along the 90° bend of the system. In summary, the 1.6-GeV/c 

0 
spectrometer consists of one dipole, bending a total of 90 , two quadru-

pole elements and a sextupole triplet with the quadrupole and sextupole 

stren~ths chosen to provide the first- and second-order properties de-

manded of the system. 

- 5 -
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Optically, the 8-GeV/c spectrometer is relatively simpleo It consists 

of two dipoles, each bending 15° making a total of a 30° bend, and three 

quadrupoles (two preceding and one following the dipole elements) to 

provide point-to-point imaging in the plane of bend and parallel-to-point 

imaging in the plane transverse to the bending planeo The solid angle and 

resolution requirements of the instrument are sufficiently modest that no 

sextupole components are needed. The penalty paid for not adding sextu-

pole components is that the focal plane angle with respect to the optic 

axis at the end of the system is a relatively small angle (13.7°). With 

the addition of one sextupole element near the end of the system, the 

focal plane could have been rotated to a much larger angle. However, the 

13 •. ~ angle was acceptable for the focal plane counter array and 

it was ultimately decided to omit the additional.sextupole element. 

The 20-GeV/c spectrometer is a more complex design. The increased 

momentum requires an jBo~ twice that of the 8-GeV /c spectrometer. The 

final instrument is composed of iour dipole elements (bending magnets), two 

bending in one sense and the other two bending in the opposite sense, so 
\. 

the beam emanating from the instrument is parallel to the incident pri-

mary particles. The first-order imaging is achieved via four quadrupoles. 

The chromatic aberrations generated by the quadrupoles in this system are 

more serious than in the 8-GeV /c case because of an inte·rmediate image 

required at the midpoint of the system. As a result, the focal plane angle 

with respect to the central trajectory would have been in the range of 

2-4 degrees. As a consequence, sextupoles w.ere introduced in order to ro-

tate the focal plane to a more satisfactory angle for the counter array. 

A final compromioe placed the focal plane angle at !1.5° with respect to 
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the optic .axis '.Of' the ;flystem via the :introd;uction of' :three sextupoles. 

Thus the 20-oeV /c spe·ctrometer consists of four dipoles, with an ·inter-­

me.diate cross .... over .f'ollowing ·the first two d:~poles; :a quadrupole triplet · 

t.o achieve ·first-.order :imaging and finally ·a sextupole .tr:iplet to compen­

s.ate for the. chromatic abe·rrations ·introduced ·b;y the •quad.rupoles.. .'Opti.ca:l:ly, 

the .20-GeV/c spectrometer is w=ry .similar ·to the 1 •. 6-Ge:V/c :spe.ctrometer 

and yet physically it .. is radically different because of the .method .,of 

·introducing the various in.Ultipole c.omponents .• 

Having provided .some :!!epresentative .examples ·of spectrometer design, 

·=we :now ·wiSh ·to ·introduce .and. develop the· 'the.oret'ic.al too1s for .cr.eat±ng 

other desi,gns .• 

- 10 -
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II. A GENERAL FIRST- AND SECOND-ORDER THEORY OF BEAM TRANSPORT OPTICS 

The fundamental objective is to study the trajectories described by 

charged particles in a static magnetic field. To maintain the desired 

generality only one major restriction will be imposed on the field con­

figuration: Relative to a plane that will be designated as the magnetic 

midplane, the magnetic scalar potential ~ shall be an odd function in the 

transverse coordinate y (the direction perpendicular to the midplane), 

i.e., ~(x,y,t) = - ~(x,-y,t). This restriction greatly simplifies the 

calculations; and from experience in designing beam transport systems, it 

appears that for most applications there is little, if any, advantage to 

be gained from a more complicated field pattern. The trajectories will be 

described by means of a Taylor's expansion about a particular trajectory 

(which lies entirely within the magnetic midplane) designated henceforth 

as the central trajectory. Referring to Fig.~' the coordinate t is the 

arc length measured along the central trajectory; and x,y, and t form a 

right-hand.e<'l_ curvilinear coordinate system. The results will be valid for 

describing trajectories lying close to and making small angles with the 

central trajectory. 

The basic steps in formulating the solution to the problem are as 

follows: 

1) A general vector differential equation is derived describing the 

trajectory of a charged particle in an arbitrary static magnetic field 

which possesses "midplane symmetry." 

2·) A Taylor's series solution about the central trajectory is then 

assumed; this is substituted into the general differential equation and 

Lerms to second-order in the initial conditions are retained. 

- 11 -
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3) The first-order coefficients of the Taylor's expansion (for mono-

energetic rays) satisfY homogeneous second-order differential equations 

characteristic.of simple harmonic oscillator theory; and the first-order 

dispersion and the second-order coefficients of the Taylor's series sat-

isfY second-order differential equations having "driving terms." 

4) The first-order dispersion term and the second-order coefficients 

are then evaluated via a Green's function integral containing the driving 

function of the particular coefficient being evaluated and the character-

istic solutions of the homogeneous equations. 

In other words, the basic mathematical solution for beam transport 

optics is similar to the theory of forced vibrations or to the theory of 

the classical harmonic oscillator with driving termso 

It is useful to express the second-order results in terms of the first-

order coefficients of the Taylor's expansion. These first-order coeffi-

cients have a one-to-one correspondence with the following five character­

istic first-order trajectories (niatrix elements) of the system ( identifi~d 

by their initial conditions at t = q); where prime denotes the derivative 

with respect to t: 

1) 

2) 

3) 

The unit sine-like function s (tl' 
X 

in the plane of bend 

(the magnetic midpl~e) where s (o) = o ; 
X 

s'(G) =1 
X 

The unit cosine-like function c (t) 
X 

c (b) = 1 ; c'(O) = G 
X X 

in the plane of bend where 

The dispersion function d (t) 
X 

in the plane of bend where 

d (o) = o ; d'(o) = o 
X X 

- 13. -
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1 

4) 

5) 

The unit sine-like function s (t) 
y 

s (g) = 0 ; s'(g) = l y y 

The unit cosine-like function c (t) y 

c (o) = l ; c'(O) = o 
y y 

in the non-bend plane where 

in the non-bend plane where 

When the transverse position of an arbitrary trajectory at position t is 

written as a first-order T~lor's expansion in terms of its initial con-

ditions, the above five quantities are just the coefficients appearing in 

the expansion for the ·l;ransverse coordinates x and y as follows: 

x(t) = c ( t) x + s ( t) x' + d ( t) ·(~p) 
x o x o x · P

0 

and 

y(t) = c (t) y + s (t) y' 
y 0 y 0 

where x and y are the initial transverse coordinates and x' and 
0 0 0 

y' are the initial angles (in the paraxial approximation) the arbitrary 
0 

ray makes with respect to the central trajectory. ~p is the fractional 
Po 

momentum deviation of the ray from the central trajectory. The prime (') 

denotes total derivative, along the trajectory, with respect to t. 
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THE VECTOR DIFFEREN"TIAL EQUATION OF MOTION 

We begin with the usual vector relativistic equation of moti.on for 

a. charged particle in a static magnetic field equating the time rate· ·of 

change of the momentum. to the Lorentz force: 

• P = e{V X B) -· -
and .immediately transform this equation to one in whit:h time ha? ·tD.~~n 

elim:i.na.t.ed a:s a variable and we are left only with spatial c.oordinates. 

The curvilinear·coordinate system used is shown in Fig.4. Note that 

the variable t is not time but is the arc distance measured along the 

central trajectory. ·With a· little algebra., the equation .u.r muLluu is 

readj~J:.y transformed to the vector forms shown below. 

Let e be the· charge of the particle, V its speed, P· its · 

momentum magnitude, T its position vector, and ·T the. distance tra-

versed. The unit tangent vector· of the trajectory is .dT/d T. ·Thus, the 

velocity ·and momentum: of the particle are, respectively, (·dT/d.T)V and 
-.. 

(dT/dT)P.. The ve.ctor ·equa-ti·on of motion then becomes·: 
p,. 

or 

d ('( d'I' ) v -· -= p. dT· dT 

d~ d!_ (ill') P- +- .-· 
a_T2 dll' . d T (

dT ) = ·e ·...!:!!X B 
d:.T - ' 

where B is the magnetic induction. Then, since the· derivative of a 

unit vector is perpendicular to the unit vector, (d2 .T/drr) is·perpen--· 
dicular to dT/dT 

""'" 
It follows tha.t dP / dT = 0; that is, P is ·a 

- 20 -
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constant of the motion as expected from the fact that the magnetic force 

is always perpendicular to the velocity in a static m8;gnetic field. 

The final result is: 

(
dT . ) 
~x B • 
dT -

(l) 

THE COORDINATE SYSTEM 

The general right-handed curvilinear coordinate system (x, y, t) 

used is illustrated in Fig. 4:. A point 0 on the central trajectory 

is designated the origin. The direction of motion of particles on the 

central trajectory is designated the positive direction of the coordinate 

t A point A on the central trajectory is specified by the arc 

length t measured along that curve from the origin 0 to point A. 

The two sides of the magnetic symmetry-plane are designated the positive 

and negative sides by the sign of the coordinate y • To specify an 

arbitrary point B which lies in the symmetry-plane, we construct a 

line segment from that point to the central trajectory (which also lies 

in the symmetry-plane) intersecting the latter perpendicularly at A ; 

the point A provides one coordinate t ; the second coordinate x is 

the length of the line segment BA, combined with a sign (+) or (-) 

according as an observer, on the positive side of the symmetry-plane, 

facing in the positive direction of the central trajectory, finds the 

point on the left or right side. In other words, x, y and t form a 

right-handed curvilinear coordinate system. To specify a point C which 

lies off the symmetry-plane, we construct a line segment from the point 

to the plane, interscctj.ng the latter perpendicularly at B ; then 

- 21 -



B provides the two coordinates, t and x ; the third coordinate y 
I 

is the length of the line segment CB. 

We now define three mutually perpendicular unit vectors (X:, y, t) . 
... 
t is tangent to the central trajectory and directed in the positive 

t-direction at the point A corresponding to the coordinate t ; x 

is perpendicular to the principal trajectory at the same point, parallel 

to the symmetry-plane, and directed in the positive x-direction. y 

is perpendicular to the symmetry-plane, and directed away from that plane 
... ... ... 

on its positive sideo The unit vectors (:X,- y, t) constitute a right-

handed system and satisfy the relations 

... ... 
X yX t 
"! ,. " y = tx X (2) 

... 
t = XX y 

The coordinate t is the primary independent variable, and we shall 

use the prime to indicate the operation d/dt. The unit vectors depend 

only on the coordinate t, and from differential vector calculus, we may 

write 
... 
x' = ht 
... 
y' = 0 (3) 
.... ... 
t' = - 1u<: 

1 h(t) =- is the curvature of the central trajectory at point 
Po 

where 

A defined as positive as shown in Fig. 4. 

The equation of motion may now be rewritten in terms of the curvi-

linear coordinates defined above. To facilitate this, it is convenient 

to express d'.!/ d:T and in the following forms: 

- 22 -

!" 



0 
d:£ = ( di)/( d~) T' 

=-
dT dt dt T' 

d2 T 1 d ( ;:) - ----= 
d~ T' dt 

or 
d~ 1 T' d 

(T' )2 - T" (T' )2 = 2 
d~ - (T' )2 dt 

The equation of motion now takes the form 

T' d ..... (T' )2 = ~ T' (T' X B) 
p - ..... 

( 4) 
dt 

In this coordinate system, the differential line element is given by: 

A A ( )A dT = xdx + ydy + l+hx tdt -
and 

(dT) 2 = dT• dT = ~ + dy2 + (l+hx)2 dt2 

.... -
By differentiation of these equations with respect to t, it follows that: 

~ :t (T' )2 
= x'x" + y'y" + (l+hx)(hx'+h'x) 

and 
T' = £xr ..,..._ 

A A 

+ yy' + (l+hx) t 

A A A A A A 

T" = xx" + x'x' + yy" + y'y' + (l+hx)t' + t(hx'+h'x) -
Use of the differential vector relations of Eq. (3), reduces the expres-

'{ 
sion for T" - to 

A A A[ ] T" = x(x"- h(l+hx):~+ yy" + t 2hx' + h'x -
The vector equation of motion may now be separated into its component 

parts_; the result is: 
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;( f [x': - h(l+hx)] x' [x'x'.: + y'y'_' + (l+hx)(hx'+h'x)]} 
(T' )2 

+ y {y"- y' [x'x 11 + y 1y 11 + (l+hx)(hx'+h'x)]} 
(T' )2 

+ t {(2hx'+h'x) (l+hx) [x'x" + ~·'y" + (l+bx)(hx'+h'x)]} 
(T' )2 

= ~ T•(_!' X~) = ~ Tt {x.(y'Bt - (l+bx)By) + y[(l+bx)Bx - x'Bt) 

+ t[x'B - y'B J}. 
y X 

Note that in this f'orm, no approximations have been made; the 

(5) 

equation of' motion is still valid to all orders in the variables x and 

y and their derivatives. 

