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ABSTRACT 

Finite element methods are developed for the solution of the neutron 
diffusion equation in space, energy and time domains. Constructions of 
piecewise polynomial spaces in .multiple variables are considered for the 
approximation of a general class of piecewise continuous functions such 
as neutron fluxes and concentrations of nuclear elements.· The approxi­
mate solution in the piecewise polynomial space is determined by apply­
ing the Galerkin scheme to a weak form of the neutron diffusion equation. 
A piecewise polynomial method is also developed for the solution of 
first-order ordinary differential equations. The numerical methods are 
applied to neutron slowing-down problems, static neutron diffusion 
problems, point kinetics problems and time-dependent neutron diffusion 
problems. The uniqueness, stability and approximation error of the 
numerical methods are considered. The finite element methods yield 
high-order accuracy, depending on the degree of the polynomials used, 
and thereby permit coarse-mesh calculations. The conventional multi­
group method, the Crank-Nicolson and the Pade schemes are shown to 
be special cases of the finite element methods. Numerical examples 
are presented which confirm the truncation error and demonstrate the 
utility of the finite element methods in reactor problems. 

Thesis Supervisor: Kent F. Hansen 
Title: Professor of Nuclear Engineering 
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Chapter I 

INTRODUCTION 

1. 1 Introduction 

This thesis is concerned with the development of numerical 

methods for neutron diffusion problems using piecewise polynomials 

in the energy, space and time variables. 

Numerical methods for the solution of neutron diffusion problems 

have been widely used and have been shown to be more powerful than 

analytical methods, ·due to the complexity of reactor geometries and 

nlfclear cross sections. The most widely used method is the finite 

difference method. This method is quite simple but requires relatively 

small meshes and hence a large number of unknowns. For this reason, 

finite difference methods have been limited to at most two-dimensional 

kinetics problems or coarse mesh three-dimensional problems. There-

forE;!, alternate methods have been developed which require a relatively 

small number of unknowns and which can be applied to multidimensional 

problems. 

In the synthesis method [1]- [3], the solution is expanded in terms 

of a small number of functions chosen to represent various transient 

states of the problem. A variety of synthesis techniques have evolved 

for treating some or all of the spatial variables and the energy variable. 

The advantage of this method is that the expansion functions may be 

obtained based on the knowledge of a particular system. However, the 

selection of proper expansion functions for various systems is difficult 
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in general. Poor selection of expansion functions can not only misrepre-

sent the solution but also can cause numerical instabilities. Further-

more, analytic error bounds for the approximations are not known. 

Another important class of approximate methods are the so-called 

"nodal methods." The basic idea is to treat the reactor as a small 

number of disjoint regions and to couple the regions through the neutron 

flux or current. In the "coupled reactor theory•• [ 4], certain types of 

trial functions are defined on each subregJon, which vanish outside the 

subregion. The subregions are then coupled through neutron currents. 

However, the neutron currents, and thus the coupling relations, depend 

strongly on shapes of the trial functions. Thus, as in the synthesis 

method, the selection of proper trial functions· is a major difficulty in 

this method. An alternative is to use a simple constant trial function 

over each region, as in the FLARE [5] approach. In this approach, the 

proper coupling coefficients are difficult to define. 

Instead of using fixed trial functions, several authors have con-

side red using polynomial functions defined in each subregion. Riese [ 6] 

considered. polynomials quadratic in each variable.· The polynomials are 

i 
then coupled to neighbor polynomials so'that the flux continuity condition 

is satisfied. In the GRCORK scheme [7], the same type of polynomials 

was used with the difference that the subregions are coupled by partial 

neutron currentR. The resulting s.olution.is thus a·llowed to have a dis-

continuity along the region interfaces. In these methods, the accuracy 

of the solution. is not known and the solution .fails to satisfy the requisite 

continuity conditions. However, these methods are significant, since 

their development was based on a concept s.imilar to that of the finite 

element method which will be developed in the present thesis. 
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In recent years, much attention has been given to approximations of 

functions using polynomials which are defined only over subregions of 

the problem domain, rather than over the entire domain. These poly­

nomials· are called "piecewise polynomials11 for evident reasons. The 

piecewise polynomials yield high accuracy for approximations of 

functions and their derivatives. Furthermore, for practical computation, 

the piecewise ·polynomials ·provide some convenient features which ordi­

nary polynomials lack: 

(t) . The piecewise polynomials provide local approximations and are 

thus well suited .for approximating. physical behaviors ·in which 

variations occur locally. In this case, a fewer number of poly­

nomials is required using piecewise polynomials compared to the 

use of polynomials defined over the entire region. 

(ii) Piecewise polynomials permit flexibility in imposing certa-in types 

of continuity or jump conditions at the joints of the subregions. In 

addition, boundary conditions are easily imposed. 

(iii) Convenient piecewise polynomiaL basis functions can be found 

such that expansion coefficients are directly related to the values 

of functions and their derivatives at mesh points. 

(iv) Used with the Ritz-Galerkin method, the system of linear equa­

tions can be made very simple and a-menable to computer solution 

·by well-developed ,methods. 

