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SUMMARY

Gaussian electromagnetic field pulses of several durations are propagated through infinite sheets,
into the interior of holluw cylinders, and into the interior of spherical shells, The plates, spheres, and
cylinders contain no slots. The time history of the propagated pulses is computed, Finally, the field is
calculated in the interior of a csrlinder of finite length when connected at its ends by wire to a generator

delivering a current pulse of gaussian shape.

The dimensions of the cavities are assumed to be sufficiently small that resonances are not excited

by the highest significant {requency contained in the shortest pulse considercd,

The numerical study is restricted to thin-walled aluminum shields 1/32 inch, 1/16 inch, 1/8 inch,

and 1/4 inch thick, The half-amplitude widths of the pulses employed lie in the range 14 ps to 2400 pus.

It is shown that gaussian pulse electric fields defined on the surface of the plates and cylinders are
propagated with little diminution in amplitude. When' the incident pulse undergoes reflection at the bound-
ary surface as well as transmission through the metal wall,  the total attenuation sustained by the field is
great. Thin spherical shells form effective magnetic shields. The electric field is small in the interior

of thin-walled cylinders carrying extremely large transienl currents,
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TRANSIENT ELECTROMAGNETIC FIELD PROPAGATION
THROUGH INFINITE SHEETS, INTO SPHERICAL SHELLS,
AND INTO HOLLOW CYLINDERS

Introduction

This study was underiaken to determine the shielding characteristics of thin-walled infinite sheets,
spherical shells, and cylindrical tubes, illustrated by Figure 1, under transient conditions, The shields
ére made of aluminum and contain no slots. Gaussian electromagnetic field pulses are propagated through
the infinite sheets, and frorri outside to the inside of closed containers in the geometrical shape of spheres
and cylinders. Time histories of the attenuated pulses are computed. For the case of the infinite éon—
ductive sheets the propagated pulses are compared to the associated impinging pulses on the basis of

available energy per unit area.

Finally, the field is calculated in the interior of cylindrical tubes of finite lengths, when the ends
are connected by wire to a generator delivering a current pulse of gaussian shape. From the theoretical
point of view, this problem is closely related to that of calculating the field within a missile stripped‘ of
interior components, when subjccted to a direct lightning strike, E

The Impinging Gaussian Pulse

T'he description of the impinging pulse in the time domain employed in this paper is

elt) = Ae © ‘ , (1)

where A is the value of e(0), t is the time, and t1 is a measure of the pulse width, The spectrum of

the pulse is obtained by taking the Fourier transform of (1). Thus,

1/t
i 'z'(t > -1 (_g_)z
I . 2 \s
- -jomey
E(f) A e e dt = Atl‘/277 e !

-0

0.

where

1
£ = 5o (3)

In evaluating Fourier transforms gy numerical methods it is often convenient to truncate the frequency
spectrum in passing from the frequency to time domain, and truncate the limits of integration when com-

puting the frequency spectrum of a given time function,



Let e, (t) be the new time function obtained by taking the transform of the truncated frequency

" function. Assume that the cutoff frequency is f, = 2,6f,. The error is then

-2'6f1 i ®© .‘ T

nt) = lew - e ®] = J’ EMed? " ar +] E@e’ sl . (4)

-00 2,6f

1

Thus,
' 0
nt) € ZJ; 'E‘I E)|af. (5)
2.0 .

Substituting (2) into (5) and integrating, n(t) < 0.0093A. Thus, € . (t) does not depart from e {t) by more

than 1 percent at any time.
If e(t) is a plane wave, the energy in the pulse is given by

[

o0
_1 244 = L 2
o [ BoTa-[ Il ©

o0 -00

where the last relation follows from Parseval's identity.

'I'ne energy lost by truncation of the gpectrum is

U, = 2 ” 15| at ' (7)
v c"Jz bt '
R §
In these expressions Lo~ 1207 ochms is the éharacteristic resistance of space. Substituting (2) into
(6) and (7), and performing the integration, it is found that UQ = U, 000235Ut' Thus, 0,0236 of 1 perceul

of the energy is lost by truncation of the frequency spectrum at f = 2, 6f, .