If' now we retain only terms through second order in x and y and 

their derivatives and note that (T')2 = l+hx + ••• ,the x and y com-

ponents of' the equation of' motion become 

x" - h( l+hx) - x' (bx' +h 'x) = ~ T' [y'Bt - ( l+hx)By] 

y" - y'(hx'+h'x) = ~ T' [(l+hx)B - x'B ) P X t 

( 6) 

The equation of' motion of' the central orbit is readily obtained by 

setting x and y and their derivatives equal to zero. We thus obtain: 

h = pe B ( o, o, t) 
. 0 y 

p 
0 or BP = -· 

o e 

. 

( 7) 

This result will be useful f'or simplif'ying the f'inal equations of' motion. 

P
0 

is the momentum of' a particle on the central trajectory. Note that 

this equation establishes the sign convention between h, e, and B y 

- 24 -
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EXPANDED FORM OF A MAGNETIC FIELD HAVING MEDIAN PLANE SYMMETRY 

We now evolve the field components of a static magnetic field 

possessing median or midplane symmetry. We define median plane symmetry 

as follows: Relative to the plane containing the central trajectory, 

the magnetic scalar potential cp is an odd function in y ; i.e., 

cp(x,y,t) cp(x,-y,t). Stated in terms of the magnetic field com-

ponents Bx, By and Bt' this is equivalent to saying that: 

B (x,y,t) = - B (x,-y,t) 
X X 

B)x,y,t) = B (x,-y,t) y 
and 

Bt(x,y,t) = Bt(x,-y,t) 

It follows immediately that on the midplane Bx = Bt = 0 and only By 

remains non-zero; in other words, on the midplan~::: B is always normal -
to the plane. As such, any trajectory initially lying in the midplane 

will remain in the midplane throughout the system. 

The expanded form of a magnetic field with median plane symmetry has 

been worked out by many people; however, a convenient and comprehensible 

reference is not always available. L. c. Teng2 has provided us with such 

a reference which is reproduced essentially in its original form in the 

following paragraphs. 

For the magnetic field in vacuum, the field may be expressed ino 

terms of a scalar potential cp by ~ = J!. q>. * The scalar potential will 

be expanded in the curvilinear coordinates about the central trajectory 

lying in the median plane y = 0. The curvilinear coordinates have been 

* For convenience, we omit the minus sign since we are restricting 
the problem to static magnetic fields. 
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. defined in Fig. 1 where x is the outward normal distance in the median 

plane away from the central trajectory, y is the perpendicular distance 

from the median plane, t is the distance along the central trajectory, 

and h = h(t) is the curvature of the central trajectory. As stated 

previously, these coordinates (x, y, and t) form a right-handed orthogonal 

curvilinear coordinate system. 

Since the existence of the median plane requires that ~ be an odd functio 

of y, i.e., ~(x,y,t) =- ~(x,-y,t); the most general expanded form of~ may 

be expressed as follows: 

cp(x,y,t) = f AJ.O + A x + A x2~ + A x3~ + •• ·) y 
' . ].]. ].2 • ].3 • 

J x2 \ Z: 
+ ~A +A x + A -2 , + • • • J' 

' 30 3]. 32 • • 

+ ••• 

00 00 

=I I 
n 211l+J. 

A ~ ~Y--...-.-
am+J.,n n! (2m+l)! 

m=o n=o 

where the coefficients A are functions of t. 
2!D.+J., n 

In this coordinate system, the differential line element dT is 

given by 

and the Laplace equation has the form 

1 d 
= 7

( 1=-'+"'=-hx----r-) dx 

( 8) 

(9) 

(10) 

Substitution of (8)into(l0) gives the following recursion formula for 

the coefficients: 
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+ nhA" 
2Dl+l.,n-l. 

- nh'A' 
2lll+J..,n-l. 

+A 
2Ill+l.,n+a 

where prime means 
d-
dt ' and where it is understood that all coefficients 

A w~th one or more negative subscripts are zero. This recursion formula 

expresses all the coefficients in terms of' the midplane field B/x,o,t): 

where 

A>,n = (:}) · 

x=o 
y='-o 

= functions of t. 

Since ~ is a.n odd function of y , on the median plane we have 

B_x = Bt = 0. The normal (in x direction) derivatives of - B.Y on the 

reference curve defines By over the entire median plane, hence the 

-+ 
magnetic field B over the whole space. The campone11ts of the field 

are expressed in terms of ~ explicitly by J. = ~cp or 

B = 
X 

00 00 

m=o n=o 

= 1 ~t = Bt (l+hx) dt 

xn fumJI2lll. 
A -_ -, r 

2ln+l.,n n. 2m • 

00 co 

1 LL (l+hx) 
m=o n=o 
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' 

where Bt is not expressed in a pure power expansion form. This form 

can be obtained straightforwardly by expanding l;hx in a power series 

of hx and multiplying out the two series; however, there does not seem 

to be any advantage gained over the form given in Eq. (13). 

The coefficients up to the 6th degree terms in x and y are given 

explicitly below from Eq. (11) 

A 
30 

A 
3l. 

A 
32 

A 
33 

A 
50 

A 
5l. 

- - A" A -hA 
l.O l.2 l.l. 

= - A" + 2hA11 + h 1A1 - A -hA + h2A 
l.l. l.O ].0 ].3 l.2 l.l. 

= A" + 4hA" + 2h 1A1 - 6h2A" - 6hh 1A1 - A -hA + 2h2A - 2h3A 
l.2 l.l. l.l. ].0 ].0 l.4 ].3 ].2 

= A" + 6hA" + 3h'A' - 18h2A" - 18hh11\. 1 + 24h3A" + 36h2 h'A' 
].3 l.2 l.2 l.l. l.l. ].0 l.O 

- A - hA + 3h2A - 6h3A + 6h4A (14) 
l.5 l.4 l.3 l.2 l.l. 

A"" + 2A" 
l.O l.2 

2hA" + h"A + 4h2A" + 5bh'A' +A + 2hA 
l.l. l.l. l.O l.O l.4 l.3 

A"" 4hA"" 6h 1A111 4h"A" h 1 11A1 + 2A" 6hA" 2h'A' 
l.l. l.O ].0 ].0 ].0 ].3 l.2 l.2 

+ h"A + 10h2A" + 7hh 1A1 - 4hh11A - 3h' 2A - 16h3A" 
l.2 l.l. l.l. l.l. l.l. ].0 

- 29h2h'A' +A +2hA - 3h2A + 3h3A 3h4A (15) l.O ].5 l.4 l.3 12 ll 

/.\ 
In the special case when the field has cylindrical symmetry about y, 

1 we can choose a circle with radius p = - = a constant for the reference 
0 h 

curve. The coefficients A in Eq. (8) and the curvature h of the 
2 m+J.,,n 
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reference curve are then all independent of t. Eqs. (14) and (15) are 

greatly simplified by putting all terms with primed quantities equal to 

zero. 

FIELD EXPANSION TO SECOND-ORDER ONLY 

If the field expansion is terminated vTith the second order terms, 

the results may be considerably simplified. For this case, the scalar 

potential cp and the field J. = JZ.. cp become: 

= functions of t only 

and 

x=o 
y=o 

A = - [A II + hA + A ] 
30 10 11 12 

where prime means the total derivative with respect to t. Then 

B = 9 cp from which --
B (x,y,t) = ~=A y+A xy+ ••• 

X X 11 12 

B (x,y;t) ~ . l 2 l 2 
= "'"A +A X + 2' A X +2fA y + y y 10 11 • 12 • 30 

Bt(x,y,t) 
l ~ 1 [A' y +A' xy + ••• ] = (l+hx:) L = (1-rhx) 10 ~~ 

By inspection it is evident that Bx,BY and Bt. are all expressed in 

terms of A A and A and their derivatives with respect to t. 
10' 11 12 
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Consider then B on the midplane only 
y 

B (x,o,t) =A +Ax+ 4A x2 
y l.O l.l. 2. 12 

+ ••• 

di:Eole quadrupole sextupole 

dB d~ 
= B + .J. X 

+ .l. __ y 
X y 

x=o dx 2! dx2 x=o 
y=o x=o 

y=o y=o 

etc 

2 + 

The successive derivatives identify the terms as being dipole, 

(17) 

quadrupole, sextupole, octupole, etc., in the expansion of the field. 

To eliminate the necessity of continually writing these derivatives, it 

is useful to express the midplane field in t.e:r.ms of dimensionless quan-

tities n(t), ~(t), etc., or 

B (x,o,t) = B (o,o,t) [1- nhx + ~2x2 + yh3x 3 + ••• ] y y 

where as before h( t) = 1/ p and n,~ and I are functions of 
0 

Direct comparison of Eqs. (17) and (18) yields 

n -[~y (:y)J~=~ and ~ = [2!:~ (~)]x=o 
Y . y=o 

We now make use of Eq. (7), the equation of motion of the central 

trajectory; 

B (o,o,t) 
y 

hP 
0 = --

e 

(18) 

t. 

(19) 

Combining Eqs. (7) and (19), the coefficients of the field expansions 
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become 

A = B (o, o, t) 
~.0 y 

= h (Po) 
c· 

~ cBY = .-nh2 ( Peo) 
ex x=o 

y=o 

1 1 
2! A~2 = 2! 

c2 B 
~ 
9~~ x=o 

y=O 

A ,. [htt - nh.:;s + ~h'] (:o) 
30 

A' = h'(p:) 
~0 

A' = -[(ffihh' + n 'h2 { 0
) 

1,~ 

To second order the ex:pansions for the :ma,g;petic fie;Lq, comv~:ments 

may now be expressed i.n the :form: 

B (x,y,t,) 
X 

••• J 

(20) 

p 
eo [h.., $2x+ 13h3:x;~ .., ~ (b,n ,.. nh3 + 213h3)y2 + • •,] 

p 

Bt(x,y,t) = eo [b,'y - (n'h2 + 2nhh
1 + hh' )xy + , •• J (21) 

where P is the momentum of the central trajecto~y. 
0 
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IDENTIFICATION OF n AND ~ WITH PURE 

QUADRUPOLE AND SEXTUPOLE FIELDS 

The scalar potential of a pure quadrupole field in cylindrical and 

in rectangular coordinates is given by: 

B r 2 

0 . rvv cp = -- Sln .:::'""' 

2a 

B xy 
0 =--
a 

(22a) 

where B is the neld at the pole, a is the radius of the quadrupole 
0 

aperture and r and a are the cylindrical coordinates, such that 

x = r cos a and y = r sin a. From B = 'i7cp , it follows that - -
B 

X 

By 
0 = --
a 

and 

Using the second of Eqs. (20) and(22a-b) 

B 
y 

B X 
0 

a 

dBY = Baa = -nh2 (Pe~) 
dx x=o 

y=o 

we define a quantity k2 as follows: 
q 

Similarly for a pure sextupole field, 

B r 3 B 
cp = - 0

- sin 3a = ~ [3x2y - y 3
] 

· 3a2 3a2 

B = 
X 

dcp 

dx 
= 

2B xy 
0 

- 33 -
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where B 
0 

is the field at the pole and a is the radius of the sextu-

pole aperture. 

Using the third of Eqs. (20) and (24) 

o
2

B B (p ~ 1 y o ~h3 eo 
2 ! 2lx2 x=o = a2 

y=O 

we define a quantity k
2 as follows: 
s 

(25) 

These definitions, Eqs. (23) and (25), are useful in the derivation of 

the equations of motion and the matrix elements for PUJ'e Q.uad.rupole and 

sextupole fields. 

THE EQUATIONS OF MOTION IN THEIR FINAL FORM TO SECOND ORDER 

Having derived Eq. (21), we are now in a position to substitute in-

to the general second-order equations of motion, Eq. (6). Combining 

Eq. (6) (the equation of motion) with the expanded field components of 

Eq. (21), we find for 

x:" -h(l+hx) -x' (hx '+h 'x) 

and for y~ 

X 

= p 
0 ~·{ (l+b,x)[ -h+nh2 x - ~h3x2+ ~(h" -nh3 +2~l)3)y2 ] 

p 

+ h'yy'+ •• ·l 
p 

y"- y' (hx '+h 'x) = 0 T' { -x 'h 'y - (l+hx) [nh2 y .,.. ~~r?:x:y] + 
p 

... l 
I 

Note that we have eliminated the charge of tne partic:I_e e in the 

equatior;1s of motion. This has resulted from the use of the equation of 
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motion of the central trajectory~ 
1 

Inserting a second-order expansion for T' = (x' 2 + y'~ + (l+hx) 2 )2 

and letting 

p 
0 

p 

p 

= 0 ~ l- 0 +52 + ••• J 

p (l + 5) 
0 

(26) 

we finally express the differential equations for x and y to second-

order as follows: 

+ higher-order terms (27) 

II+ h2 y n Y = 2(~-n)h3xy + h'xy' - h'x'y + hx'y' + nh2 yo 

+ higher-order terms (28) 

From Eqs. (27) and (28) the familiar equations of motion for the 

firct-order termR may be extracted: 

x 11 + (l-n)h2 x = ho and (29) 

Substituting from Eq. (23) into Eqs. (27) and (28) 

and taking the limit h ~ 0, h 1 ~ 0 and h 11 ~ 0, we find the second-order 

equations of motion for a pure quadrupole field: 
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where 

(3o) 

Simi:;Larly, to find the second-order equations of motion for a pur~ sex-

tupole field, we make use of Eq. (25) 13h3 = k2 and, again, take the s 

limi.t h ~o, h' ~o and hll ~ o. The results are: 

II + k2(x2 - y2) 0 X = s 

II 2k2xy 0 y - = s 

where 

k2 = 13h3 =(:i)( ;~ = c~) (B~o ~ (31) 13 

THE DESCRIPTION OF THE TRAJECTORIES. 

