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SUMNl HRY 

Gaussian electromagnetic field pulses of several  durations a r e  propagated through infinite sheets, 

into the interior of hollvw cylinders, a n d  into the interior of spherical  shells; The plates, spheres,  and 

cylinders contain no slots. The t ime history of the propagated pulses i s  computed. Finally, the field is 

calculated in the interior of a cylinder of finite length when connected a t  i t s  ends by wire to a generator 

delivering a current  pulse of gaussian shape. 

The dimensions of the cavities a r e  assumed to be sufficiently small  that resonances a r e  not excited 

by the highest significant Irequency contained in the shortest  pulse c.f.~r~sidercd. 

The numerical study is restricted to thin-walled aluminurri shields 1 /32  inch, 1 / 1 6  in'ch, 118 inch, 

and 114 inch thick. The half-amplitude widths of the pulses employed lie i.n the range 14 1j.s to 2400 1.1.s. 

It is shown that gaussian pulse electric fields defined on the surface of the plates and cylinders a r e  

propagated with little diminution in amplitude. When the incident pulse undergoes reflection a t  the bound- 

a r y  surface  a s  well a s  transmission through the metal  wall, the total attenuation sustained by the field i s  

p e a t .  Thin spherical  shells form effective magnetic shields. The electric field is smal l  in the i n t e r i t r  

of thin-walled cylinders carrying extremely large t ransier~l  currents.  
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TRANSIENT ELECTROMAGNETIC FIELD PROPAGATION 
THROUGH INFINITE SHEETS, INTO SPHERICAL SHELLS, 

AND INTO HOLLOW CYLINDERS 

Introduction 

This  study was undertaken to determine the shielding characterist ics of thin-walled infinite sheets, 

spherical shells, and cylindrical tubes, illustrated by Figure 1, under transient conditions. The shields 

a r e  made of aluminum and contain no slots. Gaussian electromagnetic field pulses a r e  propagated through 

the infinite sheets, and from outside to the inside of closed containers in the geometrical shape of spheres 

and cylinders. Time histories of the attenuated pulses a r e  computed. F o r  the case  of the infinite con- 

ductive sheets  the propagated pulses a r e  compared to the associated impinging pulses on the basis of 

available energy per  unit area.  

Finally, the field is calculated in the interior of cylindrical tubes of finite lengths, when the ends 

a r e  connected by wire  to a generator delivering a current  pulse of gaussian shape. F rom the theoretical 

point of view, this problem is closely related to that of calculating the field within a missile stripped of 

interior components, whcn subjcctcd to a direct lightning strike. " 

The Impinging Gaussian Pulse 

'I'he description of the impinging pulse in the t ime domain employed in this paper is 

f 

where A is the value of e(o), t is the time, and t is a measure  of the pulse width. The spectrum of 
1 

the pulse is obtained by taking the Fourier  transform of (1). Thus, 

where 

In evaluating Fourier  t ransforms gy numerical methods it is often convenient to truncate the frequency 

spectrum in passing f rom the frequency to t ime domain, and truncate the l imits  of integration when com- 

puting the frequency spectrum of a given t ime function. 



Let el  (t) be the new t ime function obtained by taking the transform of the truncated frequency 

' function. Assume that the cutoff frequency is f, = 2. 6fl. The e r r o r  is then 

Thus, 

r W  

Substituting (2) into (5) and integrating, rl(t) 2 0. 0093A. Thus, e , (t) does not depart f rom e (t) by more 

than 1 percent a t  any time. 

If e(t)  i s ' a  plane wave, the energy in the pulse is given by 

where the l a s t  relation follows f rom Parseval ' s  identity. 

'[.'he energy los t  by truncation of the spectrum is 

In these  expressions 5 = 120r  ohms is the characterist ic r.esistal.lce of space. Substituting (2 )  into 
0 

(6) and (7), and performing the integration, it is found that UP = 0. UUU23BUt. Thus, 0.0236 of 1 per-cell1 

of the energy is lost  by truncation of the frequency spectrum a t  f = 2. 6fl. 