In this paper the highest significant frequency contained in a gaussian pulse is taken to be
fq
ty
is 34,48 kes., The half-amplitude width of a gaussian pulse is 2. 355t1.

n

2, Sfl =2, 6/27rt1. The "significant' base width of the time function is 2 x 2, b't1= 5. 2t1, Thus, when

12 us the pulse duration is considered to be 62.4 us. The highest significant frequency in this pulse

The Transfer Functions for Sheets, Spheres; and Cylinders

It is readily shown from elementary principles of electrodynamics that the transfer functions for

1
an infinite sheet of thickness d for parallel incidence of the electric field are ’

E_(f) 2L ¢

S . , (8)
2¢_{cos kd + j(z,2+ g2>sin kd
o

E, (I)



e

e

and

Ei(f) 4

- o : (9)
Et(f) { cos kd + jg sin kd’
o

where Ei. (f) is the electric field emerging from the far side of the sheet, E, (f) is the incident electric
field, and E (f) is the tangential electric field on the near side of the sheet,* This field is the vector
sum of the incident and reflected fields. Egj (£) >> B, (f), and when f >0, E (f} > E; {£) because of skin

effect (refer to Figure 1).
L= ———”j“ 1+ i, o (10)

k =4 muo (1 - j), : (11)

where u = 47 x 10-7 henry/m is the permeability of space and ¢ = 3.72 x-107 mhos/m is the conductivity
of aluminum, - '
In deriving (8) and (9), a time dependence of the form exp(j27ft) is assumed.

3
The transfer function for a spherical shell is

Hi(f). 1

Ho(f) cosh vd + %ya sinh vyd

(12)

Here, Hi is the magnetic field inside the spherical shell, H/ is the incident magnetic field, a is the outer
radius of the shell, b is the inner radius of the shell, and d = a - b is the shell thickness,
y = yrtuo (1 + 9. . (3)

4
The cylinder transfer functions are

E (f) J (kb)N_ (kb) - N (kb)J_ (kb)
i~ __o 1 ° 1 , (14)
E t(f) Jc(ka)N1 (kb) - No(ka)Jl(kb)
and
E (f)
t _ 1 [ka :
T,@ 'm2<’“z>°°t ke ' “el

In deriving (14) and (15), a time dependence of the form exp (j2nft) is assumed., Here a and b are the

outer and inner radii of the tube, respectively, and d = a - b is the wall thickness..

The subscripts i, o, and t on the fields mean inside, outside andjangential, respectively,



5
Now,

2. (16)
J_ (b)N, (kb) - No(kb)Jll(kb) = - ,

(This is the Wronskian relation,) On combining (14) and (15), and making use of (16),

E,@® __cot kd[ 1 J amn
I @) 7T2oab LJO (ka)N1 (kb) - N_(ka)J, (kb)

This expression permits calculation of the steady-state field within the cylinder in terms of the total
current delivered by the current generator direcily connected by wire to the ends of the cylinder. It

is assumed that the current is uniform in this circuit, This will be the case if the circuit dimensions
are small in terms of the wavelength of the highest significant frequency contained in the shortest current

pulae employed in this study.

If a plané—wave electric field is directed parallel to the axis of an isolated cylinder, the current

I,(f) at its mid-point is obtained from antenna theory, It is given by the relation

2h, (DE,
——-——Zo(f) . (18)

. 27t
The effective length of the cylinder is 2h,, and Z ,is its impedance. If @ > 7 and Bh = %T h < — h
. [

<o0.5,°

Io(f) =

-»
. N . h(e-1)
Zhe (i)-n_ 2 + fnda’ ) (19) (
”
and
4fn2
g 1+ —l
o 2 Q- L _
Zy (1) = —(Bh) 2 1522 [ o-2 , (20)
° 6 2 27Bh
22 2fn2
14+ +
Q-2 Q -2
where @ is the cylinder shape parameter. It is
0=2 In 2. (21)
A
The length of the cylinder is 2h,
It is of interest to note that as f — o, the transfer functions (8), (9), (12), (14), and (15) become
Ei(O) _ 1
E ) L od (224) .
plate 1+
Ei(O) ¥
£, (o) L 22b)
plate