THE COEFFICIENTS OF THE TAYLOR'S EXPANSION. 

The deviation of an arbitrary trajectory from. the central trajectory 

is described by expressing x and y as functions of t. The expres-

sions will also contain x y x' y' o' o' o' o and o, where the subscript 0 

indicates that the quantity is evaluated at t = 0; thes~ five boundary 

values will have the value zero for the central trajectory itself. The 

procedure for expressing x and y as a five-:t'old Taylor expansion will 

be considered in a genera:;L way using these boundary values, and detailed 

formulas will be developed for the calculations of the coefficients 

thro~gh the quadratic terms. The expansions are written: 

L: (xlxK A x'll ,v o~)x: ')\ 
x'll v nx X yo yo Yo y' I o 0 0 0 

ox)x: 

(32) 
( K A x'll ,v A x'll ,v 0~ y = L: Yjxo yo yo yo Yo 0 0 

- 36 -
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Here, the parentheses are symbols for the Taylor coefficients; the first 

part of the symbol identifies the coordinate represented by the expansion, 

and the second indicates the term in question. These coefficients are 

functions of t to be determined. The symbol ~ indicates summation over 

·.zero and all positive integer values of the exponents K_, "A, J.l, v, X ; 

however, the detailed calculations will involve only the terms up to the 

second power. The constant term is zero, and the terms that would indi-
• 

cate a coupling between the coordinates x and y are also zero; this 

results from the midplane symmetry. Thus we have 

(xjl ) = (yjl ) = 0 

(xi yo) = (yjxo) = 0 ; (33) 
and 

(xj y') = (yjx~) = 0 
0 

'· 
Here, the first line is a consequence of choosing the central trajectory 

as the reference axis, while the second and third lines follow directly 

from considerations of symmetry, or more formally, from the formulas at 

the end of this section. 

As mentioned in the introduction, it is conyenient to introduce the 

following abbreviations for the first-order Taylor coefficients: 

(xlxo) = c (t) (xj x') = s (t) (xjn) = d(t) 
X 0 X 

(ylyo) = c (t) (ylyj) = s (t) ( 34 ). 
y 0 y 
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Retaining terms to second-order and using Eqs. (33) ahd (34); the 

Taylor's expansions of Eq. (32) reduce to the following terms! 

X 

and. 

y ;;;;;; 

s 
X 

,.-_ 
+ (xlx' )x' 

0 0 

.d 
X -+ (xjo)o 

+ (xj x x' )x x' + (x lx o )'x o . 
00,00 0 0' 

+ (xly y')y y' + (xjyo'2)yo'2 1 0 0 0 0 

s 
y ,_,_ 

+ c~r~~r I 'rJ I 
0 0 

+ (yjx y )x y· + (yjx y')x y' + (yjx'y )x'y 
0 0 0 0 0 0 0 0 0 0 0 0 

+ (ylx'y')x'y'. + (yjy B)y o oo 00 0 0 
+ (yjy'o)y'o 

0 0 
(35) 

Substituting these expansions into Eqs. (27) and (28), we derive a dif-

ferential equation for each of the first- and second-order coefficients 

contained ih the Taylor's expansions for x and y~ When this is done, 

a systematic pattern evolves: namely, 

c" + k2 c = (' c" + k2 c ;;;;;; 0 
X X X y y y· 

s'' + k2 s = 0 s'i + k2 s = 0 
X X X y yy 

ri 
+ k~~ f ~ + k~~ f '\: = = 

X y (36) 

where k2 
= (l~n)h2 and k2 

= nh2 for the x and y motioRs, 
X y 
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respectively. The first two of these equations represent the equations 

of motion for the first-order monoenergetic terms s , c , s and c . 
X X y y 

That there are two solutions, one for c and one for s, is a manifes-

tation of the fact that the differential equation is second-orderj hence, 

the two solutions differ only by the initial conditions of the character-

istic s and c functions. The third differential equation for q is 

a type form which represents the solution for the first-order dispersion 

d and for any one of the coefficients of the second-order aberrations 
X 

in the system where the driving term f has a characteristic form for 

each of these coefficients. The driving function f for each aberration 

is obtained from the substitution of the Taylor's expansions of Eq. (35) 

into the general differential Eqs. (27) and (28). 

The coefficients satisfy the boundary conditions: 

c(O) - 1 C I ( 0) = 0 

s(O) ··- 0 8 I ( 0) = 1 
(37) 

d(O) = 0 d I (0) = 0 

q(O) = 0 q' (0) 0 

The driVing term f' is a polynomial, peculiar to the particular q, 

whose terms are the coefficients of order less than that of q, and their 

derivatives. 

nomials in 

The coefficients in these polynomials are themselves poly-

h, h', ••• ,with coefficients that are linea~ functions of 

For example, for· q = (xlx2 ) 1 we have 
0 

(38) 

In Table I, page 43, are listed the f functions for the remaining linear 
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coefficient, the momentum dippersion d(t) and all of the non-zero quad­

ratic coefficients! shown in Eq. ( 35), w)1ich represent the second-order 

aberratiqns of a system~ 

The coefficients c ~nd s (with identical subscripts) satisfy the 

same differential equation which nas the form of the homog~neous equation 

of an l}armonic qscillator. Here, the stiffness k2 is a fUl1ction of t 

and may be of either ~ign. In view of their boundary conditions, it is 

natural to consid~r c and s as the analogs of the two fundamental 

solutions of a simple harmonic oscillator, namely cos mt and (sin mt)/m. 

The function q is the response of the hYJlotl}etical opcillator when, 

starting at equilibrium and at rest, it is subjected to a driving force f. 

The stiffness parameters k 2 and k 2 represent the converging 
X y 

powers of the field for the two respective coordinates. It is possible 

for either to be negative, in which case, it actually represents a di-

verging effect. Addition of k
2 and k 2 yields 
X y 

For a specific magnit~de of 

k2 + k2 = h2 
X y (39) 

and k2 maY be varied by adjusting 
y 

n, but the total converging power is unchanged; any ~ncrease in one con-

verging power is at the expenpe of the other. The total converging 

power is posit;ive; thi~ :fact admits the pospibility of double-focusing. 

A special cas~ of tnterest is provided by the uniform field; here 

h = constant and n = Q; then and Thus, there is a 

converging effect for x resulting in the fa~liar semicircular focus-

ing, whicP. is accompanied by no ·convergence or divergence of y. 
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Another important special case is given by n ~ 1/2; here, 

k2 = k2 = h2 /2. Thus, both coordinates experience an identical positive 
X y 

convergence, and c = c and 
X y s = s ; that is, in the linear approxi-

x y . 

mation, the two coordinates behave identically, and if the trajectory 

continues through a sufficiently extended field, a double focus is 

produced. 

The method of solution of the eq_uations for c and s wjll not be 

discussed here, since they are standard differential eq_uations. The 

most suitable approach to the problem must be determined in each case. 

In many cases it will be a satisfactory approximation to consider h 

and n, and therefore k2 also, as piecewise-uniform. Then, c and s 

are represented in each interval of uniformity by a sinusoidal function, 

a hyperbolic function, or a linear function of t or simply a constant. 

Using Eq_< (36), it follows for either the x or y motions that: 

d (cs'-c's)=O dt 

Upon integrating and using the initial conditions on c and s in 

Eq_. (37), we find 

cs'-c's=l. (4o) 

This expression is just the determinant of the first-order transport 

matrix representing either the x or y eq_uations of motion. It can 

be demonstrated that the fact that the determinant is eq_ual to one is 

equivalent to Liouville's theorem which states that phase areas are con-

served throughout the system in either the x or y plane motions. 
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The first-order dispersion and each of the coeffici~nts of the 

second-order aberrations (represented by the symbol q) are evaluated using 

the Green's function integral t 

q = /f(T)G(t,T) dT (41) 
where 0 

G(t,T) = s(t)c(T) - s(T)c(t) ( 42) 

or t t 

q = s(t) J f(T)c(T) dT - c(t) f f(T)S(T) (43) 
0 0 

To verif'y the correctness of this result, we differentiate Eq. (43) aud 

make use of Eq. (40) and the first two of Eq. 's 36 to establish an identity 

with the last of Eq. 's 36. Thus: 

t t 

rJ.' = s'(t) j f(T)c(T) dT - c'(t) J f(T)s(T) dT (44~) 
and 0 0 

t t 
q" = f + s"(t) f f(T)C(T) dT- c"(t) f f(T)s(T) dT 

0 

== f - k
2

q 
(44b) 

This along with the pbvious results q{o) = .0 (Eq. (43)] and q'(o) 7 0 

[Eq. (44a)] shows th~t Eq. (43) is the desired solution of the differen-

tial equation for q. 

The driving terms tabulated in Table I, combined with Eqs~ (43) and 

(44), complete the solution of the general second-order theory. It now 

remains to find explicit solutions for specific systems or elements of 

systems. This will be done in later. sections of this report. 

It will be seen from Table I that several coefficients are absent! 

including the linear terms that would represent a coupling between x and 

y. The absence of these terms is a direct consequence of the initial 

assumption of midplane symmetry. If ~idplane symmetry is destroyed any 

or all of these missing terms may appear in the solution. 
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TABLE I 

The Driving Terms for the Coefficients 

Listed· in the first column are the coefficients in the expressions for the coordinates x and y; they are 
indicated by means of the notation introduced in Eq. (32); in addition, the abbreviations given in Eq. (34) are used. 
For general considerations, q has been used to represent any one of these coefficients. Listed in the second 
columrt are the corresponding driving functions f, which are related to the coefficients as shown by Eq. (36), This 
li:=t includes all those functions f for the linear and quadratic coefficients which do not vanish identically. 

q f 

d = (x 1 6) h 
X 

2 3 2 
(xI xo) + (2n - 1 - j3)h c 

X 
+ h'c c' 

I 2 
+2hc' 

X X X 

3 
(xl x x' ·, + 2(2n - 1 - J3)h c s 

o o· X X 
+h'(cs' + c' s ) +he's' 

XX X X X X 

(xI ox 
0

) 
2 3 

(2 - n)h c + 2(2n - 1 - j3)h c d 
X X 

+ h' (c d' + c 'd) +he'd' 
X X X 

2 3 2 
(x 1 x~ ) + (2n - 1 - j3)h s 

X 
+ h's s' 

I 2 
+2hs' 

X X X 

2 3 
(xlox') (2 - n)h s + 2(2n - 1 - J3)h s d 

0. X X 
+ h'(s d' + s'd) + hs'd' 

X X X 

(xI 62) -h+ 2 3 2 
(2 - n)h d + (2n - 1 - j3)h d + h'dd' +~ hd12 

2 I 3 3 2 
(xI Yo) +2 (h" - nh + 2j3h )c y 

+ h'c c' _! h ,2 
- 2 c y y ...... y 

3 3 
(xI y y') + (h" - nh + 2j3h )c s 

0 0 y y + h' (c s' + c's ) - he's' y y YY y y 

2 I 3 3 2 
(xI y~ ) + 2 (h" - nh + 2 j3h )s y + h's s' I h ,2 -2 s y y y 

·-



T.\BLE I - Continued 

q f 

(ylxoyo) 
r, .... 

h'(c c' 2({3 - n)h c c + - c'c-) + hc'c' xy X y X y . X y 

(y I X y') 
. 3 

h'(c s' 2({3 - n)h e s + ":" e's ) + he's' 
0 0 X y X y X y X y 

r, 

. (Y·I x' y ) 2({3 - n)l{'s e + h'(s e' ' ) + hs'e' -.s c 
0 0 . X y X y ··x y X y 

r, 

(y I x' y') 2({3 - n)h .:·s s · + h'(s s' - s's ) + hs's' 
0 0 X y X y X y X y 

2 r, 

(Yj6y
0

) nh e + 2({3 - n)h .:·e d - h'(c d' c'd) + he'd' y y y y y 

h2 
r, 

<YI oy~) .:0 
n s + 2({3- n)h s-d - h'(s d' - s'd) + -hs'd' y y y y y 

:t 



TRANSFORMATION FROM CURVILINEAR COORDINATES TO A RECTANGULAR 

COORDINATE SYSTEM AND "TRANSPORT" NOTATION 

All results so far have been expressed in terms of the general curvi-

linear coordinate system (x,y,t). It is useful to transform these results 

to the local rectangular coordinate system (x,y,z), shown in Fig., 4, to 

facilitate matching boundary conditions between the various components 

ccmprising a beam transport system. This is accomplished by introducing 

the coordinates e and ~ defined as the x and y slopes in the local rec-

tangular system: 

e dx x' x' 
= = zt = dz 1 + hx 

(45) 

rp = 
dy 

= 
y' 

= 
y' 

dz zt 1 + hx 

where, as before, prime mecns the derivative with respect to t. 

Note that e = tan e and ~ = tan ~' are correct to second order, 

so that in the present discussion e and ~ may be considered as angles 

relative to the local z-axis. 

