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DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.
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Foreword

The Subcommittee on Radiochemisery is one of a number of subcommittees working
under the Committee on Nuclear Science within the National Academy of Sciences —
National Research Council. Its members represent government, industrial, and uni-
versity laboratories in the areas of nuclear and radiochemistry,

The Subcommittee has concerned itself with the preparation of publications, nu-
clear education, special problems, and sponsorship of symposia on selected current
topics in nuclear and radiochemistry, A series of monographs on the madiochemistry
of essentially all the elements and on radiochemical techniques is being published.
Initiation and encouragement of publication of articles on nuclear education in the
areas of chemistry have occurred, and development and improvement of certain edu-
cational activities (e.g., laboratory and demonstration experiments with radioactivity)
have been encouraged and assisted. Radioactive contamination of reagents and ma-
terials has been investigated and specific recommendations made,

This series of monographs has resulted from the need for comprehensive compila-
tions of nuclear and radiochemical information. Each monograph collects in one
volume the pertinent information required for radiochemical work with an individual
element or with a specialized technique. The U.S. Atomic Energy Commission has
sponsored the printing of the series,

Comments and suggestions for further publications and activities of value to
persons working with radioactivity are welcomed by the Subcommittee,

N. E. Ballou, Chairman
Subcommittee on Radiochemistry
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Preface

This volume contains all the papers and a panel discussion presented at the sym-
posium on *‘Applications of Computers to Nuclear and Radiochemistry,’’ which was
held in Gatlinburg, Tennessee, October 17--19, 1962. The symposium was sponsored
by the Subcommittee on Radiochemistry of the NAS-NRC Committee on Nuclear Sci-
ence and by the U.S. Atomic Energy Commission; the Chemistry Division of the Oak
Ridge National Laboratory acted as host.

The Organizing Committee for the symposium was composed of D. G, Gardner,
R. L. Heath, G. D. O’Kelley (Chairman), and D. N. Sunderman. The Committee was
greatly assisted in its work by D. D. Cowen of the Oak Ridge National Laboratory,
who made the local arrangements, and by Lewis Slack of the Division of Physical
Sciences, National Academy of Sciences — National Research Council.

The composition and makeup for this volume were performed by the Technical
Publications Department, Technical Information Division, Oak Ridge National Labo-
ratory. Without the contributions from this experienced and competent group, it would
have been impossible to meet the publication schedule for these Proceedings.

The editor wishes to thank the authors, who supplied manuscripts for all papers
included in this volume. It will be noted that the tone and the length of the papers
vary a great deal; however, because of the short time permitted for publication, edi-
torial changes were held to a minimum. It also would have been desirable to make
the notation uniform. Such extensive revisions not only would have involved con-
siderable time, but also would have greatly increased the probability of introducing
errors in the mathematical material; with minor exceptions, the authors’ notations
were therefore left unchanged. In general, each author has defined any unusual
symbols or notation, and each paper has been checked for self-consistency. It is
hoped that the varied notation will not present difficulties to the initiated reader.

Many of the papers included computer programs to accompany the mathematical
description of the various methods. For reasons of space, it was not possible to
include these programs; rather, it was felt that copies of particular programs, to-
gether with information about their use, could best be circulated on an individual
basis by the authors.

The panel discussion in (5-2) was prepared from a stenotypist’s record. In sev-
eral instances, the transcript was either incomplete or garbled; here, attempts were
made to reconstruct the discussion to reflect the content of what was said. Time
did not permit a review of the manuscript by the panelists. In this case, as well as
for the rest of the volume, the speakers deserve the credit for whatever is good in
the Proceedings, and the editor is prepared to accept the blame for the errors.

G. D. O’Kelley

Oak Ridge, Tennessee
March 1963
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Session 1

Chairman: D. G. Gardner

Department of Chemisiry,
{Hinois Institute of Technology,
Chicago 16, llinois

(1-1) GENERALIZED LEAST SQUARES AND THE INVERSION OF
SYMMETRIC POSITIVE DEFINITE MATRICES

M. H. Lietzke
Chemistry Division, Oak Ridge National Laboratory !
Oak Ridge, Tennessee

In curve fitring and in the quantitative treatment of experimental data the method
of least squares, invented independently by Legendre and Gauss, is widely used. At
the present time attempts are being made, for example in the fitting of spectral data,
to determine ever larger numbers of parameters. In many cases the underlying mathe-
matical models are highly nonlinear, and convergence difficulties may be encountered.
In any least-squares fit involving the determination of a large number of parameters,
however, the accumulation of roundoff etror during the course of the computation, re-
sulting in a loss of significance, is one of the most serious restrictions. In this
paper the method of least squares as carried out on a high speed computer is de-
scribed; and since the inversion of a symmetric positive definite matrix must be per-
formed, a comparison of several methods of carrying out the inversion of such mat-
rices is given.

LINEAR REGRESSION — THE METHOD OF LEAST SQUARES [1]

Suppose that a quantity y has been observed as a function of another quantity x,
the resulting values being ¥ pYpreenr ¥y for x T PYRRRIE Assume that a func-
tional relationship

y=f(x,a1,...,a,m), m<n (1)

exists, where the Qpyen
method of least squares those values are chosen as estimates of the parameters

., &, tepresent m unknown parameters. According to the

which minimize the weighted sum of squares

Buwrl= ::;:1 by, =t ap5 o ey 0 0w, (2)

1Operated by Union Carbide Corporation for the U.S. Atomic Energy Commission,



of the deviations of the sample values y, from the values computed with Eq. (1) and
the estimates of the parameters. The w, in Eq. (2) represents the weight associated
with each data point. If the y, are normally and independently distributed with con-
stant variance and Eq. (1) is linear with respect to the parameters Qpyoeees Oy then
the least-squares estimates of &}, ..., @ are both maximum likelihood and minimum
variance unbiased estimates. If, however, linear regression is applied to a nonlinear
model the foregoing statement does not hold. About all that can be said in the non-
linear case is that if the observation vector consists of elements which are independ-
ent and have constant variance, then the variance-covariance matrix approaches as-
ymptotically the vatiance-covariance matrix in the linear case as the number of
samples becomes large. However, the underlying mathematical techniques are the
same in either the linear or nonlinear case.

In carrying out a least-squares fit to an equation

y=f(x1,...,xl,a1,...,ocm), (3)

where the x,, ..., x; are the / independent variables and the a, ..., a, are the m
unknown parameters, estimates are first made of the values of the parameters. Using
these approximate values of the parameters an observation matrix X is set up con-
sisting of column vectors of the partial derivatives of the dependent variable with
respect to each of the parameters evaluated at each data point. Thus

d dy dy

da; /; \0a, /) oa, /1
¥\ (o) (>
P da, /, da., /, da, /,

. . .

% d dy

1/n 2/n aa’mrz

where the subscripts on the partial derivatives indicate evaluation at the respective
data points. The partial derivatives may be evaluated either numerically or analyti-
cally. The matrix X is then transposed and the X TX product is formed. If weights
other than unity are assigned to the data points the X * WX product is formed where W
is a matrix containing the weight associated with each data point on the principal
diagonal and zeros in all the off-diagonal positions. Next a column vector Y is formed
whose elements are the differences between the measured values of the dependent
variable and values calculated using Eq. (3) with the current estimates of the param-
eters. Then the vector solution of the matrix equation

xTwx ¢ = xTwy
or

c=xTwx)~t xTwy (4)



gives a vector C whose elements are correction factors to be applied to the initial
estimates of the parameters. The iteration process is repeated with corrected esti-
mates of the parameters until the conditions for an arbitrary stopping criterion have
been met. (It should be mentioned that in linear cases, such as in polynomial fitting,
it is more efficient to use specific routines which avoid iteration.)

In order to calculate the variances and covariances for the parameters, the inverse
of the X TWX matrix is used. The product [Zw 72/(71 - m)] (XTWX)" , after conver-
gence to the ‘‘correct’ solution, gives an esurnate of the variance-covariance matrix
which contains the variances of the parameters on the principal diagonal and the co-
variances in the off-diagonal positions.

One of the limitations of the least-squares method has already been mentioned:
accumulation of roundoff error may destroy all significance, especially if a large
number of parameters is being determined. In the application of linear regression to
nonlinear models, additional limitations should be noted: (1) the estimates of the
precision of the parameters are not exact, (2) the calculation may not converge to a
solution, and (3) in case of convergence there is no guarantee that the method will
converge to the desired answer. In carrying out the calculation a sum of squares
surface is searched for a minimum. However, this surface may contain many local
minima, and hence it may be important in some cases to have good estimates of the
parameters to ensure convergence to the correct minimum.

INVERSION OF THE X wx MATRIX

When a least-squares fit involves the determination of a large number of param-
eters it becomes important to choose a matrix inversion scheme which will result in
a minimum loss of significance. Other considerations, such as the memory capacity
of the computer, may also influence the choice. Some inversion schemes, such as
the Choleski [2] and congruent transformation [3] methods, take advantage of the fact
that the X WX matrix is symmetric and positive definite and, operating only on the
upper or the lower triangle of the matrix, require much less memory capacity.

In order to assess the utility of several standard methods for inverting large sym-
metric positive definite matrices the Gauss-Jordan [4], Choleski, congruent transfor-
mation, and rank annihilation [5} methods were tried. To give a fair comparison of
the methods each was programmed in FORTRAN using only single precision arith-
metic. The error indicators were then computed using double precision arithmetic so
that the latter calculation was not a limiting factor. All the methods used are well
known and need not be described here.

The matrix chosen for testing the inversion routines was A where the elements
4 of A are given by

2 (=7
=31 (il =
0 (i-jl>D

a..
1]



The inverse of A is given by C/(n + 1) where the elements € of C are given by
in—i+ 1) (@G=7)
= Ci,].—l‘-i (]>Z)

€1 =Cy G <1i)

C..
¢

and 7 is the order of the matrix. A is a symmetric positive definite matrix; it has a
P-condition number of approximately 4n2/7%. In respect to both form and condition
the matrix A is analogous to a least-squares matrix derived from a well designed ex-
periment. In addition to A the matrices A2 and A2 were also inverted. The inverse
of A?is given by C%/(n + 1)?, while the inverse of A3 is given by C3/(n + 1)>. The
latter two matrices have P-condition numbers of 167%/7* and 64726/776, respectively,
and are hence progressively more ill conditioned. In this respect they correspond to
least-squares matrices from increasingly more poorly designed experiments.

In carrying out the comparison of the various inversion methods the matrix A, A?,
or A® was generated and inverted by each method to give (M);plpmx. Then the exact
inverse was generated (using the above formulas and double precision arithmetic) and
as a measure of error the quantity Q defined as

1
Q=;7z myzl -l (5)

i exact approx i

was computed for each method, where M represents A, A 2, or A3. The computations
were performed with matrices of order 10, 15, 20, 25, and 30. In addition to O two
other quantities, recommended as etror measures by Newman and Todd [6],

1
I 6
a=—73 Zll 6)
and
1 1/2
=— 2
-1z @

were calculated, where R = (ri].) is the error matrix taken as

-1

approx

where [ is the identity matrix.

THE A MATRIX

All the methods tried gave an approximate inverse that was very close to the ex-
act inverse of the A matrix for all orders from 10 to 30. Hence, any one of the methods
would be suitable for a well-conditioned least-squares matrix in this range. The in-
verse matrix produced by the congruent transformation method was good to one in the
eighth significant figure even for order 30. The Gauss-Jordan method and the Choleski
method were close behind in that order. Not only did the congruent transformation
method produce an inverse closest to the exact inverse of the A matrix, but the values



of a and [ [as defined by Eqgs. (6 and 7)] computed from the approximate inverse were
lower than the cotresponding values derived from the Gauss-Jordan and Choleski in-
version routines (see Table 1). All of the methods produced inverse matrices, all
elements of which were lower than the exact inverse for all orders from 10 to 30.

THE A2 MATRIX

In the inversion of the A% matrix the effect of the condition of the matrix starts
to become apparent. This matrix is not as well conditioned as the A matrix; in fact,
its condition number is the square of the condition number for the A matrix and hence
is proportional to the fourth power of the order.

In the inversion of the A% matrix for all orders from 10 to 30 the Gauss-Jordan
method produced an inverse matrix closest to the exact inverse. The congruent trans-
formation, the Choleski, and the rank annihilation methods gave very similar results
and were somewhat inferior to the Gauss-Jordan method. The inverse matrices pro-
duced by the latter method were good to one part in 600,000 for order 10 to one part
in 20,000 for order 30. The corresponding figures for the other methods were one
part in about 150,000 for » = 10 to one part in about 3000 for » = 30. The values of
0, a, and { for the A2 matrix are shown in Table 1.

THE A% MATRIX

An examination of the values of Q for the A 3 matrix (Table 1) indicates that the
two Gauss-Jordan routines {7, 8] produce inverses that are the closest to the exact
inverse, except that at order 15 the Choleski method is closer than Gauss-Jordan II.
(The two Gauss-Jordan routines both perform all floating point arithmetic in single
precision; however, the second differs from the first in that proper rounding is used.)
The first Gauss-Jordan routine is good to one part in 80,000 for # = 10, to one part in
1100 for » = 20, and to one part in 400 for 7 = 30; while the corresponding figures for
the other are one part in 50,000, one part in 10,000, and one part in 130. Close be-
hind the Gauss-Jordan routines for # = 10 is the congruent transformation method;
however, for 7 = 15 to 30 the Choleski method produces a more nearly exact inverse.
At n = 30 the rank annihilation method appears slightly better than the congruent
transformation method, producing an inverse each element of which is good to one
part in 16. ‘

In addition to the above observations concerning the closeness of the approxi-
mate inverse to the exact inverse it should be noted that the Gauss-Jordan I and
congruent transformation routines produced inverse matrices whose elements were in
all cases smaller than those of the exact inverse; while the inverse matrices produced
by the rank annihilation method were for all orders greater than the exact inverse.
The elements of the inverse matrices of orders 10, 15, and 20 produced by the Gauss-
Jordan II routine were greater than those of the exact inverse, while for orders 25
and 30 they were smaller. The Choleski routine produced an inverse matrix at orders
10 and 15 with elements smaller than those of the exact inverse, while at orders 20,
25, and 30 the inverse matrix elements were greater than those of the exact inverse.
The low value of 0 atn = 20 for the Gauss-Jordan II routine reflects the fact that
the elements of the approximate inverse are passing through a transition from all



Table 1. A Comparison of the 4, f, and Q Values as a Function of Matrix Order and Inversion Method

Matrix

Gauss-Jordan ¢

Gauss-Jordan IIb

A e A3 A A? A3

10 a 1.3x 1078 9.6 x 1070 6.7x 104 1.4x 10”8 5.6x 1077 3.3% 1077
/ 1.9x 1078 1.4x 1073 1.1x 1073 2.2x 1078 7.8x10~7 4.4x 1073
6) 4.8 x 1078 2.7x 1077 2.1x 1073 6.7x 108 3.2x 1077 2.8x 1073

15 a 2.3x 108 3.6x 10~° 3.0 x 1072 2.3x 1078 2.6 x 10~° 2.0x 1074
f 3.6x 1078 7.1x 1073 4.7 x 1072 3.7x 1078 3.8 x 107° 2.9%x 1074
0 7.8x 10~8 8.3% 1077 2.6 x 1072 1.8x 10~ 2.3x 1074 2.2x 1071

20 a 3.7x 1078 L1x 1074 5.0 x 101 3,7x 10”8 6.8 x 10-° 1.5x 1073
/ 6.1x10"8 L6x 104 8.1x10"1 6.0 x 10~8 9.9 x 1076 2.0 x 1073
0 1.2x 107 1.1x 103 3.4 3.7x 1077 1.0x 103 3.8x 107!

25 a 4.3x 1078 43%x 104 3.4 48x10~8 1.1x 10~ 5.7x 1073
/ 7.1x 108 7.2x 1074 5.8 8.0x 1078 1.6x 1072 7.9% 1073
0 2.0 x 107 5.2x 1073 27. 6.6x 1077 3.7x 1073 44.

30 a 5.1x 10~8 1.3x 1073 13. 5.6x 1078 2.0x 1073 1.7 x 1072
/ 8.2x 1078 2.0x 1073 23.7 9.4x 10~8 2.9 % 1073 2.5x 1072
6) 3.9% 1077 1.9 x 1072 69. 1.1x10~¢ 1.3 x 10™2 258.



Table 1 (continued)

Choleski Congruent Transformation Rank Annihilation
n Matrix
A A2 A3 A a2 A3 Al a3
10 a 20%x1078%  1.6x107% 87x107° 1o0x10"% 1.2x10"% s56x10”°  2.2x107%  1Ls5x10~3
/ 3.0x 1078 2.2x107%  L1x107%  15x1078  1.4x107%®  7.2x107°  2.6x107°  2.0x 1073
0 1.3x1077 © L1x10"%  2.1x107% 59x107° lox10"% 1.3x1072 88x10"° 2.6x10"1
15 a 40x1078%  89x107% 1.6x1073 0.0 43x107%  s5.2x107%  42x107°  6.4x 1073
f 58x 1078  1.4x107°  2.2x1073 0.0 5.6x107%  7.1x107%  5.9x 1073 1.1x 1072
0 24x 1077 1.7x10"3  13x10"' 0.0 L2x 103 13 L5x1073 9.1
20 a 57x 1078 1.8x 107 1.4x1072  1.6x107%  9.1x107%  23x1073  7.5x1077  s5.2x 1072
f 88x 1078  27x1077  19x107%2  26x1078  12x107%  3.2x1073  10x107%  9.4x 1072
0 24x 1077 L1x1072 8.3 1.ox 1078 7.4x10"3 29. 1.2x 10~2 97.
25 a 7.4x 1078  40x107°  6.4x10"? 18x10"% 1Ls5x10"% 57x1073 l9x10"% 2.6x10~!
f 1.2x 1077 5.5x107°  9.6x1072  31x10"%  20x107°  7.5x1073 27x107%  47x10™!
0 3.7x 1077 4.5x 1072 130. 6.2x 10”8  2.7x1072 229. 3.9x 1072 440.
30 a 89x10"8 1.2x107%  22x107!  19x1078  29x107% 15x1072  40x107% 91x10”!
/ L4x1077 1L7x10"%  3.7x107!  32x107%  40x107°  23x107?  6.4x107% 1.4
0 6.4x 1077  l.4x1071 751. 22x 1078 11x107! 1885. 9.0 x 1072 1386.

f‘D. Cohen, ref [7]

bR. Burrus and D. Bogert, ref [s].



being too large to all being too small. The same is true for the low value of Q at
n = 15 for the Choleski method, except that the transition is in the opposite direction.

It is evident that if the @ and f values alone were used to compare the approxi-
mate inverses of the A2 matrix produced by the various inversion methods, then the
congruent transformation method would appear to be as good as the Gauss-Jordan
method. However, the Gauss-Jordan I routine produced an inverse forn = 30 good
to one part in 400, while the inverse produced by the congruent transformation method
was good only to one part in 15. Thus, the Q values reflect the observed bias be-
tween the exact and approximate inverses, while the @ and / values may not. A pos-
sible explanation in the latter case may be in the fact that the A2 matrix contains
elements of altemating sign while all the elements of the inverse matrix are positive.
Hence there may be some cancellation of érrors in forming the (M);plp: ox M product
in Eq. (8), this effect becoming more pronounced as the matrix becomes more ill
conditioned. Also the A matrix contains many zeros (in fact, a higher proportion
the larger the order), and hence the errors in some of the inverse matrix elements do
not show up in the ¢ and [ values.

From the foregoing calculations it appears that any one of the matrix inversion
methods tried will invert a well-conditioned least-squares matrix of order 10 to 30.
When the matrix becomes ill conditioned then the Gauss-Jordan method appears to be
clearly superior (at least for the matrices studied). However, if memory capacity
must be considered and only a triangular atray can be tolerated, then the Choleski
method appears to be superior to the congruent transformation method for large n.
From a study involving the inversion of several well-conditioned least-squares mat-
rices of orders to 7 = 29 all the methods tried gave a and { values about two to three
orders of magnitude smaller than those obtained with the A2 matrix and consistent
with those obtained with the A matrix.
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(1-2) BRUNHILDE -~ A CODE FOR ANALYZING MULTICOMPONENT
RADIOACTIVE DECAY CURVES

Walter E. Nervik
Lawrence Radiation Laboratory, University of California
Livermore, California

During the past years the Radiochemistry Section of the Chemistry Division at
the Lawrence Radiation Laboratory has developed a number of computer codes for
analyzing multicomponent radioactive decay curves. As may be expected, the
earlier codes had rather limited capabilities, while the later modifications became
increasingly complex and more sophisticated. In addition, the earlier codes were
written for the IBM 650 computer and were severely restricted by its small memory
and low calculating speed, while the latest code is written for the much faster and
more versatile IBM 7090,

The program in current use is called “*Brunhilde.’”’ In addition to doing every-
thing that its predecessors did, this code includes many other kinds of calculations
because of the larger memory and higher calculating speed of the IBM 7090 computer.
The Brunhilde code is intended to be run by the “Monitor’’ system, and so it is im-
perative that the code be written in such a way that the computer does not stop when
something goes wrong. Ideally, the machine should determine what is wrong, correct
it, and go on with the calculation; or, if corrective action is not possible, it should
go on to the next problem. Brunhilde has been written in this way, and there is al-
most nothing that will make the machine stop and dump its memory. All reasonable
errors, and many unreasonable ones, will cause a suitable comment to be printed by
the machine before it takes appropriate action.

Data are presented to the computer on a series of punched cards of various types.
A "‘Control Card’’ bears information relevant to the problem as a whole, such as zero
time, chemical yield, or aliquot factor, as well as the identity of the sample. Each
measurement on a counter gives rise to a single data card giving the identity of the
sample and all information pertinent to that individual count. Each background meas-
urement also gives rise to a card of similar format. Instructions to the computer are
inserted by the use of subsidiary cards.



Operations of the Brunhilde code may be broken down into four general categories:
(1) acceptance and storage of input data; (2) calculation and resolution of the decay
curve; (3) printout of data for individual samples; and (4) printout of data for replicate
samples.

ACCEPTANCE AND STORAGE OF INPUT DATA

Since there are many different kinds of input cards, each with a unique arrange-
ment of information, the machine first checks to see what kind of card it is reading,
then takes appropriate action, converting numbers as they are presented on the input
cards to numbers that are suitable for calculation, and storing everything in its proper
location. Numbers which are converted include:

1. Time: All times are converted first to days and thousandths of days from 1
January 1952, then to days and thousandths of days from time zero. The time of a
count is taken as the midpoint of the count.

2. Counting rate: The gross counting rate is obtained by adding 0.5 scalers to
the number of scalers on the data card and converting to counts per minute. (When
the scale factor is 1, no half scaler is added.)

3. Weighting factor: The weighting factor (*'Variance’') of each gross count is
obtained in the following manner:

(Scale factor — 1)?
(12.0) (Duration of count)

VARIANCE = .
(Duration of count)

(Gross count) +

All of the input catds for a given sample are read into the computer, one card at
a time, until an ‘‘end”’ card is reached, at which point the machine begins its calcu-
lations. While being read, the cards are continually being checked for compatibility.
If a card is not compatible with the sample being considered it is rejected and the
machine prints a suitable comment before going on to the next card. Examples of
incompatibility include: (1) wrong counter, (2) wrong control word, (3) extra *‘end”’
card, (4) data card being read when no control card information is available, and (5)
background card in excess of 300 for a single sample.

In addition to rejecting individual cards the computer will reject an entire sample
if a computation is not possible. Conditions under which this will occur include:

1. no data cards (or not enough data cards available to resolve the desired number
of components),

2. no control cards,

no components listed on the control card,

W

4. a component is listed on the control card for which no data are stored in the
memory.

When all input data are in, the computer first converts the time of each count to
days and thousandths of days from the time of the first count, then obtains back-
ground data for each count. Normally the machine will pick out the closest back-
ground count before and after each data count. Since it is possible for either or
both of these background counts to be missing, the background count which is
actually used for a given data count is obtained in the following manner:
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1. No background data available: An average background for the counter on which
the sample was counted is used. The **1/Sigma’’ value for these data points is
then

1 1/2

(Variance of gross count)

2. No previous background count: The closest subsequent background count is used.
No subsequent background count: The closest previous background count is used.
4. Both background counts available: A linear interpolation is made between the two
background counts to the time of the data count. The average background variance
is also a linear interpolation between the variances of the two background counts.

W

In cases 2, 3, and 4 the ''1/Sigma’’ value for the data point is:

1 1/2

(Variance of gross count) + (Variance of background count)

As a check on the effect of high background counts on the final solution, a data
point is labeled *‘suspect’’ if either its previous or subsequent background is greater
than twice the average background for the counter and if the background is greater than
three times the *‘Sigma’’ value for the count. The implication of a *‘suspect’’ classi-
fication will be explained in a later section.

After the data counts have been corrected for background the computer obtains the
shelf ratios and self-scattering correction values for each component. When the correc-
tion factors are not available a value of 1.0 is used.

CALCULATION AND RESOLUTION OF THE DECAY CURVE
1. Details of the Calculation

After all counts have been corrected for background, 100% yield, and aliquot factor,
it is desired that a best fit he obtained to a curve of the form:

~At
i

where A, is the net counting rate, ¢ is the time after the zero time, x; is the counting
rate at zero time of each species present, and )\]. is the decay constant for each spe-
cies.
The least-squares fitting operation is done by a matrix algebra technique which
has been described elsewhere [1] in some detail. Briefly, the technique is as follows:
The data are considered to be given by a set of equations,

—)\J.ti

A, = 2Zx. e (1)
i
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These are then weighted according to the standard deviation 0 of A; (not the var-
iancel!) i

A. e :
yi=—£=zx~ - ) -
O‘l. 7

These equations may be represented in matrix form as (y) = [A] (x), where brackets
indicate matrices and parentheses indicate vectors. The elements Aij of the matrix

[A] are

~A.t,
e 711

A=

2 o.
H

where 1 S 7 s N, the number of components and 1 S8 M, the number of data points.

In matrix notation, the “‘normal equations’’ whose solutions give the best values

for x; are obtained as follows:
(41 () =[AT [A] (x), 3)

where [A?] is the transpose of [A]; then,

=111 (). )

The inversion of the matrix [A’] [A] inevitably involves some figure loss. Instead,
we proceed as follows: consider the matrix [Al, which is in general not square, that
is, there are more rows than columns. To each column after the first we add an ap-
propriate multiple of the first column, the multiplying factor for each column being so
chosen that each modified column is orthogonal to the first column, that is, the sum of
the cross products of terms is zero. When all columns have been modified, the process
is repeated to make all columns subsequent to the modified second column orthogonal
to it; then all columns subsequent to the (twice modified) third column orthogonal to
it; and so on until all columns of the matrix [A] have been modified to give a matrix
[BI, all of whose columns are mutually orthogonal. This operation is equivalent to
multiplying [A] from the right by a square, N x N upper triangular matrix [U] (all terms
below the principal diagonal are zeros) to give [B], thus: [A] [U] = [B].

The matrix [U] may be obtained by treating an N x N unit matrix in the same fash-
ion as the [A] matrix, that is, multiplying the corresponding columns by the same
factors and adding to the appropriate columns as in the [A] matrix.

Since the columns of [B] are all mutually orthogonal, the product [BY} [B] is a di-
agonal matrix, since the off-diagonal terms (which involve sums of cross products)
are all zero. Let [B} [B] = [D]; note that [B’] = [U"] [A?] by the rules of matrix
algebra. Returning to the normal equations, (49 [Alx) =4 t](y). We multiply by -
[U'] and insert the factor 1, represented by [U] w1 1, to give

[ (a1 4] W] (U1 M) = Lo (4%, (5)
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or
(B4 (Bl [Ul™Y(x) = (U [A%)y) ,
or
(D] (1~ 1(x) = (B0 = (U1 [4%0) -
Hence,
(x) = [U] (D1~ [BH(y) = (W1 [P1-1 (U] (411G , (©)

which gives us our values for the components %, of (x). The inversion of a diagonal
matrix is accomplished simply by replacing each element with its reciprocal, and in-
volves no figure loss.

Comparing with Eq. (4) we see also that

Ul [p17! (U] = (41 (AT, )

the inverse matrix of the normal equations, which is the so-called *‘etror matrix.”’
This matrix is also less subject to errors due to figure loss than the matrix obtained
by direct matrix inversion.

The deviations r; from the calculated curve are simply obtained by substituting
the calculated values of x, into Eq. (1) and subtracting the calculated from the ob-
served values. A more elegant method exists: in the orthogonalization procedure
described above, the vector (y) is duplicated; one vector is retained unchanged for
computation according to Eq. (5), while the other is treated as if it were an addi-
tional column of the matrix [Al, that is, it is modified to be orthogonal to each column
of the matrix [A] in turn. When the procedure is completed, the modified vector com-
ponents will be found to be the deviations of the corresponding points from the curve,
with signs reversed and each deviation weighted by l/O"i. We then have the intriguing
result that we have computed the deviations from the calculated curve before we have
computed the curve itself,

In summary, data needed to begin the least-squares fitting calculation include
the time and counting rate of each count and the decay constant for each component.
Data obtained from the calculation include the activity of each component at the time
of the first count; the deviation of each point from the calculated curve, weighted by
*1/Sigma’’ for that point (i.e., ri/O‘z.); and the *‘error matrix.”’

2. Elimination of Bad Points and Criteria for Recalculation

In any method of analysis of decay data, criteria are needed for rejecting ‘‘bad
points,”’
of no value. The Brunhilde code handles bad data by assigning each data point to
one of three categories: ‘‘OK,”’ *‘suspect,’’ or “‘reject.” All points are assumed
**OK’’ until they meet requirements for joining one of the other categories. A point
may become ‘‘suspect’’ because of a high background count or, as more often
happens, it may become ‘‘suspect’’ if its residual (ri/O’Z.) is greater than 3.0 and
greater than 5% of (Az./CTZ.). These limits are set rather arbitrarily but seem to be
a reasonably valid cause for suspicion to be aroused. If, in addition to meeting

or points which fall so far off a smooth curve that they may be considered
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the requirements for a *‘suspect’’ point, a residual (r,/0;) has a sign which is dif-
ferent than both of its adjacent points, that point is rejected. (Here it is assumed
that if we have two adjacent ‘‘good points’’ a calculated curve will pass reasonably
close to each of them and their residuals may, or may not, have the same sign. If a
sufficiently bad **bad point’’ is placed between the two *'good points’ however, the
calculated curve will be displaced toward the **bad point’’ to such an extent that the
signs of the residuals of both ‘*good points’’ will be opposite to that of the ‘*bad
point.”’)

When the computer has completed a least-squares fitting of the data it examines
all of the data points. If any points meet the requirements for rejection, they are dis-
carded and the least-squares calculation repeated. If no points are to be rejected the
computer analyzes the overall calculation to see that it is satisfactory.

In the output of the least-squares calculauon, the sum of the squates of the
weighted residuals (r,/0)) is equivalent to X The *‘expected’’ value of x? is (N — {)
[(where N is the number of data points and j is the number of components, with a vari-
ance of 2(N — j)]. The Brunhilde code computes

V=x%/(N-§. 8)

If V S 1.00 we consider the fit to the data to be as good as can be expected.

If V 2 1.00 the code computes Q = [2/(N - j)]l/ 2 the exgected standard deviation
of V. Rather arbitrarily again, we assume that if (V — 1)/Q = 5.0, the entire calcula-
tion is suspect and should be repeated. When this *‘chi-squared test’’ is met the com-
puter rejects all points which were suspect and recalculates. If no points are suspect
the answers are printed out with a suitable comment. If the computer is obliged to re-
ject suspicious points and recalculate more than three times, it rejects the entire
sample, prints out the answers to the third calculation plus appropriate remarks, and
goes on to the next sample. The computer will also reject an entire sample if it has
to throw out so many points that it cannot perform a least-squares calculation on
those remaining.

3. Precision of Results

The results x, are regarded as *‘best estimates’’ based on the data, and not as ab-
solute answers. An estimate of the reliability of the x; can be obtained from the error
matrix obtained in Eq. (7). The procedure is as follows: If V [Eq. (8)] is less than or
equal to 1.00, ignore it; if V is greater than 1.00, multiply the diagonal elements of the
error matrix by V. These elements are then the variances of the corresponding xje Mul-
tiplication by V accounts (approximately) for any random errors in measurements not in-
cluded in the calculation of the ;. It is usually convenient for ease of interpretation
to express the standard deviation of the x;asa fraction of x ) thatis, (VE )l/z/x

14



PRINTOUT OF DATA FOR INDIVIDUAL SAMPLES

In deciding on the kind and arrangement of information that was to be printed
out for individual samples the line of reasoning was as follows:

1. If the sample is a good one, that is, no bad points, the only items of interest
are the answers and their precision, plus such data as half-life, shelf correction,
SSA correction, counting geometry, sample weight, zero time, etc.

2. If there are *‘suspect’’ or “‘reject’” points then detailed information on all points
is needed.

3. All printed data should be labeled.

An example of the output information for a single sample is shown in Figs. 1 and
2. The labels for the data should be self-explanatory, but a clarification of the num-
bers is in order.

The first page of data for a single sample (Fig. 1) contains the answers to the
least-squares fitting calculation plus the data pertinent to the sample itself. The
date of the calculation is printed on the first line, followed by a “‘category®’ head-
ing. Curves ate often resolved more than once, and it has proven useful to have
headings such as “‘First Wild Guess,”’ ‘‘Preliminary Numbers,®’ and **Final Num-
bers’’ to identify the calculation. The next line prints the name of the experiment,
after which data from the control card are printed, that is, the experiment number,
sample identification number, element identification number, zero time, sample
weight, 100% weight, tegp0r weight, and the aliquot factor. Next, the control
card is reproduced exactly as it was submitted. In the **Comments on Input Data®’
section an explanation is given for any input card that has been rejected and for any
data point whose background is high. The time of the data point as it is punched
on the data card is also printed so that the card can be more easily identified. The
next section contains half-life, correction factors, and counting geometry data for
all components. The results of the calculation are next presented, with information
as to the number of data points, '‘suspect’’ points and *‘rejected’’ points. The first
column gives the total counts per minute of each component at zero time, with all
correction factors except shelf ratio and self-scattering corrections applied. The
second column gives the combined shelf ratio and SSA correction, while the third
column gives the product of the first two columns. Column four gives the *‘per-
cent standard deviation®’ of the value in column three, obtained from the equation
% STND DEV = IOO(VEJ.,.)I/ 2/x7..

If a recalculation is necessary because of a high ‘*chi-squated test’’ value and
the presence of ‘'suspect’’® points, the computer explains what it is doing before
printing the answers to the second calculation.

Once the calculation is completed and the answers printed out, the computer
skips to a new page for printout of detailed information on the sample. On this
second page (Fig. 2) the first two lines of the first page are repeated, that is,
experiment number, sample identification, etc. Next comes a table containing
detailed information on each count. The data in each column, according to column
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heading, are as follows:

1.

b

TIME: The time of the count as it is printed on the data card. These will al-
ways be time ordered, whether the data cards were time ordered or not.
TMINUSTO: The time of the midpoint of the count minus the zero time.
NETCPM: Is the counting rate corrected for background only.

TOTCPM: Is the NETCPM value corrected for chemical yield and the aliquot
factor, that is,

TOTCPM = (NETCPM)

(Aliquot factor) (100% yield)
(Sample weight) (Sr? weight)

WT FACTOR: The ‘“‘weighting factor’’ of each point, calculated from the equa-
tion

o1/2
Z

(Wt factor)i = ——e

N
T (/o]
=1

where N is the total number of data points.

DTPREVBKGD: Consists of two columns. The first is the difference in time

(in days and hundredths) between the time of the data point and the closest pre-
vious background, while the second is the closest previcus background.
DTSUBSBKGD: Consists of two columns. The first is the difference in time be-
tween the time of the data point and the closest subsequent background, while the
second is the closest subsequent background count.

BKGD: The background count that was actually used to correct that data point.

PCTDEV: Is the percent deviation of each point from the calculated curve, ob-
tained from
j ~Agt,
(TOTCPM); ~ ¥ «x; ¢ !
=1
(PCTDEV), = y (100.0) .
i At
é % e 17

10. NOSIGUDEV: The number of sigma units that each point deviates from the cal-

11.

culated curve, obtained from

b —}\It.
(TOTCPM), — 3 x;e :
=1

(NOSIGUDEV)Z. =

o,
i

RLBLTY: Is a measure of the *‘reliability’’ of a point, expressing the net count-
ing rate of each data point as a multiple of its own standard deviation, that is,

(NETCPM),

(o8
1

(RLBLTY), =

If (NETCPM)Z. is zero or negative (RLBLTY)Z. is assigned a value of 999999.9,
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L1

DATE OF THIS CALCULATION IS 12.280 C 7721

FINALNUMBERSFINALNUMSBERSTFINALNUMBERSFINALNUMBERS
SFINALUNUWNBERS —

FINALNUMNBERSFINALNUMNBERSFINALNUMNBERSFINALMNUMBERS

CODE NAME SCRAMBLED CARDS

“SAWPLE W1 HTIUU ~ SKR9U WY ALTQUUY FACTOR
22 o1l 42 60 321405 23.31 38.29 1.00 2.5000000E 01
CONTROL CARD

62242501116032140523.31 38.29 1.00.2500000€ 024209943099 -0 -0 -0
COMMENTS ON INPUT DATA

G CUOURTER
CONTROL CARD AT 321405 NOT USED CONTROL CARD DATA ALREADY ON FILE
DATA CARD AT 325905 NDT USED WRONG CONTROL WORD
DATA POINT AT ViHMg 325436 SUSPECT BECAUSE OF HIGH BACKGROUND
DATA POINT AT TIME 325898 SUSPECT BECAUSE OF HIGH BACKGROUND

{CTURS USED
COMPONENT HALFLIFE STND CTR STND SHELF ACTUAL CTR ACTUAL SHELF 554 CORR SHELF CORR
Ho 99 2.75170& 00 6 5 6 5 1.0000E 00 1.0000E 00
7C 99 2.52000E~-01 0 0 6 5 1.0000E 00 1.0000& 00

RESULTS OF CALCULATION INVOLVING 22 DATA POINTS OF WHICH 2 ARE SUSPECT AND Q WERE REJECTED

CONPONENT TOTCPM AT TO SSA AND SHELF TOTCPH AT TO PERCENT
UNCORRECTED CORR FACTOR CORRECTED STND DEV

MO 99 6.658640E 06 1.000000€ 00 6.658640E 06 0.2329

TC 93 ~1.249525E 08 1.000000E 00 ~1.249525%E 08 -8.0872

WES EW UNSATISFACTORY 3. 97338 01
I AM REJECTING 2 SUSPICIOUS POINTS AND RECALCULATING

RESULTS DF CALCULATION INVOLVING 22 DATA POINTS OF WHICH 0 ARE SUSPECT AND 2 WERE REJECTED

“TU SSA AND SHELF O TUTCPH AT YO PERTERY

UNCORRECTED CORR FACTOR CORRECTED STND DEV
K0 99 6.662359E 06 1.000000€ 00 6.662359E 06 0.2791
7C 99 ~1.261532E 08 1.000000€ 00 ~1.261532E 08 -8.5523

Fig. 1. First Page of Output for a Decay-Curve Analysis of Data from a Single Sample by Use of the Brunhilde Code.
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DATE OF THIS CALCULATION IS 12.280 ¢ 7721
FINALNUMBERSFINALNUMBERSTFINALNUMBERSEFEINALNUMBERS
FINALNUMBERSFINALNUMBERSFINALNUMBERSFINALNUMBERS
FINALRUNBERSFINALNUFMNBERSFINALRNURBERSFINALNUNBERS

CODE NAME SCRAMBLED CARDS

EXPT SAMPLE [DENT ELEMENY IDENT ZERO TIME SAMPLE WT WT100 SR90 WV ALIQUOT FACTOR CHANNEL
22 QLL &2 60 371405 23.31 38.29 1.00 2.5000000F 01
TIME THINUSTO NETCPM TOTCPM WY FACTOR DTYPREVBKGD DTSUBSBKGD BKGD PCTDEV NOSIGUDEV RLBLTY STATUS
323516 2,110 00 8.614E 04 3.5376F 06 5.9475E-03 0,02 105.4 0.59 108.2 105.5 0.071 0.242 340.6 oK
323732 2,.325E 00 8.499E 04 3.4903F 06 1.868BE-02 0.23 105.4 0.38 108.2 106.5 -0.233 ~1.392 595.7 K
324142 2.735E 00 8.039E 04 3.3014E 06 1.9574€E-02 0.03 108.2 0.39 102.7 107.8 0.745 40265 576.7 0K
324562 3.155E 00 T.,215E 04 2.9628E 06 2.64956-02 0,03 102.7 0.40 106.0 103.0 -0.848 ~5.151 602.1 0K

TT32%992 F.585E OU 6.865%E 0% 2.7324F 06 3.389TE-0Z 0.07 106.0 0.41 107.1 106.1 1.413 8,749 628.1 oK™
325436 4.029E 00 5.890E 04 2.4188E 06 3.7510E-02 0.03 107.1 0.43 984.1 172.1 0.230 0. 0. REJECT
325898 64.490E 00 5.201E 04 2.1359E 06 4.7973E-02 0.03 984,31 0.43 199.0 925.4 ~0.631 =0, 0. REJECT

326351 6.943E 00 4.654E 04 1.9113E 06 6.1119€-02  0.02 199.0 0.09 105.4 181.1 -0.362 -2.141 589.9 oK
326545 5.,13TE 00 4,.384E 04 1.8004E 06 T.2719E-02 0.03 108.8 1.01 106.0 108.7 ~1.453 -8.936 606.2 oK
327389 5.983E 00 3.639E 04 1.4945E 06 1.7753E-02 0.88 108.8  0.16 106.0 106.5 1.241 3.0647 248.6 oK
- " 3.004E 0% 1.2Z338E 06 1.2Z77E-02 0.03 106.0 0.56 [06.0 106.0 1.508 2,536 170.7 oK
328751 7.346E 00 2.564%E 04 1.0531E 06 1.4309E~02 0.03 106.0 0.56 106.0 106.0 0.549 0.859 157.3 K
329342 7.937E 00 2.194E 04 9.0L15E 05 1.6623E-02 0.03 106.0 0.56 106.0 106.0 —~0. 147 ~0.214 145.1 OK
329936 .8.531E 00 1.914E 04 7.8616E 05 1.8940E-02 0.03 106.0 ©0.56 109.3 106.2 1.169 1.561 i35.1 oK
330531 9.126E 00 1.634E 04 6.7105E 05 2.2008E~-02 0.03 109.3 0.57 108.2 109.3 0.318 0.394 124.3 oK
331129 9.724E 00 1.404E 04 5.7664E 05 2.53876-02 0.03 108.2 1.20 107.1 108.2  0.219 0,250 114.7 OK
TTTT337359 1.095E 01T 1.05AE U6 %.3296E U5 3.3123E-02 0.03 107.1 " 0.58 104.9 107.0 2. 574 2.469 98.4 TOK
332967 1.156E 01 9.020E 03 3.7042E 05 T.9714E~02 0.03 104.9 0.48 105.3 105.0 2.272 2.900 130.6 oK
333844 1.244E 01 7.220E 03 2.9648E 05 9.8205E-02 0.0} 105.4 0.23 106.% 105.5 2.093 2.378 116.0 oK
334 87 1.268E 0L 6.618E 03 2.7179E 05 1.0645E~01 0.01 106.4 0.23 107.8 106.5 -0.500 =0.557 110.7 oK
334336 1.293E QL 6.417E 03 2.6353E 05 1.0951E-01 0.01 107.8 Q.46 L10.7 107.9 2.718 2.881 108.9 Ok
334727 1.332E 01 5.715E 03 2.3468E 05 1.2178E~01 0.41 107.8 0.07 110.7 110.3 00942 0.954 102.2 0K

DXQDLH MATRIX SENSITIVITY OF COUNTS TO HALFLIFE

NUCLIDE Mo 99 TC 99 000008 © 000000 ¢ 000000 ©
MO 99 ~1.19744k 00 -1.02884E~02 Oe 0. O.
TC 99 -1.00141E 01 ~6-3T66TE 00 Qe 0. 0.

TTTCHIZ TESY VALUE IS 3.98BE OI ~ T CHIZ VALUE IS 2.57E Uz

THE JIGGLE VALUE IS 1.0891E 00 PERCENT AFTER 13 LTERATIONS

SENSITIVITY OF CHIZ TO HALFLEIFE
Mo 99 4.74359c Q2
TC 99 1.86282€ 01

Fig. 2. Second Page of Output Dota from the Brunhilde Code, Which Gives the Detailed Information on Which the Summary of Fig. 1 Weas Based.
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ERROR MATRIX
8.379%0& 06 -1.37353E 07 0. 0.
-1.37353€ 07 7.42511€ 07 0. Q.

PERCENT DF EACH COMPONENT AT TIME OF EACH COUNT

O.
G.

NUCLIOE RO 99 TC 9% 000000 0 000000 0 000000 0
TRINUSTO -
2.110E 00O 9l.146 8.854 O. 0.
2.325E 00 94.628 5.372 0. 0.
2.735€E 00 98.002 1.998 C. O.
3.155E 0O 99,291 0.709 0. 0.
3.585€ 00 99.756 0.244 0. O
4,029 00 9,920 L0880 T T. N 0.
4.490E 00 99.975 0.025 0. 0.
4.943E 00 99.992 0.008 0. O.
5.137 00 99.995 0.005 0. 0.
5.983E 00 99.999 0.001 0. 0.
6,755E 00 100.000 0.000 0. 0.
T+ 3&86E 00 100.000 R ¢ 10 14 [ g
7.937€ 00 100.000 0.000 0. 0.
8.53LE 00 100.000 0.000 0. 0.
9.126E 00 100.000 0.060 0. 0.
9.724E 00 100.000 0.000 0. 0.
1.095E 01 100.000 0.000 0. 0.
T.I58E 01 100000 TOL0B0 T 0. B I ¢ P
1.244E 01 100.000 0.000 0. 0.
1.268E 01 100.000 0.000 0. 0.
1.293E 01 100.000 0.000 [+ 28 0.
1.332E 01 100.000 0.000 0. 0.

CHI2 TEST ON PREVIOUS CALCULATION IS TOO HIGH 39.754 BUT NO POINTS ARE SUSPICIOUS

END OF PROBLEM

Fig. 2 (continued).



12. STATUS: Indicates the status of each point at the end of the final calculation.

The table in Fig. 2 titled **Percent of each component at time of each count’ is
presented as a convenience, so that the amount of each component present in the
sample at any of the counting times can be seen at a glance. Column one lists the
" (time of count — zero time) in the same sequence as the main data table, while each
of the following columns gives the abundance data pertinent to one of the nuclides
being resolved. Each of the abundance values is calculated from the equation

~At,
|xl e Y| (100)
(PCTCNT), = — :

i .
K*i

X, e
KEII K |

PRINTOUT OF DATA FOR REPLICATE SAMPLES

When the calculations on a sample and all of its replicates have been completed
and all of their answers printed out, the computer skips to a new page and prints a
summary sheet before going on to the next sample. This *Compiled Data Sheet'’’ is
intended to provide a concise summary of the more important data pertaining to the
calculation of each of the replicate samples, plus average values, ‘K factors,’’ and
**R factors’’ for each of the components.

An example of a typical summary sheet is shown in Fig. 3. After the date, cate-
gory, and experiment code name, the printout identifies the experiment, element, and
sample numbers and then gives the zero time for the calculation. Next is presented
a table of the results of the calculations on each of the replicate samples. This table
first identifies the components and gives the half-lives that were used in resolving the
curves; then, for each replicate sample, it gives the replicate number, the corrected
total counts per minute at zero time, the percent standard deviation for each compo-
nent, and, in the last column, the final *‘chi-squared test’’ value. The next line
gives an arithmetical average of the “'CPM’’ values of all of the replicate samples
for each component plus a root-mean-squate deviation of the replicate sample values
from the arithmetical average, that is,

pX (TOTCPM CORR),
All Replicates
AVCPM = , ,
Number of Replicates

2 1/2
{ 3 [(TOTCPM CORR). ~ AVCPM] }
All Replicates £

PCTSTDEV =
(Number of Replicates) —1

The line labeled ‘‘Delta Fract Error’’ contains numbers pertaining to the calcu-
lation of the **WITDAVCPM'' and **PCTERROR"’ columns of the next table. In this
calculation it is assumed that there are two kinds of errors associated with the reso-
lution of the decay curves of a set of replicate samples. The first is a purely sta-
tistical deviation of the actual counts from those that would have given a smooth
curve, that is, the **Sigma’’ value from the least-squares resolution of the curves.
The second is much more difficult to determine precisely, but it includes random
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1C

DATE OF THIS CALCULATION IS 12.255 C 7/21

PREL IMINARY NUMBERS PREL IMINARY NUMBERS PRELIMINARY NUMBERS PRELIRINARY NUMSERS
EL “NURBERS
PREL IMINARY NUMBERS PREL IMINARY NUMBERS PRELIMINARY NUMBERS PRELIMINARY NUMBERS
CODE NAME GNOME  NOUGAT 3
ERPLE 8
TIME ZERD
61 344500
NUCL IDE ND147 000000 0 000000 0 000000 © 000000 ©
HALFLIFE 1.1040€ 01 0. 0. 0. 0.
REPLICATE  CPM PCTSTDEV  CPHM PCTSTOEY  CPH PCTSTDEV ~ CPH PCTSTOEY  CPM PCTSTOEY  CHI2T
1 2.5348E 03 0.49 0. 0. 0. 0. 0. 0. 0. 0. 0.41
F] 2.5117€ 03  0.42 O. o. o. 0. 0. 0. 0. o. 0.
av_Com AV CPM AV CPM AV CPM AV CPH
2.5232E 03 0:85 0. o, 0. a. a. 0. 0. [
DELTA FRACT ERROR 0.64 0. 0. 0. o.

COMPONENT WTD AV CPM PCT ERROR CPH HMO99 RATIO TO MO PCT ERROR K FACTOR R FACTOR PCT ERROR

NDL4T 2.5232E 03 4.5788E~01 1.2616E 05 1.9999E-02 5.0902E-01 1.3550€-02 1.4760€ 00 1.0778€ 0O

REFERENCE GEDMETRY

REF CTR REF SHELF STND CTR STND SHELF SAMPLE WTS SR90 WIS CH
COMPONENT 1 2 3 4 5 1 2 3 4 5 L 2 3 4 5 4 5
REPLICATE
¥ 3 U 000 00 00 50 0 00 9 0 00 0 5.33 1.00 0
2 $ 0 0 0 © $ 0 0 0 O 5 0 ¢ ¢ 0 2.0 0 0o ¢ %.64 1.00 0

CORRECTION FACTORS USED
SSA CORRECTION FACTORS

“RUCLTIDE NOT&7Y [+J+]e1s1¢] Y] ooooo0T v T vOVOOT O 000000 O
1 1.0000 0. C. 0. 0.
2 1.0000 0. Ge 0. 0.
SHELF RATIO CORRECTION FACTORS
NUCLIDE ND147 000000 © 000000 0 000000 o© 000000 o
AR S 3+ 111 0. 0. 0. o, T T
2 1.0000 0. 0. 0. Q.

END OF PROBLEM

Fig. 3. A "'Compiled Data Sheet'’ from a Calculation Using the Brurhilde Code.



errors not covered by .the first category such as weighing errors, pipetting errors,
etc. Thus each component in a series of replicate samples will have a series of
answers plus a series of deviations, where each deviation may be considered as
the sum of two terms, that is, X; 0, 19, X, 10, 13, X, i0‘3 £, ..., X, ®
o, *8. The “‘Delta’’ terms are assumed to be the same for each of the replicate
samples. An arithmetical average of the answers is givén by

X = 2z ZX,,
Qo ’

with a deviation of
-1 1/2 1 1/2
U=5<cr"1’+o§+o§+Q82> =—Q—<20§+Q82> .
Q

The mean square deviation of the replicate answers from the average answer is

given by

2 (X, - X)?

- o !

e R ——
QQ -1

Substituting this value of o2 in the previous equation and solving for 82 gives

QZ v > Oz?

8% = ¢

Q

Since the statistical counting errors are usually less than other random errors assoc-
iated with replicate samples, the (Q? 02) term dominates, and 82 is positive.

With 8 determined, a *‘weighted average’’ of the replicate answers may be ob-
tained using the combined deviation (0 + 0) for each sample, that is,

Ve

(WIDAV)= &,

=

and the overall error of the weighted average may be calculated from the combined
deviations of all of the replicates:

1 }7/72
<2 o? + 32>
Q T

1

Ufinal = - 1 2 1 1/2 °
2 orz? + 82 01.2 + &2

Q
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In the Brunhilde code printout, all of the error data are printed as percent, that is,
the ““PCTSTDEV’? values are obtained from 100 O’i/ X;. Similarly, the *'Delta Fract
Error®’ terms are calculated from 100[5/(WTDAV)]I-, and the “PCT ERROR"’ of the
weighted average is calculated from IOO[OTfinal/(WTDAV)]i.

The most important part of the “Compilled Data’’ sheet is the table giving the
final answers for all of the replicate samples. Progressing by column headings,
this table contains:

1. COMPONENT: The symbol and mass number for each component.

2. WID AV CPM: The *‘weighted average count per minute’’ value, calculated as
described in the previous section.

3. PCT ERROR: The **final’’ error value for the *“WTD AV CPM’’ term, obtained
as described in the previous section.

4. CPM MO099: If Mo”? data are available this column will contain the Mo®? value
which is used to obtain the ‘‘Ratio to Mo'’ number in the next column.

S. RATIO TO MO: (WTD AV CPM)/ (CPM M0O99).

6. PCT ERROR: The “‘percent error’’ of the ‘‘Ratio to Mo’’ number, obtained from:

=, 2 - 271/2
(PCT ERROR)i = [ <G—ﬁnal>Mo + <Ufinal)i ] .
7. K FACTOR: If **R’’ factors are to be calculated, this column contains the thermal
neutron *‘Ratio to Mo®’ value for this nuclide.
8. R FACTOR: Contains the value for the term (RATIO TO MO)/(K FACTOR).
9. PCT ERROR: The *‘percent error’’ of the **R Factor’® number, obtained from

- 2 /= N2 - , 1172
(PCT ERROR), = KgﬁnaJ Tt (Ufinal >Mo + (Ufinal>K Fach .

For Mo?? samples, this table of final answers is modified somewhat. Columns 1,
2, and 3 are the same as for other nuclides. The remaining columns are as follows:

4. K FACTOR: Contains a number representing the number of fissions of U235 with

thermal neutrons that are required to give one Mo?? count in the **standard®® Mo

counting geometry.
5. FISSIONS: Contains the product (WTDAV)I. (K FACTOR).

6. PCT ERROR: The *‘percent error’’ of the “fissions’® number, obtained from

- 2 — N\ 2 1/2
(PCT ERROR), = Koﬂnﬂ)i + ("fznax)K Famj :

The remainder of the “*Compiled Data’’ sheet for replicate samples is devoted to a
summary of the kind of information which is not normally needed but which can be of
value in explaining poor results. It also permits a rapid check to be made of all count-
ing geometries and correction factors to ensure that all replicates are calculated in the
same manner.

The first portion of this summary is the ‘‘Reference Geometry*’ table, which con-
tains information on the *'standard’’ counting geometry and the actual counting geometry
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for each of the components and each of the replicates. One row of this table is used for
each of the replicates. The columns are arranged as follows:

1. REPLICATE: Contains the replicate number,

2. REF CTR: Is actually made up of five columns, one for each component, numbered
1, 2, 3, 4, 5. Each column contains the number of the counter for which the **WTD
AV CPM"’ value of that component was calculated in the previous table. If no shelf
ratio corrections were made on that component, the number will be the actual counter
number. If a shelf ratio cortection was used, the number will be the counter to which
the original count was corrected.

3. REF SHELF: Arranged in the same manner as the ‘‘Ref Ctr*’ column. The combined
“*Ref Ctr*’ and *Ref Shelf*’ numbers give the counter and shelf numbers for which the
data in the **WID AV CPM"’ column were calculated.

4. STND CTR: Arranged in the same manner as the previous two columns. Contains the
“*standard counter’® number for each component of each replicate.

5. STND SHELF: Arranged in the same manner as the previous three columns. Contains
the **standard shelf’® number for each component of each replicate.

6. SAMPLE WTS: Contains the sample weight of each replicate sample.

7. SR90 WIS: Contains the Sr° weight of each replicate sample.

The **CORRECTION FACTORS USED” table contains a summary of all the SSA
and shelf ratio corrections used for each component of each replicate sample. One
column, headed by the element symbol and mass number, is used for each component;
one row is used for each replicate sample in each of the **SSA®’ and *‘shelf ratio”
portions of the table. The replicate numbers are given in column one.

With these data it is possible to determine at a glance the status of any of the
“*WID AV CPM’® numbers. Thus, if all of the numbers in column 1 of the **Ref Ctr®
column are the same as their corresponding numbers in column 1 of the “*STND CTR"’
column, and if the numbers in column 1 of the **REF SHELF"’ column are the same
as those in column 1 of the ““STND SHELF®’ column, the “*WTD AV CPM"’ value for
the first component was calculated for that nuclide’s standard geometry. If the shelf
ratio corrections for that nuclide are all 1.00, the sample was counted in its “‘stand-
ard geometry’’ position.

In addition to summarizing the answers to replicate answers for a given nuclide
and experiment, the Brunhilde code summarizes all answers for all nuclides in a given
experiment on one sheet. This type of tabulation is very convenient when a concise
tabulation is desired but the numbers ate changed frequently; the computer is used to
keep all records up to date instead of this having to be done by hand. The kind of in-
formation used in this tabulation and its arrangement in the printout are rather special-
ized features of the code that are better tailored to suit each user, so no example of
the printout is given here.

In summary, the Brunhilde code has been found most satisfactory for resolving
most of the radioactive decay curves obtained in our laboratory. The provisions under
which the computer inspects the input data, applies any desired shelf, counter, or self-
scattering cofrections, evaluates the fit of the data points to the calculated curve, and
estimates the precision of the entire culculation are such that, on the average, the ma-
chine resolution of these decay curves gives better results than those that can be ob-
tained by hand, Not the least advantage to this type of operation is the speed of the
calculation. On the IBM 7090 a typical calculation involving 30 data points and in-
cluding data read-inand evaluation, resolution of three components, recalculation if
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necessary, printout of answers, and tabulation of collected data will take about ten
seconds of machine time.
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(1-3) CLSQ, THE BROOKHAVEN DECAY CURVE ANALYSIS PROGRAM'

J. B. Cumming
Chemistry Department, Brookbaven National Laboratory,
Upton, L.I., New York

INTRODUCTION

A program for the analysis of multicomponent decay curves by a least-squares
procedure has been coded for an IBM 7090 computer. The FORTRAN language has
been used for the main calculation and FAP for some of the subroutines. Provision
for determining half-lives of the nuclear species is provided by an iterative routine
starting from a set of trial values. The general philosophy adopted in coding this
problem has been to give the user considerable flexibility in data handling.

MATHEMATICAL METHOD

The data of a radioactive decay curve consist of » measurements of the counting
rates, f;, of the sample at times ¢;. If m independent nuclear species are present,
then the set of data satisfies n equations of the form

mn ~A g
/1,=Zx7.e v, (1)

At

where an individual term in the sum, x.e 7’ represents the contribution of the
jth component to the total activity at time ;. The residual, v, at that point is due
to statistical fluctuations and experimental errors. Since the m coefficients x; enter

lResearch performed under the auspices of the U.S. Atomic Energy Commission.
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these equations linearly, a solution by the least-squares method is possible. The
condition for such a solution is that

n
z p; vf = minimum , 2)
i=1

where p; is the weight assigned to the square of each residual. In terms of the stand-
ard deviation, 0;, of the ith counting rate )

pl.:l/O'iz. (3)

It is convenient to adopt the matrix notation of Hamilton and Schomaker [I ] and
used by Harmer [2 1. In this notation, Egs. (1) and (2) become
Foo=A_X +V, |, 4

nm m

and

1% an =-minimum . (5)

Id

nl Pnn
In Egs. (4) and (5) the subscripts indicate the dimensions (rows and columns respec-
tively) of the matrices. The symbol Vn'1 represents the transpose of matrix V.
The least-squares solution for the matrix of the unknown coefficients, X, is given

by
Al P, F . =A'P A X (6)

nm - nn nl nn 'nm‘ " ml*®

To solve this equation for X_,, we define

B =A’'P A . (N

mm nm nn nm

The B, matrix is inverted to obtain B;n' ;l and the solution for the unknown coefficient
matrix is given by

-1 ’
Xml = Bmm Anm Pnn Frll - ®
The variance of the ith coefficient is obtained from the corresponding diagonal element
of B~} R
mm
2 -1
Ux. = (Bmm)ii : 9

t

The decay constants, A, do not enter lineatly in Eq. (1); hence, a least-squares
solution for their best values is not possible. However, if the terms are expanded in
terms of small changes, Sx]. and 8?\7. , from a set of initial guesses x;’ and )t;.) as shown
below,

-(A](.)+ SAj)tl. A0, A0

(x](')+8xi)e z(x;.)+8x].) e 171 _x](.)B)\].tl. e 11 (10)

a solution for the 8A terms is now possible. An iterative procedure may then be used
until any desired degree of convergence is attained. (A convergent solution will not
necessarily be obtained in all cases.) In the matrix notation, one extra column of the
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-\t
form ¢ e 7% is added tc A, for each unknown half-life, and one extra row is added

toXml.

THE CLSQ PROGRAM

The CLSQ decay curve analysis program has been coded for operation on an IBM
7090 under control of the FORTRAN Monitor System. It is designed to process
sequentially an unlimited (subject to time limitations only) number of problems. Each
problem has arbitrarily been limited to 200 data points and 10 components. The input

Library Subroutines

{Input, Output, Control)

EXEM
{Modified)

Writes Bad Line in case
of illegal character

CARE
Writes Error Message

Searches for end of problem

MAIN PROGRAM

Reads Comment
Sets up date for output

Call CLSQ =]

CLSQ

Reads Identification
4

Reads Control Card
4

Reads Half Lives

Choice of Data Format
1 external

Start next problem

v
internal
Reads Data

Converts data
[

[}
INPUT

Reads Data

Converts data
I

v

Processes data

= Sets up Normal Equations

MATINV

Inverts B Matrix

Solves Normal Equations

If half life fitting, test
for completion of iterations

incomplete

complete
Output Results

Go to start next problem

Figure 1.
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data are initially punched on cards which are then transferred to magnetic tape by an
IBM 1401 for input to the IBM 7090. An organizational diagram (not a true flow dia-
gram) is shown in Fig. 1. The overall program has been coded as a main program
and various subroutines and will now be discussed.

The Main Program (MNPR®) is coded in FAP. It is entered at the start of each
run and reads 42 alphanumeric characters (7 six-character words) from one catd as a
Comment (COMNT) [3]. It then acquires the date from memory and sets it up for out-
put with CBMNT as an output heading on each problem. Control is then transferred
to CLSQ.

CLSO (FORTRAN coded) is the major subroutine in the present program. On
entry from MMPR@ it reads 72 alphanumeric characters to serve as Identification
(NAME) of the particular problem (subheading on output). It then reads a Control
Card which selects the various calculational and input options and supplies neces-
sary parameters, Figure 2 shows the format of the Control Card. The number of

CLSQ DECAY CURVE ANALYSIS PROGRAM, INPUT DATA

1 234567l91101112!314'5"61713‘9202!2223242526272!29303\3233!43536373039404!42
IDENTIFICATION MIMIT NE clSI-1213!] Wi+D -1
N [ N 46 SiGMA| 1BGD | IN | T 1BUOCK | SCOFF | RUT KCS
CONTROL 5 ] 101511128, . ] Sl .5
HALE LIFE | UNIT
HALF LIVES /i 121 i NIOTE :1Hu_‘|_fﬂ | RE| M,H.0 1OR Y,
/o1, M 2.BLOCK | TD CONTAIN COUNTER| D IME (N 1L SEC.
201, i 3.|SCOFF [ SETS %] SIIGMA | CUT [ORF ON| RATES.
{151, H 4. DECIMAL [PQINTS| TD BE|PLACED IN IDOTTE
(1. Y COLUMNG WHERE Srdwi.
5] ~[iN dodumnl 15 &F [conTRDL] cARD Causs
INDIVIDUAL | HACKGROUND| SUBTRAGTION,
6| LAST DATA ICARD NMUST HAVE END Y GOUUMNS
40.41,18142 AND E0B_UNDER STARTING wa.
Ll L

Figure 2.

components, NC, is given in columns 2 and 3. In column 6 the number, NV, of un-
known half-lives is specified. The program will treat the first NV of the NC com-
ponents as variable. The limitation

NC + NV £ 10 (11

has been imposed atbitrarily. In columns 9, 10, and 11 a number CNV (.05 in the
example) is supplied to govern how far the iterations will proceed. Iterations will
be continued until the ratio of change in the decay constant to the standard devia-
tion of the decay constant is less than CNV for all NV variable half-lives. If CNV
is zero a maximum of nine iterations will be performed.

In columns 12 through 17 the counter background is entered for subtration from
the data. A background standard deviation may be entered in columns 18 through 23
for root-mean-square addition to the standard deviation of each point. An option here
(in conjunction with the external input only) allows subtraction of backgrounds which
vary from point to point on the curve. To use this, a negative background is entered.
This is ignored and background subtraction is performed by the INPUT subroutine.
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Columns 24 and 25 (IN) specify the input data format. A zero or blank causes
CLSQ to use its own input format while a positive integer transfers to the external
subroutine INPUT as shown in Fig. 1.

Columns 26 and 27 (IT) are normally left blank. A number punched in this field
causes output of intermediate matrices and a check of the inversion routine by multi-
plication

B=lB _vy 12)

mm mm =~ mm*

Columns 28, 29, and 30 (BLOCK) are the counter dead time in microseconds (5
psec in the example of Fig. 2).

Columns 31, 32, and 33 (SCOFF) set a cutoff (in percent) on the smallest value
at which the program will use the standard deviation from statistics alone. In the
example the standard deviation of any point will never be less than 0.5% of the rate,
regardless of how many counts may have been recorded.

Columns 34, 35, and 36 (RJT) if not blank or zero cause the program to examine
its output and reject those points which fall further than RJT times the standard
deviation from the curve. The fit is then repeated.

A number in column 38 (KCS) causes the program to enter a known component sub-
traction routine which treats the last KCS of the half-lives as having known inter-
cepts. It reads these intercepts from cards after the data are input, and appropriately
subtracts these components from the decay curve before fitting. KCS cannot exceed
5 and the sum NC + NV + KCS cannot exceed 10.

After reading the information on the control card, CLSQ then reads the list of NC
half-lives (one per card). The first NV of these are considered first guesses. Half-life
units may be minutes (M), hours (H), days (D), or years (Y). If no unit is given it is
taken to be M. For internal use, decay constants in min~! are calculated.