In this  paper the highest significant frequency contained in a gaussian pulse is taken to be 

fc = 2. 6f = 2. 6/27rt1. The "'significant" base width of the t ime function is 2 x 2. tit 5.2 t Thus, when 
1 1' 

t = 12 p s  the pulse duration is considered to be 62.4 ps. The highest significanl; Ir.eyuel~cy i n  this pulse 

is 34. 48 kcs. The half-amplitude width of a gaussian pulse is 2. 3555. 

The Transfer  Functions for  Sheets, Spheres, and Cylinders 

It is readily shown from elementary principles of electrodynamics that the t ransfer  functions for 
1 9 2  

an infinite sheet- of thickness d for  parallel  incidence of the electric field a r e  

E (f) 
-- 

' < o r  
E~ (I) 2 <  r cos kd + j 



and 

E i ( f )  
-- 

I, 

E (f) I, cos kd + jy sin kd' 
t 0 

where E i  (f) is the electric field emerging from the f a r  side of the sheet, Eo  (f) is the incident elpctric 

field, and E (f) is the tangential electric field on the near  side of the sheet. ::: This field is the vector 

sum of the incident and reflected fields. Eo(f) >> E i  (f), and when f > o, E (f) > E i  (fj because of skin 

effect ( refer  to  Figure 1). 

where p = 477 x lo-' henry/m is the permeability of space and 0 = 3.72 x. 10' mhos /m is the conductivity 

of aluminum. 

In deriving (8) and (9), a t ime dependence of the form exp(j2bt)  is assumed. 
3 

The t ransfer  function for  a spherical  shell is 

Here, Hi is the magnetic field inside the spherical shell, Ho is the incident magnetic field, a is the outer 

radius of the shell, b is the inner radius of the shell, and d = a - b is the shell  thickness. 

4 

The cylinder t ransfer  functions a r e  

and 

Et (f)  
- = ~ p )  cot kd. 

2 2 Io(f)  am 

In deriving (14) and (15). a t ime dependence of the form exp (j2?rft) is assumed. Here a and b a r e  the 

outer anrl inner radii of t h e  tube, respectively, and d = a - b is the wall thickness. 

:: The subscripts i, o, and t on the fields mean inside, outside andtangential, respectively. 



 NOW,^ 
2 

Jo (kb)Nl(kb) - No(kb)Jl (kb) = - - ' nkb 

(This is the Wronskian relation.) On combining (14) and (15), and making use of (161, 

Ei(f) cot kd - = 1 
2 [J (ka)Nl (lib) - 

I o(f) T oab o 

I This expression permits  calculation of the steady-state field within the cylinder in t e rms  of the total 

current  delivered by the current  generator directly connected by wire to  the ends of the cylinder. It 

is assumed that the current  is uniform in this circuit. This will be the case if the circuit dimens'ions 

a r e  smal l  in t e r m s  of the wavelength of the highest significant frequency contained in the shortest  current 

pulse employed in this study. 

If a plane-wave e lect r ic  field is directed parallel  to  the axis of an isolated cylinder, the current 

Io(f) a t  i t s  mid-point is obtained &om antenna theory. It is given by the relation 

2 s *c 
The effective length of the cylinder is 2&, and Z o i s  i t s  impedance. If 0 2 7 and ph = -- h I -- 

X h 
C 

SO. 5,6 

and 

where n is the cylinder shape parameter.  It is 

The length of the cylinder is 2h. 

It is of interest  to  note that a s  f + o, the t r ans fe r  functions (8), (9), (121, (14), and (15) become 

E i ( ~ )  1 -I E 0 ( ~ )  plate - 1 +- tBd (22a) 

2 

plate 



Hi(o) 

Ho(o) -4 sphere , = 1, 

1 -- el I (0) - 2 ~ 0 a d  ' 
cyl inder 

Also, f rom (18) a s  f -+ o, 

1,c 0) = 0. 1 antenna 
Let  

r ep re sen t  any one of the  foregoing t r a n s f e r  functions. It can  be readi ly  verif ied by'expanding the tr igono- 

metr ic ,  hyperbolic, and Besse l  functions in s e r i e s ,  and examining the result ing expressions,  that they 

sat isfy the  re la t ion  

That  th is  holds f o r  (18) follows f rom the fact  that  2% (f) = Zo(-f), a s  an  inspection of (20) shows. Expres-  

s ion (24) s e t s  for th  a n  important  proper ty  of any t r a n s f e r  function applying to  a physically rea l izable  sys-  

tem. 