Using these definitions and those of Eqs. (34) and (35), it is now 

possible to express the Taylor's expansions for x, e, y and ~ in 

terms of the rectangular coordinate system. For the sake of compl~te-

ness and to clearly define the notation used, the complete Taylor's ex-

pansions for x, e, y, and ~ at the end of a system as a function of the 

initial variables are given below: 

c s d 
X X X 

,-"- ...-- --.. 
X = ('Xlxo)xo + (xleo)eo + (xlo)o 

+ (xlx2)x2 
0 0 + (xlxoeo)xoeo + (xlx0 o )x

0
o 

+ (xje~)e~ + (xl80 o)e0 o + (xjo 2 )o2 

+ (xly~)y~ + (XIYo~n)Yo~r.1 · + (xl~~)r.p~ 
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cl 
,X 

sl 
X 

e = (Blx )x + (eje )e 
0 0 0 0 

+ (ele~.)e~ + 

c 
y 

,-.A.,..., 

y = (yjyo)yo 

C I 
y 

(ejxe)xe 
0 0 0 0 

(ele 5)e 5 
0 0 

+ (YIY 5)y 5 
0 0 

S I 
y 

dl 
.. X. 

,:.;.,.:.__ 

+ (BI5)5 

+ (Bjx 5)x 5 
0 0 

+ 

+ (yjcp 5)cp 5 
0 0 

+ (cpjx y )x y + (cpjx cp )x cp + (cpjB y )e y 
0 0 0 0 0 0 0 0 0 0 0 0 

(46) 

Using the definitions of Eq. (45), the coefficients appearing in Eq. 

(46) may be easily related to those appearing in Eq. (35). At the same 

time, we will introduce the abbreviated notation used in the Stanford 

TRANSPORT Program3 where the subscript 1 means x; 2 means B_, 3 means y; 

4 means ~, and 6 means 5. The subscript 5 is the path length difference 

~ between an arbitrary ray and the central trajectory. The symbol 

R. . will be used to signify a first-order matrix element and the 
lJ 

symbol Tijk will signify a second-order matrix element. Thus, 
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we may write Eq. (46) in the general form 

6 6 6 
x. = \ R .. x.(O) + \ \ T .. k x.(o)~(o) 

1 L lJ J L L lJ . J . 
(47) 

j=l j=l k=j 

where 

X = X , X = 8 , X = Y , X = cp , X = -t and X = 5 
1 2 3 4 5 6 

denotes the subscript notation. 

Using Eq. (45) defining e and cp , we find the following identities 

among the various matrix element definitions: 

For the Taylor's expansions for X we have; 

R = (xjx
0

) = c 
11 X 

R = (xj8 ) = (xjx~) = s 
12 0 X 

R = (xj5) = d 
16 X 

T = (xlx2 ) 
111 0 

T = (xlx e ) = (xlx x') + h(O)s 
112 . 0 0 0 0 X 

T = (x 1 x 5) 
116 0 

T = (xiA~) = (x:lx~2) 122 

T = (x 1 e 5) = (xjx~5) 126 0 

T - (xl52 ) 
166 

T = (xly~) 133 

T = (xJyocpo) =(xjyy') 
134 0 0 

T = (xjcp~) = (xJy'2) 
144 0 

(48) 

For the e tcrmo we have: 

R (eJx ) (x'l xo) 
d (xjx

0
) C I = = =- = 21 . 0 dt X 

R = (eje ) = (x'J x~) = s' 
22 0 X 

H = (elo) = (x'lb) = d' 
26 X 
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T = (e I x2) = (x' 1 x~) - h(t)c c' 
211 0 X X 

T = (elx e ) = (x'jx x') + h ( 0 ) s ' - h( t )[ c s' + c '.s ] 
212 0 0 . 0 0 X X X X X 

T = (elx o) = (x'lxo) - h(t)[c d 1 + c 1d ] 
216 0 0 X X X X 

T = (ele2) = (x'lx~2) - h(t)s s' 222 0 X X 

T = (eJe o) = (x'Jx'o) - h(t)[s d 1 + s'd ] 
226 0 0 X X X X 

T = (ejo2 ) = (x'l 52) - h(t)d d 1 

266 X X 

·r = (el y2) = (x' I y~) 233 0 

T = (eJyoq>o) = (x'l y y') 
234 0 0 

T = (eJcp2) = (x'l y'2) (49) 
244 0 0 . 

For the y terms in the Taylor's expansion: 
'· 

R = (YIY
0

) = c 
33 y 

R = (yJcpo) = {yjy~) = s 
34 y 

T = (yjxoyo) 313 
T = (ylxocpo) = (ylxy') + h(O)s 

314 0 0 y 

T = (yleoyo) = (ylx'y ) 
323 0 0 

T = (yle rtJ ) = (ylx'y') 324 0 0 0 0 

T = (ylyoo) 336 

T = (yjcpoo) = (yly'o) 
3415 0 

. (50) 

and finally for the cp terms we have: 
. ' 

R (cplyo) {y'] yo) d 
(YIY

0
) = c' = = = dt 43 X 

R = (cpjcpo) = (y'IY~) = s' 
44 y 
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... 
T = (cpjxoyo)· = {y'lxoyo) - h{t)c c' 

413 X y 

T = (cpjxocpo) ·- {y'jxy') + h(O)s' - h{t)c s' 
414 0 0 y X y 

T = (cpjeoyo) = {y'jx'y) h{t)s c' 
423 0 0 X y 

T = (cpjeocpo) = {y'j x'y') - h(t)s s' 
424 0 0 X y 

T = (cpjyoo) = {y'j y 5) h{t)c'd 
436 0 y X 

T = (cpjq>o~) = {y'l y'o) - h{t)s'd (51) 
446 0 y X 

All of the above terms are understood to be evaluated at the terminal 

point of the system except for the quantity h(O) which is to be 

evaluated at the beginning of the system. In practice, h(O) will 

usually be equal to h( t); but to retain generality in the formalism 

we show them as being different here. 

All non-listed matrix elements are identically equal to zero. 

FIRST- AND SECOND-ORDER MATRIX FORMALISM OF BEAM TRANSPORT OPTICS 

The solution of first-order beam transport problems using matrix 

. 4,5,6 algebra. has been e:x:tens1vely documented. However, it does not seem 

to be generally known that matrix methods may be used to solve second-

and higher-order beam transport problems. A general proof of the validity 

of extending matrix algebra to include second-order terms has been given 

by Brown, Belbeoch, and BoUnin;7 the results of which are summarized 

below in the not,ation of this report and- in "TRANSPORT" notation. 

Consider again Eq. {47). From Ref. 3, the matrix formalism may be 

logically extended to include second-order terms by extending the defini-

tion of the column matrices x. and x. in the first-order matrix algebra 
]_ J 

to include the second-order terms as shown in Tables II, III, IV and V. 
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In addition it is necessary to calculate and include the coefficients 

shown in the lower right-hand portion of the square matrix such that the 

set of simultaneous equations represented by Tables II through V are valid. _ 

Note that the second-order equations, represented by the lower right-hand 

portion of the matrix, are derived in a straightforward manner from the 

first-order equations, represented by the upper left-hand portion of the 

matrixo For example, consider the matrix in Table II; we see frQm row 1 

that 

X = C X + S 8 + d 5 + second-order terms. 
X 0 X 0 X 

Hence, rovr lt is derived directly by squaring the above equation as follows: 

xF = (c x + s I:J + dxo)c 
X 0 X 0 

2 2 + 2c s xu + 2c d x 5 = C X 
X 0 X X 0 0 X X 0 

+ s2e2 + 2s d e 5 + d252 
X 0 X X 0 X 

The remaining rows are derived in a similar manner. 

If now x
1 

= R1x
0 

represents the complete first- and second-order trans­

formation from 0 to 1 in a beam transport system and x2 = R x is the trans-2 l . 

formation from 1 to 2, then the first- and second-order transformation from 

0 to 2 is simply x2 = R2x
1 

= R2R1x
0

; where R
1 

and R
2 

are matrices fabricated 

as shown in Tables II and III in our notation or as shown in Tables IV and V 

in "TRANSPORT" notlition. 
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(Jl ..... 

,.... 
c 

X 

c' 
X 

0 

~ 

s d 
X X 

s' d' 
X X 

0 1 

.. 

' . 
·-

0 

TABLE II 

(xl~) Cxlx0a0 ) (x/x0o) (xj~) (xje
0

o) (xI 52) Cx/ro) 

Cel~) (e[x0e0 ) ·etc. 

0 0 0 0 0 0 0 

c2 2s c 2c d s2 2s d d2 0 
X .. X X X X X X X X 

·c S I 

c c' X X etc. + 
X X c's X X 

' 

Formula.t::..on ofth{j . .;ec-ond-order mutrJx :~·or the !,end (x)-plaJle .. 

- r- -

(x IYocpo) (x jcf>~) xo 

eo 
. 

0 0 0 

0 0 x2 
0 

xoeo 

._ xo'f. 

e2 
0 

80'6 

'f-2 

To 
" 

Yocpo 

cp2 
0 

- --
373-1-A 



TABLE III 

-~ 

(ylxoyo) (yjxcp) (vje y ) (yjeocpo) (yjyo5) (yjcpo5) c s y y 0 0 • 0 0 

I"'" -
Yo 

c' s' (cpjxoyo) (cp!xcp) (cp!Boyo) (cp!Bocpo) (cplyo5) (cpjcpo5) y y 0 0 cpo 

c c c s s c s s d c d s 
X y X y X y xy X y X y xoyo 

c c' c s' s c' etc. 
X y X y X y xocpo 

I 
0 8oYo 

I- 8ocpo 

- y 5 
0 

' i 
cp 5 

0 .... I - ...... -

Formulation of the second-order matrix for the non-bend-(y) plane. 



.. 

TABLE IV 

I 
.., 

R R R T T T T T T T T T ll l2 l6 lll L.2 ll6 l22 l26 l66 l33 l34 l44 

r- ~ 

X 
0 

I 
T T T T T T R R R T T T 

2l 22 26 2ll 2:..2 216 222 226 266 233 234 244 
e 

0 

0 0 l 0 0 0 0 0 0 0 0 0 0 

R2 2R R 2R R R2 2R R R2 0 0 0 ll ll l2 ll l6 l2 l2 l6 l6 
2 

X 
0 

R R R R 
R R 

ll 22 ll 26 etc. 0 0 0 ll 2l +R R +R R 
l2 2l l6 2l 

x e 
0 0 

X 0 
0 

0 e2 
0 

e o 
0 

02 

y2 
0 

. 
Yo({Jo 

({)2 
0 

L - '- -
Formula::.ion of second-order matrix in the bend (x)-plane using TRANSPORT notation. 



TABLE V 

r- - .r- - ,..- ........, 

y R R T T T T .T T 
33 .. .34 313 314 323 324 336 346 Yo 

i ' 

cp R R T T T T T T 
43 44 413 414 423 424 436 ·446 

cpo 

xy R 'R R R R R R .R .f. .R R R 
11 33 11 34 12 33 12 34 16 33 16 34 

xoyo 

xcp R R R R R R etc. 
11 43 11 44 12 43 xocpo 

0 
ey e Y . 

0 0 

ecp 8ocpo 

' 

yo Yo 5 

.· 

cpa cp 5 
0 

\ 

-- '--- - - -

Formulation of second-order matrix in .n.::m-bend (y) -plane using TRANSPORT notation. 



III. REDUCTION OF THE GENERAL FIRST- AND SECOND-ORDER THEORY 

TO THE CASE OF THE IDEAL MAGNET 

Part II of this report was devoted to the derivation of the general 

second-order differential equations of motion of charged particles in a 

static magnetic field. In Part II no restrictions were placed on the 

variation of the field along the central orbit, i.e., h,n, and~ were 

assumed to be functions of t. As such, the final results were left in 

either a differential equation form or expressed in terms of an integral 

containing the driving function f(.t), and a Green's function G(t, T) 

derived from the first-order solutions of the homogeneous equations. 

We now limit ·the generality of the problem by assuming h, n, and ~ to be 

constants over the interval qf integration With this restriction, the 

solutions to the homogeneous differential equation [ Eq. (36)of Section II] 

are the following simple trigonometric functions: 

c ( t) = cos k t s ( t) = J:.. sin k t 
X X X kx x 

c ( t) = cos k t s ( t) =~sink t (52) y y y ky, y 

where now 

1 =-

become constantsof the motion. p
0 

is the radius of curvature of the 

central trajectory. 
,.. 