Hi(o) _
H (o) =L (22¢)
° sphere
Ei(O)
E (o) =L _ (224d)
t cylinder
Et (0) 1
Io(o) " 2mgad ° (22e)
cylinder
Also, from (18) as f — o,
I0) = 0, A (22£)
antenna '
Let
G(f) = GR(f) + le(f) (23)

represent any one of the foregoing transfer functions. It can be readily verified by expanding the trigono-
metric, hyperbolic, and Bessel functions in series, and examining the resulting expressions, that they

satisfy the relation
G () = G(-9). ‘ (24)
That this holds for (18) follows from the fact that Zz (f) = Zo(—f), as an inspecfion of (20) shows, Expres-

sion (24) sets forth an important property of any transfer function applying to a physically realizable sys-

tem,
From (23)

G- = Gp(-) + JGy (-0, (25)

and by definition

G (D) = Gy (D) - G (D, |  (26)
It follows that i

GR(f) = GR(—f) 27)
is an even function, and

GI(f) = -GI(-f)' . (28)

is an odd function.



The Form of the Integrals to be Evaluated by a Computer

For illustrative purposes, let it be supposed that the time function of the electric field within a
hollow cylinder is to be computed in terms of the gaussian pulse current the generator delivers by wire
to the ends of the cylinder. In this instance, G(f) is the shorthand notation for the right-hand side of (17),
Then,

E; () = G() I, (D). (29)
Io(f) corresponds to (2), that is,

. 2
1{f
T oa\f
1.

I (f) = At (/27 e
° 1

for a current pulse in the time domain corresponding to (1), A is in amperes, and Io (f) in amperes/Hz

for this particular situation,

The time history of the field on the interior of the cylinder is available from the integral
°o Y
AL/ ot
e (t) = Atafzr | Gie ! ™ as
. -0

£
—f ¢ .
~At1\/27r’/:f {GR(f) cos 2nft - GI(f) sin 2#ft
. =te 2

£

. T2
+ 1[G, sin 27t + G, () cos 2mft]}e dt, (31)

provided the time dependence assumed in deriving G(f) is exp (j2#ft). Since GR(f) and cos 27ft are even

functions, and GI(f) and sin 27ft are odd functions, it follows that (32) reduces to

£ . ) lf_>
2\,
e;(t) = 2At1‘|27r [GR(f) cos 27ft - G_(f) sin 2nft]e df. : : (32)
° : .

This is the final form of the integral to be evaluated on the computer, Note that the integral is necess-
arily real because e; (t) is a real function of time. All of the integrals encountered in this paper con-
cerning the various shields are similar in form to (32). The constant A was taken as unity throughout

the work; Of course, the units of A will depend on the shielding problem being considered.

10~
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Discussion of Graphs

Graph 1 shows the amplitude-time relation of some -of the input gaussian pulses used in the num-
erical study. Specifically, pulses are drawn for values ty of 6, 12, 24, and 48 us. Note that the peak

amplitude of unity occurs at zero time. The pulses are symmetrical on the time scale.

Graph 2, based on (9), gives the steady-state transfer characteristic relating E; (f) to E (f) for
an infinite aluminum plate of thickness 1/32 inch, 1/16 inch, and 1/8 inch. For example, for a 1/16-
inch plate at 15 kcs, the field emerging from the plate Ei(f) is 30 db below the tangential field E, (f) on
the other side of the plate,

Graphs 3, 4, 5, and 6 give the time history of the field e, (t) emerging from the plates of desig-
nated thicknesses in terms of. et(t) for values of t; of 6, 12, 24, ‘and 48 us, respectively.
The value of e, (o) is 1 volt/m. Note that in all cases, the attenuation of the field is not great, but
progressivély increases with plate thickness and decreasing values of t;. The waves are retarded in
time in propagating through the plates, as should be anticipated. The delay increases with plate thick-

ness.
Graph 7, based on (8), is like Graph 2, except that e, (t) replaces e, (t).

Graphs 8, 9, 10, and 11 correspond to Graphs 3, 4, 5, and 6, respectively, except that eo(t)
replaces e, (t). Note that the wave shapes are very much alike, but the amplitude scale is vastly
different. Graph 8 shows, for example, that when the peak value of e, (t) is 1 volt/m, t']’ =6 us, and
d = 1/32 inch the peak value of e i(1:) is about 1,61 x 107 volts/m, and occurs at 0,01 ms, If e, ) =
103 volts/m, e, (t) = 0.0161 volts/m. Note that e (t) undergoes reflection at the boundary surface, and

this accounts for the large attenuation afforded by the sheet.

