

MAY 13 1963

UNCLASSIFIED

AD 285 146 ✓

REF ID: A6425

*Reproduced
by the*

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

63-1-1

EDL-M488

DA 36-039 SC-89262

CATALOGED BY ASIA
AS AD NO. —

285146

Small Amplitude Electro-Acoustic Plasma Oscillations

ROBERT A. WEIR
A.F. WICKERSHAM, JR.

285146

SYLVANIA ELECTRONIC SYSTEMS
Government Systems Management
for GENERAL TELEPHONE & ELECTRONICS

ELECTRONIC
DEFENSE
LABORATORIES

MOUNTAIN VIEW, CALIFORNIA

PREPARED FOR THE U.S. ARMY SIGNAL CORPS

US ARMY ELECTRONICS RESEARCH UNIT
POST OFFICE BOX 205
MOUNTAIN VIEW, CALIFORNIA

DISTRIBUTION LIST FOR PUBLICATION ECL-M488

COMMANDING OFFICER US ARMY ELECTRONICS RESEARCH UNIT PO Box 205 MOUNTAIN VIEW, CALIFORNIA	1E1	COMMANDING OFFICER US ARMY ELECTRONICS R&D LABORATORY ATTN - SELRA/SL-SE FORT MONMOUTH, NEW JERSEY	14E1	PRESIDENT US ARMY AIR DEFENSE BOARD FORT BLISS, TEXAS	27E1
CHIEF OF RESEARCH & DEVELOPMENT OCS, DEPARTMENT OF THE ARMY WASHINGTON 25, D C	2E1	CORPS OF ENGRS LIAISON OFFICE US ARMY ELECTRONICS R&D LABORATORY FORT MONMOUTH, NEW JERSEY	15E1	COMMANDING OFFICER US ARMY ELECTRONICS R&D ACTIVITY ATTN - SIGRS-MEW WHITE SANDS MISSILE RANGE, NEW MEXICO	28E1
TECHNICAL LIBRARY, OASD R&D RM 3E 1065, THE PENTAGON WASHINGTON 25, D C	3E1	MARINE CORPS LIAISON OFFICER ATTN - SELRA/SL-LNR US ARMY ELECTRONICS R&D LABORATORY FORT MONMOUTH, NEW JERSEY	16E1	COMMANDING GENERAL WHITE SANDS MISSILE RANGE NEW MEXICO ATTN - ORDBS-OM-TIO-TL	29E2
COMMANDING OFFICER DIAMOND ORDNANCE FUZE LABORATORIES ATTN - TECH REF SEC--ORDTL--06.33 WASHINGTON 25, D C	4E1	COMMANDING OFFICER US ARMY ELECT. MATERIEL SUPPORT AGENCY ATTN - SELMS/ES-ADJ FORT MONMOUTH, NEW JERSEY	17E1	COMMANDING GENERAL US ARMY MISSILE COMMAND ATTN - TECHNICAL LIBRARY REDSTONE ARSENAL, ALABAMA	30E2
CHIEF, BUREAU OF WEAPONS, RAAV DEPARTMENT OF THE NAVY WASHINGTON 25, D C	5E1	COMMANDING OFFICER US ARMY ELECTRONICS R&D LABORATORY ATTN - SELRA/SL-ADT FORT MONMOUTH, NEW JERSEY	18E1	COMMANDER WRIGHT AIR DEVELOPMENT DIVISION ATTN - ASRNCFI WRIGHT-PATTERSON AFB, OHIO	31E1
CHIEF, BUREAU OF NAVAL WEAPONS DEPARTMENT OF THE NAVY ATTN - CODE R-12 WASHINGTON 25, D C	6E1	COMMANDER ARMED SERVICES TECH INFO AGENCY ATTN - TIPDR ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA	19E10	A S D ASAPRD--DIST WRIGHT-PATTERSON AFB, OHIO	32E2
OFFICE OF NAVAL RESEARCH DEPARTMENT OF THE NAVY ATTN - CODE 427 WASHINGTON 25, D C	7E1	COMMANDING OFFICER US ARMY FOREIGN SCIENCE AND TECHNOLOGY DIVISION ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA	20E1	DIRECTOR NATIONAL SECURITY AGENCY ATTN - C3/TDL FORT GEORGE G MEADE, MARYLAND	33E2
CENTRAL INTELLIGENCE AGENCY ATTN - OCR MAIL ROOM 2430 E STREET, NW WASHINGTON 25, D C	8E1	CHIEF, US ARMY SECURITY AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA	21E1	COMMANDER AERONAUTICAL SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND ATTN - ASRNCC-1 WRIGHT-PATTERSON AFB, OHIO	34E1
US ATOMIC ENERGY COMMISSION DIVISION OF MILITARY APPLICATION ATTN - CLASSIFIED TECH LIBRARY 1901 CONSTITUTION AVE, NW WASHINGTON 25, D C	9E1	DEPUTY PRESIDENT US ARMY SECURITY AGENCY BOARD ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA	22E1	COMMANDER ROME AIR DEVELOPMENT CENTER ATTN - RCYLD GRIFFISS AIR FORCE BASE ROME, NEW YORK	35E1
CHIEF OF STAFF, US AIR FORCE DEPARTMENT OF THE AIR FORCE ATTN - AFDR-T-ER WASHINGTON 25, D C	10E1	COMMANDER AIR RESEARCH & DEVELOPMENT COMMAND ATTN - RDSBTL--HQ TECH LIBRARY BR ANDREWS AIR FORCE BASE WASHINGTON 25, D C	23E1	COMMANDER, FIELD COMMAND DEFENSE ATOMIC SUPPORT AGENCY ATTN - DEVELOPMENT DIVISION SANDIA BASE ALBUQUERQUE, NEW MEXICO	36E1
DEPUTY CHIEF OF STAFF FOR MIL OPNS DEPARTMENT OF THE ARMY ATTN - ORGN, R&D BRANCH WASHINGTON 25, D C	11E1	DIRECTOR OF COMMUNICATIONS & ELECTRONICS HQ TACTICAL AIR COMMAND LANGLEY AFB, VIRGINIA	24E1	SANDIA CORPORATION LIBRARY SANDIA BASE ALBUQUERQUE, NEW MEXICO	37E1
DIRECTOR US NAVAL RESEARCH LABORATORY COUNTERMEASURES BRANCH ATTN - CODE 2027 WASHINGTON 25, D C	12E1	COMMANDER AIR PROVING GROUND COMMAND ATTN - APGC--PGAPI EGLIN AFB, FLORIDA	25E1	THE RAND CORPORATION ATTN - ELECTRONICS DEPARTMENT 1700 MAIN STREET SANTA MONICA, CALIFORNIA	38E1
CHIEF OF STAFF, US AIR FORCE DEPARTMENT OF THE AIR FORCE ATTN - AFDRD-SC-3 WASHINGTON 25, D C	13E1	COMMANDING GENERAL US ARMY AIR DEFENSE CENTER FORT BLISS, TEXAS	26E1		