The data from the decay curve are now read in. The external subroutine INPUT
(coded in FORTRAN and called by IN=1 on the control card) has been used most fre-
quently. Its input format is shown in Fig. 3. For each point the subroutine calcu-
lates the counting rate, its variance, and the time (in minutes) at the midpoint of the
count, Point by point background subtraction is also performed if called for by a
negative background on the control card. Control is then returned to CLSQ. The
internal input of CLSQ reads midpoint time, counting rate, and variance for each
point in a 3E13.6 format. In either input, the last data card is either blank or con-
tains a time which will be interpreted as the time of the end of bombardment.

After rates, variances, and midtimes are calculated, CLSQ converts times to
times relative to the first count, corrects for deadtime, subtracts background, applies
the SCOFF criterion to the variances, and performs the KCS option if called for. The
intercepts of the known components and their standard deviations are obtained from
cards which follow the end of bombardment card. The format is 2E13.5 with one inter-
cept and its standard deviation on each card,

The program now proceeds to set up the necessary equations for the least-squates
analysis as outlined above. Inversion of the B matrix is accomplished by the sub-
routine MATINV [4] and the normal equations are solved. If half-lives were to be
determined, this first pass considered them fixed at the initial guesses. This pass
then supplies the initial guesses for the intercepts which are used in the next itera-
tive analysis. Results of the first pass are also output for comparison. A typical
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CLSQ  DECAY CURVE ANALYSIS ‘PROGRAM, INPUT DATA

1123 [4 |3 ]e17.]8 19 politliafiaJte [tsfie 17 is T1oT20 T21 122 [23 [24 125 [26 To7 {28 [29 130 [31:[32 [33]34 35 26 [a7 [38 ov a0 41 [e2
STARTING [TiM | LENGTH [OF 860 SIGMA 84D
DAY S HR MIN TS CUNT: COUNT (Nin) (gcym) (CI/M )
DATA 2 T | 3118 37..16195 2 )
/21,15 3101385
2104, 2158464
LA 211817157
4 3], {|8B3l00D
viv 5T, /58024
118l i1of. /341323
ININEIEIR 51318863 1lo
vivl 4051, [13/2:3|0/0/0 Zl0
112 11151, 111717
vy 451, AENE
210] 1151, 2810
Vil 415, 774
1200 hisl, 6851
[V 5T, 6,019
il 2121 11151, 5714157
vl 451, #1915
23] 11 51. 450
5 i 45- 410
A9 Of 11131, 3178
Y 457 3501
| [IC1N 329
vl 1451, 5017
2 1151, 2911
¥ 4151, 2|74
31 (151, 21672
| 451, 12148
LS. 237
bl 451, 2128
51 14151 21119
v H51, 2,13
6] 11151, 2/0l6
i 45T, 199
villiaR /192
HIEGN /8|7
8l 1751, /182
V48], LZ]71¥ )N v v
/13] 1210]. 2316128 5]
N /4] B2l 311272 7
39| 1751 [ lol. 915/55] 60
B /6] [231.1] FHD
Figure 3.

output is shown in Fig. 4, The quantity FIT is given by

V;;lpnn an
FIT=nA f_ 2 77 " | (13)

n—m

It should be pointed out that V', PV . is essentially y 2 for the number of degrees

of freedom (n~m). Its expectation value is (n-m) and its variance is 2(n-m).
{

If half-lives are to be fitted, the program now proceeds to perform the necessary
operations.. The changes in a given decay constant at each iteration are damped so
that they can never exceed one-half the value of the decay constant. Each change
in a decay constant is also tested to ensure convergence. There is some evidence
that the test for convergence in the present program is too strong and should be re-
laxed to allow a slightly larger change to follow a smallerone. When all changes in

30



CLSC CECAY CURVE ANALYSIS PROGRAM 10/03/62
CUMMING ACS-23 UL W-3

NP= 4C NCz 5 NV=0 CNV=0,05 8GD=125,.00 S8GD= 5.00 BLBCK= 5.0 SCOFF=0.5 RIT=~0, KCS=0

FALF LIFE SIGMA H CPM AT EQB SIGMA DECAY FACTER
CemP{ 1) 112,000 0. M 0.868832E 05 0.25032E 03 0.12920E 01
cagmMpl 2) 10.000M [+ M 0.11027€ 06 0.33324E 05 0.17631E 02
Cerpr{ 3) 20.400M 0. M 0.41368E 06 0.59996E 04 0.40824E 01
CeMPl 4) 15.000H 0. H 0.11904E 05 0.,20326E 02 0.10324€ 01
CBMP( 5) 1.000Y [+ 2 Y 0.36485E 02 0.53433E 01 0.10001€ 0Ot
FIT: 0,956
Tii) F(I} FCALCLD) viil} SIGMAF({I) RATI®B(I)
Oa 0.18865E 06 0.18791E 06 0.T74564E 03 0.94326E 03 0.79
0,90000€ C1 0.15376E 06 0,15450€ 06 -0.74583E 03 O0.76878E 03 -0.97
0.17500E 02 0.13052E 06 0.13088E 06 —-0.36405€ 03 0.65258¢ 03 ~0.56
0.27500E C2 0.11026E 06 0.11005€ 06 0.20730E 03 0.55131E 03 0.38
0,39500€ C2 0.92079E 05 0.91946E 05 0.13366E 03 0,46040F 03 0.29
0.50500€ C2 0.79412E 05 0.79835E 05 -0.42331€ 03 0.39706€ 03 ~1.07
0.66500E C2 0.674158 05 0.67190€E 05 0.22559€ 03 0.33708E 03 0.67
0.93500€ €2 0.54005E 05 0.53549E 05 0.45598E 03 0.27002E 03 1,69
0,11550E 03 0.46489E 05 0.46229E 05 0.25994E 03 0.23245E 03 1.12
0.14550€E 03 0.39237€ 05 0.39007€ 05 0,23054E 03 0.19619E 03 1.18
0.17550E 03 0.33637E 05 0.33575€ 05 0.61483E 02 0.16818E 03 0.37
0,20550E 03 0.29280E 05 0.29246E 05 0.34048E 02 0.14640E 03 0.23
0.23550€ €3 0.25731E 05 0.25696E 05 0.,35137€ 02 0.12865E 03 0.27
0,26550E 03 0,22752E 05 0,22742€ 05 0.10188E 02 0.11376E 03 0.09
0.29550E 03 0.20209€ 05 0.20266E 05 ~0.56991F 02 0.1010SE 03 -0.56
0,32550€ 03 0.18069E 05 0.18183E 05 —0.11353E 03 0,90346E 02 -1.26
0.35550E 03 0.16398E 05 0.16423E 05 ~0.25018E 02 0.81989¢ 02 ~0.31
0.38550E 03 0.14894E 05 0.14931E 05 -0.37617E 02 0,74469E 02 -0.51
0.41550€ 03 0.I3557€ 05 0,13664E 05 ~0.10631E 03 0.67786E 02 ~1.57
0,44550E C3 0.12488E 05 0.12582€ 05 ~0.93687E 02 0.62441E 02 ~1.50
0.,47550E 03 0.11586E 05 0.11656F 05 ~0.69148E 02 0.57932E 02 ~1.19
0.50550€ 03 0,10852E 05 0.10859E 05 —0.T0879€ 01 0.54259€ 02 ~0.13
0.53550€ C3 0.10117€ 05 O0.10170E 05 ~0.53183F 02 0.50985€ 02 -1.0%
0.56550E 03 0.95829€ 04 0.95722E 04 0.10619E 02 0.47914E 02 0.22
0.595508 03 0,90153E 04 0.90500€ 04 —0.34689E 02 0.450T7€ 02 =0.77
0.62550E 03 0.86147€ 0% 0.85913E€ 04 0.23448E 02 0.43074E 02 0.54
0.65550E €3 0.81474€ 04 0.81858E 04 -0.38472E 02 0.40737€ 02 ~0.94
0.68550E 03 O0.77802E 04 0.78253E 04 -0.4S071E 02 0.38901f 02 -1.16
C.T15508 03 0.74798E 04 0.75025F 04 —-0.,22689€ 02 0,37399E 02 =0.61
0. 74550E C3 0.7179%& 04 O0.721LI7E 04 ~0.32211E 02 0.35897E 02 ~0.90
0.77550€ 03 0.69792E 04 0.69478E 04 0.31367E 02 0.34896E 02 0.90
0.€0550E 03 0.67456E 04 0.67070E 04 0.38621E 02 0.33728E 02 1.15
0.83550€ 03 O0.65120€ 0% 0.64857E 04 0.26319E 02 0.32560F 02 0.81
0.86550E 03 0.,62784E 04 0.62811E 04 —0.27102F 01 0.31392€ 02 ~0.09
0.89550E 03 0.61116E 04 0.60909€ 04 0.20632E 02 0.30558E 02 G.68
0.92550E 03 0.59447E 04 0.591328 04 0.31577E 02 0.29724E 02 1.06
0.95550E C3 O0Q.57779E 04 0.57461E 04 0.31773E 02 0.28890E 02 1.10
0.121B0E 04 0.46025E 04 0.45858E 04 0.16670€ 02 0.31147€ 02 0.54
0.12980€ C4 0.43441E 04 0.43018E 04 0.42253E 02 0,25753E 02 1.64
0.15745E €5 0.33919E 02 0.35796F 02 ~0.18774E 01 0.52582f 01 ~0.36

Figure 4.

decay constants satisfy the CNV requirement the program proceeds to output the re-
sults as shown in Fig. 5. By comparison with Fig. 4 it is seen that FIT is signifi-
cantly improved by inclusion of the variable half-life and that 110 min is a better
value than the first guessed 112-min value.

Since the present program runs under control of the FORTRAN Monitor, a change
has been made in the library routine EXEM. Rather than skipping the entire days’
run in case of an illegal character in the input, EXEM now writes out the bad line
and transfers to subroutine CARE as shown in Fig, 1, CARE then searches for a
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CLSQ CECAY CURVE ANALYSIS PRIGRAM 10703762

CUMMING AGS~23 U¢D h~3
NP= 4C NC= 5 NV=1 CNV=0.05 BGD=125.00 $8GD= 5.00 BLECK= 5.0 SCZFF=0.5 RJT=-0. KCS=0
ITERATIBNS PERFPRMED= 3 CONVERGENT

18T Ccoup 2ND ComMpP 3RD CamMP 4TH CaMp STH CamMp
D 0.630642€-02
CELTAL 2) 0.115122E-03
CELTYA( 3} 0.48CBO3E-00
SIGMA C.265903E~04

HALF LIFE SIGMA H CPM AT EOB SIGMA DECAY FACTZR
CeMP{ 1) 109.946M 0.464M 0.91337E 05 0,54585E€ 03 0.12982E 01
CgMPL 2) 10.000M O. M 0.18830E 06 0.37895E 05 0.17631€ 02
ComMPL 3} 20.4C0M Co M 0.39086E 06 0.79976E 04 0.40824E 01
CoMPL 4) 15,0004 0. H 0.11993E 05 0.28498E 02 0.10324E 01
comMp{ 5) 1.000v 0. Y 0.34733E 02 0.53580€ 01 0.10001E 01

FIT= 0.61%

T F(1} FCALC(L) VL) SIGMAF(1) RATIO(I)

0. 0.18865E 06 0,18843F 06 0.22546€ 03 0.94326€ 03 0.24
0.90000E C1 0.15376E 06 0.15429E 06 -0.52894E 03 0.76878E 03 ~0.69
0.17500E C2 0.13052E 06 0.13050E 06 -0.11999€ 02 0.65258¢ 03 0.02
0.27500E G2 0.11026E 06 0.10976E 06 0.49989E 03 0.55131E 03 0.91
0.39500E C2 0.92079F 05 O0,91857E 05 0.22217E€ 03  0.46040E 03 0.48
0.50500E 'C2 0.79412E 05 0.79918E 05 =0.50599E 03 0.39706E 03 -1.27
0.66500E C2 0.67415E 05 0.67436F 05 —0,20541€ 02 0.33708E 03 -0.06
0.93500E 02 0.54005E 05 0.53876E 05 0.12840F 03 0.27002€ 03 0.48
0.11550E 03 0.464B9F 05 0,46526E 05 -0.37102E 02 0.23245E 03 -0.16
0.14550E 03 0.39237€E 05 0.39218E 05 0.18995E 02 0.19619€ 03 0.10
C.17550E C3 0.33637€ 05 0.33700F 05 ~0.63301€ 02 0.16818E 03 -0.38
0.20550€.03 0.29280€ 05 0.29301lE 05 -0.20442E 02 0.14640€ 03 ~0.14
C.23550€ 03 0.25731E 05 0.25699E 05 0.32104E 02 0.12865E 03 0.25
0.26550€ 03 ~0.22752E 05 0.22710E 05 0.42190F 02 0.11376E 03 0.37
0.29550E 03 0.20209€ 05 0,202126 05 -0,29536E 01 0.10105& 03 -0.03
0.32550€ 03 O0.18069E 05 0.18117E 05 —0.47264E 02 0.90346€ 02 -0.52
0.35550E 03 O0.16398E 05 0.16351E 05 0.46320E 02 0.81989¢ 02 0.56
0.38550€ C3 0.14894E 05 0.14860E 05 0.33724E 02 0.74469E 02 0445
0.41550€ 03 0.13557E 05  0.13596€ 05 -0.38431E 02 0.67786E 02 ~0.57
0.44550E 03 0.12488E 05 0.12520E 05 -0.31518E 02 0.62441E 02 ~0.50
0.47550€ C3 - 0,11586E 05 0.11600E 05 —0.14042E 02 0.57932E 02 ~0.24
0.50550E 03  0.10852E 05 O0.108L1E 05 0.40266E 02 0.54259E 02 0.74
C.53550E 03 0.101176 05 O0.10131€ 05 -0.13802€ 02 0.50585f 02 -0.27
0.56550€ 03 0.95820f 04 0.95407E 04 0.42141€ 02 0.4T914E 02 0.88
0.59550E 03 0.90153E 04 0.90260E 04 —~0.10689E 02 0.45077E 02 -0.24
0.62550E 03 0.B614TE 04 O0.85T43E 04 0.40403E 02 0.43074E 02 0.94
G.65550€ 03 0.81474E 04 0.81754E 04 ~0.27998E 02 0.40737€ 02 ~0.69
0.68550E 03 0.77802E 04 0.78207€ 04 -0.40474E 02 0.38901F 02 ~1.04
0.71550E 03 0.74798E 04 0.75032E 04 —-0,23356E 02 0.37399€ 02 ~0.62
0.74550€ 03 0.71795E 04 0.7217CE 04 -0.37542€ 02 0.35897¢ 02 ~1.05
Figure 5.

card with the characters END in columns 40, 41, and 42; hence, this word should
appear in this location on the last card of each problem. On finding an END it then
transfers to CLSQ and starts the next problem.

Further details on the program may be obtained from the author.

CONCLUSIONS

Experience has shown that when such a program is available it will be used for
analyses of most decay data with a considerable saving in time over graphical pro-
cedures. Furthermore its results are not subjective and its error estimates are con-
siderably more meaningful than those guessed from the graphical analyses. : Small
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effects, such as presence of impurities or improper half-lives which would not have
been seen in a graphical analysis, become apparent in the least-squares procedure,

The author is indebted to Mrs. R. Larsen and Mr. K. Fuchel for their assistance
during the coding of this problem.
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(1-4) ANALYSIS OF MULTICOMPONENT DECAY CURVES BY USE
OF FOURIER TRANSFORMS

Donald G. Gardner
Department of Chemistry, 1llinois Institute of Technology
Chicago 16, 1llinois

and

Jeanne C. Gardner
Department of Chemistry, College of Pharmacy, University of lllinois
Chicago 12, 1llinois

INTRODUCTION

Frequently it happens that experimental data may best be represented by a sum of
exponentials of the form

) = % N? exp (=At) . L

i=1

The problem is not one of mete curve fitting because the parameters have physical
significance. Therefore it is necessary that the true parameters be accurately esti-
mated. This implies that the number of components n» must also be determined, for if
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n is not known, any ‘‘accurate’’ estimation of the parameters begins to lose its mean-
ing.

The two essential difficulties that are inherent in the problem are that we must
deal with data that only approximate f(z) over a finite range in ¢, and that the expo-
nential series possesses such strongly nonorthogonal properties that the parameters
are extremely sensitive to minor fluctuations in the data. In certain fields of research,
experimental techniques have reached such a level of automated excellence that the
experimenter is overwhelmed by great amounts of very good data. In such fields the
first difficulty may no longer exist. Since the data themselves are becoming more
reliable, the method of analyzing the data assumes greater importance. High-speed
computers now make it possible to investigate mathematical methods for treating data
that were too laborious to use in the past. In spite of the increasing accuracy of the
data, the nonorthogonal properties of the exponential series still poses a formidable
problem.

The approach to the solution of this problem that will be described here has under-
gone a preliminary evaluation by L. Laush, W. Meinke, and the present authors, and
the results were published [1]in 1959. At that time only the problem of separated and
unrelated components was considered. Recently work on this problem was resumed,
particularly with reference to the case of chain-type interactions wherein one compo-
nent is produced as the result of the disappearance of another component.

The growth and decay problem may also be expressed as a sum of exponentials;
however, the coefficients will in general no longer be positive. Consider for example,
a situation where

Species 1—> Species 2—> Species 3.

This would be termed a two-component decay chain, and if only Species 1 were pres-
ent at time zero, then

by by -
fiy=N$ <1 " > M LN
A=A A=A

l\.zt

(2

Depending on the relative sizes of the A, values, the second coefficient could be
negative.

SOLUTION BY FOURIER TRANSFORMS

In ref [1] mention is made of previous approaches to this problem, and this dis-
cussion will not be repeated here. The present approach is based on the fact that the
exponential series may be represented by a Laplace integral equation:

[ECE]

i) = ; N? exp (-At) = f(; g(A) exp (=At) d . (3)

1

Here g()) is a sum of delta functions, but due to the error inherent in the experimental
estimate of f(f) and in the numerical computations necessary to obtain g(A), a plot of

&(A) vs A will appear in the form of a frequency spectrum. The presence of a true peak
in the spectrum indicates a component, the abscissa value at the center of a peak is
the decay constant A, and the height of the peak is proportional to the coefficient N ?.
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The function g(\), actually g(A)/], is obtained as follows. The variables A and ¢
are transformed to give A = e™” and ¢t = e*. Then

fe®) =f: exp [-e* = M gle™ye Y dy . (4)

If we define F () as the Fourier transform of e*f(e%), it can be shown [I] that

F(u) = 2m)'? GuK(w), (5)

gl = 11/2m Y AFu/K()] . (©6)

Here G(p) is the Fourier transform of g(e”™”), and K(u) tums out to be the Euler integral
for the complex Gamma function,

K@) = [1/Cm)Y AT + ip) . 7

To obtain g{e™) we take the inverse Fourier transform of G(y),

- 1 ® F(p) -
g(e y)='2'; f_mlzzl:)-e yﬂdﬂ. (8)

Since g(e™?)dy = [g(A\)/Ald], a plot of g(e™) vs y is equivalent to a plot of g(A)/A
vs A\

COMMENTS ON THE NUMERICAL SOLUTION

Briefly, the method of solution involves essentially only two integrations. First,
F(p) is found. This is divided by the complex gamma function given in Eq. (7), and
finally g(e ™) is found using Eq. (8). The Gamma functions can be found most easily
from tabulations [2].

It is clear that one cannot numerically integrate from —oo to o, as required in
Eq. (8). A similar situation holds for F(u). Here we must use the limits tx

2mY/? F(u) = fxo e*f(e*) exp (ipx)dx + E(x g, p) . ©))

_xo

The value calculated for (27)1/?2 F(p) will be in error by at least the amount E(xo,y).
This cutoff in x produces error ripples that tend to obscure the true peaks in the
spectrum. Hence it is often necessaty to extrapolate the experimental data to larger
values of ¢ in order to reduce this effect.

The cutoff at tpu, in Eq. (8) tends to affect the frequency of the error ripples and
the breadth of the true peaks. The larger the value of p, the better the resolution will
be in the final results. However, the maximum usable value of y;, depends on how
good the initial data are. If p, is chosen too large, the error ripples will tend to in-
crease and obscure the results., If Ko is chosen too small, there will be an unneces-
saty loss in resolution. What is usually done is to repeat the analysis for several
progressively larger values of i, until the error ripples begin to grow. This repeated
analysis has further advantages that will be mentioned later.
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The numerical integration scheme that is employed apparently is quite critical.
This is because the exponential terms in the integrals must be represented by trigo-
nometric functions that tend to oscillate rapidly for large values of the arguments.
The Trapezoidal Rule yields much better results than Simpson’s Rule, for example.
It is' now planned to investigate the Trapezoidal Rule with an end point correction as
well as Filon’s method [3].

RESULTS

The case of independent exponential decay curves will be considered first. The
results for single-component curves for two values of p, are shown in Fig. 1. It
should be noted that whereas the error ripples shift position as a function of ), the
true peak does not. This provides one method for distinguishing true peaks from error
ripples — merely repeat the analysis for several p values and note which peaks do
not shift positions.

A two-component decay cutve is analyzed in Fig. 2. In both curves the principal
peaks are of the same height. This arises because we are plotting g(A)/A vs A, and
both the coefficient and the A value of the second component are a factor of 10
smaller than those of the first component. Furthermore, the breadth of the two peaks
is the same, which means the resolution is constant over the eantire range. This fact
is useful in analyzing unknown curves. If, for example, two A values are too close
together to be resolved, the peak may be wider than that expected for a single compo-
nent. This is illustrated in Fig. 3. Here the triangle shows the width expected for a
single component.

#1)=1000€ %" + 100e 001
~ 64l #5230 . #,=60
48|~ ft=1006 > . [
561 E .
#5=6.0 #0280
401 10 i
4er- I+ .
321 - 1 sol AL i
-
~
24} J+ . 2 i
&
< e 1+ . ]
f-1
s R
8 O 1 1
daaf \Allaanfl \la % ﬁﬁ
Y i
-8—. —t - N
10 ] 00l 10 o4 0.0l B L TR T IT TR TR Y R T T
A x
Fig. 1. Effect on the Resolution of Fig. 2, Effect on the Resolution of
Increasing ty from 6.0 to 8.0. Increasing fty from 3.0 to 6.0,
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Figure 4 shows the results obtained from a four-component decay curve. Here the
relatively large error peak at a A value of about 0.0035 can be distinguished from a
true peak in a number of different ways. One of the best ways is to compare the width
of the peak at its base (where the ordinate is zero) with the width of true peaks.

Other checks include varying p, to see if the peak shifts position, and also examining
the original data to see if a component with such a decay constant is reasonable.

-0.02¢ ~-0.0/56¢

00k f&)=50e" +100e

Pa=10.0

=100 {=

| SO Y S | ! 1 111 L a .l L ]
LO ol
A

Fig. 3. PecksBroadening Effect for Two Unresolved Compo-
nents. Expected peak width for a single component is shown by

the triangle.

96} 1137506 °*'+10006 %" + 1906 *02' 1006 "]

Ko 8.0

Fig. 4. Resolution of o Four-Compo-

nent Decay Curve,

g{r)/x
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Only 27 data points were used in this four-component curve. By the use of a double-
precision nonlinear least-squares program on an IBM 7070 machine, an attempt was
made to analyze the same set of data. When a fit to a three-component cutve was re-
quired, the program found the first two components rather well and averaged the last
two components into a single component. When we tried to fit four- or five-component
curves to the same set of data the program always failed. Either negative coefficients
were obtained or parameters went to zero. With this particular program at least, it
was impossible to fit the data properly using the nonlinear least-squares approach.

Figure 5 illustrates what happens when the original data do not span a large
range in ¢ (recall £ = e”). The previous curves have used data cutoff at |x | = 7.
Here we cut off |x | at 5.25. When the final integration is carried out to p, = 6, the
error ripples completely obscure the true peak (shown as the dark triangle). However,
even in this poor case relatively good results can be obtained if a somewhat poorer
resolution is accepted. When i is restricted to 4, the error ripples are greatly re-
duced and the true peak appears at the proper A value.

-0.02
Lol (1171006 *%" (WITH CUT-OFF AT X =525)

po=60 po40
120 1 -i}-30 B

100}
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!
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-80 [ | T -

basniey oo ld o S Gefleais by sy

10 0l 00 000110 ol 00 0.00
A

Fig. 5. Effect of the Cutoff in x;
on the Analysis of a Single-Component
Decay Curve.

Let us consider next the case of growth and decay. As an example, let us suppose
that Species 1 decays to Species 2, which decays in turn to Species 3. Let A; = 0.02
and A, = 0.1, and assume that only Species 1 was present at time zero. Since these
species are radioactive nuclei, then we will be interested in the disintegration rate
rather than the number of atoms of each species. Under these conditions, and if
N? = 1000, then

f(t) - 456—0.021 . 256—0.1! R (10)

Figure 6 gives a plot of f() vs ¢, showing the typical maximum in the curve. A
Fourier analysis of this data is illustrated in Fig. 7. The result of a negative coef-
ficient is merely a negative peak in the spectrum. We expect that indeed a negative
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peak is present at about that value, but the peak is too small compared to the ripple
size to be determined accurately. This is not surprising since the coefficients indi-
cate that the negative peak should be only 1/9 the size of the positive peak. Fortu-
nately it is not necessary to measure the height of the negative peak in this case.
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The A value for the positive peak is evident in the figure, as is the height of the peak.
Since the height is directly proportional to the coefficient, it is merely necessary to
run a standard decay curve with a known coefficient at the same value of ftq to deter-
mine what the proportiopality factor is. In the present case, you would then know that
one component was 45¢~9-92t  1f this function is subtracted from the initial data,
the second component would be obtained immediately.

CONCLUSION

A method has been described for the analysis of multicomponent exponential decay
curves that is applicable both to the decay of independent species and also to the
case of growth and decay chains. One advantage of the method lies in the fact that it
is not necessaty to have initial estimates of the parameters before the analysis, as
in curve-fitting procedures such as the nonlinear least-squares method. Furthermore,
to these authors’ knowledge, it is the only approach where the number of components
automatically *‘falls out’’ of the analysis Full use is made of the accuracy that is
inherent in the data since the data are treated as a whole, as opposed to some
*‘subtraction-type’’ methods wherein all but the shortest-lived components are deter-
mined using fewer points than are actually available. Finally, the occurrence of A
values very close together does not endanger the entire solution as in other methods.

So far the Fourier transform method has only undergone a preliminary evaluation.
The full power of the method has yet to be determined because so far only crude inte-
gration schemes have been employed in the numerical computations. Furthermore, no
work has been done on attaching error bounds to the final results. Further work on
these and other points is underway at this time.
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(1-5) ANALYSIS OF MULTICOMPONENT RADIOACTIVE DECAY CURVES!
Robert E. Shafer

Lawrence Radiation Laboratory, University of California
Livermore, California
GENERAL INTRODUCTION
I shall attempt to review the literature on analysis of multicomponent decay
curves, including some recent work by Gardner et al. [2]). In their paper, Gardner
et al. suggested the possibility of using a step function to characterize the decay

rate of a sample. It is well known that a function characterizing a Fourier trans-
form is uniquely determined; that is, for example if g(@) is a given function,

@) = j; " [t cos at dt . M

Then, there is but one function f(t) satisfying this relationship. To characterize a

step function F(a), let
1 if0<a<p
F(a)={1/2 ifa=p )

0 ifa>p

whose conditions are satisfied by the Fourier integral:

2 po du
—f sin Bu cos ou —-, 3)
7 0 u
The method of Gardner et al. utilizes the relation
©
. ' + iu
f e=bt i gy —-———b—) [cos(u log b) — i sin(u log B)] , 4

0

which is a natural consequence of obtaining the gamma function. We may character~
ize sin(u log b), using Eq. (4) so that we have

b S“’ ) { ' e
) : P e — = ~bt - dt , 5
sin(u log b) 2 J, ¢ 'a+q:a@)y Q- i“)} ©

thus obtaining the double integral

b ® cosau [
F(a) = — — —_
mi Jy u

0

ny tiu t—-iu
e - dt du , (6)
I +iw) T'A - iw)

1A more complete treatment of the material presented here may be found in ref [1].
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where

1 0<a<logh
F(a):{l/z a=log b .
0 a>logh

If one has a decay curve of two independent components, then suppose this decay
~b,t ~bt
1

+Be 2,and0< b, <b,. Then, if this function is substituted
into Eq. (6) and numerical integration is applied, we would have

curve is A e

A B
G@)=—+— 0<a<logb,,
bl b2
B
= — log b, <a<logb,,
bl
=0 a> b2 . (7)
Graphically, we would have
4
6 (@) i A/b \
1 i A/bz = O
0 log &, log b,

On the other hand, we may have one dependent radioactive isotope satisfying the
condition

a’yl _
& Thon
®
dy
2
" 2Vt kY-
Such a system of equations has the solution
-kt
1
y,=4e
' » ©)
P Ae 1 B ~k,t
Y=k *+ 5o )
ky =k,
and the rate of radioactive decay is
—k,t Ak? —k ¢ ~k,t
Ak, e + e +Bgk,e . (10)
ky =k,
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Now, if y,(#)=0at t=0and k, <k,, B, is negative. By the above analysis we may
have, graphically,

Gla)

|
|
|
|
1 o
0 log k2 log /f1

On the other hand, if y,(t) =0 at t = 0 and k, > k,, graphically we have

log 4, log 4,

If we apply the analysis of Gardner et al. [2] to the problem, then we find d/da G(a)
from an equation of the form of Eq. 6. Let us suppose that the integration step de-
fined in Eq. (5) is exact. Suppose also that the limits of integration in Eq. (6) are

finite; that is, for some large value M, we evaluate

M cos Qu
J;) sin (u log b) du . (1)
u

We have

M du
f [sin(cu + u log b) + sin(—au + u log b)];—
0 u

1
=-2-[s;(aM + M log b) + Si(—aM + M log &) , (12)

which, multiplied by 2/n, satisfies the conditions given in Eq. (2) as M » . Now if
we differentiate this expression with respect to a, we have

1 |sin(aM + M log &) « sin(—aM + M log b)

+
2 (a+ log b) (a — log b)
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Clearly, the first expression is bounded. The second expression, however, is not and

will have the characteristic appearance
/ﬁ\
/[|\

\
1l e

- Q
\ J
N //

W
I/

in which the envelope is closely related to a hyperbola. It may also be stated that
the application of numerical analysis, particulatly the unrestricted use of Simpson’s
rule, may be quite disadvantageous. For example, suppose that we evaluate

T d
f“” cos tf(t)dt ,

where f() is assumed to be a fifth degree polynomial. Then

y” cos t f(t)dt = ~ {/<\/2ﬂ2 - 12 >+f(—\/2772— 12 >J + 27 f(0)

- -6 7 -6

= 0.815 [~f(~2.78) + 2f(0) — f(2.78)] .

Instead, by Simpson’s rule, we have
7 ™
J., leos £ di == f(=3.10) + 4(0) = /3.14)] .
-7

This example is not particularly badly chosen because we may be numerically
evaluating a subinterval in Eq. (11) in which f(z) = (cos au)/u; sin(u log b) is
chosen between u = (n + 1/2) (n/log b) and (n + 5/2) (m/log b); and b is unknown
although possibly large.

Another objection to this procedure would be one of evaluating Eq. (5) numes-
ically. We have the expression

2i

1
+ cos{u log ) Im ———— (13)

1 £ iv _ sin(u log )
T +iw) T —ix)| ReDW +iu) T +iw)
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However,

1 _ /éinh wu

T + )| /\/ mu

We may only presume that the first () integration for a fixed value of # will be zero,
since (um/sinh 7u)!/? becomes quite small for large values of u.

Another possibility of finding the possible half-lives of a sample would be to find
the value of a which corresponds to a value of 8 = 1/b in Eq. (2). Physically speak-
ing, 1/b is proportional to the half-life itself so that by choosing a = 1/b we have
found the half-life. It is known that

1 u

~—sin—= fm e—bt bei(2+/ut) dt . (14)
b b 0 :

Then this expression satisfying Eq. (2) and 8 = 1/b is satisfied by the double in-
tegral

2 © au p®
b S 7 e beia V) dt du (15)
0

w 0 u

where bei(x) is one of Kelvin's functions. For large values of bei (2 Vut)

1/4
bei(2 \Jut) ~ expl(un) 71

x [periodic function] ,
4 \Jut

so0 that although bei(x) becomes indefinitely large, for any positive value of b,
e™ 'bez(2 \/—) will always converge to zero as ¢ - .

Fourier analysis is not a unique method of analysis of data. Indeed a more gen-
eral theorem is

wlewy v

y’ 0<y<a

®
'fO ]v+1(l/lx)]v(xy) dx = {0 a<y <oo (16)

of which Fourier analysis only involves v = - /
Generally,

1 a ®
ke <§> = [ et E 1 2 17
so that we have

_ dx 1 0<y<1/p
f Tox) I Py V2 1 (V20— oy )” @) {o p<y 09

This method allows us to select a particular segment of data which may be more im-

portant for analys:.s f-l<y<-— } the initial data is more heavily weighted. Othes-
wise, if v> —~ /2 the middle portion of our data is more heavily selected for analysis.
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An elementary procedure to follow would be to evaluate

@ 0 0<a/B<1
FE= 1/2 a/f =1 (19)
1 1<a/B<2

in which F(a/B) is a polynomial of arbitrarily high degree. Considering a typical
component of the sample A P! we have

t=0 Ae~%=4

t=u Ae™%

t=2u Ae~% (20)
t=3u Ae~3%
etc.,

which form terms of a polynomial. Now if we compute
F(be™) = A(xg + %, e™%b + x,e™2"b% 4+ x,e™3%p% | 4+ x e™"p™), (21

then when & = e¥, the polynomial increases stepwise; b is an arbitrary parameter.
If we were to characterize

0 0<x<1
F(x) = 1/2x=1
1 1<x<2

as a series of Legendre polynomials, an examination shows that the slope does not
rise quickly at x = 1, so that between 0.8 < x < 1.2 we have a nearly constant slope.
If we characterize a set of polynomials S(x) in which

1 0 m#n
f . log(x) Sm(x) Sn(x) dx = {1

?
m=n

then the fifth order polynomial will have a greater slope at x = 1 than the Legendre

polynomial. It appears that if our accuracy of experiment is 1%, then the fifth order
-py =P

polynomial is about the best hope we have of obtaining the half-life. If e 1e "2

were within 50% of each other, these numbers would be indistinguishable by inspec-
tion of F(be™%).

A PROPOSED METHOD OF ANALYSIS
During an experiment, it is standard practice to find the ‘*average’’ count over a

given interval of time. In this way, statistical errors which are present will be mini-
mized and it is assumed that the counting rate during this time interval is constant.
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For each component, we have

t2 e"'Ptl e“ptz
; AePlgt=A|——

1 4
A - (- -
A, p(2y*2,/2) [e (ty=2,/2)p _e+(z1 t2/2)p}
p
A =p(tyt,/2) 1 3
=—pe [p(tl-t2)+52p(tl—t2) +o..

Therefore, the “‘average’’ is nearly equal to A exp[— ple, + t2/2)].

A derivation of the expected error associated with such a procedure is in the
Appendix.

A method of analysis will now be proposed in which the total cumulative count is
given. It is hoped that an electronic analog computer may be used during the counting
procedure itself and that the derived results will be immediately available to the ex-
perimenter.

Let
r
(1) = Ae~Pt gy
=,
where Ae™ Pt is the counting rate. Then f(7) = A/p(1 — e“p"') and as 7~ 0,
fr) = A/p.
I shall use the suggestion of Gardner et al. [2] to characterize each p;. It seems

that if we compare, say A/p(l — e~-%1%) and 24/p(1 ~ e” 09 for o<t < 10, that
these functions are nearly indistinguishable:

A A
(1 -ty =T log (1 +p1),
p P

if pt is a small number. Therefore, for each component, we shall consider the com-

putation of A/p log” (1 +p);n=1,2,3,.... It can be shown [2] that
o
1-e?" 77 S 1
e d7=f 1+, (22
‘I(: o pT } I'1+0) o (1+ )t op (1+2) (22)

If we expand the first integrand as a function of ¢, lo| < 1, we obtain

1 01 2 o? 3 o3 4
; Iog(1+p)—-51— og (1+p)+3—!10g (1+p)—z-!-log 1T+p)... . (23)

The function 7°/I'(1 + o) may be expanded as a Taylor series of o into the fol-
lowing form:

o? o3 ot 0>
108 T oyp (0), -5 L) + 5 £3) - T {4+ 3 aQ5) ... ) . (24)
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We thereby obtain a set of integrals of the form

1
ly==log" (1+)

‘ © 1 — -pDT n==1 -1
=(_1)"+1nf <——;—~—>e-7[kz An_l_k<"k >logk7'}d7'. (25)
=0

[
With this set of integrals, we may evaluate log (1 + p.) for five components. The

five components will be A e ot +A,e Pa! oot Ase St. The system of equa-
tions which relates the five components to the integrals may be solved [I] by using
the method suggested by Sylvester; A, = log (1 + p,) by this method. The determinant
in A is a fifth degree polynomial and is satisfied for some a; by

2 3 4 5
L+a A+a,A +a3)\ +ah +a5)\ =0,

which is factored into the form

(R

If the leading term a5 = 0, note that one of 1/)\ = 0, that is, the leading coefficient
of \> vanishes and therefore there is at most one less component than was as-
sumed.

APPENDIX
Estimation of Probable Error of an Experiment

If we have N particles in a sample emitting radiation, then let p(¢) represent the
probability that any particular particle emits radiation. The distribution function
describing this event will be

,go P (1= )N (:)x’"

in which the coefficient of x™ is the probability that m particlés have been emitted.
The most likely event will be n = pN, especially if this number is large.

Now applying Stirling’s approximation, we have

N - Nem
= (V)2 (Y (o
m \/’_ pN N - pN N-m

~ 1 1 1 (N -m)? /[ 1 1
TV VN NN P T T2 N ON—pN/|’

which is a Gaussian distribution.
If we sum m between pN * 2[(1/pN) + (1/N — pN)1Y/2 we find that the proba-
bility is about 96% of obtaining a value of m between these two bounds. If N = oo,

ne
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it can be shown that for any € > 0
P{pN — pNE Sm SpN + pN€} ~ 1,

so that p is a true probability, for any value of p, 0<p <1,
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Chairman: J. B. Cumming

Brookhaven National Laboratory,

Upton, Long Island, N.Y.

(2-1) A COMPUTER PROGRAM FOR ANALYSIS OF COMPLEX
CONTINUOUS BETA-RAY SPECTRA'

S. B. Burson, R. G. Helmer,? and T. Gedayloo
Argonne National Laboratory
Argonne, Illinois

INTRODUCTION

In collaboration with W. J. Cody and J. A. Gregory of the Argonne Applied Mathe-
matics Division, a two-stage computer program (for the IBM 704) has been developed
for the analysis of complex beta-ray spectra. Only the second stage will be described.
The first stage accomplishes standard data reduction.

A spectrum comprising as many as 13 components can be analyzed. Each compo-
nent is presumed to consist of a linear combination of allowed and unique-first-for-
bidden transitions and is represented by three parameters: the slope m of its Fermi
plot (related to relative intensity), the end-point energy €, and the ‘‘shape-partition
factor’’ a. Before the calculation, initial estimates must be made for all parameters
of the components assumed to be present.

The free, or unfixed, parameters are varied simultaneously in order to minimize
the function

X2= zz’ wi[Ni —NZ(P’)}Z ?

where N, and N, (p].) are the experimental and calculated counting rates, and w, is the
weighe factor.

There are 17 options that must be exercised by the user before any calculation is
made. Four of these are expressed by means of sense switches; the remaining 13 are
indicated through the choice of control constants punched on the control card that re-
presents the calculation. The program will process up to 400 data points. The com-
puter for which the program was designed has a storage capacity of 32,000 words and

Work performed under the auspices of the U.S. Atomic Energy Commission,

2present address: Phillips Petroleum Company, Idaho Falls, 1daho.
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the running time has averaged 5-10 min. The program was compiled by use of FORTRAN
and is on punched cards. The input and cutput data are on magnetic tape except in the
case of optional on-line printing by means of sense switch 3.

ANALYSIS

In this program, the method of iterated least-squares fitting is applied to an experi-
mentally measured beta-ray spectrum. The approach has the distinct advantage that it
is possible to quantitatively separate beta components whose end points are quite
close together. This circumstance often renders the conventional ‘‘peeling’’ procedure
extremely difficule if not entirely impossible. However, the options of the program are
such that all of the flexibility that accompanies manual analysis is retained.

The substance of the least-squares procedure is to assume some analytic function
that is believed to represent the experimental observations and then adjust the param-
eters of this function until the best fit is obtained. The words *‘best fit’’ are used in a
statistical sense.

A simplifying assumption is made in this program, which (although false in detail)
makes it possible to write an analytic expression that can represent a very large class
of beta-ray spectra. The assumption is that any single component has either an al-
lowed shape or a unique-first-forbidden shape, or (more generally) that it can be repre-
sented by a linear combination of these two shapes.

The expression used to tepresent the allowed shape is

#

NG = m*[(Z,q)(€y — €)*L (1),  (allowed) (1)

where €2 = 772 +1, m? = (const) gzMz, (Z, )= nZF(Z, Tl)screened , and LO(U) is the
shape factor. The expression holds to a very close approximation for transitions of
either allowed or ordinary-first-forbidden character. The Fermi plots of these spectra
are linear to within a few percent. In Eq. (1), the counting rate N(7) is expressed as
a function of the energy €. The parameter m combines the intensity scale factor,
related to instrumental transmission and source strength, with the nuclear matrix
element. This is one of the parameters that must be adjusted in order to make the
expression match the data.

, The Fermi factor f is the product of the square of the momentum and the true
Fermi function. The Fermi functions are not interpolated, but are computed directly
by means of a subroutine based on the screened Fermi function

2 1 2le 178
F= R)2S vMy| 25 S+ 5 )2 v
773(2 ) L‘G + ZSJ { ] m W0+ sed )] e ’ @

€

whete

R = the nuclear radius,
S = (1 - a222)1/2 -1,

81/ = aZEv/nv R
Eu =€ F VO ,
V= (30.9/5.11 x 10%)z4/3,

52



The shape-correction factor L, is derived by interpolation from a table that must be read
into the computer at the beginning of the analysis.

For a single component of allowed shape, it is sufficient to determine the best values
of the two parameters, m and the end-point energy €.

The expression used to tepresent a component having unique-first-forbidden shape
(that is, Al = 2 with a change of parity) is

1
NG = m*(Z ) (€, = €)* Slee - &)2L,+9L,1, (unique) (3)

where m?2 = (const) gzM 2, The terms in the expression have the same meanings as be-
fore and again there are only two adjustable parameters.

If one now assumes that a single component comprises contributions from two
transitions, one with allowed shape and one with unique shape, the distribution can
be represented by

No=m2f(e, — 21 —a)ll +—=jl(e. —e’L +9L.] 4
=i ey ~ T &t I e T ot 7hdf

The end-point energy is still a well-defined parameter. However, the slope m may take
on a somewhat obscure meaning. It would not, of course, be physically meaningful to
factor out two different matrix elements and combine them into a single coefficient. A
means of treating this problem will be described later. It is necessary to introduce a
new variable parameter & that expresses the relative partition of the spectrum into the
two different shapes. A single component is thus described by these three parameters.

In general, the beta spectrum will comprise a number of components with various
end-point energies. If the presence of J such components is assumed, the distribution
is

=i
i}
5
-~
=1
—~
3
N

) ;2 607- ? a']) . (5)

-
il

To describe any complex spectrum comprising | components, there are 3] parameters to
be adjusted. This is the equation that is used in the program to calculate the theoretical
counting rate to be compared with the data. The best values of these 3] parameters
are to be determined by a least-squares procedure.

The calculation to determine the best values of the parameters that define the ex-
perimental spectrum minimizes the function

2 -
X" =ZwN, - NpI1?, ©)
i
where N, is the experimental and Ni(p’.) the calculated count, by setting

—— =0 @)

simultaneously for all values of j. This calculation cannot be done explicitly unless the
analytic function used to fit the data is linear in the variables, so the expression for

53



N is expanded in a Taylor series. This approximation then requires that otiginal estimates
be provided for all of the variable parameters. These original estimates correspond to the
point about which the expansion is being made. The results of the first calculation are
then fed back into the equation as input estimates and the calculation is repeated.  This
iterative procedure constitutes a series of successive approximations which, it is hoped,
will converge upon the desired best values of the parameters. In addition to providing
original estimates for all of the variable parameters, it is necessary to specify some
criterion of convergence in order to know when to stop the calculation. This condition
is specified by the expression

Ap.

—11<8. (8)

bi
The calculation is terminated when the condition is simultaneously satisfied for all of

the parameters, that is, when the relative change becomes less than some specified
number, '

OPTIONS

Seventeen options must be exercised in order to specify the details of each calcu-
lation. These are referred to as INPUT OPTIONS. Thirteen of the decisions are indi-
cated by numbers punched on a control card; the remaining four are indicated by the
positions of four sense switches on the computer. Many of the constants are purely of
a procedural nature and will be mentioned only briefly. Table 1 lists the control con-
stants.

Table 1. Options Available for the Control Constants

Input Options
1. Dataln, N@), Z, pl €400y, 0, -1
2. Shape [, Ly, L ,(p] 1,0, -1
3. Weight factors L0
4. Bypasses <19), 0, -1
5. Presubtraction iém), 0
6. Components é13), 0, ~1
7. Fixed parameters é}é), 0, -1
8. End-point systems (§6), 0, ~1
9. Chi-squared £10), 0, —1
10. Number of iterations, test (§100), -1
11. Errors 2,10
12, Postsubtraction 1,0
13, Output data 2,1,0

54



1. The first constant indicates where the experimental data are to be found and
the form in which they are tabulated. Original input data are always on magnetic
tape, but this tape can be from either of two sources. On the one hand the tape can
be in decimal form, made from a deck of punched cards. These cards will contain the
data properly corrected and reduced, most likely manually. In this case, the control
constant is a positive integer equal to the number of data points. On the other hand,
if the data reduction was accemplished by means of Stage I of this program, the out-
put tape of that calculation will be in binary from and will be compatible with the in-
put requirements of this analysis program. Zero is then used as the control constant.
The third choice, —1, indicates that the experimental data have already been stored in
the memory of the computer.

2. The tables of shape factors, which are always needed, are taken from the com-
pilation by Rose et al. [1]. If the calculation is the first in a series, or is the only one,
the cards must always be present, and the choice of shape option 1 indicates to the
machine that the cards are to be read. Immediately after reading the cards, the values
of L, corresponding to the data points are obtained by interpolating in the table of
shape factots. The other two choices for the constant specify whether the machine
should use the interpolated values again (option —~1), or whether it should reinterpo-
late (option 0).

3. The user has the option of using the statistical weights (option 1) or not
(option 0). This control constant indicates that decision. There are some applica-
tions of the program in which weight factors are not meaningful, and machine time is
conserved by not using them.

4. The program will accommodate up to 400 data points. The least-squares fit
can be made to any desired region of the spectrum. As many as 19 groups of adjacent
points can be bypassed and excluded from the calculation. This only excludes them
from the least-squares calculation, however, and in all other respects the spectrum
remains intact. This option makes it possible to cull the data or to eliminate obvi-
ously bad points (points beyond the highest end-point energy, groups of points on
internal conversion lines, etc.). It also allows the program to be used in a more
limited sense in which components are fitted and peeled off one at a time as in the
classical method. This flexibility has proved to be extremely valuable. The other
two choices, 0 and ~1, correspond to using no bypasses or to using the same ones
that were specified for the previous fit.

5. If the data have already been partly analyzed and one or more of the com-
ponents have already been determined with certainty, these components can be sub-
tracted from the data before proceeding to the least-squares fit. Up to 13 such com-
ponents can be subtracted.

6. The iterated least-squares procedure requires one to have some knowledge of
the composition of the spectrum, or at least to be able to make an educated guess.
This control constant indicates the number of components that are expected to be pres-
ent in the region of the spectrum that is being fitted. The estimates of the three
parameters that define each of the components are punched on cards and included in
the accompanying data deck. If the choice -1 is used, the final values of the param-
eters that were calculated in the previous fit will be used as input estimates. This
freedom makes it possible to invoke a wide variety of analytical approaches to the
same daga.
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7. Any of the parameters can be held fixed at their input values and then re-
leased during successive fits after the computer bas improved the values of those
that are allowed to vary. This has been particularly valuable in conjunction with
the shape-pattition parameters.

8. In many cases the difference in energy between two end points will be known
exactly from scintillation experiments, measurements on internal-conversion electrons,
or Coulomb excitation. This knowledge can be incorporated into the calculation in
the form of a ‘‘related end point’? system. Both end points will be allowed to vary
simultaneously; but the difference in energy will remain fixed. Up to six such systems
of related end points can be included in the calculation with as many as eleven end
points being combined into a single system.

9. The value of x 2, which is used as a measure of the goodness of the fit, is com-
puted only for the data points that were not bypassed. It is also possible to partition
the spectrum into groups of data points and compute the partial y? for each group.
This device can sometimes give a clue as to why and where the fit is not good.

10. The tenth control constant limits the number of times (~ 100) the computer
will try to make the fit. The upper limit on the number of iterations is specified and
if the calculation does not converge in that many iterations, the machine will stop
and await further instructions. If the series of calculations does converge, the re-
sults are printed out automatically and the next control card is read without inter-
ruption.

In conjunction with this constant, a card must be punched and placed in the data
deck. This card provides the criterion for convergence [Eq. (8)].

11. There are two ways of propagating errors through a subtraction. One of these
utilizes the off-diagonal elements of the inverse matrix that is calculated during the
least-squares fit. These off-diagonal terms relate to the correlation between the
parameters. The simpler formula uses only the diagonal elements which can be com-
puted without the matrix. Either formula can be invoked if the subtraction is to be
carried out after a fit has been made, since the matrix is still present in the machine.
However, in the case of presubtraction, there is no choice; only the diagonal elements
can be used.

12. This constant specifies whether or not the components that were calculated
should be subtracted before the next fit is commenced. If the subtraction is carried
out, the errors are propagated according to the formula that was selected by the
previous control constant, and the residual spectrum is written into the memory unit
in place of the original data.

13. The last control constant indicates how much of the information that was cal-
culated should be printed on the output tape that is used on the off-line printer. This
decision is dictated by the needs of the particular problem.

SENSE SWITCHES

The sense-switch options are listed in Table 2.

1. Sense switch 1 is used to frustrate the iterative procedure. It accomplishes
this by automatically setting all of the computed parameter changes to zero. This
facility has a number of applications that will be discussed later.
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2. Sense switch 2 is used when the machine fails to converge. If the number
of iterations reaches the limit and the machine stops, a second attempt to reach con-
vergence on the same set of input information can be instituted by pressing the start
button. If it is decided to abandon that particular calculation, sense switch 2 is put
down and the start switch is then pressed. This causes the computer to advance to
the next control card and continue in the series of programmed calculations.

3. Sense switch 3 permits on-line printing of a very limited amount of information.
With sense switch 3 down, the interim values of the parameters are printed on-line
after each iteration. Examination of these numbers for a few iterations often enables
the operator to decide whether or not to continue trying the fit.

4. Sense switch 4 provides a limited control over the mechanism of the least-
squares fit itself. Each iteration results in a calculated group of correction terms
that are added to each of the variable parameters before the next matrix is set up. If
the amount by which each of the parameters is allowed to step is reduced, the rate at
which the series converges is reduced. However, this reduction also has the effect
of damping oscillations that may result when any of the corrections are too large.

Table 2. Sense-Switch Options

Up Down
1. Force convg.
2. Next fit
3, Off-line On-line
4. 0.875 A 0.437 A

PRINTED OUTPUT

The information that can be included in the printed output is (a) all input data,
®), €, L,,L;,and the Fermi functions, (c) N, oN, N, N’, oN’, areas, and xz, (d)
the Fermi plots (o), and (e) M, OMmy €y O€G, Oy and ca,. The various ways
in which this information can be grouped will not be discussed. All input information
(the instrument settings and the associated counting rates and errors) is included in
the output. The conversions of instrument field settings to momenta and energies,
the interpolated values of the shape factors, and the Fermi functions are included.

In addition to the original counting rates, the theoretical counting rate, calcu-
lated from the best values of the parameters, is also printed. The difference between
the data and the theoretical counting rate is always calculated and printed out. In
order to determine relative intensities of the various components, the area under the
theoretical ‘momentum spectrum of each component is calculated. The values of X2
and/or the partial Xz values are printed.

The Fermi plot of the entire computed spectrum is printed and, if required, the
separate Fermi plots of the individual components can be calculated.

Finally, it prints the last values of all the variable parameters that were computed
by the iteration that converged.
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APPLICATIONS OF THE PROGRAM

The most valuable facility of the program is the least-squares analysis. There is a
wide variety of ways in which the analysis can be carried out. By way of illustration,
some of the work that has been done on the beta-ray spectrum of W 188 will be described.
Tungsten-188 has a half-life of 65 days and decays by B~ emission to Re 88, In tumn,
the ground state of Rel88 decays to levels in Os'®8, but with the much shorter half-life
of 18 hr.

Almost the entire decay of the rhenium daughter is to the ground state and first ex-
cited state of osmium at 155 kev; both components have end-point energies close to 2
Mev. On the other hand, the total decay energy of the W188
the one under study) is less than 0.4 Mev.

The first calculation was a fit to a small group of data points immediately above the
end point of the tungsten portion of the spectrum. The rhenium spectrum was assumed
to consist of but a single component of allowed shape, so the least-squares fit was
carried out with fixed end point and shape-partition factor. This is shown in Fig, 1. It

was assumed that the extrapolation under the tungsten spectrum would contribute little
efror,

parent (whose spectrum is

30+ 3
3 188 188 .
s 7 tRe Kurie Plot

(Fit to Re Spectrum)
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J%T ° o-POINTS FITTED
5~ 1 .
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s.' x5 "*\f Re®® SPECTRUM
o > -
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ENERGY (me?)

Fig. 1. Beta-Ray Spectrum of AL Equilibrium with Its Daughter Re'88, A single
component of allowed shape is fitted to the rhenium portion of the spectrum immediately
beyond the tungsten end point for the purpese of extrapolation.

From the results of this fit, a new table of input data was compiled and the computer
was reentered with only the tungsten spectrum. This reentry was necessary because the
difference in atomic number necessitates the use of a different table of shape factors.

Visual examination of the Fermi plot of the difference spectrum revealed the presence
of two components. The fit made to these data is shown in Fig. 2. The higher energy
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, while the lower energy com-
188

component is due to the presence of a contaminant, wiss
ponent represents decay from the ground state of W 188 to the ground state of Re
Attempts to fit the rhenium portion of the spectrum are still in progress and will not be
described.
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Fig. 2. Two-Component Fit to the Beta-Ray Spectrum of w\88. The component of hijher
energy is due to the wi8s contaminant,

In addition to this main facility, provision is made for several subordinate calcula-
tions. These do not depend primarily upon the least-squares fitting facility. Within a
few minutes of machine time, any desired set of Fermi functions can be calculated.
The shape-correction factors L j and L | can be interpolated for an arbitrary table of
momenta. After a satisfactory fit has been made, the log ft values of various compo-
nents in the spectrum can be quickly calculated.

Sense switch 1, which causes the computer to converge after one iteration, has a
number of applications. The Fermi plot for a typical beta-ray distribution with any
end-point energy can be constructed. Figure 3 shows a typical calculation of this
kind. The shape of a pure allowed Fermi plot for a component with an energy of 2
Mev is compared with a pure unique-first-forbidden component with the same end-
point energy. This sense switch also permits the subtraction of previously deter-
mined components in such a way that the off-diagonal terms may be included in the
propagation of errors.

It was mentioned earlier that the meaning of the slope m becomes ambiguous when
the shape partition factor for any component is neither 0 nor 1. A method of resolving
this ambiguity is inherent in a combination of the two facilities for fixing parameters
and relating end points. If one assumes that a single component whose shape factor
is neither zero nor unity comprises two independent components with equal end points,
introducing two components instead of one makes it possible to determine the relative
intensities of the fractions. Two components are assumed; their end points are set
equal but they are entered as a related-end-point system. The shape-partition factor
of one is set equal to zero and that of the other to unity and both are held fixed. The
least-squares fit is then accomplished by varying the three remaining parameters,
namely, the common end point and the two independent slopes. The two values of the
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areas then represent the intensities of the allowed and unique fractions of the compo-
nent. These illustrations represent but a few of the combinations of the available
options that we have tried. It is believed that there are many more that have not yet
been attempted or explored.

7.0 7
\\ COMPUTED FERMI PLOT

~j2

3.0

0.0 L L ]
1.0 2.0 3.0 , 4.0 5.0
ENERGY mc

Fig. 3. Fermi Plot of a Beta-Ray Component with Pure Allowed Shape Contrasted with
That of a Component of Pure Unique-First-Forbidden Shape Synthesized by the Use of Sense
Switch 1. (No data actually being processed.)
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(2-2) THE ROLE OF SMALL COMPUTERS IN THE ANALYSIS OF
GAMMA-RAY SCINTILLATION SPECTRA

John W. Nostrand, Jr., and Martin L. Rossi
Research Department, Grumman Aircraft Engineering Corporation

Bethpage, New York

INTRODUCTION

Until a few years ago the vogue in data processing equipment was the large
scale digital computer. Recently, a new market has developed for smaller computers.
This market has expanded so rapidly that today the small computer represents a large
percentage of total computer sales.

During this same time period, the feasibility of using digital computers for proc-
essing gamma-ray scintillation data has become firmly established. Many prototype
programs have been written and evaluated for accuracy and practicability. Although
the search for better methods of analysis and improved programs continues, the impor-
tance of automatic data processing as a routine tool in gamma spectral analysis is
now fully accepted.

In this paper, we will investigate these coincident developments and indicate how
small computers can contribute to the growth of routine analysis of gamma-ray scintil-
lation spectra.

WHAT IS A SMALL COMPUTER?

Perhaps first, we should define what we mean by ‘‘small computer.”’

Today, practically every major computer manufacturer offers a small solid-state
type computer. These machines are of a new breed, similar to the old IBM 650 but
transistorized, less expensive, and with larger storage and faster operation time.

The new machines have generated considerable interest both in small companies that
cannot afford a larger machine and also in larger companies for use in individual de-
partments as a supplement to their centralized facilities.

Table 1 lists some of the more popular small computers together with typical
monthly rental prices, storage capacities, an indication of their operating speeds, and
an estimate of the number of installations for each machine. For comparison with
latge scale computers, a similar listing is included for an IBM 7090. The monthly
rental values given are rough estimates for the basic computer with the storage capac-
ity listed. The cost will be higher for installations with more advanced input-output
devices or extra storage capacity. Extended operations such as floating point capa-
bility or automatic division would also increase the cost.

In terms of sheer numbers, the small computer represents a sizable segment of the
computer market. There are cutrently more than 5000 small solid-state computers in
use as compared with less than 300 of the large 7090 class of transistorized machine.
If we add to these figures the 300 vacuum tube computers of the 650 size or smaller
still in use, we find that small size computers make up about 75% of the world com-
puter population.
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Table 1. Characteristics of Small Computers®

Monthly Storage Word  Type of Cycle Time Add Time Number of
Type Rental Locations Size Storage (usec) (usec) Machines

Transistorized

PB 250 $ 1,200 2.3~16K 22 Delay line 12307 24 102
CDC 160 1,500 4K 12 Core 6.4 12.8 80
Recomp I 1,500 4K 40  Disk 1750-9300 1080 28
IBM 1620 1,600 20—-100K 11  Core 20 560 1167
RPC 4000 1,900 8K 32 Drum 10,000 1000 69
Recomp II 2,500 4K 40 Disk 950—9000 1008 132
IBM 1401 2,500 1.4—4K 11 Core 11.5 230 2896
CDC 160A 4,000 8-32K 12 Core 6.4 12.8 115

Vacuum Tube

LGP 30 1,500 4K 31  Drum 2,000 2260 433
Bendix G-15 2,000 2K 29  Drum 14,500 2700 354
IBM 650 9,000 4K 10 Drum 4,800 700 1173

Large Scale

IBM 7090 64,000 32K 36 Cote 2.2 4.4 183

aCompiled from data of {1 and 2] .

CAPABILITIES OF A SMALL COMPUTER

Before we look at the problem of gamma spectral analysis, let us get a few facts
straight about the capabilities of a small computer.

Its primary limitations are slow operation speed and restricted storage capability.
The operation speeds and access time of a computer affect the machine time required
to run a program. Large scale computers are vastly superior to small computers in
both speed and storage capacity.

Assume, for example, that a program was available for which the same operations
could be run on both a small and a large scale computer. The small computer would
probably take from 50 to 150 times longer to run the program. This means that a pro-
gram requiring 2 min on a large machine would need more than 2 hr on a small machine,
and a program running 1 hr on thelarge computer would require 100 hr on the small
computer!

Even these examples are being kind to the small computer because the same oper-
ations cannot always be used on the small machine. The large computer, in addition
to being faster, has many more built-in operations. In order to perform the same job,
the small computer would have to use more instructions and less efficient programming
techniques.
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In addition to this, for a lengthy program, time would be wasted in partitioning.
Input-output operations are very time consuming, and dividing the program into parts
which are read into fast storage individually greatly increases the running time of a
program.

COST CONSIDERATIONS

Even on a cost basis, the small computer is at a disadvantage. The first venture
into automatic data processing by a nuclear laboratory would probably be by renting
time at a large computing facility. This assumes that no computer was available to
the laboratory personnel within their own organization. Time on a 7090 currently rents
for about $550/hr or about $10/min. The lowest monthly rate at which a company
could hope to operate their own small computer would be about $3000, if all the costs
of operation are included. Considering a 176-hr standard shift, this would be

$3000
176 = $17/br .

The cost of running equivalent programs then, would be

large computer: 2 min x $10/min = $20,
small computer; 2 hr x $17/hr = $34 .

Again, these figures are very conservative in the small computer’s favor.

WHY HAVE A SMALL COMPUTER?

Having firmly established the limitations of small computers, we can well ask
ourselves, why have a small computer? There is no doubt that gamma-ray spectral
analysis can be performed with a small computer. Many cutrent programs were de-
veloped on small or medium size machines. The least-squares fitting technique, which
is receiving enthusiastic interest, was originally applied by Heath [3] to the IBM 650.
Spectrum stripping methods have also been programmed for small or medium size com-
puters.

The question we must ask, however, is whether it is practical to use small com-
puters for this type of work? And if it is, what is the most effective way to use
them?

By examining the relationships between the objectives of gamma spectral analysis
and the capabilities of small computers, we can find answers to these questions and
can show that the small computer as an integral part of a nuclear laboratory has at
least four potential advantages over the large centralized computing facility. These
are in the areas of (1) data handling, (2) *‘turn-around-time,’’ (3) versatility, and (4)
stimulation of ideas.

First of all, there are some problems for which the small computer is well suited,
in particular, those requiring a large amount of data handling with very little proces-
sing. The time of such programs is limited by input-output speed. Since card input-
output equipment is basically the same for large or small computers, time spent read-
ing or punching cards could very rapidly eat into the large computer’s advantage of
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faster operation times. Of course, 7090’s are usually fed from magnetic tape. How-
ever, time is consumed in the transfer of card data to tape.

For the moment, let us leave the cares of machine time and cost of operation to
the computer operators and the accountants, and look at the problem of gamma spectral
analysis from the experimentalist’s point of view. He is interested, mainly, in the
time interval between the collection of data and the return of meaningful answers —
the so-called *‘turn-around-time.”’

The required turn-around-time varies in individual cases. In some medical appli-
cations and in monitoring of continuous flow lines, tum-around-time is critical. There
are other applications for which a few days wait probably would not make much dif-
ference. But if turn-around-time is important, then a small computer as an integral
part of the nuclear laboratory has distinct advantages.

When a program is run at a centralized computing facility, the turn-around-time
would include travel time to and from the facility, handling time for logging in and
preparing the deck, and the time spent waiting to get on the computer, in addition to
the actual machine time. With a computer placed directly at the laboratory site, the
experimenter could bypass all of the waiting times and have results within minutes of
the end of an experiment.

The turn-around-time advantages of a small computer diminishes as the machine
time of a program becomes longer. Figure 1 shows that for short programs or for only
a few runs a day, the small computer has an advantage in turn-around-time. For longer
programs, however, the centralized facility might be able to return the results sooner.
This suggests that the most effective use of a small computer would be with short
programs.
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Turn-Around-Times of Small and Large

Minimizing turn-around-time is tied directly to one of the most important advan-
tages of having a small computer in the laboratory. That is the ability to control the
scheduling and allocation of priorities. Even in the central computing facility of his
own organization an experimentalist might have trouble establishing a priority. With
a small computer at the lab site he can control his own schedule of experiments and
data reduction. The advantages that are to be derived from such versatility would
decrease, however, as the length of the program increased. If a single program tied
up the computer for an entire day nothing would be gained by being able to control
scheduling. Again, this suggests the effectiveness of shorter programs.

The final advantage that should not be overlooked when considering a small com-
puter at the laboratory site is the stimulation of ideas. A centralized facility might
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seem very remote to an experimentalist regardless of its real physical location. With
a computer at the lab site, an experimentalist would be encouraged to think in terms
of computer analysis and how it could permit him to perform a greater number of ex-
petiments or to gather more data from each run. This concept of stimulation, of
course, is not limited to the small computer. It is the sustenance that all computer
manufacturers thrive on. For sufficiently stimulated, you will probably need a larger
computer to handle all the new work — and they will be happy to sell you one!

Up to this point we have seen, that if properly used, a small computer installed
at the nuclear laboratory site could provide shorter turn-around-times and more versa-
tility of operation. We have also determined that the positive capabilities of the
small machine can be exploited by the use of short programs. In the remaining por-
tion of this paper let us examine in more detail just what these short programs are
and how they can be used most effectively.

PROGRAMMING CONSIDERATIONS

The programming of computers for gamma-ray spectral analysis is still an individ-
ualized process. Every laboratory has its own experimental methods and procedures;
each may use a different type of equipment, and each requires a different final result.
Since all of these factors must be considered in planning a data reduction system,
each individual will probably want to develop his own special program. However,
an experimenter can assemble his own program by using proven routines and techniques
taken from existing programs and tailoring them to fit his own needs.

Until now, most of the development work in gamma-ray spectral programs has been
on what we would like to call the “‘generalized’’ type of program. The aim of a gen-
eralized program is to reduce the multichannel analyzer data from an unknown gamma
source completely without resorting to any human logic decisions. By the very nature
of the problem, a generalized program is extremely complicated, requiring many tests
and logic sequences. Currently, generalized programs are being developed on large
scale computers. It is evident that these completely ‘*automatic’ programs are some-
what beyond the scope of the small computer.

But, the same solution that you would achieve with the generalized program, could
be reached with a series of shorter special purpose programs of a type ideally suited
for use with a small computer.

Consider first an easy case, a problem for which the number of possible solutions
are limited. The simplest case would be one for which the identities of the isotopes
were known and only the activities had to be calculated. In most experimental work,
results are predictable, at least in part. The identity of the isotopes is known in
most tracer studies, routine sampling operations, or searches for specified contami-
nants.