The solution of the inhomogeneous differential equations !the third 

of Eqs. (36)] for the remaining matrix elements is solved as indicated 

in Part II, using the Green's functions integral Eq. (41) and the driving 

functions listed in Table I. With the restrictions that k and k are 
X y 

constants, the Green's functions reduce to the following simple trigone-

metric forms: 
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G (t,-r) 
X 

= l sin k ( t-T) k X 
X 

and 

G (t,-r) = l sink (t-T) <53) y k y y 

The resulting matrix elements are tabulated below in terms of the key 

integrals listed in Table VI, the five characteristic first-order matrix 

elements s , c , d , c , and s and the constants h.. n.. and 13. 
x · .x: .x. :r Y 

The constants n and 13 are defined by the midplane field expansion 

(Eq.(l8)of section I(: 

B (x,o,t) ~ B (o,o,t) [1 - nhx+ f3h2x2 + ?'h3x3 + ••• ] y y 
(18) 

or from Eq.( 19) of section II: 

[ 1 ("B)] 
[ 2lh~y (:))]~=~ n :;;: -· - _J[. . and 13 :;;: 

hBY Clx ;:~ 
(19) 
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TABULA':'ION OF ':£HE FIRST- .AND SECOND-ORDER MATRIX ELEMENTS 

FOR .AN IDEAL MAGNEI' IN TERMS OF THE KEY INTEGRALS LISTED IN TABLE VI 

RJJ_ = (xlx ) = c ( t) = cos k t Definitions: 
0 X X 

(xl e ) s ( t) = kl sin kxt 
2 2 

F.l2 = = k = (1-n)h 
0 X X 1 X 

h r 1 
k2 = nh2 

h =-

F.l6 = (xlo) = d ( t) =- :1-c (t)' Po 
X k2 L X J y 

X 

Till= (xlx
2

) = ( 2n-l-13)h3 Illl + .!:. k4 h 1122 0 2 X 

(xlx e ) h s ( t) 2(2n-l-13)h3 I 112 
2 

Tll2 = = + - ~h Ill2 0 0 X 

(xlx 5) 
2 

2(2n-l-13)h3 I 116 
k2 2 

'~u6= = (2-n)h r
11 + - xh Il22 0 

CJ1 
..;J 

(xle~) 3 1 
T122 = = (2n-l-13)h I 122 + 2 h Illl 

(xle e,) 
2 3 2 

rp - = ( 2-n)h I 12 + 2(2n-l-13)h I 126 + h Ill2 -126 - ·0 

( x lo
2

) 
2 

(2n-l-13)h3 I 166 
1· 3 n -· - h IlO + (2-n)h I 16 + + 2 h Il22 -::..66 = 

2 3 .!:. k2 h n = (xly ) - 13 h Il33 IlO -
::.33 2 y 0 

(xlyocpo) 
3 n = 213 h Il34 -134 = 

(xlcp~) 3 1 h 110 Tl44 = = 13 h Il44 - 2 



CJl 
00 

( el·x ) ' 2 
R21 = = c ( t} =-k s(t) 

0 X X X 

( eje ) ' R22 = = s ( t) = c ( t) 
0 X X. 

( ej5) ' R26 = = d (t) = h s ( t) 
X X 

= 
I' 

= h s (t) 
- X 

2 3 (2-n)h r21 + 2(2n-l-~)h r 216 -

T222 = = 

(2-n)h2 r 22 + 2( 2n-l-~)h3 r 226 + . T226 = (eject>) = 

T266 = (ej52) = - h r 20 + (2-n)h2 r 26 + (2n-l-~)h3 r 266 + ~ 

2 
T233 = (ejyo) = 

T234 = (e!'y cp ) -
0 0 

T244 = (ejcp2) 
0 

= 3 1 
(3 h I244 - 2 

r- I I ; 

k~ h r 212 - h cx(t)sx(t) + cx(t)sx(t)j 

2 2 r I I , 

kx h r 222_- hlc)t)dx(t) + c)t)dx(t)j_ 

I • 

+ s (t)d (t): 
X X j 



') 

R = (yjyo) = c ( t) = cos k t 
33 y y 

H34 (yjcpo) s ( t) 1 sin k t = = =-y k y y 

T313 = (yjxoyo) = + 3 2 2 
2(~-n)h r 313 + kx ky h 1324 

(yjxocpo) h s (t)- + 3 2 h T314 = = 2(~-n)h !314 - kx 1323 .Y 

(yjey) 3 k
2 h T323 = = + 2(~-n)h !323 - 1314 0 0 y 

(yjeocpo) 
3 h T324 = = + 2(~-n)h !324 + 1313 

01 
tO 2 2(~-n)h3 !336 -

2 2 
T336 = (yjyoo) = ky 133 + ky h !324 

(yjcpoo) 
2 2(~-n)h3 !346 + 

2 
:r346 = = ky !34 + h 1323 



0') 

0 

= (cpjyo) 

= (cpj<p ) 
0 

= 

= 

T413 = (cpjx Y ) = 
0 0 

T414 = (cpjx cp ) = 
0 0 

T423 = (cpje Y ) = 
0 0 

T424 = (cpleocpo) = 

T436 = (cpjyoo) = 

(cp!cp o) T446 = = 
0 

1 2 
c ( t) = - k s (t) 

y y y 
I 

s ( t l y ) = c ( t) 
y 

2(~-n)h3 I413 

I 

2(~-n)h3 I414 h s (t) + y 

2(~-n)h3 I423 

2(~-n)h3 I424 

2 2(~-n)h3 I436 ky I43 + 

2 2(~-n)h3 I446 ky I44 + 

k2 k2 h 
1 

+ 1424 - h c (t)c (t) 
X y X ~ 

k2 h c (t).s.(t) h 1423 -X X y 

k2 h 
I 

1414 - h s)t)c)t) y 

I 

+ h I413 - h sx(t)s)t) 

2 2 I 

ky h I424 - h d (t)c (t) 
X y 

2 1 

+ h 1423 h d (t)s (t) (54) X y 



TABLE VI 

Tabulation of Key Integrals Required for the Numerical Evaluation 

of the Second-order Aberrations of Ideal Magnets 

The results are expressed in terms of the five characteristic first order 

matrix elements s (t), c (t), d (t), c (t) and s (t) and the quantities h and 
X X X y y 

n (assumed to be constant for the ideal magnet over the interval of integration 

T = o to T = t). The path length of the central trajectory is t. From the 

solutions of the differential equations (Eq. 29 of Section II), the first order matrix 

elements for the ideal magnet are: 

-~ 

c (t) =cos k t s (t) = 1 sink t h 
(1 - cx(t)) k d (t) =-

X X X X X k2 
X 

X 

c (t) =cos k t s (t) = 1 sink t k y y y y y 

where k2 2 k2 nh2 1 = (1-n) h - and h=-
X y · .. p 

0 

p 
0 

is the radius of curvature ,of the central trajectory. 
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t 

Ill = J cx(r)Gx(t, r)dr = j tsx(t) 

0 

t 

112 =! SX(T)GX(t, T)dT = --\- (s (t) - tc (t)) 
2k X X 

0 X . 

t 
h ( ) h(d(t) •x(t>) 116 =f t 

dx(r) Gx(t, r)dT = k2 110- Ill . = k2 ~ -2 
0 X X 

0) J 2 ( d(t)) 
1:\:) 

11ll : cx(r)Gx(t, r)dr = j s!(t) + h 

1ll2 
; . 1 (d(t)) 

=
0 

cx(r)sx(-:r)Gx~t, r)dr = 3 sx(t) + 
t 

Ill6 = j cx(r)dx(:r)Gx(t,r)dr = : 2 
0 X 

·.• 



.. 

t ' ) 
113:4 = f C (T) S (T)G (t, T)dT = r, 

1 
2 (s (t)c (t) - S (t) 

y y X k.:. - 4k y y X 

0 X y ' 

t 

!144 = f S~ (T)GX(t, T)dT = k2 -14k2 
0 X y 

( 
d (t) ) 

s~(t) - 2 ~ 

= 

= 

= 

= 

t . 

1.o = ! J Gx(t, T)dT = sx(t) 

0 

lh ~ C: J cx(7)Gx(t, 7;d7 ~ i ( sx(t) + tcx(t)) 

0 ' 

t 

1' 12 = d~. J sx(T)Gx(t, T)dT = i tsx(t) = r11 
0 

t 

! 1
1 

6 = .E._ f d (T)G (t T 1·dT =_E._ (sx(t) - tcx(t)) 
dt X X ' ' 2k2 

0 X 

, 



t 

1]_11 = d~ f c!(T)GX(t, T)dT = 
sjt) 

A 

3 
0 

t 

1212 ~ lh2 ~ ! I cx(T)Sx(T)Gx(t, T)d T ~ f [ 2s~(t) - dx~t) ] 

1h6 

t 

1]_22 = d: J s!(T)Gx(t, T)dT 

0 

2 · ( dx(t) ) = - s (t) 3 X h 

t 

ll26 = ~ f SX(T)dx(T)Gx(t, T)dT 

0 

t 

1]_66 = : J d~(T)Gx(t, T)dT = 
0 

t 2k
2 

+ 
s (t) 

X 

6 

Ib3 = ! j c~(T) Gx(t, T)d7 = 
0 

s (t) -
X 

2 y 2 ( s (t) c (t) ~ s (t) ) 
k -4k y y X 

X y 

t 

1b4 = d~ j cy(r)sy(7)Gx(t, T)dT = -k...,...2 -~4-k-2 
0 X y 

] 

kx ~ - 2k~ s~(t) 
[ 

2 ( d (t)) 1 



1313 

1314 

1323 

1
324 

t 

11_44 = j s~(T)Gx(t, T)dT = 

0 

2 
[ sy(t) cy(t) - sx(t)] 

k
2

- 4k
2 

X y 

t 

= J Gy(t, T)dT = 

0 

t 

1-c (t) 
y 

= f cy(T)Gy(t,T)dT = 

0 

t 

= f sy(T)Gy(t,T)dT = 
0 

1 
/ s (t) - tc (t)) 

2k~ ' y y 

t 

=f cx(T) cy(T) Gy(t, T) dT 
1 = 

k 2 -4k
2 

0 X y 

t 

= f C (T)S (T)G (t,T)dT = 2 
1 

2 X y y k - 4k 
0 X y 

t 

=f SX(T)Cy(T)Gy(t, T)dT = 1 

k
2

- 4k
2 

0 X y 

t 
= }- 1 

S (T)S (T)G (t, T)dT = 9 2 
X y y k ... - 4k 

0 X y 

[ 
c (t) (1-c (t) \ - 2k

2 
s (t) s (t)] = 2 

1 
2, [k2c (t) ( dxh(t) \ - 2k

2 s (t) s (t)] 
y X I y X y k - 4k X y I y X y 

. X y . 

s (t) 
y 

k2 
X 



. t 

1336 = j cy(T) dx(T) Gy(t, T)dT = k~ 
0 X 

(
133 - 1313) = ~ r~ · s (t) _ '2 

1 
2 

k y k - 4k. 
X X y 

( c (t) (1-c (t)) - 2k
2

s. (t)s (t)\] 
y X y X y ') 

_E_ r· -1
- Is <t> - tc <t>) -

1 

k 2 2k2 \' y y k 2 -4k2 
X y X y 

t 

140 13o 
d J Gy(t, T)dT = sy(t) = = dt 

0 

t 

143 133 
d J c (T) G (t, T)dT = ~ [s (t) + tc (t)] = = dt y y . y y 

o. 

0') 
0') 

t 

144 134 
d f 1 = -· dt sy(T)Gy(t, T)dT = 2 tsy(t) = 133 

0 

t 

(1+ cx(t))] 1413 = 1313 
= ~ f CX(T)C"y(T)Gy(t, T)dT = k 2 ~ 4

k2 l~2 - 2k2) s (t)c (t) - k2 
s (t) X y X y y y 

0 X y 

t 

[ (k!- 2k~) 1414 1314 = ~ f l = C {T)S (T)G (t,T)dT = 2 2 s (t)s (t) - c {t) (1- c (t))] 
X V y k.- 4k X y y X 

0 X y 

t 

[ 2 ( ~ ) cy (t) ( 1+ cx(t))- c x•t) cy (t) - k~ sx(t) sy (t)J 
c (t) ![ . 1 

1423 = 1323 = S (T)C (T)G (t,T)dT = 2 2 
+ y 

X y y k - 4k k2 
X y X 

/ 



,, 

t 

[c (t)s (t)- c (t)s (t) - 2k2 s (t) (d~(t))] 1424 1324 !! 1 = = S (T)S (T)G (t,T)dT = 2 2 X y y k -4k y X X y y y 
0 X y 

t 
[ t sy(t) 

1436 1336 ~! 
h + 1 [ k~sy(t) (1 + cx(t)) - (k

2 - 2k) s (t)c (t1] = = c (T) dx(T) G (t, T)dT = 2 2 cy(t) + 2 y y k k
2

- 4k
2 X y X y 

0 X X y 
• 

t 
[ ts (t) [ 0!- 2k;) •x(t) sy(t) - cy(t) (1 - cx(t) )] ] 

d 
[ S (T)d (T)G (t, T)dT = ~ 1 

1446 = 1346 = dt 
y 

y X y k 2 
k

2
- 4k2 

X X y 



Matrix Elements for a Pure Quadrupole Field 

For a pure quadrupole, the matrix elements are derived from those of 

the general case by letting -~ 2 t3 = o, r = k 
X q 

2 2 k = - nh 
q 

and 

and then taking the limit h-- 0. The results are: 

Rll = cos kt q 

Rl2 
1 sin k t = k q q 

Tll6 = ~kt sin k t 2 q q 

l sin k t 
t 

k t TJ.26 = -~ ;,;, 2 cos 
q <1 q 

R2l ::: ~k .. sin k t 
q q 

R22 = cos k t 
q 

k r 

+sink tl - _q. cos k t T2l6- 2 lkqt q . q J 

1 sin k t T226 = 2 k t . q q 

R = cosh k t 
33 q 

R34 = ~ sinh k t 
kq q 

1 . t T
336 

~ - 2 kq sinh kqt 

T 46 = ~ [_!_ sinh k t - t 3 2 k q q . 
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2 2 k = - k where y q' 



= k sinh k t 
q q 

= cosh k t 
q 

k 
T436 = - f [kqt cosh kqt 

T446 = - ~ kqt sinh kqt 

+ sinh k tl 
q j 

all non-listed matrix elements are identically zero. 