US ARMY ELECTRONICS RESEARCH UNIT
 POST OFFICE BOX 205
 MOUNTAIN VIEW, CALIFORNIA

DISTRIBUTION LIST FOR PUBLICATION EDL-M488 (CONT'D FROM OTHER SIDE)

MIT LINCOLN LABORATORY ATTN - LIBRARY PO Box 73 LEXINGTON 73, MASSACHUSETTS	39E1	COMMANDER AF CAMBRIDGE RESEARCH CENTER ATTN - CRREL HANSCOM FIELD BEDFORD, MASSACHUSETTS	42E1	AIR FORCE MISSILE TEST CENTER AFMTC TECH LIBRARY--MU 135 PATRIK AFB, FLORIDA 45EU1
COMMANDING GENERAL US ARMY ELECTRONICS R&D ACTIVITY ATTN-TECHNICAL LIBRARY FORT HUACHUCA, ARIZONA	40E2	COMMANDING OFFICER & DIRECTOR US NAVY ELECTRONICS LABORATORY SAN DIEGO 52, CALIFORNIA	43E1	RESEARCH LABORATORY OF ELECTRONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY ATTN - LIBRARIAN CAMBRIDGE 39, MASSACHUSETTS 46EU1
DIRECTOR COMMUNICATIONS & ELECTRONICS AIR DEFENSE COMMAND ENT AIR FORCE BASE COLORADO SPRINGS, COLORADO	41E1	AIR FORCE MISSILE TEST CENTER AFMTC--MTASI PATRIK AFB, FLORIDA	44EC1	