The Ritz-Galerkin method, using.piecewise polynomials as expan­

sion functions,. is called the 11 finite element method 11 by Fix and Strang 

[8], [9] and others [10], [11]. Many authors have suggested the use of 
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piecewise polynomial spaces with the Ritz-Galerkin method (e.g., see 

· [8]- [21] ). Representative spaces are spline space and the Hermite 

·space. The spline space consists of piecewise polynomials·whose 

derivatives SCl.tisfy the· maximal continuity conditions. Therefore, the 

spline space has the smallest dimen:;:;ions of all the piecewise poly­

nomial spaces. The·Hermite space consists of piecewise polynomials 

·which are less continuous than the corresponding polynomials .in the 

spline space. For example, polynomials of degree 2m-1 have continu-

ous derivatives of order up to 2m-2 in the spline space, and up to m-1 

in the Hermite space. Thus, if there are N -1 intervals· in a one­

dimensional space within which the piecewise polynomials are defined, 

the number of dimensions is N for the spline space and mN for the 

Hermite space. In ann-dimensional space, the number of dimensions 

is Nn and (mN)n for the spline and Hermite spaces, respectively. Since 

the dimension of the Hermite space increases sharply in multi­

dimensional geometries, the Hermite space is less desirable for multi­

dimensional calculations of smooth functions. In both spaces, conveni­

ent basis functions ·in one variable are easily found. Furthermore, the 

basis functions ·in the· multivariate space can be obtained. by taking 

tensor products [ 18], [ 21] of the basis functions of one variable. 

Probl~ms in nuclear reactor analysi.R consist of many regions of 

different materials. :Thus, physical quantities. in reactors are charac­

terized by piecewise continuous functions. For example, the scalar 

neutron flux is continuous everywhere but has piecewise continuous first 

derivatives .. while the concentrations of nuclear elements are continuous 

only within each region. 
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Previous studies of piecewise polynomial spaces have been 

developed mainly for approximations of smooth functions which are suf­

ficiently differentiable on the entire region. Applications of piecewise 

polynomials to nonsmooth or piecewise continuous functions have previ­

ously been limited only to one-dimensional problems. In [ 16], modifi­

cations of basis functions in. the Hermite space to allow jump continuity 

conditions are discussed. Wakoff [21] used.modified cubic spline 

functions for the solution of one-dimensional multigroup diffusion prob­

lems. However, the exten~ion of these mocl.ified piecewise polynomial 

spaces to multidimensional spaces by taking local tensor products leads 

to basis functions which are incompatible with the requisite continuity 

conditions. 

The central object of this .thesis- is to construct appropriate and 

.general piecewise polynomial spaces :for approximations of piecewise 

continuous functions of m-ultiple variables. Coarse·mesh methods are 

devised for the solution of diffusio"n-problems.in space, time and energy, 

with a minimum of computational effort. We limit our consideration to 

linear neutron cl.:lffusion problems .. However. the methods apply to any 

orthogonal coordinate system (e.g., Cartesian, cylindrical, polar 

spherical), whose ·partition is. generated by coordinate surfaces (e;g., 

r 1=const., r 2=const., r 3=ci:mst.). 

In the rest of this chapter, we discuss-the energy-dependent neutron 

diffusion equation and the finite element method. Chapter II is concerned 

with the construction of piecewise polynomial spaces ·and corresponding 

.basis functions :in multiple variables for approximation of general 

classes of piecewise continuous .functions. The uniqueness properties 
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and error bounds .for the Heril1.ite interpolation. in these spaces are 

established. 

In .the succeeding chapters, we consider the application of the finite 

element method to neutron slowing-down problems (Chap. III), static 

neutron diffusion .problems (Chap. IV), point reactor kinetics problems 

(Chap. V} and time-dependent neutron diffusion problems (Chap. Vl}. 

The uniqueness, stability and. approximation error of the numerical 

method are considered. Finally, Chapter VII contains the conclusions 

and recommendations for further developments. 

1.2 The·Energy-Dependent Neutron Diffusion·Equation 

In this section, we introduce the energy-dependent neutron ciiffusion 

equation and discuss proper boundary conqitions. The derivation of this 

equation can be found.in Davison [22] and elsewhere [23],[24]. · 

Let Rnbe an n-qimensional space and _£=·(r 1, r 2 , ... , rn} represent 

· t · Rn a:po1n 1n . Consider a reactor configuration defined by an open 

.region nand .its boundary. an .. Furthermore, assume that n consists of 

disjoint open subregions n.£. i = 1, 2, ... , L, each of which .is bounded by 

. ann. Let E . .:::; E .:::; E and 0 .:::; t.:::; T where·E and t represent the 
x m1n max · · 

energy and time variables, respectively, and define$ = [E . , E ] . m1n max 

Then,. within any. region n.£, the time-dependent neutron diffusion 

equation -with delayed precursors can be ·written as 
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1 a 
oy( E) at </>(!:_, E, t) = \7. D(~, E, t) \7 ¢(~, E, t) 