Graph 12, based on (12), gives the steady-state transfer characteristic relating Hi(f) to H (f)
for a 36-inch spherical shell made of aluminum having wall thicknesses of 1/32 inch, 1/16 inch, and

1/8 inch. As an illustration, for a 1/16-inch wall 36-inch sphere at 7 kcs, the magnet/ic field Hl (f) on

the interior of the sphere is 56 db below the incident magnetic field Ho(f).

Graphs 13, 14, 15, and 16 give the time history of the magnetic field h i('c) inside the 36-inch spheres

of designated wall thicknesses when the magnetic field h (o) = 1 ampere/m for ty values of 24, 48, 96, and

1000 us, respectively., As expected, as the pulse length increases, the field h; (t) increases. The thicker

the shield, the more effective it becomes. Note the severe distortion of the incident pulse in propagating

into the interior of the sphere,
- Graph 17 is like Graph 12, except that it applies to a 72-inch spherical shell,

Graphs 18, 19, 20, and 21 correspond to Graphs 13, 14, 15, aﬁd 16, respectively, except that the

computations were carried out for a 72-inch spherical shell.

Graph 22, based on (14), gives the steady-state transfer characteristic relating Ei (f) to Et (f) for

a cylinder 22, 08 feet in length and 16 inches in diameter when the wall thicknesses are 1/32 inch, 1/16

inch, and 1/8 inch,



Graphs 23, 24, and 25 give the time history of the field e, (t) in the interior of the above cylinder
when e, (o) = 1 volt/m for t, values of 6, 12, and 24 us. These graphs applying to finite cylindcrs have

much in common with Graphs 3, 4, and 5 applying to infinite plates.,

Graph 26, computed from (14), (15), and (18), permits one to obtain the db ratio of E { () to Eo (f)
under steady-state conditions for a cylinder 22, 08 feet in length and 16 inches in diameter, when the

plate thickness and frequency are specified,

Graphs 27, 28, and 29 furnish the time history of e, (t) for e (o) of 1 volt/m for the designated
cylinder'for t, values of 6, 12, and 24 us and for wall thicknesses of 1/32 inch, 1/16 inch, and 1/8 inch.
Note that the interior field is extremely minute in terms of the incident field. Most of this attenuation
is due to the fact that the iﬁcident field is reflected by the cylir}der; the field e, (t) is extremely small
compared to ¢ (t), Ubserve that the field on the interior of the cylinder is oscillatory in natufe. This
is accounted for by the fact that the transfer characteristic E i(f)/Eo(f)' obtained by eliminating IQ (£)
between (17) and (18) rises with increasing frequency, and then falls off as the frequency is still further
increased, as Graph 26 shows, No other transfer functions employed in this paper exhibit this property.
The phenomenon is not to be attributed to antenna resonance. The cylinder remains short in terms of
the wavelength of the highest significant frequency contained in the shortest pulse considered in the

analysis.

Graph 30, computed from (17), furnishes the ratio of Ei(f)/Io(f) as a function of frequency for a
cylinder 22, 08 feet in length and 16 inches in diameter having wall thicknesses of 1/32 inch, 1/16 inch,
and 1/8 inch. Thus, for a total current in any cross section of the cylinder of 1 ampere, the field in the
interior of the cylinder will be 10_1%olts/m, if the frequency is 150 kcs and the cylinder wall thickness

is 1/8 inch,

Graphs 31, 32, and 33 give the time history of e; (t), when io (o) is 1 ampere, for the cylinders

mentioned above for t1 values of 12, 24, and 48 us.

Graph 34 is the same as Graph 30, but is computed for a cylinder 105 inches in diameter, 60 feet
4 inches in height, and having a wall thickness of 1/4 inch., These dimensions are reported to apply to a

Jupiter missile,

Graph 35 presents the time history of the electric field ei(t) inside a Jupiter missile stripped of
interior components when io(o) is 1 ampere for ty values of 24, 48, and 96 us, Observe that the height
dimension of the missile is sufficiently small that the current is uniform in the circuit connecting the

ends of the missile to the current pulse generator.