ELECTRO-ACOUSTIC LIST (1 COPY EACH)

MR GEORGE BARRY STANFORD ELECTRONIC LABORATORY STANFORD UNIVERSITY PALO ALTO, CALIFORNIA	MR HENRY G BOOKER STANFORD RESEARCH INSTITUTE 333 RAVENSWOOD AVENUE MENLO PARK, CALIFORNIA	MR ROBERT BOLLEN STANFORD RESEARCH INSTITUTE 333 RAVENSWOOD AVENUE MENLO PARK, CALIFORNIA
COMMANDER AIR FORCE CAMBRIDGE RESEARCH CENTER ATTN - CRRI/MR TOMAS D CONLEY L.G. HANSCOM FIELD BEDFORD, MASSACHUSETTS	MR CULLEN M CRAIN RAND CORPORATION 1700 MAIN STREET SANTA MONICA, CALIFORNIA	CHIEF SIGNAL OFFICER DEPARTMENT OF THE ARMY ATTN - DR CRAIG GRENSHAW WASHINGTON 25, D C
MR THOMAS A CROFT STANFORD UNIVERSITY PALO ALTO, CALIFORNIA	COMMANDING OFFICER US ARMY ELECTRONICS R&D ACTIVITY WHITE SANDS, ATTN - MR MARVIN DIAMOND WHITE SANDS MISSILE RANGE, NEW MEXICO	MR LAMBERT DOLPHIN STANFORD RESEARCH INSTITUTE 333 RAVENSWOOD AVENUE MENLO PARK, CALIFORNIA
DR W DELMAR HERSHBERGER INSTITUTE FOR DEFENSE ANALYSES RESEARCH & ENGINEERING SUPPORT DIV. OFFICE OF THE SECRETARY OF DEFENSE WASHINGTON 25, D C	DR HARRY HOOGASIAN RAYTHEON MANUFACTURING COMPANY 1415 BOSTON PROVIDENCE TURNPIKE NORWOOD, MASSACHUSETTS	COMMANDING OFFICER US ARMY SIGNAL OPERATION ACTIVITY ATTN - MR GEORGE R KASCHAK FORT MONMOUTH, NEW JERSEY
COMMANDING OFFICER US ARMY ELECTRONICS R&D LAB ATTN - SELRA/SL-SE/DR WALTER McAFFEE FORT MONMOUTH, NEW JERSEY	DR ALLEN M PETERSON STANFORD RESEARCH INSTITUTE 333 RAVENSWOOD AVENUE MENLO PARK, CALIFORNIA	DR RICHARD L PFEFFER LAMONT GEOLOGICAL OBSERVATORY PALISADES, NEW YORK
DR E J PINNEY UNIVERSITY OF CALIFORNIA DEPARTMENT OF MATHEMATICS BERKELEY 4, CALIFORNIA	COMMANDING OFFICER US ARMY ELECTRONICS R&D LAB ATTN - SELRA/SL-X/DR WOLFGANG J RAMM FORT MONMOUTH, NEW JERSEY	DR ALFRED REIFMAN ASTRO PHYSICS RESEARCH CORPORATION 2444 WILSHIRE BOULEVARD SUITE 514, UNION BANK BUILDING SANTA MONICA, CALIFORNIA
DR RONALD ROW SYLVANIA ELECTRONIC SYSTEMS - EAST WALTHAM, MASSACHUSETTS	DR TAMARKEN RAND CORPORATION 1700 MAIN STREET SANTA MONICA, CALIFORNIA	DR B SAMUEL TANNENBAUM PHYSICS DEPARTMENT RAYTHEON MANUFACTURING COMPANY POST OFFICE BOX 171 WAYLAND, MASSACHUSETTS
DIRECTOR ADVANCED RESEARCH PROJECTS AGENCY ATTN - MR A VAN EVERY WASHINGTON 25, D C	DR OSWALD G VILLARD, JR STANFORD UNIVERSITY PALO ALTO, CALIFORNIA	COMMANDING OFFICER US ARMY ELECT.R&D ACTIVITY, WHITE SANDS, ATTN- MR WILLIS WEBB MISSILE METEOROLOGY DIV. WHITE SANDS MISSILE RANGE, N. M.
DR PAUL VON HANDEL INSTITUTE FOR DEFENSE ANALYSIS UNIVERSAL BLDG, 1825 CONNECTICUT AVE. WASHINGTON 25, D C	DR CHAMBRE UNIVERSITY OF CALIFORNIA DEPARTMENT OF MATHEMATICS BERKELEY 4, CALIFORNIA	