- rT(~, E, t) ¢(~, E, t) 

+ j£ dE' rs(~, E'-E, t) ¢(~, E', t) ( 1.1a) 

where 

+ x(E)(1- /3) fe dE' vrr(~, E', t) ¢(~, E', t) 

J 
+ \' xd.(E) A..C .(r, t) + Q(r, E, t), 

_LJ J J J - -
J=1 

j=1,2, ... ,J, 

2 
¢(~, E, t) =neutron flux (njcm . sec), 

OJI'(E) = neutron speed (em/ sec) , 

D(.!:_, E, t) = neutron diffusion coefficient (em), 

rT(~, E, t) =total macroscopic removal cross section (em - 1), 

E 
rT(.!:_,E,t):: ra(.!:_,E,t) + JE ~ax rs(.!:_,E-+E 1,t) dE', 

m1n 

r (r, E, t) =macroscopic absorption cross section (em - 1) 
a- ' 

rs(~, E'-E, t) = macroscopic scattering cross section from 

E' to E ( c m- 1) 
' 

L/.!:_, E, t) = macroscopic fission cross section (em -
1
), 

v = average number of neutrons prod-uced per fission> 

x(E) = fission spectrum for prompt neutrons, 

Xd/E) = spectrum of delayed neutrons for the j-th group, 

( 1. 1 b) 

-1 
A.. = decay constant of the j-th delayed neutron precursors (sec ) , 

J J 

f3. = fraction of delayed neutrons for the j -th group: f3 = L: f3. , 
J . 1 J 

J= 
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C .(rJ t) =concentration of delayed neutron precursor of the j-th groupJ 
J-

J = number of delayed neutron groupsJ 
. 2 
Q(!_J t) = neutron source/ em . sec. 

The nuclear constants in Eqs. ( 1.1aJ b) are assumed to satisfy the 

following conditions: 

( i) 

(ii) DJ LaJ L~ and Lf are continuous in each n.eJ .e = 1J 2J ... J LJ and 

may be discontinuous on an.e J 

(iii) L (E)J L (E'--E)J x(E)vLf(E') are positive operators such that a s 

" [L(E'JE)f(E'J·E) 
L(E'JE) f(E'JE) = L_o 

if f(E 'J E) > 0 J 
( 1. 2) 

if f(E 'J E) .:::::; 0 . 

. The condition (iii) implies that the products are nonnegative. Further-

moreJ when f(E' J E) = f(E'L this condition conforms 1o the physical .fact 

that the reaction rate must be nonnegative. Under the condition (iiiL it 

can be shown easily that the int~gral operators ·in Eq. ( 1.1a) are positive 

semidefinite [25] J although they are nonsymmetric. 

Let the initial conditions be specified by 

c/>(!_J E J t) It= 0 = cP 0 (£J E) J 

C/£J t)l t=O = Cj 0(r) J 1 .:::::; j .:::::; J. 

Let the boundary conditions on an be homogeneous conditions 

0 ¢(£.J EJ t) = 0 or an ¢(£.J EJ t) = 0 J 

where a~ represents the outward normal derivative at an. 

( 1. 3a) 

( 1. 3b) 

( 1. 4a) 

The diffusion approximation fails in the neighborhood of material 

interfaces) where the solution has transients. We assume that the 
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solution satisfies certain boundary conditions at the interfaces. Rigor­

ous· interface boundary conditions -for the diffusion approximation based 

on the-transport theory are discussed . .in Davison [22]. However, the 

following set of interface boundary conditions is more commonly used: 

cp(£_, E, t) and D(£_, E, t) 0~ cp(£_, E, t) are continuous on material 

interfaces. (1.4b) 

These conditions are frequently called flux and .current continuity con­

ditions, respectively. 

The point which .is formed by ·intersections of two or more ·material 

interfaces:is a singular point. In order to generate approximations to 

the analytic solution to the diffusion problem, it would be necessary to 

include the singular solutions [18], [26], [27]. However,. this is an:im­

practical computing task, at least at present. The approach to be -taken 

in this the sis will be to. ignore the singular part of the solution. The 

result is that we are solving a problem s.hghtly different from the origi­

nal diffusion .problem, namely we have relaxed certain boundary 

conditions. We call this .different problem the "modified" problem, or 

the "weak11 formulation of the problem. We show in Chapter IV that the 

solution.is unique in the modified problem (see Lemma 4.1). We call 

. this solution. the 11 weak11 solution. to. the original problem. For the weak 

formulation, it is possible to find error bounds and rates of convergence 

of approximate solutions to the ·weak solution. 

The ·important question.l.s, of course, how the weak solution com­

pares to the solution of the original problem. Fix [ 18] has shown that 

for certain eigenvalue problems .in an L-shaped membrane, inclusion of 

the singular solution makes a considerable improvement in the 
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convergence of eigenvalues. However, the effect of the singular solution 

on reaction rates and .integral properties in reactor problems would be 

negligible. 