Table I presents the decibel ratio of the energy available in the emerging plane-wave pulse from

the far side of the plate to the energy in the impinging plane-wave pulse on the near side of the plate for the

cases of tangential and incident electric fields. The decibel ratio of the propagated and impinging pulse
peaks in the various situations described in the paper is easily obtained by inspection, hence tables are

not provided, o

12
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TABLE I

Decibel Ratio of Energy Available in the Emerging Plane-Wave Pulse
from the Far Side of a Plate to the Energy in the
Impinging Plane-Wave Pulse on the Near Side of the Plate

(a) ‘ (b)

Case of the tangential Case of the incident
electric field electric field

d ty db d t, db
1/32 inch 6 uUS -4 1/32 inch 6 us -138
1/16 inch 6 us -6 1/16 inch 6 us -147
1/8 inch 6 us -11 1/8 inch 6 us -158
1/32 inch 12 us -3 1/32 inch 12 us -138
1/16 inch 12 us -5 1/16 inch 12 us -145
1/8 inch 12 us -9 1/8 inch 12 us -155
1/32 inch 24 us -3 1/32 inch . 24 us -138
1/16 inch 24 us - 4 1/16 inch 24 us -144
1/8 inch 24 us -6 1/8 inch 24 us -153
1/32 inch 48 us -3 1/32 inch 48 us -138
1/16 inch 48 us - 4 1/16 inch 48 us -144
1/8 inch 48 us -5 1/8 inch 48 us -151

Table I was computed from the relation

0 2 .
LO [e; @] at J_: [ei(t)] 2dt

db = - \=101
db = 10 log, (= og (=2 1§ 33)

J’_w [e(g)(L)]z dt ti\/;_

Concluding Remarks

The shielding action of aluminum plates, spherical shells, and hollow cylinders to transient im-
pinging fields and currents has been investigated rigorously. It has been assumed that the forcing pulses
contain no frequencies sufficiently high to excite resonances in the spherical shells or hollow cylinders.

The lowest mode of a perfectly coﬁducting spherical shell is Ko = 2.28b, where b is the inner radius.

. The lowest radial mode for a perfectly conducting cylinder, when the exciting electric field is parallel to

the axis of the cylinder, is )\°= 2.61b, where, again, b is the inner radius. The lowest longitudinal
mode for the cylinder occurs when 2h= A/2, A moment's investigation will reveal that all of the cavity
shields studied in this report have dimensions sufficiently small that no resonances can be excited by a
frequency f_ = 68,96 kecs, which corresponds to t; = 6 us, This is the smallest value of f; of any gaussian

pulse considered in the present analysis.

It should be evident to the reader that the use of gaussian pulses is not dictated by any theoretical
considerations. Suppose eo(t) corresponding to a lightning flash is measured. Then, Eo(f), the forcing

function, can be found by numerical integration, by using a truncated form of the Fourier integral

13



°° -j2nft
E () =] e (t)he dt,
o ] o

2]

for passing from the time to the frequency domain,

Having found the frequency spectrum Eo(f) corresponding to the time function ec;(t), one can

find ei(t) numerically by using a truncated form of the Fourier integral

o]
ey =s GWE (e s,

-0
Thus, e;(t) can be found for any arbitrary wave shape e_ (t)--just as easily as was done for gaussian im-
pinging (mlses nsed in this report.

Center-loaded electric dipoles may be placed axially in the cylinders, and impedance-loaded
loops in the spherical shells, and the energy in the loads evaluated under transient conditions, Consider-

ation of these interesting problems is reserved for another paper.
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APPENDIX I

THE NECESSITY FOR KNOWING THE TIME DEPENDENCE EMPLOYED
IN DERIVING THE TRANSFER FUNCTIONS

.

It has been stressed that the time dependence employed in deriving the transfer functions given in
this paper for sheets, spheres, and cylinders is exp (j2#ft). If the time dependence exp (-j27ft)--favored
by many electrodynamists --had been assumed in the development of (lé), for example, the effect would
have been to substitute k- for . The transfer function then becomes ‘G*(f) inétead of G(f) = Hi(f)/Ho(f)'
To obtain meaningful results in the solution of transient problems this change must be reflected by appro-
priate sign changes in the exponents of the Fourier transforms for passing from the frequency to the time

domain, and vice versa,

Consider a series RL circuit (assumed to be linear), The driving voltage is e(t) and the current

in the circuit is i(t). The differential equation is

ot = LI+ ri),
Let e(t) = eﬂ"ft. Then, it) = G(0)eI2™  where G() = 1/(R + jwL)., Construct the following table.
Input Output
e(t) i)
ejZTIEt G(f)er"Et \
E(f)ejz"ftdf E(f)G(f)eJZ"ftdf (Property of linear systems -
© o multiply by E(f)df)
j E(f)ernEtdf ‘ f E(f)G(f)ernftdf (Property of linear systems -
=00 : /=0 integrate)
© jan et «© -j2 et
Since ef(t) =j E(f)e af, for consistency, E(f) =f elt)e dt.
Iy ~j2nEt -®