F r o m  (23)  

G(-f)  = GR(-f)  + jGI(-f), 

and by definition 

G" (f) = G~ (f) - jGI(f). 

It follows that  

GR(f) = GR(-f) 

is a n  even function, and 

GI( f )  = -GI (-f), 

is a n  odd function. 



The Form of the Integrals to be Evaluated by a Computer 

F o r  illustrative purposes, let i t  be supposed that the time function of the electric field within a 

hollow cylinder is to be computed in t e r m s  of the gaussian pulse current the generator delivers by wire 

to the ends of the cylinder. In this instance, G(f) is the shorthand notation for  the right-hand side of (17). 

Then, 

~ , ( f )  corresponds to (21, that is, 

for  a current  pulse in the time domain corresponding to  (1). A is in amperes,  and I (f) in a m p e r e s / ~ z  

for  th is  particular situation. 

The t ime history of the field on the interior of the cylinder is available from the integral 

provided the t ime dependence assumed in deriving G(f) is exp (j27rft). Since G (f) and cos 27rft a r e  even 
R 

functions, and G (f) and sin 27rft a r e  odd functions, it follows that (32) reduces to 
I 

This is the final form of the integral to  be evaluated on the computer. Note that the integral is necess- 

a r i ly  r e a l  because ei(t)  is a r e a l  function of time. All of the in tegrals  encountered in this paper con- 

cerning the various shields a r e  s imilar  in fo rm to  (32). The constant A was taken a s  unity thro.ughout 

the work, Of course, the units of A will depend on the shielding problem being considered. 



Discussion of Graphs 

Graph 1 shows the amplitude-time relation of some.of the input gaussian pulses used in the num- 

er ical  study. Specifically, pulses a r e  drawn for  values t l  of 6, 12, 24, and 48 ps. Note that the peak 

amplitude of unity occurs a t  zero time. The pulses a r e  symmetrical  on the t ime scale. 

Graph 2, based on (9), gives the steady-state t ransfer  characterist ic relating Ei(f )  to  Et(f )  for  

an infinite aluminum plate of thickness 1 132 inch, 1/16 inch, and 118 inch. F o r  example, for  a 1 / 16- 

inch plate a t  15 kcs, the field emerging f rom the plate E &f) is 30 db below the tangential field Et (f) on . 

the other side of the plate. 

Graphs 3, 4, 5, and 6 give the time history of the field e i ( t )  emerging from the plates of desig- 

nated thicknesses in t e r m s  of. e t ( t )  for  values of t l  of 6, 12,  24, and 48 ps, respectively. 

The value of e t  (0) is 1 volt/m. Note that in a l l  cases,  the attenuation of the field is not great, but 

progressi<ely increases  with plate thickness and decreasing values of t l .  The waves a r e  retarded in 

time in propagating through the plates, a s  should be anticipated. The delay increases  with plate thick- 

ness. 

Graph 7, based on (81, is like Graph 2, except that eo (t) replaces e; (t). 

Graphs 8, 9, 10, and 11 correspond to  Graphs 3, 4, 5, and 6,  respectively, except that e o ( t )  

replaces e t  (t). Note that the wave shapes a r e  very much alike, but the amplitude scale is vastly 

different. G r a p h  8 shaws, for  example, that when the peak value of e (t) is 1 volt/m, t', = 6 ps, and 

d = 1/32 inch the peak value of e i(t) is about 1.61 x 10'volts/m, and occurs a t  0.01 ms. If eo (t)  = 

10 volts/m, e (t) = 0.0161 volts/m. Note that e ,(t) undergoes reflection a t  the boundary surface, and 

this accounts for  the large attenuation afforded by the sheet. 