Once the multichannel pulse-height data has been accumulated, the analysis
proceeds as follows (see Fig. 2): First, the experimenter examines the data and de-
cides which method of analysis to use. He has a wide choice including any of the
standard gamma spectral techniques of stripping-least-squares fit, total absorption
peak, solution of simultaneous equations, or matrix solution. Having decided to use
a least-squares fitting technique, he selects the correct object program deck from the
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program file, and also picks out the response function decks corresponding to the
isotopes known to be in the spectrum from another card file.

He then proceeds to the computer, reads in the pulse-height data, the response
functions, and the object program. The computer then takes over, fits the data by
the least-squares technique, and prints out the results and the residuals,

At this point, the experimenter can examine the results and decide whether a bet-
ter fit is required. By this method, the reduction of data is performed quickly and the
experimenter is then ready to compile additional data.

A more complicated analysis could be performed in the same stepwise manner.

Let us consider another case of a simple spectrum, in which the identity of an isotope
is not known. This would suggest the possibility of a decay curve analysis.

In this case a series of programs could be run (Fig. 3). The first program that the
experimenter would choose would perform an integration under the decaying peak in
each of a series of pulse-height spectra. Upon completion of that, a second program
would be selected for the analysis of the decay curve. Once the isotope were identi-
fied by halfife, a third program might be chosen — perhaps a standard gamma spectral
method suc(x as a least-squares or stripping technique, to be run as a check on the
validity of the identification.

- I Program™ K
) File H
Yam | |
[ i
v Response ——§ ntegr H
P Funcrion e AL r - :
Fi‘e S @ : o E
| [ .
_____ 4 I :
Lt sqFt ] P

. Consvg Resid @ Finish P @

« Print-out
Finish -~

Fig. 2. Procedure for Spectrum Fig. 3. Hlustration of Possible
Stripping with a Small Computer When Programs Which Might Be Used in
the Isotope ldentity Is Known. the Analysis of a Series of Time-

Dependent Gamma-Ray Spectra for
Which the ldentities of the Iso-
topes Are Not Known,

CONCLUSION

These examples are only two of an almost limitless number of ways in which
small special putpose programs can be used. Only a few such programs have as yet
been published. Blotcky, Watson, and Ogborn [4] have developed a matrix solution for
gamma spectral analysis for an IBM 1620 that is an excellent example of the small
computer program.

As more and more small laboratories enter the nuclear field and begin to consider
automatic data processing, there will be an increasing need for proven small computer
programs. We hope that in the next few years more of the small special purpose pro-
grams will be published, so that programming methods and ideas in this field can be
shared.
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Of course, the small computer will never replace the large scale machine in auto-
matic gamma spectral analysis. The primary methods of computer analysis will con-
tinue to be developed on large machines. But, we feel that there is a definite place
for the small computer in smaller laboratories, for installations requiring fast turn-
around-time, and for people who just like to control their own computing. We feel that
in the next few years there will be a marked increase in the use of small computers for
gamma-ray spectral analysis as well as all types of experimental data analysis.
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(2-3) PRECISION DETERMINATION OF GAMMA-RAY ENERGIES
WITH THE SCINTILLATION SPECTROMETER

Berol L. Robinson
Western Reserve University and
Israel Atomic Energy Commission Laboratories

This work was initiated with the intention of obtaining a precision value for the
energy of the K40 gamma ray [1]. On account of the low specific activity of this ma-
terial, scintillation spectrometry is the only practical means. In principle the prob-
lem is straightforward: one calibrates the scintillation spectrometer with gamma rays
which have been accurately measured by the methods of electron spectrometry, and

then observes the unknown and determines its energy from some sort of interpolation

or extrapolation. Since the resolution of the scintillation spectrometer is so notori-
ously bad, one must use tedious and brute force methods to extract the maximum
amount of information from the data. Recent publications and the program of this
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symposium indicate that this has been pursued with considerable sophistication by
a number of workers.

We begin by locating precisely the center of the pulse-height distribution corre-
sponding to the total absorption of the gamma ray in the scintillation crystal, the
so-called ‘‘full-energy peak.’’ The full-energy peak is observed to be Gaussian on
the high-energy side as well as for a good part of the low-energy side. We will
assume that we have enough data so that the curve is reasonably smooth, with the
general outlines already apparent. It is frequently suggested that the way to find
the center of a Gaussian distribution is to make a least-squares fit of the logarithms
of the data points to a power series, since a Gaussian appears as a parabola on a
semilog plot. However, one really wants a least-squares fit to the data, not to their
logarithms. Preliminary calculations on a desk computer showed that the former
gives a better fit; that is, the residuals are smaller.

This nonlinear function is somewhat intractable, and we proceed to linearize ir
by guessing the central value and the width of the distribution. This guess can be
made with fair accuracy from a rough look at the data. We then compute corrections
by the method of least squares and iterate. The function is already linear in the
amplitude of the pulse-height distribution, so nothing is gained by making an initial
guess for the amplitude. An outline of the analysis is shown below.

The function to be minimized is
S = lei{yi - A exp [—bg(ci - co)z]}2 .
Set
by=b+fB; cy=c+y; Pandy are small.

Then,

b%(cz. - c0)2 = bz(cz. —-c)? ~ Zybz(ci ~ ) + 2Bb(c; - c)? + higher-order terms.

b(z)(cz. - CO)2 = pl? — 2ybp; + Z-f— p? + higher-order terms,

where p, = b(ci —c). Then

2
—b3 B 2
S = §wi[yi - Ae ’(1 + 2ybp; ~ 2—b-p3>}
By using the approximation e* = 1 + x,
i 2 2 212
—p? -ps  2A —p
S:?wilyi—-/le P 24byp e '+—;—p?e 1} .

Let
F =2Aby, and G=~2A8/b .
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Then,

2 2 242
—-p? —p° —p?
S=?wi[3’i"Ae f-Fpe ' - Gple il
as "y —p? 2 —p2 —p2
5;=0=§2wi[yi—Ae '~ Fpe ' —Gpje l](—e '),
2 2 2 2
-p —2p; -2p; =2p;
?wiyie ' = A?wie Py F?wipie Py G?wipfe .

s,=Aty+ Ft, + Gt, (definition of s, tj).
Similarly, dS/0F = 0 leads to

sy = At, + th + Gl3 ,
and 95/9G = 0 leads to

32=1‘1t2~}-Ft3+Gt4 .

The actual computation is the solution of a set of three simultaneous equations
in three unknowns, where the coefficients are the sums, s;and t;. We recover the
corrections, 8 and y, to the initial b and ¢ and use the final results as new trial
values for the iteration. Experience showed that a single iteration was sufficient
unless a gross error was made in the initial choice of trial values. This work was
programmed in machine language for the WEGEMATIC rotating drum computer of the
Weizmann Institute of Science. In practice, data points were confined to the region
above about 20% of the peak, after the subtraction of background.

Experiments based upon the alternation of standard sources of Na2# and the un-
known K 40 proved fruitless because of drifting. Frati and Rainwater [2] have shown
how to overcome this problem, but these elaborate means were impractical for us;
and we therefore tried a method in which the standard was mixed with the potassium
itself. Since the low-energy line of Na?4 at 1368 kev falls upon the Compton edge
of the K40 line, Y88 was found to be a standard more suitable to this experiment.

In the mixture of Y88 and K%, the full-energy peaks fall on very flat portions of the
Compton distributions of the higher energy lines. The Compton distribution may then
be subtracted as a constant background without shifting the position of the full-energy
peak. Table 1 shows a test of this subtraction and of overall stability and repro-
ducibility of the results. These data were taken with a 3- by 3-in. Harshaw crystal
and a TMC 400-channel analyzer. In this experiment the high-energy line of Y%8

was compared with the two lines of Na?% by linear interpolation between the loca-
tions of the centers of the pulse-height distributions.

1. Under ‘‘accumulated data’’ in Table 1 the Compton distributions were subtracted
as constant backgrounds under the full-energy peaks of the lower energy gamma
rays. Under “‘difference data’’ the Y38 source was removed, the analyzer put in
subtract mode, and the Na2* contribution was removed by pulse-height analysis.
The differences are hardly significant at the level of precision sought in this
work.
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2. The reproducibility, as indicated by the fluctuations from the averages, was also
quite adequate for the work at hand.

These data were taken at different base-line settings of the TMC 400-channel ana-
lyzer and therefore used different parts of the conversion ramp.

Table 1. Energy of a Y88 Gamma Ray

Determined by a Linear Interpolation
Based on the Energies of the Na24
Gamma Rays.® Counting Interval

was 10 min

Accumulated Data Difference Data
(kev) (kev)

1831.34 1831.60
1831.62 1831.89
1831.62 1831.82
1831.78 1831.91
1831.88 1832.14
1831.69 1831.75
1831.65 £ 0.17° 1831.85 +0.16”

2Na?? lines taken as 1368.7 and 2755.7
exactly.

rms. fluctuations from averages.

Table 2 shows some very preliminary results on the energy of the K49 line, com-
pared with the Y88 lines as standards. The source was about three kilograms of
potassium chloride mixed with a roughly equal activity of Y88 and contained in an
annular can surrounding the detector. The Y88 energies are taken from the results
of Peelle and Love [3], and the first result is obtained by linear interpolation. Also
shown are the results corrected for the nonlinearity of sodium iodide according to
the work of Engelkemeir [4]; the correction is about 4.7 kev.

These results were not corrected for amplifier nonlinearity. In a study of the
amplifier, the nonlinearity appeared to be of a ‘‘superproportional’’ nature. How-
ever, the quadratic term as determined by a least-squares fit, and the fluctuations
of the data from the fit, and the least count of the mercury relay pulser used in the
calibration were all three of the same size, and no definite conclusion could be
drawn.

Table 3 shows the results of all these experiments, still uncorrected for ampli-
fier nonlinearity. The first two lines are linear and nonlinear interpolations for
the Y88 lines in terms of standards determined by beta-ray spectrometry. The third
line is the nonlinear interpolation of the K4° line between the Y88 lines as just
determined by nonlinear interpolation. Linear and nonlinear interpolations using
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the results of Peelle and Love [3] appear on the last line of the table. It would be
less than fair to the work and to the data not to point out that the Y38 results are
all within the range of beta-ray spectrometer results for this activity, and that the

energy of the K*? line is only slightly outside the combined errors of this measure-
ment and the best previous result, the scintillation spectrometer work of Good [5].

Table 2. Gamma-Ray Energy for K40
Determined by Use of a Linear Interpolation
Based on the Literature Values® for Y88,

Counting time was 40 min

Accumulated Data Difference Data
(kev) (kev)

1461.46 1461.95

1464.98 1465.47

1460.29 1461.02

1458.97 1459.19

1460.54 1459.00

Average and rms 1461.3 +2.2
fluctuation

With uncertainties in 1461.3 £ 2.6
y88 energies

Corrected for Nal 1456.6 £ 2.7
nonlinearity

2y88 |ines taken as 898.8 £ 1.2 and
1840 * 2.

Table 3. Summary of Preliminary Results. Energies are in kev

Linear Corrected for
Activity Interpolation Nal Nonlinearity Standards

y88 1831.75 £ 1.1 1828.8 £ 1.5 Na24 1368.7 £ 1.0
2755.7 £ 1.0
y88 895.3 £ 1.3 892.8 1.5 Na24 1368.7 £ 1.0
cst?? 661.6 0.2
x40 1447.7 3.0 y88 1828.8 £ 1.5
892.8 £ 1.5

x40 1461.3 £ 2.2 1456.6 £ 2.7 y88 1840 2
898.8 + 1.2
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In Table 3 the only energies which are known accurately are those of the Na24
and Cs!'37 standards. These lines have been measured by beta spectrometry, in
instruments which have been proved linear by comparing sums with crossover en-
ergies; this is exactly the method used by Peelle and Love and others [6] to dis-
cover the nonlinearities in the scintillation spectrometer; in this connection, it
should be pointed out again that there still exists a great need for precisely deter-
mined energy standards, especially isolated lines in the region between Bi2%7 and
the thorium-active deposit. Some candidates are listed in Table 4; the energies
shown are beta-ray spectrometer results, except for C1>® which has not yet been
studied in the beta-ray spectrometer.

Table 4. Suggested Gamma-Ray Line Standards

. Gamma-Ray .
Activity Energy® (kev) Half-Life
Za®3 1116 £5 250 d

Na?? 1277 £ 4 2.6y
k42 1530 £ 10 12.5h
Lal40 1596 + 2 40 h
y88 1850 * 40° 105 d
908 + 20
c138 (2160)? 37 min
(1640)°
Ceprl44 695 %5 284 d
1480 + 10
2185 + 15

%As measured by beta-ray spectrometry.
bscintillation spectrometry value.

€See ref [7] for accurate interpolations with scintillation
spectrometer.

It is proposed to complete the determination of the K49 line by making spectra of
samples containing (1) K% and Y88 and (2) Na®4 and Y®%. The Y28 lines will be
used as internal standards to control gain and base-line drifts. The position of the
K 40 line will be compared with that of the Na2* line at 1368.7 kev by interpolation
and extrapolation over a relatively short interval of some 90 kev. Under these condi-
tions, the uncertainties in the K40 line which arise from uncertainties in the energies
of the Y ®8 lines and from the nonlinearities of the detector-analyzer system should
be much reduced. ‘
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(2-4) QUALITY CONTROL FOR THE GAMMA-RAY
SCINTILLATION SPECTROMETER

D. F. Covell
U.S. Naval Radiological Defense Laboratory
San Francisco, California

INTRODUCTION

The range of applicability of the scintillation method of gamma-ray spectrometry
has expanded in accordance with the rapid development of the pulse-height analyzer.
At present, however, the form of the data from these instruments is such that interpre-
tation is difficult, and the full potentialities of the method are not being utilized.
The developing interest in applying digital computer techniques to the problem of
interpretation should eventually make it possible to take greater advantage of these
potentialities, and in so doing substantially broaden the range of applicability of the
methed.

In order to apply computer techniques to the problem of scintillation gamma-ray
spectrometer data analysis, a calibration must be obtained for the spectrometer. The
calibration consists of determining the channel-by-channel response of the spectro-
meter, as a function of gamma-ray energy over the energy range of interest. Once
such a calibration has been obtained, however, drifts in the instrument may alter it,
thereby introducing inaccuracies in attempted measurements. In this report, a method
based on well-established quality-control techniques is described for both establish-
ing and maintaining instrument stability over long periods of time.
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The derivation of calibration data from theoretical considerations would be pref-
erable to an empirical calibration if such data were accurate. Zerby [1] has shown
that it is possible to approximate the crystal response characteristic of sodium iodide
from theoretical considerations, but he also points out that definite discrepancies
exist between theoretically derived pulse-height distributions and those actually ob-
served. While possible explanations for these discrepancies have been advanced,
Heath [2] does not believe there has been an adequate explanation to date and, further,
stresses the importance of using the exact pulse-height distribution as actually ob-
served in a given experiment. Even if the scintillator response could be obtained
exactly from theoretical considerations, the response characteristic of a specific
instrument assembly would depend upon such instrumental factors as (1) the conver-
sion and optical efficiency of specific crystals, (2) photocathode conversion efficiency
and dynode secondary-emission ratios, (3) linearity and stability of pulse-height anal-
ysis equipment, (4) détector-shield geometry, and (5) sample preparation and place-
ment. It is for these reasons that an empirical calibration is considered to be essen-
tial.

The work of Bell [3] and Heath [4] shows that an empirical calibration is laborious
to obtain. Once obtained, such a calibration may be invalidated by drifts or fluctua-
tions or subtle performance abnormalities in the instrument. Even if such instrumental
factors do not completely invalidate the calibration, they will lessen the precision of
measurement. Therefore, in establishing high standards of precision and accuracy, it
is important that fluctuations and drifts be minimized and that performance abnormali-
ties be promptly recognized, corrected, and the likelihood of their further occurrence
minimized.

Several methods for the correction of drifts, or the compensation of drift effects,
have been proposed. These methods have consisted of applying feedback principles
to the instrument, or normalization techniques to the resultant data. de Waard [5]
considers the drifts in gain to be the principal problem in drift correction, and base-
line drifts to be negligible by comparison. He has developed a method for gain stabil-
ization in which there is generated an error signal proportional to the difference in the
counting rate observed on the upper and lower amplitude slopes of a selected peak in
the measured distribution. This error signal is applied directly in series with the
phototube high voltage in such a manner as to correct the peak position.

Scherbatskoy [6] has used a method similar to that of de Waard for reducing gain
drifts in the phototube. In Scherbatskoy’s method, light pulses are introduced into the
phototube along with the pulses from the main crystal. These pilot pulses are con-
stant in magnitude and larger than any pulses within the spectrum of interest. An
error signal is generated in accordance with shifts in the measured amplitude of the
pilot pulses and this error signal is fed back to the phototube high voltage regulator.

Fite et al. [7] have used a technique which corrects for drifts in both gain and
baseline. Two radionuclide sources are positioned near the crystal to provide two
separate reference peaks, one in the lower channels where drift effects are primarily
due to baseline shift and one in the upper channels. Based on deviations in the posi-
tions of these two peaks, both gain and baseline controls are adjusted by servo sys-
tems.

Chase [8] has also developed a method for stabilization of both gain and baseline.
The objective was to achieve a degree of stabilization which would be compatible
with the resolution capability inherent in the solid state detector. . The method is
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similar in principle to that of Fite et al. except that stable reference pulses from a
pulse generator are used and are introduced at the preamplifier level.

Heath [2], in his computer program for spectrum unfolding, corrects for shifts in the
gain or zero of the spectrometer by transforming the distribution in accordance with
recognizable detail in the distribution. Such recognizable detail may be inherent in
the measurement being made, or the source to be measured may have to have additional
known material added to provide recognizable reference peaks.

Each of the above methods provides some degree of correction for drift. There are
certain inadequacies in these techniques, however. In the methods where standard
peaks or standard pulses are introduced, some loss of measurement capability results,
especially if these pulses accompany the unknown pulses and are eventually stored in
the memory of the instrument. In some of the above methods, possible changes in the
crystal response are not being sensed, so that the cotrection for gain shifts is not
complete. In addition, in the feedback systems of correction, an error signal is con-
tinually being generated and is subject to statistical fluctuation which may produce
some line broadening in the measured pulse-height distribution. de Waard shows that
under suitable conditions of measurement line broadening can be kept to a negligible
value. In order to minimize such line broadening, it is necessary to have a peak suf-
ficiently prominent and sufficiently free of undetlying background or interference from
other spectral detail. In practice, however, it may be difficult to keep line broadening
to a negligible value on a routine basis, since spectral detail of sufficient quality
cannot be assured.

None of the above methods, as they are currently applied, make provision for the
early recognition of erratic performance, but tend rather to mask such performance.
While erratic performance may be compensated by such stabilizing techniques so that
peaks appear to be properly positioned, the greater the burden of correction, the greater
the likelihood of distortion in the resultant pulse-height distribution.

Some of the above methods make the assumption that all peak displacements are
due to drifts in gain. It has been our observation, in concurrence with Heath [2],

Fite [7], and Chase [8], that baseline drifts are equally as important as gain drifts,
and that the assumption that displacements are due to drifts in gain only, can lead to
errors. :

In seeking a method for instrument stabilization, we believe that both gain and
baseline drifts should be corrected and, further, that any stabilization technique to be
used should be augmented by a regular critical examination of selected instrument
performance factors. The following procedure of quality control is proposed to satisfy
these objectives.

QUALITY CONTROL

Quality control is a technique for maintaining the quality of the output product of
a process or system at a prescribed level. It is not primarily concerned with the estab-
lishment of quality, although in the process of correcting system deficiencies as they are
exposed, the level of quality may be raised. In establishing a quality control proce-
dure, the characteristics of the output product which are to be controlled must first be
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determined. Next, ‘‘normal’’ performance is determined by observing the central tend-
ency (arithmetic mean) of the values for the selected characteristics, as well as ob-
serving the dispersion (usually expressed as the standard deviation) of these values.
If the capabilities of the system as reflected in these properties of the output product
are acceptable by the criteria established, then a procedure of periodic sampling may
be instituted in which the values for individual output units are compared with the sys-
tem norm. If the sampling is done in such a manner that the sample values can be con-
sidered representative of the output product generally, then an analysis of these values
provides a periodic estimate, within the limits due to sampling errors, of the system
performance. In order to expedite the analysis of such data, individual walues are
usually plotted on a chart on which the system norm and system dispersion are marked.
From such a chart, referred to as a control chart, trends or excursions representing
deviations from the central values or from the established standard deviation are
readily detected and corrective action is initiated.

The response characteristic of the gamma-ray scintillation spectrometer is a com-
posite of the transfer characteristics of the scintillation crystal, multiplier phototube,
and pulse-height analyzer. The overall transfer characteristic, relating incident
gamma-ray energy to mean storage channel number when the gamma-ray energy has
been totally absorbed in the detector, can be considered as a straight line having an
extrapolated zero intercept in gamma-ray energy at zero channel number. A primary
system of standardization canbe established by standardizing and stablizing the
slope and intercept of this transfer characteristic. The slope is detemined by (1)
the conversion and optical efficiency of the crystal, (2) phototube gain, (3) amplifier
gain, and (4) the clock frequency of the analog-to-digital converter. Drifts or changes
in any of these factors will change the slope. The zero energy intercept will be de-
termined by the acceptance threshold (or baseline) of the instrument, and baseline
drifts will not only change the intercept point but will also displace uniformly the
entire characteristic.

In specifying a quality control procedure, in addition to evaluation of the slope
and intercept of the instrument transfer characteristic, it would also be desirable to
make rudimentary evaluations of the linearity, resolution, and background counting
rate of the instrument. In the procedure to be described, the assumption has been
made that the quality of performance has been established at or near the desired level
and that, ordinarily, deviations will be small. A further consideration is that the
entire quality control procedure (sampling, data evaluation, logging and estimation of
control status) should be as brief as possible consistent with efficacy.

PROCEDURE

The procedure was originally developed as a possible aid in stabilizing an
Argonne-type, 256-channel analyzer as manufactured by Radiation Counter Labora-
tories (Mark 20, Model 2603). This instrument was installed as a permanent laboratory
facility to be used on a routine basis for radionuclide determination and estimation to
augment existing radiochemical techniques. The analyzer was used in conjuaction
with an RCL Model A-61 linear amplifier and an RCL Model 21 precision high voltage
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supply. The instrument was left energized on a continuous basis. During the period
of development of the procedure, the detector consisted of a 3 x 3 in. Nal(Tl) crystal
(Harshaw Chemical Company), in conjunction with a Dumont type 6363 phototube.

Several modifications were made on this equipment, of which the most significant
were the following: (1) substitution of a 10-turn Helipot for the standard carbon poten-
tiometer used as a fine voltage control in the phototube high voltage supply; this con-
trol provides an incremental adjustment of the phototube voltage of approximately 100
mv, and thus constitutes a vernier on the system gain; (2) inclusion of an auxiliary
scaler to count all ‘‘store’’ pulses generated during a counting period so that a total
gamma count could be readily obtained for each sample to be counted; (3) removal of
the upper level trigger, V-718, so that a ““store’’ pulse would be generated for over-
flow pulses, thereby making it possible to interpret the total gamma count in the usual
sense (i.e., the total number of pulses above a given acceptance threshold).

The procedure consisted of making a count once each day, or mote often if addi-
tional standardization appeared necessary, with a 7n%3 standard. Zinc-65 was se-
lected since its decay characteristics give rise to a pair of readily discernible peaks
with energies of 1.12 Mev and 0.51 Mev in the pulse-height distribution (see Fig.1).

B

N(E)}dE

€

Fig. 1. Typical Pulse-Height Distribution for Zn65, Showing the Relative
Positions and Intensities of the Two Reference Photopeaks, py:iE, = 0.51

Y
Mev, and pzzE,y = 1.12 Mev, !
2

The half-life of Zn® is relatively short for a standard (245 days) but in this applica-
tion, 7n%3 has a useful life of at least one year.1 In the pulse-height distribution,
peak positions relative to specific reference channels yield information regarding
deviations in the settings of the gain and baseline controls. In the present case, with

1We have recently been studying the possible use of Ti*t as a standard. This radionuclide
has a half-life on the order of 1000 years, so that no half-life correction would be necessary.

In addition to gamma rays having energies of 0.072Mev and 0.160Mev from the Ti44 decay, the

Li-hx:.Sc44 daughter would provide additional peaks at 1.16 Mev, and0.51 Mev. Such qualities
are ideal for a general purpose gamma-ray spectrometer standard, and would be of particular
interest in a standard for use with the present quality control procedure.
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a standard setting of 5 kev equivalence per channel, the 2 reference photopeaks should
be symmetrical about channels 102 (E,y =-0.51 Mev) and 224 (E,y = 1,12 Mev). When
this condition exists, the counts in corresponding channels on either side of the ref-

erence channel are equal.

on either side of the reference channel are summed and compared. Thus a ratio, k
is defined for a photopeak, by as follows:

Fig. 2. Relatienship of the le. Ruhos with Respect to Voltage Applied to the
Detector for the Two Observuble Peaks in the Zn®> Distribution (p.l:E = 0.51
L4

Mev, 2, = Channel 102; p,:E,, = 1.12 Mev, 2, = Channel 224), The relation-
ty 2777, Py

ships are shown for several settings of the baseline control. The values in

parentheses represent deviations from a normal (0) setting in units of minimum

increment on a ten-turn Helipot dial, These increments correspond to approxi-

mately 0.1 v on the detector voltage control, and approximately 0.032 v on the

baseline control.
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In order to minimize errors, the counts in several channels
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The photopeak is considered to be correctly positioned when k b= 1.00 and deviations
i

from the correct position will give values of k that will be less than or greater than

1.00. Pi

In order to relate & " values to deviations in gain and bias adjustments, quantita-

tive correlations are obtained by a process of calibration in which % b values are de-

. . pe . s !
termined for specific settings of these controls. Such empirical data can be repre-

sented as families of curves, as shown in Fig. 2, where kp values for the two refer-

ence photopeaks of 7Zn%5 are plotted as a function of the hilgh voltage (gain) setting
for each of several bias settings. From Fig. 2, it is seen that for either family of
curves, any of several combinations of bias and gain (H.V.) settings satisfy the con-
dition that kp = 1.00. By considering both families of curves, however, it is seen

that only one 7cornbmat10n of bias and gain settings satisfies the condition that k =
1.00 for both peaks, and these will be considered to be the correct settings. bi
The numerical values indicated for the high voltage and baseline controls on

Fig. 2 correspond to specific settings of the respective controls. Once the correct
settings are determined, the values can be converted to units of deviation, plus and
minus, as shown by values in parentheses on the figure. Figure 2 could then be used
directly in determining the extentof deviations in gain and baseline by routine detet-
mination of the kp‘ values. The curves of Fig. 2 however, do not provide the most

convenient form for making the required estimates of deviation in the control settings.

From these curves, a nomograph (Fig. 3) has been constructed from which the required
estimates of deviation are easily obtained by drawing a straight line between the com-
puted k&, values and observing the points of intersection of this line when extrapolated
to the H.V. and baseline scales,
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Figure 4 shows an excerpt from a typical control record on which various param-
eters of the data obtained by this procedure are logged. The data are normally plotted
on K & E 350-142L graph paper (1 year by days), so that an entire year's record for
each of the several parameters being plotted for a given instrument can be included
on one sheet. A mean value and standard deviation for each of the parameters are
estimated from the first 10 values for each year (provided instrument performance
seems to be representative during the period that these values are obtained). Mean
values are indicated by solid lines, and the one-standard-deviation values are indi-
cated by dashed lines above and below the solid lines. On line 1 of the chart is plot-
ted the day-to-day observed count rate (N 0) of the standard, corrected for half-life and
background. N is determined by summing all conversions taking place in the analog-
to-digital converter in an auxiliary scaler during the counting period, and correcting
this gross sum (n ) for background and half-life. On line 2 is plotted the day-to-day
background rate (B 0) which has been computed from the sum (bo) of all conversions
taking place in the analog-to-digital converter during a background counting period.
N, was kept between 100,000 and 200,000 counts/min, and 5-mig counting periods.
were used for both the standard and the background counts. On line 3 is plotted the
ratio of the counts contained in a standard fraction of the photopeak to the total net
count. This ratio,? f P is computed as follows (see ref [9]):

ap+l
n,—(1+1/fn, _+n
aE:_l i [ (ap 19} (apﬂ)]
fP: n,=-b

0 0

The ratio, [, is computed only for the upper energy peak (E y = 1.12 Mev) of the
standard, and a value of 10 has been arbitrarily selected for /. On lines 4 and 5 of
the chart shown in Fig. 4 are plotted the day-to-day deviations in the control settings
as determined from Fig. 3. These lines provide an indication of instrument stability.

Deviations in the baseline and high voltage (gain) controls should be uniformly
dispersed around zero. If they show a tendency to be predominantly positive or nega-
tive, a long-term drift is indicated, as might accompany a gradual degeneration of ele-
ments in the instrument, such as the detector, preamplifier, amplifier, etc. If the dis-
persion of points is large, it is an indication of excessive short-term drifts. The
dashed lines above and below lines 4 and 5 indicate deviation values in the baseline
and gain controls which would correspond to a shift in the upper energy peak (E

1.12 Mev, a, = 224) of one full channel.

No explanation is offered regarding the significance of the specific patterns which
can be readily seen in the plots of Fig. 4. The plots are part of a cumulative history
of a particular instrument and have been of value, both in establishing confidence in
the instrument as well as in improving the performance of the instrument. They are

2The ratio, f,, bears a correspondence to peak resolution and has been used as a figure of

merit at this laboratory in making evaluations of detection assemblies. The routine logging of
/p values, as derived from the upper energy peak (E,, =1.12 Mev), has on two occasions ex-

posed degenerating elements in the system. In both instances, the difficulty was a departure
from linearity for the larger pulses. In one case, the phototube was determined to be at fault
and in the other case the preamplifier was at fault. In both of these cases, the irregularities
were exposed by the data on the control chart and were corrected before the effects were no-
ticeable in the experimental data being taken.
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Fig. 4. Excerpt from o Typical Control Chart. NO is the observed
count rate of the stondard, corrected for half-life and background.
By is the background rate. [, is the ratio of the counts contained in
a standard fraction of the photopeak to the total net count, and bears
a correspondence to peck resolution. On lines 4 and 5 are plotted the
day-to-day deviations in the control settings. The dashed lines asso-
ciated with lines 1,2, and 3 indicate the one-standard-deviation values
as estimated from the first 10 values to be plotted on the respective
lines. The dashed lines associated with lines 4 and 5 indicate devia-
tions in the control settings (Baseline and H.V.) which would cause a
one-channel shift in the upper energy peak (E'y = 1.12 Mev, a, =
Channel 224). 2 2
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presented here merely to demonstrate the types of patterns which may develop, and the
ease with which such patterns can be recognized when viewed in this perspective.

RESULTS

The early results of such a program tend to be discouraging, apparently yielding
nothing more than a demand for an inordinately large amount of effort devoted to cor-
rection of irregularities that were not apparent before. However, persistent adherence
to this discipline, once imposed, has paid large dividends in instrument reliability
and improved quality of measurement. The procedure has been used over a period of
several years on each of two gamma-ray spectrometers in use at this laboratory and
has made it possible to achieve and maintain, on a long-term basis, a channel sta-
bility of better than 0.25%, based on the apparent stability of the upper energy peak
(E,y = 1.12 Mev, a, = 224) as inferred from Fig. 4.

During the period that this method has been in use, it has helped to expose cer-
tain manufacturing flaws (e.g., improperly soldered connections), and design inade-
quacies (e.g., excessive cutrent flow in a voltage reference tube in one of the power
supplies)in the instrument. It has also helped to establish the level of regulation re-
quired for the power line as well as the stability to be maintained for the ambient
temperature. Calls for special maintenance assistance have been reduced, and when
such calls are made, they are based on more objective observation.

CONCLUSIONS

This method of analyzer standardization has the following desirable features:

1. The entire measurement system, including the phototube and crystal, is corrected
for drift.

2. The method provides correction on both baseline and gain settings.

3. A history of performance is established so that unusual or persistent drifts can be
easily spotted and corrective action taken before major difficulties develop.

4. The method does not introduce extraneous ‘‘background’’ or additional spectral
detail which may complicate the interpretation of measurement spectra.

5. The method is simple and easy to perform, even by unskilled technicians; for two
instruments, approximately 30 min/day of technician time is required for the data
taking, computing and logging.

6. The method provides a mote objective basis for instrument repair and maintenance.

Adherence to the procedure assures a regular objective inspection of the instru-
ment, so that irregularities are spotted early.

8. Periodic examination of the chart may show correlations with ambient effects
which may either be eliminated or compensated, thus providing a basis for the
gradual improvement of measurement quality.

This method has the disadvantage of not being continuous, that is, corrections
are made only once each day. From the charts, however, an estimate of the magni-
tude of short-term deviations can be obtained, thereby establishing a basis for the
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study and eventual minimizing of these deviations. Another feature is that a certain
experimental and statistical error is associated with the determination of the &
values. These errors will tend to increase the dispersion of the points on lines 4
and 5 of the control chart (Fig. 4). The magnitude of these errors has not been ex-
amined, but the errors are part of the data of Fig. 4, which shows that the total de-
viation in the upper energy peak (a, = 224) (including effects due to drift and errors
in the determination of the &, values) can be maintained at less than 1/2 channel. The
method described does not correct for drifts that may result directly from the meas-
urement of specific samples (e.g., drifts in the detector as a result of counting high
activity samples), but these sources of drift have been examined collaterally. The
examination and proposed method for the reduction of the major source of such drifts
(i.e., gain shifts as related to sample activity levels) has been reported separately
L10].

The level of stability achieved by this method has been adequate for much of the
measurement work done on our instruments. As the requirements for higher quality
measurements become greater, however, it appears that greater stability may be re-
quired. Such improvement might be achieved by making second-order corrections with
respect to those demonstrated here, possibly by combining elements of this method
with other methods (either utilizing feedback principles, or computer compensation),
in which case this technique could serve to assure that such corrections would be
small and meaningfully applied.
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(2-5) EVALUATION AND CALIBRATION OF PULSE-HEIGHT ANALYZER
SYSTEMS FOR COMPUTER DATA PROCESSING

D. F. Crouch and R. L. Heath
National Reactor Testing Station, Phillips Petroleum Company
Atomic Energy Division, Idabo Falls, 1dabo

INTRODUCTION

If data coming from several analyzets is to be used in the same computer programs,
a precise knowledge of the operating characteristics of each system must be known.
Furthermore, it is particularly convenient if the analyzer systems can be standardized
to a performance level which is readily reproducible. This paper is a report of tests
developed and used to evaluate and calibrate performance parameters of various ana-
lyzer systems. The performance parameters specifically covered by this report are:

Analog-to-digital converter (ADC) accuracy and stability,
ADC integral and differential linearity,

Zero and bias shift due to counting rate,

Live-timer accuracy,

Effect of pulse shape on performance of the ADC.

WA o N e
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In addition, initial calibration and routine checking of calibration will be briefly
discussed.

LINEAR TEST PULSE GENERATOR

A stable, linear, pulse generator greatly facilitates the evaluation of analyzer
systems. In particular, it is very helpful if the relative pulse height can be read
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directly from the vernier on the amplitude control. Since no generator was commer-
cially available with precise amplitude control, a simple, inexpensive pulser was
constructed. Total cost of parts for the pulse generator is estimated at $200. A
schematic of the pulse generator is shown in Fig. 1.
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Precise, linear voltage control was attained by using a John Fluke model 60A
High Resolution Decade Potentiometer as the pulse amplitude control. Specifica-
tions for the potentiometer include a resolution of better than 0.0002% and linearity
of 0.005%. Excellent voltage stability was attained by attenuating a 500-v power
supply voltage down to 200 mv for a maximum output from the pulser. High voltage
for the pulse is externally supplied by one of the high voltage power supplies nor-
mally used for photomultiplier high voltage. The power supply is always allowed
to warm up for several hours before being used with the pulser.

Selection of one of four capacitors permits adjustment of the decay time of the
outgoing pulse. A 10,000-ohm composition pot determines the pulse rise time.

To check linearity of the pulser, dc voltages between the Fluke Potentiometer
arm and ground were measured with a Leeds and Northrup No. 7552 Slide-Wire
Potentiometer as a function of pulser amplitude vernier settings. On the scale used
to check the pulser, the slide-wire bridge was accurate to, and could be read to,
0.00001 v. Typical calibration points are given below:

Pulse Amplitude Setting Voltage
911.00 0.91100

511.00 0.51100

199.50 0.19951

49.50 0.04951

In addition, relay timing and RC constants were verified with an oscilloscope to
ascertain that no charge buildup was occugring.
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PERFORMANCE TESTING OF ANALYZER

Testing of ADC Acﬁurucy and Stability

Tn conjunction with checking the ability of the analyzer ADC to consistently store

pulses of the same height into the same channel, this test also permits the sharpness

of channel edges and the associated adjacent channel overlap to be determined. All

of the tests to be described were performed by using an Oak Ridge model A-8 linear
amplifier [1] in place of the amplifier normally supplied with the analyzer.

The pulser is fed through a 33-pf coupling capacitor into the A-8 preamplifier. (Un-

less a 33-pf capacitor is used for coupling into the A-8 preamplifier, peculiarities in

the preamplifier feedback circuit will cause a nonlinear output.) After the pulse height
is adjusted to fall into some convenient region with respect to readout ease, the analyzer
is switched to the analyzer mode for a short time interval (usually 100 sec in our labo-
ratory). It is most accurate to let the live timer stop the analyzer. The counts in all
adjacent channels, the corresponding channel numbers, and the pulser setting are re-
corded. The analyzer memory is cleared, the pulse amplitude increased by a small in-
crement, and the new pulse height analyzed for the same time interval as the former
run. This procedure is continued until the pulse has been incrementally advanced
through three or four channels. A sufficient number of evenly spaced experimental
points should be taken in each channel so that channel edges and center will be clearly
defined. A semi-log plot of channel counts vs pulser setting permits a “‘channel pro-
file”’ to be sketched. Where channels overlap, at least two channel counts will appear
on the graph for each pulser setting. A ‘‘channel profile’”” is shown in Fig. 2.
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Of course, the most accurate ADC will be one which shows the least amount of
adjacent channel interference. Sources of noise that may cause channel overlap are
pulser noise, ADC jitter, and pulse amplifier noise.

Test of Integral Linearity

The characteristic curve, for a particular analyzer, indicates the channel number
into which a pulse of any amplitude will be recorded. Ideally, this should be a straight
line. Departure of this characteristic curve from a straight line is a measure of non-
linearity. Integral linearity is the ratio of departure at any point to the pulse amplitude
corresponding to full scale. Generally, the term integral linearity is intended to mean
the ratio defined above at the worst part of the characteristic.

A good working definition for integral linearity of an analyzer system is the maxi-
mum deviation in any channel from a straight line plot of channel position vs input pulse
amplitude. The following test is based on the latter definition.

Initially, the pulser is adjusted until pulses are being recorded equally in adjacent
channels, for example, channels 249 and 250. The final pulser amplitude setting is
noted along with channel number 250. With the pulses being recorded equally in chan-
nels 249 and 250, one can assume that the pulse is precisely on the lower edge of chan-
nel 250. If the pulses were being recorded entirely within channel 250, the exact loca-
tion of the pulses inside the channel would be uncertain. This assumption can be veri-
fied by examining the channel profile and noting the sharpness of the channel edges.

The procedure described above is usually repeated in the vicinities of channels 200,
150, 50, 25, and for all channels below number 10. All channels below number 10 are
plotted because deviations in integral linearity are usually greatest in these channels.

A plot of channel number vs pulser setting is made from the resulting data and is
shown in Fig. 3. Analyzer A is an old vacuum tube analyzer; deviations in linearity
are apparent at both the low channel and high channel ends of the curve. Analyzer B
is a transistorized analyzer and appears to be linear.
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A more sensitive method of presenting the same information is to plot deviation in
pulse height vs pulse height. For this plot, the analyzer zero control and pulse-height
gain control were adjusted until relative pulse heights of 9.5 and 199.5 are recorded on
the leading edges of channels 10 and 200, respectively. (The reasons for using pulse
heights of 9.5 and 199.5 are explained in detail in the calibration section of this report.)
These two points are assumed to be lying on a theoretical straight line characteristic
curve. Positions of the leading edges of other channels are measured in the same
manner as described in the preceding paragraphs. The measured pulse height of channel
position is subtracted from what the pulse height would be if the channel were on the
theoretical straight line. The difference in these two pulse heights represents the devi-
ation from linearity of the ADC for that particular channel. In Fig. 4 the deviations were
changed to percentages of a channel width and plotted against channel number. Once
again, the curve labeled “*Analyzer A’’ represents the performance of an old vacuum tube
analyzer, while the curve for ‘*Analyzer B’’ represents the performance of a newer tran-
sistorized model. Of course, the analyzer zero control could be adjusted to split the
worst deviation, For example, the zero control of Analyzer B could be adjusted such that
channel 130 has % 0.25 channel deviation instead of +0.5 channel deviation. The inte-
gral linearity, by the usual definition, would then become 0.25 channel (maximum devi-
ation) divided by 200 channels (full scale amplitude) or 0.13%.
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Differential Linearity

Differential linearity is a term used to describe uniformity in channel widths over the
entire analyzer range. Thus, a differential linearity of 1% means that no channel departs
by more than 1% from the average channel width for all channels. Generally, a sliding
pulse generator is used to check differential linearity. An adequate description of this
method is given by Chase [2]. Most of the recent model analyzers have good differential
linearity above the first five channels.
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Test of Counting-Rate Shift

A shift in analyzer zero or a shift in ADC bias due to a high counting rate is highly
undesirable if computer processing is to be used. Counting-rate shift is usually caused
by pulse pileup; that is, the count rate is so high that circuit capacitance does not have
time to discharge completely and succeeding pulses appear to have a pulse height larger
than their actual height. In this laboratory, counting-rate shift in the amplifier system
is avoided by using a double-differentiating A-8 amplifier [1]. The negative portion of
the amplifier’s bipolar pulse discharges citrcuit capacitance immediately after charging
by the positive portion. Thus, there is no residual charge to distort the height of
ensuing pulses. Tests on the A-8 amplifiers in this laboratory have indicated no
counting-rate or bias shift (<0.05%) for rates up to 40,000 counts/sec.

Photomultiplier tubes usually contribute the major portion of the observed counting-
rate shift. Therefore, if a test is used to evaluate counting-rate shift in an analyzer,
the test should be of such a nature as to isolate counting-rate shift due to the photo-
multiplier from shift due to the analyzer itself. The usual method involves the simul-
taneous measurement of radioactive source and a pulser to indicate the degree of
counting-rate shift.

The pulser is connected to the preamplifier in parallel with the scintillation detector.
With no input to the detector, the pulser is adjusted until an equal number of pulses are
being recorded by adjacent channels in the high channel number end of the analyzer
memory. The channels should be high enough that coincident pulses from the *‘hot”’
source will not interfere with pulses from the pulser.

Finally, the “‘hot’’ source is placed on the detector, and the resultant spectra are
recorded. (A Cs!37 source of 30,000 counts/sec is commonly used in our laboratory.)
Any counting-rate or bias shift in the analyzer system will be indicated by the pulser
pulse moving off the channel edge where it was originally placed. The sensitivity of
this measurement is directly proportional to the sharpness of the channel edges. Re-
ferring back to the channel profile (Fig. 2) will give an idea of the minimuir amount of
counting-rate shift that can be detected.

Live-Timer Check

The live-timer check is based on the following reasoning: If the live timer works
accurately for a particular setting, the analyzer will be *
to accept incoming pulses — for the same total time regardless of counting rate. There-
fore, if a weak source and a hot source were counted simultaneously, the total counts of

alive’’ — thatis, in readiness

the weak source recorded should be the same as if the weak source were being counted
by itself. A hot low energy source and a weak high energy source are used for the live-
timer test. Typical sources used are ngo3 (15,000 counts/sec) and Zn%3 (200 counts

per sec). ’

First, the hot source and weak source are counted simultaneously. Next, the weak
source is counted alone. The counts in the photopeak of the weak source are totaled
for both runs. A comparison of the totals indicates the accuracy of the live timer. A
pulser could be used in the place of the weak source and, thereby, eliminate the uncer-
tainty due to the error in integration of the peak due to the weak source. However, con-
sideration should be given to the possibility of errors due to lock-in of the pulser with
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the analyzer live timer and pulser pulses occurring in coincidence with the hot source
pulses. Live timers of transistorized analyzers evaluated by our laboratory have had
inaccuracies ranging from 12% down to less than 0.5%.

Pulse Shape

The peak detector of an analyzer requires a finite time to decide that a pulse en-
tering the ADC has reached its peak and is ready to be stretched. This decision time
becomes critical and can cause nonlinearities for large pulses. For small pulses, the
change in voltage per unit time is low and a small error in peak detector time will have
lictle effect on the stretched pulse height. But the large pulses have a high rate of
voltage change, and a small error in decision time can cause a nonlinearity of two or
three channels in the uppermost part of the analyzer range. Many peak detectors re-
quire approximately 1.25 pusec to make a decision; however, most A-8 amplifiers come
from the factory with 1-usec delay lines. Increasing A-8 delay lines by 25% will
greatly improve the linearity of the uppermost channels. As would be expected, the
random sum coincidences will increase by about 25%.

CALIBRATION AND ROUTINE CHECKING OF CALIBRATION

Pulse-Height Scale Considerations

If the nonlinearity of sodium iodide crystal light output is to be taken into account
by computer programs, some pulse-height scale must be established. Due to the non-
linearity of sodium iodide and the uncertainty of locating photopeak maxima within a
channel, radioisotopes cannot readily be used to establish an accurate pulse-height
scale. For this reason an absolute pulse-height scale based on electrical calibration
must be employed.

Since a channel represents a band of pulse heights from V to V + AV, a plot of
counts vs pulse height should be 2 histogram with each bar representing the width of
one channel. If a point plot is to be used, consideration should be given as to where the
point representing a channel belongs. If the analyzer system characteristic curve
intersects the pulse-height axis at zero, and a Gaussian distribution of pulse heights
within a channel is assumed, a point representing channel counts should properly
appear as a point in the middle of the channel; for example, a point representing counts
in channel 50 should be plotted at 49.5, because channel 50 represents a band of pulse
heights whose mean height is 49.5. However, if the characteristic curve intersects the
pulse-height axis at —0.5 channel, a relative pulse height of 50 would fall in the mid-
dle of channel 50 and could legitimately be plotted as a point on the 50 division line.
This is the basis for the absolute scale as used in our laboratory.

Method of Initial Zero Alignment

Analyzer zero control and pulse-height gain control are varied until relative pulse
heights of 199.5 and 9.5 are recorded on the lower edges of channels 200 and 10.
Thus a channel number represents the mean of the pulse heights stored in that chan-
nel.
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Routine Checks of Calibration

Analyzer system performance and calibration are checked daily by laboratory assist-
ants. Routine procedure is to adjust photomultiplier high voltage so that the maximum of
the Cs 137 photopeak is positioned in channel 66.2. Live-timer, linearity, and zero shift
are checked with a Bi?%7 standard. After the standard source has been analyzed, its
spectrum is superimposed over that of a Bi%%7 standard read into the analyzer from tape.
A comparison of heights and positions of photopeaks will point out any changes in per-
formance parameters. This method has been established to be accurate to 0.01 of one
channel for the zero setting.

As a check of system stability, an analyzer system was allowed to go for one month
without adjustment. The amount of gain drift was determined by daily least-squares
fitting of the 0.57- and 1.06-Mev peaks of Bi%%7. Zero drift would be indicated by a
change in the ratio of the 0.57-Mev peak position to the 1.06-Mev peak position. The
1.06-Mev peak drifted 1.5 channels during the first five days of the test and remained
within 0.5 channel of the same value for the remainder of the month. No zero shift
(<0.1 channel) was detected over the 30-day period.
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(3-1) SCINTILLATION SPECTROMETRY - THE EXPERIMENTAL PROBLEM!
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INTRODUCTION

Prior to the many detailed descriptions of sophisticated analysis techniques which
will be presented during the course of this meeting, it would seem useful to review
the problems associated with the experimental acquisition of data with scintillation
spectrometers. It was felt that this would be particularly appropriate at this confer-
ence because several disciplines are represented. Among these are the nuclear spec-
troscopists who originated the experimental techniques presently being utilized, ex-
perimental scientists from many other fields who are interested in applying gamma-ray
spectrometry to problems in their own field, and — most welcome — the applied math-
ematicians who are becoming more and more involved in the development of methods
for the analysis of data.

This paper is intended to summarize, briefly, the areas of experimental interest,
to define the experimental variables, and to indicate the present limitations imposed
by experimental procedures and equipment. A restatement of the experimental prob-
lems should aid in the evaluation of particular methods of analysis and their limita-
tions.

The basic problem in the analysis of data obtained with scintillation spectrom-
eters is the rather complicated relationship between the photon spectrum incident
upon the detector and the pulse-amplitude spectrum produced by the interaction of
photons with the detector. This relationship is illustrated in Fig. 1, which shows a
line photon spectrum consisting of four gamma rays of 0.060, 0.320, 0.830, and 1.92
Mev of equal intensity. Above this are the pulse-amplitude spectra produced by a
3- by 3-in. Nal(T1)detector for each of these monoenergetic gamma rays. At low en-
ergies the pulse spectrum is essentially characterized by a symmetrical peak which
is in fact nearly Gaussian in shape. This feature is attributed to interaction by the

lyork performed under the auspicies of the U.S. Atomic Energy Commission.
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photoelectric process. As the gamma-tay energy increases, the pulse distribution
becomes mote complicated. In addition to the so-called photopeak there is also a
continuous distribution of pulses all the way down to zero amplitude. This distribu-
tion is attributed to the Compton process. At even higher energies numerous little
satellite peaks appear which are attributed to interaction of the photons by the pair
process. Although the detailed shape to be expected from a detector for a gamma ray
of a given energy may vary with different types of detectors, it will always contain the
major features described. The essential information contained in an experimental
spectrum is contained in the photo or full-energy peak. Its median position on the

pulse-amplitude scale is related to energy and its area to the intensity of the as-
sociated gamma ray.
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It should be recalled that the measured pulse spectrum is really an electron en-
ergy spectrum resulting from the loss of energy by the photon resulting from interac-
tion with electrons in the detector by one or more processes. Figure 2 illustrates
this conversion. This figure shows the theoretical electron spectrum to be expected
as a result of the detection of a gamma ray of approximately 0.50 Mev. Interaction by
the photo process produces the monoenergetic line representing essentially full-
energy loss by the photon. The distribution of electrons from zero to a maximum at
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an energy less than the full energy of the photon results from interaction of the pho-
tons by the Compton process. Above this is shown the measured pulse-height dis-
tribution observed from a 3- by 3-in.Nal detector. We see that, aside from what ap-
pears to be a near-Gaussian smearing of the data, the general features of the electron
spectrum are preserved. The major difference is in the relative magnitude of the
Compton distribution and the photopeak. The increase in the relative number of photo
events is due to a rather high probability for the occurrence of multiple events which
result in total loss of energy in a detector of this size. As the dimensions of the de-
tector increase, the relative probability for total energy loss will increase.

THEORETICAL \
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EFFECT OF ENVIRONMENT ON DETECTOR RESPONSE

If we could isolate the source and detector from all surrounding material, the
shape and magnitude of the observed pulse-amplitude spectrum would be dependent
only upon the energy of the gamma ray, the physical properties of source and detec-
tor, and the geometrical arrangement. Unfortunately, this cannot be achieved. In
practice, the shape of the observed pulse-amplitude distribution is influenced by
many factors. Since the response of the detector to its experimental environment
must be understood in any attempt to analyze data, let us examine the many experi-
mental variables which can influence the response of the detector. Figure 3 shows
the experimental pulse-height spectrum resulting from the detection of a monoener-
getic gamma-ray source (0.478 Mev) by a 3- by 3-in. Nal detector. This spectrum was
taken under experimental conditions which have been optimized to reduce extraneous

effects to a minimum. The spectrum has been measured with and without a 670 mg cm
polystyrene absorber which is normally interposed between detector and source to
prevent the entry of beta particles from beta decay sources into the detector. Extra-

neous contributions appear in the spectrum which .do not represent the response of
the detector to gamma radiation directly incident on the detector.

2
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The small peak appearing on the Compton distribution results from gamma rays
Compton-scattered from the surrounding materials in the detector shield, ait, source,
and source mount.

The magnitude and shape of the contribution from scattered radiation is dependent
upon the geometrical arrangement. Figure 4 shows the pulse-height spectrum for an
0.835-Mev gamma ray measured in the three different shield configurations shown in
Fig. 5. Inspection of the scatter spectrum shows that the intensity and shape of the
distribution of pulses attributable to scattering is inversely proportional to the size
of the shield and to the Z of the absorbing material. The reduction in scattering from
lead as opposed to iron is due to the relatively high photoelectric absorption cross
section of the high Z material. It is of interest to inspect the shape of the scattered
spectrum from the small iron shield. Note the presence of two distinct peaks in this
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distribution. These correspond to 180° single scattering and to processes involving
two successive large-angle Compton events before striking the detector. An im-
portant deduction from these measurements is that appreciable scattering from sus-
rounding material considerably degrades the quality of the spectrum. The presence
of a large contribution to the pulse spectrum from scattering will reduce the ‘‘unique-
ness’’ of the energy response. For this particular case the ability to detect gamma
rays in the energy range from 100 to 400 kev would be reduced by a factor of ten if
measurements were made in the small iron field.

X-RAY PRODUCTION

Figure 6 illustrates one additional effect of scattering from surrounding material.
If high Z materials are used in the construction of detection shields to lower ambient
background, the high probability of photoelectric interaction will result in the produc-
tion of considerable quantities of x rays characteristic of the shielding material. This
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component in the scattered spectrum can be effectively eliminated by lining the shield
with selected materials which have a high probability of selectively absorbing the
characteristic x rays produced in the lead shield. This technique, known as ‘‘graded
shielding,’’ is generally recommended for high quality spectrometry.

EFFECT OF BETA ABSORBERS AND SELF-ABSORPTION

Generally speaking, nature does not provide us with convenient sources which
emit only photons. The decay of the usual radioactive source has associated with it
the emission of charged particles (either positrons or electrons). Since Nal is quite
efficient as a detector of charged particles, it is necessary to prevent their entry into
the detector. The presence of these charged particles introduces several complica-
tions. Figure 7 shows the pulse spectra resulting from the measurement of radiation
emitted from the decay of 3.6-hr Y?2. This isotope, which decays by beta emission,
emits very energetic beta particles (3.6 Mev) and several gamma rays. The upper
curve results from a measurement made with no absorbing material between the source
and detector. The particular detector employed is surrounded by only 0.005 in. of
aluminum. We see that under these conditions the gamma-ray spectrum is almost
completely obscured by the high energy beta-ray continuum. The second curve rep-
resents a measurement made with a 1.6-g beryllium absorber interposed between
source and detector. The third curve was obtained by surrounding the sides of the
cylindrical detector with 0.7 g/cm2 of polystyrene. The difference observed between
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these two curves in the high energy portion of the spectrum is the result of beta parti-
cles scattered from the air and surrounding material into the sides of the detector.
Thus we must be particularly careful to exclude all electrons from the detector if the
pulse spectrum is to represent only the response of the detector to photons emitted

by the source.

If we observe the low energy portion of the ‘‘gamma-ray spectrum’ of Y22 we
observe a continuum of pulses rising with decreasing pulse amplitude. This contri-
bution to the spectrum is not due to the response of the detector to gamma radiation
emitted in the decay of the source, but is a bremsstrahlung spectrum produced in the
slowing-down of the beta particles by the surrounding material and the absorber. Such
continuous spectra of photons are associated with all sources of radiation which emit
charged particles. The shape and magnitude of these spectra will be a function of
the beta spectrum and the material in which the electrons expend their energy. The
magnitude of this effect can be minimized by proper experimental design.

Finally, now that we have admitted the necessity for using absorbing materials
in certain experimental cases, what effect does this absorbing material have on the
photon spectrum of interest? Figure 8 shows the pulse spectrum obtained from a
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photon source with no absorber and the effect of adding increasing thickness of beta
absorber. In addition to increasing attenuation of the entire spectrum, the shape of
the pulse-amplimde distribution is seen to change materially. This results from the
detection of photons which are Compton scattered in the forward dire ction following
interaction by the Compton process in the absorbing material. The same effect would
occur if the source were sufficiently thick to produce appreciable scattering. For
this reason source preparation can also affect the quality of the spectrum.

SUMMATION EFFECTS

If we again examine Fig. 3 in the region above the photopeak, we see a continu-
ous distribution of pulses which extend up to approximately twice the amplitude of
the full-energy peak. This contribution to the monoenergetic energy response of the
detector results from random time-coincidence between pulses. Since radiations
emitted from a radioactive source ate randomly distributed in time, there is a finite
chance that two events may occur in the detector within the resolving time of the
electronic circuitry. If this occurs, then the amplitude of the resultant pulse will be
the sum of the amplitudes of the two separate events. The magnitude of this “‘ran-
dom sum spectrum’ will be related to the source intensity and the system resolving
time by the following simplified relationship:

I, os =N%271, €8]

£.8,8

where N is the input pulse rate, 7 is the resolving time of the electronic system for
pulse pairs, and I is the total number of pulses appearing in the sum spectrum. Pulses
in this sum spectrum represent the detection of photons directly incident upon the de-
tector and so must be considered as part of the energy response of the detector. This
random sum spectrum should not be confused with the so-called “"coincidence sum
spectrum’’ which is illustrated in Fig. 9. This figure shows the spectrum of radia-
tion emitted by Nb?4™. 1In the decay of this isotope two gamma rays are emitted
simultaneously in the decay of each nucleus. In addition to the response of the de-
tector to the two gamma rays individually, we also see a distribution of pulses which
results from the simultaneous detection of both coincident gamma rays. The resultant
sum spectrum is really a convolution of the two response functions for the individual
gamma rays. The most prominent feature of this spectrum is the so-called sum peak
which results from the coincident detection of pulses from the photopeaks of the two
coincident gamma rays. The probability for the detection of pulses in this summation
spectrum is given by the following expression:

NC.S.S.ZNO€1€2WO’ (2)
where N is the decay rate of the source, €, and €, are the detector efficiencies for
the detection of gamma rays 1 and 2, respectively, and WO is a factor to account for
the angular distribution of the coincident gamma rays. The shape and magnitude of
such coincident spectra can be successfully calculated using a computer program [1].

Comparison of expressions (1) and (2) indicates that the magnitude of the random
summing effect is rate dependent while the real coincidence sum spectrum intensity
is a function of the detector-source geometry. With the addition of these effects we
see that when more than one gamma ray is emitted in the decay of a single nucleus,
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the shape of the spectrum can become quite complex. Such a case is shown in Fig.
10, which illustrates the observed pulse-height spectrum from the decay of Pm!48
with its associated sum spectrum. In this case there are many coincident gamma
rays emitted in the decay of each nucleus.

To summarize, we have seen that the shape of the pulse-height spectrum re-
sulting from the detection of monoenergetic gamma rays may be influenced by many
parameters. These include source preparation, source-detector geometry, size and
shape of the detector, input count rate to the spectrometer, and the environment in
which the experiment is performed. In addition, other radiations emitted by the
source and the time relationships between emitted radiations may produce extraneous
effects which must be considered in any analysis of the data. For this reason it is
most important that serious thought be given to the design of the experimental ar-
rangement. In addition it should be quite obvious at this point that standard meas-
urement conditions are necessary to the development of any precise method of data
analysis since it is not possible to predict the effect of a change in any experi-
mental variable.

Aside from the experimental parameters discussed above, the detailed shape of
the observed pulse-amplitude spectrum will depend very strongly upon the various
elements of the scintillation spectrometer. Each element of the spectrometer and
its contribution to the experimental problem will be discussed briefly.
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DETECTOR

Both the phosphor and photomultiplier tube have inherent properties which com-
plicate the experimental problem. The most important variables affecting the ex-

perimental data are detector linearity, resolution, and stability of output pulse
amplitude.

Nal Linearity

In the analysis of pulse-height spectra to obtain precise gamma-ray energies,
the pulse height vs energy response of the detector is most important. It has been
well established that NaI(Tl) is not linear, particularly in the energy region below
0.50 Mev. Figure 11 shows the relationship between pulse height and energy for
Nal(Tl) as determined by three experimenters {1—3]. Fractional change in pulse

103



height is plotted as a function of gamma-ray energy. The ordinate is normalized
to a light output of 1.00 for the 661-kev line of Cs!37,
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The observed nonlinearity is attributed to a variation of phosphor light-con-
version efficiency with secondary electron energy. In general it should be the
same for all Nal detectors, although some deviation has been found between crys-
tals for energies below 100 kev — presumably attributable to the optical properties
of the detector.

It should be noted that this nonlinearity is attributable to the detector alone
and does not include any defects which may exist in the electronic system. If data
from a given system is to be analyzed to obtain gamma-ray enetgies, the overall re-
sponse of the spectrometer must be experimentally determined by a calibration
against known energy standards.

Detector Resolution

The resolution of the detector is usually defined as the relative width of the
full-energy peak or photo-line in the response of the spectrometer to a source of
monoenergetic gamma radiation. The width, or more specifically, the shape, of
this line as a function of gamma-ray energy is determined by the statistical nature
of the processes involved. These include the production of light in the scintillator,
the collection of this light at the photocathode of the multiplier phototube, the sub-
sequent production of electrons by the photocathode, the collection of electrons at
the first dynode of the multiplier, and the multiplication in the dynode structure.
The relative contributions of each of these factors will vary with each detector
and the conditions of the experiment. Many detailed descriptions of detector reso-
lution and the many factors affecting it have appeared in the literature [4, 5].

The considerations of importance to this discussion are the effects of condi-
tions external to the detector upon the experimental data. The first of these effects
is the temperature dependence of the light output from the phosphor. Nal has a tem-
perature coefficient of —0.1%/°C. This requires rather stable temperature conditions
during a given measurement. In some detectors the resolution is observed to vary
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with source-detector geometry. This is attributed to nonuniformities in the optical
system which produce differences in the transfer variance. This effect can result
from defects in either the reflector system or the photocathode of the photomulti-
plier tube. A third effect which can be troublesome is variation in the resolution
of detector with count rate, This effect is observed in large detector packages
employing more than one photomultiplier tube for light collection. Such detectors
may exhibit change in resolution with counting rate due to differing characteristics
of the phototubes, that is, counting-rate shift. This effect will be discussed in a
later section.

PHOTOTUBE

Gain of phototube is of course highly dependent upon voltage impressed upon
the dynode string. For usual phototube operating voltages, approximately 0.1%
change in voltage produces a 1% change in gain. To obtain 0.1% gain stability
which is considered the best that can be obtained with current electronic systems,
this implies a voltage supply with long-term voltage regulation of £0.01%.

The most troublesome type of gain variation produced by the phototube is a
change in gain as a function of input counting rate. The magnitude of this gain
change is proportional to phototube cutrent which is related to both pulse amplitude
and counting rate. It generally takes the form of an increase in gain with increased
counting rate. The time constant for this shift can vary from a few minutes to several
hours for different phototubes. Although some types of tubes exhibit much less shift
than others [6], selection of tubes and appropriate operating conditions are necessary
to obtain satisfactory performance. All phototube manufacturers are awate of this
problem and are working toward a solution. At the present time, selection of photo-
tubes and operating conditions can produce detectors which exhibit a gain shift of
less than 0.5% for a change of counting rate from 100 to 10,000 counts/sec. For a
given measurement this effect can be minimized by calibration with standard sources
of approximately the same counting rate as the source to be measured. An alternative
is to include a calibration source with a line of known energy. It should be noted
that a change of gain during the course of a measurement will resule in degradation
of the resolution of the detector. For this reason the system must be allowed to
stabilize prior to the start of the measurement. In the measurement of the decay of
short-lived activities, this problem can become particularly troublesome.

ELECTRONIC SYSTEM

Two parameters are important in an analysis of the performance of the electronic
system. These are linearity and system stability. These parameters must remain
constant with changing temperature, line voltage fluctuations, and changing experi-
mental conditions, for example, counting rate, gain, etc. Experimental methods for
investigating these parameters were discussed in papers (2-4) and (2-5).

One of the most troublesome problems is zero or bias shift with counting rate.
This is generally a problem of the amplifier and results from improper dc restoration
or “‘pulse pile-up’’ at high count rates. This problem can be eliminated by the use
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of an amplifier which produces an output pulse which is symmetrical about the volt-
age axis. These so-called '‘double-differentiated’’ amplifiers are commercially
available both in vacuum tube or transistor types. Such amplifiers exhibit no meas-
urable bias shift for counting rates up to 50,000 input pulses/sec. The integral
linearity of these amplifiers is considerably better than 0.1%. Their gain stability
against normal variation in temperature and line voltage is better than 0.1%. At the
present time no multichannel analyzer available commercially utilizes such ampli-
fiers as internal equipment.

Another parameter which can measurably affect the quality of data is random
noise appearing at the output of the electronic pulse amplifier. This random noise
will produce an additional fluctuation in the amplitude of pulses produced by the
detector. High quality electronic amplifiers have a noise level less than £0.2% of
full output in the normal operating range. A noise level of this magnitude will have
negligible effect on the observed detector resolution. It should be stressed, how-
ever, that difficulties in the electronic system which produce variation of the random
noise level could cause serious fluctuation in the resolution of the system. For
this reason stability of the signal-to-noise ratio is very important.

ANALYZER-

Important considerations in the performance of the pulse-height analyzer which
can influence analysis of data include the stability of gain and zero of the analogue-
to-digital converter with counting rate and changes in ambient operating conditions
(temperature and line voltage). These requirements appear to be met by most of the
multichannel machines available today. Some analyzers have an overall stability
of conversion gain of better than $0.2% per day with no measurable zero shift for
input counting rates up to 50,000/sec.

A more subtle requirement for precision data analysis is that the detailed shape
of the pulse-height spectrum from a known source of radiation be independent of
counting rate. In a good modern system this can be achieved. In view of the com-
plexity of equipment of this type, malfunctions can occur which will produce errors
in the shape of the distribution. For this reason extreme care should be exercised
to ensure proper circuit operation. In evaluating this criterion, it should be pointed
out that one must be aware of the rate and geometry-sensitive changes in spectrum
shape due to real or random pulse summing. These effects were previously dis-
cussed.

LIVE TIMER
All of the multichannel machines presently available use the amplitude-to-time

conversion principle. This implies that the time required for analysis is proportional
to input pulse amplitude. Absolute measurement of source intensity requires that
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the time for analysis be accurately determined. Since a measurement of the analyzer
dead time is somewhat complicated, all analyzers of this type incorporate circuitry
which automatically corrects for this loss. The precision of any quantitative deter-
mination will be dependent upon the accuracy of this circuitry, Methods for checking
the accuracy of the so-called live timer were described in paper (2-5). A good live
timer is capable of accuracies better than +£0.2% for input count rates up to 50,000
input pulses/sec.