EDL-M488

ELECTRONIC DEFENSE LABORATORIES
P. O. Box 205
Mountain View, California

TECHNICAL MEMORANDUM
No. EDL-M488
27 July 1962

SMALL AMPLITUDE ELECTRO-
ACOUSTIC PLASMA OSCILLATIONS

Robert A. Weir
A. F. Wickersham, Jr.

Approved for publication. . . . F. E. Butterfield
Manager
Equipment Engineering Laboratory

Prepared for the U. S. Army Signal Research and Development
Laboratory under Signal Corps Contract DA 36-039 SC-89262 .

SYLVANIA ELECTRIC PRODUCTS INC.

SMALL AMPLITUDE ELECTRO-ACOUSTIC PLASMA OSCILLATIONS

Robert A. Weir
 A. F. Wickersham, Jr.

Electrostatic-acoustic disturbances will propagate with but slight attenuation through an ionized medium, even if the medium includes high concentrations of neutral particles. From such observations we conclude that there must exist a propagation mode in which most of the kinetic energy resides in the electrons, rather than the ions. In the following we obtain a theory, comprising both an ionic and an electronic mode, by deriving a set of differential equations which describe small amplitude, longitudinal, coherent oscillations in a plasma. In addition we briefly compare such theory with recent observations.

For simplicity of presentation we consider first a medium containing only electrons ($-e, m_2, \rho_2$) and one species of singly charged ions ($+e, m_1, \rho_1$). The linear equation of motion for the ion "fluid" at a point in the plasma is

$$(1) \quad -\vec{\nabla}P - \frac{e}{m_1} \rho_1 (\vec{\nabla}\phi_1 + \vec{\nabla}\phi_2) = \rho_1 \frac{\partial \vec{V}_1}{\partial t} ,$$

where m , ρ , and P are mass, density, and pressure, and where ϕ_1 and ϕ_2 are electrostatic potentials derived from ions and electrons at points other than the one under consideration. To avoid self-forces we take the divergence of (1) to obtain

$$(2) \quad \vec{\nabla} \cdot (\rho_1 \frac{\partial \vec{V}_1}{\partial t}) + \frac{\partial P}{\partial \rho_1} \Big|_0 \nabla^2 \rho_1 = - \frac{e}{m_1} \vec{\nabla} \rho_1 \cdot (\vec{\nabla}\phi_1 + \vec{\nabla}\phi_2) - \frac{e}{m_1} \rho_1 (\nabla^2 \phi_1 + \nabla^2 \phi_2) ,$$

where we have assumed $\partial P / \partial \rho_1$ is not a function of position for small

variations in pressure. The last term on the right-hand side vanishes since the sources of potential are elsewhere, and the remaining term may be written as

$$- \frac{e}{2m_1} \left[\nabla^2 (\rho_1 \phi_1) - \phi_1 \nabla^2 \rho_1 - \rho_1 \nabla^2 \phi_1 + \nabla^2 (\rho_1 \phi_2) - \phi_2 \nabla^2 \rho_1 - \rho_1 \nabla^2 \phi_2 \right].$$

Here the third and last terms vanish and after re-arrangement our equation becomes

$$(3) \quad \vec{\nabla} \cdot \left(\rho_1 \frac{\partial \vec{V}_1}{\partial t} \right) + \left(\nabla^2 \rho_1 \right) \left(\frac{\partial P}{\partial \rho_1} \Big|_0 - \frac{e\phi_1}{2m_1} - \frac{e\phi_2}{2m_1} \right) \\ = - \frac{e}{2m_1} \left[\nabla^2 (\rho_1 \phi_1) + \nabla^2 (\rho_1 \phi_2) \right].$$