Graph 12, based on (121, gives the steady-state t ransfer  characterist ic relating Hi(f) to Ho (f) 

f o r  a 36-inch spherical  shell  made of aluminum having wall thicknesses of 1/32 inch, 1/16 inch, and 

1 /8  inch. As  a n  illustration, for  a 1116-inch wall 36-inch sphere a t  7 kcs, the magneiic field H: (f) on 

the interior of the sphere is 56 db below the incident magnetic field no{f). 

Graphs 13, 14, 15, and 16 give the t ime'history of the magnetic field h i ( t )  inside the 36-inch spheres 

of designated wall thicknesses when the magnetic field h, (0) = 1 ampere lm for  t l  values of 24, 48, 96, and 

1000 ps,  respectively. As expected, a s  the pulse length increases,  the field h (t) increases.  The thicker 

the shield, the more effective it becomes. Note the severe  distortion of the incident pulse in propagating 

into the interior of the sphere. , 

Graph 17 is like Graph 12, except that i t  applies to a 72-inch spherical  shell. 

Graphs 18, 19, 20, and 21 correspond to  Graphs 13, 14, 15, and 16, respectively, except that the 

cur~~putat ioas  were carr ied out for  a 72-inch spherical  shell. 

Graph 22, based on (14). gives the steady-state t ransfer  characterist ic relating E .  (f) to E ( f )  for  
t 

a cylinder 22.08 feet in length and 16 inches in diameter when the wall thicknesses a r e  1/32 inch, 1/16 

inch, alld 1 /0 inch. 



Graphs 23, 24, and 25 give the t ime history of the field e .  (t) in the interior of the above cylinder 

when e t  (0) = 1 volt/m fo r  t l  values of 6, 12, and 24 ps. These graphs applying to  finite cylindcrs have 

. much in common with Graphs 3, 4, and 5 applying to infinite plates. 

Graph 26, computed f rom (14), (15), and (18), permits  one to obtain the db ratio of E i(f) to E o  (f) 

under steady-state conditions for  a cylinder 22. 08 feet in length and 16 inches in diameter, when the 

plate thickness and frequency a r e  specified. 

Graphs 27, 28, and 29 furnish the time history of e (t) for  e o  (0) of 1 volt/m for  the designated 

cylinder for  t l  values of 6, 12, and 24 p s  and for  wall thicknesses of 1/32 inch, 1 /16 inch, and 118 inch. 

Note that the interior field is extremely minute in t e r m s  of the incident field. Most of this atten~lation 

is due to the, fact that the incident field is reflected by the cylinder; the field et (t) is extremely smal l  
1 

, compa~ed t o  eo ('t). Observe that the field on t h e  i.nterior of the cylinder is oscillatory in nature. This 

is accounted for  by the fact that the t ransfer  characteri.stic E .(f)/Fo(f), obtained by eliminating Io(f) 

between (17) and (18) r i s e s  with increasing frequency, and then falls off a s  the frequency i.s sti.11 further 

increased, a s  Graph 26 shows. No other t ransfer  functions emp!.oyed in this paper exhibit this property. 

The phenomenon is not t o  be attributed t o  antenna resonance. The cylinder remains  short  in t e r m s  of 

the wavelength of the highest significant frequency contained in the shortest  pulse considered in the 

analysis. 

Graph 30, computed f rom (17), furnishes the ra t io  of E i(f)/Io(f) a s  a function of frequency for a 

cylinder 22.08 feet in length and 16 inches in diameter having wall thicknesses of 1/32 inch, 1/16 inch, 

and 118 inch. Thus, for  a total current  in any c r o s s  section of the cylinder of 1 ampere,  the field in the 
- 10 

interior of the cylinder will be 10 volts/m, if the frequency is 150 kcs and the cylinder wall thickness 

is 118 inch. 

Graphs 31, 32, and 33 give the t ime history of e i  (t), when io (0) is 1 ampere,  for the cylinders 

mentioned above for  t ,  values of 1 2 ,  24, and 48 ps.  

Graph 34 is the same  a s  Graph 30, but is computed for a cylinder 105 inches in diameter, 60 feet 

4 inches in height, and having a wall thickness of 1 /4  inch. These dimensions a r e  reported to apply to a 

Jupiter missile.  