We remark that this 11pragmatic 11 approach- is the same as .that used 

._in finite ciifference approximations to diffusion.problems. As one refines 

the difference ·mesh the solution approaches a. limit, which again is not 

the analytic solution to the continuum problem. The difficulty lies not 

with the numerical approximations, but rather with the application of 

diffusion theory to a case for wl:)ich the theory_, is not physically valid. 

1. 3 Finite Element Methods 

Finite element methods ·were originally developed by engineers ·for 
. ; 

structural analysis -in solid-mechanics. References .[28] and .[29] contain 

extensive compilations of literature· in this area.· In general, the Ritz-

Galer kin meth,od used with piecewise polynomial functions -is called the 

"finite element method" [8]- [11]. Courant· [12] was the first to suggest 

the use of piecewise linear functions:in.triangular meshes·in.the Ritz 

method for two-dimensional Dirichlet problems. In recent years, finite 

element methods ·were developed a·s higher-order methods allowing the 

use of high-degree polynomials. Finite element methods have been 

applied to boundary and eigenvalue problems .in [ 8] - [ 21] and to para-

bolic problems .in-[30]- [32] . 

To illustrate the finite element method, consicier a. problem defined 

by 
·' 

r in n ' ( 1. 5) 

where Tis an .integra-differential operator with homogeneous boundary 
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conditions specified on the boundary an. Q(!:_) represents a source term. 

In order to approximate the solution to· Eq. ( 1. 5), we consider a 

finite dimensional trial space SM where { ui(£)}~ 1 form a basis. In par­

ticular, we choose u.(r) as polynomials of a certain degree satisfying 
.1-

the same boundary cond,ition as the analytic solution. We then seek an 

approximate solution of the form 

M 
A 

'¢(£) = \' a.u.(r) LJ 11-· 
i=1 

( 1. 6) 

The Ritz-Galerk,in procedure is a well-known method [33], [34) for 

solving integra-differential equations. The Galer kin method. is more 

general than the Ritz method and can be applied to problems with non-

self adjoint operators. In the Galerkin method, the e:Xpansion coef-

ficients a. are determined from the condition that the equation obtained 
.1 

by the substitution of ¢<£) for cf>· in.:Eq. ( 1. 5) must be orthogonal to the 

elements u 1, u 2, ... , ~M· This condition.leads:to the system of equations 

A 

(T c/>, u.) = (Q, u.) 
:1 '1 

for all i = 1, 2, ... , M, where the. inn~r product is defined by 

(u, v) = fn uv dV. This equation can be rewritten.in matrix form as 

A~=.9. (1. 7) 

where 

A .. "" (Tu., u.), 
1J 'J 1 

~ = c ~! {a 1 , a 2, . . . ~ aM } , 

The matrix A is usually called a stiffness matrix. 
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The coefficient vector ~.is determined by.- inverting the stiffness 

matrix A. The numerical inversion of A is governed by the condition 

number of the·matrix A. The condition number is defined by 

-1 0 Cond (A) = OA 0 .OA 

where 0 0 denotes any matrix norm. If the· condition number is rela-

tively. large, then A is -ill-conditioned .in numerical inversion. If the 

condition number is relatively small, then the matrix A is ·well-

conditioned. 

In finite element methods, the condition number of A depends on 
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the selection of the polynomial expansion functions. When the operator 

is positive definite and the polynomials are sufficiently linearly. inde-

pendent, then there ·will be no difficulties in. inverting. the stiffness 

matrix. For example, if we choose a set of polynomials· 
M 

{X~}~= 1 .= (x0 
J x

1 
J ••• J xM) as expansion functions, then the stiffness 

matrix becomes the Hilbert matrix [35]. These polynomials are nearly 

linearly dependent in.the range 0 ~ x· ~ 1 and thus the·Hilbert matrix is 

very. ill-condit5onP.rl Hnd difficult to inve:rt numerically. Therefore 1 . in 

.fi.ni.te element methods, instead of using .ord.inary. polynomials, we select 

piecewise polynomials which vanish throughout most of the whole region 

and.finite only in a few subregions. Use of the piecewise polynomials 

-makes the stiffness· matrix sparse and relatively well-conditioned. In 

Chapter II, we shall consider the generation of specific piecewise poly-

nomial basis functions for use·with the Galer~in method in reactor 

problems. 
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Chapter II 

PIECEWISE POLYNOMIAL SPACES 

In this chapter, we will discuss certain types of piecewise poly-

nomial spaces·which are of use in the solution of diffusion problems. 