To summarize the effects of all experimental parameters, we see that many
variables are present in each experiment which can influence the quality of data
obtained from a scintillation spectrometer. These include experimental design,
source material, and the quality and staBility of the electronic equipment used.
Any successful method of data analysis must include adequate treatment of these
variables if one is to obtain an estimate of the error involved in the analysis.
Because of the complex relationships which exist between all variables which can
influence the response of a spectrometer to a given source of radiation, it is im-
possible to treat these variables analytically. This implies that it is not possible
to compute the response of the spectrometer for a given set of experimental condi-
tions. For this reason an empirical method must be used. This requires that the
response of the system must be thoroughly investigated under a rigidly controlled
set of ‘*standard” experimental conditions. The success of any attempt to do a
detailed analysis of pulse-height spectra will depend very strongly on the quality
of the experiment.
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(3-2) ITERATIVE UNFOLDING

N. E. Scofield
U. 8. Naval Radiological Defense Laboratory
San Francisco 24, California

INTRODUCTION

The widespread use of multichannel analyzers and automated data recording in
gamma-ray scintillation spectrometry has placed an emphasis upon computer data re-
duction methods. At the same time there has been a tendency to write computer pro-
grams to reduce data in the same manner in which it has been hand-corrected in the
past. Where the spectra to be observed consist of a sum of gamma-ray lines, a
stripping process which depends upon the ability to resolve distinct peaks for each
line may be satisfactory, but where there are many lines or even a continuous gamma-
ray distribution, then some type of approach is needed which will solve a set of simul-
taneous linear equations. These equations arise from a linear super-position principle
that the pulse-height distribution from one gamma line is unaffected by the presence of
other gamma lines and that the resultant pulse-height distribution from 7, gamma rays
of energy E, and n, gamma rays of energy E, is given by n, times the E | pulse-height
distribution plus n, times the E, pulse- helght distribution. Thls of course may be ex-
tended to many components. Now the solution of large sets of simultaneous equations
has a long history dating back at least to Gauss. We will most likely not be making
discoveries or innovations in this field but rather rediscovering techniques that were
old before we were born. One new element that has been added is that of automatic com-
puting devices, which make possible calculations that would not even have been attempted
in the past. For an excellent collection of papers on the solution of simultaneous linear
equations and an index and categorization scheme, see ref [1].

There are two main reasons to turn to iterative methods of solution. The: first is the
difficulty in constructing a square response matrix of high order and the second is the
approximate nature of the pulse-height vector and response matrix elements.

The simplest solution to the matrix equation RN =Cis N=R~ 1¢, but this presupposes
that R is a nonsingular n X 7 square matrix. This in turn necessitates measurement and/or
interpolation to find » different response distributions. It is quite difficult to find more
than, say, ten relatively monoenergetic gamma-ray sources in the region from 0 to 2 Mev
and even these will, in general, not be uniformly distributed over this range. This means
that the approximate numbers obtained experimentally. will be used to interpolate even
more approximate matrix elements.

Historically the solution of large numbers of simultaneous linear equations with ap-
proximate coefficients has been accomplished by iterative methods because of their self-
correcting properties. These methods depend for their successful use upon the conver-
gence properties of the iterative algorithm. These in turn can be shown to depend upon
the nature of the response matrix. In general the stronger the principal diagonal of the
matrix is, the better the convergence will be. The reason for the application of these
methods to ‘‘total absorption’’ crystal spectrometer data with its large peak to total
ratio and hence the strong principal diagonal in its response matrix is obvious.

A brief description will be given of the type of gamma-ray measurements we were
doing at NRDL in order to show the type of problem we had to solve. Some of our early
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experiences in unfolding will be described and the kind of thinking that led to a usable
method will be sketched. Some tests and examples of this method will be shown; in
addition, we will mention some remaining problems and the direction in which we are
heading at present in this field.

EXPERIMENTAL PROBLEM

For some years now there has been a continuing program of gamma-ray scintillation
spectrometry in connection with the fundamental shielding studies at NRDL. In these
studies the angular distribution of the spectra of scattered gamma rays emerging from
various thicknesses of structural materials has been measured.

The sources used to irradiate the slabs have been Cs137 and Co%? and the geometry
has been distant and broad beam so as to approximate plane parallel incidence (see Fig.
1). Note that the source distance has been compressed to facilitate presentation. The
detector was a 4- by 4-in. Nal(T1) crystal and the split collimator was effectively 34 in.
in diameter and 25 in. long, giving an angular resolution of 1.5°,

LEAD
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o s 1 SHIELD
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SCALE {IN.) SLABS
REAR
COLLIMATOR

FRONT
COLLIMATOR

’ DUMONT 6364
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q NaT(Ti) CRYSTAL

SCATTERED GAMMA RAYS
CSBTCH’ C 60|
SOURCE ~—ATTENUATED PRIMARY BEAM
BLANKET SHIELD
( to reduce detector background)

97.0IN.

Fig. 1. Experimental Geometry.

Under these conditions the type of pulse-height distribution obtained at a detection
angle of 20° is indicated in Fig. 2, where counting-rate as a function of pulse height is
shown for five different thicknesses of steel irradiated by Co®° gamma rays. Under these
experimental conditions for the 1 in. of steel the calculated first plus second scattered
gamma-ray spectrum is shown in Fig. 3 as curve A, while the corresponding calculated
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pulse-height distribution is given by curve B. Actually, higher order scattering cannot
be ignored even for 1 in. iron but the point I would like to make is that the gamma spectra
we wished to unfold from the experimental pulse-height distributions were a mixture of
lines and continuous and discontinuous spectra. As we shall see later this discouraged
us from using either inverse matrix or stripping methods.

A typical response curve for Cs 137 is shown in Fig. 4, where the Gaussian total ab-
sorption peak, the Compton tail, and the usual unwanted features such as x-ray peaks
and backscatter distributions are indicated. A somewhat cleaner spectrum is shown in
Fig. 5, where the semi-log and histogram presentation serves to emphasize the discrete
and statistical nature of even the best response spectra.

Figure 6 shows the photofraction and resolution curves of the total absorption peaks
as a function of soutrce energy and shows that we are willing to lose a little resolution
by using a 4- by 4-in. ctystal in order to obtain a more unique response.
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Spectrometer Response,

DETAILS OF THE INSTRUMENTAL RESPONSE

Perhaps at this point it would be a good idea to express a little more precisely what
the relationships between these various entities are. In Fig. 7, Eq. (1) is a mathematical
expression of the distortion by the spectrometer response, R(V,E), of the gamma spectrum,
N(E), incident upon the crystal face to give the observed pulse-height disteibution C(V).

The spectrometer response function is shown in Eq. (2) to consist of a Gaussian
smearing,

fo°° g(v,E,V'>{ }dV’,

times a response kernel which consists of the crystal detection efficiency, €(E), times
the weighted sum of the total absorption lines, 8(aE — V’), and the Compton tail function
aK(E,V’); the weighting factors are the photofraction p(E) and Compton tail fraction
c(E). In Eq. (3) we show the relation between a pulse-height distribution, Ck , resulting
from an incident number of photons, N, all of energy E, .
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Finally Eqs. (4) and (5) show the matrix representation of (1) and the inverse opera-
tion, respectively.

Here the matrix element Tii of the response matrix, RZ. ., is to be interpreted as the
probability of observing a pulse height between V, — AV and V, given one photon inci-
dent upon the crystal of energy E.. N, is to be interpreted as the number of photons
incident upon the crystal with energies between E, — AE and E;. Finally C, is the
number of counts with pulse-height falling between V, and V, — Av.
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R(V,E) = fQ(V.E.V')e(E){c(E)uK(E,V')+p(E)3(uE—v’)}dv‘ e
o

CklV) = NgR(V,Ey) e Fig. 7. Response Function Expressions.
RijNj = C; (FOLOING) [ 4]

-1
R7jiC; = Ny (UNFOLDING) e

ATTEMPTED SOLUTIONS

Equation (5) is the obvious solution for Eq. (4). However, unfortunately, it does not
always work. The reason is that, for matrices as large as those encountered with mod-
ern multichannel analyzers (50 x 50, 128 x 128, 256 x 256, 400 x 400, etc.), special
methods have to be used to obtain the inverse even when the response matrix elements
are without error. For a 100 x 100 matrix, for example, double precision arithmetic must
be used to avoid roundoff errors. When in addition there is imposed the condition of
statistical fluctuations in the elements of the response matrix which have been inter-
polated from experimentally measured quantities, it may be realized that even with
extraordinary care the inverse may be violently unstable. Table I shows a portion of
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Table 1. A Portion of the Inverse Matrix HRH.“'I

Pulse-Height Channels

Energy
Bins 18 19 20 21 22 23 24 25 26 27
21 —2.41423 4.58224  =-8.09134 12.02740? —8.90633 5.45649 —2.72097 0.54618 1.36009 —2.82737
22 1.68851 —3.23438 5.92633 —10.16500 14.61770 -11.67800 7.53477 —4.22349 1.61839 0.27309
23 -1.09792 2.10925 -3.90993 6.99745 —11.73780 17.19920 —14.06030 9.59245 —6.23354 3.66594

“Main diagonal elements have been underlined.



an inverse matrix when near the main diagonal which illustrates the oscillating posi-
tive and negative values developed. The net effect of using such a matrix to unfold
experimental spectra is shown in Fig. 8.
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Fig. 8. Experimental Spectrum Unfolded by Inverted Response Matrix.

The seriousness of the above instability was not fully appreciated by us in our
early unfolding work since we were working with bremsstrahlung spectra. These spec-
tra are characteristically smooth curves asymptotically approaching zero at the high-
energy end and hence tend to smooth out the effect of the alternating inverse matrix
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elements noted above. When, however, the application of an inverse matrix to unfold
slab penetration spectra produced the results shown here, we started to reexamine
other possible methods.

OTHER METHODS OF UNFOLDING

When attempting to unfold a spectrum by hand one is immediately led to “‘cut and
try”’ methods. The most straightforward of these methods is that of stripping, where-
by a series of identifiable peaks are fitted and subtracted out along with their accom-
panying Compton tails starting from the high-energy end.

Many machine-stripping programs have been written and several have or will be
presented at this symposium. These stripping methods break down, however, when no
discernible peaks are present in the pulse-height distribution. The next type of cal-
culation that suggests itself is actually a type of iterative procedure in which a first
guess at the gamma spectrum is folded by the response matrix and compared to the
experimental pulse-height distribution. On the basis of this comparison one then modi-
fies the first guess and compares again, etc. Villforth [2] did just the above and
since the method we have adopted is a modification of his method we will describe it
briefly. In Table 2 Villforth’s method (which he adapted from Freedman {3]) is shown
as method II while a **standard’’ [4] iteration scheme is shown as method III. Actu-
ally II and III are the same, since, by expanding the right side of the basic equation in
I, we getN(m)—(RN(m)—C)=N(m)— (C™_Cy= N™) - A™) iy the notation of method
II. The general method, however, leaves open the choice of N,

Table 2.
. Correction Factor
Basic Equation: NHD o (D—'l)(m)c
Auxiliary Equations: N < ¢
clm) . py(m)
—1y(m) _ m);e (m) || _ -1
@O = | 3 re | = | 452

whereSi].= 1€>i=j
Sij=0<——>i¥j

If. Incremental Correction

Basic Equation: N - () _ A7)
Auxiliary Equations: NO@ < ¢
clm) — py(m)

A(m)= C(m) —-C
1. *““Standard’’

Basic Equation: N(m+1)= (I - R)N(m) +C
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CORRECTION FACTOR METHOD

General Remarks

The modification that we have made to Villforth’s iteration method was suggested
by the work of Starfelt and Koch [5]. They obtained an unfolded spectrum by use of an
inverse matrix and determined a correction factor curve as a function of pulse height
from the ratios of corresponding elements of the unfolded and experimentally observed
pulse-height distribution. This correction factor curve was then used to *‘unfold’’ all
of the distributions having the same end point and a similar shape.

Our thought was to combine the correction factor method of Starfelt with the itera-
tion scheme of Villforth. This we were able to do. The principal advantage of this
modification is that if one starts with only nonnegative elements in the pulse-height
vector and the response matrix, then the modified iteration method will guarantee only
nonnegative gamma components in the unfolded spectrum. We next present the correc-
tion factor method more formally and in greater detail.

lteration Method

It is assumed that a square response matrix R has been fabricated, that pulse-height
distributions C, have been recorded and that it is desired to determine that gamma line
spectrum, Nj , which might have produced C;. That is, we wish to solve the matrix equa-
tion: Riij= C;.

Nowi . =jn.x= ¢ may be a large number (50 - 400), and the elements of both Rij
and C; are only approximate numbers. For this reason we cannot push the solution to its
exact limit by using N = Rij— lCi . Rather, we use an iterative or successive approxima-
tion method #nd stop t;le process when the residual etror has reached a minimum or after
a predetermined maximum number of iterations.

Before presenting the iterative algorithm a few remarks should be made about the
vector elements C,. In general the numbers C; represent the net registration of pulses
falling in an interval (V; — AV to V) for a counting time of ¢ seconds. Each one of
these pulses results from the (single or multiple) interaction of an incident gamma pho-
ton with the scintillation crystal. In order to eliminate unwanted gamma rays which
enter the crystal from directions other than through the collimator, *‘background’’ spec-
tra are taken with lead plugging up the collimator opening. Thus, if we denote by S,
the *‘foreground’ counting rate in the 7th channel, ¢ ¢ the foreground counting time, B,
the background counting rate, and ¢, the background counting time:

;2 .
C,= <(Sit/) - (Bl.zb)i/_> +0.6745 (Sit/) +(B;1,) {—f— + <Bi w>} ,
t, g iy

£

where ¢ > means ‘‘variance of.”’

1 . : — = = -

The use of a multichannel analyzer is assumed, so that it a1 =Y and £, Li+1=

tys however, ¢, may not = ty A “‘true’’® (or *‘live’’) timer was used which counted 1-kc pulses
" whenever the analyzer was not gated off.
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Under our usual operating conditions 2, = t, and (t> <<t so that, if we replace
ty /t, by one and neglect the counting time variances, we have

C;=(S;t—B,;1) £0.6745\/St+ Bt .

Now it is evident from the above formula and it is also observed experimentally that
as C;» 0soS;¢ = B, occasional negative values of C; will pop up, although the aver-
age value for a large number of observations would be zero. Since we wish to avoid any
negative photon outputs from our unfolding program, we do not calculate C; values be-
yond the last nonnegative one. The span of the multichannel analyzer is usually ad-
justed to extend above the pulse height of the maximum gamma energy present, so the
above procedure effectively sets ani___ and determines the rank of the necessary por-
tion of the response matrix.

In Table 3, condition (1) restricts the elements of N to the class of finite, nonnega-
tive numbers while (2) excludes N = 0. Equation (3) is to guarantee that the response
matrix is not singular while (4) and (5) state that the matrix diagonal elements must be
positive and finite while the off-diagonal elements may be positive or zero but also
finite. Finally, (6) states that the elements of the pulse-height vector C must be finite
and positive.

Table 3.
Given: R= ” i H C= H <; ”
and RN=C
To find: N= ” n; ”

With the following conditions:

(D °<>>n].=>=0 i=1,2, ..., 4

(2 w>2n].n].>0

(3 [R|#0

(4) °°>fii>0 i=1,2,...,4,

(s) oo>,i],zo ij=1,2,...,4,i#;]
(6) 0> C,>0 i=1,2, ..., 9

We wish to find N without explicitly determining the inverse R~ 1. Suppose N o
be an approximation to N. That is, the vector N™) s a point in phase space near to N.
Then R is a transformation that takes N to the point C™) in the same space. We
assume that C') will be near C. Furthermore as C™) s C, then NU) 5 N.

Now for any pair of vectors N™), C!) we assert that the transformation R may be
represented by a diagonal matrix, D. That is:

RN . cm) _ plm) y(m) 1)
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What is more, we may now solve our equation for [D~1]1) and use it as an approximate
invérse of R to find N:

R-'c=p-l'cZN. )
We now requite a method of determining D™, given C™) and N™). Since the inverse

of a diagonal matrix is easily found by forming a diagonal matrix, each of whose ele-
ments is the reciprocal of the corresponding element in the first matrix:

D-1t- (3)

Examining Eq. (1) we note that if this were a matrix equation we could postmultiply by
N@™)=1 and obtain

pm) Nm) [Nm)]=1_ ctm)[n(m)]=1_ pim) 4)

However, N and C are column vectors and do not have an inverse. We may get around
this, however.
We define a unit column vector:

E= |1

and two diagonal matrices, D and D_, where each diagonal element of D, is equal to
the corresponding component of the vector N and similarly for D_ and C. Thus, N=D E
and C = DCE . Replacirg C and N in (1) by their equivalents, as shown above, we have:

DDyE=D_E. )]
We now premultiply (5) by D L
-1 -1
D."DDyE=DZ"D_E=E. 6)

Since Dy 1 Dand D n are all diagonal matrices the order of multiplication may be
changed without affecting the result:

-1
DDNDC E=F

) 7
or
-1_ .
DD, D=1
thus
—1_ p-1
D DIl=D"1. (8)
We see that the diagonal matrix p-t! approximately equivalent to R~ ! for the pair
of vectors N = “ni ” and C = ”cz. | has elements
”.
d7l=68, 1
] i !
i
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where
8i=0,i#]
Bi=Lii=j.
Then it is evident that we have the following matrix equation:
N=D"'¢C )

for

n

-1 k
”k=dkk%“‘5;ck=”k°

We note that although N = R™1C we cannot say that D™= R~} The term D~ !is a
function of C and will not work for a different C’, while R™ 1, once determined, will be
true for any C arising from:

C=RN. (10)
We next replace N in (9) by C to find the zero order approximation:
NO_ - [D—-l](O) C.
Thus
[D'l](°)=1 an

where ! is the identity matrix. Next we apply (10) to N (0,

c® - rNO© (12)
We next find
. (O
- [d;kl](1)= k: 1) 2»~-Q: (13)
O
k

and thus [D~ 111, Now we calculate N¢!), the first order approximation of N:
N(l)z[D"l](”C. (14)

Note that we always revert to the original C vector at this point rather than to an approx-
imate value C™), This is to minimize cumulative errors and help assure convergence.
Next we find

n
n
k
D= RND, [P e — NP = D=1 D) ¢, etc.
Ck D

To demonstrate this method we have detailed the steps of applying the above algorithm
to a simple 3 x 3 matrix and three-component vector in Table 4. In Table 5 is shown a
comparison of each step of two different iteration methods applied to this same problem.
We see that there is not much difference in this simple example but the correction factor
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Table 4. Correction Factor lteration

An Example
9 1 0 1.0 n,
Given: R= {{.2 .7 .1 C= |l1.1 N= n,
2.2 .6 '1.6 L
To find N when RN=C
Algorithm N™*D) = (p=Lym)c
~1(m) _ ~1 | _ (m) )~ (m)
G Crihd B LA
NO@ = ¢
First Iteration
1.0) -
N(O)= =
1.6
9 .1 0 1.00 1.01
c@LrN®@opre= .2 7 .1 L1 = ||1.13
2 2 .6 1.6 1.37
1.0/1.01 0 0 99 0 0
(p-H{®) - Bi].nl.(")/ci(") = 0 1.1/1.13 0 =0 97 o0
0 0 1.6/1.37 0 0 1.17
Second Iteration
99 0 0 1.0 .99
N p-hoeo o 97 o L1l = {|1.07
0 0 117 1.6 1.87
9 1 0 .99 .998
cWopyWa 2 7 1.07|| = |[1.134
2 .2 6 1.87 11.533
99/.998 ] 0 992 0 0
(D~HM - ai}.nj“)/ci“) = 0 1.07/1.134 0 =0 944 0
0 0 1.87/1.533 0° 0 1.22

N® = (p~HDe = etc, ==
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method is, if anything, slightly faster than the other one, which is the incremental cor-
rection method of Freedman.

Now we have little to say about the convergence properties of this method except to
say that the strength of the principal diagonal of the response matrix, R, relative to the
off-diagonal elements is the governing factor. It may also help to normalize the sum of
all matrix elements since many of the indicators of convergence depend upon some
function (a norm) of the matrix elements having an absolute magnitude less than unity
[41.

In Table 6 we show two unfolded spectra from the slab penetration experiment. The
first spectrum was printed out after only 13 iterations because the sum of the squared
residual test had reached a minimum.

On the other hand the other spectrum was printed out after reaching the programmed
maximum number of iterations — 70. We observe a much closer fit (i.e., AC - 0) to the
channels in the second case. Finally, Fig. 9 shows the same unfolded spectrum and
the effect of smoothing.

103

TTTT

wmen  UNFOLDED - 70 ITERATIONS
cwmeeee SMOOTHED

T

I

102

RELATIVE PHOTON NUMBER FLUX
IS

0] o4 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PHOTON ENERGY-MEV

137

Fig. 9. Cs' 77, 2-in, Al Unfolded Spectrum.

123



Table 5. lteration Method Comparison

. Nm) clm)
7, noy 73 € €, C3
m
0% 1 1.1 1.6 1.01 1.13 1.37
0® 1 1.1 1.6 1.01 1.13 1.37
14 0.99 1.07 1.87 0.998 1.134 1.533
1% 0.99 1.07 1.83 0.998 1.130 1.510
24 0.992 1.038 1.950 0.9965 1.1202 1.5760
26 0.992 1.040 1.920 0.9968 1.1184 1.5584
3% 0.9954 1.0196 1.9795
3b 0.9952 1.0216 1.9616
. . 2.0000 1.0000 1.1000° 1.6000
Qoooo 1.0000 0000, N\ 0,
Y Y~
N c

a .
Correction factor method.

bIncremental correction method.

FUTURE DEVELOPMENTS

The iterative program we have been describing was written several years ago for a
Burroughs Datatron. Since that time we have replaced this by an IBM 704 and have only
recently had a need to use the unfolding program. We are now rewriting this program in
FORTRAN. Such a program, utilizing the correction factor iteration method, has al-
ready been written at another laboratory [61.

We are incorporating the least-squares fitting in our new program, following the lead
of Rose [7], Trombka [8], and Salmon [9]. It should be noted that this involves solving
the matrix equation, RToRN = RTwC, where » is a diagonal weighting function matrix.
If we redefine the response matrix R "= RTwR and the count vector C’= RTwC, then we
again have the matrix equation R'N = C’, which may be solved iteratively.

There are several attractive features about this modification. Our original response
matrix, R, no longer needs to be square since it automatically becomes so upon multipli-
cation by its transpose. Furthermore the rank of the resultant matrix R” is the smaller
of the two matrix dimensions. One unexpected bonus is that the matrix is symmetrized
which has favorable implications concerning its convergence properties. Lastly, with
the requirement for a square response matrix eliminated we are now able to unfold, by a
least-squares method, a small number of gamma lines or any mixture of lines and con-
tinuous spectra.

We finally come to the matter of error or uncertainty to be assigned to the unfolded
values. Certainly one attraction that the least-squares methods have is the ability to

124



Table 6. Examples of Unfolding

Cs137, 2.in. A1, 20° Cs137, 24in. Al 30°
(m=13) (m= 70)

Ch;zr_lel ¢ RN  Ac kN O Ch;:‘d c  RV™  Ac ko N
1 2606 2604 <2 219 1 2366 2366 0 155
2 4561 4560 -1 542 2 4701 4701 0 464
3 5648 5647 -1 742 3 5822 5822 0 627
4 5033 5032 -1 656 4 5326 5326 0 582
5 4483 4482 -1 564 5 4345 4345 0 434
6 3974 3973 1 482 6 4054 4054 0 410
7 3598 3597 -1 421 7 3666 3666 0 352
8 3231 3230 -1 358 8 32908 3298 0 301
9 2947 2945 -2 317 9 3032 3032 0 260

10 2698 2699 1 267 10 2901 2901 0 250
11 2588 2581 -7 261 11 2773 2773 0 213
12 2578 2589  —11 237 12 2817 2817 0 235
13 2664 2645 19 306 13 2403 2403 0 174
14 2448 2484 36 161 14 2072 2073 1 167
15 2232 2216 32 238 15 2248 2247 -1 312
16 1968 1953  —15 250 16 2414 2415 1 279
17 1997 2011  —14 270 17 3248 3247 -1 409
18 2309 2316 -7 424 18 8580 9384 804 1
19 3696 3636  —60 421 19 18456 18456 0 5590
20 7983 11173 3190 26 20 13392 13392 0 2084
21 19335 19262 —73 8803 21 2895 3976 1081 0
22 11077 11614 537 914 22 358 540 182 0
23 1977 2606 629 1 23 145 145 0 53
24 209 335 126 0 24 31 85 54 0
25 156 154 =2 70 25 37 37 0 11
26 99 105 6 17

27 40 41 1 1

28 2 21 -1 5

29 3 27 24

30 37 37 0 22

31 26 34 8 0

32 26 26 0 15

*Source normalization and conversion factors to yield gamma’flux.

assign error limits to their results. In their expressions for error however, the diagonal
elements of the inverse matrix, R"~! or (RTwR)~! appear. If we solve the modified
matrix equation by an iterative method we do not get an inverse. However, the diagonal

D-lis operating as an inverse for the two vectors under consideration so we may assign
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an error, e;, to the element n; of the unfolded gamma-ray vector N by the following ex-
pression:

e?

[e(m )/0.67451% = variance [n(m)] —[;-——- a’]’
q

where

2= i [C.-— Zq: R..Nl i
i ij g

=1 =1

is the sum of the squared residuals, 7 is the maximum number of pulse-height channels
and m is the number of energy bins or gamma lines.

Note added in proof: Gold'[10] has shown that the necessary and sufficient condi-
tion for the convergence of this iteration scheme (for exact vector and matrix elements)
is that the response matrix, R or R “be positive-definite.
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(3-3) A STUDY OF THE ERRORS ASSOCIATED WITH SPECTRAL
ANALYSIS METHODS

Walter R. Burrus and Dixon Bogert!
Oak Ridge National Laboratory?
Oak Ridge, Tennessee

INTRODUCTION

It is a platitude that every experimentally determined quantity ought to be accom-
panied by an indication of its reliability. Most persons will grant that the computation
of errors justifies as much time and effort as the computation of answers. Hence, a
paper on errors, as opposed to a paper on answers, appears to be appropriate.

The problem of unfolding a gamma-ray spectrum can be approached by setting up a
system of equations relating the unknown spectrum to the observed pulse-height dis-
tribution. These equations might then be solved by matrix inversion or least squares.
The solution to systems of equations and the associated error analysis is well under-
stood. The trouble is that the errors come out too large if there are many unknown
components. The same comments also apply to the problem of analyzing decay curves
in terms of the half-lives and numbers of atoms of several components.

The key to resolving the error problem, in the case of spectrum unfoldiag, is to use
some of the additional physical knowledge about the spectrum which is ignored in the
ordinary inversion or least-squares problems. For example, gamma-ray spectra cannot
be negative, yet negative solutions are produced with abandon when inversion and
least-square methods blow up. The importance of incorporating the a priori knowledge
into the formulation is attested to by several other papers given here which are con-
cerned with techniques of reducing the errors in conventional equation solving methods
by the use of nonnegativity.

ERRORS IN UNFOLDING

We will introduce some problems associated with errors by means of several exam-
ples. The case we will be interested in is illustrated by Fig. 1, which shows a pulse-
height distribution obtained with a large Nal crystal. The error bars shown for a few
points are the usual errors of * one standard deviation. The appearance of this pulse-
height distribution strongly suggests that there are several discrete gamma rays pro-
ducing the peaks, but it is also clear that any fine details in the spectrum have been
considerably obscured by the lethal combination of resolution and statistics.

If we really knew that there were exactly four gamma rays, then we could carry out
a least-squares fitting analysis and obtain a fairly straightforward solution with errors.
But if there are a large number of possible gamma rays — or worse, if the gamma-ray
spectrum is continuous — then we will have trouble with large errors.

lSummer employee from Yale University.

2Ope):a.ted by Union Carbide Nuclear Company for the United States Atomic Energy
Commission,
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Fig. 1. Typical Pulse-Height Distribution.

If we are unwilling (or unable) to make any assumptions about the form of the
gamma-ray spectrum, then we should not expect to unfold the actual gamma-ray spec-
trum. Instead we can partially unfold the data by removing the effects of Compton
tails, escape peaks, etc. which complicate the direct analysis of the pulse-height
distributions. Then the result will still show only the effects of the Gaussian-type
resolution of the spectrometer. It apparently has not been sufficiently emphasized
in the past that large errors are inevitable in solving a system of equations if the
energy interval chosen is much less than the natural instrumental resolution width
and no provision is made for reintroducing a resolution or ‘‘smoothing’’ type function
in the solution.

Figure 2 shows the results of an analysis of the pulse-height distribution. A
certain amount of broadening was intentionally introduced into the analysis. The
broadening which was left in was determined in advance of the calculation. If re-
sults from a theoretical calculation of this spectrum were available, they would first
have to be broadened by folding in the prescribed broadening function before they
could be compared with this graph. In addition to the broadening, which we do not
try to completely eliminate, this figure illustrates another type of error. Namely, be-
cause of statistical fluctuations and because we must start with a finite discrete
pulse-height distribution and end up with a continuous gamma-ray spectrum, we can
only specify a confidence region for our result (shown on the figure by a shaded
area).
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If we fail to formulate the problem so that a broadened spectrum is obtained as
the result (that is, if we solve for the true spectrum directly), then we will obtain a
very large, nearly trivial confidence interval for the result. A quite reasonable rule
of thumb is that the size of the confidence region incteases rapidly when the prescribed
broadening function becomes much narrower than the inherent instrumental resolution of
the spectrometer. Thus, we need a more general formulation of the unfolding problem
which allows us to unfold some prescribed function of the spectrum (that is to say, a
broadened spectrum) instead of the true spectrum itself.

Some methods automatically leave in a certain amount of broadening (such as linear
iterative methods which are terminated before convergence), but then it becomes part of
the error analysis problem to find out how much broadening has been introduced by the
analysis method. We prefer to prescribe the broadening we expect before the computa-
tion begins and to calculate the error with the prescribed broadening in mind. Then, if
the errors are too large, we can change the prescribed broadening and try again.

Now we will illustrate another aspect of the error problem. Suppose we have reason
to suspect that the spectrum must consist of monoenergetic gamma rays. Then we might
try to fit the pulse-height distribution of Fig. 1 by, say, four discrete gamma rays. An
analysis of the pulse-height distribution using this assumption is shown in Fig. 3. Note
that four gamma rays, at positions marked y,, y,, y,, and y, seem to result in small
residuals in the upper half of the distribution, but that there are fairly large residuals
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Fig. 3. Least-Squares Fit to Pulse-Height Distribution with Four Gamma Rays.

in the lower half. Thus, we probably need an additional gamma ray somewhere near
channel 185. But it is also clear that even where the residuals are small, there might
really be three gamma rays instead of two.

We have shown two different kinds of unfolded solutions for the same pulse-height
distribution. The unfolded spectrum of Fig. 2 is much the safer of the two, since no
assumptions about the nature of the spectrum had to be made. However, the price we
paid for no assumptions was that we had to prescribe a certain amount of broadening
in order to obtain a small confidence interval.

One way to deal with this problem (or to avoid it) is to state the computed errors
with respect to the set of initial assumptions. Thus, in Fig. 2 we can state that the
computed errors depend only on the stated resolution function and not on any arbitrar-
ily assumed facts. But the calculated errors based on Fig. 3 depend on the assump-
tion that there are exactly four monoenergetic gamma rays. Both methods are useful,
and, in fact, we frequently unfold the same set of data using different sets of initial
assumptions. The calculated errors for the weakest assumption set involve the least
risk. Of course, the set of initial assumptions ouglt to be motivated by good physical
reasons. The assumption set may be empty, or the assumptions may rest on very solid
ground, but the veracity of the assumption set is not part of the numerical problem (al-
though the computation sometimes indicates that there are no solutions consistent with
the assumption set).
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USE OF A PRIORI INFORMATION

We now turn to the problem of how the assumption set may be utilized to reduce the
errors over those produced in the ordinary inversion or least-squares techniques. We do
not mean to imply that the classical mathematicians — Gauss, Markov, and Legendre —
have been disproved. We merely propose to use additional information which is usually
ignored in the classical linear regression analysis. Doubtless, had the scintillation
spectrometer existed in the days of Gauss, we would not have had to wait so long for
good unfolding methods!

A somewhat simplified and small set of equations Ax = b that we might set up for
an unfolding calculation is shown in Fig. 4. The matrix is a broadening type of matrix
so that the right-hand side b has about a two-channel resolution width. Now, since the
unknown gamma-ray spectrum x in a real problem is continuous and really requires an
infinite number of components to represent it, we have tried to approximate this condi-
tion (within the limitations of the size of a slide) by taking 13 unknowns for x and only
9 knowns for b, We have also put the extra four components (x1 N YEITY and xla) on
the edges, where we frequently run into trouble in real problems because we do not
know how to stop gracefully.

For a given right-hand side b, this set of equations has no unique solution since it
is underdetermined. Yet we will show how we can obtain an adequate solution by use
of the fact that a gamma-ray spectrum with negative photons is impossible. But first,
the conventional approach to this problem would be to eliminate the edge problems
somehow and to omit or combine enough components of x so that the number of unknowns
was equal to the number of knowns. Then we could employ ordinary matrix inversion to
obtain the solution, and, with a little extra calculation, also obtain the standard devia-
tions of the solution components.

Figure 5 shows the results of the standard matrix inversion methods applied to a
particular right-hand side. We first synthesized a possible right-hand side by computing
the distribution which would result from a spectrum x with the 6th and 8th elements

rxl T
- X
ol ohleb ob o1 ' HEN rbl‘
olied o6 o4 o1 5 % | | % b Tyl olx)
:ol ol o6 oh o1 : X5 b3 1 0. 0 0
S RV : % | |v 2 0. 1000, 32 -~
B I 19 N N
: 1ok o6 uh el ) x| | s 0, 8000, . 798,
! 10000, 7000, . .
! oL eh 6 ad oLy 5| (™ 7 o, M0 & 19
X B QAN VAN | %5l |bg g 10000, 1000, 32, 9995.
! ! 0. 0. 0. .
| b eh 1o 1] x| o] 10 o ey
12 z % 1920,
| *13) 13 0. .-
Fig. 4. A 9 by 13 System of Equations Fig. 5. Errors in Sclution of the Truncated
g
Used in the Example. A truncated 9 by 9 9 by 9 System Obtained by Matrix Inversion
system is shown within dotted lines. for a Particular Right-Hand Side 4.
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equal to 10,000. The edges of the x vector were intentionally taken as zero so that we
could 'stay out of trouble with the components we dropped from the matrix. Thus, we are
giving the matrix inversion method every possible advantage. In order to ¢alculate
plausible errors in x, we took the standard deviation of the right-hand side elements
b, to be the square root of b.. Then we inverted the matrix and computed the statisti-
cal errors in the solution. In Fig. 5, we see that the magnitude of the calculated
errors is just about as large as the ipitial values of the unknown that we used, and,
hence, using a right-hand side b with statistical errors, we should not expect the
solution to come out very close to 10,000 in the 6th and 8th component and to be
zero elsewhere.

What can we do to improve matters? Consider the first two equations in the
system of equations:

A”x1+A12x2+A13x3+...=b1 ,

and

€))]
A21x1+ A22x2+A23x3+ cee=b

If all the A ’s are nonnegative and if all the x’s are nonnegative, then we can deter-
mine a very simple upper bound to the solution. ILooking at the first row only, we see
that x| must be less than b,/A 11> Since that is the largest value it could take if all
the other x.’s are zero. Similarly, from the second row only, we can say that X, must
be less than bz/A2 i+ Since we can obtain an upper bound for x, from any row, we pick
the row which gives the smallest value. Generalizing to the x; component, we obtain

the relation:
O§xj§m§n ®,/A,) i=1,2,.... (2)
2

Namely, X is greater than zero and less than bi/Aij for whatever row ¢ gives the best
result.

Figure 6 shows the computed upper and lower bounds for our 13 by 9 system of
equations using the previous inequality relations. We see that all but three compo-
nents have been found to be exactly zero. We can then solve for the remaining three
components by inversion or least-squares methods and obtain the solution with stan-
dard errors shown in the o(x ) column. In the next column we have copied from Fig.
5 the standard errors obtained by matrix inversion. Note that the new errors are much
less than the matrix inversion errors.

X10 xwe o [x] 7 lx)
#inversion"
; g. 0, 0, -- Fig. 6. Errors in the Solution of the 9 by
B 0, o - -

3 o. 0. g. 1520, 13 System of Equations Obtained by Use of
g’ g: g' g' 74;?;3- a Priori Information Compared with Errors
6 0o 10000, 3206 99954 Obtained by Matrix Inversion of the Trun-
7 0. 13333, 260, 10799.
8 0. 10000, 320. 9995. cated 9 by 9 System.
9 0. 0. 0. 7798,
10 0. 0. 0. 4826,
1 0. 0, 0, 1920,
12 0, Oe O, - -
13 0. [+ [¢X - -

A useful point of view for understanding the implications of this result is to con-
« . A
sider that the solution vector ¥ in the above example can be expressed by means.of an
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unfolding matrix U in the form %= Ub as follows:

«, ] Jo o o0 o o 0o o o

%, o o 00 0 00 0 of
% o o0 0 0 0 0 0 0 off
x, o o 0 0 0 0 0 o ol
% ©o o 00 o0 0 0 0 off
xg 0o 10 00 0 0 0 0 ofl,
%, |=|0 =20/3 0 0 5/3 0 0 -20/3 0||b
% o o 0 0 0 0 0 10 0|5
% ©o 0 0 0 0 0 0 o o,
%,/ |0 0 0 0 0o o0 o o oflp,
x, 0 0o 0 0 0 o0 o0 o oflb,
x,] 0 0o 0 0 0o o 0 0o o0

x5,/ [0 0 0 0 00 o o 0o 0

The elements in the U matrix wete obtained by solving for the three variables Xg» Xgs
and xg in terms of b, , by, and bg. But the unfolding matrix U is not unique and we
could have used any other three elements of b for which the matrix A had independent
columns. The smallest statistical etrors for the three solution components (x 61 %75 %g)
would have resulted if the matrix U were obtained by solving the overdetermined 9 by 3
system of equations by the method of weighted least squares.

Even though the results of the usual matrix inversion or least-squates method may
be written in the form % = Ub, there is an important difference in the new method.
Suppose that b is known without any statistical errors. Then b = Ax, and the above
unfolding equation becomes % = UAx. Thus the solution % is related to the true value
% by the matrix product UA. In inversion or least squares, this product UA is the
identity matrix I which means that the solution % and the true value # agree if b is
obtained exactly. But in the new method UA is not equal to the identity. In fact, for
the example given above,

0 0 0 0 000 O 0 0 0 0
0 0 0 0 0 000 O 0 0 0 o0
0 1 4 6 4 1 00 O 0 0 0 o0

UA=|0 -2/3 —8/3 —4 =5/2 0 1 0 -5/2 —4 —8/3 =2/3 0
0 o0 0o 0 0 0 0 1 4 6 4 1 0
0 o 0 0 0 0 0 0 O 0 0 0 0

0 0 0 0 0 000 0 0 0 0 0]
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The fact that UA is not diagonal (except for the Gth, 7th, and 8th positions) was
not detrimental to the solution because we knew from a priori considerations that the
elements of x corresponding to the nondiagonal elements were exactly zero. In a real
problem where the knowledge of the a priori bounds are not as sharp, usually some un-
certainity is introduced into the solution by obtaining an unfolding matrix for which
UA # I, but we can use the a priori knowledge to evaluate the maximum uncertainty due
to this source. We call this type of error ‘‘bias etror’’ since it is not present in so-
called ‘‘unbiased methods.’”” If we just traded one kind of error for another, we would
not have gained anything. But by allowing a very small amount of bias error, we can
greatly decrease the amount of overall error. The overall improvement is a consequence
of the fact that if the solution is known to lie in the positive region of *‘solution space®’
of dimension 7, then only (1/2)" of the total space is available to the solution.

UNFOLDING METHODS

Several of the methods discussed at this symposium, such as the Trombka method
[1] and the vector analysis method [2], can be understood as methods for producing an
unfolding matrix U which does not yield UA = I. The a priori information which they
use is the nonnegativity of the gamma-ray spectrum. Others such as the Scofield-Gold
method [3] do not produce a full unfolding matrix directly and will have to be treated
in a mote general manner.

Two codes have been written at the Oak Ridge National Laboratory for unfolding
spectra which allow the incorporation of nonnegativity into the formulation of the prob-
lem. One called the SLOP code [4] uses the inequality relation in Eq. (2) to derive an
additional term added to the sum of squares in the usual least-squares method. The
other, known as the OPTIMO code | 5], deals directly with the inequalities by means of
linear programming. Both codes have provisions for solving for a broadened spectrum
and for imposing certain a priori information in addition to nonnegativity.

GENERAL ERROR ESTIMATE

Thus far, we have discussed the types of errors we encounter in unfolding and have
indicated by means of a simple example how the use of a priori information can reduce
the conventional errors. We have also indicated how the use of this additional informa-
tion may result in another type of ‘‘bias error’’ in addition to the usual statistical error,
although resulting in a much smaller overall error.

Here we will outline an error analysis which is more general than that we have dis-
cussed up to now. In particular, we will not assume that the unfolding method produces
an unfolding matrix U. Thus the error analysis is applicable to graphical and other meth-
ods for which definite rules can be formulated. First we summarize the formulae needed
concisely, and then elaborate further in the text.
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Model:

Ax=b (3)
3 has mean & (4)
/I; has variance matrix V (5)
x satisfies certain a priori constraints 6)

Wanted:
estimates /[§ 3 of the quantities
by = ? w k% (or in matrix notation p = Wx) (7N
and their errors

Estimation Method:

produces estimates ﬁk of p, for k=1,2,... (8)
Dy;= db,/9b |5 9
Errors:
A A
) = 5() _yx = B - Db] + DB — 5] + [DA - Wlx (10)

Equation (3) expresses the relation between the true solution x and the mean b of
the observed pulse-height distribution. Of course, we never know b exactly because of

statistical fluctuations. Equations (4) and (5) characterize the assumed statistical pro-
perties of the observed pulse-height distribution &. Equation (4) states that the mean of
a large number of experiments made under identical conditions will converge to the true
mean value b. Further, Eq. (5) states that the variance matrix V of b is known. Usually,
a sufficient approximation is to take the variance matrix as diagonal with elements equal
to the estimated variance of the 4,’s. N

In line with our previous discussion, we allow the solution ¥ to be an estimate of
functions of the spectrum rather than restricting it to the actual spectrum x. Thus we
must concentrate our attention (and computations) on finding estimates of the quantities
b= E ij i where the coefficients ij are the elements of a broadening matrix. (Ac-

tually the coefficients W, . can be a conversion from gamma-ray spectra to any quantity
of interest which is linearly related to the unknown spectrum — such as the dose.)
Finally, we may know some a priori information. We generally always know that the
gamma-ray spectrum is nonnegative. In addition, we sometimes know that the gamma-
ray spectrum has been smoothed by Doppler shift — as with gamma rays from moving
fission fragments.

N A conceptual way to approach the problem of obtaining errors for the estimates

P, is to think of a degenerate confidence region obtained by linear regression, which
covers the point p with a prescribed probability. However, if the matrix A is under-
determined (more unknowns than knowns), singular, or nearly singular, then certain
axes of the confidence region will be degenerate and have infinite length (or very
large length) unless the W kj coefficients are chosen to be exactly orthogonal to the

135



degenerate directions. But we know with certainty that only those values of /ﬁk are
jointly possible which are consistent with the a priori information. Thus the inter-
section of the linear regression confidence region and the a priori constraint region
for p yields the best possible composite confidence region which incorporates all
the infotmation available. '

The trouble with the above conceptual idea is that the resulting composite con-
fidence region does not have a simple mathematical description (such as an ellipse)
and cannot be found analytically. Instead one must resort to numerical methods to
find specific features of the composite confidence region of interest. Most simply,
we solve only for the univariate confidence intervals for each of the quantities p, ,
fork=1,2,....

Equations (8) and (9) characterize the unfolding method. We suppose that the
method yields an estimate of the components of p, and that the matrix of coefficients
D, . can somehow be obtained which relates the estimates to small changes in the
components of &. Usually the D matrix can be calculated as a by-product of the un-
folding calculations, but we can always compute it numerically by varying the ele-
ments of b in turn, and repeating the entire unfolding process each time.

The final formula for errors is obtained by considering an ensemble of imagined
experiments performed under identical conditions. Usually we perform only one ex-
periment and obtain a pulse-height distribution . Then we want to deduce the prop-
erties of the ensemble from this cne observation. Denoting £) as the estimate for
p obtained by employing the unfolding process on the sth member of the ensemble of
b, we can express P *) in terms of the observed b to first order in the derivatives by
the relation:

BV~ Db — b, an

Adding and subtracting the term Db to theright-hand side of Eq. (11) and rearranging,
we obtain

A
p) =5 — Db = b} - Db+ Db . (12)

The substitution of Ax for b in the last term of Eq. (12) finally yields the results
shown in Eq. (10).

Returning to Eq. (10), the second term is just the usual statistical error term.
The average of the square of the bracket in this term is the variance matrix V. But
the first and third terms are peculiar to methods which utilize a priori information.
In the conventional matrix inversion and least-square methods, both the first and last
term drop out — the first term because the method is linear, and the last term because
the method is unbiased. Indeed, in methods which do not utilize a priori information,
there is no way to ensure that the last term is not infinity without requiring the ex-
pression in brackets to be identically zero. But if some weak a priori information is
known at the start about the maximum size of the true value of x, as could be obtained
from the inequalities of Eq. (2), then we no longer need to insist that the term vanish
identically, but can concentrate our efforts on minimizing the sum of all the different
contributions to the error. By allowing some error of the *‘bias’’ type, we achieve much
smaller overall results. ‘
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CONCLUSIONS

The problems in utilizing all the information known about the problem ate far from
solved. In fact there is not even general agreement that the Eqs. (3 — 7) constitute
the core of the general problem. In addition, the present codes either do not calculate
the errors at all, or as in the case of the Oak Ridge codes, are more inefficient in time
and performance than they need be. Also certain basic problems involved when the
number of unknown components increases without limit have not been rigorously over-
come .in practice, although the answers to all these questions appear to be in sight.

We intend to continue working on such problems at Oak Ridge for the indefinite
future and would very much like to encourage others to do so. As our main problem is
shortage of manpower, and as the spirit of a particular solution is often impossible to
communicate formally, we prefer to exchange ideas by direct collaboration.
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(3-4) COMPUTER ANALYSIS OF COINCIDENT GAMMA-RAY SPECTRA
A. H. Wapstra and J. Oberski

Instituut voor Kernphysisch Onderzoek, Amsterdam

INTRODUCTION

Present-day pulse analyzers often contain a provision for counting in four groups
of 100 or 128 channels. This makes possible rapid collection of great numbers of
coincidence spectra. Working them out by hand is very laborious; use of a computer
in analyzing them is of great help.
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In our case these coincidence data fall into two groups. With purely conventional
apparatus, one can obtain angular correlations by measuring four angles simultaneously
(see Fig. 1). A gamma ray is selected by a fifth counter provided with a single-channel

Simultaneous Measurement at

Fig. 1.
Four Angles of Angular Correlation

Between Gamma Rays Selected in a

Single-Channel Analyzer and Gamma

Spectra Measured in Four Groups of o

Multichannel Pulse Analyzer. S =source,

D = detector, Ch = single channel,
'ACG = pulse-height analyzer with
analysis, coincidence, and grouping

pulse inputs.

analyzer, and the four coincidence spectra are recorded in the pulse analyzer. In prin-
ciple, one could also display the spectrum in the fifth counter in four groups each in
coincidence with pulses from single-channel analyzers selecting the same part of the
This would have

the advantage that the spectra in the four groups would be completely identical except

spectrum in the four detectors at the different angles (see Fig. 2).

for mostly small differences in the intensities of the components. Thus, in the anal-
ysis, only one set of calibration lines would be necessary. But we think that it will
be very hard to make corrections for the fact that the regions selected by the four
single-channel analyzers always contain slightly different collections of gamma-ray
intensities. And anyhow, in order to determine the composition of these collections,
we will have to analyze the spectra in each of these four counters.

The second group of coincidence results consists of those that are obtained if the
experimental arrangement is provided with four single-channel analyzers as shown in
Fig. 3. Thus, the scintillation spectrum in one detector can be displayed in four groups,
each in coincidence with another region in the spectrum in a second detector selected
by these channels.

e —
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Fig. 3. Simultaneous Measurement of

Scintiliation Spectra in One Detector in

Fig. 2. Simultaneous Measurement of
Angular Correlations; Alternative Scheme
to That in Fig. 1.

Coincidence with Several Channels in
Another One.
symbols see Fig. 1.

For explanation .of the
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The first case is, computationally, the most simple. One starts by unscrambling so
many spectra {coincidence and single) that one knows with sufficient accuracy the posi-
tions of the different components in the four spectra; thereafter, one makes a least-
squares analysis in which only the intensities of the lines are variable. It seems rather
easy to extend the program in such a way that the computer at once analyzes the angular
correlation, thus giving as its output not (only) four intensities (at each angle) for each
gamma ray but the angular correlation parameters A, and A . Of course, the experimental
setup should then be calibrated with some standard nuclide like Co®, and the results of
this calibration run should belong to the input data of the computer.

The resulting A, and A, often will not correspond to simple cascade but to mixtures,
since the single-channel analyzer may have selected a mixture of gamma rays. Thus, a
complete interpretation will require analysis of the spectrum measured in the fifth counter
and, quite probably, angular correlations measured at a few channel positions. In making
programs for this part of the problem, one encounters the difficulties to be discussed now.

The second problem, coincidence measurements with different channels, offers a few
unusual problems. In principle, one wants to determine a matrix of coincidence results
N, =N, /¢ € . Here, N, is the number of measured coincidences between two gamma
rays y; and y, and €, and €, are the efficiencies for counting these gamma rays in the
two detectors (efficiency per photopeak, or per channel, or any appropriate definition).

If we now assume that the counters are seen at such large solid angles that there
is no serious effect from angular correlations, and that the level fed N, times by y, is
fed (n; — N,) times by other a, 3 or y transitions and decays N, times to the level
which emits y, with an intensity N, and emits other radiations with an intensity
(n - N k) (see Fig. 4; if the two levels are identical, n;=n,=n ) then, Vi/z =

(N /)N /.

o

Fig. 4. Relations Between Coincident

Gamma Rays; N, Stands for all Transi. Ny
tions Leading from the Upper Level to V

the Lower One.
Ny (e~ Ny)

Thus, comparison of the experimental value with that computed from a suggested
decay scheme can help in determining its correctness. For instance, N, can at most
i A . N. =N. N = -
be equal to the smallest of N, and N ; and N, = N proves that Ny=n, andn, =n_.

METHOD OF ANALYSIS
At first sight, one would think that analysis of a coincidence spectrum should be

as straightforward as that described above: one could take the gamma line positions
from the single spectrum and then make a least-squares evaluation of the intensities in
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the coincidence spectrum. Or even better, one could simultaneously analyze a set of
at least as many coincidence spectra as there are gamma rays in the spectrum. One
could then even imagine a program, probably iterative, that would automatically correct
for the occurrence of summing in each of the two detectors, which can be a very serious
complication especially in the analysis of coincidence spectra.

A serious handicap in the above analysis is the occurrence of gamma rays not visi-
ble in the single spectrum but prominent in coincidence spectra, or of pairs of gamma
rays of nearly the same energy. They may cause new peaks in the coincidence spectra,
or shifts in the apparent positions of known peaks. The first handicap necessitates
single analysis of all coincidence spectra before a final least-squares calculation can
be made.

The occurrence of peaks at apparently different positions in different coincidence
spectra due to the second effect gave us an idea for what appears to be a novel
approach to the problem of unscrambling gamma scintillation spectra which we hope
will offer considerable advantages, especially at the often somewhat limited statis-
tics obtained in coincidence spectra. First, the approximate positions P, of the
photolines of clearly present gamma rays are obtained by visual inspection (later, we
may try also to automate this part of the procedure). Then, a set of corresponding
line shapes n (P, ) is obtained by an interpolation procedure outlined below. A
least-squares adjustment of this set of gamma lines is made in which both their in-
tensities and their positions are variable; for the last purpose, the line shapes are
assumed to be of the form

NP = ni(Pko)+j2_(ni+1 =, PP/P =1

Of course, this formula is only useful if the relative shift is sufficiently small;
if it is larger than a few percent the procedure has to be repeated with improved esti-
mates for P, .

We have tried this procedure using the X1 computer at the Mathematical Center in
Amsterdam, with a program written in Algol 1960. A spectrum containing 11 lines
needed 6 min per iteration; only two iterations were necessary. This time could be
decreased considerably by using a machine code program; also, faster computers are
available.

If positions of important lines have been missed in the first part of the program, no
proper result can be obtained. By analysis of the residuals, positions of missing lines
can be obtained for further iterations. Presently this part of the program is done by
visual inspection; we will try to automate this too.

Our line shapes are also obtained by an apparently somewhat unorthodox approach.
A set of standard lines is measured and normalized to the same photopeak height. For
each required line shape, standard spectra for the four most nearby gamma energies are
stretched in such a way that prominent features fall at apprcximately the same place as
the similar features in the spectrum to be constructed (photopeak, escape peak, Compton
edge, pair peaks, and backscattering peak). This is done by shifting channel positions
to new positions which then, almost always, do not coincide with the channel positions
on the line to be constructed. The corresponding intensities at the lost channel posi-
tions are obtained by cubic interpolation. Cubic interpolation of these four intensities
(one for each stretched standard line) then gives the required line shape.
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The above procedure was again programmed in Algol for use on the X1. On the
average, 1 min was necessary for each line shape. To show the performance of this
procedure, the procedure was applied to obtain a set of line shapes at various energies,
and then the last shapes were used in their turn as standard lines to compute line shapes
at the energies of the original standard lines. Fig. 5 compares the final results with the
original one for an average case; Fig. 6 shows in the same way the worst possible case
where one interpolated line lies completely outside the energy region of the standard
lines, so that one should properly speak of a combination of interpolation and extrapola-
tion. Even here, the results will be sufficient for several applications.
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Fig. 5. Comparison of a Standard Line with a Computed Line Shape Obtained

by a Double Interpolation Procedure.
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APPENDIX

The Interpolation Procedure

The calibration lines are divided into three energy regions. Each region is stretched
linearly in such a way that the energy positions of prominent features in the calibration
spectra coincide with those of the same features in the response curve to be constructed,
or neasly so. In doing this, we took care of three points:

1. the stretched regions should touch again,

2. the derivatives at the region limits should be continuous (this is done by choosing
these limits at places where the spectra are horizontal, or nearly so),

3. the stretching procedure should be continuous as a function of energy, or again
nearly so.

For gamma rays in the region above 1600 kev, one limit is chosen slightly below
the lower pair peak; the upper part of the spectrum is shifted without stretching so
that the pair peak and the photopeak positions coincide (and the Compton shoulder
very nearly, too) with those on the line shape to be constructed. For gamma rays be-
tween 400 kev and 1600 kev, a limit is chosen slightly below the Compton shoulder,
and the stretching procedure adjusted to get photopeak and Compton edge at the cor-
rect positions.

For all gamma rays above 400 kev, another limit is chosen just above the escape
peak, and the lower part of the spectrum stretched to make the lower edge of the es-
cape peaks coincide. The parts in between the above tegion, containing the relatively
flat part of the Compton continuum, are stretched between the limits mentioned above.

In the region 200—400 kev, one limit is used slightly above the backscattering
peak, and the upper region is stretched to get the photoline and the Compton edge at
the right place. For energies between 40 kev and 200 kev, a limit is taken slightly
below the escape peak, and the photopeak and escape peak are stretched to the right
place. :

All calibration lines with energy higher than the energy of the line to be con-
tructed are stretched by the procedures of the region in which the line to be con-
tructed is situated.” For every calibration line with lower energy the stretching pro-
cedures of the region of this line itself are used.
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(3-5) UNFOLDING PULSE-HEIGHT DISTRIBUTIONS BY VECTOR ANALYSIS'

D. L. Summers
and
D. D. Babb
The Dikewood Corporation
Alburguerque, New Mexico

{. INTRODUCTION

There are several possible approaches to the solution of the problem of unfolding
pulse-height distributions. One of these approaches has resulted in the development
of a vector-analysis method of solving the problem that is quite satisfactory.

A pulse-height distribution is considered to be an #-dimensional vector where 7 is
the number of channels in the pulse-height analyzer used. The problem is to represent
a given pulse-height distribution, referred to as the unknown vector and denoted by C,
as a unique sum of fractions, P, of other given pulse-height distributions of known
significance, referred to as the standard vectors, Si‘ The sum of the fractions of the
standard vectors is denoted by

for m standards, and is called the representation vector. The nonrepresentable part
of the pulse-height distribution is called the residue vector and is denoted by R. The
unknown vector is therefore given by Eq. (1).

| weE

cz.

z

1PiSi+R. (D

The main objectives are to find the proper P s in Eq. (1) and to keep |R| as small as
possible. To accomplish this, the standard vectors must be linearly independent so
that the solution is determinate.

The P s are determined by projecting the unknown vector onto a set of basis
vectors constructed from the set of standard vectors. Then these components are pro-
jected back onto the set of standard vectors. This second process is defined as re-
projection.

li. EXPLANATION OF THE VECTOR-ANALYSIS MODEL

For simplicity, consider the hypothetical case of a two-channel analyzer. Assume
that the observed gamma radiation is composed of two components having energies
E, and E,, and that there are also available monoenergetic sources (standards) having
each of these energies. It is desired to determine the number of counts, %y and X4
that are due to each of the energies from a knowledge of the number of counts, C, and

1This work was sponsored in part by the Advanced Research Projects Agency and Air Force
Special Weapons Center, Kirtland AFB, N.M., under Contract AF 29(601)-4569.
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C, that occur in each of the two channels of a pulse-height analyzer. A count of the
first standard at enetgy E, yields §,, and S, , counts in channels one and two, respec-
tively; the second standard at E, gives counts of §,, and.Szz. The following equa-
tions relate the quantities.

S11%, S,1%, -C (24)
=C,,
S11+512 So1t 5y,
and
S..x S..x
1271 2272 =C2. (Zb)
S117512 Sa1t 522

Fig. 1. Vector Diagram for Two-
Channel Case.

A nonconventional approach to the solution of these equations arises when it is
recognized that this problem is mathematically identical to a simple problem in vector
analysis, Consider the problem of resolving a vector C into its components along two
other vectors $, and $, when the three vectors all lie in a single plane described by
the orthogonal unit basis vectors, €, and €,, as shown in Fig. 1. The vectors are de-
fined by the following relations.

C=C, € +C,¢€,, X =%, € +x,€,
$1=511€6+5,, X,=%Xy1 €1+ %576,
S

2= 5,16 +5,5,6, -

More precisely, it is desired to determine the scalar sum of the components, x,

and X of the vectors Xy and X,
Let Ky=X 1+ X5, Xy=Xy1 + X,y
Note that x11+x21=C1, x12+x22=C2,
S,, % S, x
where xllzL, x12=—12—-1—,
S11+ 512 St 5
~ 521"‘2 B Szzxz
T T s
21 22 V21 22
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This set of equations is the same as the set previously arrived at for the physical
problem when the x;;are replaced by their formulas in term's of S, and x .

The usual way to resolve a vector C into a set of nonorthogonal vectors, §, and
$,, is to first form an orthogonal set that spans the same space as the set of vectors.
In the hypothetical case considered, the set of € vectors, corresponding to a single
count in a single channel with no counts in any other channel, was such a set, How-
ever, if there are fewer standard vectors than there are channels, the space spanned
by the standard vectors will be a unique vector subspace of the vector space spanned
by the channels. In the vector-analysis approach to the general unfolding problem, it
is first necessary to obtain a set of orthogonal vectors that just span the subspace of
the standard vectors. Consider the case of m standards and » channels wheren > m.
The required orthogonal basis can be obtained by the so-calted Gram-Schmidt ortho-
gonalization process, which consists of accepting the first standard vector as the first
basis vector, subtracting the component of the second standard vector along the first
standard vector from the second standard vector to obtain the second basis vector, and
continuing to subtract the components of the following standard vectors along all pre-
vious basis vectors from the standard vector to obtain the next basis vector. Thus,
the standard vectors must be linearly independent for such a process to yield a set of
useful basis vectors. The previously described process can be expressed mathemat-
ically as follows, where B, is the kth basis vector:

k-1

B,=$ E:____Bi'ska (3)
1 17 ET %7 B.:B. i
j=1 1T

This process is illustrated for two standard vectors, regardless of the number of chan-
nels, by using the vector diagram of Fig. 2.

Fig. 2. Construction of the Or
thegonal Basis Vector.

H

The indicated dot products are evaluated in terms of the channel basis;’that is, if

n n
S, = Z S§y;€; and B].= g Bjiei’
1:1 izl

[
then Sle . B]. = El SkiB;'i .

Having obtained an m-dimensional (m standard vectors) orthogonal basis, the
vector component of the unknown, €, projected along the basis vector, B]., is
B..C
—t ——l——— B P
7 B,.B. 7
7 7
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It is then necessary to reproject the vector V. onto the original set of standard
vectors. This.is done by computing the components of a basis vector along all
standard vectors of higher indices, since, by construction, B is orthogonal to all
S, vectors with j > &. Actually, it is more direct to solve now for the ratio of the
length of the component of C along §, to the length of §,, rather than for the compo-
nent itself. Some vector algebra produces the result that

x B .C
p oo _m = (4)
mos B -B :
m m m
for the fraction of the last standard vector. For the jth standard vector j <m one

obtains

mn

B, - C_k:;“(B]..s],)Pk
p.-

4 B..B,
i i

Note that the intermediate projection vector V, was eliminated so that the evalua-
tion of the P ’s can immediately follow the determination of the orthogonal basis.
The relationships of Eq. (4) are not easy to derive directly for the general n-

dimensional case, but can readily be verified for the two-dimensional case shown in
the vector diagram of Fig. 3. The ratio of the length of x, to the length of §, is equal
to the ratio of the length of B, to the length of V ; thus

Fig. 3. Projection and Reprojec-
tion of the Unknown.

The vector x| is the vector sum of ¥ and A. The ratio of the lengths of Ato §,
is equal to the ratio of the projection of $, onto §, times the ratio of x, to §,. There-
fore,

, Vil 1Al Bi-C [s,-S, 0k
s Is,| B,-B,

1| 1 51 ‘ 51 |52[
But Sl= B].
and le:Pz .
IS,]



B,-C~(B,-S)P
Therefore p =1 1 2

1
Bl'Bx

2

The difficulty in proving the general case is that a series of vector identities must
be used to convert the dot products of the standard vectors which appear ir the denom-
inator of the correction terms to the dot products of basis vectors.

In general, the unknown vector will have a component orthogonal to the subspace
spanned by the standard vectors. This will be the residue vector, R, evaluated from
Eq. (1). Since the representation, F, is in the subspace spanned by the standard
vectors, it is also orthogonal to the residue. Thus, R, C, and F form a right triangle.
Now if |R| << |C|, as it must be for the representation to be valid, a measure of the
error due to representing € by F is

IF| IR|Z| /2 |R|?
T TS BT R

Such a measure has been employed in a large number of runs, and it appears to be a
fairly reasonable estimate of the overall accuracy of the analysis.

Another problem is that in real physical measurements one does not have negative
quantities of radioactive material. It is therefore often desirable to attempt to remove
any negative coefficients, P . To date two reasonable methods have been employed
that are compatible with the vector-analysis approach and give acceptable results.
The first method is approximate, Those subspace basis vectors which were derived
from standard vectors that resulted in negative coefficients, P, are omitted in the
process of projection and reprojection. This procedure is continued until all standard
vectors associated with negative coefficients are eliminated from the answers. Mathe-
matically this method is not as satisfactory as the reconstruction of a new set of basis
vectors excluding those standard vectors whose associated coefficients were negative.
This is because, among other reasons, it destroys the orthogonality of the residue
vector, R, to the representation vector, F. However, the first method has the advan-
tage of computing speed since the subspace basis vectors are not recalculated each
time a standard vector or series of standard vectors associated with negative coef-
ficients is deleted. Normally, in experience so far, it has been rarely necessary to
resort to the more rigorous method of eliminating negative answers to obtain satis-
factory results.

Another difficulty that frequently presents itself is a gain shift between the un-
known vector and standard vectors or perthaps among the standard vectors themselves.
This problem is dealt with in a straightforward manner by shifting the standard vector
photopeak into the channel demanded by the relative gain employed for the unknown
vector. The basic equations involved in this process are

’ gO [¢]
N'=22N; Cyr=Cy=2,
[¢] [¢]
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where
g, is the relative gain used for the original photopeak line shape ,
g, is the relative gain desired for the new photopeak line shape ,

N’ is the channel number of the channel in which the number of counts is com-

puted ,

N is the number of the channel that corresponds to N’ in the original spectrum ,

Cy is the number of the counts in channel N, and

CNf is the number of counts in channel N”.

Linear interpolation is used to arrive at the number of counts in each channel for the
new line shape.

f1l. EQUIVALENCE TO THE LEAST-SQUARES ANALYSIS APPROACH

The vector-analysis solution of the gamma spectrum unfolding problem mathemati-
cally yields the same numerical quantities (answers) as the least-squares analysis
approach. To verify this, recall that the residue vector, R, is orthogonal to each
standard vector, $,, individually. Now if the least-squares analysis yields the same
resule for the residue then the identity of the results of the two methods will be estab-
lished since from the equation F = € —~ R, the representation must also be identical
for the two methods.

One obtains as the minimal condition for the least-squares method using Eq. (1),

J n ( M Zjl
— C, - P.S.) =0forj=1,2,...,m.
oP kgl koo ik !

The result of the differentiation is

n m
L (Ck" ZZ P.Sl.k> Sjp=0forallj.

k=1 j=1 °

Applying Eq. (1) again,
)
R,S.,, =0forallj.
k=1 k" jk !

Or, in vector language, R - S’. = 0 for all j. This is the vector analysis condition on
the residue,

Hence, the mathematical equivalence of the answers for the least-squares analysis
and the vector-analysis methods is established. Consequently, all statements regard-
ing errors or other facts of interest concerning the results of the vector-analysis
method are equally valid for the results obtained by a least-squares analysis and vice
versa. The mathematical equivalence of the results has been demonstrated on several
computer runs with the same inputs to the two different methods of analysis. The
results agree to within the computer roundoff error.
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Comparison with Other Methods

Equations (2a) and (26), which define the problem for the two-dimensional case,
become for the general case:

m
S..
1 — s
. ] Xi—ijora11]—1,2,...n.
) R
ij

i=1 j=1

This may be written in vector-matrix form as X M = C , where

Vi
ij 7

S..