Graph 35 presents  the t ime history of the electric field e i ( t )  inside a Jupiter missile stripped of 

interior components when i (0) is 1 ampere  for  t l  values of 24, 48, and 96 ps. Observe that the height 

dimension of the missile is sufficiently smal l  that the current  is uniform in the ci.rcliit connec.ti.ng the 

ends of the miss i le  to the current  pulse generator. 

Table I presents the decibel ratio of the energy available in the emerging plane-wave pulse from 

the f a r  side of the plate to  the energy in the impinging plane-wave pulse on the near  side of the plate for the 

cases  of tangential and incident e lect r ic  fields. The decibel ratio of the propagated and impinging pulse 

peaks in the various situations described in the paper is easily obtained by inspection, hence tables a r e  

not provided. 



TABLE I 

Decibel Ratio of'Energy Available in the Emerging Plane-Wave Pulse 
from the F a r  Side of a Plate to  the Energy in the 

Impinging Plane-Wave Pulse on the Near Side of the Plate 

Case  of the tangential 
electric field 

d 1 db 

1/32 inch 6 Ps - 4 
1/ 16 inch 6 PS - 6 
118 inch 6 PS -11 
1/32 inch 1 2  /JS - 3 
1/16 inch 12 p s  - 5 
118 inch 12 PS - 9 
1/32 inch 24 p s  - 3 
1/16 inch 24 p s  - 4 
118 inch 24 p s  - 6 
1/32 inch 48 p s  - 3 
1/16 inch 48 p s  - 4 
118 inch 48 p s  - 5 

Table I was computed f rom the relation 

Case of the incident 
electric field 

d 1 db 

1/32 inch 6 p,s -138 
1/16 inch 6 PS -147 
118 inch 6 W S  -158 
1/32 inch 12 p s  -138 
1/16 inch 12 p s  - 145 
118 inch 1 2  p s  -155 
1/32 inch . 24 ,us -138 
1/16 inch 24 p s  - 144 
118 inch 24 p s  -153 
1/32 inch 48 p s  -138 
1/16 inch 48 p s  - 144 
118 inch 48 p s  -151 

Concluding Remarks 

The shielding action of aluminum plates, spherical  shells, and hollow cylinders to transient im- 

pinging fields and currents  has been investigated rigorously. It has been assumed that the forcing pulses 

contain no frequencies sufficiently high to excite resonances in the spherical  shells o r  hollow cylinders. 

The lowest mode of a perfectly conducting spherical  shell  is Xo = 2.28b, where b is the inner radius. 

The lowest radial  mode fo r  a perfectly conducting cxlinder, when the exciting e lect r ic  field ' is  parallel to 

the axis of the cylinder, is A,= 2. 61b, where, again, b is the inner radius. The lowest longitudinal 

mode for  the cylinder occurs when 2 h Z  X/2. A moment's investigation will reveal that a l l  of the cavity 

shields studied in this report  have dimensions sufficiently small  that no resonances can be excited by a 

frequency f, = 68.96 kcs, which corresponds to  t l  = 6 ps. This is the smallest  value of t l  of any gaussian 

pulse considered in the present analysis. 

It should be evident to the reader  that the use  of gaussian pulses is not dictated by any theoretical 

considerations. Suppose eo(t)  corresponding to a lightning flash is measured. Then, Eo(f), the forcing 

function, can be,found by numerical integration, by using a truncated form of the Fourier  integral 
Y 



for  passing from the time to the frequency domain. 

Having found the frequency spectrum Eo(f) corresponding to the time function ei( t ) ,  one can 

find ei(t)  numerically by using a truncated form of the Fourier integral - 

m 
j2nf t. 

ei(t)  = (  G(f)Eotf)e af. 

Thus, ei(t)  can be found for  any arbi t rary wave shape eo(t)--just a s  easily a s  was done for gaussian im- 

~tir~girle ~ i ~ l s ~ s  11sed i.n t h i s  report. 

Center-loaded electric dipoles may be placed axially in the cylinders, and impedance-loaded 

loops in the spherical shells, and the energy in the loads evaluated under transient conditions. Consider- 

ation of these interesting problems is reserved for  another paper. 