Matrix Elements for a Pure Sextupole Field 

For a pure sextupole, the matrix elements are derived from 

those of the general case by letting 
' \ 

3 2 ; B \ 

f3 h = ks = [ ~/); iP j 
\a . \ I 

and then taking the limit h- 0. The results are: 

Tlll = - ~ k~ t2 

Tll2 = - ~ k; t3 

1 2 1.~ 
T122 = - 12 ks t 

Tl33 = ~ k; t2 

1 2 3 
Tl34 = 3 ks t 

1 2 4 
Tl44 = 12 ks t 
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T2ll = - k
2 

t s 

T212 = - k2 t2 
s 

T222 = -J k; t
3 

T233 = k2 t s 

T234 = k2 t2 
s 

T244 = .± k2 t3 
3 s 

R33 
~ 1 

R34 = t 

T313 = k2 t2 
s 

T314 = .± k2 t3 
3 s 

T323 = .± k2 t3 
3 s 

T324 = 1 k2 t4 
b s 

R43 = 0 

R44 = 1 

T413 = 2 k2 t 
s 

T4 4 = k2 t2 
l R 

T423 = k2 t2 
s 

T424 = g k2 t3 
3 s (56) 

All non-listed matrix elements are identically zero. 
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.... 

First- and Second-Order Matrix Elements for a Curved, Inclined Magnetic 
Field Boundary. Fringing Field Effects . 

Matrix elements for the fringing fields of bending magnets have 

been derived using an impulse approximation. 7' 8 These computations com­

bined with a correction term9 to the R43 element (to correct for the 

finite extent of actual fringing fields) have produced results which are 

in substantial agreement with precise ray tracing calculations and with 

experimental measurements made on actual magnets. 

We introduce four new variables (illustrated in Figoll); the an~e 

of inclination ~l of the entrance face of a bending magnet, the radius of 

curvature R1 of the entrance face, the angle of inclination ~2 of the 

exit face, and the radius of curvature R· of the exit faceo The sign con-
2 

vention of ~l and ~2 is considered positive for positive focusing in the 

transverse {y) directiono The sign convention for R
1 

and R
2 

is positive 

if the field boundary is convex outward; (a positive R represents a nega­

tive sextupole component of strength k~L = - (:R) sec 3~)o The sign con­

ventions adopted here are in agreement with Penner, 4 and Brown, Belbeoch, 

and Bounin. 7 

The results of these calculations yield the following matrix elements 

for the fringing fields of the entrance face of a bending magnet: 

h 2 
rplll = - 2 t~;~.n ~l 

h 2 
T133.= 2 sec ~l 
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748A15 

FIG.· 11--FIELD BOUNDARIES FOR BENDING MAGNErS 

The TRANSPORT sign convention$ for x, t3, Rand hare all :r:;ositive as shown in,the figure. 

The pos.itive y direction is out of the paper. Positiye t3's imply transverse focusing. 

Positive R's (convex curvatures) represent negative sextupole components of strength 

S = (- 2~) sec3t3. (See page 71.) , 



1 
R = - - = h tan t3 21 f 1 

X 

2 
- nh tan !3

1 

T216 = - h tan !31 

T 2 ( 1 t 2 A ) t A h 3 A 
.. 2)3 = h n + 2 + an ...,1 an ...,1 - 2~ sec ...,1 

2 
T234 = - h tan !31 

2 
'l' = h tan 13

1 313 

h ~ 

T413 = sec~ 

Rl 

T414 - h tan 
2 

!31 = 

2 = - h sec 13
1 

13
1 

+ 2h
2

n tan !3
1 

All nonlisted matrix elements are eg_ual to zero. The quantity t
1 

is the 

correction to the transverse focal length when the finite extent of the 

f:ripging fields a.re included. 9 
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. 2 
1/1

1 
= K

1
hg (sec f\}(1 + sin f31 ) + higher order terms in (hg) 

where g = the distance between the poles of the magnet at the central 

orbit (ioe., the magnet gap) and 

B (z) [B y 0 
dz 

B (z) is the magnitude of the fringing field on the magnetic mid­
y 

plane at a position z. z is the perpendicular distance measured from the 

entrance face of the magnet to the point in question. See Fig. 11. B
0 

is 

the asymptotic value of B (z) well inside the magnet entrance. Typical values 
y 

of~ ~or actual magnets may range from 0.3 to 1.0 depending upon the detailed 

shape of the magnet profile and the location of the energizing coils. 

The matrix elements for the fringing fields of the exit face of a 

bending magnet are: 

Rll = 1 

R12 = 0 

h 2 
Tlll = - tan (3 2 2 

Tl33 
h 2 

(32 = 2 
sec 

R2J, = - i = h tan (32 
X 

T211 = 2~2 sec3 (32- h2(n + ~ tan2 f32).tan (32 

2 
T212 = - h tan (32 
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T216 = - h tan ~2 

. 2 . 1 2 
T233 = h (n - 2 tan ~2) 

h 3 
tan ~2 - ~ sec ~2 2 

2 
T234 = h tan ~2 

2 
T313 = - h tan ~2 

h 3 2 2 
T413 = - ~ sec ~2 + h (2n + sec ~2 ) tan ~2 

2 
2 

T1 4 = h tan ~2 n 
2 

T423 = h sec ~2 

All nonlisted matrix elements are zero. 

(58) 

. 2 
~2 = K1hg sec ~2 (1 + sin ~2 ) +higher order terms in (hg) 

and K1 is evaluated for the exit fringing fieldo 
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Matrix Elements for a Drift Distance 

For a drift distance of length L, the matrix elements are simply 

as follows: 

Rll = R22 = R33 = R44 = R55 = R66 = l 

Rl2 = R34 ;::: L 

All remaining first- and second-order matrix elements are zero. 
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IV. SOME USEFUL FIRST-ORDER OPTICAL RESULTS DERIVED FROM 

THE GENERAL THEORY OF SECTION II.~O,ll 

We have shown in Section II,.Eq. (47), that beam transport optics 

may be reduced to a process of matrix multiplication. To first-order, 

this is represented by the matrix equation 

.6 

where 

xi(t) = 2: Rijxj(o) 
j=l 

(59) 

We have also proved that the determinant IRI=l results from the basic 

equation of motion and is a manifestation of Liouville's theorem of 

conservation of phase space volume. 

The six simultaneous linear equations represented by m-(59) may 

be expanded in matrix form as follows: 

x( t) Rll R12 0 0 0 R16 X 
0 

e(t) R R~2 0 0 0 R::>6 9 
21 0 

y( t) 0 0 R33 R34 0 0 Yo 
= 

cp(t) 0 0 R43 R44 0 0 cp 
0 

t{t) R51 R52 0 0 1 R56 t 
0 

5( t) 0 a· 0 0 0 1 5 (6o) 
0 

where the transformation is from an initial position ~ = o to a final 

position T :.:.. t. 
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The zero elements R13 = R14= R23 = R24 = R
31 

= R
32 

= R41 ~ R42= R36=R46~ 0 

in the R matrix are a direct consequence of midplane symmetry. If midplane 

symmetry is destroyed, these elements will in general become non-zero. The 

zero elements in col~ five occur because the variables x, e, y, ~' and 5 

are independent of the path length difference t. The zero 1 s in row six 

result from the fact that we have restricted the problem to static magnetic 

fields, i.e., the scalar momentum is a constant of the motion. 

We have already attached a physical significance to the non-zero 

m~tri.x P-lements in the first four rows in terms of their identification 

with characteristic first-order trajectories. We now wish to relate the 

elements appearing in column six with those in row five and calculate 

both sets in terms of simple integrals of the characteristic first-order 

elements cx(t) = R11 and sx(t) = R12 • In order to do this, we make use 

of the Green's function integral, Eq. (43) of Section II, and of the expres-

sion for the diffe~ential path length ~n ~uvvilinear coordinates 

[ 
2 . 2 2 2] l/2 

dT = (dx) + (dy) + (l+hx) (dt) ( 61) 

used in the derivation of the equation of motion. 

First-Order Dispersion 

The spatial dispersion d (t) of a system at position t is derived 
X 

using the Green's function integral,Eqn (43),and the driving term f = h(~) 

for the dispersion (see Table I). The result is 

dx(t) ~ Rt6 = <x(t) ~ ex(<) h(<)d< - cx(t) ~ 
0 0 

s ( 1') h( ~)d~ 
X 

( 92) 

where~ is the variable of integration. Note that h(T)d~ =dais the 

differential angle of bend of the central trajectory at any point in the 
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0.' 

system. Thus first-order dispersion is generated only in regions where 

the central trajectory is deflected (i.e., in dipole elements.) The 

angular dispersion is obtained by direct differentiation of d (t) with 
X 

respect to t; 

t 

f 
0 

where 

First-Order Path Length 

C (T) h(T)dT - C
1
(t) 

X X / 
0 

S (T) h(T)dT 
X 

The first-order path length difference is obtained by expanding 

Eq. (61) and ret~ining o£1Y tne first-order term, i.e., 

t - -f-
0 

= (T - t) = J x( T) h( T)dT +higher order terms 

0 

from which 

t 

.{_ = x
0 

f eX( T) h( T)dT 

0 

+ e 
0 

t 

f s ( T) h( T) d T + -f-
X 0 

0 

d (T) h(T)dT 
X 

( 64) 

Inspection of Eqs.( 62), ( 63), li.Ild ( 64) yields the following useful 

theorems: 

Achromaticity: A system is defined as being achromatic if 
I 

d (t) = d (t) = 0. Therefore it follows from Eq's.(69) and (63) that the 
X X 

necessary and sufficient conditions for achroma.·ticity are that 

t t f S X ( T) h( T) d T = f 
0 0 

- 79 -

C (T) h(T)dT = 0 
X 

( 65) 



By comparing Eq. (64) with Eq. (65), we note that if a system is achro-

matic, all particles of the same momentum will have equal (first-order) 

path lengths through the system. 

Isochronicity: It is somewhat unfortunate that this word has been 

used in the literature to mean equal path lengths since equal path l~ngths 

only imply equal transit times for highly relativistic particles. Never-

theless, from Eq. (64), the necessary and sufficient conditions that the 

first-order path length of all particles (independent of their initial 

momenta) will be the same through a system are that 

t t 

jc)T) h(T) dT = I s)T) h(T) dT = 

0 0 . 

First-Order Imaging 

'/ dX(T) h{T) dT = Q 

0 

(66) 

First-order point-to-point imaging in the x plane occurs when x(t) 

is independent of the initial angle 8 • This can only be so when 
0 

Similarly first-order point-to-point imaging occurs in the y plane when 

(68) 

First-order parallel-to-point imaging occurs in the x plane when x(t) 

is independent of the initial particle position x • This will occur 
0 

only if 

and correspondingly in the y plane, parallel-to-point imaging occurs 

when 
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~. 

. 
' 

Magnifi~tiQn 

For point-to-point imaging in the x-plane, the magnification is 

given by 

and in the y plane by 

M !s:~ =R ''lx't' X X
0 

J.l 

= c ( t) 
y 

First-Order Momentum Resolution 

= c (t) 
X 

For point-to-point imaging the first-order momentum resolving 

power R1 (not to be confused with the matrix R) is the ratio of the 

momentum dispersion to the image size: Thus 

d ( t) 
X = C (t) X 

X 0. 

( 71) 

For point-to-point imaging ( sx( t) = 0) using Eq. ( 62), the dispersion 

at an image is 

I 
d (t) 

Rx __ x __ 
l o - cx(t) 

/ 

= 

d (t) =-
X 

IZ ( t) 
X 

0 

/ 
0 

S (or) h( T)dT 
X 

where x ·is the total source size. 
0 

Zero Dispersion 

For point-to-point imaging, using Eq. (f2 ), tbe neces.aary and 

sufficient condition for zero dispersion at an image is 

~t •x(<) h(<)d< = 0 
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l''or parallel to :point imaging, (i.e., c ( 't) = 0), the condition for zero. 
X 

dis:pers ion at the image is 

/ (75) 

0 

Focal Length 

It can be readily demonstrated from simple lens theory 4· that the 

:physical interpretations of R21 and R43 are: 

I 

and c ( t) = R4 = y 3 
1 -r 
y 

where f and f are the system focal lengths in the x and y :planes 
X y 

respectively between T = 0 and T = t. 
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R = 

.. 