We neglect the electrostatic energy of coherent motion, $e\phi/2m$, compared to the heat energy per particle, $\partial P/\partial \rho_1$, and we use Poisson's Equation to replace $\nabla^2 \rho_1$ by $-\frac{m}{4\pi e} \nabla^2 \phi_1$; thus, equation (3) is reduced to

$$(4) \quad \vec{\nabla} \cdot \left(\rho_1 \frac{\partial \vec{V}_1}{\partial t} \right) - \frac{m_1}{4\pi e} \frac{\partial P}{\partial \rho_1} \Big|_0 \nabla^2 \phi_1 = - \frac{e}{2m_1} \left[\nabla^2 (\rho_1 \phi_1) + \nabla^2 (\rho_1 \phi_2) \right].$$

From Poisson's Equation and the equation of continuity it follows that

$$\nabla^2 \frac{\partial^2 \phi_1}{\partial t^2} = 4\pi e \frac{\vec{\nabla} \cdot \left(\vec{V}_1 \frac{\partial \rho_1}{\partial t} + \rho_1 \frac{\partial \vec{V}_1}{\partial t} \right)}{m_1}, \text{ and}$$

we shall neglect the first term on the right-hand side. Thus we can substitute the last expression for the first term in (4), and our equation becomes

$$(5) \quad \nabla^2 \left\{ \frac{\partial^2 \phi_1}{\partial t^2} - \left. \frac{\partial P}{\partial \rho_1} \right|_0 \nabla^2 \phi_1 + \frac{2\pi\rho_1 e^2}{m_1^2} (\phi_1 + \phi_2) \right\} = 0 \quad \text{or,}$$

$$(6a) \quad \left. \frac{\partial^2 \phi_1}{\partial t^2} - \frac{\partial P}{\partial \rho_1} \right|_0 \nabla^2 \phi_1 + \frac{\omega^2 p_1}{2} (\phi_1 + \phi_2) = 0, \quad \text{where}$$

ω_{p1} is the ion "plasma frequency". A similar equation attains for the electrons:

$$(6b) \quad \left. \frac{\partial^2 \phi_2}{\partial t^2} - \frac{\partial P}{\partial \rho_2} \right|_0 \nabla^2 \phi_2 + \frac{\omega^2 p_2}{2} (\phi_1 + \phi_2) = 0, \quad \text{where}$$

ω_{p2} is the (electron)plasma frequency.

We consider now a one-dimensional example and take $\left. \frac{\partial P}{\partial \rho} \right|_0 = \gamma \frac{KT}{m}$, where γ is the ratio of specific heats, K is Boltzmann's constant, and T is temperature. The assumption of sinusoidal solutions, $A \exp i(kx - \omega t)$, to the set of equations (6ab) leads to

$$(7a) \quad A_1 \left[\omega^2 p_1 (h^2 k^2 + 1/2) - \omega^2 \right] + A_2 \frac{\omega^2 p_1}{2} = 0,$$

$$(7b) \quad A_1 \frac{\omega^2 p_2}{2} + A_2 \left[\omega^2 p_2 (h^2 k^2 + 1/2) - \omega^2 \right] = 0,$$

where A_1 and A_2 are the amplitudes of the ionic and electronic components of the disturbance and where $h^2 = \gamma KT / 4\pi n e^2$ defines the Debye shielding length. The corresponding secular equation is

$$(8) \quad \omega^4 - \omega^2 (h^2 k^2 + 1/2) (\omega^2 p_1 + \omega^2 p_2) + \omega^2 p_1 \omega^2 p_2 (h^2 k^2 + 1/2)^2 - \frac{\omega^2 p_1 \omega^2 p_2}{4} = 0$$

and its solution gives the dispersion equation,

$$(9) \quad \omega^2 = (h^2 k^2 + 1/2) \left(\frac{\omega^2 p_1 + \omega^2 p_2}{2} \right) \left(1 \pm \sqrt{1 - \frac{4m_1 m_2 h^2 k^2 (h^2 k^2 + 1)}{(m_1 + m_2)^2 (h^2 k^2 + 1/2)^2}} \right)$$

The positive sign of the radical in (9) gives relations for the electronic mode, analogous to the optic branch of propagation in periodic structures, and the negative sign gives the ionic mode, analogous to the acoustic branch. We shall denote the two modes by + and - subscripts. For all values of the wave number, k , it is permissible to expand the radical in (9). Thus from the dispersion equation the following relations can be derived.