APPENDIX I 

THE NECESSITY FOR KNOWING THE TIME DEPENDENCE EMPLOYED 
IN DERIVING THE TRANSFER FUNCTIONS 

. It has  been s t r e s sed  that the t ime dependence employed in deriving the t ransfer  functions given in 

this paper for  sheets, spheres,  and cylinders is exp (j2nft). If the t ime dependence exp (-j2nft)--favoredc 

by many electrodynarnists - -  had been assumed in  the development of (121, for  example, the effect would 

have been to  substitute k f o r  7 .  The t r ans fe r  function then becomes ~ " ( f )  instead of G(f) = Hi(f)/H$f). 

To obtain meaningful resul ts  in the solution of transient problems th is  change must  be reflected by appro- 

priate sign changes in the exponents of the Four ie r  t ransforms for  passing f rom the fr-eguency to the t ime 

domain, and vice versa.  

Consider a s e r i e s  RL circuit  (assumed to  be linear). The driving voltage is e(t) and the current  

in the circuit  is i(t). The differential equation is 

di(t) 
c(t)  = L - + Ri(t). dt 

j2nft  Then, i( t)  : ~ ( ~ ) ~ j ~ ~ ' ~ w h e r e  G(f) = 1 / ( R  + jwL). Construct  the following table. Let e(t)  = e . 

Input Output 

e(t) I i( t)  

m j2nft w -j2 nftdt 
Since e(t)  = [ E(f)e  df, f o r  consistency. E(f)  = ( e(t)e 

J-m J-m 
-:j2nft 

Alternatively, if e(t)  =:e i t  follows that G(f) = 1 / (R - juL), 

(Proper ty  of l inear  sys tems - 
multiply by E(f)df) 

(Proper ty  of l inear sys tems - 
integrate) 

i( t)  =/ " ~ ( f ) ~ ( f ) e  - j 2 n ~ t  df; e(t)  = l > ( f ) e  
-j2nft df, and E(f)  =J>( t )e  j2nft dt. 

- m 



APPENDIX I1 

NOTES ON THE MACHINE EVALUATION OF THE CYLINDER TRANSFER FUNCTION 

Let 

where  z = ziR - jziI, ZiR = ZiI, i = 1. 2. Also define z 2  = zl + b ( b small)  
i 

a. As mentioned in thc  body of the paper, a s  f-p o, C(o, o) = 1 -1- jo, 

b. When o < # (z  ) 3 5 ,  G(z , z ) may be evaluated directly using single-precision ari thmetic 
e 1 1 2  

(36 bits); howcvcr, whcn 5 Y R (zl), C ( 5 ,  z ) cannot be accurately, evalualed directly using 
2 

single-precision ari thmetic because of loss  of significant digits i n  the suhtra.ctiona. In lieu 

of the extreme difficulties encountered in evaluating G(z z l )  with multiple-precision 
1. ' 

arithmetic, the following approximation was used. 

Let  

where *. 
D - M = N1(zl) 

It is now possible to expand J (2) and No(z) in  a Taylor s e r i e s  about zl. Recalling that z = t + b, F 

0 

A s imi la r  expansion holds f o r  No(zl + 8) - No(zl). Combining powers of 6, and realizing that a l l  Bessel 

functions now have z f o r  thei r  argument, yields 1 
2 m 

+-&pl~;- J ~ N ;  } + . .  . 
n= 1 

(n) ( 1 1 )  
when Cn = N1 Jo  - JINo . It remains  to  evaluate C,. 

By virtue of the relationships J ' = - J1 and N ' = -N , i t  follows that C = 0. 
1 1 

Since Jo and No satisfy Bessell  s equation, 

and 

J ' .  N' 
c2 = N1(-$- J0] - J l ( -  f - N i =  -NIJo + J INo  = -M. 



Differentiating J"(z) and ~ " ( z )  yields 

As before, the t e rms  involving J' and Ng cancel and 

Differentiating again yields 

.T '** T >T' 
J"" = - 0 +  2 0  - 2 . 0  - 'T" 

0 z  z  3 0 

a s imilar  expression holds for  No". NOW, 

It was decided that four t e r m s  of the expansion would be satisfactory for  better than 1-percent 

accuracy in the range 
I .r; 

7 I One may now write 

This approximation was used for  5 < R e ( z l )  < 20. 

c. F o r  Re(z l )  > 20, two t e r m s  of the asymptotic expansion may be used. 