& i

F=1

and M is an (m x n) matrix. Usually » > m and the solution is overdetermined. Methods
differ principally in the way in which this overdetermination is eliminated. In both the
vector-analysis and least-squares methods, this is done by concerning oneself only
with the components of the unknown along the standards. Mathematically, this is done
by multiplying each side of the equation by an (7 x m) matrix, S, with elements §_,
yielding XM= C’, where M"= MS and C"= CS. M’is an (m x m) matrix and X and C’
are both m-dimensional vectors. The fact that the vector-analysis method corresponds
to this set of equations is one of the consequences of the fact that it yields the same
answer as the least-squares method. Other matrix methods combine the » equations
into m equations by other arbitrary prodecutes suited to the nature of the problem being
solved, such as adding several equations with adjacent values of the index j. In any
case the resulting set has the form X = CM’~!, and the problem is reduced to the
problem of finding the inverse of a matrix, M". Actually, for the least-squares and
vector methods, it is more convenient to consider the

as the variables; the matrix elements are then

n
M} = kz=1 SinSip=3%:"%;

in the equation P = CM*~ 1, Once the inverse of the matrix or its equivalent is deter-
mined, the problem is essentially solved, for then only one matrix multiplication re-
mains to arrive at the desired coefficients, P,

The matrix formed by the least-squares analysis consists of elements that are
referred to from the vector-analysis viewpoint as dot (scalar) products. Because of
the symmetry in the least-squares matrix, only m(m + 1)/2 dot products must be eval-

uated to obtain the entries in the matrix.
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At this point, one is in position to examine the relative merits of the vector-
analysis and the matrix-inversion methods. Each is a solution of approximately the
same set of equations, as explained previously. Although the solution is arrived at
by different mathematical steps, the results, especially of the least-squares analysis
and the vector analysis, are essentially the same. For the purposes of the following
discussion, m is still the number of standatds and » the number of channels in the
analyzer, and also n > m,

The process of finding the inverse of a matrix, M, consists of setting up the equa-
tion MI = M where I is the identity matrix, and then operating on the right side of the
equation from the right in such a manner as to reduce it to the identity matrix. The
same operations are applied to modify the identity matrix, thus producing an equation
of the form MM ™1 = 1. This system then requires 2m“ storage locations where m is
the order of the matrix. In the vector-analysis method it is usually required to store
both the standards and the basis vectors, requiring 2mn storage locations. Depending
on the order in which the calculations are executed and whether negatives are elimina-
ted rigorously, the amount of storage used for either method varies considerably. But,
generally, it is easier to conserve memory capacity using the matrix method than it is
using the vector-analysis method.

The bulk of the elementary operations in the inversion process consists of divid-
ing a row of the matrix by a number, multiplying by another number, and subtracting
another row to produce a zero in one of the off-diagonal elements on the right side of
the equation. This must be done m(m — 1) times so that there are mz(m -~ 1) divisions
and a like number of subtractions and multiplications. In the vector-analysis method
the part of the calculation analogous to the determination of the inverse matrix is the
determination of the basis vectors. This requires the calculation of m(m — 1)/2 dot
products necessary for Eq. (3), and involves nm(m ~ 1)/2 multiplications and additions.
The actual evaluation of Eq. (3) requires m{m ~ 1)/2 divisions and nm(m - 1)/2 multi-
plications and subtractions. Thus, the number of divisions is less than that required
for matrix inversion by a factor of 2m, but the ratio of the number of multiplications
and subtractions or additions is 2(m/n). If a least-squares analysis is to obtain the
matrix M, then an additional m(m + 1) dot products must be evaluated. This means
nm(m + 1)/2 additional multiplications and additions are performed. Hence, in this
case, the total number of multiplications and subtractions or additions is m/2 (2m? -
2m + nm + n). Thus, if m >> 1, this implies that the ratio of the total number of mul-
tiplications and subtractions or additions for the vector analysis is approximately
equal to 7n/2m + n at this stage in the discussion. Since usually # > 2m, this implies
that the two approaches have about the same number of multiplications and subtrac-
tions or additions in their respective compilations, but that the vector-analysis method
requires a factor of 2m fewer divisions. The exact comparison with other matrix-
inversion approaches is more difficult to specify since the exact formulation of the
elements in the matrix can be arrived at in a large variety of ways.

The evaluation of the desired coefficients, P, in the matrix method possessing
the inverse matrix, is simply a multiplication of a vector by the inverse matrix involv-
ing m? multiplications and additions. For both the vector-analysis and least-squares
approach there are m additional dot products to be executed before the evaluation of
the desired coefficients, P, can commence. The evaluation of m dot products requires
nm multiplications and additions indicating that the matrix-inversion methods and the
vector-analysis method require about the same number of operations to accomplish
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this step in the solution. The vector-analysis method requires m(m — 1)/2 multiplica-
tions and subtractions as is seen by Eq. (4). Thus, once again assuming m >> 1, one
arrives at the conclusion that the vector-analysis method is about twice as fast in
this portion of the solution. However, since the evaluation of the required m dot
products generally takes much longer (usually n>>m), the overall computational times
of the matrix-inversion methods and vector-analysis method are almost the same.

Another popular method for unfolding a pulse-height distribution is generally re-
ferred to as a stripping method. Because of the variety of the so-called stripping
codes in use today and because of their inherent differences from the vector-analysis
method, a computational time analysis as is given above for the matrix-inversion
methods will not be given here. However, a crude comparison between the results of
the vector-analysis method and a simple hand-stripping procedure is given in Fig. 4.
Note that the hand-stripping process employed only eight different standards and the
vector-analysis method employed 30 differefit standards over the same region. Thus,
the results are not strictly comparable in fineness of detail, but are of interest in the
light of the general overall comparison of fit. The spectrum shown is the scattered
signal from 4.43-Mev gamma rays incident on a 4-cm radius, 2-cm wall aluminum shell
observed at a scattering angle of 30°.

1V, EXPERIMENTAL RESULTS

Results of several runs employing 30 monoenergetic sources covering the entire
energy range of the analyzer set up for particular continuous spectra scattering exper-
iments yielded the energy-vs-energy curves given by Figs. 5—7. These curves are in
good agreement with the expected results of the physical experiments which were per-
formed. Furthermore, these curves appear to be as good as or better than the results
obtainable by other methods. These represent the results of the same experimental
arrangement as the previous figure except that the scattering angle is varied.
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(4-1) A LEAST-SQUARES COMPUTER PROGRAM FOR THE ANALYSIS
OF GAMMA-RAY SCINTILLATION SPECTRA

A. J. Ferguson
Atomic Energy of Canada, Lid.,
Chalk River, Canada

The computer program for unfolding gamma-ray scintillation spectra which will
be described has been in use at Chalk River for several years. It uses the method
of least squares and is designed to handle numbers of components up to 15 and num-
bers of channels up to 100. Similar programs have been written by Heath, Salmon,
Trombka, and others. The present program is described briefly in Chalk River re-
port CRP-1055. It is able to find the intensities of components of specified energy,
or both the energy and intensity using the specified energy as a first approximation.
A novel feature is that the weights used in the fitting, instead of being the recipro-
cals of the recorded counts in the channels, as is conventional, are instead the re-
ciprocals of the computed contributions in the channels. This was adopted when it
was found that the conventional weighting produced a low bias to the fits, especially
when the spectra contained small numbers of counts. It is compatible with the Poisson
distribution if the computed count can be identified with the mean count in a channel.
The line shapes of the component gamma rays are computed by polynomial approxima-
tions derived from sources of pure lines which are assumed to be available.

The program consists of two parts. The first is a preliminary one which computes
the polynomial constants required to represent the spectra. A number, not exceeding
six, of spectra of pure gamma rays must be available, which have been measured in
the same experimental setup and whose energies cover the region of interest. These
spectra are smoothed, integrated from the top down, normalized, and then transformed
to the polynomial representation. The smoothing is necessary to obtain good approxi-
mations from the statistically fluctuating measured spectra. A method described by
Whittaker and Robinson [I] is used here which essentially replaces each channel
count by a special average of the seven channels which extend three channels to
either side. The integration takes care of the analyzer resolution. The contribu-
tion in any channel is found by subtracting the value of the integral at the bottom
of the channel from the value of the top, and it is readily seen that this accounts
correctly for the finite channel widths. The normalization is necessary because
we are going to represent the variation with gamma ray energy by a polynomial, so
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that the spectra must vary smoothly from energy to energy. Smoothness is the essen-
tial requirement here, and can be achieved in a number of ways, for example, by mak-
ing the integrals at the position of the second escape peak uniform, or by making all
photopeak heights equal, etc.

The spectra are then subdivided into four portions, each of which is represented
by a 9th degree polynomial. The technique of getting polynomial representations is
described by Lanczos [2]. The spectral intensity, S(x), is assumed represented by
a Chebychev polynomial series

S(x)=1/2a0+a1T1(x)+...+1/2anTn(x), (1)

where T, (x) is a Chebychev polynomial.
The coefficients 4, are given by

2n
a, =—2 S(xr) cos (tkn/n) , )
‘'n 0

where x, = cos (rw/n), and x is a linear function of the channel energy which ranges be-
tween —1 and +1 in each portion. It is convenient and practical to determine the a;

by matrix methods. Thus after the integrating, a 10 x 4 matrix consisting of the 5(x )
for the 4 regions is found using an interpolation subroutine. The 2/n cos (rkw/n) terms
are stored as a permanent matrix and the 10 x 4 matrix of an @, is obtained by a matrix
multiplication. To ensure continuity between regions, each one terminates at the points
where the fit is exact, that is, x = £1. A further matrix transformation converts the
Chebychev series into one in powers of x.

This leads to 40 constants to represent each spectrum. Each such constant is next
represented by a polynomial approximation in the gamma-ray energy. Actually not the
gamma-ray energy, E,y, but a derived quantity, &, is used which varies between —1 and
+1 as E,y ranges from 0 to oo; & is defined by

E=1-20E /E)+ 111, (3)

E, is a somewhat arbitrary energy chosen near the center of the range of interest. In-
troduction of & avoids the rapid fluctuations characteristic of polynomial approximation
near the ends of the range. Capacity for Sth degree polynomials in  have been allowed
for, although a lower degree will be used if fewer than 6 standard lines are available.

Figure 1 shows a computed line shape for a 4.24-Mev gamma ray in which the divi-
sions of the spectrum are illustrated. The gamma ray is identified by E,y which we
always assume to correspond to the top of the photopeak. A linear relation between
channel energy and channel number is also assumed. The four divisions are defined
by Emax, El’ EZ’ E3, and Emin which is below the bottom of the graph here.

Although primarily intended to cover the regions of the photopeak, 1st and 2nd es-
cape peaks, and Compton tail as shown, the boundary regions are somewhat arbitrary
and can be altered to deal with spectra with lower energies.

A flow chart showing the overall operation of the program for generating poly-
nomial constants is shown in Fig. 2. After the start, a pilot card is read which
specifies the number, N, of standard spectra to be used, E, and other parameters.
Then a spectrum together with constants which define its energy scale is read.

The spectrum is smoothed, integrated, normalized, and its polynomial representa-
tion found as described before. After N spectra have been treated in this way, the &

trepresentation is found for the constants and also for E_ __and E_; . This gives 252
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parameters which are punched out in a form suitable for the main fitting program.
This phase of the calculation is quite rapid, typically about 15 min on our Bus-
roughs 205 computer. We have found it a good policy to check new polynomial
constants by calculating a number of line shapes with a small program written
for this purpose.

Figure 3 shows again the 4.24-Mev spectrum as a solid line and its derivative,
which is necessary to adjust the energy of the component, as a dashed line. Some
irregularities can be seen in the dotted line which are due to imperfections in the
polynomial representation that are accentuated in the derivative.

] Fig. 3. The Spectrum of a 4.24-Mev
] Gamma Ray (Solid Line) Compared with
Its Derivative (Dashed Line).
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An unacceptable computed line shape for a 2.30-Mev gamma ray is illustrated
in Fig. 4. The ‘‘wiggles’’ which appear hete are due to lack of smoothness of the
measured line shape and to an E_  which is much too high. It is always important
to assign E_ __ to a point not far above the steep front of the curve. A flat section
cannot be well represented by a polynomial.

Gamma rays which have been used as standard line shapes are: 2.31 Mev coin-
cident with the first excited state proton group from C12(He3,p, y)N 14, 4.43 Mev
coincident with 12.14 Mev from Bll(p y)C 12, ; 12.14 Mev with a small adrmxture of
4.43 Mev from B! 1(p,)/)C in coincidence w1th 4.43 Mev; 6.14 Mev from Flg(p,ov,y)O16
at the 0.34-Mev resonance. A catalog of suitable lines has been given by Nordhagen
E]

Figure 5 is a general flow diagram for the main least-squares fitting program. The
fact that energies can be adjusted and also the method of weighting described earlier
require an iterative procedure. A pilot card is first read which instructs the program
how to proceed. A code number zero or a blank card indicates the end of the problem,
and the computer stops. Code number 1 indicates that the polynomial constants to-
gether with the spectrum must be read. Code number 2 indicates that the spectrum and
its parameters only are to be read, the polynomial constants needed being left from the
previous case. A preliminary fit using unit weight is first made and then the iterative
program is entered. Iterations continue until the sum of the squares of the fractional
corrections is less than some initially specified number, generally 1076, Convergence
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is always very rapid if intensities only are being adjusted. When the energies are also
being fitted more iterations are required, and some cases have not converged at all.
These were ones in which an attempt was made to find several gamma energies from a
single unresolved peak. The results are then punched out and a new case is read in.

o} ]
EMlN E3 E2 EMAX
SE | | ’
| |
| : | |
| ! z
| i i
i | | A I
| I | A
[¢} *- -
L / VY x ‘
1¢] 20 30 40 50 60 70 80

CHANNEL NUMBER

Fig. 4. An Unacceptable Computed Line Shape for a 2.30-Mev
Gamma Ray in an Uncollimated 5- by 4-in. Nal(TI) Crystal. The
“wiggles’® which occur result from irregularities in the measured

spectrum and from a choice of Em which is too high.
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MAKE LS FIT
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Fig. 5. Flow Diagram for the Least-
Squares Fitting Program, "“'—“—'ﬂ

ITERATE LS FIT

NO YES
7
-
PUNCH
RESULTS

161



The output consists of the final values of the variables, their internal and external
errors, the Xz for the fit, the spectrum with the fitted values, and finally the "‘reference
integrals.” These last are the integrals of the pure line shapes used in the fit from
energies specified in the input for each component to the top of the spectrum. These
can be used as parameters to normalize the intensities found.

The program makes use of a general nonlinear least-squares subroutine which is
part of our library. The principal operating time is in computing the contribution of
each component in each channel. This requxres / sec and must be repeated a mini-
mum of four times for a fit. An additional / sec is required per component per channel
for the derivatives when the components are being fitted in energy.

A typical time is 1/2 hr to fit 5 components in intensity only to 80 channels. No
spectrum may be used below E . , and a programmed stop occurs if such a point is
required. A maximum weight must be specified with each spectrum which is used
wherever the computed weight exceeds it.

A point worth remarking is that with the method of weighting used here, the inte-
grated areas under the fitted curve and the measured spectrum are equal, which seems
a natural requirement. This will not be true for other methods of weighting.

Figure 6 shows a spectrum from the L17(a }/)B11 reaction at the 0.96-Mev resonance.
The solid line is the computed fit using the components indicated by the arrows. Four
of the line shapes used in the fit on the previous slide are shown in Fig. 7. Some ir-
regularities are evident at the low end of the 2.52-Mev component, but these are below
the region of the fit.

A least-squares fit using the reciprocal of the channel counts as weights is shown
in Fig. 8. These are gamma rays in coincidence with the proton group to the 4th ex-
cited state of B! which had to be resolved with a magnetic spectrometer, so that a
very small yield was obtained. The low bias of the fit is obvious which is clearly
due to the fact that low counts have much bigger weights than large ones.

10000}
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6000} 928

4000

2000}

COUNTS PER CHANNEL

80 90 100
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Fig. 6. A Fit to the Gamma-Ray Spectrum from the Reaction
Li7(0»,y)'3” at an Alpha-Particle Energy of 0.96 Mev. The measured
spectrum is indicated by dots and the computed fit by the solid line.
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Fig. 8. Least-Squares Fit to a Gamma-Ray Spectrum with a Small
Number of Counts, llustrating the Low Bias of the Fit Obtained by
Using the Reciprocals of the Channel Counts as Weights,

In Fig. 9 is shown a fit made by G. A. Bartholomew to a spectrum from slow
neutron capture in Nd'%3. This illustrates a difficulty which may sometimes arise,
namely that the computed lines are sharper than those of the measured spectrum.
The measured peaks have been spread out here by drifts of photomultiplier gain in
the course of the experiment., Figure 10 shows a fit to a spectrum from this same
reaction which does not suffer from this difficulty. The individual components are
also shown here in their computed intensities.

The program has been used by a number of experimenters at Chalk River, gen-
erally with satisfactory results. Experience has suggested some minor improve-
ments. The use of more divisions of the spectra, represented by polynomials of
lower degree would probably lead to fewer troubles with wiggles. A better method
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of smoothing would probably be useful and a suggestion of Lanczos [2] for using

Fourier series in this regard merits consideration. The program could be substan-
tially speeded in the usual problems where only intensities are required by storing
the component line shapes, possibly on magnetic tape, and avoid the repetition of
this time consuming part of the calculation.
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Fig. 9. Comparison Between the Computed
Spectrum (Solid Line), and a Measured Spec-
trum (Dashed Line) Which was Broadened
by Instrumental Drift.
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Fig. 10. Fits to Gamma-Ray Spectra from Neutron Capture in Nd 143
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(4:2) COMPUTER ANALYSIS OF GAMMA-RAY SPECTRA FROM MIXTURES OF
KNOWN NUCLIDES BY THE METHOD OF LEAST SQUARES

L. Salmon
Health Physics and Medical Division,
Atomic Erergy Research Establishment, Harwell

INTRODUCTION

Considerable interest is currently being shown in least-squares analysis of
gamma-ray spectra [I—6] as an alternative to the more usual technique of *‘strip-
ping,’”’ that is, successive subtraction of individual components of the spectrum
after normalizing each peak with an appropriate standard spectrum.

The purpose of this paper is to discuss the validity of the least-squares method
of analysis and to present some results indicating the accuracy and the sources of
error that arise.

It will be seen that many of the examples chosen involve the measurements of
radioactive debris from nuclear explosions, since this is the particular field for
which the method was introduced into this laboratory.

THE LEAST-SQUARES METHOD

The least-squares method is an extension of the most general case of analysis
of spectra usually referred to as the *'incremental method.””

The pulse<height analyzer is considered to have n channels numbered
l1...i...n and the midpoint of each channel represents a gamma-energy E,.
The response function of the system for each value of E; can be found, at least in
principle, experimentally; this results in an n x » matrix A. An experimental spec-
trum, a vector y, resulting from a mixture of up to » gamma rays each corresponding
to the energies E, results in a set of linear simultaneous equations

A % _ y
(nxn) ax1) (ax1)

where the vector x represents the unknown intensity of each gamma ray in the
mixture considered. The solution of these equations by inverting the matrix A, x =
A-ly, yields the desired information.

This method, described by Childers [7] and elaborated by Chester and Burrus
[8], is intended for analysis of mixtures of unknown composition. Its practical dis-
advantages lie in obtaining satisfactory values of the large matrix A, and the neces-
sity of applying smoothing corrections to nullify the effect of small inaccuracies and
statistical counting fluctuations in an ill-conditioned matrix.

In the more restricted case considered here, it is assumed that the spectrum to
be analyzed is from a mixture of known nuclides of number m and that standard
spectra of these nuclides are available,

165



The spectra of these standards form the matrix A with dimensions 7» x m. Thus
the equations

A x y
(nxm) (mx1) (nx1)

have (» — m) redundancies or degrees of freedom.

Tt would be simple to sum the counts over appropriate areas of the spectrum thus
reducing » to m. Such a method, however, deliberately reduces the information avail-
able by effectively using an analyzer of m channels.

Alternatively if it is assumed that the only errors encountered are statistical
fluctuations in y, then the principle of least squares may be applied. By minimizing
the sum of the squares of errors iny it can be shown from the simple theory of multi-
linear regression that the resulting normal equations derived are o}

AT A x = AT Y
mxn) (nxm) (mx1) (m x n) (nxl).

The application of the principle of least squares requires that the variance of
each observation shall be the same. Since the variance of each element iny is not
constant, a diagonal weighting matrix W must be introduced. Here each diagonal
element is the inverse of the estimated variance of the channel count it represents.
This variance is not represented exactly by the magnitude of the count but must al-
low for the background count also.

The resulting equations are represented by

AT W A x = AT W y

(mxn) (nxn) (nxm) (mx 1) (mxn) (Bxn) (nx 1)

simplified as Sx = z. The solution of these equations x = $™1z yields the quantity
of each nuclide.

It can further be shown [9] that the variance/covariance matrix for the vector x
is $=1! provided the errors observed are attributable only to statistical counting
fluctuations. Thus the uncertainties in the determination of x are known.

The advantages of this system of analysis may now be summarized:

1. The method is free from subjective errors.

2. It is amenable to computer calculation.

3. It should be particularly suited to spectra whose statistical variations in count-
ing are large.

4, All data in a spectrum can be used and not restricted to that in the region of the
photopeaks.

5. It should be possible to analyze spectra whete peaks are superimposed.

6. Estimates may be made of the variance, and the uncertainty of the variance,
associated with each result.

COMPUTATION AND EXPERIMENTAL METHOD

In the present work calculations have been performed using a FORTRAN program
written for an IBM 7090 computer.
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The program makes the necessary corrections (octal-decimal conversion, back-
ground subtraction, etc.) to the spectrometer data obtained from sources of mixed
gamma emitting nuclides. Corrected data are fitted by least squares to standard
spectra of nuclides comprising the mixture to be analyzed. Facilities are also
available in the program for a simple stripping procedure to be used if desired, and
correction may be made for decay. Additions to the program to overcome certain
difficulties encountered are mentioned later in this paper.

Some results mentioned have been obtained from a simpler program written in
AUTOCODE for a Ferranti “'Mercury’’ computer, where unit weighting was used.

The spectrometer used consisted of a 3« by 3-in. sodium iodide detector coupled
to a photomultiplier and shielded by a lead *‘castle’’ 4 in. thick. The output of a
stabilized amplifier system was fed to a 100~c¥1annel analyzer. The contents of the
analyzer store (in octal representation) were copied automatically onto punched
cards suitable for input to the computer.

The incorporation of a live-time integrating unit precluded the need for
paralysis correction.

VALIDITY OF THE LEAST-SQUARES METHOD APPLIED
TO SPECTRAL ANALYSIS

If it is accepted that analysis of spectra is best carried out by some form of
curve fitting procedure, then it follows that the best results (not necessarily ideal)
are likely by application of the principle of least squares. To quote Birge’s clas-
sical article on the subject [10]:

““Except in especially favourable cases, least squares’ results and their com-
puted probable errors are not as reliable as indicated by theory ... , but alternative
methods are, without exception, inferior,”’

Data to be subjected to least-squares fitting should satisfy the requirement
that errors of observations follow the Gaussian error curve if statements regarding
the accuracy of the results are to be made. Thus the observations should have a
common variance, and their errors should have a zero mean. Since the observations
result from radioactive decay, this criterion is satisfied except that the variance of
each observation will not be constant but be approximately equal to the magnitude
of the observation. As already pointed out, this results in the necessity of suit-
able weighting. It also follows that the spectra of the standards to be used in the
fitting procedure must be exact in the sense that (a) the standards truly represent
the constituents of the mixture to be analyzed, (b) the spectra have been obtained
under conditions identical with the sample (the same counting geometry, gain, bias
threshold, etc.),and(c) that the statistical counting fluctuations of the standards
are negligible in comparison with the sample,

The validity of the fit is tested by comparing the differences between the ob-
served and fitted spectrum with the expected uncertainties predicted from statisti-
cal considerations.

For a mixture of m nuclides the array of observations is y,(i = 1, #) and the
fitted spectrum is y; then

2

X 7
= ¥ ; =~y /lvar o)1,
i=1

(n — m degrees of freedom) B
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The term m — 7 is large; hence

R = = 1 .
7 —-m

The ratio R of observed to predicted errors should always be calculated to
check that the fit is valid. If R is significantly greater than unity, then the stand-
ards either (@) do not represent all the nuclides present in the sample; (b) have not
been counted for a sufficient period to make statistical uncertainties insignificant;
(c) do not correspond with the sample in terms of physical shape, counting geome-
try, etc.; or (d) have not been measured at the same gain or bias threshold values
as the sample.

In ideal circumstances R will approximate to unity but in most practical cases
it will be somewhat larger. If this increase can be ascribed to random (i.e.,
Gaussian) errors such as (b) above or small changes in gain,then the leasf-squares
fit can still be regarded as valid though the variance/covariance matrix should then
be multiplied by the scalar quantity R,

Experiments have been performed to observe the validity of least-squares
fitting in practical cases, The accuracy has been measured; the ability of the sys-
tem to resolve spectra from nuclides of similar gamma-ray energy has been tested;
and the errors resulting from gain drift and from the presence of unpredicted nuclides
have also been examined.

Accuracy

A series of synthetic mixtures were analyzed by least squares to observe the
accuracy obtained by such a method. The nuclides used are listed in Table 1 and
the results in Table 2. The spectrum of a six component mixture is shown in Fig.
1. Depending on the complexity of the mixture, it will be seen that accuracies of

Table 1, Sources Used in Experiments

Gamma Energies Total Gamma Counting Rate
Nuclide (Mev) (counts /min)
cs137 0.66 2640.9
Sc46 0.89 1.12 8506.9
Mn>% 0.84 1183.7
Zr-Nb?3 0.72 0.76 4568.4
Co®? 1.17 1.33 6100.4
Ru-Rh106 0.51 0.62 1330.4
Background 380.0
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Fig. 1. Analysis of Gamma-Ray Spectrum of 6 Nuclides.

0.5-2% are general, and correspond reasonably with the calculated standard devia-
tions, A greater degree of accuracy is obtainable with more active samples than
those illustrated, as was demonstrated by Heath [5] and Hallett [9].

The results obtained in the tables are not very greatly superior to graphical
fitting and subtraction but are independent of subjective errors; calculated stand-
ard deviations are obtained and measurements are performed on nuclides whose
photopeaks superimpose on others. Results from the analysis of a synthetic mix-
ture showing very poor counting statistics are given in Table 3 and illustrated in
Fig. 2.

Sensitivity

To test the sensitivity of the method for a typical case, known quantities of
Cs!37 were added to a mixture of Zr?3-Nb?3 and Rul?? (see Fig. 3). The percent-
age of Cs!37 added plotted against the amount found by least-squares analysis is
shown in Fig. 4.. Although the total number of counts measured in each case did
not exceed 2 x 104, the results are adequate for Cs!37 concentrations of less than
1% of the total activity,

Two measurements made on samples containing no cesium gave results of

Cs!37 = 0.18% (o = 0.36) and ~0.30% (o= 0.48).
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Table 2, Analysis of 2, 3, 4, and 6 Component Mixtures by Least-Squares Fit and by Successive Subtraction?

0L

Least-Squares Fit Successive Subtraction
True -
. Counting Calc'd Calc.d Sed Calc'd Calc.d
Nuclide Rate Counting Counting i) Erros Counting Counting Error
Rate Rate ev Rate Rate
0] _ ) o) )
(counts /min) (%) ° (counts/min) (%)

csl137 23,67 2697.4 24.21 0.26 0.54 2746.5 24,53 0.86
2694.2 24,01 0.33 0.34
2705.6 24.23 0.26 0.56

Sc46 76.31 8443.9 75.79 0.83 0.52 8447.3 75.47 0.84
8526.5 75.99 0.48 0.32
8461.0 75.77 0.38 0.54

cst37 21.42 2665.4 21.20 0.26 0.22 2720.1 21.68 0.26
\ 2682.0 21.38 0.26 0,04
2705.1 21.67 0.31 0.25

Sc46 68.98 8620.8 68.56 0.52 0.42 8464.4 67.47 1.51
8639.7 68.85 0.52 0.13
8584.3 68.76 0.62 0.22

Mn 4 9.60 1288.6 10.24 0.40 0.64 1361.3 10,85 1.25
1226.3 9,77 0.40 0.17
1194.5 9,57 0.45 0.03

cst37 15.63 2880,4 16.69 0.38 1.06 2651.4 16.19 0.58
2793.8 16.30 0.40 0.67
2793.2 16.16 0.39 0.53

sc46 50.34 8923.7 51.71 0.75 1.37 8549.4 52.21 1.87
8816.6 51.44 0.80 1.10

8976.4 51.95 0.77 1.61



1.1

7.00 809.6 4,69 0.40 2.31 898.4 5.49 1.51
859.0 5,01 0.43 1.99
808.6 4.68 0.41 2.32

Zr-Nb"> 27.03 4643.7 26.91 0.47 0.12 4276.0 26.11 0.92
4671.6 27.25 0.50 0.22
4701.7 27.21 0.48 0.18

cs137 10.86 2898.9 11.51 0.37 0.65 2891.7 11.46 0.60
2974.7 11.82 0.41 0.96
2995.0 12.15 1.13 1.29

sci6 34,96 9173.8 36.43 0.85 1.47 8906.7 35.29 0.33
9344,2 37.13 0.94 2.17
8700.0 35.28 2.38 0.32

Mn>4 4.87 850,7 3.38 0.38 1.49 710.2 2.81 2.06
883.0 3.51 0.40 1.36
1485.1 6.02 1.82 1.15

Zs-Nb?3 18.77 4825.1 19.16 0.49 0.39 4568.4 19.82 0.05
4779.9 18.99 0.56 0.22
4489.9 18.21 1.24 0.44

Co%0 25.07 6102.2 24,23 0.86 0.84 6100.4 24,66 0.41
5891.0 23.41 0.84 0.66
5443,5 22.07 2.38 3,00

Ru106 5.47 1330.8 5.23 0.50 0.19 1330.4 5,96 0.49
1291.3 5.13 0.50 0.34
1547.0 6.27 1.63 0.80

“Background = 380 counts/min; counting time = 10 min.



Ll

Table 3. Analysis of 3 Component Mixture with Large Statistical Variations by Least-Squares. Fit and by Successive Subtraction®

Least-Squares Fit

Successive Subtraction

True
Counting c . Caled Caled Caled Calcd

] ounting A ) Sed A A

Nuclide Rate Rate Counting Counting De Error Counting Counting Error
(counts/min) %) Rate Rate v %) Rate Rate %)

(counts/min) (%) (%) (counts/min) (%)
cs137 112.3 6.97 107.2 6.73 2.16 0.24 183.5 12.63 5.66
121.4 7.50 2.44 0.53 172.4 11.11 4.13
127.0 7.72 2.23 0.75 224.6 12,42 5.45
131.5 8.10 2.10 1.13 222.5 12.59 5.62
Rul06 509.2 31.61 494.6 31,07 2.75 0.54 269.9 18.59 13.02
507.3 31.36 3,07 0.25 371.7 23.93 8.68
541,7 32.92 2.81 1.31 575.4 31.80 0.19
491.9 30.30 2.66 1.31 458.2 25.90 5.71
Zt-Nb”> 989.2 61.42 990.4 62.20 2.58 0.78 999.0 68.78 7.36
989.0 61.14 2.88 0.28 1009.0 64.96 3.54
976.5 59.36 2,64 1.06 1009.0 55.78 5.64
1000.0 61.60 2.46 0.18 1088.1 61.51 0.09

“Background = 1831.6 counts/min; time of count = 10 min.
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Fig. 2. Analysis of a Three-Component Gamma-Ray Spectrum with Large Statistical

Variations.

Resolving Power

Although the resolving power of a sodium iodide spectrometer is frequently
quoted in terms of the width of a particular photopeak (usually the 0.662-Mev peak
from Cs!37), it is always possible in principle to separate two superimposed phote-
peaks, even in very close proximity, provided ideal counting conditions are main-
tained and a sufficiently large number of counts are taken. For example, the nu-
clides Ru'%3 and Rul%® emit photons of energies 0.50 and 0.61 Mev and 0.51 and
0.62 Mev respectively [Fig. 5(c)].

When analyzed by least squares, a spectrum of a mixture gave for unit values
of these nuclides 1.03 (o = 0.06) and 0.98 (o = 0.03) respectively, using a total
count of only 2 x 104,

Since in this case the major difference in the two spectra lies in the relative
abundance of the 0.61 and 0.62 lines, the analysis was repeated using the spectra
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Fig. 5. Gamma-Ray Spectra of Some Two-Component Mixtures,

restricted to the 0.50/0.51-Mev peak. The values then obtained for unit quantities
of Ru'%3 and Ru!%® were 0.96 (¢ = 0.11) and 1.03 (o = 0.06).

These results are generally superior to those normally expected py subjective
examination of a spectrum,

Effect of Gain Drifs

It is very difficult to predict mathematically the effect of poor stabilization of
the counting system on the least-squares analysis. Consequently a number of con-
trolled experiments were performed to observe empirically the magnitude of this ef-
fect upon different mixtures of nuclides.
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Individual standard sources were measured and synthetic mixtures prepared
from these, each constituent being of unit activity. The mixtures were measured
under the same physical conditions as the standards but with changing bias thresh-
old values.

This system was used to simulate changes of gain since in this way a fine
control was possible. For a 100-channel analyzer the addition of one channel bias
is approximately equivalent to a change in gain of 100/2 percent for channel 2.

From the spectrum of Co%® and Cs'37 shown in Fig. 5(a), little change would
be expected in the results for appreciable gain changes. In fact, Fig. 6(a) shows
that the results are reasonable up to about one channel bias change. Where the
gamma energies are similar, as in a mixture of Cs!37 and Zr%5-Nb?3 [Fig. 5(b)]
the system is far less tolerant of gain changes [Fig. 6(b)], while in the case of the
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two ruthenium nuclides [Figs. 5(c) and 6(c)] it is evident that a very high degree of
stability is needed,

In this latter case two sets of results are given in Fig. 6(c), one for fits over
the whole spectrum shown and the second restricting the fit to the major photo-~
peaks. As would be expected, the latter case is the least tolerant of gain change.

Finally a mixture of four nuclides is shown in Fig, 7 with the effect of gain
change in Fig. 8. It will be seen that the nuclide least affected by gain change
(Cs!37) is that which is present in greatest quantity.

From all these results it is evident that small changes in gain are self-
compensating to some extent in favorable cases, but overall, a very high degree of
stability is necessary to obtain wholly reliable results.

In practice one finds that good stability is difficult to attain over long periods
of a day or more. Stabilizing of power supplies and thermostating of the detector
system do not completely solve this problem. Probably the best technique is an
automatic form of stabilization of the type described by Wainerdi [11] and Dudley
[12] where an alpha-emitting nuclide is implanted within the sodium iodide crystal
itself, and the position of the resulting high energy peak used to control the over-
all gain of the system.

As an alternative a computational method can be used in many cases, Such a
system is used in this laboratory. It is confined to those spectra where a prédomi-
nant peak is present to allow precise measurement of its position.

The center position of the peak is found by fitting the top of this peak to a
Gaussian function. The fitting is performed by nonlinear least squares using the
iterative Newton-Raphson method. A similar calculation is performed on the corre-
sponding standard spectrum and any change of channel is thus found. It is assumed
that any change observed in the peak position is due to gain drift and not to change
in threshold level. A new spectrum is then computed channel by channel on the
basis of this change.

This method has shown itself to be very satisfactory for suitable spectra.
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Fig. 7. Analysis of a Four-Component Gamma-Ray Spectrum, as Used for Testing the
Effect of Bias Change.
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The Effect of Unpredicted Nuclides

The theoretical basis of least-squares fitting will not accommodate nuclides
other than those for which standards are provided. While one could include stand-
ards of all nuclides which could possibly occur, needless uncertainties would arise
in the calculated amounts of the major nuclides present.

However, if unpredicted nuclides do occur in a mixture to be analyzed, the sys-
tem should be made to cope with this situation, Assuming that other eventualities
are accounted for (gain drift, etc.), then the presence of an unpredicted nuclide will
be shown by a high value of Xz. Least-squares fitting may then be repeated but by
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using an arbitary method of weighting., Here the weights used are the inverse of
the square of the differences between the observed and the originally fitted spectra.
Such a system has no true mathematical justification but is merely an empirical
system to minimize the effect of those points of the spectrum where the contribu-
tion of an unpredicted nuclide is greatest. It is not claimed that this system com-
pletely negates the effect of unpredicted nuclides, but it does allow identification
of them. Thus Fig. 9 is the difference spectrum between an observed spectrum and
the final fitted spectrum obtained as described above. The spectrum is of a mix-
ture of Rul?3, Zr?5.Nb?3, and Cs'?7, the analysis being performed for the first two
nuclides only. The Cs!37 in this case represented ~ 10% of the total activity
present.
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Fig. 9. Difference Between Observed and Predicted Spectra Using Arbitrary Weighting.

EXAMPLES OF LEAST-SQUARES FITTING IN GAMMA SPECTROMETRY

The method of analysis described is particularly suited to experiments where
large numbers of similar samples are to be analyzed. In health physics work this
is exemplified in large-scale tracer experiments and in measurement of fallout de-
bris from nuclear explosions.

Figure 10 shows the spectrum of a mixture of Br®2 and Cs'37, These and other
pairs of nuclides were introduced into a river to measure the relative absorption
rate of the two nuclides on the river bed, for studies related to economic effluent
disposal. Hundreds of samples of water were collected and examined by gamma
spectrometry. Analyses were performed computationally as described and resulted
in saving many man-hours of labor.

Similarly much labor was saved in analyzing mixtures of iodine isotopes
(Fig. 11). Here experiments were being performed to observe the difference in
chemical behavior of gaseous iodine produced under two different physical condi-
tions.
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Figure 12 shows the spectrum of fission-product activity in a typical air filter.
The nuclides shown here are readily determined by the least-squares method. An
analysis for similar nuclides is shown in Fig. 13, which displays the spectrum of
the feeble radioactivity from a sample of fecal ash. Finally, an interesting spec-
trum is that of a human being with the lungs slightly contaminated with U235, A
very good fit is obtained to the standard sources used. These consisted of whole
body phantoms of Cs!37 and K40 and chest phantoms of U235 and Zt?3-Nb?5 made
to simulate activity in the lung (see Fig. 14).
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Fig. 12. Analysis of Gamma-Ray Spectrum of Debris from Nuclear Explosions.
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CONCLUSIONS

The method of least squares is a suitable computational method for the routine
analysis of gamma-ray spectra of known constitution. It is more accurate than pre-
viously used methods and makes maximum use of the resolving power of the sodium
iodide spectrometer. Ideally, it is necessary to maintain very stable conditions of
counting and all coatributions to the activity of a sample must be known, but com-
putational methods have been devised to allow some latitude on these conditions.
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(4-3) LEAST-SQUARES ANALYSIS OF GAMMA-RAY PULSE-HEIGHT SPECTRA'

J. I. Trombka
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California

INTRODUCTION

A least-squares fitting technique for the analysis of complex gamma-ray pulse-

height spectra has been developed. In this analysis, the pulse-height spectrum due to
a polyenergetic distribution of gamma rays is synthesized by using a series of nor-
malized pulse-height distributions due either to the monoenergetic components in the
incident beam or to the pulse-height characteristic of various possible nuclear species

1This paper presents one phase of research supported by the Michigan Memorial Phoenix

project and the Atomic Energy Commission, and submitted in partial fulfillment of the require-
ments for the Ph.D. degree at the University of Michigan, Ann Arbor, Michigan. This research
is now continuing under sponsorship of the National Aeronautics and Space Administration Con-
tract NAS 7-100.
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in the source. Each of these pulse-height distributions is weighted so that their sum
is a best fit, based upon a least-squares ctiterion, to the experimentally determined
polyenergetic pulse-height distribution.. There is difficulty in the application of least-
squares techniques to the analysis of pulse-height spectra, because the problem is
nonlinear in energy. In the technique described here, this difficulty has been over-
come by using linear methods of solution, but applying the constraint that only posi-
tive or zero values be allowed for the intensities or amplitudes of the various mono-
energetic components. .

APPLICATION OF THE PRINCIPLE OF LEAST SQUARES

Formulation

When a number of gamma rays are incident upon an Nal(Tl) crystal, the measured
pulse-height spectrum is made up of a summation of the photopeaks and Compton con-
tinua of the various monoenergetic components; that is, if p is the total number of
counts in channel 7, then

pi=L By (1)
n

where B, is the number of counts occurring in channel 7 due to the interactions of
gamma rays of energy E, with the crystal. This also can be written as

pi=EBohin i

where A, is the normalized number of counts occurring in channel 7 due to the inter-
action of gamma rays of energy E, with the crystal and

B,
Bn = 124 . (2)

Az'n
The A,,’s can be obtained, for example, by measuring monoenergetic emitters placed
in the same geometrical configuration as that of the polyenergetic emitter used to
measure p.
Due to the variance in the determination of p,and B, 4, , B, 4, cannot be simply
determined from an inversion of Eq. (2). Therefore, the most probable values of
B,4;, are determined based on the least-squares criteria, that is,

Z “’z‘(pi - E B, Ain>2 => Minimum , (3)

where @, is the statistical weight and w, ~ 1/0?. In the simplest case 0? ~ p,, if the
counting time in each channel is constant and if it is assumed that there is no variance
in A; . The summation is over all channels i and all energies n.
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Method of Obtaining Minimum for Least-Squares Fit

Incident Gamma Flux Discrete in Energy (Energy Distribution Known and Inten-
sities Required). — A number of algorithms can be used to obtain the minimum required
in Eq. (3), but the method of solution used depends on how much is known about the
incident flux. The simplest case is considered first. In this case, the gamma-ray
energy distribution is known, and it is desired to determine the intensity,

Now, p, is measured, and since the energy distribution is known, the monoenergetic
components (A in’s) are known.. The minimum is therefore obtained by taking the partial
derivative with respect to 3 3 for each of the p monoenergetic components. Each de-
rivative is then set equal to zero. Thus

oM
B,

fork =1, 2, ..., p. Thus, there are p linear equations to be solved for the 8’s. Re-
lation (4) can be expressed in matrix notation [1], as follows:

=-220;(p;-ZB;A;)Ay=0, 4

ATwp - (ATwA)B =0, (5)

where 3 is vector of the 8,"s; A is a p by n matrix of the pulse-height spectra;
n is the maximum pulse height; A7 is the transpose of A; and w is a diagonal matrix
of the s,

Solving for 3, it is found that

B=Twa)y ! aATwp . ©)

The calculation described in Eq. (6) has been programmed for the IBM 7090 computer
and can handle up to 40 monoenergetic pulse-height spectra and up to 250 values for
each pulse-height spectrum.

An application of this method will now be considered. The energy distribution of
a gamma-ray emitter is known, but the problem is to determine the relative intensities
of these energy components. The emitter chosen is 1'31 The gamma-ray energies in
the spectrum of 1130 are 0.722 Mev, 0.637 Mev, 0.634 Mev, and 0.284 Mev. Another
gamma ray which is a possible contaminant is also noticed at 0.5 Mev. The measured
pulse-height spectrum is shown in Fig. 1. A point source of 131 was placed 10 cm
from the top of a 2- by 2-in. Nal(Tl) crystal. The shapes of the monoenergetic pulse-
height spectra were determined using monoenergetic soutces and extrapolating from
these spectra the pulse-height spectra for the energies desired. These spectra were
normalized so that the area under the photopeak is unity. The curves were normalized
in this manner so that the 8’s obtained would equal the area under the photopeak.
Thus it is only necessary to divide by the absolute peak efficiency to determine the
intensity. A least-squares fit is made using Eq. (6). The results are shown in tabu-
lar form in Table 1 and graphically in Fig. 1. Results for 1'3! determined by other
investigators [2, 3] are also presented to show the close agreement with the results
obtained using the least-squares fitting technique.

The errors were determined by a method desctibed later in this paper. It was also
assumed that the intrinsic peak efficiencies are known to within * 5%. This assumed
error was confirmed by comparing theoretical and experimental results obtained for
the efficiencies of 2- by 2-in. Nal(Tl) crystabs [4—7].
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Table 1. 1137 Gamma- Ray Spectra

Energy

(Mev) Least Mean Square Bell et al.® Haskins and Kurbatov?
0.284 5.2 £ 0.7 6.0 4.2

0.364 100 £ 9 100 100

0.500° 0.5 0.1

0.637 10.2 £ 1.2 10 7.2

0.722 2.4 % 0.3 3 2.4

“Bell et al., ref 21
bHaskins and Kurbatov, ref [3l.
“Possible contaminant.

Discrete Incident Energy Spectrum (Both the Energy Distribution and Intensity of
the Incident Beam Unknown). — The difficulty in the application of the technique lies
in the method of obtaining the minimum. The minimization should be made with
respect to both Bn and A, . The term A, is a function of both pulse height and
energy, while B, is only a function of energy. Since the pulse-height spectra (A in)
are not known analytically as a function of pulse height and energy, it is extremely
difficult to attempt to minimize Eq. (3) with respect to the A, (i.e., numerical methods
would introduce large errors in the calculation). Therefore, the following method was
used.

The energy spectrum under consideration is divided into discrete increments. A
monoenergetic pulse-height distribution corresponding to each increment is included.
The energy components or increments will be chosen depending on the photopeaks ob-
served in the measured distribution, and in those regions where the photopeaks are
not obvious, the energy region is divided up depending upon the energy resolution of
the system. Ideally, one can use relation (6) to obtain the values Bn for the various
energy components. If a given energy component m is not present, 3, should be zero
or the statistical variance in 3 should be greater than B,, itself. The presence of
these zeros in the inverse transformation leads to the possibility of obtaining nega-
tive solutions, which in turn leads to oscillating components in the solution of Eq. (6).
This problem is treated in detail in a work by Burrus [8]. In this paper it is pointed
out that the source of error in unscrambling scintillation data by the incremental
technique [i.e., simple inversion of Eq. (1)] can be attributed to an error amplification
when the basic equations are solved exactly. As is stated in this paper, this ampli-
fication is caused by an attempt of the exact solution to restore rapidly fluctuating
components in the original gamma-ray spectrum which have been attenuated below
the statistical error level by the instrumental response. A first attempt to smooth
out this fluctuation was made by this author using the least-squares technique de-
scribed above. A further smoofhing can be obtained by requiring not only that Eq. (3)
lead to a minimum but that the solution for the 8’s be positive or zero.

Let us now consider a problem wherein this difficulty can be demonstrated. The
problem is to determine the energies and intensities in the single-crystal spectrum of
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W87 The measured pulse-height spectrum is shown in Fig. 2, in which certain

energies are easily identified from the resolved photopeaks. In Table 2 the various
energies that were assumed present are tabulated. Also four iterations using the
least-squares fitting technique are presented in Table 2.
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A negative 3 is obtained for the 0.440-Mev gamma ray. In terms of the decay
scheme of W!87 it is found from other experimental and theoretical calculations that
its intensity relative to the other gamma rays present is almost zero [9] and thus is
lost in the background.

An interesting result to be noted is that a variation in the choice of energy com-
ponents in one region does not seem to affect the values of B in the other energy
regions. Further, an important result is obtained in the region of the 0.730- to 0.866-
Mev peaks. In this region the energies cannot be resolved as separate (i.e., there is
loss of resolution due to the smearing out of the information by the detector), but the
results obtained show that the number of gamma rays in this region remain constant,
although the distribution in the region changes depending upon the components chosen
to represent the region. These results seem to hold for other cases investigated.
Thus, it seems that when one cannot resolve the energy spectrum in a given region
because of the finite resolution of the detection system, only the total number of gamma
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Table 2. Results of Least-Squares Analysis of w87 Spectrum

Energy For Data 731 For Data 741 For Data 733 For Data 743
0.866 0.464 £0.008 0.462 +0.008 0.438 +0.007 0.437 £0.007
0.775 1.93 £0.06 1.94 £0.06 2.95 £0.02 2.94 £0.04

0.760 1.72 £0.09 1.69 £0.09

0.735 0.0245 £0.0615 0.0383 £0.0615 1.11 +0.03 1.11 £0.03

0.686 « 227 £0.06 22.5 £0.06 21.8 £0.05 21.7 £0.05

0.619 7.36 £0.03 7.33 £0.03 7.42 £0.03 7.40 £0.03

0.552 6.02 £0.03 6.02 £0.03 6.17 £0.03 6.18 +£0.03

0.480 25.9 £0.06 25.6 £0.06 26.1 £0.06 26.0 £0.06

0.440 ~0.601 £0.035 ~0.223 +0.036

0.301 0.112 +£0.032 0.136 £0.032 0.115 £0.032 0.123 +0.032
0.256 0.867 £0.040 0.850 £0.040 0.806 £0.040 0.799 +0.040

rays in the region can be determined; however, the exact energy distribution in that
region cannot be determined. The ability to resolve two energies can be related to

the width of the photopeak at a half-maximum counting rate. This problem has been
considered theoretically by Burrus [8]. There seems to be a minimum separation in
the choice of monoenergetic components to be usedin a given region depending on

the width at half-maximum of the photopeak. This choice will also depend greatly on
how well (i.e., to how many significant figures) the monoenergetic pulse-height spectra
are known or can be known, for the least-squares analysis depends on differences in
these numerical values.

The results obtained in this calculation for W87 agree well with other experimen-
tal and theoretical calculatiens. The results of this calculation and the decay scheme
of W87 are discussed in a paper by Ams et al. [9].

A more general method of solution of this problem has been developed to handle
such problems. Before outlining the method of solution for these cases, an example
is presented to help clarify the discussion. The method described above and the
method to be discussed below are applied to a simple problem.

A measurement is made with a three-channel pulse-height analyzer. The following
data are obtained:

Channel i Counts
1 3
2 2
3 3
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It is known that the measured spectrum is some linear combination of the follow-
ing functions:

Normalized Count

Channel i
A4 A A
1 1 1 1
2 1 1 Y]
3 1 0 0

The following matrices are formed according to previous definitions:

1 1 1
A=1{1 1 0o, @)
1 0 0
1 1 1
AT-11 1 o], (8)
1 0 0
1
0 0
w={0 % 0], ©9)
1
o o %
3
p= 2 .
3
Then,
Alot)y= % % % | (10)
1 1 1
BB 4
3 =3 0
ATwA) 1= -3 5 -2, (11)
0 -2 5
0 0 1
AToA) 14T = | O -1 . (12)
1 -1 0

The 3’s, or intensities, of each component vector can be determined from Eq. (6):

B=ATwA) 14Twp ,
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0 1 3 3
and B=10 1 -1 2 |={~1]. (13)

That is, the sum of the vectors (1,1,1), (1,1,0) and (1,0,0) which yields the best fit to
the experimental data using the least-squares criteria is 3(1,1,1) - 1(1,1,0) + (1,0,0) =
(3,2,3). The residual is zero.

Now if it is known that the intensities must be positive, the least-squares f1t must
be made so as to require Eq. (3) to be a minimum with the constraint Bl £0, /32 =0,
and B £ 0. One could proceed by eliminating the negative element and then reevalu-
ating Eq. (6). That is, the following matrices are now formed:

1 1
A=11 0}, (14)
1 0

1 1 1
AT = , 1
<1 ! o) )

and @ remains the same.

Then
- (51
()
warwe( )
Using these matrices, f is found to be
s ) (-2 o

These results indicate that the best fit requiring only a positive or zero value of 8 is

2.4(1,1,1) + 0(1,1,0) + .6(1,0,0) = 3,2.4,2.4.

The method just completed is rather simple but one must be careful in the method
of eliminating the negative components. A method for minimizing quadratics subject
to various constraints is described by Beale [12]. The following is an application to
the above problem, and is a simplification of the work found in Ref. [12]. The simpli-
fication is possible, since when applying the technique to pulse-height analysis, the
only constraint required is that of a positive solution for the 8’s when minimizing the
quadratic.
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In this method one forms the quadratic given in Eq. (3). For the conditions in the
problem discussed above, Eq. (3) can be written as

7 5,5 5 1,5 2 2
M=8—661—432—2,83+g’61+gB2+-3-,83+§,8162+g[’3163+'3-6263. (20)

M is.to be minimized and also the constraint and ,81 2 0, [32 2 0, ﬁ3 20 is to be
applied.

A geometric solution of the problem can be considered with reference to Fig. 3.
The method of solution proceeds in the following manner. Start at point 0 (Fig. 3);
that is, assume the solution 8, =8, =8, =0. Kfeep .Bz = By = 0,.and increase /3.1
in a positive direction. As (3, increases along this direction, M will decrease until
we reach point A. Point A is determined by taking the derivative of M with respect
to 3, and setting the derivative equal to zero with 8, = 3 =0. Then

oM 2
5—3—;——6+ ,81 Bz+563=2u1. (21)

Then for

u =B,=B;=0,B,=18/7.

The coordinates of A are (18/7, 0, 0). The plane z, = 0 in the space described by
B ,82, and 3 3contams all points 8, for which M 1s a minimum given any values of
B, and By,

Continuing the solution, it is found that increasing 3, any further will only in-
crease M. A change of basis is now made. By using Eq. (21), B, is found in terms of

uy, B, and ,83.

6/ 5 1
Bl=; u1+3-‘gB2“"3‘B3 . (22)
This substitution is now made in (19) and
2 2 2 6 5 5 4
M==+- == t—uly = BE+ B2 — . (23
7 7[32 7'83 74 21’82 2163 2162[33 )

Now, keep u, = 8, = 0 and change B, while attempting to decrease M; that is, 3,
is increased or decreased by moving along the line of intersection of the #, = 0 plane
and B, = 0 plane. This intersection is along the line AKL indicated in Fi ig.3. The
problem is to determine in which direction a point should be moved along AKL so that
M decreases. This can be done by taking the derivative of M [cf., Eq. (20)] with
respect to 3,

M 2 10 4 8 10 2
 — = — — 4 — t —
B, 7 T B2 21737 71
at
oM g 0,8 3
=y, = = e,
B, > 1 2 s
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Fig. 3. Geometric Solution of Least-Squares Fitting Problem.

B, must go negative to decrease M. This cannot be allowed because of the con-

straints; therefore 8, must be made zero. In this case B, =u and again substitution

is made in Eqs. (20) and (21). The plane u; = 0 is the plane of all values of Bz given

any f3,, 3, for which M is a minimum within the constraints of the problem. Of
course, because of Eq. (24) 62 = 0 for all values of 61 and /33.
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Again we start at point A, and an attempt is made to minimize M by increasing
B from zero; B, is 1ncreased along line ACJ, the intersection of the u,=0anduj=
0 planes This ensures that 8, and 8, will have values which will yield a minimum
value of M within the constraint 8, 290, ﬁz £ 0 for any value of 8,. By using Eq.
(20) and by taking the partial derivative of M with respect to 35, the direction of in-
crease or decrease of 8 3 (and also the value of ,8 ) can be determined so as to mini-
mize M:

oM 2 10 4 4
—_— et — Bt —u,t—u, = 2u, (25)
|, 7 217 21 7

foru,=uj=u, =0, Bj= 3/5. This value of B, along with the value 8, =2, = 0 can
be substituted in Eq. (22) to determine the value of 3:

)

This is point C on Fig. 3 and corresponds to the intersections of the uy = 0, ué =0,
and #, = 0 planes. Thus the values of B B,, and 8 3 required to minimize Eq. (20)
w1thm the constraints that ,31 £0, Bz & O and 3, & 2 0 are, respectively, 12/5, 0, and
3/5. This is the same result as that obtained in Eq. (19). If the solution is contained
ignoring the constraints, the absolute minimum (3, ~1, 1) is obtained. This is the
point H, the intersection of the #; =0, #,=0, andu; =0 planes. The solution will be
independent of the path taken to reach the solution.

The method applied to a case where there are n values of 8, to be determined can
be outlined as follows:

1. Using Eq. (3), form the quadratic M = M(8, Bz, cees B

2. Take the partial derivative of M with respect to 3, and let 2z, = dM/9f3,.

3. Letu;=8,=8,=...=0 =0and solve for 8,. If 3, >0, then solve for
B, in terms of u;, 8,, ..., B,. Substitute this value of 3, into the equation for M.
Now, M = M(ul’Bz’ v, Bn). In this first time around the ,81 chosen will always be
positive.

4. Now using the quadratic M found in step 3, the partial derivative of M is taken
with respect to 8,. Let 2u, = dM/d8,.

5. Letuj=u,=8,=...=8 = O and solve for ,32 If B, > 0, then solve for 8,
in terms of u B3, RN ﬁ and substitute this value in the equation for M (step
3). If B2 = 0 then let B, = zu2 " and substitute this value of 3, into M (step 3).

6. The above procedure is continued for all B’s. At each step the values for all
the 3’s considered up to that point are determined. If any of these 3's are negative,
one makes the change of variable 8, = u;. Further, if a previous change of variable
was made introducing a z,= dM/df3;, u must be eliminated from the function M by
using the relations # =3, and u, = dM/df3 before continuing the iterative process.

7. The n values of 3 are found after the last iteration by setting all # and u” equal
to zero.

3

This solution is equivalent to the following matrix approach: Assume the meas-
ured distribution is made up of only two components (e.g., the A,.’s and A .,’s). One
can use least-squares fitting to obtain the ,81 and ,82 from Eq. (6). It has been as-
sumed that the B, =B, =... =8, =0. If 3, >0and 8, >0, then one adds a third
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component (e.g., AB’S) and solves (6) for Bl’ ,82, and [33. If any of these f3's are
negative, one sets that given 3. equal to zero by eliminating the A, components from
the matrix calculation involved in Eq. (6). In this way, the # components are added
one at a time, the B’s determined for each addition and if any one of the 8’s deter-
mined isnegative, that 8 is set equal to zero and its cotresponding component elimi-
nated from the matrix A before adding another one of the » components to A. The
solution for the B’s after all » components have been added in the manner prescribed
above will give the values for the 3’s for which M is a minimum and B 2 0, ,82 2
0,...,B,20..

The number of monoenergetic pulse-height spectra used in performing the above
will depend upon the energy resolution of the system. If the energy distribution of
the incident flux in some region is such that the energy separation between the var-
ious energy components is less than some fraction of the half-widths of the photopeaks
in this region, it may be only possible to determine the total number of gamma rays in
this region without being able to determine uniquely the energy distribution in this
region. The half-width of the photopeak is a measure of the energy resolution of
system.

A FORTRAN program has been written for the IBM 7090 computer which makes
use of the solution described above. The following options are available: The
weighting function matrix @ can be set equal to the unity matrix, set equal to 1/p, ot
read in as input. The calgulation can be performed with or without iteration. So that
only the fast memory of the computer is used, the following limitation on the size of
the A matrix (i.e., matrix of monoenergetic or monoelemental pulse-height spectra) has
been set: The maximum number of channels or numbers describing a given component
spectrum is 250, and the maximum number of component spectra is 40. When the iter-
ative process is used, there is no limit on the number of component spectra, but it is
necessary to impose the restriction that no more than 40 components be used in a
given iteration. There is always the limitation that no more than 250 channels or num-
bets be used for a given component. It should be emphasized that these size limita-
tions are due to the computer’s memory capacity and are not due to the mathematical
method.

ERROR IN THE CALCULATION

Once the 3’s in Eq. (6) have been determined, it is possible to determine the
mean square deviation in 8. If it is assumed that the A .’s (i.e., the pulse-height
spectra) are known without error this calculation is rather simple. Then, due to the
variation in the measurement in p,, there will be a corresponding mean square devia~
tion [1] in the determination of the 3’s. Using Egs. (4) and (6),

Br=L L cyla, eB. (26)
iy

The following definitions are used: the matrix C = (A TwA)is a symmetric matrix and
the elements va of C are given by

va = Z w; A4,

- v (27)
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C~! is the inverse of the matrix of C. The elements of C~! are written as CX)}
Thus,, cc-l= I, where I is the identity matrix with elements I, and

-1,
Iy = § CuyCon s (28)

recall that both C and C~ ! are symmetric matrices. Further,
I y=1 ifv=2A,
I =0 ifv#Ar.

From Eq. (6) it is seen that ,8/\ is a linear homogeneous function of the counts, under
the assumption that there is no error in the A ’s. Thus the mean square deviation
O'Z(B )) corresponding to the variation in p; can be written as

By =RLLciciia, 4,0 0%,
iV )/

where », = 1/0“1? (p;) . Then

02(18,\) = E E Z C;)% C;IAiVAiywi
i v y
or
o*By=L L <oy C;ﬁ L ;A4 -
vy i
Then from Eq. (27):
2 _ -1
o (B)t) = § § C)’)\ C)’/\CV}’ s
or
kB =L o LC,aCon
v 4
and from Egs. (28) and (29),
2 =l
aBy =Cix s (30)

that is, O’z(ﬁh) can be found from the diagonal elements of the C~! matrix. The mean
square deviation O’Z(pi) in the simplest case is

Uz(pi) =p,. (31

Depending on the experimental situation, the corresponding 0;’s can be determined
and used as above. The probable error can then be determined from the mean square
deviation.

The above considerations are only true if it is assumed that the A_’s are known
without error, that the set of A .'s chosen are the correct set, and that the set of pulse-
height spectra are linearly independent (i.e., there is no interference between various
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components). Further calculations are therefore carried out in an attempt to determine
whether these problems contribute a significant error in the calculations.
A factor indicating percent interference can be calculated as follows;

(C/-\- 1)2
In =

x 100% . (32)
C—- 1 ~1
AL ny
It was shown above that CT is the variance on B)\’ and it can be shown (ref [10])
that CXI is the covariance of the A and y component. Then Eq. (32) is a measure of
interference between the A and y component (ref [10], [111).

ANALYSIS OF A COMPLEX GAMMA-RAY SPECTRUM

The following experiment was designed to test the analytic method described
above. A mixture of ten different elements was activated in a thermal-neutron flux for
a given length of time and the pulse-height spectrum of the activated sample was
measured as a function of time. Then a known amount of each element in the mixture
was activated in the same neutron flux for the same length of time as the mixture, and
the pulse-height spectrum of each of these elements was measured in the same geo-
metrical configuration as that for the mixture. A 3- by 3-in. Nal(Tl) crystal with a
200-channel pulse-height analyzer was used for the measurement. A pulse-height
distribution recorded soon after irradiation is shown in Fig. 4. The background spec-
trum was included as a separate pulse-height distribution. Furthermore, it was noticed
that due to the presence of some air in the sample, argon gas had been activated and

T T T T
- TIME: 1122 PDT, 9-4-62
o TEST SAMPLE: STANDARD MiX
COUNTING PERIOD: | min
SOURCE SPACING FROM CRYSTAL
SURFACE: 5cm
V\ CRYSTAL SURFACE: 3X3 in. Na K(T£)

1000

BACKGROUND INCLUDED

COUNTS

100 A

T T

T

0 30 50 70 %0 o 130 150 i70 190 210
PULSE HEIGHT

Fig. 4. Pulse-Height Distribution for a Test Sample Containing 10 Different Elements
Which Hod Been Irradiated with Thermal Neutrons.
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tended to perturb the measurement of the pulse-height spectra of the various other ele-
mental spectra. A pure argon pulse-height spectrum was measured and an attempt was
made to subtract this effect from the spectra of the various other nuclear species. The
argon spectrum was included in the analysis of the mixture spectrum. Finally, it was
noticed that a significant amount of sodium was present in the supposedly pure chro-
mium spectrum. The contribution of the sodium spectrum to the chromium spectrum
was subtracted out, and a *‘pure’’ chromium spectrum was obtained.

Since the mixture and each of the various nuclear species were activated in the
same neutron flux for the same length of time, and since the standard spectra used in
the analyses were those due to the activation of the various nuclear species, the re-
sults of the least-squares analysis were in terms of relative abundance of the nuclear
species in the mixture to the amount in the standard. Because there is radioactive
decay of the standards and mixture, decay time cotrections must be made to deter-
mine the absolute abundance from the relative abundance. The relative abundances
obtained from the least-squares analysis are given in Table 3. The zeros indicate
that the given nuclear species has been rejected in the fit

Interferences between the various component spectra were then calculated. Some
of those interferences which were found to be significant are plotted in Fig. 5. From
curves of this type it was apparent that significant errors would be expected in the
calculation of the intensities due to background, La, K, Na, and Sc. At certain times
the interference may be great, but if one nuclear species decays away, the interfer-
ence will become negligible.

After correcting for decay, the analysis of the mixture was obtained. The results
are given in Table 4 and compared with the actual composition of the mixture. The
calculated etrors indicated in the table do not include interference effects.

The calculation for sodium seems to be rather poor but it must be remembered that
sodium was detected in the chromium standard; this may partially explain the discrep-
ancy. Further, it should be noted that in those cases wherein there was significant
interference, one element would be overestimated while the other with which there
was interference would be underestimated. Otherwise, the results seem to be in rather
good agreement within the statistical variance involved in the experiment.

The interference effect may be greatly reduced by breaking up the various stand-
ard spectra into monoenergetic components and using these monoenergetic components
for the analysis. This group of monoenergetic spectra should be a linearly independ-
ent group.

It can further be seen that there is a very significant interference by background.
Therefore, it seems best to subtract background and perform the analysis. In this
problem, the background was very small compared to the counts above background so
that when the analysis was redone with the background subtracted, there were no sig-
nificant differences from those reported in Table 4.

Finally, it should be pointed out that the analysis is only as good as the set of
fitting spectra available. Spectra such asthose due to bremsstrahlung should be in-
cluded in the library of functions used for analysis. At the present, a chi-square test
is being prepared for inclusion in the analysis for testing the goodness of fit. This
test, plus the calculation of interference, should indicate whether such difficulties as
the shifting of gain and the lack of a complete library of functions have perturbed the
analysis.
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Table 3. Relative Intensities of Various Nuclear Species in Mixture Obtained Using Least-Squares Analysis

a

Nuclear Oct. 4 Oct. 4 Oct. 4 Oct. 4 Oct. 5 Oct. 5 Oct. 6 Oct. 7 Oct. 11

Species 1122 1146 1259 1633 0827 1641 0900 1329 0914
Background  9.44 9.55 33.6 3.66 4.72 4.86 5.86 6.87 1.91
Na24 19.9 19.1 15.2 17.1 7.22 3.86 2.12 0.0 0.0
c138 0.68 0.466 0.133 0.0 0.0 0.0 0.0 0.0 0.0
x 42 8.78 7.67 5.59 6.5 3.28 2.34 0.0630 0.0 0.0
Mn 6 0.0691  0.0669  0.0382  0.0166  0.00173  0.0048 0.0 0.0 0.0
sc46 0.0340  0.0340  0.0422  0.0442 0.0488  0.0466  0.0360  0.0431  0.0413
A4 0.0 0.0 0.0 0.0 0.0 0.00806 0.0 0.0 0.0
As76 10.6 12.5 11.3 9.75 6.04 4.52 3.54 1.65 0.363
Ccub? 4.45 3.49 1.94 2.91 1.77 1.38 0.183 0.148  0.0493
ce3l 4.00 3.93 3.60 4.81 5.0 4.94 4.12 4.39 413
1128 18.1 9.6 0.0 0.0 0.138 0.0274 0.0 0.0 0.132
Lal%0 5.68 4.79 4.41 3.98 2.30 1.91 1.57 0.989  0.199

“Mixture removed from reactor Oct. 4, 1962 at 1055.
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Table 4. Experimental Determination of Composition

Element Prepared Sample Experi.men'tal
Determinations

Sodium 5.00 ugm 7.7 21 pugm
Chlorine 36.8 pgm 38.0 £3.8 ugm
Potassium 0.404 mgm 0.301 £0.011 mgm
Manganese 0.101 ugm 0.0904 +0.0018 pugm
Scandium 14.2 pgm 12.2 £2.5 pugm
Arsenic 5.00 pgm 4,98 £0.11 pgm
Copper 2.23 ugm 2.11 £0.16 ugm
Chromium 1.82 mgm 1.56 £0.24 mgm
Todine 2.49 ugm 2.68 £0.08 ugm
Lanthanum 2.19 ugm 3.02 £0.04 pgm
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(4-4) NONLINEAR LEAST-SQUARES FITTING APPLIED TO GAMMA-RAY
SCINTILLATION DETECTOR RESPONSE FUNCTIONS

R. 0. Chester, R, W. Peelle, and F. C. Maienschein
Oak Ridge National Laboratoryl
Oak Ridge, Tennessee

INTRODUCTION

All gamma-ray spectrum analysis techniques must have available the response of the

data collection system for all gamma-ray energies covered by the experiment. In the

following work, data were recorded as counts per pulse-height channel. Before analysis,
data were converted to counts/kev vs pulse height in kev to make the data independent of

1Operated by Union Carbide Corporation for the U.S. Atomic Energy Commission.
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analyzer gain (but not of channel width). Therefore, the response function for this data
collection system is a function of the source gamma-ray energy, pulse height, and de-
tector geometry. Source gamma-ray energy and pulse height are treated as independent
variables, while detector geometry dictates the exact form of the analytic functions em-
ployed. A number of constants in the analytic functions were determined by best fits in
the least-squares sense to actual data from calibrated sources.