IONIC MODE

$$(10) \quad \omega_-^2 = (\omega^2 p_1 + \omega^2 p_2) \frac{m_1 m_2}{(m_1 + m_2)^2} h^2 k^2 \left(\frac{h^2 k^2 + 1}{h^2 k^2 + 1/2} \right)$$

$$(11) \quad U_-^2 = \left(\frac{\omega_-}{k} \right)^2 = \left(\frac{\gamma K T}{m_1 + m_2} \right) \left(\frac{h^2 k^2 + 1}{h^2 k^2 + 1/2} \right)$$

$$(12) \quad U_g = \frac{d\omega_-}{dk} = \frac{\omega_-}{k} \left[\frac{h^2 k^2 (h^2 k^2 + 1)}{(h^2 k^2 + 1) (h^2 k^2 + 1/2)} + \frac{1/2}{(h^2 k^2 + 1/2)} \right]$$

ELECTRONIC MODE

$$(13) \quad \omega_+^2 = (\omega^2 p_1 + \omega^2 p_2) (h^2 k^2 + 1/2)$$

$$(14) \quad U_+^2 = \left(\frac{\gamma KT}{m_{re}} \right) \left(1 + \frac{1}{2h^2 k^2} \right), \quad m_{re} = \frac{m_1 m_2}{m_1 + m_2}$$

$$(15) \quad U_g = \left(\frac{\gamma KT}{m_{re}} \right)^{1/2} \left(1 + \frac{1}{2h^2 k^2} \right)^{-1/2}.$$

To compare equations (13) - (15) with observations we first differentiate (15) to obtain

$$(16) \quad \frac{\Delta U_g}{U_g} = \frac{\Delta k}{4k (h^2 k^2 + 1/2)}$$

It can be shown that $\Delta k \approx \frac{\omega_g}{U_g}$, where ω_g is the group or lower beat frequency.

The quantity $\left(\frac{\Delta U_g}{U_g} \right)$ has been determined experimentally to be 0.0962, and from measurements of group velocity we have determined that $h^2 k^2 \approx m_2/m_1$. Combining our results we have

$$\omega_g = 2\sqrt{2} \left(\frac{\Delta U_g}{U_g} \right) \sqrt{\left(\frac{m_2}{m_1} \right) \left(\frac{4\pi n e^2}{m_1} \right)} \quad \text{or numerically,}$$

with $m_1 = 16$ amu,

$$(17) \quad f_g = \frac{\omega_g}{2\pi} = 0.0835 \sqrt{n}.$$

For values of the charged particle density, n , from 10^3 to $2 \cdot 10^5 \text{ cm}^{-3}$ equation (17) gives frequencies from 2.6 to 37.4 cps. Modulation frequencies in the range 2 ± 1 to 28 ± 10 cps have been observed

repeatedly by J. E. Don Carlos and C. R. McClung at these laboratories. The electronic mode frequency or corresponding group frequency of a plasma oscillation would modulate radio frequency energy also propagating through the medium. Such modulations could account for sudden frequency shifts observed in long range radio propagation.¹

In the foregoing we have assumed equal numbers of electrons and ions and equal temperatures of the electronic and ionic components. The dynamical equations (6ab) are independent of charge sign and can be extended to include several ionic species; also, they can be extended readily to include attenuation effects owing to the presence of neutral particles.

¹ L.C. Edwards and G.D. Thome, J. Geophys. Res. 67, 6, 2573 (1962);
R. C. Fenwick and O.G. Villard, Jr., J. Geophys. Res. 65, 10,
3249 (1960).

(i + 6)