In a heterogeneous reactor, physical quantities are characterized by 

piecewise continuous functions. Therefore, we will consider the con-

struction of appropriate piecewise polynomial spaces for problems of 

one independent va~iable, i.e., univariate spaces, and multiple inde-

pendent variables,. i.e.,. multivariate spaces. The purpose of this 

chapter is to provide the tool for the numerical analysis of reactor 

problems in succeeding chapters. 
/' 

We consider piecewise polynomial spaces· in·multivariables which 

can be directly applied to the Hermite interpolation. The Hermite 

interpolation is characterized by the fact that the interpolating .poly-

nomial is generated by the use of function values and derivatives. In 

particular, the same data. must be available at both ends of the interpo-

lation .interval. This means, for instance, that if one has the value of 

the function and .its first order derivatives at one end of the interval, 

one ·.must also have the value of the function and its first order deriva-

tives at the other end. Thus, the a:mo11nt of data. is always an even 

number of values; hence ·the interpolating .polynomials are always of 

odd degree. For neutron diffusion problems,. the flux and curre~t con­

tinuity conditions lead naturally to the use of Hermite interpolation. 

The piecewise polynomial space, which·is com~tructed based on the 
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·Hermite interpolation, will be called the Hermite space. The ·Hermite 

space is particularly suited for the interpolation of the piecewise con-

tinuous function as well as the continuous function. The Hermite space 

can be regarded as a generalization of the smooth .Hermite space [14], 

[16] anp the spline space [16], [36]. 

In :Sections 2.1 and. 2. 2 we consider the generation of basis -functions 

in the \lnivariate and.multivariate Hermite spaces, respectively. For 

this we introduce the element function .. The element function is defined 

as a piecewise polynomial function which is defined in a unit mesh ele-

ment and vanishes elsewhere. By usingthe element functions, the 

interpqlating polynomial can be conveniently represented in terms of 

Hermite data. Furthermore, basis functions in the Hermite spaces can 

be gen~rated by couplingthe element functions so that they satisfy the 

pertinent continuity conciitions. This method of construction is very 

flexible in generating basis functions in multivariate spaces for various 

types ?f continuity conditions. As special cases, this method gives 

" local basis functions in the cubic (smooth) Hermite space [ 14] , [ 16] , [ 19] 
!· 

and the bicubic (smooth) Hermite space [ 18] , [ 19] . 

In ·Theorems· 2. 2 and 2. 5 we consider the dimension count, or the 

number. of basis .functions, of Hermite spaces. In Theorems 2.1 and. 2.4 

r we est~blish error estimations for interpolations in Hermite spaces. In 

this an~ succeeding. chapters we develop P.rror estimations ·in the L 
00

-

norm o'~ly. However, since ·the L 2-norm is always.less than or equal to 

oo· 
the L -norm, the results in this chapter can be applied to error esti-

2 mati.mis·in the L -norm. 
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2.1 Univariate Polynomial Space 

In this section we consider the construction of univariate Hermite 

spaces ·and corresponding .basis functions for the approximation of 

general classes of piecewise continuous ·functions. 

Let S1= [a, b] be a closed. interval in one-dimensional space and D. be 

a partition of n such that 

( 2 .1) 

Let D.. = (x., x.+1), i = 1, 2, ... ,N-1 be open subintervals of the 
1 1 1 

partition D.. 

We define c\n) to be the class of all functions which are t times 

differentiable in n. Also we define C t (D.) to be the class of all piecewise 
p 

functions·f(x) such that f(x) E Ct(D..)* for i= 1, 2, ... ,N-1 and 
1 

f(q) (x~) = lim . dq f(x.±6) is finite for 0 ~ q ~ t. 
1 6-0 dxq 1 

Let s .(x) be a polynomial of degree· 2m-1. in the interval [ x., x.+1 ] ·1 1 1 

where m = t. 1, 2, .... Except for the case of m=t, the s.(x) are odd 
·1 

.degree polynomials. We include the piecewise constant functions (m = t), 

since these functions are commonly used for approximations in. the energy 

domain in deriving the· multigroup equations ·in reactor physics. Then 

s .(x) can be expressed as 
·1 

s.(x) = 
1 

2m-1 

L: 
p=O 

a :x:f..l.' 
f..J, 

. X E (x. , X.+ l ] , 
.l J . 

where the a are 2m unknown parameters to be determined. 
f..J, 

* f(x) E c\D..) means that f(x) is an element of the class Ct(D..). 
1 1 

(2. 2) 
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We consider the interpolation of a sufficiently smooth function f(x) in 

(xi' xi+1], using polynomials of degree 2m-1. We are especially inter­

ested in interpolation problems where the derivatives of f(x) are specified 

at x. and x.+1 so that s.(x) satisfies 
1 1 1 

( 2. 3 a) 

(p)( ) - (p)( ) si xi+1 - f xi+1 , O~p~m-1, (2.3b) 

where s~p)(x.) = dp s.(x). s(x) for m = t is assumed to satisfy Eq. (2.3a) 
1 1 dxp 1 

only. This type of interpolation is called Hermite interpolation and. it is 

known (3 7] that the Hermite interpolate si(x) can be uniquely determined. 