The most widely used methods of response function generation first obtain counts per
pulse-height channel for a number of monoenergetic source gamma rays. Interpolation be-
tween these fitted monoenergetic response functions has almost always been performed
entirely by linear or higher order polynomial approximations. For a given pulse height,
the relative number of counts per channel has been interpolated as a function of input
gamma energy. All of these methods usually require storage and continual reference to
the monoenergetic spectra. By contrast, the method described in this paper requires
only the storage of 20 constants and a formula. Figure 1 shows a slab of the response
function for a range of gamma-ray energies and one of the calibration spectra.

Each method, however, has unique advantages and disadvantages. The single for-
mula approach was selected because the available monoenergetic spectra were rela-
tively widely spaced in energy and several of the spectra involved two or more promi-
nent gamma-ray energies. Physically unrealistic oscillations such as those that
frequently arise in polynomial interpolations were unacceptable. ‘

To illustrate the method, the response function for the single crystal will be dis-
cussed in detail. The method used for response function generation for the Compton
and pair spectrometers will only be summarized.

COUNTS/KEV

0 100 200 300
PULSE HEIGHT (kev)

Fig. 1. A Slice of the Single-Crystal Response Function Showing the Calibration Spec-

trum for Cs 137,
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PREPARATION OF THE DATA AND THE WEIGHT MATRIX

The data, obtained as counts/channel vs channel number, were converted to
counts/kev vs energy corresponding to the pulse-height channel in kev by the following
relations:

(C;~ 0 = AC)

(T

(CC, - B)K
14 (dAC/dO) oo

Yi

where
; = absorbed electron energy corresponding to the ith pulse-height channel,
y; = counts per kev in the ith pulse-height channel,
C. = channel number,

1

CC, = counts per channel in the ith pulse-height channel,

B, = measured or estimated background in the ith pulse-height channel,
K = analyzer gain in channels/kev,
0

= analyzer zero, the channel number for which the pulse height is zero on a
linearized scale,

AC, = channel number difference to compensate analyzer nonlinearity for the ith
pulse channel, based on sliding pulser measurements (typical values were
between +0.3 and £0.002 channels).

The expression (JAC/dC)| ¢ = c . is the derivative of a third order polynomial fit to
ACvs Cat C= C;. Twenty channéls were fitted at one time and each fit advanced
ten channels. Therefore, except for the five channels at the low- and high-channel
number ends of the analyzer, only the ten center channels of each fit were used to
evaluate JAC/dC. Typical values of dAC/dC ranged between 10.03 and £0.0001.

The observed counts per kev in each pulse-height channel, y,, are assumed un-
correlated. As a result, the weight matrix for the data is diagonal.

The variance of y; is in this case equal to I/WI.Z.,
where

variance of y , = [CCZ- + (ABI-)Z] (K21 + (dAC/dC)lC =C.] 2y,

z
W.; = ith diagonal term of the weight matrix to be used in the least-squares fit,

AB:’ = /B, for a measured background of equivalent counting time, or ABi = esti-
mated error in an estimated background.
RESPONSE FUNCTION GENERATION

The first step in the interpolation procedure is the choice of an equation whose
shape is believed to be adaptable to the experimental data by proper choice of the
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free parameters. While the detail in the data as a function of pulse height in our case
is quite fine, only relatively few points are available for the interpolation as a func-
tion of gamma energy. Therefore, special attention was given to the variation of the
shape features of the response function with the source gamma-ray energy.

The observed counts per kev in the ith pulse-height channel of the observed
spectrum for monoenergetic gamma rays of energy E, is approximated by the relation

F(p,E,d)dp = Qt f(p,, E,d) =0t F(p,, E ,d)

~ Ot fpi+Api/2
b

Y. Api, §))
AV IRV VIVE. Ap;

1
where

Ot = source strength = total number of photons emitted with energy E,
Api = width of ith pulse-height channel T 1/K,

F(p, E,d) = number of counts per kev at energy, p, per photon of energy E, emitted
by the source,

fp;,E, d) = calculated counts per kev in the ith pulse-height channel per gamma
ray of energy E.

If two or more gamma rays are given off by the isotope in question, the observed
number of counts y, is approximated by a sum of terms of the type in Eq. (1).

In practice, actually performing the integration was unnecessary except where
F(p, E,d) varied very nonlinearly within Ap,. For example, it was considered un-
necessary to integrate a Gaussian unless the peak was evident in fewer than five
channels. In this case Ot F(p,, E, d) differs from Q¢ f(pz. , E,d) by no more than 3%.

In generating response function formulas, an attempt was made to adhere to the
following requirements:

1. Data from all the standard calibration sources should be used simultaneously in
the nonlinear fitting procedure to obtain the fit parameters d.

2. Fp,,E, d) should be the sum of terms, each of which represents an obvious shape
feature of the observations when plotted as a function of pulse height for a fixed
gamma energy E. (For example, for the single-crystal spectrometer, F(p;, E,d) =
photopeak + Compton distribution + backscatter peak + escape peaks + x-ray
peaks + iodine escape peaks.)

3. For convenience in combining source strength information, a single normalizing
constant should appear before the entire expression Fp;, E ,d), representing the
photopeak efficiency.

4. The variation of the shape features with gamma-ray energy, E, should be physically
plausible.

The function below is a simplification of the expression used for the single-crystal
spectrometer data:

/(pl. , E ,d) = (photopeak area) [(unit area Gaussian for the photopeak)
+ (relative backscatter peak area) (unit area Gaussian for backscatter
peak) + (Compton distribution) + (Gaussian for iodine escape peak)] .

Details of the single-crystal response function are discussed in Appendix I
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In addition, many of the calibration runs include x-ray peaks and iodine escape
peaks, and some of the data contain two or more photopeaks and associated Compton
and backscatter features. Figure 2 shows the calibration spectrum of Hg 203
example.

as an

CALCULATION OF FIT PARAMETERS

The above equation for the single-crystal response function is nonlinear in the fit
patameters, d 5, 3 therefore, it is necessary to use an iterative method for the solution
of the least-squares problem [1,9,11]. A modified Gauss-Seidel method of analysis
was employed [4, 5,14] and is outlined below.

The function f(pi’ E,d) is approximated by its value at some estimated d, called
do » plus the first term in the Taylor’s series expansion of f(p,, E, d) in the differences

B:d-—do:

pi,Efd)

i a/(
., E =fp,,E,d ,
/(pz’P’d) f(pz.:Fr 0)+Zk adk d=d Bk

0
which can be written in matrix notation
f= fo + FOB s
where
= vector whose ith component is f(p;, E, d),

f, = vector whose ith component is f(p;, E, d),

F, = matrix whose ijth element is (3f(p,, E, d)/adj]ld =d,”

Using this approximation, the weighted residual sum of squares, RSS, becomes

Rss’:sum overzall (y-f,~F B Wy -f -F B,
.,observed pulse-

height spectra
for one spectrometer

where
¥y = vector whose 7th component is y,

W = weight matrix for the input data.

The normal equations become

0=S5= P FTWy—f, ~F
sum over all o Y 0 OB) ’
observed pulse=
height spectra
for one spectrometer

where $ = the vector whose kth component is (1/2) (BRSS/GBk). The normal equations
solved for B yield

B=A"1ZFIWy_%),
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where
A- ZFIWF .

The above equation is just the analog of the usual expression of the linear least
squares solution for 8, the corrections to the estimated values of the fit parameters,
do . Therefore, as long as the truncation of the Taylor expansion is adequate, the
usual error analysis of linear least-squares fitting isapplicable [12, 13]. The only
Idifference is that the final solution for d must be obtained by iteration.

The covariance matrix of d is given by [6,5,8,10,11]
V(d) = Expectation of (887) = A=1,

A, W, F | are unaffected by the expectation operator and V(f )= W~ 1. This V(d) is
thus based entirely on input errors and assumes an adequate fit.

Similarly, the variance of another function, g(x;,d,) of the parameters, d
given by [2, 3,8,11]

o,is

V(g =GT V(d)G=6TA-1G,

G = matrix whose #jth element is [ag(xi, do)/ad']ld =4 9
7 0

vector whose ith component is g(x;, do),

(=]
o
il

8
il

ith value of an arbitrary variable, x.

In particular, if x; = E and g(E,, do) is the width of the photopeak, that is,
gE; dy)=(d, +d\E),
then GZ.].= Oferiandj# 4,5 G, =1, and G =VE,. Then
V@) = A5+ AL B+ VED + ASSVEEL

The standard error of g(El, do) is taken to be the root of the diagonal term:

-1 -1 # -1
\/V(g”) = \/AM ¥ Z\/E;A“ + B AT

This example illustrates that the whole parameter variance matrix is needed to deter-
mine the uncertainty in any function of more than one of the fitting parameters.

The above is the usual result for a least-squares analysis, yielding experimental
errors for the parameters which are determined by the weighting matrix of the input
data. This result stems from the assumption that the correlations and variances of
the difference (y — fo) are completely taken into account by the weight matrix, W.
This requires the assumption that the expectation value of d inserted into f will yield
the expectation value of y. In the present problem it is not expected that enough
parameters have been properly incorporated into f(p,, E, d) to match perfectly the ex-
pectation value of any particular response cutve; therefore lack of correlation among
the input differences is not a sound assumption where relative counting statistics are
small. The value of chi-square per degree of freedom for the single-crystal calibration
sources was 2.1,
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Lack of fit can be handled in several ways [3,8]. No compensation for lack of fit
was used in the problem under study since a systematic lack of fit was considered
unimportant.

Three criteria are used to determine whether a least-squares solution has been ob-
tained [11,2,3]. First, at the converged result, each 8, should be small compared to
the error in the corresponding d; /3 = 0.03 \/— was adequate in this problem, where
\/7 \/A 1, Second, the RSS was requued to change less than 0.01% in three consec-
utive 1terat1ons. Third, ,3 $ was required to be £0.01 VRSS, which is a check on the
validity of the truncated Taylor expansion.

Use of the truncated Taylor expansion results in sizable errors when the estimated
parameters,d ), are far from the final solution. A partial compensation is obtained by
placing limits on how great a change may be made in any parameter in a single cycle
[4,5]. It is assumed that a unique minimum exists for the RSS, and very little evidence
of nonuniqueness has arisen in this problem.

Constraints on the amount of parameter change can be applied in any manner which
aids final convergence. Complications in selecting constraints arise from having non-
linear as well as linear dependence on the d,’s in the same function. Also the con-
straint criteria may become more complicated if a few of the parameters are known much
more accurately than the rest of the parameters at the start of the iterations. Fairly
samsfactory convergence is obtained in this problem by restricting each 8./d. to the
range -1/ =8, /d 9 This restricted 8 is multiplied by a scalar, b, so that d =d +
bB. With B f1xed the RSS 1s minimized with respect to », and 8 set equal boinBs b is
restricted to the range 0 = Shi1.

RESPONSE FUNCTION GENERATION FOR PAIR
AND COMPTON SPECTROMETERS

With the pair spectrometer and Compton spectrometer, the methods of handling all
the data simultaneously were not available and a simpler method of data handling was
used [7].

These cases were handled in a manner which greatly complicated the generation of
the variance matrix of the output parameters. The methods were just as those described
above except that all observed pulse-height spectra were not simultaneously fitted. Each
pulse-height spectrum was fitted with a set of parameters describing its pulse-height de-
pendence. These parameters were averaged for all spectra representing the same radio-
active source. Finally each of these pulse-height fitting parameters was in turn fitted as
a function of gamma-ray energy. Since the input parameters for this latter fit were highly
correlated, all the energy fits had to be performed simultaneously using a large nondiagonal
weighting matrix, Considerable uncertainties were introduced by the need to handle in some
manner the lack of fit in the fits as a function of pulse height. Furthermore, with the two-
stage fitting process, one is never quite sure that the final result gives close to the
best fit to the original calibration spectra.

SUMMARY

In summary, the greatest advantage of the system of response function determi-
nation described in this paper is that the response function uses both pulse-height
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and input gamma-ray energy as independent variables. Therefore, the interpolation

between monoenergetic spectra is handled at the same time the pulse-height spec-

trum fitting is being performed. The choice of response function is such that there

is no oscillation outside the region fitted and furthermore the extrapolated response

function is physically plausible. In addition, it is sometimes possible to select the

response function suchthat the fit parameters may be related to physical constants

and therefore reasonable first estimates of the parameters may be obtained from anal-

ysis of the detector. It may also be possible to pick the response function such that

the number of fit parameters is less than would be required to describe the same region

using polynomials. Plausible error estimates and correlations for the fit parameters

can be calculated using regression theory as applied to nonlinear least-squares analysis.
Apparent disadvantages of the method described are primarily the manhours involved

in programming and the expense associated with the computer time required to do the

nonlinear fitting. A change in the detector geometry will involve a change in the numer-

ical value of the parameters and in extreme cases might possibly invelve a change in

the description of the response function.

APPENDIX |

Notation List

A Least-squares matrix, A = F?; WF,
B.  Background in the ith channel
AB,  Background error
C.  Channel number
CC,  Counts per channel in the ith pulse-height channel
AC.  Analyzer gain nonlinearity correction in the ith channel

d  Vector whose components are the set of parameters required to completely
describe the spectrometer response

d,  kth component of d
d, A fixed value of d
E  Gamma energy of the source

flo;, E, d)  Calculated counts per kev in the 7th pulse-height channel per gamma ray

of energy E:
0t fp, B, d) =~ fp"”Ap‘”) F(p, E,d) dp
= i’ ? API Pi—(APi/Z) ? ’ )

=0t F(p,,E,d)

f  Vector whose ith component is f@®;,E, d)

f,  Vector whose ith component is f(p,, E,d )

) Afp.,E,d)
F Matrix whose ijth element is — % = °

0
od |,

d
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F(p,E,d)

9
g(xi ) do)

Number of counts per kev at energy, p, per photon of energy E emitted by
the source

Vector whose ith component is g(x;, do)

Arbitrary function of the fit parameters, do, and an arbitrary independent
variable x;
dg(x;, dy)

dd; | 4=4 o

Number between zero and 1 used as a parameter to minimize the RSS

Matrix whose ijth element is

Analyzer gain in channels/kev

Energy corresponding to the ith channel

Width of ith pulse-height channel = 1/K

Analyzer zero: channel number corresponding to zero pulse height
Source strength = total number of photons emitted with energy E
Residual sum of squares

Vector whose kth component is (1/2) (aR'SS/(?Bk)

Variance matrix for the input data

Weight matrix for the input data

ith value of an arbitrary variable x

Observed counts per kev .in the ith pulse-height channel

Vector whose 7th component is y;

Vector defined by d — do =B

APPENDIX I

Details of the Response Function F(p,, E, d)
for a Single-Crystal Spectrometer

The photopeak unit area Gaussian is given by

where E = position of the photopeak, (4, VE - dg)= 1/2 width of the photopeak at exp (~1)

exp i[-(p; - EY/(d,VE - ds)]z}
\/77(‘14 ﬁ- dS) ’

full amplitude, and the area of the photopeak is (Q¢) (peak efficiency of the spectrometer
for gamma rays of energy E).

The calculated resolution of the spectrometer as a function of gamma-ray energy is
defined as (photopeak full width at half maximum)/(gamma-ray energy) and is given by

2y/Tog, 2 (dg+ d,VE) '
E
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The calculated peak efficiency for the spectrometer is computed as
4
Z dn+16En °

n=0

The quantity (relative backscatter peak area)(unit area Gaussian) is given by the ex-
pression

2E\3 .- E/(1+d E 2
dg <1+————> exp | — [ pi— BN 12
dg VU, JE/(+ 4 E — d,]% + 2500 E3/2
2E  E?
2

<1 o 2_) \/77—\/[514\/15/(1 +d E)—d] %+ 2500 E3/2

9 d9

where
E/(1 + d, E) = best fit backscatter peak position,

energy of 180° scattered gamma ray,

2 e

d, = 2/rest energy of an electron,

d9“=’ 2/d |,
d,VE/(1+ d E)~d, = width of a photopeak with energy E/(1+d,E).

The Compton distribution is given by the expression

{ 410 {{ 1+B%Z Y/Z”Ld g2t 4389
1+ exp [(d, - E)/d,] Z + (1 - BZ)? 11

where

B=[1+d,(Ed - 1]

1 dy(E/dy, — P+ dy(E/d, , — D2+ dy(E/d s = D]
x ’

1+ /2[1 v d(E/d , — DML+ dy(E/d - 1) + 2+ dy(Erd, - 12 d(E/d) , — 1)}

p;= EME+d)
dE(E+d)-d ’

Z=exp{

E2/(E + d6) = position of the Compton distribution,
< maximum energy of Compton-scattered electrons,

d = }’2 rest energy of an electron = 1/d,.

6

The approximate peak-to-total ratio for a fixed gamma energy is given by

-1
41 E,

) d ~FE E+d
{1+exp<2 >}( " 6)
da
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(4-5) ANALYSIS OF GAMMA-RAY SPECTRA!
J. E. Moncdhan, S. Raboy, and C. C. Trail

Argonne National Laboratory, Argonne, lllinois

A *“fitting®’ technique which has been used in the analysis of discrete gamma-ray
spectra is described in the first section of this report. An algorithm for the approx-
imate solution of a class of problems in quadratic programming is given in the second
section. This algorithm may be of value in the analytical unfolding of observed
spectra.

THE SHAPE OF THE TOTAL-ABSORPTION PEAK

If simplifying assumptions are made concerning the mechanism by which an out-
put pulse corresponding to an incident gamma ray is generated in a crystal spectrom-
eter, it can be shown that the asymptotic form of the pulse-height distribution in the
neighborhood of the total-absorption peak is Gaussian. However, because of the
idealized pature of this derivation, it must be expected that a measured total-absorp-
tion peak will exhibit systematic deviations from this asymptotic form. One method
of obtaining a measure of such deviations is to compare a measured pulse-height
spectrum with the Edgeworth distribution,

Y
B 9o 0> V> Vpr -+ ) =885 45 0) ——3-;1 g3 44, 0)

Y2 (4y,.
+4!g (0 99,0 +..., (1)
where
1 1 q-—q0>2]
H y )= €x ——— ’ 2)
g(qqo)a\/ﬁp[2<(7 | (
and

g 44, 0) = (“"H (9 g(a; 94 0) - (3

Here H (q) is the Hermite polynomial of order v.

The data which have been analyzed in terms of this distribution were obtained
with a scintillation spectrometer having an anticoincidence annulus [I]. A secondary
peak due to Compton processes in which the incident gamma ray is backscattered
through the entrance aperture of the spectrometer system (and thus escapes detection
in the anticoincidence ring) is present in these measured pulse-height distributions.
In order to take account of this in the hypothetical distribution, a term which ap-
proximates this contribution is added to the Edgeworth distribution assumed for the
total-absorption peak. The final expression for the number of counts f]. expected

IWork performed under the auspices of the U.S. Atomic Energy Commission.
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in channel j in the vicinity of the total-absorption peak is

f,-=afAAdq B 9> 0 yyy - -2) + b8l g5+ 8, k) + ¢, (4)
7

where A, is the width of the pulse-height channel 7, 8 is the mean energy carried off
by the backscattered photon in a Compton process as discussed above, and ko is
the ‘‘dispersion’’ of the backscattered peak. The coefficients 4, b, and ¢ are the
respective intensities of the total-absorption peak, the backscatrered peak, and the
residual background. The values of these coefficients, as well as the moments
4y 05 ¥y» - -+, are to be determined by fitting Eq. (4) to the observed pulse-height
distribution.

In the usual estimation procedures, such as the modified Xz—minimum method,
it is frequently necessary to combine neighboring channel readings in order that
all observed frequencies f are roughly of equal statistical accuracy. This regrouping
of data becomes mcreasmgly important in the estimation of the higher-order moments
of the distribution. The reason for this is that the high-order moments are sensitive
to small variations in the frequencies observed in the tails of the distribution and
this is just the region where the measured frequencies are small and consequently
susceptible to relatively large statistical fluctuations. The necessity of regrouping
the observational data can be circumvented by the use of the following estimation
procedure which is suggested by the w?-minimum method [2] for testing goodness
of fit.

Let Fi and F]. denote the observed and hypothetical cumulative distribution func-
tions, namely,

i '
F.= f=7.,1 R
i l—‘-zfo //l_%of (.7 70’]o+17 ’]1)7 (5)

and

i 7y
Fj(a,b,c,q,o,yl,---)=12_f1/12_ fl’ (jzjoaj0+1,---,j1), (6)
=1 =]0

where 71 is the observed number of counts in pulse-height channel /, and f, is the
corresponding expected number as defined by Eq. (4). The channel numbers j, and
j, denote the end points of that portion of the spectrum considered in the analysis.
The accepted values of the parameters in the hypothetical distribution are defined
to be those which minimize the quadratic w?, where

jl —

0'=3 (F, - F].)2 . (7)

=i
The estimates obtained by this method are independent of the grouping of the fre-
quency data.

A number of response spectra observed for gamma rays in the energy interval from
100 to 3000 kev have been analyzed by the ©?-minimum method. Only the first two
terms of the Edgeworth distribution, Eq. (4), are retained in this analysis. The re-
sulting values of y, 03/q3 =y v3/2 are shown in Fig. 1 as a function of 1/E, where
E is the gamma-ray energy. This particular combination of parameters is considered
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since it is expected [3] that Y1 372 should increase quadratically with 1/E. Obvi-

ously, no conclusion concerning such detailed dependence is possible on the basis
of these results. However, there is an indication of a systematic positive skewness
in the observed shape of the total-absorption peak, although this deviation from the
simple Gaussian form is almost completely obscured by the fluctuations expected
from ordinary counting statistics.

Fig. 1. The Observed Values of y103/qg as a 3 ]
Function of 1/E. The conversion factor between 2 N
pulse height and energy is not included in the wag e {H a
values of y103/qg shown in this graph. __—:io . H {

It 1

]
£ (Mev)”

UNFOLDING OBSERVED SPECTRA

The problem of unfolding observed spectra is often approximately reduced to the
problem of solving a set of simultaneous linear equdtions of the form

2

.1Rijg]'=fi’ (i=1,...,m; mzn): (8)

where R, is an element of the "‘response matrix”’

of the counting system, [, is the
observed number of counts in channel 7, and g, is a measure of the intensity of the
jth component of the incident spectrum. Because of the sensitivity of large-scale
linear systems to small errors in the observed values of f; and R, ., the direct solution
of the system of Egs. (8) seldom results in meaningful values of the components g ..

It has been suggested by Burrus [4] that a practical solution of the unfolding
problem might be the imposition of nonnegativity conditions

g2 0 G=1,...,m ©)

on the least-squares solution of the set of Egs. (8).

The least-squares problem, neglecting the constraints in Eq. (9), is easily for-
mulated. Let A? denote a diagonal m x m matrix where A2 is the relative weight
assigned to the measured value /.. Let R denote the transpose of the response
matrix R, and let B denote the inverse of the symmetric 7 x 7 matrix RAZR, that is,

B= (RAZR)"!. (10)
The least-squares solution of the set of Egs. (8) is

g = BRA?f, (11)
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where g and [ denote column vectors with components g., (=1, ..., n), and /i ,
(i=1,..., m) respectively. For values of the components of g given by Eq. (11),
the quadratic ¢(g), defined by

)= £ Al - £ Ry’ (12)

attains its minimum value.

A procedure which may give a physically meaningful approximation to the solu-
tion of the constrained least-squares problem is described below. The approximation
depends on a sequence of transformations T, , where T, g, =g, — g, Bkl/Bkk’

T, By, = B = ByBam/Bis» a0d T, &(g) = d(g) + g3/B,, - It can be showa [5]
that the vector T g is the least-squares solution of the set of equations obtained

by setting the component g, equal to zero in Egs. (8). The matrix T, B is the cor-
responding “‘error matrix,’” and T, ¢(g) is the resulting value of the quadratic defined
in Eq. (12).

The proposed *‘solution’® of the unfolding problem is generated by the following
sequence of operations.

1. Among the negative components of g, choose that component g for which
glzo/B op is a maximum; that is, from among those indices / for which g; <0, deter-
mine the index p for which gf,/Bpp> g?/Bu , (gp <0, g; <0).

2. Carry out the transformation T for all components of g (both positive and
negative) which have not previously been set equal to zero.

3. Replace all components g; by Tpgl and all B; by TpBlm and repeat the pro-
cedure indicated in (1). Note that the next transformation, say T , is that for which
(Tpgﬂ)z/TpBW> (Tpgl)z/TpB”, (T,8,<0, T g <0).

" This iterative process should be terminated when the value of qi)/Bpp in (1) is

less than some constant . whose value is chosen such that aB __ is a measure of
the variance in g .. The constraints in Eq. (9) are thus replaced by the slightly more

realistic inequalities g, + v/ var(g)) R 0.
As yet this method has not been applied in any practical unfolding problem.
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Chairman: G. D. O'Kelley

Chemistry Division,
Oak Ridge National Laboratory,
Oak Ridge, Tennessee

(5-1) THE FUTURE OF DIGITAL COMPUTERS IN SCIENCE
John W. Carr Il

Department of Mathematics, University of North Carolina
Chapel Hill, North Carolina

The general goal of this discussion is to point out marked deficiencies in the
present relationship between men and semi-intelligent automata. I specifically use
this term since the werds digital computer — or even general purpose digital computer
— are basically misleading. The information-transforming, electronic devices that we
have are indeed very special purpose equipment patterned after one specific initial
design, that due to Von Neumann and others in the mid-1940’s. Even though these
equipments were specifically designed for one or two very restricted classes of prob-
lems, peripheral research uses of these computers and some key productive uses have
shown them to be what one might call ""semi-intelligent automata.”’

A very large number of copies of this specific design for an electronic information-
transforming device were built and put to use during the past 15 yr. The persons using
these devices range from highly educated scientists to computer coders — I won’t say
programmers — trained in industrial education centers like the one in Burlington, N.C.
A recent survey of an important cross section of computer users, the membership of
the Association for Computing Machinery, showed that over 50% of the membership
had undergraduate degrees or even less formal educational backgrounds. One might
assume that those computer users not so professionally interested as to join this
scientific society would probably have an even less adequate educational grounding.

My first hypothesis will be that the intellectual level of these machines dictates
the intellectual level of the users. Although we have heard that Enrico Fermi actu-
ally coded for a computer and recommended that young physicists do likewise, this
certainly did not start a trend. Von Neumann remains almost the only distinguished
American mathematician who has directly contributed ideas concerning the nonnumer-
ical use of computers. Leading mathematicians like Sobolev and Dorodnitsyn assoc-
iated with computers in the Soviet Union are actually working more as scientific ad-
ministrators than as scientists. The mathematicians in this country working with
and around computers are, with some few exceptions, mainly numerical analysts.

The reasons for this lack of competent scientific talent associated with these
somewhat revolutionary machines are based to some degree on educational failures
within our universities, the economics of the present hardware, and the large number
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of relatively important but scientifically unchallenging problems that must be solved
using these new machines. However, the most obvious reason is the unintellectual
nature of the machines themselves. They were first designed by scientists endeav-
oring to prove that some such machine could be built. This design, as might be ex-
pected, was *‘near-minimal’’ in the sense that only the required elements for opera-
tion were included and the model for the device was almost the simplest one con-
ceivable.

Such a design worked, performed, and proved highly effective within a region of
immediately pressing problems, mostly computational or simply combinatorial in nature.
The major effort of the past 15 yr has been to extend the range of problems being
solved to as many applications of this same basic kind of problem, repeated over and
over again:

1. large computations, mainly from mathematical physics, relatively simple in formu-
lation but requiring extremely large numbers of operations;

2. organized searching procedures to find the solution to problems where classical
techniques offer no direct guides to a formal algorithm for solution;

3. “‘information-retrieval®’: file-maintenance and up-dating procedures on relatively
small but complexly connected collections of data, or else on large but very simply
structured collections of data; and

4. miscellaneous, in which most of the relatively few different and difficult problems
occur.

The first three problem attacks made great use of the relatively large speed ad-
vantage in calculational speed, or speed of organized storage and retrieval over pre-
vious methods. In general they are not logically complex compared with the types of
decisions and analyses made by intelligent human beings. These problems were in
general formulated by persons of average competence among intellectual workers, and
finally related to the machines by persons of a lower level of intellectual interest and
training.

The machines themselves are nonintellectual and nonintelligent, and therefore
generally unattractive to intelligent human beings for the following reasons:

1. The level of communication between man and machine is extremely low, and
although the nature of this communication is more precise than that between an adult
and the normal two-year-old child, the machine in linguistically far simpler. The
language of communication with these machines contains almost always less than
100 command verbs, almost no methods of making declarative statements, and no
method of giving definitions of any sort, evolving new syntax or semantical relations.
The informational-organization methods available are so inferior to that of an ordinary
library that no one would take a comparison seriously.

2. The information storage capacity of these machines is extremely small or else
so hedged in by engineering restrictions and by the need for complex descriptions on
the part of communicating humans that its actual use is narrowly limited for special
purposes. It is far more difficult to initiate computer command searches than it is
to tell a six-year-old child how to search an encyclopedia; and I find the results,
after watching the growth of my own children as opposed to the computers [ have
known, again not worth comparing. Computers are not designed to *‘learn’ in any
sort of general purpose sense; even the special purpose learning that has been
accomplished has been only after exceedingly detailed and complex human effort.
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3. The actual physical input-output facilities of these semi-intelligent automata
are very crude. While such a machine can input linguistic strings at a speed faster
than a human being could read and comprehend, such strings are very limited and
special purpose, narrowly restricted in vocabulary, and must be previously encoded
into machine readable form by human beings. The output rate of the printing mecha-
nisms attached to these automata markedly exceeds human performance, but is far
less effective than other printing mechanisms used by humans. All of these input-
output devices are tightly restricted as to symbology, thus precluding any really
elaborate communicational notation. Even if such material being input were able
to be scanned and interpreted, today none but a few experimental or highly spe -
cialized systems allow any sort of graphical or nonsymbolic input.

This rather hasty survey of the present-day characteristics of semi-intelligent
automata shows why the level of their direct users, as far as scientific training and
proven intellectual ability are concerned, is relatively low. These machines are not
fit companions in any sort of intellectual activity. There is almost no intellectual
challenge in their use, except in learning the solution of specialized problems, Be-
cause certain new problems are now solvable, they have stimulated mathematical and
scientific activity in certain areas.

Their very simplicity has created as virtues in the class of machine users such
otherwise questionable activities as over-emphasis on details, combinatorial manip-
ulation of the simple languages involved to minimize certain only intuitively defined
measures, and ability in detailed record-keeping as opposed to imagination. A premium
has been placed on intuitive abilities of an ill-defined nature that do not include use of
a formal inductive and deductive approach to problem solving.

PROBLEM SOLVING

It is just in the increased knowledge of what problem solving is, however, that
these semi-intelligent automata have contributed to the picture of what their de-
scendants could and might be. These machines have been recognized t be -~ in
spite of, rather than because of, their present structure —~ artificial symbol manip-
ulators. It has been recognized that, although they were originally designed to
make decisions on numbers, encoding of symbols into numerical form allows a first
approximation to machine decision making with symbols.

It has been recognized before the advent of these machines that many of the prob-
lems arising in scientific endeavor can be easily described in terms of formal lan-
guages, easily understandable to and usable by the human scientist (after a fairly
rigorous apprenticeship in their use). Such languages are far more complex than
the extremely simple computer languages that we have previously described. They
are open-ended in that new semantical and syntactical configurations can be added.
Special dialects for individual areas of study can be defined within more general
structures. Because humans have conceived these languages and because of the
flexibility of handwriting and movable type, limitations on symbology are generally
nonexistent.

There exists a fair-sized scientific literature on the theoretical problems in-
volved with manipulating such languages. Here, however, the usual pattern of
mathematical investigation has been completely reversed. There exist a large
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number of existence theorems as to solutions or lack of them — the literature of

computability and undecidability ~ but a much smaller set of algorithms for solv-

ing particular problems. This is as if the abstract treatises on Hilbert space or
functional analysis existed today with almost no work ever having been done on
how to solve a system of linear equations.

It is within this framework that one possible new, and to me very important,
concept of what a semi-intelligent automata should really be arises. It should
be a highly talented aid in problem solving by a scientific investigator or by a
group of scientific investigators. It should fulfill the functions of as many of
such scientist’s present problem-solving adjuncts as can be practicably mecha-
nized:

(1) a notebook for keeping momentary data and informal ideas in a correlated file;

(2) a file for formal problem solution techniques, for proven statements obtained
directly from experimental evidence, or deduced jointly from theory and ex-
periment;

(3) a computer with a file of computational algorithms for performing numerical
computations, either automatically as a part of more elaborate problems, or
specifically on call;

(4) a mechanized library for performing all of these various retrieval techniques
in an integrated fashion;

(5) a deductive inference machine for producing new results from experimental
data, or for testing conjectures, proposed in this elaborate man-machine com-
munication language;

(6) an inductive machine for producing hypotheses from masses of data and gen-
eralizations from specific linguistic statements already entered or deduced;

(7) a linguistically fluent machine, in symbols, grammar, and semantics, for handling
the details of use, including testing of input strings, testing for inconsistencies,
translating from nearby dialects, and maintaining control of the relations between
this special-purpose locally oriented man-machine language and the more general
more or less “‘universal’’ language(s) used as a ‘‘common-carrier’’ by other sci-
entists and machines.

It is not apparent just what the physical and organizational structure of such a
machine might be. It might be a mutually used facility, with a generalized structure
used by many different workers and disciplines. Outwardly, to a user, it might look
something like a book, a typewriter, a drafting board, a television set, and a tele-
phone all connected together and available for his use. Or if the cost of duplica-
tion of such semi-intelligent automata in quantity can be brought down enough,
there may be a local automaton for an individual worker, with similar input-output
appearance, and the ability to be interconnected with centralized automata through
automatic switching devices.

IMMEDIATE REQUIREMENTS

Whether this particular concept or another markedly different in nature is to be
set up as one goal for progress to head towards, there are obvious requirements that
must be taken with respect to equipment before progress anywhere in this direction
can be made. Experimental equipments, reliable in performance, must be conceived,
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designed, andused by scientists interested in such new and different devices. The
basic pattern of language for such equipments must be a radically different one from
that in the ““Von Neumann’' machines of today. The techniques of storage and recall
of information must be markedly changed and built into the hardware itself. The au-
tomaton must have a variable, expandable syntax for its command language, so con-
stituted that it is not the duty of the user to worry about the details of how this is

to be mechanized. The machine must have a very large memory relative to those
available today, with technical problems of access again no longer the user’s re-
sponsibility.

Whether the mechanization of these procedures will be done with hardware, or
with algorithms stored in accessible memory (what would be called *‘programs’’
today), is a question I leave open because of engineering considerations which
still must dictate. The entire system should be planned as a whole and should
be made so efficient in operational speed that the usual complaints against elab-
oracy of operation can be met — if possible. From the start, this new breed of
automaton should be planned from the outside in, with the emphasis being placed
on how it looks linguistically to the user. The linguistic command structure of
this new machine should fit into the language of the user, not vice versa.

Techniques for the overall design of such equipment fortunately exist within
the theory and practices of automatic programming and the hardware of certain
isolated ‘‘paper computers’’ or local experiments. From the theoretical literature
of logic, recursive function theory, and the foundations of mathematics have already
come many linguistic structures that have been tried, some successfully and some
unsuccessfully. The older algebraic languages give some crude approaches. Special
purpose languages like IPL-V, COMIT, and many others contain examples of possible
models as do the more recent proposals, ALGOL and COBOL, where formal studies
by scientists and nonscientists were made of how a language should appear to a
user.

Such *‘mutually conceived’’ languages all have marked restrictions in their struc-
ture, because they were defined by persons whose ultimate, if not immediate, concept
of a language was limited by the requirements for implementation on today’s restricted
digital computers.

Research support, therefore, for studies in formal languages independent of ma-
chines, but oriented towards description of the solution of problems, may be very
valuable. It will be from this work, from that of the logicians and workers in the fun-
damentals of mathematics, and from the more theoretical automatic programmers, that
the linguistic and organizational structure must come. Professional production pro-
grammers, who conceive of computers as a continuing extension of their specialized
techniques, cannot contribute; in fact, they would most often oppose the idea of a
revolutionary quantum jump in the linguistic structure of computers. (The opposition
to ALGOL is an example.)

It will probably be difficult, too, to find very many logical designers with condi-
tioned experience in the design of Von Neumann--type machines, who would be open-
minded or radical enough to abandon the waditional idea of the internal structure of
a computer. A recent proposal by Professor Norman Scott of the University of Mich-
gan shows an example of a willingness for experimentation. In this, Professor Scott
proposed to rewire an easily reconnected, specially constructed commercial machine
to include storage allocations and interconnection techniques used up until now only
in programming systems.
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The major step, of course, is the financing of a pilot project for building one
of these entirely different computers as an experiment, just as the project headed
by Von Neumann at Princeton was financed in the late 1940’s by the Army.

It is my sincere belief that such a project should not be given to a computer
manufacturer, except perhaps as the production partner for a design group that is
completely independent. Such a group, designing such a machine, must not be
hampered by commitments to a manufacturet’s hardware resoutces, previous de-
sign procedures, tradition of equipment, etc. The results of the NORC, LARC,
and Stretch projects would seem to me to be examples of the type of results not
wanted.

A university group, a national laboratory, or a converted independent institute,
like the Institute for Advanced Study was because of Von Neumann, would be the
proper organization. It should be remembered that the Von Neumann-Princeton—
designed digital computer *‘ran’’ only several years after other designs, later be-
gun, had been carried through to completion. To an outsider, that project suffered
at that time on the engineering side; yet the incomplete machine, with the reports
that were produced, had far more influence than any other equipment on the ma-
chines that came afterward.

Again, I would urge that the design leadership of such a group be mathematical
rather than engineering in training, since the prime goal is development of a mathe-
matically oriented structure into which hardware presently available must be fitted.
Logical designers with the proper backgrouad should be chosen to temper, not be-
tray, this goal. The circuitry, storage, mechanisms, and input-output devices should
be chosen from devices developmental at the time of design to meet the design re-
quirements, not vice versa.

If such a project were set up, with a specific set of goals in mind, with ade-
quate support, with leadership basically committed to the attainment of the idea,
I can imagine 5 to 10 top scientific workers in formal languages, automatic program-
ming, and logical design who would immediately join such a project. The graduate
student resources of such computer-oriented schools as Carnegie Tech, Case, Har-
vard, M.I.T., and Illinois could produce a quantity of extremely good young men, if
the project were done in the United States.

The cost of such a project would vary widely, from up to down, if done in the
United States, or Britain or Western Europe. Presumably, the accrued advantages
to United States science would more than make up the cost difference in doing the
task here; the gain in the (often) higher technical capability of the network of
United States computer component suppliers would also be an advantage.

The problem involved in the production of the first version of such a really semi-
intelligent automaton is more difficult than that which faced the Von Neumann group
in the 1945’s. Its overall solution should cost more, perhaps markedly more. How-
ever, a well-planned and evaluated project in which the chances of overall success
were rated more than even could justify expenditures of the tremendous sizes rang-
ing from $5 to $100 million that might be involved, since the pay-off would come
not only through a completed operating machine (a prototype from many production
models), but as much so through the ideas that were tried, developed, and rejected
along the way towards the final design.
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I know that the following is an overworked argument, but nevertheless I believe
it to be a true one: soomner or later, in a group such as this within the Soviet Union,
some scientist with more technical or administrative authority than I have here in
this country will propose a similar project within the Soviet Union, based perhaps as
a culmination of the present work on mechanical translation, the work on informa-
tion retrieval, or as an entirely different project. At some stage, one of the key
mathematicians within the Soviet computer hierarchy, such as Academicians
Sobolev or Dorodnitsyn, will become convinced that the odds on success of such
an enterprise is favorable to the glory of himself, his institute, and the U.S.S.R.,
and such a project will begin then and there. Upon evaluation of equipment, wide-
spread effectiveness of the use of computers, and developmental computer research,
I would estimate this Soviet decision might occur in perhaps three to four years —
all other things being equal — after a similar proposal is made in all seriousness,
with a chance of success, in this country. However, from the point of view of the
mathematical levels of competence of the comparable people that are involved, I
do not believe that there is a gap of three to four years, and it may be that it will
be some of the mathematicians who are convinced in the mathematical effective-
ness of computers, who will be bold enough to make such a proposal.

Because such a semi-intelligent automaton as we have described here is not a
direct contributor to any of the competitions between the U.S.A. and the U.S.S.R.,
it does not have the priority (nor the cost) of projects such as nuclear weaponry
and space vehicles. However, the scientific leadership of the Soviet Union knows,
on the basis of the Sputnik effort, the key effectiveness of digital computers. There
exists a growing scientific discipline (centered professionally on the journal Prob-
lems of Cybernetics, for example) with a steady funneling of younger men from three
or four key university computing centers (Kiev, Leningrad, Erevan, and of course,
Moscow) into this research area. The seeds are planted, and if the course of imag-
ination runs similar to that here in the United States, the Soviet Academy of Science
ot Department of Defense will hear a presentation far better documented than mine
within 3 or 4 yr.

If the decision were made to do this, I think the resulting project would make a
similar impact on Soviet science and technology as to what it might make here. At
present, I would place my estimate of success of a United States project as some-
what higher — a conviction held mainly on the basis of quantity, not necessarily
quality of effort in this area.

Not being privy to most of the government’s secrets, I do not know whether or
not such a project is in existence or plan today. I do feel strongly that, for ex-
ample, the computer companies of today could no more do this job than the com-
puter companies of 1945 could have produced Von Neumann’s automaton. Per-
haps behind the doors of some secret government laboratories there are enough
brains working on this. I feel, at the moment, that there is not such a need for
secrecy in such a project as there is in broadcasting it and getting it into the
spirit of the computer users of today, whose morale, at least among the men I
know with imagination, is at a low ebb. A goal like this is more like those of
Project Apollo and NASA in its conception and results than like those of the
Manhattan project.
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(5-2) ROUND-TABLE DISCUSSION

The time remaining in Session 5, Thursday evening, October 18, was devoted to a
round-table discussion of topics suggested by some of the Symposium participants and
the Organizing Committee. The Panel was composed as follows:

G. D. O’Kelley, Chemistry Division, Oak Ridge National Laboratory, Chairman
D. A. Bromley, Department of Physics, Yale University

John W. Carr 11, Department of Mathematics, University of North Carolina

A. J. Ferguson, Nuclear Physics Division, Chalk River Laboratories

Vincent P. Guinn, General Atomic Division, General Dynamics Corp,

M. H. Lietzke, Chemistry Division, Oak Ridge National Laboratory

L. Salmon, Health Physics and Medical Divisions, Atomic Energy Research
Establishment, Harwell

O’KELLEY: First, I would like to pose a question which has come up several
times in conversations at this conference: Who should do the programming of an ex-
perimental problem? That is, should an experimenter write his own program, or should
he go to a mathematician to have his problem solved for him, always bearing in mind
that there may be a semantic barrier between the experimenter and the mathematician?

LIETZKE: About six or seven years ago I had occasion to put my first problem
on a computer; [ went up to the Mathematics Panel at the Laboratory and asked them
to program it for me, I checked in about every two weeks or so, and after three
months — when I was just about ready to give the paper at a meeting — they finally
gave me the result. I was driven into programming my own problems because of this;
now, I would rather do it. For example, I may write a program and then want to change
it immediately. It is just too difficult to get someone who is tied up with other prob-
lems to drop them for a little while to work on my problem so I can go back on the
computer,

I don’t think that I would be able to get as much work done if I had to rely on some-
one else to do my programming.

BROMLEY: I would like to make one comment. As a nuclear physicist, I fully
subscribe to the idea that it would be a great idea to be able to do all of your own
programming. But I really question whether any one of us will have enough time to ac-
tually do all the programming which will be required — rather, I think it’s very impor-
tant to understand what is involvedand to be able to state very precisely what you want.

But [ hope we can look forward to the day when you need to do relatively little of
the programming yourself, since this would be a problem specialists could handle,
given just the statement of what you want to put in and what you want to get out.

Regarding this question of the communications barrier between the people around
the computer and the people in the laboratory, we have already seen some of this at
the conference so far: The statisticians and mathematicians have looked rather askance
at some of the things that have been going on.

SALMON: Back in England we don’t have any choice about this. You either
program it yourself or you just don’t get it programmed. At Harwell now there is a
tremendous number of people using the machines, all doing their own programming.

224



A slight danger sometimes arises in that people get ‘‘computer happy.”’ They
can’t do a simple straightforward bit of work without a program to do it. They spend
three weeks writing a program to perform a calculation which they could have done
quite well back in the lab in an afternoon’s work, and then they never use the thing
again,

But that generally has passed. I really believe myself that people in this sort of
field should learn how to program and in general should do their own programming. 1
just don’t see how they can meet their own problems unless they do this, because it is
only by doing their own programming and seeing what is happening that they are able
to see just what they can and can’t do.

FERGUSON: I might say that at Chalk River the situation is much the same.
Chalk River is actually very well endowed by the Canadian Government. You can
spend almost any amount of money on machinery, but not on people. Although we have
a small professional computing group there, it is too small to be of very wide use to
everybody.

GUINN: T would like to comment that in our activation analysis work at General
Atomic, I chose what I thought was the cowardly way and decided to get one of the
people in our computer group to take care of writing the program. This was to save me
a great deal of time so that I could be doing other things.

It hasn’t really worked out that way, though, because I have had to spend a great
deal of time trying to teach the computer programmer what gamma-ray spectrometry is
all about. So, I am not sure that I really saved any time in the long run.

O'KELLEY: Professor Carr, I wonder if you would care to comment on this from
the mathematician’s point of view?

CARR: Well, I would prefer to use the word *‘problem solver,’” because that is
what we all are when we write a computer program. Now, if you are going to use a
computer, it seems to be an impossible problem, unless you get further involved than
just walking down to see what the color of the machine is and to get the coding sheets.

As has been pointed out at this meeting, somewhere in your mathematical training
you should have learned something about statistics and about numerical analysis, I
don’t know enough about radiochemistry to say whether you can afford to spend any
time at all on these subjects; but if you are going to be a really competent problem
solver, you are going to need to know quite a lot about these things.

One trouble is that in school we teach you how to be a different sort of problem
solver. In your freshman and sophomore and junior years you learn about the mathe-
matics of continuity. You deal with functions which are continuous rather than dis-
crete, and you get a great deal of training on such subjects.

Then all of a sudden, you come up against computing machines, which are discrete
arithmetic and algebraic devices, and unfortunately most of us have not had any mathe-
matics that tells us how to use them,

So probably one can argue that the background in numerical analysis is not com-
pletely adequate for any of us, and there is going to have to be an awful lot of self-
teaching, May I say that many of the programmers, as well, don’t know this sort of
thing, T am not just talking about radiochemists in this connection.

O'KELLEY: The problem of programming leads rather naturally into another
topic which Professor Carr touched on, and which also came up in discussions with
Professor Wapstra this moming, and then again in his talk this afternoon. T refer to
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the use of ALGOL. To most of us I’m certain that FORTRAN has been extremely val-
uable. It has made it possible for the experimenter to do even very complicated prob-
lems without a great deal of study. ALGOL seems to have other attractive features.

I would like to ask for comments from those on the Panel who have had some experi-
ence with ALGOL.

LIETZKE: It just happens that my wife is the manager of the SHARE ALGOL
project, so I have had quite an exposure to ALGOL.

During the last month or so I have written three or four programs in ALGOL just
to get the feeling of the language. I found that I could learn it in about one day. I
read the ALGOL=60 report and was ready to go to work.

The compiler for the IBM 7090 will be released very shortly, probably within the
next month or six weeks. It is in the last stages of debugging right now. At present,
it produces an assembly-level tape which can then be run through the FAP assembler.

A few features of the ALGOL language which have not been implemented in the
present 7090 version are: (1) recursive procedures, (2) arrays called by value, (3)
dynamic implementation of parameters called by name. In addition, there are restric-
tions on the use of dynamic own arrays.

The compile time is very fast — faster than FORTRAN — and is approximately the
same as the assembly time.

I found from my own experience in programming in ALGOL that it is a more natural
language to use than FORTRAN, and is fairly easy to learn. You don’t have to do
quite as much long-range planning for a longer program. I think it is probably more
suited to scientific programming than FORTRAN is.

CARR: I can give you an example of the ease of learning AL.GOL. We had a
group of about 30 Ph.D.’s in a course at Chapel Hill this past summer. They were
trained in chemistry, physics, mathematics, and statistics, and were going to be in-
volved in the use of computers in universities. As part of our course, each person ran
one or more — in most cases it was two or three — ALGOL programs by remote control
at the Amsterdam computer center. Except for one or two ‘‘theological’’ arguments,
which you get in these languages sometimes, these people were able to go ahead and
learn ALGOL and to apply it to fairly elaborate programs.

I do not think that there is much argument between one language and the other,
although I do feel that the presence of a large group of European users, including [
think possibly a large group of Soviet users as well, may make ALGOL more valuable
than it looks at the present time.

There are at present ALGOL compilers available for the IBM 7070, the Remington
Rand 1103-A, and an approximation to it exists for the Burroughs 220. We ate trying
to finish one at Chapel Hill for the Remington Rand 1105. Soon there will be a number
of these around.

We have a program that will take a FORTRAN program and translate it over into
GET, our own present language. We see no reason why we shouldn’t take FORTRAN
decks and make them into ALGOL, and vice versa.

Such programs are not really very difficult to write if you know how to do it. The
man who wrote our FORTRAN to GET program for us was a senior undergraduate who
had never done one before. He only took three months.

Don’t be frightened when people tell you that some of these problems are too com-
plex; for example, an ALGOL compiler for a large computer was written in Denmark by
a group of three or four people in a period of three months. They knew what they were
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doing, because they had done a previous one. The *‘soft work’’ blockades that have
been put up by some of the manufacturers are not really as necessary as they have been
made out to be.

O'KELLEY: I am not familiar with the ALGOL language, and am curious about
the input-output provisions. For example, does the ALGOL compiler for the IBM 7090
come complete with input-output provisions?

LIETZKE: Inputeoutput was not defined in the ALGOL-60 report, but the format
statements are FORTRAN format statements. So, instead of saying *‘write output
tape’’ or ‘‘read input tape,’’ you just say *‘input’’ or *‘output.’” Then there are argu-
ments that go after it: Format statements, a data list, a Boolean operator, end of file,
and so on,

O'KELLEY: I now would like to direct the discussion into another area which I
know has concerned experimenters rather frequently. It is the choice of the medium
which links the data-handling system to the computer. For example, in some automatic
systems cards may be a very convenient medium, while in other cases it may be mag-
netic tape if high speed is required. This important choice depends on the design phi-
losophy of the experiment, and on the experimental objectives. Perhaps members of
the Panel might cate to comment on certain specific examples showing why a particular
medium was chosen to link the computer and the data-handling equipment together.

FERGUSON: Very shortly we are going to attempt the ultimate in connecting the
source of data with the recipient, which will be the computer. In our tandem Van de
Graaff accelerator control room at Chalk River, we are going to install a Digital Equip-
ment Corporation PDP-1 computer which will be connected on-line to the counting
equipment, so it can actually read the data on demand, and start processing it. We are
looking forward to this very much.

At first we hope to apply this system to experiments involving the analysis of
spectra. We don’t expect to be able to use nearly as sophisticated programs for spec-
tral analysis as we have been hearing about today. But, nonetheless, there are a great
many things connected with an experiment which we experimenters have found very
dull. A typical way to make measurements in our tandem control room is: We start
and stop the counting equipment; then we read the data out on typewriters; and finally
we sit down with a desk calculator and start adding up.

We propose to eliminate that immediately and, in fact, many other things as well.
We will have the computer searching for peaks in the spectra and things like that.

These is one other application that I am promoting, and that is to program the com-
puter to analyze pulses as they come in: This is becoming more and more important,

I am very interested in a multiple counter array for use in angular correlation experi-
ments, The method was described in a paper I presented at the Washington meeting of
the American Physical Society this year. Two gamma-ray components out of a cascade
will be detected, although it could actually detect three as well.

The array will have seven counters in it which will be connected to the computer.
An event will consist of a time coincidence between two of the detectors, and it is
going to be up to the computer to sort this all out. The computer will be told that a
coincidence has occurred in two counters; it will then determine what counters they
wete, whether the peaks lie in certain acceptable regions, and, if they do, it will then
record a count in one of forty=two different memory cells.
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This is the sort of application of computers that T feel is becoming more and more
important in nuclear analysis.

O'KELLEY: Thatis a very sophisticated approach indeed. 1 believe Professor
Bromley has a comment to make.

BROMLEY: T would like to comment on two points: First of all, T would like to
discuss the question of the more indirect connection between the source of data and
the computer; this usually boils down, as Dr. O’Kelley has mentioned, to magnetic
tape, paper tape, cards, or something of this sort.

Then T would like to present some of our plans which are similar to the approach
just described by Dr. Ferguson.

To consider the first one, I think it is very difficule, if not impossible, to make
any statement about an optimum means of connection, because it depends so critically
on the experiment which is being done. T feel this is a problem that has plagued many
of the discussions we have had here at this conference. In many cases it is possible
to make such a statement; but there probably is no general, all-purpose solution.

For example, if you want maximum speed — as, for example, in the large, multi-
parameter pulse-height analyzers which we and Oak Ridge are getting soon — then we
are going to magnetic tape to get that maximum transfer speed. On the other hand,
there are many applications where it is particularly advantageous to get nuclear data
on cards, because in this way you can perform a sorting operation to the cards you
want and get rid of the rest. Dr. Goodman at Oak Ridge has used cards to particular
advantage in some of his work. If you use tape, then you must go either to cards or
into a computer to obtain the sorting.

But to go on to the matter of a more direct link which Dr. Ferguson has mentioned,
our interest in this stems from the fact that we hope in the very near future to get ap-
proval to start installing the first of the ‘“Emperor’’ tandem Van de Graaff accelerators.
Our hope there is to have this connected to a computer facility right from the beginning.

1 won't say what kind of computer facility, because from what we have heatd to-
night, it is clear that it matters very little whether the computer is an IBM 7090, or
whether it is a little black box which will sit under your desk, and which behaves like
a 7090, but is really connected to a machine in Indiana. In any case, the accelerator
itself is being designed so that all functional controls will be available in digital
fashion. We can then proceed to remove a great fraction of the drudgery which is as-
sociated with experimental wotk in any field. In my own field, for example, I can think
of a number of measurements in which this approach would be useful. One of the most
deadly of all experiments is that of measuring an excitation function — that is, where
you sit and look at what happens at a given energy; then, you set the machine to the
next energy and look again, and keep on doing this until you drop dead or the machine
does.

Obviously this is the sort of thing which can be and should be relegated to auto-
matic control. The experimenter would specify a beginning energy and an energy in-
crement and your computer would be connected, as Dr. Ferguson said, to the local
analyzers. At each energy you would get a spectrum whose peaks atre to be analyzed.
If the peaks are due to gamma rays, a computer program would perform the analysis.

If the spectra are due to particles from a reaction, the data are analyzed and corrected
for the proper kinematic considerations.
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The computer could also keep track of monitor counts or beam-current counts, so
that the desired statistical accuracy is obtained. A gradient requirement is also ad-
visable to ensure that if the data change very rapidly the increment will be reduced
and the structure will not be lost,

For angular distributions, a similar approach is used. T will give an example of
the sort of thing we are planning to do. Suppose you are interested in a binary reac-
tion, for which you want to detect both the particle and the recoil nucleus. The parti-
cle detector is programmed to cover some angular span, and for each count the com=
puter sets the particle detector at the required angle. The computer also determines
the angle where the recoil should be and sends the recoil counter around to pick it
out. An energy analysis is performed on both the particle and the recoil.

Again, the computer can keep account of the statistics, and can adjust the angular
derivative to prevent loss of structure. All of the data then must be converted to the
center-of-mass system, and this is normally done by carrying the data to the computer
and stuffing some of it in when the computer laboratory will let you.

What you really want out of this whole business is a table which gives the angular
distribution coefficients in the appropriate expansion. You don’t care very much about
the intermediate steps so long as you have the coefficients and an analysis of the
errors,

If this sounds wonderful, it should, because we haven’t done any of this yet! Nev-
ertheless, these two examples are typical of our plans for future accelerator use, I
think too much emphasis has been placed on the question of whether you want a small
local computer or a large computer. The real question is that of access to the com-
puter. Personally I am inclined to think there is an interim period in which we can
probably use a small computer locally and also use it to augment a large one located
at some special facility,

CARR: I can give you an example of an extreme case which I think is still being
tested. At Ohio State University there is a large computer which does two things at
once. It works real time on a military simulation problem which is in the back half of
the building, within a locked room with guards on the outside. Out front there is a
group of students and faculty members who also use this machine. Most of the time, 1
am told the people out front think they have control of the machine completely, and the
people in the back think that they have control of the machine completely.

The point is that there is enough machine to satisfy the two groups most of the
time. That is an extreme example, but there are other places where this sort of dual
control is being done.

It took a fairly elaborate program to do this. It was done because the Air Force
was willing to pay for almost all the machine by means of the back room, and the
people out front were able to use it at a much lower cost.

O°'KELLEY: Y would like to ask what kind of machine this is.

CARR: This was an IBM 7090. There is a similar application of a Digital Equip-
ment Corporation PDP-1, which is a much smaller machine,

O'KELLEY: When a proposal such as this comes up at a laboratory, the experi-
menters immediately raise howls of anguish, because we think that we won’t all get a
crack at the machine, and that we will run into the same old scheduling problem again.
Apparently it can be made to work on a certain scale.
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BROMLEY: There has been discussion at this conference, and there is discus-
sion in general, about the question of economics. I think it is worth bearing in mind
that, if you ate concetned with a large accelerator, the running cost per hour on the
accelerator far exceeds that of most computers.

So it is really not a question of conserving time of the computer, but of conserving
effective time on your machine. If there is going to be any holdup, this is something
you have to bear in mind.

CARR: 1 would like to suggest that it is very useful to consider, as Dr. Bromley
has indicated, that expensive experiments make computer utilization possible.

There have been experimental real-time control, large-scale experiments, going on
in this country as early as 1953 or 1954. One example here in the state of Tennessee
is the flight research center at Tullahoma, which has a large wind tunnel. The cost of
the wind tunnel experiments was such that a computer was connected to the equipment
to give a rapid evaluation of the data and to help make decisions on what experiment
should be done next.

Of course, computers are continuously monitoring the data from flights of missiles
and spacecraft.

Another real time experiment we all should know about is the Air Defense System
of the United States. This is a real-time experiment in which the machines are trying
to make decisions on the presence or absence of unidentified aircraft over the conti-
nental United States and Canada.

This is one of the most complex information-processing networks that exists. Most
of us do not appreciate the extent to which this system has been developed in its input-
output, its man-machine relationships, and so on — mainly because it is a classified
system.

These are some of the systems working now which are extremely complex experi-
mental control systems with digital computers as the central device. Whether they are
good for our own experiments in every case is another question,

All of these experiments, of course, are million-dollar experiments, and not all of
us have that sort of money. But there is no question at all but what they can be done.
The question over and over again is the economics of it.

O'KELLEY: I would like to ask Dr. Guinn to comment on activation analysis. I
suppose here again the application of computers involves a matter of economics. I
know that activation analysis is one field of radiochemistry in which there is enormous
interest in the use of computers, and quite sophisticated automated systems are being
used.

GUINN: The field of activation analysis is a fairly natural one for computers. It
lends itself very nicely to it. If you are engaged in doing large numbers of analyses
and processing droves of data, it is pretty obviously attractive if you can save a lot
of time; and if the time you save amounts to more dollars than it costs to work the data
up on the computer, it looks like an attractive approach.

I know I shouldn’t say this among the people up here — probably many of you out
there, too ~ but, frankly in this general field the computer problem itself is a trivial
one. The problem is to get some data that are worth giving to the computer. That is
the biggest problem, and I am really very serious about it, It is possible to get very
rigorous reproducible data in very favorable cases that the computer can then do a
very fine job on because the mathematics is quite straightforward — once the data are
rigorous within counting statistics.
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But if you are trying to.do a lot of this work where you have all kinds of different
materials to look at, many of them coming out rather unexpectedly with enormous count-
ing rates and so on, the problem of getting good data is a serious one. To the best of
my knowledge, nobody has completely licked the problem yet. There have been many
approaches and many improvements, We are working on this a good bit ourselves.

Once we get to the point where we feel our data are really first class, and the vol-
ume of such work gets to the point where manual processing is really prohibitive, then
the computer will be very useful. In the meantime we are developing a computer
program, but the bigger problem is in getting the data.

SALMON: 1 would like to take up Dr. Ferguson’s point about using the computer
to do the pulse-height analysis. It always struck me as an extraordinary thing that one
has had a pulse-height analyzer that collects binary information, carefully stores it in
binary fashion, and then pumps the information out in decimal form. This decimal in-
formation goes into a computer, only to be reconverted back to binary form.

This is an awful waste of money and time. In fact, we have had a look at storing
data directly onto magnetic tape; that is, the output of the analog-to-digital converter
goes directly onto magnetic tape, not with a view to putting it onto a computer, but
merely for storing data in a convenient form. But I really think that the suggestion of
transferring information directly into a computer should receive some more serious cone-
sideration,

O°KELLEY: Did]I understand that your magnetic tape system was not intended for
use as a multiparameter system, but just as a single-parameter analyzer?

SALMON: Yes,

O'KELLEY: Of course, with magnetic tape it is not possible to count at very high
rates.

SALMON: You also get into the difficulty that tape written on one machine may
not be compatible with another, We have some experience with data storage on paper
tape. At Harwell we have a small listing adding machine which is capable of accept-
ing paper tape from one of our analyzers. Very simple operations have been performed,
such as background subtraction and spectrum stripping.

O°KELLEY: T would now like to raise a question which has come up already in
some of the discussions at this conference: How important to gamma-ray spectrosco=-
pists is the standardization of Nal scintillation spectrometers? That is, should we
agree to use 3« by 3-in. Nal crystals at 10 c¢m, 7 cm, or some other distance, and
should there be a standard counter shield whose environmental scattering properties
are known? ‘

For example, our group at Oak Ridge has for a number of years used a 3- by 3-in.
Nal crystal, with a source-to-crystal distance of 9.3 cm. This source-to-crystal dis-
tance was one of several for which efficiency curves were readily available from the
work of P. R. Bell and his associates. Our distance is rather atbitrary; in fact, I
have been told that it was taken from the dimensions of a popular size of vacuum-tube
carton which was used as a source holder in the early days!

SALMON: Our standard distance is 17.3 cm.

With regard to standardization, I think it is a good thing for everybody to be able
to say about a spectrum, ‘*This was done on a standard crystal, at a standard dis-
tance, in a standard geometry.”” The merit of this is obvious as far as radiochemists
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are concerned. Heath has suggested the 3- by 3-in, Nal crystal, and we use these di-
mensions ourselves.

However, you can’t always use a standard detector: different users may want
slightly different conditions. A person with a whole-body counter probably wants to
use a 9- by 6-in. crystal, or some other large size. But again, some form of standardi-
zation should be maintained for this type of measurement.

It is frustrating to try to use published spectra to aid in interpreting your own re-
sults, only to discover that the published curves were for a very different setup. With
everyone going over to 3- by 3-in. crystals, I would put in a plea that workers in this
field stick to that size and use Heath’s shield dimensions.

I wouldn’t be so fussy about the source-to-crystal distance, whether it is 17.3 or
9.3 cm, because allowances can always be made for this. But as far as general ex-
ternal conditions are concerned, then I really think some standardization is really re-
quired.

BROMLEY: Both Dr. Ferguson and 1 were brought up on 6.2 in. But I think this
is another case where it is very important to keep in mind that the experiment may be
such that it is not really necessaty to go through with a very elegant standardization
procedure.

It is quite clear that if you are going to do fallout monitoring or activation analyses
where you have a fairly routine measurement which you are going to do, well and good.
But T would certainly support what Professor Wapstra said earlier today, that in many
specialized applications it is just not feasible, not even desirable, to worry about any
sort of standardization. In such cases you can use whatever is conditioned by the ex-
periment, and do the best you can about standardizing on site.

GUINN: T would like to comment, too, that for really accurate work in activation
analysis it isn’t possible to take anyone else’s spectra. For example, while Heath’s
spectra are very precise, they are for his particular spectrometer.

It is virtually impossible to make another spectrometer just like it. Actual crystals
differ in resolution, even though they are the same size. You might, if you surveyed
enough crystal-photomultiplier combinations, get two that were virtually identical, but
it would take a lot of work with this. So, in practice what you must do is calibrate
your own particular crystal — that is, derive your reference spectra from it, not use
somebody else’s.

The curves that Heath has published are very useful. If you have a crystal which
is approximately the same, you can use his tables and graphs very nicely to check
identifications. But for the quantitative calculations that you would want to do with
the computer, you would use your own set of reference spectra, not those.

One other comment I would like to make is that even if you do settle upon, for
practical purposes, a 3- by 3-in. crystal, it doesn’t make much sense in this particular
kind of work to standardize on a distance because, if a sample is too hot to count at
some particular distance, you would rather not throw it away or divide it up just to
stick to that distance.

Instead, you would prefer to back it off to some other position. Then you must have
reference spectra for different distances, which is what we do in our work. We have a
monitoring counter which checks the samples first, and if they are too hot to be counted
without gain shift at a particular setting, it tells us what particular distance we should
use.
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Finally, I would like to remark that, although a 3- by 3-in. crystal is a very good
compromise and covers a lot of the sort of work you want to do, there are many special
cases in which it is not the right crystal to use.