Alternatively, if e(t)=we it follows that G(f) = 1/(R - jwL),

i = f "E@G©e " g ) - f “B)e " at, and E() - f “et)ed?" tat,
T -

-0

15



APPENDIX II
NOTES ON THE MACHINE EVALUATION OF THE CYLINDER TRANSFER FUNCTION

Let

TR e e U Ul s L | :
1 720 Jo(zz)Nl(zl) - No(z2)J1(zl) D’

where z, =z, - jz
1

- Z.., i=1, 2. Also define z,= 2 + 3 (5small)

ir’ ZiR T 41 1

a. As mentioned inthe body of the paper, as f—>r o0, Go, o) = 1 + jo,

b. When o < Re(z 1) <5, G(zl, z2) may be evaluated directly using single-precision arithmetic
(36 bits); however, when 5% Re(zl), G(z1 s zz) cannot be accurately evalualed directly using
single-precision arithmetic because of loss of significant digits in the subfractions. In lieu

of the extreme difficulties encountered in evaluating G(z1 , z7) with multip'le—precision

arithmetic, the following approximation was used.

Let

where . .«/‘
D - M= N () {3(z,) - Tz} = 3z {N () - Ny '

It is now possible to expand Jo(z) and No(z) in a Taylor series about z Recalling that z =t 1 + ), ' ~

1°
52 ?)3
= ’ = J* 2 Yy
Jo(Z] + %) - 'To(zl) = BJo (Zl) + 70 Jo (Zl) +3|‘ Je* (Zl) + ..

A similar expansion holds for N_(z, + 3) - No(zl). Combining powers of b, and realizing that all Bessel

functions now have 2, for their argument, yields

2 © .0
) P C,b
D-M=5{NJ'-JN'}+——-{NJ--JN”}“‘... = L
L1l o 1 o 2! 1 o 1 o n!

n=1

4 (n) ‘
when C_ = Nngn—) JlNon . It remains to evaluate Cn‘

By virtue of the relationships J; = -J1 and N ; = -Nl, it follows that C1 =0,

Since Jo and N satisfy Bessel's equation,

J* (z)
J’; (z) = - - Jo(Z)’
and -
N (2)
N” = - [} - N (Z),
(] z o

Je N -
- o - .9 . = - = -
c, = Nl{-z— Jo} Jl{ -2 - No} NJ_ + J N = -M

16



Differentiating J™z) and N"(z) yields ¢

Jz) I (2) )
Iz = - e+ e - 1% (),
o VA z o
N;'(z) N (z)
N o(z) = - 2 + 2 - Né(z).

As before, the terms involving J; and N; cancel and

c3 = 1%/[ = I.;.f[ °
z=z 1
1

Differentiating again yields

A Ter I
Joer =24 22 - 275 -1
o zZ z z

a similar expression holds for N’o’” .- Now,
C
2 3 2 M 3
G, =C -1} -—=-M=5-1|-—=M|1 -—|. -
A1 P z 2 |22 )
1 ! 1 1 1

It was decided that four terms of the expansion would be satisfactory for better than l-percent

accuracy in the range

5<R (z,) <20,
e 1 .

One may now write

_ M M
G(zl, Zz)—M+D—M— ¥ 53 5“- ;
Mooy Mo+ g Mt (l-—g |M
z
1
= 1
82 53 Y 3

S T s L X
1 Z‘l

This approximation was used for 5 <R {z;) < 20.

c. For R,(z,) >20, two terms of the asymptotic expansion may be used.

We have,
‘ 2

8 |z,

D= - 2 cosbl:l- 3 ]+s1n6r_1__+3__{|1,
2 %1 S
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Figure 1 -- Configurations considered in the propagation of gaussian pulses through aluminum walls
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