In order to facilitate Hermite interpolation in numerical calculations, 

we consider convenient polynomial functions, which we will call element 

functions. The element functions {uf±} for m ~ 1 are defined by 

2m-1 

I: 
f.l.=O 

X. ~ X~ X. , 
1-1 . 1 

(2. 4a) 

0 , otherwise , 

2m-1 
uf+(x) = L a; x.f.1. , 

f.J.=O (2.4b) 

0 , otherwi RP. , 

such that 

dq p± ± -
- u. (x.) - 6 .. 6 , 
dxq 1 J 1J pq 

0 ~ p ~ m-1 

± - p+ p-where x. = x.± 0. Note that u. (x) arid u.+1(x) are nonvanishing_over the 
J J -1 1 

same intervHl [xi, xi+ 1]. We say they ha,ve the same support, that is, the 
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region where the functions are non-zero. 

From the definitions of the element functions, the Hermite interpo-

late s.(x) of f(x) can then be expressed by 
1 

(2. 5) 

The element functions are convenient numerically because the expansion 

coefficients in Eq. (2. 5) are directly related to the interpolation data. 

We give some explicit examples of the element functions for low 

degree polynomials. (See Fig. 2.1.) 

(i) m = 1/2 

u?±(x) are piecewise constant functi.ons: 
1 

0+ {: xi~ x ~ xi+1 
u. -

·1 otherwise , 

0-
0 all u. = , X . 

:.1 

(ii) m = 1 

u?±(x) are piecewise linear functions: 
.1 

= I x-x. 
1-1 

0± x.- x. 1 u. (x) 1 1-
1 

0 , 

X. 
1 
~ X~ X. , 

1- 1 

otherwise , 

xi+ 1 - x 

0+ xi+1- xi u. (x) = 
1 

0 , otherwise . 

(2. 6) 

(2. 7a) 

(2.7b) 



(iii) m = 2 

p±( u. x), p = 0, 1, are piecewise cubic functions: 
1 

0-u. (x) = 
1 

0 J 

0 J 

2 3 
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X. 
1 
~ X~ X. , 

1- 1 ( 2. 8a) 

otherwise, 

(2.8b) 

otherwise, 

[ (
X- X. 1 . (X- X. 1 , J 

- 1- ) + 1- ) (x.-x. 1), 
xi- xi-1 xi- xi-1 1 1-

X. ~X~ X 1-1 i J 

0 J otherwise, 

(2.8c) 

x. ~ x ~ x.+1 , 
1. 1 

0 J otherwise. 

(2. 8d) 

The error in the maximum norm for the Hermite interpolation is 

stated by well-known theorems in [ 16] , [ 1 7] . We will use the maximum-

norm which is defined by 

llf-gll 
00 

L [a,b] 
= \ max lf(x)-g(x)l. 

a~x~b 



x. 1 1-

0-u. (x) 
1 

Llll 
X. 

1 
X. 

1- 1 

X. 1 1-

0-u. (x) 
1 

x. 
1 

0-u. 
1 

0+ 
u. 

1 

(a) m = 1/2 

(b) 

X. 1 1-

m = 1 

X. 1 1-

(c) m = 2 

1 

0+ u. (x) 
1 . 

X. 
1 

X 
i+1 

Fig. 2.1. Univariate Element Functions: ~ ~ m ~ 2 

29 

,, 
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Theorem A. Assume that f(x) E Ct[xi, xi+1]. Let si(x) be a polynomial of 

degree 2m-1 in [xi, xi+1] and be a.Hermite interpolate to f(x) satisfying 

.Eqs. (2.3a, b). Then s.(x) is unique and. the interpolation error is bounded 
·1 

by 

II dq (f(x)-s.(x)) II ~ K lx.+
1

- x.l~-q, 
dxq . 1 . L oo(-6..) 1 1 . 

. 1 

q ~ m-1, 

where ~ = min( 2m, t) and K is a positive constant independent of I xi+ 1 -xi I . 

Theorem A states that the bound. in the pointwise error between f(x) 

and s(x) for a piecewise continuous function f(x) is of order 2m. Thus,. for 

m = 2, i.e., the cubic Hermite interpolation, the error is 0(.6-x 4). The 

pointwise error in the derivatives is also bounded with an appropriately 

lower exponent. 

Now we introduce the·Hermite space H (.6.) defined as a set of all m 

piecewise polynomials of degree 2m-1 in each element .6..(i=1,2, ... ,N-1) 
·1 

of the partition .6.. Obviously, the number of free parameters, or the 

dimension, of H (.6.) is 2m(N -1). Convenient basis functions in.H (.6.) 
m m 

can be chosen from the element functions {uf±} as defined by·Eq .. (2.4a,b). 

We consider the· interpolation of a piecewise continuous:function f(x) 

using the polynomials in the space H (.6.). Let the H (.6.)-interpolate of 
m ~m~-------------

f(x) be defined as any o(x) in the space H (.6.) which s::lt.i Rfi P.R m 

s(p)<x7> = f(p)(x~), 

s(p)(x~) = f(p)(x~), 
.1 1 

s(p)(xN) = iP>(x~), 

2 ~ i ~ N-1 

for 0 ~ p ~ m-1. Then, using the set of functions 

(2. 9) 
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{ u.r;+, uf±, u~-: 2 ~ i ~ N-1, 0 ~ p ~ m-1} as a basis of Hm(.6.), s(x) can 

be represented by 

N-1 
s(x) = ~ s.(x) 

. 1 l l= 

where s.(x) represents the Hermite interpolate in the element .6.., 
l . l 

defined by Eq. (2.5). 