Just as an example, if you are trying to detect very low-energy gamma rays, say a
few tenths of an Mev in the presence of a great deal of intetference from something
that is one, two, or three Mev, you certainly don’t want to use a three-inch-thick crys-
tal. You want to use a very, very thin crystal and you’ll get much better results. So
you don’t want to standardize completely on any one size.

SALMON: T quite agree with the remarks there, but I believe that these reference
spectra are very valuable, because the majority of workers only use the gamma spec-
trometer for a small fraction of their time. However, if they are confronted with refer-
ence spectra for different dimensions, they just can’t understand how to use the infor-
mation. This may sound trivial, but I think a very large number of users are barely
able to understand how the spectrometer works.

O'KELLEY: 1 would like to comment also that, as a person who does quite a bit
of gamma spectrometry, these reference curves are extremely useful to me. Certainly
when you look at a piece of published research, you like to have at least a qualitative
feeling for the quality of the data. If the spectrum is taken on a standard setup, it
looks familiar, so you can understand and interpret it,

In spite of that advantage, there are special situations which we have all encoun-
tered. T suppose we have all been forced to use thin crystals for counting x rays. In
Dr. Salmon’s paper today, he commented on problems with soil samples that are quite
thick and exhibit severe scattering. But these are all specialized applications and
require specialized techniques.

At this point, T would like to invite the participation of the audience in a few re-
maining questions,

First, several people have mentioned to me during this conference that they feel
there is a need for some kind of clearing house for computer programs of the sort that
we have been discussing. In particular, I think people are interested in gamma-ray
unfolding, the generation of response functions, and analysis of radiocactive decay
curves, I will say at the outset that although the Radiochemistry Subcommittee is a
sponsor of this meeting, we are probably in no position to accept the responsibility
for such a clearing house. However, I wonder if some of you might have opinions as
to the usefulness of such an arrangement.

SHAFER: At IBM there is an arrangement known as SHARE, to which many
programs from outside laboratories may be submitted in a standard format. These
programs are cataloged and distributed to members of SHARE.

O'KELLEY: That is certainly one procedure. I think perhaps the question I
should have asked is whether there was any need to do something in addition to this
for programs which are in the formative stages and not ready for SHARE distribution —
sort of a formal grapevine. As a result of this conference, I believe that we can con-
sider that the informal grapevine is now well established.

There seems to be a lot of interest in getting a clearing house established to ex-
change programs. Maybe T should have asked whether there are volunteers.

NOSTRAND: Tt would be difficult for any one group to take on such a job un-
aided. However, if there is a group which has the capability and is willing to do so,

233



then I would suggest that financial support might be requested from some agency such
as the Division of Isotopes Development of the AEC.

O'KELLEY: These remarks will appear in the Proceedings of this Symposium,
and since the Atomic Energy Commission is one of the sponsors, perhaps someone
there will take note of the need for a clearing house.

BROMLEY: 1 would like to enter a small plea in connection with any such col-
lection of programs, and that is that any program be accompanied by an explicit state-
ment of what peripheral equipment it was designed to run on. Otherwise there is some
widget in left field which will take the program and chew it in little bits, even though
your computer center has the same apparent specifications as the computer for which
the program was originally written,

CARR: The Association of Computing Machinery collects a great deal of infor-
mation in certain areas. For example, as Editor of Computing Reviews, I will be glad
to accept for possible consideration any sort of bibliographies that anyone would like
to have published and put on the record so they could go and find it three or four years
from now.

Although T cannot speak for him, I am sure the Editor of the Communications of
ACM would be interested in any possible proposals of program listings or a review
article as to what is going on in this field. T think this is a possible outlet that per-
haps might be useful to you in this situation.

SCOFIELD: Tt would be very useful to adhere to a standard notation, both in the
Proceedings and in any programs exchanged through a clearing house.

O'KELLEY: I quite agree that this would be an extremely useful thing to do; how-
ever, I am not volunteering to do that in the Proceedings. Tt would require too much
editing in that case, but as far as future action is concerned, standard notation is be-
coming highly desirable. The variety of notation used at this symposium points up this
need.

NOSTRAND: There has been considerable interest in small computers at this con-
ference. In the past, I feel that there may have been a reluctance for experimenters to
publish programs, especially if done on a small computer.

SUNDERMAN: With regard to publication, there is not a wealth of information in
the open literature concerning the programs that have been discussed in the last few
days. The reports from various agencies under whose auspices they were produced —
AEC reports and so on — are available to many of us; but they are not generally avail-
able to others.

I think we should consider when working with these programs how we might get them
into a form which would be acceptable to various journals for actual publication of the
techniques employed and the results of the application of these techniques to experi-
mental data,

These are technique papers. As any radiochemist knows who has tried to get a
technique published, this is not an easy thing to accomplish. It is not like getting the
394th method in the literature for the determination of iron. We should work toward a
mechanism for getting this information published as soon as produced.

O'KELLEY: Now that so many people have had to prepare their work for the
Proceedings, perhaps some of the papers will also be published in the open literature,
Material can be published in our Proceedings under AEC sponsorship, and in journals
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as well. If some of the authors should want to do this, we would consider such a
course very desirable.

TROMBKA: Would it be possible to publish a companion volume to the
Proceedings, which would contain only the computer programs discussed?

O’KELLEY: This can be considered later. It would be quite a chore to collect
all the programs and publish them in a separate volume.

FERGUSON: I should like to remark that my program which was described this
afternoon was written for the Burroughs 205 in machine language. It is not a FORTRAN
program. I am very willing to supply the information to anybody who wants it, How-
ever, I think it would be very difficult to make this program generally useful, other
than by describing the general techniques that were used in writing it,

GOLDIN: Does the Radiochemistry Subcommittee plan to publish a monograph in
the Radiochemical Techniques series on the subject of gamma-ray spectrometry?

O'KELLEY: To date, we have published a monograph in that series on Detection
and Measurement of Nuclear Radiation, which contains a rather long discussion of
gamma-ray spectrometry. The report number is NAS-NS 3105.
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INTRODUCTION

The Texas A & M Activation Analysis Research Laboratory (AARL) has several
systems which will automatically measure and record gamma-ray spectra [I]. One of
these, the Mark I-Ia, has been used recently in a number of controlled, experimental
runs made to establish the effectiveness of two computer programs. It is especially
convenient to use since its final outputs are punched cards, suitable for direct com-
puter input.

The two computer programs, AARL-10 and AA-4, were written to provide high-
speed processing of large volumes of data at low computational cost. In using these
programs, it is intended that several hundred samples be analyzed in a routine manner
with the computer-coupled system. Several simplifying assumptions have been made
to facilitate the computer programs. These include the assumption that samples
having known qualitative composition of fewer than about ten elements will be proc-
essed in large groups having similar arrays of elements. The experiments described
in this paper were made to establish the accuracy of automated analysis under these
conditions, with each of the computer programs.

AARL-10 PROGRAM

The AARL-10 program, written by Breen [2], develops a system of » linear simul-
taneous equations and n unknowns. They are of the form

kl gl(n) + kz gz(n) e+ kmgm(n) = D(n) , )]

1:].'his research was sponsored by the Division of Isotopes Development, United States
dAtqmlc Energy Commission, through the Texas Agriculturaf and Mechanical Research Foun~
ation.
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where kl, kz, cee, km are the unknown coefficients, gl(n), gz(n), cen gm(n) are the
count values of the spectrum elements 1, 2, ..., m, in channel n. The term D(n) is
the count value of the data spectrum in channel n. The best statistical data are at
peaks; the m values of n are chosen to be those channel numbers which correspond
to a main peak in one of the element spectra.

The computer program scans the entire data spectrum and finds peaks using the
‘‘students ¢*’ test. Those elements having matching peaks are considered to be
present. The values &, k,, ..., k  are found, and weights of elements present are
calculated using the usual decay and flux ratios. Some of the best results using AARL-
10 were found by Breen [2] and are listed in Table 1.

There is one fundamental error in the concept of the AARL-10 program. When gamma
rays from several different isotopes have similar energies, the spectra contain overlap-
ping peaks. If they fall in the same spectrometer channels, there is no solution. If
they fall in close proximity, the resulting simultaneous equations will be so similar
that the system is ill-conditioned. This effect amplifies any errors in the data spectra.
If, in correcting this, a channel which is not a peak location is used, the accuracy is
reduced.

Table 1. Analysis of Single Element Standards by Mark I-la System
and AARL-10 Program

Actual Mass Computed Mass

Element (mg) (mg)
Antimony 5.76 6.55
Antimony 9.02 10.36
Antimony 12.78 12.64
Tin 34.8 35.58
Tin 16.86 16.86
Zinc 8.67 9.67
Zinc 15.2 16.36
Zinc 10.12 12.83

AA-4 PROGRAM

An extension of the AARL-10 program is the use of the entire spectrum for anal-
ysis. If the spectra of the various components add linearly, the total curve is a sum-
mation of all radioactivities present in the sample. The new program, A A-4, obtains
a spectrum best-fit in the sense of least squares. This presupposes a reference li-
brary of the activated elements. In its operation it minimizes the expression

"E,j[kl w(n) gm)+ ...+ km w(n) gm(n) —~ w(n) D(n)]z , @

=i

where w(n) is a weighting function. The AA-4 program assumes w(n) = (1/D)(n).
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An artificial data spectrum, used to check out the AA-4 program, was generated
by averaging the counts in each channel of ten different library spectra. The calcu-
lated coefficients should, of course, be 0.1. The ten library curves and the one data
curve were each distorted by applying a 4% random error to the counts in each channel.
This was done by multiplying 4% of the channel height by a random number between —1
and +1. The results ate shown in Table 2.

Table 2. Analysis of an Aritificial Spectrum by Use of the AA-4 Program

Element No Error?® Weightedb Unweightedb

1 0.10000 0.1001 0.102

2 0.09991 0.0935 0.046

3 0.09991 0.0945 0.0898
4 0.10000 0.0995 0.997

5 0.10000 0.0963 0.1528
6 0.10000 0.0997 0.0984
7 0.10000 0.1012 0.1016
8 0.09999 0.1104 0.03525
9 0.10000 0.0975 0.9866
10 0.10000 0.1034 0.1058

%Computer solution with no error. The exact result should be 0.1,

Computer solution with a maximum 4% error in libraries and data. The
weighting function used was 1 per data.

0.82 0.63 0.37 0.2t
0.96 0.64 0.36 0.22,
097 0.63 0.36 0.2t LAYER 3
s
0 0.93 0.62 037 0.2
Fig. 1. Thermal Flux Varictions in a g 0.98 063 0.38 ol22
4 x 4% 10 in. Aluminum Box. g e 0.60 0.36 o LAYER 2
1.07 0.62 0.35 0.21
1.04 X 0.36 ol24
1.0 X 0.35 0.44 LAYER 1

Many of the data obtained from the Mark I-Ia system came from samples irradiated
in a 4 x 4 x 10 in. aluminum box. The data and library samples were irradiated to-
gether, and, since the samples were in the same vicinity in the box, the assumption was
made that the flux was uniform. This assumption was checked by placing a number
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of known samples of copper in the box, 2 in. apart in the vertical and horizontal di-
rections, and 21/2 in. apart down the length of the box. They were irradiated 6 hr and
counted. The flux of the lower left sample, nearest the reactor, was assumed to be
1, and the rest of the fluxes were calculated by using the ratio of the main peak
heights. The results are shown in Fig. 1.

RESULTS OF THE AA-4 PROGRAM

Table 3 lists the actual and computed weights of seven aluminum samples. These
were irradiated and counted separately, using the pneumatic system of the Mark I-Ia
system. The maximum error is 5%, and the average is 2.4%. The fourth sample was
ignored.

Table 3. Analysis of Aluminum Standards by the Mark I-la System and the AA-4 Program

3d Al Run

Sample No. Sample Wt (mg) Al (added) Al (found) Error (%)
001188 060118 1.37 0.725 0.742 +2.3
001190 080118 1.33 0.704 0.700 —-0.6
001189 070118 1.31 0.694 0.685 —1.3
001016 010118% 1.32 0.699 0.438
001187 050118 1.39 0.736 0.709 —-3.7
001186 040118 1.35 0.715 0.751 +5.0
001192 100118 1.24 0.656 0.664 +1.2

Average Error  +2.4%

%This sample contained visually less photopeak counts than any other.

Table 4 lists the results of a two-component system. Three mixtures and three li-
braries were irradiated about 6 hr in the aluminum box. After a waiting period of two
days, each sample was counted four times, and the masses were calculated. Here,
the accuracy was about 10%.

Table 5 lists the results of a four-component system. Three mixtures and three
libraries were irradiated in the box, and each mixture was counted three times. Here
it is interesting to note that deviation from the actual values is about twice the de-
viation from the average value. Zinc is low in all three samples, antimony is scat-
tered around the actual, and sodium and potassium are always high.

The results of an analytical problem of general interest are given in Table 6. The
analysis was for sodium, chlorine, and magnesium in blood sera.
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Table 4. Computer Analysis of Gamma-Ray Spectra by the AA-4 Program Test: Data

Reduction of @ Two-Element Matrix for Activation Analysis

S Determination®
ample
(mg) 1st 2d 3d 4th Average
Mix-1
Sb, 0.16 0.23 0.23 0.19 0.25 0.23
Zn, 16.07 13.02 13,71 15.66 14.75 14.29
Mix-2
Sb, 0.16 0.21 0.22 0.24 0.24 0.23
Zn, 16.07 17.09 17.25 16.89 17.53 17.19
Mix-3
Sb, 0.16 0.19 0.18 0.19 0.21 0.19
Zn, 16.07 15.47 18.88 16.30 17.09 16.94

%precision: Sb, 0.22 10.02 (9.1%); Zn, 16.14 11.62 (10.0%).

Table 5. Computer Analysis of Gamma-Ray Spectra by the AA-4 Program Test: Data

Reduction of a Two-Element Matrix for Activation Analysis®

Sample Zn Sb Na K

1-1 0.01759 0.00021 0.00269 0.02312
1-2 0.01431 0.00029 0.00238 0.02391
1-3 0.01343 0.00029 0.00250 0.02439
Average 0.01511 0.00026 0.00252 0.02380
Actual 0.02003 0.00022 0.00205 0.01995
2-1 0.01832 0.00016 0.00318 0.02935
22 0.01644 0.00023 0.00315 0.02936
2-3 0.01479 0.00020 0.00304 0.02960
Average 0.01651 0.00019 0.00312 0.02943
Actual 0.02009 0.00020 0.00200 0.02010
3-~1 0.01572 0.00014 0.00308 0.02490
3~2 0.01451 0.00021 0.00287 0.02746
33 0.01933 0.00020 0.00309 0.02679
Average 0.01652 0.00018 0.00301 0.02638
Actual 0.02009 0.00020 0.00205 0.02010

& .
Mass in grams.
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Table 6. Analysis of Blood Sera by Computer-Coupled Activation Analysis

Sample Sodium Chlorine Magnesium
No. (%) (%) (%)
1 2.67 4.08 0.38
1 2.91 4.36 0.78
2 2.63 4.34 0.51
2 2.16 3.80 0.24
3 2.62 4.32 0.48
3 2.88 4.40 0.43
4 2.06 3.86 0.20
4 2.94 4.39 0.48
6 2.21 4.19 0.24
é 2.91 4.25 0.33
6 3.04 4.20 0.26
CONCLUSIONS

Computer-coupled activation analysis will automatically process an analytical re-
sult from a weighed sample. The accuracy of this technique is comparable to other
analytical procedures for a single radioactive isotope matrix. As the complexity of
the samples increases, the accuracy of the technique decreases. This effect is the
result of many variables. When the problems of flux mapping and standard library
spectra have been resolved, better data are expected. Accuracy can also be improved
with better weighting functions for the spectral curves. Factors such as spectral
slope (total number of channels), channel number, and number of counts per channel
are also being considered for weighting.
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INTRODUCTION

Instrumental activation analysis [1] is based on gamma-ray spectrometry and
involves the quantitative analysis of gamma-ray pulse-height spectra obtained
after activation of samples. In simple cases at least one completely resolved
photopeak of the radioisotope of interest (or one completely resolved photopeak
of each radioisotope of interest) appears in the spectrum. In such cases quanti-
tative estimation is readily accomplished by simple means such as measurement
of the photopeak height or photopeak area, above the Compton continuum base,
and comparison with the corresponding measurement on the spectrum of the acti-
vated pure-element standard sample. In these simple cases even an appreciable
amount of gain shift can be tolerated without seriously affecting the accuracy of
the final value.

However, for complicated cases, more involved pulse-height spectra are ob-
tained, in which overlapping photopeaks occur. Two techniques have become quite
prevalent recently for the partial or complete resolution of such complex spectra:
spectrum stripping techniques and computer techniques. As will be shown, these
techniques place rather severe requirements on the reproducibility of the gamma-ray
spectrometry operations. The difficulties, and methods of circumventing these dif-
ficulties, are also discussed.

SPECTRUM STRIPPING

The spectrum stripping technique involves resolution of a complex pulse-height
spectrum by subtracting, separately, the contribution from each radioisotope present
in the sample in statistically detectable amounts. This may be done, in general, in
either of two ways: (1) by counting a reference sample of the isotope to be removed,
in subtract mode, in the same counter and under the same conditions as were em-
ployed in obtaining the complex sample spectrum, or (2) by subtracting a stored
spectrum or tape (magnetic or punched paper) of the pure, single radioisotope pulse-
height spectrum from the complex sample spectrum, using a variable multiplier. Both
techniques are performed directly with the multichannel pulse-height analyzer, and
complete subtraction must be determined by visual examination of the oscilloscope
display. The technique is thus somewhat subjective. However, if the various spectra
involved are obtained under almost exactly the same gain and if care is exercised by a
skilled operator, quite satisfactory quantitative results can be obtained. If the ref-
erence samples or reference spectra represent also known weights of the elements
in question, activated under known conditions and counted at known decay times,
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the subtraction process also supplies the data from which the weight of each sub-
tracted element in the unknown sample may be computed very simply.

COMPUTER SOLUTION OF PULSE.HEIGHT SPECTRUM DATA

An alternate approach to the quantitative resolution of a complex gamma-ray spec-
trum into its various statistically significant components is to utilize a purely mathe-
matical technique. Typically, this may be accomplished by solving, by least-squares
methods, a set of simultaneous equations, with at least as many independent equations
as there are radioisotopes significantly contributing to the observed spectrum. There
are a number of variations of this basic approach, many discussed in other papers of
this Symposium [2] to [5]. However, all have one requirement in common: the coeffi-
cients derived from the pulse-height spectrum data of the reference samples (pure in-
dividual radioisotope species) are constants; that is, all the spectra utilized (unknown
and reference) were obtained at almost exactly the same overall spectrometer gain.
Computer solution of such a set of equations can then provide values for each species
present in significant amounts, and its standard deviation, and also can supply firm
upper limits for species not detectable. The method is not subjective.

PROBLEM OF GAIN SHIFT

The greatest difficulty in the path of successful utilization of either the spectrum
stripper or the computer calculation methods of resolving complex pulse-height spectra
into their components is, at present, not due to inadequacies of the spectrum stripping
circuitry, of the electronic computers, or of the pulse-height analyzers, but rather to
difficulties with the photomultiplier tubes employed in the NaI(Tl) scintillation detec-
tors.

Under conditions of constant voltage applied to a given photomultiplier tube, the
electronic gain (multiplication) of the tube is still found to vary somewhat with av-
erage tube counting rate (a function of counting rate and pulse-height distribution)
and with time. Such effects have been observed and reported by a number of investi-
gators, including Marshall, Coltman, and Hunter [6] and Caldwell and Turner {7].

A number of measurements of gain shifts have been made in this laboratory also,
employing a particular 3- by 3-in. solid cylindrical crystal of Nal(T1) coupled to a
given Du Mont 6363 photomultiplier tube and an RIDL transistorized 400-channel
pulse-height analyzer. These are discussed briefly below and are illustrated in Figs.
1to 4.

The prompt effect of counting rate on overall gain is shown in Fig. 1 for three dif-
ferent photomultiplier tube voltages. The data were obtained with three different Aul?8
sources, which gave total counting rates (sum of all 200 analyzer channels used) of
47,000, 320,000, and 680,000 cpm respectively. The spectra were obtained promptly
after placing a sample on the crystal. As expected, the gain shift at the higher volt-
ages increases with increasing counting rate, amounting to a little more than 1% with
the most active sample at the highest photomultiplier tube voltage (1040 v). As pre-
dicted, thegain shift is much less severe at a low phototube voltage (830 v) and in
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Fig. 1. Effect of Counting Rate on Gain at Various Photomultiplier Tube Voltages.

fact is negligible in this case even at a counting rate of 680,000 cpm. In these meas-
198 photo-
peak was in the vicinity of channel 110) by increasing the amplifier gain as the photo-

urements the total gain was kept about the same (so that the 0.412-Mev Au

tube voltage was decreased. For easier graphical comparison the high voltages were
adjusted slightly so that the low counting rate sample photopeak would fall approxi-

mately in channels 110, 111, and 112 respectively. Rather similar results on prompt
gain shifts at high counting rates have been reported by Covell and Euler [8].

The long-term gain shift resulting from high counting rates is shown in Fig. 2.
These measurements were carried out at a relatively high phototube voltage (1040 v).
Three Au'!?8 sources, producing total counting rates of 91,600, 142,000, and 167,000
cpm for sources C, D, and E, respectively, were used. From Fig. 2 it may be noted
that the least active sample did not shift appreciably in gain even over a 2-hr count-
ing. The intermediate-activity sample showed a gradual increase in gain (about 0.5%)
during a counting period of about 1 hr. The most active sample also showed a gradual
increase in gain (about 1%) during a counting period of about 1 hr. The approximate
one-channel initial difference in the photopeak location of sources C, D, and E is not
due to prompt gain shift but rather to slight increases in phototube high voltage so that
the starting points would be in approximately channels 110, 111, and 112, respectively,
for easier graphical comparison. The data of Fig. 2 were obtained from a 2-min count
spectrum taken every 10 or 20 min, the sample remaining on the counter all the time.
Long-term gain shift data for a number of different types of photomultiplier tubes have
been reported by Covell and Euler [8].

The speed of recovery of gain, after a large gain shift has occurred, was studied
also. Results of one set of measurements are shown in Fig. 3. With a phototube volt-
age of 1040 v, a very active Aul?® sample (868,000 cpm) was placed on the crystal
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and left there for 30 min, during which time four spectra were taken rapidly, at inter-
vals, to determine the location of the photopeak. As can be seen from Fig. 2, the peak
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moved from approximately channel 110 (at zero time) to 111 (1 min) to 119 (15 min) to
122 (30 min). At this point the very active sample was replaced by a low-activity Au
sample (45,000 cpm). Spectra were then obtained at intervals for the next 6 hr, during
which time the photopeak rapidly came back as far as channel 117 and then, more grad-
ually, back as far as channel 114. Rather similar data, except that they involve an
RCA 6342A phototube (with a large negative gain shift at high counting rates), have
been presented by Covell and Euler [8], showing the same hysteresis behavior.

With regard to the possible effect of gain shift on counter resolution, resolution

measurements in this laboratory (with Aul?8
t

samples of various strengths) have
“‘true,’’ resolution over a wide
range of counting rates. However, there is, as expected, an apparent deterioration
in resolution if one counts a very active sample for a relatively long period of time,
a length of time during which gain shift is occurring to an appreciable extent. If the
pulse-height data that have been accumulated over this entire period are then printed
out as a single spectrum, a broader photopeak is observed. However, if counting is

shown no measurable change in ‘‘instantaneous,’’ or

continued for a yet longer period of time, the gain approaches a new but constant value,
and hence the apparent resolution begins to improve again. These effects are illustrated
in the data of Fig. 4. In this case a fairly active Aul?8 sample (186,000 cpm) was
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Fig. 4. Effect of Counting Time at High Counting Rates upon Apparent Counter Resolution.

placed on top of the crystal and left there for 153 min. At intervals the sample was
counted for a brief period (0.2 min live time), and at each such time the total accumu-
lated spectrum (accumulated in all the preceding 0.2-min counting periods) was printed
out but not erased from the analyzer memory. The apparent resolution of the photopeak
was then calculated for each readout, the results being those shown in Fig. 4. It is
seen that the apparent resolution gradually changed from the initial (*‘true’’) resolution
value of about 8.8—9.0% (at 0.412 Mev) up to a maximum of 10.2% (after 114 min) and
then started to return, reaching a value of 9.6% at 153 min. These data are not quan-
titatively indicative of the effect of gain shift on apparent resolution, since the count-
ing periods were not uniformly spaced, but they do indicate the general behavior. Be-
cause of the high counting rate and the limited storage capacity of the analyzer (10°
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counts/channel), it was not possible to accumulate counts during the total exposure
time of 153 min but, instead, just for the sum of twelve 0.2-min counting periods
shown,

METHODS OF MINIMIZING GAIN SHIFT

It is clear that very little gain shift can be tolerated if one wishes to employ spec-
trum stripping or computer solution techniques in the quantitative resolution of complex
gamma-ray pulse-height spectra. From experience in this laboratory it is felt that the
maximum allowable gain shift, when employing spectrum stripping techniques, is about
one-fourth a channel out of 200 (or about 0.1%). For computer calculations it is felt
that the maximum allowable shift may be a little larger, perhaps about one-half a chan-
nel out of 200 (or about 0.2%). With gain shifts greater than these tolerances, appreci-
able errors are introduced in the computed results, increasing with increasing gain shift.
The possibility of normalizing spectra mathematically to correct for gain shift has been
suggested, but the time-dependence (hysteresis) of the gain shift effect precludes the
feasibility of doing this accurately.

A number of simple rules, by means of which gain shift problems can be at least
greatly minimized, are apparent from a study of results in the literature and of data ob-
tained in this laboratory, such as those presented in this paper. These rulesare sum-
marized as follows and are employed in this laboratory:

1. Operate the photomultiplier tube at minimum feasible high voltage and use maxi-
mum amplifier gain (since with present-day equipment the phototube is the most suscep-
tibie to gain shift at high counting rates, that is, more susceptible than the amplifier or
pulse-height analyzer).

2. Do not count a rather active sample for a period of time any longer than is nec-
essary to accumulate sufficient counting statistics (to avoid long-term gain shifts). For
tunately, highly active samples, which produce large gainshifts, need not be counted for
more than a matter of seconds to provide good statistics for at least the major compo~
nents.

3. Employ a screening counter to check the activity of samples before they are
placed in the spectrometer. A few seconds of counting on a simple Nal(Tl) counter-
ratemeter system is all that is required. If the activity level is low enough so that
the equivalent counting rate on top of the main spectrometer crystal, at the desired
gain (approximate conversion factors for converting screening counter rates to equiv-
alent rates on the main spectrometer determined by simple calibrations), is less than
a few hundred thousand counts per minute (the current gain shift tolerance rates of our
spectrometer systems), the sample may be safely counted in the spectrometer, with
negligible gain shift. If the screening counter rate indicates an excessive counting
rate, the sample may be counted at one of five fixed poorer geometries (shelves at
various distances above the spectrometer crystal). Again, previous rough calibra-
tions indicate which shelf is best. Reference samples must then also be run on this
shelf, since the detailed spectrum shapes do, of course, depend upon sample-to-crystal
distance. If the sample is too active to be counted without gain shift on even the top
spectrometer shelf, it should be (1) discarded, (2) allowed to decay until it can be
counted suitably, or (3) an aliquot should be taken for counting. In general, samples
too active to be counted without gain shift even on the top shelf will have been noted
on milliroentgen per hour gamma-ray safety meters, even before any check on the screen-
ing counter,
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4, Employ a plastic absorber (typically 1 cm thick) between sample and crystal to
absorb most of the beta particles which would otherwise reach the crystal from the
sample, with minimum production of bremsstrahlung. Contributions from beta particles
and bremsstrahlung are undesirable in gamma-ray spectrometry, since they contribute
to overall counting rate (and hence to gain shift) and to the general “‘Compton smear’’
of the spectrum, and they introduce greater dependence on sample density.

5. Avoid long-term counting-rate-independent gain shifts by frequent gain checks
with a standard isotope source (such as Csl37).

6. If necessary, employ a gain stabilization device, such as that described by
Scherbatskoy [9], or the commercial device which has very recently become avail-
able.! A similar apparatus is also described by Fite, Gibbons, and Wainerdi [10].

7. Employ a photomultiplier tube of a type known to be least sensitive to count-
ing rate gain shift and, if possible, selected from a group of such tubes on the basis
of minimum gain shift. For example, Covell and Euler [8] have found that EMI photo-
multiplier tubes are outstanding in their relative freedom from gain shift at high count-
ing rates. Their results also show a greater consistency, from one EMI tube to another,
in their gain shift behavior than that shown by other photomultiplier tubes.

8. Since temperature affects the gain characteristics of photomultiplier tubes, pre-
amplifiers, and amplifiers (especially if transistorized), and the electronics of multi-
channel analyzers (again, especially if transistorized), it is essential that the entire
spectrometry unit, including detector, be located in a thermostatted, well-ventilated
room.

OTHER PROBLEMS WHICH AFFECT THE ACCURACY OF SPECTRUM STRIPPER
AND COMPUTER RESOLUTION OF COMPLEX GAMMA-RAY SPECTRA

In addition to gain shift, certain other problems can cause trouble with the spec-
trum stripper and computer methods of resolving complex pulse-height spectra into their
components. Two of these are discussed below.

Beta Particle and Bremsstrahlung Contributions

Contributions from these sources can result in erroneous results in computer cal-
culations but do not directly interfere with spectrum stripping (since the latter is based
only on photopeak subtraction). For example, if a number of samples containing vari-
able amounts of phosphorus are activated with thermal neutrons to detect certain other
elements present which form gamma-emitting isotopes, computer results can be in error
unless a P32 reference spectrum is included in the library of spectra employed in the
computer calculation. With peak-searching routines the presence of pure beta emitters,
such as P32, is not detected and hence would not normally be included in the set of
equations which the computer would set up and solve. Hence, the results for all the
species detected and calculated would be in error. An example of this difficulty is
shown in Fig. 5, which shows the pulse-height spectra obtained from an Aul?® sample
containing various amounts of P32, The pulse-height distribution in the various chan-
nels is obviously greatly altered by the contributions of the P3? beta particle spectrum

1 . A .
Spectrastat, Cosmic Radiation Laboratories, Inc.
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(and bremsstrahlung arising from the P32 beta particles). A thicker plastic absorber
than that used for these illustrative measurements could prevent even the most ener-
getic of the P3? betas (1.71 Mev) from reaching the crystal, but some contribution from
bremsstrahlung formed in the sample, its container, and the plastic absorber would
still reach the crystal and be detected.
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Fig. 5. Effect of P32 Beta Particles and Bremsstrahlung upon the Apparent Shape of the
Ay198 Gamma-Ray Spectrum.

Even if, in such a case, a P32 teference spectrum were introduced into the com-
puter calculations, errors can arise if the samples vary appreciably in density and
average atomic number, since the number and energy distribution of beta particles
and bremsstrahlung photons getting out of the sample will depend on these factors.
Thus, the *‘standard’’ P32 spectrum shape might be different for each sample.

This problem is not serious, in general, for low-energy beta particles (E
<1 Mev), since they are readily absorbed with little bremsstrahlung formation but
may become important with higher-energy beta particles. Even in those cases in
which an induced activity emits a readily detectable gamma ray, as well as high-
energy beta particles, difficulties can arise because of variations among the samples
in density and atomic number, for example, if various samples are analyzed for alu-
minum via the A127(f2,}/)A128 reaction — since Al?% emits 2.87-Mev Emax betas as
well as 1.78-Mev gammas. Variations in sample density and Z can of course alter
the number and energy distribution of gamma rays getting out of the sample, but
small variations affect the beta particles much more than they affect the gamma
rays.
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Use of Inaccurate Reference Spectra

Unless very careful refinements are carried out, the use of certain types of ref-
erence spectra can lead to errors in computer results and, in some cases, to errors
or complications in spectrum stripping results. The difficulty arises whenever a
‘‘pure’’ element is irradiated with thermal neutrons to provide a reference spectrum
of, preferably, a single radioactive species. Difficulties can then arise because of
(1) impurities in the *‘pure’’ element standard, (2) production of more than one (n,y)
radioactive product by the element, and (3) production of significant quantities of
(n,p), (7,), or (n,2r) radioactive products by the element from the fast-neutron com-
ponent of the predominantly thermal neutron flux. Presumably other activities, due
to A4l production from air in the container and to impurities in the container itself,
would have been already eliminated by obvious means (such as air flushing before
counting, transfer to fresh containers before counting, or subtraction of A%l and
activated container spectra) and background contributions similarly eliminated (by
subtraction).

With regard to point (1), obviously very pure standards should be used. However,
in many cases even the best available will show detectable activities, due to impuri-
ties, especially in spectra obtained at times very short, or very long, relative to that
of the principal radioisotope. If standard spectra are to be employed over a wide range
of irradiation and decay times, they should first be corrected by subtraction of each
identified impurity contribution. If this is not done, the reference spectrum will differ
somewhat in shape as a function of irradiation and decay times, since, in general, the
impurity activities will have half-lives different from that of the principal radioisotope.

Point (2) is a difficulty that arises often but is more readily corrected. For ex-
ample, if a very pure copper sample is activated in a highly thermal neutron flux,
two copper radioisotopes are produced in significant amounts: 12.8-hr cu®? (a
positron emitter) and 5.1-min Cu®® (which emits 1.04-Mev gamma rays). At decay
times of the order of an hour or less, both isotopes will contribute significantly to
the observed spectrum, in amounts (for given counting conditions) depending on the
irradiation and decay times involved. It is seldom feasible to count each unknown
sample at exactly the same decay time as that at which the reference spectrum was
obtained (in which case there would be no problem), and hence decay corrections
are necessary. This is of course simple if only one half-life is involved but is
more complicated if two or more half-lives are involved. In the example cited,
one can obtain a rather pure Cu® reference spectrum by simply waiting until the
5.1-min Cu®® activity has decayed out and then obtain a rather pure Cu®® reference
spectrum by subtracting the cub* component out of the reference copper spectrum
obtained at an earlier decay time. Then, separate Cu®? and Cu®® reference spectra
can be utilized in either spectrum stripping or computer operations in a straightfor-
ward manner. Other cases, however, may be more involved, especially where more
than two (n,y) radioisotopes are produced by the element and/or where at least two
of them have rather similar half-lives.

The production of radioisotopes in a single element by fast neutron reactions,
as well as by thermal neutron reactions, can further complicate the situation [point
(3)]. Even in the case of an element that is monoisotopic in nature, such as alu-
minum, the problem exists. For example, stable aluminum consists entirely of Al%7,
which readily forms 2.3-min A1%8 by thermal neutron (n,y) reaction; but, it can also
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form 9.5-min Mg27, 15.0-hr Na24, and 6.5-sec A1267™ by (n,p), (n,2), and (n,2n) re-
actions, respectively, if fast neutrons are also present. The first two of these fast
néutron products are also gamma emitters (as is A128), and the third one (A126m) is
a positron emitter (and hence forms 0.511-Mev annihilation photons in the sample).
Since all neutron sources used in neutron activation analysis generate neutrons ini-
tially as fast neutrons (e.g., as fission spectrum neutrons or as 14-Mev neutrons), one
generates a thermal neutron flux by slowing these fast neutrons down in some sort of
moderatot. At the positions of high thermal neutron flux (usually required for high-
sensitivity detection), there is normally still an appreciable fast neutron component,
and hence the possibility of fast neutron reactions cannot be ignored. Since these
products do not have the same half-life as the main product (in this case, A1%8), one
must resolve the aluminum reference spectrum into pure spectra of A1%8, Mg27, Na?4,
and A1%6™ jn order to avoid the limitation of having to count unknown and reference
at exactly the same decay time (following irradiation for identical periods of time).

In computing final results in a case such as that described above, one must of
course allow for any formation of A12® from fast neutron reactions on other elements
possibly present in the sample: Si?%(n,p)A1%8 or P31(n,a)A1%8. Similarly, Mg27 can
also be produced by Mgzs(n,y)Mg27 and Si30(n,a)Mg27; Na?4 also from Na“(ﬂ,y)Na24
and Mg“(n,p)Na“; A1%6™ ig only formed from A1?27. These contributions, of course,
not only complicate computer and spectrum stripping operations but also calculations
by simple photopeak height or area measurement as well. One here often resorts to
activations with and without cadmium wrapping of the sample to provide more accurate
identification of the source of fast-neutron-produced components.

In hydrogen-containing samples, recoil protons generated by collisions between fast
neutrons and sample protons can in certain cases also complicate matters by forming ap-
preciable amounts of activities by (p,n) or (p,y) reactions. Two well-known examples
are the formation of 10.0-min N13 (a positron emitter) by the C13(p,n)N13 reaction (if
the sample also contains carbon, as in all organic samples) [11] and the formation of
1.87-hr F!8 (a positron emitter) by the 018(p,n)F18 reaction (if the sample also con-
tains oxygeﬂ).2

In most neutron sources there is too low a flux of very high energy (> 5-10 Mev)
gamma-ray photons to produce appreciable activities by (y,n) or (y,p) reactions, al-
though this can be a problem if a potent source of photoneutrons, such as a high-
energy electron linear accelerator, is employed.3

OTHER SOURCES OF ERROR

There are, of course, many other sources of error which can affect the accuracy
of all methods of calculation, not just the results obtained from spectrum stripping
and computer calculation. Such sources of error are thus extraneous to the present
discussion, and most are quite obvious but may be simply mentioned here. They are
errors due to (1) neutron flux variations from one sample (or reference) position to
another, if not corrected for, (2) appreciable and variable amounts of neutron self-
shielding, (3) appreciable and variable differences in the fast neutron moderating

>This reaction has been used in this laboratory to determine O18 in water samples ob-
tained in O1® tracer studies.

3As in studies in this laboratory with a 45-Mev Linac.
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powers of samples and standards, (4) appreciable and variable differences in sample
size and hence counting geometry, (5) variations in sample and reference gamma-
ray self-absorption and scattering (and the beta particle absorption and bremsstrah-
lung formation variations discussed previously).

It is assumed that timing errors in irradiation, decay, and couating (including
spectrometer dead time) are both obviously possible and readily minimized so that
they deserve only passing mention.

CONCLUSIONS AND SUMMARY

Instrumental neutron activation analysis is a potent analytical method but con-
tains many possible sources of difficulty and error. These must be recognized and
eliminated, minimized, or corrected for. Certain of these sources of error are peculiar
to the spectrum stripping and/or computer solution methods of resolving complex gamma-
ray spectrum data into their various components. Of these, the problem caused by spec-
trometer gain shift at high counting rates is perhaps the most serious. The gain shift
problem is examined in some detail in the preceding discussion, exemplified by experi-
ments carried out in this laboratory and shown in the figures. Also, practical means
by which the gain shift problem can be greatly minimized, based on experience in this
laboratory, are enumerated.

With suitable attention to problems such as gain shift, matrix matching, elimination
of high-energy beta particles and their bremsstrahlung, and preparation of pure radio-
isotope reference spectra, instrumental neutron activation analysis, coupled with spec-
trum stripping or computer calculation methods, can be a powerful, wide-range, sensi-
tive, accurate analytical method. At the present time the spectrum stripping technique
is often used in this laboratory (in various phases of the Activation Analysis Program),
and a peak-searching, weighted least-squares program is being developed for use with
the laboratory’s IBM 7090 computer.
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INTRODUCTION

The identification and quantitative estimation of specific radionuclides contained
in a sample requires information on the chemical and physical properties of the nu-
clide. Often the history of the sample together with a measurement of the radiation
and/or decay characteristics of the sample can reduce or eliminate the need for chem-
ical separations. The measurement of radiation type, energy, and/or half-life is

sometimes necessary to assure ‘'

clean’ chemical separations. Counting techniques
can also frequently be used for isotopic ratio measurements. Gamma-ray scintillation
spectrometry is the technique often used for energy and half-life measurements [1—4].
The availability of multichannel analyzers for recording gamma spectra has greatly
increased the volume of data generated by the radiochemist. Processing and evalua-
tion of such a volume of spectral data is not feasible without the aid of a digital com-
puter. The use of digital computers for such analysis has been reported in the litera-
ture [5—9]. Complex mathematical and statistical techniques can be used in conjunc-

tion with a digital computer for quantitative analysis of gamma spectra.

lyork performed under Contract No. AT(45-1)-1350 between the U.S. Atomic Energy Com-
mission and General Electric Company.
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In our laboratory up to eight detectors are frequently used with a single multi-
channel analyzer equipped for selective storage and recycle operation. Electronic
data processing techniques were used for the required data sorting operations (Fig. 1).
Punched paper tape is used for transfer of the gamma-ray scintillation spectra from
the multichannel analyzers to the electronic data processing center. The following
additional information is automatically punched [10] on the paper tape prior to each
read-out of the multichannel analyzer’s memory:

1. start of data character;

2. analyzer live time;

3. analyzer number;

4. channel selector switch position;

S. time at end of count in 10~ 4 day up to 9999 days; and
6

. detector number, calculation mode code, and sample number for each detector.
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Fig. 1. Data Flow Chart.
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Control parameters and other data are transferred by punched cards. The information
on the punched paper tape is transferred to magnetic tape at the data processing
center. It is then checked for parity, skipped channels, illegal characters, insuffi-
cient number of channels, and other errors associated with equipment malfunction.
The data are then rewritten so that the first channel number for all spectra starts
with zero. The identification information is duplicated and relocated immediately

in front of each spectrum. The spectra with identification information are next sorted
by detector number and calculation mode code. Each spectrum is next reduced to a
set of channel groups, each composed of one or more channels. This operation is
specified by the detector number and mode code. The proper selection of summing
instructions reduces the errors introduced by gain changes or zero drifts normal with
presently available instruments. The reduction in the number of channels also allows
the storage of a series of spectra in fast memory during the computer calculation pass.
The reduced spectra are then sorted and stored on magnetic tape until required by the
computational program. Punched cards can also be prepared for input to other programs.
Corrections or additions to the stored data can be made using punched card input.

The radiochemist can normally identify the nuclides which could possibly be in
a given sample from the sample history. This information is used by our computational
program. The program estimates the amount of each possible constituent and the pre-
cision of each estimate.

Other program characteristics include the ability to use spectra from several de-
tectors for resolutions requiring decay information.

Counter backgrounds often vary more than is expected by counting statistics.
Often in activation and other analyses an estimate of one or more short-lived nuclides
is desired. Longer-lived nuclides of no interest may be contained in the sample. Two
methods for estimating background (which can include long-lived activities present in
the sample) were included in the program.

MATHEMATICS OF QUANTITATIVE ANALYSIS

Probability Model for Time Dependent Spectra

Lett, be an arbitrary, but fixed, moment of time called ‘‘time zero,”’ which will
function as a reference point in the ensuing discussion. A sample consisting of a
mixture of k radionuclides is counted for 7 nonoverlapping time periods, and the
pulse-height spectrum for each of these time periods is recorded independently with
a multichannel analyzer. Let (tly , tz,y)(y =1, 2, ..., r) be the time interval over
which the yth spectrum is recorded. Since the time periods are nonoverlapping, the
end points of these intervals satisfy

<

< <
o-t11<t12_t21<t22 t31<.,.<tr2. (€3]

HA

t

Initially, at time zero the mixture contains N (a=1,2,...,k)atoms of the ath
nuclide. Each of these nuclides decays according to a pure death probability law
(see ref [11], p 371). Let A be the decay rate, or death rate, for the ath nuclide;
that is, log, 2/X, is the half-life of the ath nuclide. Let Ty be the probability that

a specified atom of the ath nuclide decays during the time interval (tl'y , tz,y). Then,

Ty = €xp [=A (21, — 1)) —exp [=A (2, — 1)) . (2)
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Let e be the total number of detection systems used to record the r spectra, and 7 G=
1, 2, ..., e) be the number of these spectra recorded with the jth detection system
The r]. spectra must be recorded consecutively. Thus, for example, the same detec-
tion system, used for spectra number 3,4,5 and 9,10,11,12, would be counted as two
systems, first, with three spectra, and second, with four. Clearly,

.Z =T (3
=1
The ; pulse-height spectra recorded with the jth detection system all consist of
total sample counts in m distinct channel groups. Let G . be the efficiency factor
in the ith channel group of spectra recorded with the jth system for detection of the
ath nuclide; that is, G, is the conditional probability that a count is registered
in the ith channel group of the analyzer, given that the jth detection system is used
and a single atom of the ath nuclide decays. Thus, the joint probability that a
specified atom of the ath nuclide decays during the yth time period and is recorded
in the ith channel group of the yth spectrum is

Poin = G Tay » (4)

where

IA

7
Ry=0, R].: )X 78 and R]._1<y R]. (5)
B=1
determines j from y.

Let Xo;y be the total number of counts recorded in the ith channel group of the
yth spectrum due specifically to decay of the ath nuclide. For each a the set of
chance variables

. < C i
Lli=1, 2, m].,R]._1<y:R].,]—1,2,...,e]
have a joint multinomial distribution (see ref [11], p 124), with size parameter N , and
probabilities given by (4). So, the average value of X __ is

Yy
ave (Xg;) = NP, (6)
and the covariance between Xailyl and Xaiz'yz is
o (X“il"l’ X“izyz) - N“P“ilylwilizg”ﬁz - P“izyz) ) @
The symbol &, is the Kronecker delta function defined as
5” =1lifs=1t;
. (8
=0if s#1.
Since the & nuclides decay independently, (7) can be generalized to give the covari-
ance of any two X total counts as
cov (X , X )_ N, P, (3, -P . s . 9
iy %hY aMEY i Y, %ta¥ 3 %1%
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Let B, be the total number of background counts recorded in the ith channel
group of the yth spectrum. The set

By li=1,2...,m;

i R_.1<y§R’.;j=1, 2 0., €l

of all background contributions to the spectra consists of mutually independent
Poisson chance variables (see ref [11], p 115). As such,

ave (Bz,y) = qll v (10)

and
cov (B; R )— i\ 718.11.2 8,), 7y (11)
Here, j is determined from y in (10) and from Y in (11) by (5). A ty1 = Eyy is the

length of the yth counting period, and 9;; is the true average background count rate in
the ith channel group of the jth detecnon system.

LetY, v be the observed total count in the ith channel group of the yth spectrum;
that is,

Y, = aEl X iy * By - (12)

As linear combinations of mutually independent chance variables, the average values
and covariances of the Yiy ’s are easily calculated from (6), (9), (10), and (11) to be

ave (Yi,y)= él Napai'y + qijA'y ) (13)
and
k
cov (Yllyl , Yizyz) = a§1 NaPai1y1(3i1i2 37172 - Paiz'yz) + qiliA718i1f2 6,),172
k
= 81.11.2 87172 ave (Yl.l,yl) - a§1 Napail'yl Paizyz . 14)

The model for the estimation problem discussed below consists of the set of ob-
served total counts
. < .
[Yi,ylz= L2, .o ymyy Ry <y= Risi=1,2..., e]

and the formulas for their averages and covariances, (13) and (14).

Estimation Problem
The precise form of the estimation problem depends upon how much is known

about the parameters of the probability model discussed above. As a quantitative
problem, by definition, the half-lives of the nuclides are known. Thus,in all cases
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the A ’s and, hence, the Ta,y’s of formula (2), the individual nuclide decay prob-
abilities are known,

The efficiency factors of the ath nuclide and the jth detection system can also
be rewritten in a normalized form,

m.
. 7
Ga.i] = Ga.;'gai] Wlth IEI gal] =1. (15)

The physical interpretation of (15) is that the g ..’s are the conditional probabilities
governing allocation of counts given that the decay was recorded somewhere in the
spectrum. Counting a pure nuclide in a detection system and nommalizing the re-
sulting background corrected spectrum provide estimates of the g ,.’s. Recent work
of Heath [9] where mathematical functions are used to represent the fundamental
patts of the spectrum gives a second method of obtaining the g aif ’s. In our solution
of the estimation problem we tacitly assume that the g aij ’s are known without error.
Of course, this assumption is a mathematical convenience which simplifies the
theory. In reality, the assumption means that the errors in g aij estimates must on the
average be much less than the counting statistic variation in the sample spectra.

If the geometry factors G . of (15), the ratios of decay rate to total spectrum
count rate, are known, the quantitative analysis problem is to estimate the number of
atoms of each nuclide at time zero, Ny Nys oo s Nyjoor, equivalently, the time zero
decay rates Al Ny» )\2 Nyy oo AN, . If the Ga]. are not known, the additional as-
sumption that

Goj=10jGay (G=2,3,...,0) (16)

and all k(e — 1)/aj’s are known is needed. This means that the relative efficiencies
of all detection systems with respect to the first one are known for each of the k
nuclides. The quantitative analysis problem is now to estimate the expected number
of decays from each nuclide that would be recorded as counts if the first detection
system were used over an infinite time period starting at z,, G, N, G, N,, ...,
Gy Nysor, equivalently, the time zero counting rates using the first detection sys-
tem, A, G, N, A, G, Nyy oo, 0, Gy N,

In the sequel, the first sitnation is treated where geometry factors are known.
The development is carried out in terms of G ;.’s. The second situation differs
only in that G .. is replaced by / N, is replaced by G| N
is replaced by “counting rate.”’

Since the background counting rates 4;, are unknown, they must be treated as
nuisance parameters in any method of quantitative analysis. In this paper, three

different methods are described for handling background:

and ‘‘decay rate’’

ajga.ij ’ a’

I. Replace the iy background parameters by estimates /q\i,}, calculated from back-
ground spectra recorded on each of the detection systems.

II. Include the 4,,, as parameters to be estimated from the sample spectra at the
same time the N are estimated.

III. Remove the iy from the model by differencing the successive spectra for every
detection system.

Method I is classical. The first step in analyzing a simple spectrum is to correct
it for background. The only problem which complicates the interpretation of the
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estimates is that the background corrections are random. The additional uncertainty
should be reflected in the standard deviations of the N, estimates. Further, if sev-
eral spectra are recorded with a single detection system and all are corrected with
the same background spectrum, the resulting net sample spectra can be highly posi-
tively correlated. The situation is particularly difficult when the sample-to-back-
ground count ratio is low, say less than one.

Methods II and III are only applicable if several spectra are recorded with the
same detection system. The assumption is made that the background counting rates
remain constant over the total time period that a particular detection system is used.
Method III is less affected than Method II by viclation of the assumption in the form
of a slow background shift.

%

Weighted Least-Squares Estimates

For all three methods of handling background nuisance parameters, a generalized
least-squares technique is used to construct the estimates, say, 1/\}“, of the true N |
values. With a set of uncorrelated, homoscedastic data, the least-squates principle
of estimation selects the estimate so as to minimize the sum of squares of devia-
tions between data and model prediction of data, say

Z(data, — modeli)2 . 17
2

If the data are correlated and/or heteroscedastic, the familiar sum of squares (17) is
replaced by a quadratic form

Z o'l (data, — modeli)(data]. - rnodel].) . (18)
ij

The weights ¢/, in theory at least, are the elements in the inverse of the data co-
variance matrix. In matrix notation

S=() and 37'=@'), (19)

where cov (dataz. , data].) =0 In our application of this generalized least-squares
procedure, the covariance matrix 3 is unknown, since it is a function of the N, Ve
substitute a rather crude estimate for X and proceed with the estimation as if our
estimate were exactly equal to %. There is nothing wrong with this attack as long
as we don’t ad hoc claim for our estimates all the elegant properties of legit-
imate generalized least-squares estimates. To preserve the distinction between
generalized least-squares estimates and those of this paper, we call our estimates
Modified Generalized Least Squares (MGLS). Monte Carlo studies discussed below
tend to indicate that with mild restrictions on the spectra total counts, the MGLS
estimates actually do behave like generalized least-squares ones. Our crude esti-
mate of 2 contains most of the information about the heteroscedasticity of the sample
spectra and the correlation introduced by the different methods of handling back-
ground. It contains no information about the correlations among the sample spectra.

The three methods of analysis are described independently below in detail up to
the point where the arguments are similar; the remaining steps are described just
once.
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Method |

For this method the only restriction on the data is that the number of sample
spectra data points be greater than the number of nuclides; that is,

é:l (R, =R._m;>k. , (20)

Let b, ]z =1, 2, ,m.37=1,2, ..., el be a set of unbiased background spectra
countmg rate estimates based ona smgle sample background spectrum for each of
the e detection systems. Specifically, b, is the estimate for the ith channel group
of the jth detection system. Let L, be the length of the time interval over which
background was monitored for the jth detection system. Thus, each b, j satisfies the
relationship

[
b, =4
1y L.,
]

(2D

where ¢, . is a total background count. The €ii ’s are assumed to be mutually inde-
pendent Poisson chance variables. So, from (21)

ave (bz]) = 61,-7- s (22)
and

cov (b, . , b, .

=d. ., 8. . q.
272 B4 7172q’

. /L. .
'

Using the above background estimates the net sample count estimate for the ith
channel of the yth spectrum is Y, iy - b, A , where j is determined from y by (5).
The net sample spectra are unbiased esumates of the true background spectra, so

ave(Yl. —-bA)-ZNP (23)

a aiy *

The covariance between the net counts is from (14) and (22):

cov (Y, -b. . A, Y, ), ave (Y. _ )
1 U SA Py PR i 277 i, y172 17

I b b A A / : 24

¥ i, 0, axe(”l) Ll—a?::lN“P“’ 71P YO (24)

Since the N, are not known, the exact covariances cannot be used as weights in the
least-squares analysis. The form in which (24) is written illustrates directly what
portion of the covariance can be estimated unbiasedly from the data at hand. The
covariance estimate is

Y. . . —_ '
cov ( i, bzlle,yl, le,yz sz]ZAyz)

=5 i By y Vi 8 by Ay Ay L)L (29)
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The third term of (24) is ignored in this estimate. For variances the effect is negli-
gible since Y,  is roughly linear inthe P ..’s while the third tem is quadratic in
them. The estimate (25) is admittedly poor for two net counts from different channels
and/or different detection systems. For such a case, the estimate vanishes while in
fact the two net counts are negatively correlated.

Use of the estimator (25) in place of the true covariance matrix elements means
that the net sample count data can be processed in blocks, each block being a single
channel group of a detection system. Specifically, the MGLS estimates are those N
which minimize the quadratic form

m ., R,

3 3 G V2 (y b.. A §NP >
o . —=b.. - ,
=1 sL oy Y =R+ P < iy, Y] & @ dy,
x<Yi72- b, Ayz_a,s_: NoPoiy ) (26)

.2 71Y . .
Here, the o(i,f) 172 are the elements of the inverse of the estimated net sample
count covariance matrix. Let

26i) = loti)y ] @)

be this (R, — R._,)th order covariance matrix for the ith channel group of spectra
collected on the jth detection system. From (25),

o)y y =8y oy Viy +byBy A JL;. (28)

A pattern matrix with elements such as (28) can be inverted using general tech-
niques discussed in [12]. The result is

Y,Y
26N =l P, (29)
where
oy’ 172 %y v, b A”/l Ay,
i,f = —
Yl.,y1 L]. + bi]. Vz.].(A,A) Yi'yl Yi72
‘For atfy set of pairs (a,y , b,y), with y = R].__1 + 1, Rj-1 + 2, e, R]., the notation Vz.].(a,b)
is defined by
V. {a,b) RZj by (30)
.La, = a -y .
2l R, +1 7 Y,
j=1 (4

F rom (26), (29), and standard generalized least-squares theory, the MGLS estimates
N are the solutions of the following system of k linear equations:

k
P {2 > A“ﬁ} . zlcﬁ</3_1 2, ..., k). (31)

a=1 | j=1 i=1 =1 i=
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The auxiliary quantities in (31) are defined as

AB-G .G T b’f (T AWV, (T2, A
(32)
R;
b..L. A

8 % 17< i Ri——21+1 7>
cP=G,.. T o - V.. (T5,0)

i B R,IHL %Y Lowb Vo (AB) B

Method 11

The same notation developed for Method I is used to describe Method II. Since
background counting rates are estimated from the sample spectra, more data are
needed than for Method I. At least two spectra must be recorded on each detection
system, and the restriction (20) of Method I becomes

51 (R, ~R;_; = Dm;>k. (33)

Since background estimates are not used, the total sample count model (13) is
used for the MGLS estimation. The variance-covariance matrix estimate of (14) ne-
glects the last term which contains the unknown N ’s. This matrix is diagonal and
treats all sample total counts Yz.y as being independent. The MGLS estimates are
those N , and 9;i which minimize the quadratic form

&
2
]?1 z.: 2 (l/yi'y)(Yi’y - a.El NaPai'y - qijAy) . (34)
Using standard generalized least-squares theory the normal equations can be written
down from (34). From these equations, the background counting rate estimates can be
expressed directly in terms of the N estimates as

f?ﬁ=[ z A _a}:l NaGm]V (T )}/VZ.I.(A,A). (35)

R]___1 +1

Substitution of (35) into the normal equations for the 'q\i. gives the 1,\\Ia as the solution
to the system of % linear equations of the form (31) where the auxiliary quantities
are defined as

A~ G Vi (ToTg) = Vi TV, (75, 8) ,
i @B Vi (B,8)
6
R, R, V. (TN (36)
=G| ¥ 7- ¥ AL
Y= R] 1+1 ay 'y:R]'_ 1+1 L4 Vl](Ay A)
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It is interesting to note that these formulas can be gotten directly from Method I by
letting each L. = 0. Thus, mathematically, a background estimate b, based on a
counting interval of length zero is treated as no estimate and the sample spectra are
used instead to estimate background.

Method il

The restrictions on the amount of data are the same as for Method II above, see
(33). For the jth detection system, the R]. - R].__1 sample spectra are replaced by
R. ~ R}._1 — 1 first differences, possibly adjusted to correct for variance in the length
of the two counting periods. The ith channel group of the yth difference spectra is

Ziy=Yiy = (Ay/A'yH)Yi'yH ’ (37)
wherei=1, 2, ..., m; and y = R]._1+ 1, R]._1+ 2, o, R].—— 1. The model for the
difference spectra is

k
ave (Zi:y) = a§1 NaGcLij ¢a,'y s (38)
where ¢a'y = Tay = (A'y/A'y+1)Ta'y+1 . The covariances between the difference

spectra adjusted counts are from (14):

v (Zi171’ Z"zyz) B 8i1i2 {[87172 - 67'172Jr1 (A72

)8

/A72+1 )] ave (Yil'ylb)

_(A'YI/A’)’1+1 ¥ 17, "571+172+1(A72/A72+1)] ave (Yz‘lylﬂ)}

5 A /A
_agl Na[Pailv’l —(A71/A71+1)P“i171+1][P“i272 - ( yz/ ”2“)P°"'z“/z+1]' (39)

As for Method I, the estimate of the covariance matrix considers only that portion
which can be estimated unbiasedly. So the estimate of (39) is

Ziy,) = 8,-1,~2[87172 =8y 541 (Aj,z/Ay2+1 ) Yiy,

)

cov (Z.
1Yy’

- (A, /Ay D0 /A, DY (40)

Y1y, T 71+1y2+1(A72 SHU Ty L
Again, as for Method I, the differenced spectra can be processed in blocks, each
block being all the differences in a single channel group of a detection system. The

MGLS estimates are those N, which minimize the quadratic form
e ™ R;=1 RN
2 2z 2 o(i,7)

F1ELy v =R,
; ; 41
“\Pir, ~ Z NaCaij ¢°°71, Zi"z - & N“G“if¢“72 - @D
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.2 71Y . . .
The a(i,f) 172 are the elements of the inverse of the estimated differenced sample
count covariance matrix. Let

26 = [0ty ] (42)

be this (R, —R._ ~ 1)th order covariance matrix for the ith channel group of the
difference spectra collected on the jth detection system. From (40),

a(i’j)'yl'yz = [6'y1'yz - 8')'1’)'2+]. (A')’2+1 )] Yi')'l
- (Ayl/AA/IH)[ex/lﬂy2 - 871+172+1(A72/A72+1)] Vig p1- 43

A succession of elementary row and column operations on the symmetric tridiagonal
matrix 5(i,7) with elements (43) shows that 2(i,f) satisfies the matrix equation

EG,) T 56,7 EG,f) = SG,f) - (44)
Here

BGof) = letii)y o 1

. .. (45)
5(17])'= [5(177)71')/2]
are (R]. - R].__1 — D)th order matrices. We now define the auxiliary quantity
ai g 4= 15
j—-1
N (46)
Y Y
a(i,f)., = M (A, /A)? n v,
! ke m=R.2_ +1{n=m+1 ( n-1 ") ":Rj_1+1 m
n#m
fory = Rj-1 +2, 0., R].‘—— 1. The elements of the matrices (45) are
e(Z,) =1fory =vy,,
Py 7, Y1=72
72
= n=yH+1 Y. [A,yl a(z,]),yl/A,yza(z,j)yz] for 1<V
' (47
= 0 for V> Yy

S ., 1 = 8 a ., f /a ., f -
The elements of the inverse matrix %7 1(;,j) can be calculated directly by using (47),
since, from (44),
3G, = EGHSGH T EGHT . (48)

Actually, the normal equations derived from (41) are easier to express and to solve
if the structure of (48) is used and not the inverse elements per se. For any set of
elements (b, ) with n = R]._1 +1, Rj—l +2, ..., R]. — 1, the notation, Lz.jy(b) is
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defined by

Y Y
L. (b)= b A_a(i,j ( Y.> 4
Y n:R.X_I-I-l n B @01y m=§+1 im )
for v = R. 17t 1, R, a7 2, , R. — 1. The normal equations for Method III N esti-

mates have the form of (31), thh the auxiliary quantities defined as

BTU Lipy (@) Lijy (bp)

A5 = Caii O =R A2 a(i,j)., aGi,f)., ..
= 7-__1’}'1 y ’.7 b4 ’] 'y+1

(50
Ri=l L. (AL, (5) )
cB - ijy ify\Y B
ij

=G pij 2 aGi), i)y
y:RJ.— 1+1 A’)’ a(z,]),y a(l7])y+1

Methods 1, I, and 1

In accordance with generalized least-squares theory the covariance estimate O‘
for N and N , is obtained from the inverse of the kth order coefficient matrix A fot
the normal equations. Thus, with

A={a,g, A"1={a%,
and (1)

_& | 4ap
A@B”z ZA:

=1i=1 1
the covariance and resulting standard deviation estimates are

éaB = A%B and c’}a= (A%HL/2 (52)

Time zero disintegration rate estimates and their standard deviation estimates are )\N
and A6 4 Tespectively.

As a check on the fit of the model to the sample spectra, a number of indicators
can be calculated. In the FORTRAN language program described in the next section,
the normalized residuals,

(data = modeli)/standatd deviation data i (53)

are computed first. For the three methods these residuals are:

b oA , 1/2
L (Y =y = 3 AP ) (Vi v 8,82

&, o aiy ij "y
m (y..—5.A - % AP (Y. )y~1/2 (54)
- iy =48y = Z NoPayy iy ’
k -1/2
1 <Zi7 "a=1 NaG azz¢a7> [ + By /By ap) Ywﬁ}
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An average indicator for each channel group within a detection system can be calcu-
lated by forming the portion of the chi-square goodaess of fit statistic which pertains
to the residuals for the channel group and detection system in question. For the three
methods, the indicators for the ith channel group and the jth detection system are:

R. 2
L x2 = 4 (Y. -b, A, - § NP . zy.-l_ iV i B0) L —g.)?
Hoy=k,_ BTy gy e ey ) iy L+ bV (AN 3 ’
R.
2 1 A LI 2 -1
1L xij~y=1§ 1+1<Yiy --qz.]./sy--az:1 Napm.y> Yo (55)
-

R.,~1 2 -1
2 7 E A < 2 .. .
jom

Summing over channel groups provides an indicator for the jth detection system. In all
three methods this indicator is

m .
2_ < 2
X;= i—§1 Xij * (56)
Finally, the chi-square goodness of fit test is

e

If the model is correct, the chi-square statistic of (57) is approximately distributed as
chi-square with

e
j§1 (R]. - Rj-l) m; = k
degrees of freedom for Method I and

e
,Ex R;=R,_; ~1)m; ~k

degrees of freedom for Methods II and IIl. If the chi-square statistic (57) indicates that
the model does not agree with the data up to counting statistic variation, it may still
be possible to estimate the standard deviations of the estimates by multiplying the ele-
ments A%B of A=! in formula (52) by Xz/(degrees of freedom).

A slightly different form of the residual indicator is gotten by calculating a back-
ground counting rate estimate from every residual. An experimenter who is familiar
with the background range for a detection system can often spot a detection system
shift from such an array of background estimates. In all three methods these back-
ground count rate estimates calculated from residuals are:

/ k

AN
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PROGRAM GEM

A FORTRAN II language program for an IBM 7090 with a 32K memory was written
to perform the MGLS calculations discussed above. A flow chart of this program is
given in Fig. 2. The program, named GEM, exists in several forms differing princi-
pally in the input and output routines.

READ INPUT:
Control parameters I, II, or III, k, e, my; T,
Nuclide identification and half lives
Channel group efficiencies, Gyy
Sample spectra time schedule and time zero ti7’ti‘/’to
Sample spectre Y 3
Background spectra, c (Method I only)

Compute nuclide decay Write out input and nuclide
characteristics T and decay characteristics

degrees of freedom

Rescale sample spectra and Compute coefficlent matrix
nuclide decay characteristics. A and constant vector C
Calculate Q,.’Y (Method IIT only

compute nuclide estimates N qi,j
Compute normalized residuals, Compute standard errors ﬁ‘a
Chi-squares; and residual and correlation matrix

Invert A, check inverse, Eompute background estimates @

background estimates

Rescale estimates;, standard Write outputs

errors, and residuals Nuclide estimates, standard
errors, residuals, Chi-squares,
and background estimates

P PP P Y

Fig. 2. GEM Flew Chart.

The present case restrictions in GEM were established to keep the memory require-
ments low because of the expected use of the program with other calculational programs.
These present limitations are:

50 spectra, 20 channel groups, 10 nuclides, and 3 detectors. (59)

The program with the limitations (59) requires less than 16,000 locations including the
necessary FORTRAN library subroutines. The program could quite simply be modified
to relax these restrictions. The following relationship,

memory requirements = 9500 + 4D + 7] + 7§ + 4CD + 35C + 312 4 351+ ID + CID,  (60)

where
§ = number of spectra,
D = number of detectors,
C = number of channel groups,

I = number of nuclides,

268



can be used as a guide2 in estimating the memory requirements of other maximum dimen-
sions. Some other maximum configurations which are possible are:

Estimated
Spectra Channel Groups Nuclides Detectors Memory

Requirements

5 400 20 1 27,000
20 200 20 1 29,000
40 100 20 1 28,000

The program is a straightforward coding of the equations presented in the previous
section with rescaling of the data where necessary to keep the numbers within bounds.
Various calculational checks have been built into the program in an attempt to give
more accurate results where possible or, at least, to flag where the calculation has
failed. One such check is on the inversion of the coefficient matrix (51). The program
normally uses a fast Jordan elimination routine which is checked for accuracy by mul-
tiplying the inverse by the matrix itself. If the product is not within the required ac-
curacy (5 x 10-4), the program uses a slower iterative (Crout method) routine. Ex-
perience has shown that the Crout method will be satisfactory in about half the cases
where the Jordan elimination failed.