Evaluation of the First-Order Matrix for Ideal Magnets 

From the results of Section III, we conclude that for an ideal magnet 

the matrix elements of R are simple trigonometric or hyperbolic functionso 

The general result for an element of length L is 

kL l . kL 0 0 0 k~ [ 1-cos kxL J cos - Sl.n 
X k X 

X 
X 

.-k sink L cos k T, 0 0 0 (:x)sin k/• X X X 

0 0 kL l kL 0 0 cos -sin y k y y 

0 0 -k sin k L cos kL 0 0 y y y 

: sin kxL -\ [ 1-cos kxL] 
h2 [ 0 0 l k3 kxL-sin kxL] 

X k 
X 

0 0 0 0 0 

where for a dipole (bending) magnet, we have defined 1 

2 2 k · = (1-n) h 
X 

and k2 = nh2 
y 

X 

l 

For a pure quadrupole, the R matrix is evaluated by letting · 

and = 

and taking the limiting case h-0, where 

k2 2 e:) CJ = - nh = q 

Taking these limits, the R matrix for a quadrupole is: 
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cos kL kl sin k.L 0 0 0 0 q q q 

k sin k L cos kL 0 o· 0 ·0 q q q 

0 0 cosh k L kl sinh k L 0 0 q q q 
R = 

0 0 k sinh k L cosh k L 0 0 q q q 

0 0 0 0 1 0 

0 0 0 0 0 1 

(78) 

Note that the trigonometric and hyperbolic functions will interchange if the 

sigl'i of B
0 

is reversed. 

The R Matrix Transformed to the Princi~l ·Planes 

The positions Z of the principal planes of a magnetic element (measured from its 

ends towards the center of the 

1 0 0 0 0 X 

R21 1 0 0 0 X 

0 0 1 0 0 0 
R = = 

PP 
0 0 R43 1 0 0 

X X X X X X 

0 0 0 0 0 1 

Solving this equation, we have 

element) may be derived from the following matrix 

1 -z 2x 0 0 

0 1 0 0 

0 0 1 -Z2y 

0 0 0 1 

0 0 0 0 

0 0 0 0 

84 

0 

0 

0 

0 

1 

0 

0 1 -z 

0 0 

0 0 
R 

0 0 

0 0 

1 0 

Rll-1 
z2x = R 

21 

l.x 
0 0 0 0 

1 0 0 0 0 

0 1 -zl 0 0 

0 0 1. 0 0 

0 0 0 1 0 

0 0 0 0 1 

(79) 

(So) 

equation: 

.. 



For the ideal magnet, the general result for the transformation 

matrix R between the principal planes is 
pp 

1 0 0 0 0 0 

-k sin k L 1 
X X 

0 0 : sink L 
X X 

0 

0 0 1 0 0 0 

0 0 -k sin k L 1 0 0 
y y 

0 0 0 1 

0 0 0 0 0 1 

and because of symmetry 

and 

Correspondingly for the ideal quadrupole, R is derived by letting 
PP 

and 

and taking the lim.i t h-0 for each of the matrix elements o 

' 
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the result is: 

1 0 .0 0 0 0 

-k sin k L 1 0 0 0 0 q q 

0 0 1 0 0 0 
R = 

PP 
0 0 k sinh k L 1 0 0 q q 

0 0 0 0 1 0 

0 0 0 0 0 1 

( 83) 

where now 

z 1 
tan 

k'!L 
=-

X k 2 
q 

kL ., 
z 1 

tanh .....<L (84) =-
y kq 2 
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V. SOME GENERAL SECOND-ORDER THEOREMS DERIVED FROM 

THE GENERAL THEORY OF SECTION II 

We have establi.shed in Section II that any second-order aberration 

coefficient q may be evaluated vi.a the Green's function integral, Eq.(43), 

i.e., t t 

q(t) = s(t) I f'(-r)c(-r)d:r - c(tif f(-r)s(-r)d-r 
0 0 

A second-order aberration may therefore be determined as soon as a first-

order solution for the system has been established since the polynomial 

expressions for the driving terms f(T.) have all been expressed as func-

tions of the characteristic first-order·matrix elements (Table I). Usually 

one is interested in knowing the value of the aberration at an image point 

of which there are two cases of interest; point-to-point imaging s(t) = 0 

and parallel-to-point imaging c(t) = 0. 

Thus for point-to-point imaging: 

t 

q = - c(t) J f(-r)s(-r)d(-r) 
0 

where -r = t is the location of an image and I c ( t) I = M is the first-

order spatial magnification at the image, and for parallel-to-point imaging; 

t 

q = s(t)j f(-r)c(-r)d(-r) 
0 

where -r = t is the position of the image and s(t) is the angular dis-

persion at the imageo 

If a system possesses first-order optical symmetries, then it can be 

immediately determined if a given second-order aberration is identically 
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zero as a consequence of the first-order symmetry. We (J)bserve 

that for point-to-point imaging a second-order aberration coefficient q 

will be identically zero if the product of' the corresponding driving term 

f(~) and the first-order matrix element s(~) form an odd function about 

the midpoint of the system. 

As an example of this, consider the transformation between principal 

planes for the two symmetric achromatic systems illustrated in Fig.12 and 

Fig. 13 • We assume in both cases that the elements of the system have been 

chosen such as to transform an initial parallel beam of particles into a 

1 final parallel beam; i.e. , R
21 

= - r- =. 0 for midplane trajectories. 
X 

We further assume parallel-to-point imaging at the midpoint of the system. 

With these assumptions, the first-order matrix transformation for midplane 

trajectories between principal planes is: 

[ :~;~J = [-: 

o(t) 'j o 

0 ·a] [x(O) l 
o x 1 (o) 

1 5(0) 

-1 

0 

Thus c (t) = -1, s (t) = 0, c 1 (t) = 0, s 1 (t) = -1, and of course 
X X X X 

r=t)t.) = d~(t) = 0. About the midpoint of the system, the followin~ sym-

metries exist for the characteristic first-order matrix elements and for 

the curvature h(~) =~of the central trajectory; we classify them as 
Po 

being either odd or even functions about the midpoint of the system. The 

results are: 

c ( ~) = odd 
X 

c 1 ( ~) = even 
X 

s ( ~) = even 
X 

s 1 
( ~) = odd 

X 
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d ( ~) = even 
X 

d 1 
( ~) = odd 

X 

h(~) = even 

h 1 
( ~) = odd 

\. 
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As a consequence of these symmetries, the following second-order coeffi-

cients are uniquely zero for the transformation between principal planeso 

2 . 2 2 
{xlx x') = (xlx o) = {x'lx) = (x'lx' ) = (x'lx'o) =(x'lo) = 0 

0 0 0 0 0 9 

This result is valid independent of the details of the fringing fields of 

the magnets provided symmetry exists about the midpoint • 

.. 
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Second-Order Optical Symmetries in n = l/2 Magnetic Systems 

In magnetic-optical systems composed of n = l/2 magnets having 

normal entry and exit of the central trajectory (i.e., nonrotated entrance 

and exit faces), several general mathematical relationships result from 

the n: = 112 symmetry. Since 
2 ~ 

k = (1-n) h 
X 

and. 
~ 2 

k = nh , for n = l/2 
y 

it follows that c (~) = c (~) and s (~) = s (~) at any position ~ 
X y X y 

along the system; thus as is well known, an n = l/2 system possesses 

first-order double focusing properties. 

In addition to the above first-order results, at any point t in an 

n = l/2 system, the sums of the following second-order aberration coeffi-

cients are cow:>tcmts independent of the distribution or magnitude of the 

sextupole compouents throughout the system: 

2 2 13h3• (xl x' ) + (xjy' ) = a constant independent of 
0 0 
2 

+ (yjx Y ) 13h3• 2(xlx ) = a constant independent of 
0 0 0 

(xjx x') + (yjxy') = a concta.nt independent of 13h3• 
0 0 0 0 

(xlx 5) + (yly 5) = a constant independent of 13h3• o. 0 

2 
+ (ylx'y') 13h3• 2(xlx' ) = a constant independent of 

0 0 0 

(xlx't>) + (yly~5) = a constant independent of 13h3• 
0 

2 2 
13h3• (xlx ) + (xjy ) = a constant independent of 

0 0 

(xlx x') + (xjyy') = a constant independent of 13h3• (85) 
0 0 0 0 

Similarly, 

2 
(x'lx~) + 

2 
(x'IY~ ) = a constant independent of 13h3• 

. 2 
+ (y' I X y )= 13h3• 2(x' 1x

0
) a constant independent of 

0 0 
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(x'l x x') + (y'lxy') = a constant independent of t3h3. 
0 0 0 0 

(x'l xoo) + (y' I Y o) = a constant independent of t3h3. 
0 

2 
+ (y' I x'y') t3h3.. 2(x' 1 x' ) = a constant independent of 

0 0 0 

(x' lx'o) + (yily~o) = a constant independent of t3h3. 
0 

2 2 t3h3. (x' lx ) + (x'lyo) = a constant independent of 
0 

(x'lx x') + (x'IY y') = a constant independent of t3h3 
0 (86) 

0 0 0 0 

Of the above relations, the first is perhaps the most interesting in that 

2 it shows the impossibility of simultaneously eliminating both the (xlx~ ) 

and (xly~2 ) aberr-""+.ions in an n = 1/2 system; i.e., either (xlx• 2 ) 
0 

or 

2 
(xly' ) 

0 
may be eliminated by the appropriate choice of sextupole elements 

but not both. 
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VI. AN APPROXIMATE EVALUATION OF THE SECOND-ORDER ABERRATIONS 

FOR HIGH ENERGY PHYSICS 

Quite often it :i.s desirable to estimate the. magnitude of var.iO)lS 

second-order aberrations in a proposed system to obtain insight into what 

cum;titutes au opt.im1.1m sol.ut.inn tn A. given problem. A considerable simpli-

ficatj_on occurs in the formalism in the high-energy limit where p 
0 

is 

much much greater than the transverse amplitudes of the first-order tra-. 

j~ctories and where the dipole, quadrupole and sextupole functions are 

physically separated into indiyidual elements. It is also assumed that 

fringing-field effects are small compared to the contributions of the 

various multipole elements. 

Under these circumstances, the second-order chromatic aberrations 

are generated predominately in the quadrupole elements; the geometric 

aberrations are generated in the dipole elements (bending magnets); and, 

depending upon their location in the system, the sextupole elements couple 

with either the chromatic or geometric aberrations or both. 

We have tabulated in Tables VII, VIII and IX the approximate formulae 

for the high-energy limit for three cases of interest; point-to-point 

imaging in the x (bend) plane, Table VII; point-to-point imaging in the y 

(nonbend) plane, TableVIII; and parallel··to-point imaging in the y plane, 

Table IX. 

For the purpose of clearly illustrating the physical principles in-

volved, we assume that the amplitudes of the characteristic first-order 

matrix elements c , s , d , c , and s are constant within any given 
X X X y Y 

quadrupole or sextupole element, and we define the strengths of the 
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~uadrupole and sextupole elements as follows: 

L 

f 
0 

where L is the ~ffP.r.t.ivP J.~?ne;th of the ~uadrupolc and where 
~ 

1/f = k sin k L is the reciprocal 
~ ~ ~ 

th of the focal length of the ~ ~uad-

th 
rupole; and for the j sextupole 

L 
of length L , we define its strength as s 

r k2 d't" = 
0 3 

= s. 
J 

The results are tabulated in the tables in terms of integrals over the 

bending magnets and sunnnations over the ~uadrupole and sextupole elements. 

Note that under these circumstances the ~uadrupole and sextupole contri-

butions to the aberration coefficients are proportional to the amplitudes 

of the characteristic fin· ..... -order trajectories within these elements, 

whereas the dipole contributions are proportional to the derivatives of 

the first-order trajectories within the dipole elements. 

As an example of the above concepts, we shall calculate the angle ~ 

between the momentum focal plane and the central trajectory for some r~ 

presentative cases. 

For point-to-point imaging, it may be readily verified that 

tan~ 
= _ (dx(i))· 

c (i) 
X 

1 

(x .. lx'o) = 
~ 0 

(x .. lx'o) 
~ 0 

= (x .. lx'o) 
~ 0 

(87) 

where the subscript o refers to the object plane and the subscript i 

to the image plane. 
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Let us now consider some representative quadrupole configurations and 

assume that the bending magnets are placed in a region having a large am-

plitude of the unit sine-like function s (so as to optimize the first­x 

orde:c momentum resolving power n
1

). 

Case I 

Consider the simple quadrupole configuration shown in Fig. 14with 

the bending magnets located in the region between the quadrupoles and 

s~ : 0 in this region. For these conditions, f 1 = t 1, sx = t
1 

at the 

quadrupoles, and f 2 = t
3
. From Table VII, we have: 

2 
8 

X 

f 
q 

= 

where we make use of the fact that (~3;t1 ) = Mx = 

first-order magnification of the system. 

Hence, 

tan 1jr 

Case II_ 

i 

f s dCX 
.Q X 

= (x. \x'5) 
1 0 

= (1 + M) 
X 

- c (i). M 
X X 

is the 

(88) 

For a single quadrupole, Fig•l5, the result is similar 

tan 1jr 
KCX 

= (1 + M ) 
X 

except for the factor K < 1 resulting from the fact that 

(89) 

s cannot 
X 

have the same amplitude in the bending magnets as it does in the quadru-

pole. Therefore 
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/ sxda 
tan l/J = ""' 

(xil x~6) (1 + M,J 

377+A 

FIG. 14-- Focal plane tilt for symmetric quad.I·upole doublet spectrometer . 