The uniqueness and the accuracy of the H (.6.)-interpolate are m 

stated by the following theorem. 

(2.10) 

Theorem 2.1. Assume that f(x) E Ct (.6.). Let s(x) be a polynomial of 
. p 

degree 2m-1 satisfying Eq. (2.9). Then, s(x) is uniquely determii1ed 

and satisfies 

II d:: (f(x)-s(x)) II .; Kl>x.,-q, 

L
00

[a,b] 

1 ~ q ~ m-1 , 

where /J. = min(2m,t), .6.x = max lx.+ 1-x.l and K is a constant inde-
1~i~N-1 1 1 

pendent of .6.x. 

Proof. The uniqueness of s(x) results as a direct consequence of the 

uniquenesses of individual s.(x) fori= 1, 2, ... ,N-1 from Theorem A. 
. l 

00 
From the definiliun of the L -norm, 

II 
dqq (f(x)-s(x))ll = ~ax II dqq (f(x)-s(x))ll 
dx Loo[a,b] 1~ l~N-1 dx Loo(.6..) 

l 

f 
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where K = max K. and f).x = maxlx.+1-x.l. This completes the proof. 
i 1 i 1 1 

Theorem 2.1 applies to piecewise continuous functions and states 

the same order of convergence as Theorem A. It is known that the 

functions in one-dimensional reactor problems such as neutron fluxes 
. 00 

and nuclear element concentrations belong to the class Cp, so that 

Hermite interpolation in Hm (.()..) always yields errors of O(f).x 2m). 

So far, we have considered only piecewise polynomials which are 

independent in each mesh element and not related to other polynomials 

in neighboring mesh elements. However, in many cases, functions to 

be approximated satisfy certain continuity or jump conditions for 

derivatives at mesh points. In such cases, it is natural to couple the 

piecewise polynomials satisfying the same conditions. Imposing the 

coupling conditions is also desirable in numerical computation because 

this reduces the number of unknowns, or basis functions, and thus the 

computational effort. 

We define the set of coupling conditions X at each mesh point. The 

set X is defined as a collection of coupling coefficients K~ where 
1 

(2 .lla) 

The limit on the order of the derivatives, say k., is part of the defi-
. 1 

nition of the coupling conditions !K,. We can denote '!IG as 

X= {K-?, k.: 1~i~N, O~p~k., -1~k.~m-1}. 
1 1 1 1 

(2.llb) 

We limit k. to m-1 to conform with the Hermite interpolation. We 
1 

assume that p=-1 denotes that the functions are not coupled. If K-? = 1, 
1 
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then s(p)(x) is continuous at x.. In general, s(x) allows discontinuities 
1 

·in the derivatives at xi by taking .Kf =I= 1. The latter case is important 

for application to diffusion problems where the diffusion coefficient is 

different on different sides of the interpolation point. Furthermore, 

coupling conditions at the end points i=1 ,N allow us to .impose periodic 

continuity conditions. 

Associated with the coupling conditions !JC, we introduce the space 

H~ (.6.), a subspace of H (.6.), whose elements satisfy the coupling con-m m 

ditions .% specified by·Eq. (2.11). It is easy to show that the dimension 

of HB{. (.6.) is equal to the dimension of H (.6.) less the total number of 
m N m 

conditions 2:: (ki+1) in fiG. This leads to the following theorem. 
i=1 

Theorem 2.2. Let !!JG be defined by·Eq. (2.11). Then the dimension of 

the space H.o/!:(.6.) is given by 
m 

Dim H.%(.6.) = 2m(N -1) 
m 

N 
2:: (ki+1). 

i=1 

. X 
The appropriate b8 RP.R for the space H (~) a:re obtained by imposing m 

the conditions %on { uf±(x)} as defined by Eq. (2.11). We denote the 

function obtained by coupling the element functions { uP
1
. -(x)} and { u~+(x)} 

.1 

· as { uf(x)} such that 

up(x) =) 
.1 1 

where (3± satisfy 

p-(3- u. (x), 
1 

p+ {3+ u. (x) , 
1 

X. 
1 
~ X~ X. , 

).- 1 

( 2 .12) 

x. ~ x ~ x.+1 , 
1 .1 
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Then, the basis functions in the space IfC (~) consist of { ul?(x), u~±(x): 
m 1 1 

1~i~N, O~p~k., k.+1~q~m-1}. 
1 1 

We illustrate the generation of basis functions for specific coupling 

conditions in the examples below: 

Example 2. 1 

In neutron diffusion problems, the coupling condition appropriate to 

the flux is specified by 

f!X = {K? = 1, K~ = D(x~) : 2 ~ i ~ N-1} 
1 1 D(x~) 

1 

(2.13) 

Then, the basis functions in HX(~) for 1 ~ m ~ 2 can be represented by m 

(see Fig. 2.2) 

ul?(x, D) = 
1 

(-e-_-f uf-(x)' 
D(x.) 