As a further check on the calculation, the program tests the status of the accumu-
lator overflow and divide check indicators at nine points. When an indicator signals
a miscalculation, a message is written in the output,.

The GEM input consists of:

1. five control parameters defining
(a) the calculation method to be used ~ I, II, or III,
(b) the number of nuclides,
(c) the number of detection systems,
(d) the number of channel groups for each detection system,
(e) the number of spectra;
2. identification for each nuclide and its half-life;
3. the channel group efficiencies;
4. the time schedule for counting the sample spectra, start time and stop time for each
spectrum, and the time zero reference point;
5. the sample spectra as total counts in each channel group;
6. the background spectra as total counts in each channel group for each detection sys-
tem and the time period over which each spectrum was taken (Method I only).

The GEM output consists of:

1. all input quantities;

2. the nuclide decay characteristic giving the fraction of each nuclide which would be
expected to decay during each counting period;

3. the nuclide estimates in the form of time zero decay rates and number of atoms at
time zero;

2Some changes in the maximum dimensions may require program changes not provided for in
the relationship (60).
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4. the standatrd errors of the time zero decay rates and number of atoms at time zero:
the estimated background spectra as counting rates for each detection system
{(Methods T and II only);

the correlation matrix of the nuclide estimates;

the normalized residuals (54) for each channel group of each spectrum;

the chi-square (55) for each channel group of each detection system;

the chi-square (56) for each detection system;

the chi-square (57) based on all data;

the background spectra as counting rates estimated from the residuals for each
sample spectrum.

b
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EXAMPLES
Nal(Tl) Gamma Pulse-Height Data

An 8- by 8-in. NaI(T1) well crystal was used together with an RIDL transistorized
400-channel pulse-height analyzer to record several sets of gamma scintillation spectra.
The instrument was operated with a channel width of 0.01 Mev. Separate radionuclide
sources of Ru-Rh103, Ru-RhmG, 31 Cs-Ba137, carnotite, monazite, KCl, Ce-Prl44,
and Zr-Nb??> were obtained. Each source and background was counted weekly for 11
weeks. All sources were counted for 1 min except for the KCl source which was
counted for 10 min. The pulse-height data were stored separately on magnetic tape.
Composite spectra were produced for each set of counts by nondestructive reading of
the recorded spectra into the analyzer. The composite spectra were read out on punched
paper tape. A single long count was also taken with each source and recorded on
punched paper tape for calculation of the required channel group conditional probabil-
ties g aij of Eq. (15). The 400-channel spectra were reduced by an IBM 7090 to 15
channel groups as follows:

Channel Group Channels Channel Group Channels
1 12—-16 9 105-129
2 17-21 , 10 130168
3 22--29 11 169200
4 30—43 12 201240
5 4456 13 241-290
6 57-71 14 291340
7 72-83 15 341-399
8 84104

Various single and composite spectra were then analyzed using the GEM programs. In
the case of a composite spectrum the total couating time of the components was used
as the counting time of the composite spectrum so that the background contribution to
the composite spectrum would be commensurate with background estimates. The re-
sults of several of these analyses are summarized in Tables 1 and 2.
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Table 1. Decay Rate Estimates Using Nal(T!) Gamma Pulse-Height Data

Conditions: 9 nuclides present, 15 channel groups, GEM Method I

1 Spectrum 3 Spectra 6 Spectra 9 Spectra
Half-Life Time Zero

1.2

Nuclide (days)  Decay Rage FEstimated Standard Estimated Standard Estimated Seandard Estimated  Standard
Rate Error Rate Error Rate Error Rate Error
Ru-Rh 103 40 150 161 19 141 34 143 19 148 17
Ru-Rp 106 365 378 361 41 438 69 407 45 395 42
1131 8.05 189 195 86 240 35 245 27 165 15
Cs-Bal3”  1.09x 104 419 428 7 437 11 428 7 431 7
Carnotite  1.65x 1012 507 547 14 536 21 527 14 539 12
Monazite  5.15x 1012 206 201 10 214 17 205 11 201 11
x40 4.70 x 1011 10,550 10,580 94 10,629 162 10,637 104 10,620 100
Ce-Pr 144 285 650 556 66 -88 114 475 78 473 79
Zr-Nb?3 65 126 120 6 114 9 117 6 117 6
Chi-square ratio 1.5 19 17 24

Days between first and last spectrum 33 35 61




Le

Table 2. Decay Rate Estimates Using Nal(Ti) Gamma Pulse-Height Data

Halb-Life Time Zero Method I Method II Method III
Case Conditions Nuclide (days) Decay Rate Estimated Standard Estimated Standard Estimated Standard
Rate Error Rate Esror Rate Error
A 9nuclides present 1131 8.05 189 184 247 184 247
1 channel group
(0.30 to 0.44 Mev)
9 spectra Chi-square ratio 40 40
B Only I'3! present 1131 8.05 3410 3417 55 3470 50 3470 54
15 channel groups
9 spectra Chi-square ratio 3.5 2,8 2.8
C  Only1!3!present Ru-RR 103 40 0 ~3.9 181
15 channel groups Ru-Rh 106 365 0 41 493
1 spectrum 1131 8.05 3410 3156 402
Cs-Bal37 1.09 x 104 0 33 161
Carnotite 1.65 x 1012 0 5.5 189
Monazite 5.15 x 1012 0 41 179
x 40 470 x 1011 0 -193 650
Ce-pr 144 285 0 —1144 1781
Ze-Nb?3 65 0 12 78
Chi-square ratio 7




The data in Table 1 give some indication of the positive and negative points of ana-
lyzing sets of time dependent spectra, Four sets of 15-channel group spectra containing
1, 3, 6, and 9 spectra, respectively, were analyzed with Method I of the GEM program.
The total elapsed time over which the 9 spectra were recorded was 61 days, while for
the 3- and G-spectra sets it was 35 days. The same nine-component source was used
for all spectra, and the counting was done in a single detector. These nuclides and
their half-lives are listed in the first two columns of Table 1. Time zero was taken
as the beginning of the recording of the first spectrum; that is, ¢, = ¢,,. The actual
decay rates of the nuclides at time zero are listed in the third column of Table 1.
The remainder of the table lists the decay-rate estimates A N, based on analyzing
the four sets of spectra and the standard errors of these estimates. Also the ratio
of the chi-square statistic [see Eq. (57)} to the 95th percentile point of the appro-
priate chi-square distribution is listed at the foot of the standard error columns. A
ratio of less than one indicates good agreement between model and data; that is, the
model explains the data up to counting statistic variability. A large ratio indicates
poor agreement; for example, the model may contain the wrong nuclides, and/or the
detection system may have malfunctioned.

Inspection of the normalized residuals and background counting ratio estimated
from residuals [see Eqs. (54) and (58)] of the GEM output for the nine-spectra case
shows a depression of the low energy end of the spectrum during the course of re-
cording the nine-sample spectra. The negative effect of this change in the shape
of the pulse-height spectra is clearly seen in the chi-square ratios as they increase
with the number of spectra in the set. The estimates appear to be insensitive to
this degeneration in the fit of the model. Appearance is misleading. Addition of
spectra to the analysis improves the precision of the estimation, and departure from
the time-invariance assumption of the model decreases the precision. Table 1 is
the result of these two diametrical factors operating simultaneously. The relative
importance of the factors is a function of half-life. The precision with which the
shortest lived nuclide, 1131 is estimated, as measured by the size of the standard
error estimate, improves as spectra are added to the analysis. The precisions for
the rest of the nuclides seem to be more dependent on the chi-square ratio than on the
number of spectra.

Of the 36 estimates, 18 are within one standard deviation of the actual ¢, decay
rate, 13 within 2, 4 within 3, and only 1 greater than 3. These figures are in close
agreement with the usual interpretation of the standard error estimate based on the
student’s **¢** distribution,

The data in Table 2 show the effect of putting either too many or too few com-
poneats into the model. In all six cases 1131 s present in the spectra. In case A
the channel group of the 1'3! photopeak (0.30~0.44 Mev) was selected from the nine-
spectra set discussed above in connection with Table 1. Methods II and III of the
GEM program were used to estimate the ¢, decay rate of 113! with only the single
13! component in the model. In such a situation, Method I cannot be used since
the background counting rate is not known. Methods II and III give the same esti-
mate, 184, which is quite close to the actual decay rate of 189. The chi-square
ratio clearly shows the model is inadequate. The systematic pattern of the not-
malized residuals (not shown) pinpoints the inadequacy to a multicomponent decay
curve. With such a large standard error nothing really can be said concerning the
presence of 13t
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Case B of Table 2 shows the estimation of 1'! from a set of nine 15-channel
group pure 3! spectra using the three methods of the GEM program. All three
estimates agree with the correct decay rate. The chi-square ratios indicate that
some perturbation over and above counting statistic variation is in the data. The
normalized residuals (not shown) attribute most of this poorness of the fit to the
two lowest energy channel groups.

Case C of Table 2 shows the analysis of just one of the 15-channel group spectra
used in part B. The complete model with nine components was used for the analysis
even though only 113! was present in the pulse-height spectrum. The standard errors
for the eight components not present are all larger than the absolute value of the ¢,
decay rates. - Clearly, the analysis says that 113! is the only significant nuclide in
the spectrum. A rerun of this data without the eight superfluous components in the
model increases the precision with which the 13! ty decay rate is estimated. How-
ever, the precision is not as good as that in Case B since nine spectra were used
as opposed to one in Case C.

Sources of Ru—Rh103, Ru-RhwG, 1131, and Cs-Bal37 were placed together in the
well of the NaI(Tl) crystal and counted weekly for eleven consecutive weeks. The
eleven spectra were each reduced to 15 channel groups, and the resulting set was ana-
lyzed with the GEM program. Table 3 shows the estimates from fitting five differ-
ent models with the appropriate GEM methods. Cases A and B of Table 3 clearly
illustrate that Methods II or III can be used to estimate short-lived components I
and Ru-Rh1%3 without putting the long-lived ones in the model. Case C shows that
when a medium-lived component Ru-Rh10% is estimated with Methods II or III the
estimation is not as precise. Case D is particularly interesting as three components
are quite precisely estimated even though a relatively short-lived component Ru-Rh!03
has been omitted from the model. The large chi-square ratio is evidence of the poor
fit of the model.

Finally, Case E shows the capabilities and failings of Methods II and III with the
correct model. Method I with the aid of background information does a passable job
of estimating the long-lived components. This case is the only one for which the
standard error estimates are not realistic, being too small by about a factor of three.
The large chi-square ratio gives reason to doubt the results of the estimation. The
normalized residuals (not shown) are very wild, fluctuating from ~10 to + 10 for the
lower energy half of the pulse-height spectrum. Surprisingly, Methods II and III still
do a credible job of estimating the short-lived components. Essentially, what happens
in the calculation is that the background and the longer-lived components are all treated
as background. A fictitious average background is arrived at which in this instance was
more realistic than the one supplied for the Method I calculation.

In all the above examples the chi-square ratios were greater than one. Clearly, the
detection system (including background) used was unstable to the degree that counting
statistic variation was no longer the major source of randomness in the data. Yet,
statistically sound estimation of the individual nuclide ¢, decay rates was possible.

By statistically sound, we mean that the standard error estimates were valid indicators

of the precision of the decay rate estimates. Granting the fact that the estimation would
have been more precise if the detection system (including background) had been time in-
variant, the authors feel that a fruitful alternative to absolute detection systems is rea-
sonably stable systems coupled with high quality data evaluation.
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Table 3. Decay Rate Estimates Using Nal(T!) Gamma Pulse-Height Data

Conditions: 4 nuclides present, 15 channel groups, 11 spectra, 68 days between first and last spectrum

Method I Method I Method III
Half-Life Time Zero
Case Nuclide’ (days) Decay Rate Estimated Standard Estimated Standard Estimated Standard
Rate Eeror Rate Error Rate Error
A 131 8.05 2910 3,052 139 3,052 139
Chi-square ratio 16 16
B Ru-Rh 103 40 2710 2,663 193 2,663 193
1131 8.05 2910 2,879 93 2,879 93
Chi-square ratio 7 7
C Ru-Rh 103 40 2710 2,472 214 2,472 214
RusRh 106 365 6800 3,398 1,763 3,386 1,750
1131 8.05 2910 2,860 92 2,860 92
Chi-square ratio 6.9 6.8
D Ru-Rp 106 365 6800 7016 264
1131 8.05 2910 3277 286
Cs-Ba 137 10900 6270 6087 119
Chi-square ratio 89
E Ru-Ry 103 40 2710 3268 128 2,472 247 2,473 244
Ru-R} 106 365 6800 5612 130 3,372 1,963 3,385 1,941
131 8.05 2910 3081 128 2,808 123 2,809 122
Cs-Ba 137 10900 6270 5949 54 —99,168 24,991 —~100,085 24,835
Chi-square ratio 18 5.9 5.8
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(6-4) COMPUTER APPLICATIONS IN NEUTRON ACTIVATION ANALYSIS
Alan J. Blotcky, Barney T. Watson, and Richard E. Ogborn

Radioisotope Service
Veterans Administration Hospital
Omaha, Nebraska

Neutron activation analysis is a very important tool in the fields of medicine and

chemistry since it makes possible a simultaneous assay of the trace elements in
blood, tissue, alloys, ceramics, and many other substances. It is the aim of this
laboratory to devise a method of accomplishing this objective rapidly and with a
minimum of recourse to pre- and postirradiation chemical procedures.
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In developing a method of determining by neutron activation analysis the individ-
ual masses of a composite of trace elements such as blood serum, it is very desir-
able to use computer techniques since the stripping of multicomponent specirums by
hand is a tedious and time consuming process. Because the objective of the work in
our laboratory is to analyze many serum samples daily, it is a necessity that a com-
puter be used for data reduction.

A further objective of this laboratory is to show that activation analysis can be
accomplished with a minimum outlay of capital. Consequently, in choosing a com-
puter system, the IBM 1620 was selected.

The 1620 memory is 20,000 positons of six bits each or one-tenth the size of the
32K IBM 709-90 Series. The monthly rental for an IBM 1620 with paper tape input/out-
put is $1,600, or one-fortieth (1/40) the cost of the IBM 7090 for basic computer rental
1.

The IBM 1620 system requires the equivalent of one full-time employee for proc-
essor maintenance, computer programming, and operation. Paper tape and printer
paper expenses do not exceed $200 per year. Total room preparation is one 220-volt
outlet and a floor space requirement of 150 ft?. If normal room air conditioning is
not available, a one-ton unit must be included. For an additional $865.00 per month,
a 1622 card input/output unit and a 402 off-line parallel printer may be acquired. The
above combination decreases the time for printing 400 channels of data from 35 to
9 min.

Now that a need for a computer has been established and a type selected, let us
examine the problems associated with the method of analysis. The basic method of
analysis in our laboratory is to compare, for mass determination, the photopeaks of a
gamma spectrum of a composite of elements with the photopeaks of standards which
have been irradiated with neutrons and allowed to decay for a comparable length of
time. Since the standards are from a previously constructed library and are not ir-
radiated at the same time as the unknown, the first step is to construct a valid set
of standards. In order to accomplish this, a program was developed which accepts
an unlimited number of 400-channel radiation analyzer punched paper tapes and then
determines for each channel the average number of counts, the experimental standard
deviation, and the relative percent error. Thus all standard curves are constructed
by activating many different samples of the element and analyzing each sample on a
400-channel analyzer which punches the output onto 8-channel 18M-type paper tape.
All of the standards have a relative percent error per channel of less than 5% in their
significant portions.

Since the photopeaks of the standard curves are to be compared with those of the
unknown composites, it is necessaty that all standards and unknowns be normalized
to the same flux. In order to accomplish this, a daily neutron flux value is computed
from a gold wire irradiation and the value is then normalized to one and used as a
factor to correct for any slight variation in flux.

The flow diagram of the standard generating tape is shown in Fig. 1.

With the standard tapes now generated and stored in what will be referred to as a
library of standards, it is next necessary to develop a program for analyzing a com-
posite gamma spectrum and determining the mass of each neutron-activated element
present. In accomplishing this analysis, two basic methods have been used: (a)
spectrum stripping and (b) simultaneous linear equations. The purpose of developing
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ACCEPT LNO = ELEMENT CODE NUMBER
LNG, NC, TC, TLT, NT NC = NUMBER OF CHANNELS
|

TC= COOLING TIME
ACCEPT FLUX IF SENSE

SWITCH 115 ON TLT = LIVE TIME
I NT = NUMBER OF TAPES
‘ ZERO A AND B FIELDS l FLUX = REACTOR FLUX

{
l PUNCH LNO, TC, NC, TLT ‘

SET CONTROLS TO READ
AND CALCULATE FOR NC
CHANNELS AND NT TAPES

l

READ EACH OF NC CHANNELS
INTO WORK AND IF WORK

# ZERO, CALCULATE RUNNING
X and $X2

FLOAT NT

ZERO MEAN,
S$TD. DEV., AND
PER CENT ERROR

IF CHANNEL VALUE

IS NOT ZERO, COMPUTE
MEAN, STD. DEV., AND
PER CENT. ERROR

[

COMPUTE CHANNEL
NUMBER (0-399)

l

PRINT CHANNEL
NUMBER, MEAN, STD,
DEV., PER CENT ERROR

PUNCH MEAN

[ RETURN TO START

Fig. 1. Flow Diagram of the Program for Computing Standard Tapes.

both methods was to compare the accuracy and computer-use time of the two and to
arrive at a decision as to when each should be used.

Before examining the two programs in detail, there are several physical correc-
tions which are common to both methods. The counts per channel of each standard
must be corrected for the decay time. The cooling or decay time is assumed to be
the interval between the time when the sample is taken out of the reactor and the
point half~way through the elapsed time of the analyzer. For example, if time out of
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the reactor until count started = 4 min, time to count 10 min live time! = 10.10 min,
then cooling time = 4 min + 10.10/2 = 9.05 min. Since this assumption is valid only
as long as the elapsed time of counting is less than 1/2 the half-life, a correction also
must be made of the form [2]

0.693 At exp [—0.347(At/t 1/2)]

. : 1
ti/a 1 — exp [-0.693(At/t 1/2)] W

2
m‘m

where @ is the observed mean activity over the duration of the measurement; @ _ is the
corrected activity at one-half of the elapsed counting time; ¢, ,, is the half-life of the
nuclide; and At is the counting interval.

The stripping method starts by selecting the most energetic photopeak of the un-
known spectrum and comparing the counts of the unknown sample in that photopeak to
those of the standard curve of the element that has the characteristic photopeak. The
zatio of (STD CTS)/(STD MASS) = (UNK CTS)/(UNK MASS) may then be used to com-
pute the mass of the element in the unknown sample,

The proportionate amount of that standard element curve is then subtracted from
the unknown sample spectrum. The residual curve may either by punched or printed
out after each element has been stripped off the composite or after any number of
elements have been stripped off, The procedure may then be repeated until the com-
plete curve of the unknown sample is accounted for.

The block diagram of the mass determination by stripping program is shown in
Fig. 2.

It may be noticed in Fig. 2 that NCHAN is the number of channels to be summed.
This was done so that data could be smoothed by summing more than one channel.
The program was originally written so that this could be variable, but we are now
using 5 channels very satisfactorily. The S-channel sum is also used for determining
counts in the matrix method.

Because our transistorized RIDL 400-channel analyzer is kept in an air condi-
tioned room and calibrated several times a day and analyzer dead time is less than
5%, no analyzer drift has been observed; consequently, no peak shift correction has
been incorporated in the program. However, if this becomes a problem, provisions
can be made to shift the unknown curve so that known peaks will coincide.

In the simultaneous linear equation solution, use is made of the fact that the
proportionate parts of a composite spectrum may be assigned to the proper elements
by solving a set of simultaneous linear equations of order % of the number of radio-
active elements in the composite.

As an example of this method of solution, a three-element composite will be used.
The three equations for the total counts in the selected photopeaks of elements 1,

2, and 3 are

ap Xq+apXrapX,=5,
@y X+ ay,Xy+a,3X3=0,,

@y X +az,X,+azXy=by,

ILive time — actual time that electronic circuitry of the radiation analyzer is accepting
pulses.
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ACCEPT
INUM, UFCT

ZERO B FIELD INUM = NO. OF ELEMENTS
UFCT = UNKNOWN COOLING TIME

READ FIRST STD
ELEMENT INTO B FIELD

CLT = LIVE TIME
DHL = HALF LIFE

READ CLTY, DHL., ELT,

FCT, XMAS, CONC FOR 1 ELT= ELAPSED TIME
EACH ELEMENT ‘ MULTIPLY FIRST STANDARD FCT = COOLING TIME
BY CNTS/UCNTS XMAS = MASS OF $TD
[ ZERO A FIELD : ' z CONC = CONCENTRATION OF $TD
{ STRIP B FIELD *RATIO ULT = UNKNOWN LIVE TIME
READ COMPOSITE ‘ FROM COMPOSITE *
INTO A FIELD CNTS = COUNTS OF STANDARD IN
ITS MOST ENERGETIC
] | cHin=ncHn PHOTOPEAK
DIVIDE BY ICHNO = CHANNEL OF MOST
LuLr 1 MASS = RATIO * XMAS ‘ ENERGETIC PHOTOPEAK

NCHN = NUMBER OF CHANNELS

E SUMMED
SET UP DO LOOP PRINT MASS TOBE S
TO STRIP INUM

ELEMENTS

PRINT CHANNEL NO.
:I AND NET COMPOSITE IF
ACCEPT CNTS, SENSE SWITCH 1 UP
{CHNO, NCHN l

PUNCH NET COMPOSITE
IF SENSE SWITCH 2 UP

‘
RECYCLE TO STRIP
CORRECT FOR DECAY TIME, NEXT ELEMENT
CONCENTRATION, AND TO
COOLING TIME OF UNKNOWN
COMPOSITE
~N

COMP = 3 OR 5 CHANNEL
SUM DEPENDING ON NCHN

i RATIO = COMP/CNTS v}

[

l PRINT RATIO, CNTS l

l PAUSE [

SAVE CNTS BY
UCNTS = CNTS

Fig. 2. Flow Diagram for the Stripping Program.

where the b, b,, and b; are the counts of the selected photopeaks of elements 1, 2,
and 3 in the composite spectrum.

The coefficients @, ; of the variables x, are the ratios defined by a; = N;/N;;,

where N, is the number of counts of the ith element at the selected photopeak of
the standard of element &, and N .. is the counts of the ith element at its own selected
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photopeak. The values of @, are determined from the standard spectra in our library.

A matrix method is used to solve the simultaneous linear equations as follows:

211912%3 X by
A= Ay 85,0, | Let X =] X, and B = 62 .
@313 ;033 X3 by
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The system of linear equations may be represented in matrix form by AX = B,
Muleiply by A =1 (the inverse of A):

A~YAax)=4A"1B,
A Hy =478, )
X=A"1B.

Or, the values of X |, X, X3 that are

Figure 3 gives the flow chart for the matrix coefficient and mass ratio generator
program. Figure 4 shows the flow chart for the eleven-element analysis program. The
matrix coefficient and mass ratio generator program accepts raw counts from the stand-
ards and generates the necessary data for input to the eleven-element analysis pro-
gram. This program outputs the matrix solution of the simultaneous linear equations
(that is, the X counts of each element and the corresponding mass of each element
in the composite spectrum). A sample of the eleven-element analysis program output
is shown in Fig. 5.

RESULTS

To date, the two types of programs listed have been used to solve three-element
composites containing calcium, manganese and magnesium in an aqueous solution,
and four-element composites containing calcium, manganese, copper, and magnesium
as polyvalent cations in an organic phase.

Figure 6 shows the individual and composite spectra of the aqueous solutions
and Fig. 7 shows the curves for the four-element composites. The mass and percent
error of the elements being assayed were as shown in Tables 1 and 2.

The matrix solution is generally more accurate, since the stripping method as-
sumes that the contribution to the most energetic photopeak by elements with less
energetic peaks is negligible. In contrast to this, the matrix method considers all
contributions to each peak.

This may be illustrated by observing that in Fig. 7 there is a contribution by the
copper to the 1.8-Mev manganese peak used in the analysis. This would not be con-
sidered in the stripping method but would be included in the matrix solution. The re-
sults of this omission in the stripping method are revealed by the generally smaller
percent error of the matrix method as shown in the four-element comparison chart in
Table 2.
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READ TAPE: INUM = NUMBER OF ELEMENTS

INUM, UFCT UFCT = UNKNOWN COOLING TIME
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1
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1
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i

i

STOP ’

Fig. 3. Flow Chart for the Program Which Generates the Matrix Coefficients and Mass
Ratios.
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l

READ A(l,J)
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READ MASS
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i

READ IN COUNTS

OF UNKNOWN COMPOSITE IN
SELECTED PHOTOPEAKS

OF ELEMENTS IN COMPOSITE

l
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LIVE TIME

CONVERT COUNTS
OF COMPOSITE TO
COUNTS/MIN
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COMPUTE
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1

PRINT
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PRINT
INVERSE
MATRIX

REINVERT
MATRIX

[ PRINT REINVERSION J

{ RECYCLE I

Fig. 4. The Eleven-Element Analysis Program.

MATRIX SOLUTION OF 3 x 3 COMPOSITE 6/15/62

LOAD DATA
1.0000000 1.6850766E-02
.80361597 1.0000000
1.0547533 10.841522
101.64112 .32091769
64.329282 9.4756743E-05
729.96620 8.562026 1E-02
1.0078157 ~8.7260590E-03
-.83952332 1.0488880
8.0387134 -11.362338
1
.99999994 1.6850766E-02
80361602 1.0000001
1.0547531 10.841523

Fig. 5. Sample Output from the Eleven-Element Anclysis Program.
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Fig. 7. Individual and Composite Spectra for the 4-Element Composite Samples.

Table 1. Analysis of 3-Element Composites. Results are given for averages of 5 samples

e Error (%)
Element Mass Taken :
(mg) Stripping Matrix
Ca 0.3298 —1.2 —1.7
Mn 0.000089 +6.3 +3.9
Mg 0.0909 +8.3 —-3.5

There may be cases, however, where a combination of the stripping and matrix
method would be indicated, since the matrix solution assumes one either knows all
of the elements in the composite, or can guess the possible elements present. (If
elements are included which are not in the unknown, the mass of these elements will
either be zero or a very small positive or negative number.) If one cannot hazard a
guess as to what all of the elements may be, and clear photopeaks exist, the unknown
may be serially stripped and a residual printed out after each stripping. The resultant
curves can then be analyzed and compared with those in a gamma spectrum catalog to
find the unknown elements. If necessary, the unknown composite may be reirradiated
and counted at different cooling times so that the half-lives of the unknowns can also
be used for identification. When the above case does not have clear photopeaks, a
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Table 2, Percentage Errors in the Analysis of 4-Element Composites

Error (%)

S‘”‘ Ca (0.3298 mg)®  Mn(0.0000898 mg)®  Cu (0.00910 mg)® Mg (0.0909 mg)®
O.

STRIP MATRIX STRIP MATRIX STRIP MATRIX STRIP MATRIX

1 -1.0 -5.9 +16.0 —20.6 +42.0 +0.7 -38.0 -—1.7
2 -0.3 ~5.0 +24.0 -0.9 +42.0 +3.6 —-39.0 —-11.2
3 +4.0 —0.9 +14.0 ~7.6 +43.0 —0.4 —28.0 +0.6
4 -3.0 -2.7 +50.0 +13.9 +44.0 +11.4 -52.0 -23.1
5 +2.0 —8.1 +59.0 +46.1 +42.0 +15.6 -62.0 —42.3
6 —6.5 +0.6 +6.6 —-19.8
7 —-2.5 +9.2 +9.9 —-17.1
8 —4.4 +6.5 +7.3 —4.4
9 —8.0 +12.3 +8.6 —19.4
10 -0.1 +13.8 +1.7 —16.4
11 —~7.1 +1.6 +6.3 -10.6
12 +2.4 +43.0 +12.2 —25.5
13 +1.9 +20.1 +20.0 —-32.0
14 —4.9 +35.8 +18.8 —42.0

%Element and mass taken.

subse quent analysis system must be developed. This problem has not been con-
sidered for the present. If after the unknown elements are identified a more accurate
determination is desired, the matrix solution may be used.

Running time for the solution of a four-element composite by the stripping method
is approximately 45 min when only the final residual is printed. An additional 35 min
is required for each additional printout. If, however, the previously mentioned card
equipment is used, the 35 min is reduced to 9 min. The running time for the matrix
solution does not exceed 4 min.

CONCLUSIONS

A comparison of the matrix method to the stripping method in the solution of a
complex gamma spectrum must be in terms of (1) purpose of solution, (2) accuracy,
and (3) the computer system available.

In solving a composite of known elements for quantitative analysis, the matrix
solution is faster and more accurate than the stripping method.

In qualitative analysis to find out what elements are in the composite spectrum,
the stripping method interspersed with hand spectrum analysis is necessary.

The matrix solution is much better adapted to use on a small unsophisticated
computer system than the stripping technique, as any production methods of stripping
would require a much more expensive computer system with several magnetic tape
drives. Such a system would in turn require more complex programming to automate
it than does our relatively inexpensive small computer.
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(6-5) GAMMA-RAY SPECTRUM ANALYSIS APPLIED TO FiSSION
PRODUCT CONTAMINATION STUDIES

W. B. Seefeldt
Argonne National Labomtoryl
Lemont, Illinois

Gamma-ray spectrum analysis was used as the sole means of obtaining analytical
information in a recently completed program on fission product contamination relating
to boiling water reactors in which rupture of fuel element cladding had occurred. Liquid,
condensed steam, and metal samples from experimental equipment were counted with a
4- by 4-in. NaI(Tl) crystal using three fixed geometries in conjunction with a Nuclear
Data 256 channel analyzer. A sustained effort was made to maintain a specified energy
vs channel number calibration. Fission products taken into account include Cel‘“,
1131, Ru103, Nd147, Csla7, Zt9S-Nb95, and Ba'40-1.a140, Reference spectra of each
fission product were obtained under each of the three counting geometries used. Gamma
counts due to bremsstrahlung from beta emitters were also taken into account.

Throughout this paper the words *‘reference spectrum’’ will be used to describe the
simple spectrum of 1 pc of a single fission product; in the case of Zr?3-Nb?3 and Bal40-
Lal40, the “reference spectrum’’ is that of 1 uc total of the fission products at equilib-
rium. The spectrum to be resolved will be called the “‘unknown spectrum.”’

Two basic techniques and a number of variations of each technique were employed
to resolve the spectra: simple equations and least squares. Each technique ultimately

1Operated by the University of Chicago under Contract No. W-31-109-eng-38. Work per-
formed under the auspices of the U.S. Atomic Energy Commission.
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requires the solution of eight equations in eight unknowns. The principal difference is
that in simple equations, eight pieces of information are used from each spectrum, where-
as least squares is capable of utilizing all information in a spectrum. Principal equa-
tions are shown in Appendices A and B.

In theory the eight pieces of information used in preparing simple equations can be
chosen at random. In practice the information is obtained in eight preselected energy
regions corresponding to the energy of the principal peak of each of the eight reference
fission products. (The preselected energy regions must be identical for all spectra
used in the analysis.) A single piece of information might consist of the counting rate
in one peak channel or of the combined counting rates of segeral channels. In this work
two combinations of channel groupings were used: (1) the group of channels included
those defining the principal peak and (2) the group of channels was taken as five, the
peak channel plus two on either side. The groupings used are shown in Table 1.

Table 1. Channel Groups Used in Simple Equation Method

Channel Number Energy of
Channel Groups

Fission Product Cotresponding to Principal
Principal Peak Peak (Mev) Set 1 Set 2
cel4! 17.7 0.145 14-22 16-20
Beta bremsstrahlung 23-39 22-26
1131 45.8 : 0.364 40-52 44-48
Rul03 62.2 0.498 55-68 60-64
Na147 66.3 0.533 59.74 64-68
cst37 82.4 0.661 74-91 80-84
7b7%.7:93 95.0 0.75 84-103 93-97

Bal40.1 140 197.4 1.60 182-212 195-199

The least-squares analysis was reasonably conventional; however, the equations
were set up in a manner that has potential usefulness for error analysis (see Appendix
B and later section of paper). Deviations squared were either unweighted (unit weight)
or weighted by the reciprocal of the square of the estimated error. In this case the
square of the estimated error is the counting rate itself. However, a maximum weight
of 0.1 was specified in the computer program in recognition of the fact that counting
rates less than 10 usually reflect the difference between gross counts and background
counts of the order of 5 to 15, and the resulting error is associated with these rather
than the difference count reflected by the counter.

All methods used require that the energy-channel relation of the counting equipment
remain constant. Special efforts in this direction were made while obtaining both ref-
erence and unknown spectra. The position of a standard Na?? 1,79-Mev peak and a
standard Ce!%4% 0.134-Mev peak was monitored to the nearest 0.1 channel, and correc-
tions were made to ensure specifications. A partial record of the 1.79-Mev peak posi-
tion is shown in Fig. 1 to illustrate the difficulty of maintaining precise control. The
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Fig. 1. Positions of Na?2 Peak at 1.79 Mev, Monitored Three Times Daily for 13 Days.

0.134-Mev peak showed a similar pattern whose range in terms of channels was a factor
of 4 less.

The least-squares method of solution lends itself to compensating rather easily for
channel shifting due to bias. Compensation for gain is also possible but requires addi-
tional computer programming. In this work each unknown spectrum was analyzed three
times: once in its original position, then shifted one channel up, then one channel
down. The sums of the squares of the deviations (together with inspection of the dif-
ference spectra) indicate the best solutions, and further interpolation of these results
reveals whether a fractional channel shift would further improve the fit.

SOLUTION OF SPECIFIC SPECTRA

An unknown spectrum of a metal deposition sample was used for comparing calcu-
lation methods and results. The spectrum was chosen for the following reasons: (1)
the BaMO-LaMOpeak is defined by points whose statistical variation was broad; (2)
cst?is present as a minor constituent against a high background of Zr?3-Nb?%; and
(3) Ce4! exists in sufficient quantity to reveal a moderate peak, although the peak
is superimposed on a high Compton plateau. The variation of calculated results with
calculation method and channel shifting will be shown.

The least-squares program (1) calculated the microcurie contribution of each fission
product, (2) synthesized the original spectrum from the calculated results and reference
spectra (this will be referred to as the “*synthetic spectrum®’), (3) computed the differ-

ence spectrum between the unknown and synthetic spectra, (4) algebraically summed the
differences, and (5) summed the square of the differences. Table 2 shows the informa-
tion by which the fit was judged relative to channel shifting. The flip-flop referred to
is the order of the peaks in the difference spectrum that result from slight displace-
ments of a Gaussian distribution on the synthetic spectrum compared to that on the un-
known. The reversal of this order between the 0 and +1 channel position of the unknown
indicates that the correct channel shift is within the range of 0 and +1. The summation
of the square of differences indicates that shifting the unknown one channel up yields
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Table 2. Curve Fitting of Synthetic Spectra to Unknown Spectrum

Calculation method: least squares

Channel Position Flip-Flop Order on
34 Sa4?

of Unknown Difference Spectrum

Unweighted least squares:

-1 112 1.1x 108 -+
0 0.88 2.7x 107 -+
+1 0.84 1.2% 107 -
Weighted least squares:
-1 112 1.1 x 108 -+
0 0.89 3.0x 107 ~-+
+1 0.81 1.3x 10" +,-

a better fit than not shifting. Figure 2 shows the unknown spectrum and the best
synthetic spectrum obtained by weighting. The good fit is evident visually. Figure

3 shows the difference spectra for the solutions in which the unknown spectrum was
not shifted and also shifted one channel higher. The flip-flop of the difference peaks
is evident, and the sizes of the peaks confirm that a channel shift up has improved
the results. An expanded presentation of the cel?! region (0.134 Mev) of the unknown
and synthetic spectra (Fig. 4) reveals the effect of channel shift in this area. The
computed microcurie contents of the Cel4! differ by 20%, and it is visually evident
that the higher value more closely approximates the correct value. It is also observed

= UNKNOWN SPECTRUM OF METAL SAMPLE

105}
o SYNTHETIC SPECTRUM OF METAL SAMPLE
109 = N -
3103 N
4 Ratid
g
=
» ”
102 = ! K
10! =
100 i i ] ] i
o} 50 100 150 200 150

CHANNEL NUMBER

Fig. 2. Unknown Spectrum of a Metal Sample Compared with the Spectrum Synthesized from
the Caleulated Results and Reference Spectra,
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that the resolution of the counting equipment at the time of counting the unknown had
decreased from that obtained when the references were counted. The effect of channel
shift in the Ba'40-La140 region (1.6 Mev) was small, since the peak width at half-height
is about 11 channels. The Cel%! peak width at half-height is only about 3 channels.

A similar expanded presentation in the Bal4%-Lal40 area (Fig. 5) shows the effect
of using weighted and unweighted methods of least-squares computation The calcu-
lated microcurie contents differ by about 35%, and again the result which most closely
matches the unknown is evident. By not weighting, that is, by using a unit weighting
factor, an undue influence is given to energy regions of high counting rate. It is clear
that weighting is imperative when a spectrum includes a wide range of count rates.

A graphical compilation of most of the results was made; some comparisons are
shown in Figs. 6 and 7. The cross-hatched bars are those associated with the most
reliable results, i.e., those obtained when the unknown spectrum was shifted up one
channel. As is to be expected, calculations for strong peaks such as 7:5-Nb”3 are
relatively independent of computational method and channel shift. If the unweighted
least-squares result for Bal40.1.2140 is discarded, the statement is true for this fis-
sion product also. The surprising result is that cs137 (Fig. 7), which has a micro-
curie content of about 1/20 that of Zr95-Nb95, shows as little variation as it does.
However, the computed Cs137 content is sensitive to channel shifting but shows the
smallest channel shift effect for the *‘five channel only’’ simple equation solution
method. Cerium-141, the modest-sized peak on a high plateau, also is sensitive to
channel shifting but less so for the simple equation solution methods than for the
least squares.

Thorough statistical analyses are indicated to clarify the errors introduced by
channel shifting and computational method. Without the benefit of such analyses,
tentative conclusions would include: (1) weighted least squares used in conjunc-
tion with a criterion for best fit yield the most satisfactory set of computed results,
and (2) the simple equation method using five peak channels only appears to yield
nearly comparable results without having the channel shifting sensitivity of other
methods.
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Fig. 6. Comparison Between the Results for 7:7% and Ru'%3. The Channel shift for the

unknown is indicated by ~1, 0, +1.

4 LEAST SQUARES SIMPLE EQUATIONS
A r A N
By
3
" -
° -
»® 1
(8]
1 2
> 0
7 0
o
3] 0 +1 -)
+1| 9} +
l S—
0.9 7
UNWEIGHTED WEIGHTED ALL - 2 FIVE PEAK
peak 23 10 cHANNELS
CHANNELS ONLY
INCLUDED

Fig. 7. Comparison of Cs'37 Results Obtained by Different ‘lethods. The channel shift
for the unknown is indicated by -1, 0, +1.

A sample, which when counted showed the presence of an additional fission
product not included in the library of reference spectra, was chosen for least-squares
analyses to illustrate curve misfit. The unknown and synthetic spectra are shown in
Fig. 8, and the difference plot is shown in Fig. 9. The fit is very good in the half
of the spectrum up to channel 115 (about 0.90 Mev) but shows the aberrations at
higher energies expected from the spectra of Fig. 8. Inspection of difference spectra

293



e UNKNOWN SPECTRUM OF LIQUID SAMPLE
05 k= o SYNTHETIC SPECTRUM OF LIQUID SAMPLE
104 fe= * »
e foa %
g badh Al I
P
2 ¥
= s,
5
102 = A
10!k
100 i i i i 1
o] 50 100 150 200 180
CHANNEL NUMBER
Fig. 8. lllustration of a Case in Which an Additional Fission Preduct Not Included in the

Reference Library Was Present.

(13
Q
Q

T 1 1T T 1

O*SCALE CHANGE

COUNT DIFFERENCE
(o]

]
(9]
Q
(o]

L

N A
=

L'

ot o | %lv—* st

o_
-0 LEAST SQUARES METHOD
-80" WEIGHTED WITH RECIPROCAL COUNT RATE
. UNKNOWN NOT SHIFTED

1 1

TSRS NN N WA VAN SUNS SR S | TSR SOV SRR [ B |
10 20 30 40 50 60 70 80 S0 100 1O 120130 140 150 180 |

CHANNEL NUMBER

L1
90200 210 220

Fig. 9. Difference Plot for the Case of Figure 8.

must be made to ensure the validity of the assumption that 95% or more of the counts
in the unknown result from fission products whose reference spectra are included in
the reference library.

ERRORS DUE TO CHANGING RESOLUTION OF COUNTING EQUIPMENT

A mathematical analysis was made of single Gaussian peaks to determine the
effect of changing counting resolution on calculated results based on least~-squares
methods. No experimental work was performed on this aspect of the problem nor was
any effort made to take into account any effect due to the presence of a background
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or Compton plateau. The reference spectrum was expressed as
—a2x?
F 7(x) = Be ,

where the integrated area under the peak is (B/A)+/7. The unknown spectrum was
expressed as

2

F(x) = KBk a’x ,
which has the same integrated area under the peak of (B/A)v/m. The K is a factor
that indicates the degree of change of resolution. The problem is to determine the
value of the calculated coefficient (which will be called F) by which the reference
must be multiplied to satisfy various least-squares criteria. Any deviation of F
from 1 represents the error introduced as a result of resolution change. Five least-
squares criteria were applied:

1. unweighted (unit weight factor),

2. weighting by the reciprocal of the unknown Gaussian,

3. weighting by the reciprocal of the reference Gaussian multiplied by the F,

4. weighting by the reciprocal of the geometric mean of the unknown Gaussian and the
reference Gaussian multiplied by F, and

5. two successive solutions: the first is weighted by the reciprocal of the unknown
Gaussian; the second is weighted by the reciprocal of the computed F from solu-
tion 1 multiplied by the reference Gaussian.

The results are shown as a function of resolution in Fig. 10. The unweighted
criteria show the largest error sensitivity, ranging from negative computed values for
poorer resolution of the unknown to positive values for improved resolution. By weight-
ing the deviations squared by the reciprocal of the unknown, all calculated errors are
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negative but of a smaller magnitude than unweighted results. Weighting with the re-
ciprocal of the reference spectrum multiplied by F introduces positive errors, where-
as the weight of the geometric mean of the two results in small negative errors. How-
ever, it should be recognized that in practice it is not easily possible to weight with
the reference multiplied by an F that is an integral part of the solution.

What is possible, however, is to solve for F using the weight of the unknown, then
repeating the solution using the weight of the reference multiplied by the computed F.
The new F from the second computation is now found to be independent of resolution
change. The mathematics demonstrating this is shown in Appendix C. Whether this
conclusion is valid for other than single Guassian peaks has yet to be demonstrated.

ANALYTICAL ANALYSIS OF ERRORS IN LEAST-SQUARES SOLUTIONS

From Appendix B the least-squates solution of an unknown spectrum is accom-
plished through the use of the following equation:

254
a;= % a(x) f(x), (¢Y)
=1
where a; is the solution vector, f(x) is the unknown spectrum, and

a(x)= M) W) g (x) @

where (Mi .)"1 is the inverse of the matrix shown in Appendix B, W(x) is the set of ap-
propriately chosen weighting factors, and g,(x) is the vector of reference spectra. It
can be shown that the error of the computed a,’s can also be expressed as a function
of the a’i(x) in the following derived relation where  is used to indicate estimated
errors:

254 ) 8
Sai =3 ox)|8(x)— ¥ a,3g .(x)} , 3)
i=1 =177
where 8f(x) is the set of estimated errors associated with the unknown spectrum, and
8g.(x)are the sets of estimated errors of the reference spectra. If it can be assumed

that the count rate in any given channel has a standard error equal to its square root,
then

sy = Lo @

and

3g].(x) = [g].(x)]l/2 . ()
Substituting Egs. (4) and (5) into Eq. (3) yields
ba; = 3 e {2 - 3 afe 02} ©)
ToE T =1 177

All terms are now known, and the 8a. vector can be evaluated.
To date, no experimental use has been made of this equation.
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Appendix A
EQUATIONS FOR SIMPLE EQUATION METHOD

The basis used for both techniques of resolving gamma spectra is that the count
rate in a particular channel position is the sum of the count rate contributions of each
fission product to that channel.

Let us designate by a,(i = 1 to 8) the number of microcuries of each of eight fission
products present in the unknown. These are to be determined in our solution. Let us
further designate C; , as the counting rate contribution of 1 uc of the ith fission product
in channel number k& (i = 1 to 8; £ = 1 to 254), and T, as the counting rate in the unknown
spectrum in channel k. All values of Ci,k are taken directly from reference spectra. The
following equation can then be written for a particular channel, &,:

Tk1 = “1C1,k1 + “2C2,k1 +ag Cg,kl + ...+ aBCB,kl .

Similar equations can be written in seven other channel positions. A unique solution
then exists for the eight equations in eight unknowns, and all ai’s (i =1 to 8) can be de-
termined directly.

It is clear that since there are 254 channels, 254 equations could be written where
only eight are needed for a unique solution. The least-squares method shown in Appen-
dix B permits the use of data in all channels.

Appendix B
EQUATIONS FOR LEAST-SQUARES METHOD OF SOLUTION!

The following definitions apply to this section:

[(x) = unknown spectrum (¥ = channel number = 1 to 254)
gz.(x), g].(x) = reference spectra (i =j=1to 8)
W(x) = weighting factors

a;a;= microcuries (unknown) of each fission product

i7

of(x), dg;(x),

! 8 = errors associated with quantities indicated
The assumption holds that the counting rate in a specific channel f(x ) is the sum

of the counting rate contributions of each individual fission product

8
Z 480 -

IThe derivations following are principally the work of John Reynolds, Applied Mathematics
Division of Argonne National Laboratory.
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More generally,

)= 2 a8, W
=

The weighted sums of deviations squared can then be expressed as

254
€= 3
x=1

8 2
W |1 - 3 ag)]”. @)
=1
Thus we may calculate the ¢’s by minimizing €, that is, by setting its partial deriva-
tives with respect to each 4, equal to zero (eight normal equations in the eight un-
knowns, a;, are thus generated).

1 de 0 254 W [ ( 8 ]
T 20s;, R 2 %8| » €
254 8 254
2 [W(x)gi(x) ,51 a].g]-(x)] = Z Wg;(f(x) - 4

If we define the matrix (M ij)’ such that its elements are

254
M, = 21 W(x)gi(x)gj(x) 3 (5)

iy =

then Eq. (4) becomes (in matrix notation)

254

(M..) a.= 3 W)g)f(x), (6)
K T w=1 !
or
-1 254 )
aj = <M” > 21 W(x)g,(x)/(x) .
If we define the vector a.i(x) as
o) = (M )™t Mg, ®
then Eq. (7) becomes
254
aj(x)= T afe). ©)

This method of solution using the a,(x)’s has potential value for etror analysis.
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Error Analysis

In consxdenng errors we let f(x) + 8/(x) be the measured f, g (%) + 3g (x) the meas-
ured g’s, and a;+ Ba the calculated a’s. Substituting these express:ons into Eq. (4),
we get

2254{W(x)[g.(x)+3g.(x)] % (a, + 8a.]llg.(x) + 8g.()1}
1 : z =1 1 FaS | 7

x=

254
= Z Weole,(x) + 8g,()l [fG) + 8ft) . (10)

xm=

By expanding Eq. (10), dropping all second-order temms, and subtracting Eq. (4), we get

254 | 8 254
z [W(x)gi(x) '21 5a,~g,}= z W(x)g (x)[S/(x) 3 a,5¢ (x)} 11)
= x=1

x=1 P ]!

Using the same matrix (MZ. ) whose elements were defined in Eq. (5),
(M;; ) 2a; 2 W(x)g <x>[8f<x> 21 a,-ag,(x)} , (12)

or

0= (M) 2, Wee o) [6f(x> % ape ). (13)

Using the same vector al.(x) as in Eq. (8),

254 8
= ¥ 0,®)|5f(x) - X angA(x)}, (14)
x=1 =1 1

which is of the same form and uses the same ai(x)'s as does the solution for a]-’s in
Eq. (9) with f(x) replaced by

8
of(x) — 2 a]ﬁg].(x) .
i

If the latter term can be evaluated (see main text), the Sa].'s can be calculated.

Appendix C

ERRORS INTRODUCED BY RESOLUTION CHANGES ON A SINGLE GAUSSIAN

Equations are shown below for the calculation of errors due to resolution changes.
The double solution technique in which calculated results are independent of resolu-
tion change is shown in detail.

The reference spectrum is given by

2
[ ()= Be™a %" W
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The unknown spectrum is given by

1) = skBe=K’a’x’ (2)

The method requires the determination of a factor F by which Eq. (1) must be mul-
tiplied to satisfy the least-squares criteria applied. The correct result is that F should
equal S. The integrated weighted square of the deviations is

2
+00 2.2 2 22
€= fmdz W(x)dxzf W(x) <FBe‘“ %" _ §KBe~K'a"x > dx . (3)
o OO (o]

The proper W(x) is subtituted into Eq. (3), following which the integrals are evalu-
ated. The factor F is calculated by minimizing €, that is, by setting its partial deriva-
tive with respect to F equal to zero and then solving for F. The following W(x)'s were
used:

1. W(x) =1 (unweighted).
2. Weighted by the reciprocal of the unknown Gaussian:
K2 2.2
W(x) = 1/S§KBe™" ¢ * |

3. Weighted by the reciprocal of the reference Gaussian multiplied by F:

2.2
W(x) = 1/FBe~™% ¥
4. Weighted by the geometric mean of Eqs. (2) and (3):
1

T /K% 41
o
! 2
5. Two successive solutions: the first weighted by Eq. (2) and the second by Eq. (3),

using the value of F calculated in the first solution,

W(x) =

(FSK)'/2 B exp

The mathematics is shown for the last method. When weighted, Eq. (3) becomes

2
+ 2.2 2 2.2
f‘” <FBe"“ *" _ skBe~K’a'x )
6:

k2. dx . 4)
© SKBe

The expansion and simplification of terms results in

o 2 40

F°B 2, 2.2 2.2
€= f e ~(2=K%a"x" 4 f 2FBe™% * Jx
| o SK

[ e]

400
--Kzazx2
+ SKBe dx . (5)
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After integration

F2Bn1/2 2FBrnl/? sBnl/2 ©
= - + .
aSK(2 - I(Z)l/2 a a

Minimize €, by taking its partial derivative with respect to F, equating to zero, and
solving for F

de 2BFn1/2 2Br1/2 o
- =0, 7
aF aSK(2 — KZ)I/2 a )
F=KSQ - K)H/2 (8)

This expression shows the relation of the calculated F to resolution change. When

=1, F=8§. By de51gnatmg this solution of F as F, and repeating the solution using
a W(x) of l/F B exp(~a x2), we will arrive at a second value of F, which we will des-
ignate as F,. The expression for € becomes

2
+® 2.2 222
f <F28e"“ *" _ sKBe~K'e'x )
€ =

3 dx . ©)

/ o F Be=®*

Now, F, is known, F, is unknown. The known value of F, is substituted into Eq. (9).

After integration,

BF2g1/2 2BF ,n!/2 SKBr1/2
€= K72~ w17z * 1 . 10)
aSK(2 — K?) aK(2 - K?%) a2 -~ KHY/2 oK% ~ i/2

If the minimum of € is found by taking its partial derivative relative to F, which is then
set equal to zero,

de 2BF jn!/? 2By1/2
— = - =0, 11
dF, aSK(@2—K*)Y? ak(2 - K?)1/2 (1)

and

F_ =5. (12)

Thus, the calculated value of F, is found to be independent of resolution change.
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The calculated functions of F resulting from the first four weighting methods are

as follows:

(1)

(2
3

4

2 1/2
F = KS ,
K2+1

F=KSQ2-KH/2

F = KS/(2K? - 1)}4,

F "5{<3—K2>”2+{<3-K2) 3(3—1<2)1’2””2
R K241 - (1<2'+1)+(31<2-1)1/2 )
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APPENDIX Il

ON THE MEANING AND USE OF *“CHI-SQUARE"’ IN CURVE FITTING'

Roger H. Moore
Los Alamos Scientific Laboratory, University of California
Los Alamos, New Mexico

This note, prepared at the request of the editor of the Proceedings of the Gatlin-
burg Symposium on the Application of Computers to Nuclear and Radiochemistty is an
effort to provide the casual user of statistical methods with a feel for the meaning and
use of the quantity called *‘chi-square.’”’ It is not the author’s intention that this pres-
entation be a substitute for sound statistical advice. As a matter of fact, the section
“*Parting Shot”’ is, in the opinion of the author and his colleagues, the presentation’s
most important statistical concept. This oft-repeated plea by statisticians is no less
valid for its venerability than it is for its basic rightousness.

SOME BASIC DEFINITIONS

It is useful at the outset to have some appreciation for the meanings of the terms
*‘random variable,”’ *‘distribution function,”’ and ‘‘density function.”’ Serving the
present purpose are the following definitions whichare based on those given in a
basic statistical dictionary [1]. Common synonyms are parenthetically indicated
immediately after the term being defined.

Definition 1. A random variable (chance variable, variate) is a quantity, say v,
which may take any of the values of a specified set, say S, with a specified fre-
quency or probability.

Definition 2. The distribution function (cumulative distribution function) G(y) of
a random variable y is the total frequency of members of the set § whose values are
less than or equal to y. Asa general rule the total frequency is taken to be unity.

Definition 3. The density function (frequency function, probability density) of a
random variable y is an expression giving the frequency of a value attainable by the
random variable y as a function of y . When y is a continuous random variable, the
density function gives the frequency in an elemental range dy. The density function
is sometimes conveniently regarded as the derivative of the distribution function.

It is not the author’s intention that these definitions convey to the casual reader
all the esoteric nuances contained in the terms. Rather, it is hoped only to provide a
basis on which to build the following discussion.

NORMAL DISTRIBUTION

A probably familiar idea is the notion of a set of numbers being normally distrib-
uted. 2 What is usually meant by this notion is that the set of numbers is assumed
to be a group of observations of a random variable whose density function has a

Work performed under the auspices of the U.S. Atomic Energy Commission.
2Some writers, especially in physics, would use the term “*Gaussian distributed.”
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particular form known as the normal density. For notation, let the random variable
be called y. The set of observed values may be denoted y 12 Ygs voes ¥, the sub-
script n indicating the number of values in the set. The normal density function can
be written

1 [y - u)Z/ZO'Z]
e

&ly) = N )

It may be recognized that the quantities p and o are the mean and standard deviation
of the density function. These quantities are parameters; that is, they determine the
position and shapes of the density. The estimation of these parameters follows the
usual technique: p is estimated by ¥ where

y= <Z )’,->/ﬂy
=1

and o is estimated by the square root of s where

st= [ Z &y, _-)7)2}/,2 -1.

=1

— o0 <y < oo, (1)

In statistical parlance,y and s? are statistics, which is to say that they are computed
from the sample valuesy,, y,, ..., y,. Thus, since the sample values are random
variables, the statistics ¥ and s° are also random variables because they are functions
of the observed values.

But, from definition 1, these statistics also have density functions which define
the probabilities that J and s 2 will take on particular values. Finding densities for
statistics is, in general, a major undertaking. Fortunately, most of these problems
have already been faced, and the results are available if one knows about them and
where to find them.

CHI-SQUARE DISTRIBUTION

Just as y could be said in the preceding section to be normally distributed be-
cause its density function was assumed to be of the form (1), a random variable z is
said to have a chi-square distribution if its density is of the form

1

s L mm/2, - /2 S <, @
2%/°T (k/2)

b(z)

The only parameter in this distribution is k4 and is called the number of degrees of
freedom; I" (k/2) is the usual gamma function.

Often the chi-square variable is written using its Greek symbol y 2. When this is
done the density (2) takes the form

2 rd
b(X2)= -X /Z(XZ)(]?,—Z)/Z’ 0§X2§w. (2%)

1
T k) ¢
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In particular, it must be remembered that the variable chi-square is just that — a vari-
able that has a specific density function. It must also be remembered that the symbol
x 2 is nothing but a symbol, indicating a variable that has a chi-square density.

The chi-square distribution has several interesting properties. The most useful is
the additive property; that is, the sum of two chi-square distributed variables is a chi-
square vanable. That is to say, if x 3 ; has a chi-square distribution with &, degrees of
freedom and Xz has a chi-square distribution with k2 degrees of freedom, then their sum
x3 xl +: Xz has a chi-square distribution with k; = k; + k, degrees of fredom.

The chi-square variable is closely related to the normal variable. Indeed, chi-square
is often defined in terms of a normal variable in the following manner: Consider a
random variable definedby 2z = (y — p)2/0?, where y is a normally distributed variable
whose mean and variance are p and 2.3 Then the density of z is the chi-square den-~
sity (2). However, as shown earlier, it is not necessary to define chi-square .in this way,
since it is a perfectly respectable random variable in its own right.

An important use of the chi-square variable occurs when individuals are classified
according to several characteristics, and a question to be answered concerns the inde-
pendence of these characteristics. The term ‘‘contingency tables’ is applied to data
treated this way. Most basic statistics books contain discussion of this use of chi-
square [2]. Care must be exercised, however, that contingency table concepts and
notation are not carried over into the fitting of functions.

CHI.SQUARE AND CURVE FITTING

The question remains: How does a quantity called chi-square — often denoted by
¥ 2 — relate to the problem of curve fitting? The answer lies in the assumptions on
which the cutve fitting is accomplished.

Consider the case in which » pairs of numbers are observed. Denote the observa-
tions by (y1 y % (gs %) veey (yn , %,). Assume that the pairs (y,, x;) are related
by the following expression:

y;=fx;;0)+e;,i=1,2,...,n. (3

The quantity @ is a vector of p parameters which are to be estimated. If, a priori, it
is agreed that @ is to be estimated by minimizing the sum of the squares of the errors,
the e; in Eq. (3), it means that the following function of & is to be minimized:

Nay= F ef= F by, - fix;3 )12, 4

=1

The value of a, callit ('J\«, that minimizes the 0(a) in Eq. (4) is the least-squares esti-
mate of the parameter a.

Now, suppose an additional assumption is made about the observations (yl. ) %)
This assumption is that the y,’s are observed values of a random variable that is nor-
mally distributed with mean g, = f(x;; @) and variance o2, The latter part of the
assumption forces equal variability of the observations, no matter which pair of the
(yi , X i) observations is under consideration. In the notation of Eq. (1), the normal

3The variable z defined in this way is often called **the square of a standardized normal.”
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density function, this assumption is written

_ Aly - fe; 0127203

From this assumption of normality, it can be developed that the required estimate
of a (often called ‘“‘the maximum likelihood estimate of a’’) is obtained by minimizing
the expression

Ra)= Y by, = fx;30)1% ¢ /o2 (6)
7= 1

Examination of Eq. (4) shows that if & minimizes 0O(a), then the same & also minimizes
R(a) in Eq. (6). Hence the maximum likelihood estimate of @ is identical with the
least-squares estimate when it is assumed that the values of y are normally distributed
with mean f(x; a) and common variance ol

Consider now the case in which the function f(x; ) is linear in the elements of the
parameter vector. Perhaps the simplest and most familiar linear model is that of a
straight line: f(x; a) = a4 a,x. When the maximum likelihood estimates of the
intercept and slope, @1 and &\2 , are inserted into R(a), it can be shown that R(&) is a
random variable which is distributed as chi-square with (n — 2) degrees of freedom. It
is extremely important to note that the quantity o 2 must be in the denominater of R(&)
in order that the expression be called chi-square. In particular, the unweighted sum of
squares, O0(a) in Eq. (4), is not chi-square, even though it is evaluated at &,

When the funcnon f(x; a) is not linear in at least one of the parameters, it generally
is not ttue that R(a) has a chi-square distribution. However, it is common practice to
treat R(a) as though it d1d have the same chi-square properties as those obtained in the
linear model; that is, (OL) is said to be approximately chi-square distributed with (n —
p) degrees of freedom, where % is the number of observations and p is number of param-
eters in the vector a

In many experimental situations it is not reasonable to assume that the variance of
the variable y is the same for each experimental observation. Some sort of ‘‘weighting”’
to allow for this nonhomogeneity is dictated. As a result of this consideration, each
experimental result is a triad of numbers (yl. N wz.). The various values of w, are
meant to indicate the relative worth (“‘weights’’) of the observations ¥;+ The estimates
of the elements of the parameter vector @ are obtained by minimizing the weighted sum
of squares,

n
0, @)= E wly, - fx;; )12, 4)
=1
‘Substitution of the weighted least-squares estimate OL into Eq. (47) does not
guarantee that Q (a ) Will have a chi-square dlstmbutlon. However, if O‘ is the

variance of y, and w, 1/0‘ and y; is assumed to be normally dlstnbuted it is
noted that

n _ A 2
Q (&\w)z Z }’i /(XZ’ aw) <4n)



has the same appearance as a sum of squares of standardized normals. In fact, if the
functionis linear in the elements of @ and the variances are known constants, then
0 (a ) has exactly a chi-square dlstnbutxon with (n — p) degrees of freedom ~ pre-
c1sely the result obtained above for R(a) from Eq. (6).

When the function is not linear in at least one of the parameters, this exact result
cannot be stated. However, once again, it is common practice to treat Qw(aw) as
though it were distributed as chi-square with (n — p) degrees of freedom. Furthermore,
it is seldom that the 0'1.2 can be assumed known. Approximate values must then be
used, and this procedure also reinforces the statement that O (a ) is only approxi-
mately chi-square distributed.

CHI-SQUARE AS A **FIGURE OF MERIT"

The term Qw(& ) is often put forth as a figure of merit for the goodness of fit of a
function to a set of experimental data. The basis for this usage comes from the
following considerations. It has been shown earlier that chi-square with & degrees of
freedom is a variable with a density function of the form (2). The variable z can take
on values from zero to infinity according to the relative frequencies indicated by Eq.
(2). Furthermore, the integral of 5(z) is equal to unity. Notationally, this remark takes
the form

fo°° b(z) dz = 1. 7

If the upper limit of the integral (7) is finite, then the value of that integral is less than
unity. Suppose that this upper limit is some fixed value z,. Then the value of the
integral is, say, p,, which is the probability that the random variable z will take on a
value less than or equal to the preset value z,. This may be written

Pr(z S z)) = foz%(z) dz=p, . (8)

It should be clear that, as z, approaches infinity, b, approaches unity.

Suppose that p = 0.95 is chosen. Then, by consulting tables of the chi-square
cumulative distribution [3, pp 40—43], it is possible to determine the corresponding
value z. This value depends on the number of degrees of freedom. Thus, for 10
degrees of freedom, z, = 18.3, while the result for 20 degrees of freedom is z, = 31.4.

Suppose further that 2 function has been fitted, that there are (n — p) = 10 degrees
of freedom and that 0 (a )= 21.3. Since zy,=18.3 for 10 degrees of freedom, it is
seen that the probab1l1ty of obtaining a value of 0 (a ) as large as 21.3 is less than
0.05 = 1.00 — 0.95. Hence, it might be concluded that 21.3 is too large to allow the
assumption that a ‘‘good’’ fit has been obtained.

It is important at this juncture to recall the many assumptions that have led this
far: (1) normality has been assumed to be the basic distribution for the Y (2) the
““best’’ estimates of the parameters have been assumed, and (3) knowledge about the

2 has been assumed. Violation of any one of these assumptions usually leads to
an inflated value for O (a ). Thus, one should temper his flat rejection of Ow(é\w) =
21.3 until he is certain that all the basic assumptions are satisfied.
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Sometimes a related variable, v = Qw(aw)/(n — p), which has a ‘‘chi-square over
degrees of freedom’ density, is used to indicate a goodness of fit. Because the ex-
pected value of a chi-square variable with & degrees of freedom is the parameter &

itself, the expectation of the variable v is unity. Tables for critical values of v are
available [3, pp 44~46].

PARTING SHOT

Several instances of misuse and misinterpretation of quantities called chi-square
have come to the author’s attention in recent years. Most of these seem to have been
the result of lack of proper statistical training on the part of the wrong-doer. Here,
and in many other statistical matters, the potential harm resulting from such misuse is
incalculable. Moreover, it isnot excusable. If nothing else, this presentation will
have served its purpose if it provides the experimenter with some of the language of
statistics and induces him to consult a qualified statistician when a statistical prob-
lem arises.
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MONOGRAPHS IN THE RADIOCHEMISTRY AND THE RADIOCHEMICAL
TECHNIQUES SERIES

The following lists the title issued in these related series. Copies of all titles
shown are available from the U. S. Department of Commerce, Office of Techni-
cal Services, Washington 25, D. C.

Cadmium NAS-NS-3001 Titanium NAS-NS-3034
Arsenic NAS-NS-3002 Cesium NAS-NS-3035
Francium NAS-NS-3003 Gold NAS-NS-3036
Thorium NAS-NS-3004 Polonium NAS-NS-3037
Fluorine, Chlorine, Tellurium NAS-NS-3038
Bromine, and Iodine NAS-NS-3005 Niobium and

Americium and Tantalum NAS-NS-3039
Curium NAS-NS-3006 Lead NAS-NS-3040
Chromium NAS-NS-3007 Cobalt NAS-NS-3041
Rhodium NAS-NS-3008 Tungsten NAS-NS-3042
Molybdenum NAS-NS-3009 Germanium NAS-NS-3043
Barium, Calcium, Platinum NAS-NS-3044
and Strontium NAS-NS-3010 Iridium NAS-NS-3045
Zirconium and Osmium NAS-NS-3046
Hafnium NAS-NS-3011 Silver NAS-NS-3047
Astatine NAS-NS-3012 Potassium NAS-NS-3048
Beryllium NAS-NS-3013 Silicon NAS-NS-3049
Indium NAS-NS-3014 Uranium NAS-NS-3050
Zinc NAS-NS-3015 Nickel NAS-NS-3051
Protactinium NAS-NS-3016 Palladium NAS-NS-3052
Iron NAS-NS-3017 Rubidium NAS-NS-3053
Manganese NAS-NS-3018 Sulfur NAS-NS-3054
Carbon, Nitrogen, Sodium NAS-NS-3055
and Oxygen NAS-NS-3019 Phosphorus NAS-NS-3056
Rare Earths — Liquid-liquid

Scandium, Yttrium, Extraction with

and Actinium NAS-NS-3020 High-molecular-

Technetium NAS-NS-3021 weight A mines NAS-NS-3101
Vanadium NAS-NS-3022 Separations by

Tin NAS-NS-3023 Solvent Extraction

Magnesium NAS-NS-3024 with Tri-n-

Rare Gases NAS-NS-3025 octylphosphine

Mercury NAS-NS-3026 Oxide NAS-NS-3102
Copper NAS-NS-3027 Low-level Radio-

Rhenium NAS-NS-3028 chemical

Ruthenium NAS~NS-3029 Separations NAS-NS-3103
Selenium NAS-NS-3030 Rapid

Transuranium Radiochemical

Elements NAS-NS-3031 Separations NAS-NS-3104
Aluminum and Detection and

Gallium NAS-NS-3032 Measurement of

Antimony NAE-NS-3033 Nuclear Radiation NAS-NS-3105