... 
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tan f/1 = Ka 
(1 + Mx> 

FIG. 15--Focal plane tilt for a quadrupole singlet spectrometer •. 
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Case III 

Now let us consider a symmetric four-quadrupole array, Fig. 16 , such 

that we have an intcrmcdia.tc image. Then 

because of symmetry, c (i) = M = 1. Thus, we conclude 
X X 

I (90) 

• In other words, the inter·mediate image has introduced a factor of two in 

the denominator and has changed the sign of ~. 
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FIG. 16-..,Focal plane tilt fQ~ a symmetric array of 4 quadrupoles. 
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TABI.E VJT 

Applying the Greens' function solution, Eq. {22), in the high-energy limit as de­

filled above for point-to-point imaging in the x(bend) plane, the second-order 

matrix ·elements reduce to: 
i 

(xJx~ = - ~ cx(i) I c~2sxda 
0 

i 

(xJx x')~ - c (i) fc' s' s d01 
00 X XXX 

0 

i 

- c (i) I c I d' s dOl 
X X X X 

0 

i 

- - .!. c (i) I s' 2 s d01 2 X X X 

0 

i 

(xjx~o) ~ - cx(i)/ s~d~sxda 
0 

i 

~ .:-x(i) ;( cy 
2 

sxda 
.., 
v 

i 

c (i) I c' s' s da x yyx 
0 

i 

= -
2
1 c (i) ( s' 2 s da 

X J y X 

=-

+ 2c (i) ""'S.c s 2 
X L...JJXX 

j 

+ c (i)~S.s3 

X LJ J X 
j 

82 
+ 2c (i)~S.s2d - c (i) ""' fx 

X'L..JJXX X L..J 
j q q 

s d 
+ c (i)""S.s d

2 
- c (i) ""'-4--! 

X ~ J X X X ~ I_ 
j q q 

- 2c (i) ~ s .c s s 
X L.J JYYX 

j 

c (i) ~ S.s2s 
X L.J JYX 

j 
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TABLE VIII 

For point-to-point imaging in the y (non-bend) plane, Eq~ (23), the high-energy 

limit yields: 

i 

- c (i) J c' c' s da y X y y 
0 

i 

(yjx Y') ~·., c (i) f c' s' s da .oo y xyy 
0 

i 

<.YJx•y \ ~- c (i)/ s'c's da 
oO' y xyy 

0 

i 

(ylx1 y1
) ~- c (i)/ s's's da-oo y xyy 2c (i}"" S.s s

2 
Y L.J JXY 

j 0 

i 

{Y I Y0 o, = - (; 1i) J c 1 d 1 s da y' y X y 
0 

i 

<.Yjy• 6} ~- c (i} J s' d's da , o y yxy 
0 

c s 
- 2c (i} ~S.c d s + c (i} ~ ___LJ_ 

y ~JYXY y L-\; 
J q . 

- 2c (i) ""s.d s
2 

Y L...JJXY 
j 

s2 
+ c (i} ~J 

y L..Jf 
q q 
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TABLE IX 

For parallel-(line) -to-point imaging in the y (non-bend) plane, Eq. (24), the 

high energy limit yields: 

CYjx Y) ~ 
. 0 0 

CYjx Y') ~ 0 0 

j 

s {i) I c 1 c 1 c da + Y xyy 
0 

i 

s (i) I c' s 1 c da + y xyy 
0 

2s {i) ~ S.c c 2 
y LJ J X y 

j 

2s {i) ~ S .c s c . 
y WJXYY 

j 

s'c'c da + 2s {i) ~S.s c 2 
xyy y L....JJXY 

i 

s {i) I s' s 1 c da + y xyy 
0 

j 

2s {i) ~S.s s c 
y £...., J xyy 

j 

CYjY
0

o) ~+ s (i)lc'd'c da + 2s {i)"'"'S.c 2d y y y y W J y X 
j 

f 
s c 

CYjY~&) = + s (i) s' d'c da + 2s (i) ~ S.s c d - s {i) "'--l..If 
v y y y y L..J J y y X y LJ q 

J q 
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VII A FIRST-ORDER MATRIX PHASE ELLIPSE FORMALISM 

FOR BEAM TRANSPORT OPTICS 

In accelerators and in external beam transport systems, the behavior of an 

individual particle is often of less concern than is the behavior of a bundle of 

particles" the BEAM" of which an individual,particle is a member. An ex-

tension of the first-order matrix algebra of Eq. (59), page 77, provides a 

useful and convenient means for defining and transforming this "BEAM" through 

a beam transport system. We. assume that the bundle ofrays constituting the 

BEAM may be adequately represented in phase space by an ellipsoid whose 

coordinates are the six parameters 

X = y 
3 

introduced previously in this report. 

X = £ 
5 

The validity and interpretation of this phase ellipse formalism must be 

ascertained for each system being designed. For charged particle beams in 

or emanating from accelerators, the assumption of representing the BEAM by 

an ellipsoid usually corresponds reasonably wflll with physical reality. For . . 

other applications, such as charged particle spectrometers,· considerable 

caution must be exercised in the use of the phase ellipse funualism .. 

For the remainder of this discussion, we shall assume that (to first-

order) it is valid to represent the actual distribution of a bundle of rays by 

an ellipsoid in 6-dimensional phase space, where the projection of the el-

lipsoid in any two dimensions (for example; x and (}) is an ellipse. To simplify 

the discussion, we shall proceed by first formulating the matrix equation of 

a two-dimensional ellipse, derive and discuss its properties and then generalize 

the result to an n(n = 6) dimensional ellipsoid. 
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Matrix Equation for an Ellipse 

Consider a two-dimensional real, positive definite, symmetric matrix, 

and, its inverse 

-1 
0" 

where we define 1 a-1 as the determinant of a-. 

Define the column matrix or "vector" 

X= (:) 

and, its transpose 

T 
X '-- (x (} ) • 

Then, 

i.e.' 

is the equation of an ellipse in x, () space. 

Transformation Properties of the Ellipse Under a c·oordinate Rotation 

Let us now study the transformation . properties of a- under a coordinate 

rotation. Suppose we define the coordinates x0, 00 as those corresponding to 

the directions of the major and minor axes of an ellipse. Then, the equation 

- 105 -
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of this ellipse is 

where 

and 

X = 0 

-1 1 (0"22 

o-o = lo-ol 
0 

from which the equation of the ellipse in an expanded algebraic form is 

or 

= 1 

From the type form Eq. (95), we conclude that the area of the ellipse is 

and 

1 

A "" 7r(o-ll cr~~) 2 = 

cr = x 2 
11 max 

. -·· (}2 
o-22- max 

Now, eonsider a rotation of the coordinate system from the x0 , (} 0 axes to 

the x1 , 81 axes by an angle a via the matrix equation 
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(.·_1 

(95) 

(96) 

(97) 



where 

(

cos a 

M= 

sina 

-SinO' ) 

COSO' 

(98) 

is the coordinate rotation matrix. For this matrix 

We may therefore rewrite Eq. (94) in the following forms: 

or 

or, finally 

(99) 

where 

(100) 

Since the determinant of the product of two matrices is equal to the product of 

the determinants, it follows that: 

The area of the ellipse is a constant under a coordinate rotation, therefore, 

we conclude that the invariant equation for the area of the ellipse is: 

(101) 

independent of the orientation of the coordinate system . 

• 
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Phase Ellipse Transformations Through a Beam Transport System 

We have shown in previous sections (e. g., Eq. (59), page 77) that the physics 

of beam transport optics may be reduced to a process of matrix multiplication. 

(102) 

where the :q1atrix R describes the action of the magnetic system on the particle 

coordinates. We have also proved that the differential equations of motion re­

quire that the d~terminant 

· We.further note that for n.ny matrix 

If now we begin with an arbitrary phase space ellipse represented 

by the matrix 

(

OjJ. 

a: = 1 

0'"12 
the inverse of which is 

-1 
0" = 

1 

-(T12) 

e-u 

The equation of this ellipse in x1 coordinate phase space is 

(103) 

The Jess-than sign is now added to include all the phase points (Particles) inside 

the ellipse. 
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If now we rewrite this equation as follows: 

or, finally 

this is the equation of an ellipse in the X'} coordinate system; where 
'-' 

is the transformation relating o-2 to o-1 . 

Using the property I R I = I R Tl = 1, we immediately conclude that 

lo-2 1 = lo-11 hence, the phase area is preserved. We see then that the fact 

that 1 R; = 1 is equivalent to Liouville's theorem of phase space conservation. 

Some General Properties of an Ellipse 

Consider the general ellipse 

We have already verified that the area of the ellipse is 

The maximum values of x and (}are simply 

The x intercepts at(}= 0 are 

0 2 
X =± --int 11 o-

22 
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where we define 

2 
2 (j12 

r12 = o-p ~2 (108) 

and the 8 intercepts at x = 0 are 

(109) 

From which the area of an ellipse may be expressed in the following additional 

forms: 

1 

A= 1rlo-1"
2 

= 7TXmax (Jint = 7TXint 8max' (110) 

The physical interpretatioll. qf the phase ellipse parameters are shown in 

Fig. 17 for the two dim~nsional case. 

Generalization to an n- Dimensional Ellipsoid 

The two dimensional results may be ge:neralized to n dimensions by ex-

panding the column matrix X (Eq. (9.2)) to include all six of the phase space 

variables as follows: 

X 

8 

y 
X= 

and also expanding o- to a six by six symmetric array. Equation (93) then becomes 

the equation of a six dimensional ellipsoid whose volume is 

7Tn/2 I a- 11/2 
r(~ + 1) 

The phase ellipse in any two dimensions (e. g., x and 8) is a projection of the 

general six dimensional ellipsoid. 
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The beam matrix carried iri the computer for a TRANSPORT calculation 

has the followmg construction: 

X (} y ~ .S -~ 

X <Til 

0 ·(]"21 &22 

y <T3i lf;32 l:T.· 33 

cp o-4i <T42 &43 o-44 

£ a-51 &52 a-53 a-54 a-55 

s o-61 (]"62 a- .. 
63 (]"64 o-65 o-66 

The matrix is sytnmet:dc so' that oiily a triangle of elements is needed. 

In the printed output this matrix has a sdinewiiat iliffererit format for ease 
(' 

of interpretation: 

X 0. y .£ 

X .fOj_l CM 

0 .fa:;,2 MR :t'. 21 

y {033 eM f~i r~2 

cp {<T44 MR r, .· 
41 r42 1'43 

£ {<T55 dM .. 
r52 r54 r, r53 51 

8 if<T66 PC I' .. r62 r.· r64 r65 61 63 

The imits are always printed wit:h the matrix. 
~ ,• 

-1' 
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Physical Interpretation of the !'base .t<~llipR~ l<'orm:tlism 

For the six-dimensional BEAM matrix, the physical interpretation of 

the ~'sis as follows: 
11 

X 

...fa-11 = 
max 
2 

va-22 = 
0max 

2 

[u' = 
Ymax 

33 2 

...fa-44 = 
cpmax 

2 

= The maximum (half) -width of the beam envelope in the 
x(bend) plane. 

= The maximum (half) -angular divergence of the beam 
envelope in the x(bend) plane. 

= 

= 

The maximum (hall) -height of the beam envelope. 

The maximum (half) -angular divergence of the beam 
envelope in the y(non-bend) -plane. 

11max 1 
..fa-55 = 2 = 2 the longitudinal exte~t of the bunch of particles . 

...{a-
66 

= ~ = The half-width~ (A.: ) of the momentum interval being 

transmitted by the system. 

The units appearing next to the ...fa: . 's in a TRANSPORT printout sheet are the 
11 

units chosen for the initial x, () , y, cp 11 and 8 = A.p coordinates at the be-
P 

ginning of the data set via the units Card entry. 

The physical interpretation of the off-diagonal terms in the beam matrix 

are as shown in Fig. 17 . The magnitude of these off-diagonal terms are a 

measure of the orientation of the ellipsoid. A case of particular interest in any 

given plane (e. g., x and ()) is when the off-diagonal terms are equal to zero 

(i.e., an erect ellipse). This corresponds to a so-called "waist" in the BEAM. 

It is important to understand correctly the meaning of a waist: For an 

existing beam, it is the location of the minimum beatn size in a given region of 

the system (i.e., there may be several waists in an entire beam transport 
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system). It is not the minimum beam size that can be achieved at a particular 
- - - -

physical location; nor does a waist necessarily coincide with the first-order - -
image (R12 = 0 or R34 = 0) of a system. Only in the limit of zero phase space area 

do these three quantities occur at the same location. A useful criterion that deter-

mines the physical proximity of these quantities is the following: Suppose a system 

has been adjusted to provide the. smallest spot size possible at a given fixed loca-

tion, then if the size of the beam at the principal planes of an optical system is 

large compared to its size at the waist, at the first-order image, or at the mini-

mum spot size, then the location of these three quantities will closely coincide; 

if, on the other hand, the size of the beam does not change substantially throughout 

the system, then the locations of a waist, the minimum size and the fir$t-order 

image may (and usually will) differ substantially.* 

If an arbitrary beam transport system is reduced to the most elementary 

first-order form of representing it as an initial drift distance, followed by a 

lens action between two principal planes, and a final drift distance; then we 

observe that there are only two basic phase ellipse transformations of interest. 

(1) An arbitrary DRIFT distance and 

(2) A LENS action 

Each of these elementary cases are illustrated on Fig. 18 for both a 

parallogram as well as ellipse phase space transformations. Note that a 

DRIFT followed by a LENS action is not necessarily equal to a LENS action 

followed by a DRIFT; i.e., the matrices do not necessarily commute. 

* See the appendix of Ref. 3 for a more extensive discussion of this general 
subject. 
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