We have, 
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Figure 1 - -  Configurations considered in the propagation of gaussian pulsss through aluminum walls 
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Graph 1 --  Input gaussian pulses 
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Graph 2 - -  Infinite plate. Steady-state t ransfer  characterist ic relating Ei to Et 
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Graph 3 - -  Infinite plate. et(o) ,= 1 volt,'m; t = 6 ps  
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Graph 4 - -  Infinite et[o) = 1 volt/m; t l  = 1 2  p s  
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Graph 5 --  Infinite plate. et(o) = 1 volt/m; t l  = 24 p s  
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Graph 6 - -  Infinite plate. et(o) = 1 volt,'m; t l  = 48 ps 



Graph 7 --  Infinite plate.Steady-state t ransfer  characterist ic relating Ei to E, 
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Graph 8 --  Infinite plate. e,(o) = 1 volt/m; t l  = 6 
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Graph 9 - -  Infinite plate. eo(o) = 1 volt/m; t l  = 1 2  ps 



Graph 10 - -  Infinite plate. e,(o) = 1 volt/m; t = 24 ps 

-. 



G r a p h  3 . 1  - -  Infinite plate, e,(o)-= 1 voltlm; t l  = 48 /.IS 



Graph 1 2  - -  Sphere 36 inches in diameter. Steady-state t ransfsr  characterist ic relating Hi to Ho 



Graph 13 - -  Sphere 36 inches in diameter. ho(o) = 1 amperelm;  t = 24 /IS 
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Graph 14 - -  Sphere 36 inche? in diameter. ho(o) = 1 amperelm; t l  = 48 ps 
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Graph 15 - -  Sphere 36 inches i n  diameter. ho(o) = 1 amperelm; t = 96 ps  
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Graph 16 - -  Sphere 36 inches ia d ia r~~eter .  h (o) = 1 amperelm; t l  = 1000 ys 
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Graph 17 - -  Sphere 72  inches in dLameter. Steady-state transfer chsracteristic relating H .  1 to Ho 
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Graph 18 - -  Sphere 72 inches in diameter. ho(o) = 1 ampere/rr-; t l  = 24 /AS 
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Graph 1 9  - -  Sphere 72  inches in diameter. ho(o) = 1 amperelm; t l  = 48 ps  
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Graph 20 --  Sphere 7 2  inches in diameter. h o) = 1 amperelm; t l  = 96 p s  
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Graph 21 - -  Sphere 7 2  inches in diameter. ho(o) = 1 amperelm; t l  = 1000 /JS 
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Graph 22 - -  Cylinder. Steady-state t r ~ n s f e r  characterist ic r e l d i n g  E i to  Et 
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Graph 23 - -  Cylinder. e (0) = 1 volt/m; t l  = 6 pS 
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Graph 24 - -  Cylinder. et(o)  = 1 volt/m; t l  = 12 p S  
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Graph 25 -- Cylinder. e (0) = 1 volt/m; t l  = 24  ps  
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Graph 26 - -  Cylinder. Steady-state transfer characteristic relating E to E 



Graph 27 - -  Cylinder. e (0) = 1 volt/m; t = 6 ps 
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Graph 28 - -  Cylinder. eo(o) = 1 volt/m; t = 1 2  p s  
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Graph 29  - -  Cylinder. eo(o) = 1 volt/m; t l  = 24 P s  



Graph 30 - -  Cylinder. Steady-state transfer characteristic relating Ei to  I. 



Graph 31 - -  Cyl i r~de~. .  i (0) = 1 ampere; t = 12 ,us 
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Graph 32 - -  Cylinder. io(o) = 1 ampere ;  t l  = 24 ps 



Graph 3 3  - -  Cylinder. io(o) = 1 ampere; t l  = 48 ,us 



Graph 34 --  Jupiter missile. Steady-state transfer characteristic relating E to I ,  
., 



Graph 35 - -  Jupiter missile. i,(o) = 1 ampere; t l  = 24, 48, and 96 ps  
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