1 

( e )P p+ --+- u. (x), 
D(x.) 1 

1 

x. 1 ~ x ~ x
1
. , 

1-

x. ~ x ~ x.+1 , 
1 ·1 

p=U,l, ... ,m-1, 

where e is a normalization constant and 

± {Eq. (2. 7) 
uJ? (x) = 

1 . Eq. (2.8) 

m = 1 
I 

m = 2. 

(2.14) 

The normalization constant e is introduced .in order to produce stiffness 

matrices (cf., Sec. 1.3, Chap. I) having.small condition numbers. We 

e . 
usually choose e such that D(x.) ~ 1. 

l 
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We note that the conditions X= {K:P=1, k.=m-1: O~p~k., 2~i~N-1} lead 
;!, 1 1 

to the local basis functions in the smooth Hermite space (14], [16), (19]. 

The smooth Hermite space consists of polynomials of degree 2m-1 which 

have continuous derivatives of order up to m-1. 

0 u. (x) 
1 

1 

(a) Piecewise Linear Function (m=1) 

i-1 i 

0 u. (x) 
1 

slope=. e + 
D(x.) 

1 

(h) PiP.c.P.wi.se Cubic Function (m=2) 

1 u. (x) 
1 

slope= e 
D(x~) 

1 

Fig. 2. 2. Univariate Coupled Basis Functions: Example 2.1 

Now we consider the interpolation of a piecewise continuous function 

f(x) in the space HX(~) where the coupling conditions qc, conform with 
m 

the continuity conditions of f(x) at joints such that 



Bt = {KJ?, k.: O~p~k., i=2, 3, ... ,N-1}, 
1 1 1 

O~p~k. . 
. 1 
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( 2.15a) 

We define the Ji"C(~)-interpolate of f(x) as any s(x) in the space H.o/G(~) 
m m 

which satisfies 

s(p)(x+) = f(p)(x+) 
1 1 

s(p)(~) = iP>(~) 
(2.15b) 

0 ~ p ~ m- 1, . 2 .~ i ~ N- 1 , 

k. < p ~ m-1, 2 ~ i ~ N-1 . 
·1 . 

To facilitate representation,. we assumed that iP>(x~) is specified .in 

.Eq. (2.15b) whenever p is not equal to :...1. 

by 

r• s(x) is the HX(~)-interpolate of f(x), then s(x) can be represented 
m 

N-1 

+ L: 
i=2 

(2.16) 

It can easily be shown that the interpolation data in H.X(~) specified 
m 

by Eqs. (2.15a, b) are equivalent to the set of data, Eq. (2. 9) for Hm (~). 

Therefore, the uniqueness and the accuracy of the H.o/6(~)-interpolate can 
- m 

also be stated by Theorem 2.1. 
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n 

37 

We consider a region S"l=lf [a., b.] in ann-dimensional space. n may 
j=1 J J 

include energy as well as space ·intervals. For the space domain, we 

assume an orthogonal coordinate system: a Cartesian, cylindrical or 

polar spherical coordinate system. Define 7T" to be a partition of n such 

that 

( 2.1 7) 

a =r 1 <r 2 < ... <r N =b n n, n, n, n n 

Thus the point r. k is the k-th mesh point on the j-th coordinate axis. 
J, 

For simplicity, we will use a. multiple index i to specify a given point. 

Thus, i = (i1, i 2, ... , in). The set of all mesh points generated by 7T" will 

be denoted Z . 
• 7T" 

The mesh elements generated by the partition 7T" will be denoted 7T" i.' 

fori.= 1, 2, ... ,L, with 

n 
L =-II (N . ~ 1) . 

j=1 J 

Each element 7T" ;_ has associated with .it certain mesh points, which we 

denote as Z ;_- For instance, a two-dimensional problem Z ;_ is a set of 

4 .mesh.points, namely the corners of the mesh element 7T" ;_· (See Fig. 

2.3.) Note that the set of all Z;_ is not Z7T" due to the redundancy of all 

interior mesh points. 
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f( 0' 1) r< 0' 0) /0, 1) r< 0' 0) 

f(l' 1) f( 1' 0) f(l' 1) r< 1' 0) 

7T2. 

f( 0' 1) r< 0' 0) t<0,1) f( 0' 0) 

f(l' 1) f(l' 0} f( 1' 1) r< 1' 0) 

1 
1 

.__----~r1 

Fig. 2.3. Hermite Interpolation Data in a Rectangular Element 

Let s p_<E> be a multivariate polynomial of degree 2m( 1 for the j-th 

variable, for j = 1, 2, .... , n,. in ~·mesh element 7T .£" Then, s p_(!:) can be 

represented as 

s (r) = '\' a r/.1. 
2.- LJ ~J,-

IJ,~2m-1 · 
( 2 .18) 

where 

/.I. = (/.I. 1' /..1.2' · · • 'IJ.n)' 

/.I. - /.I. 1 /.1.2 IJ.n .!::. -r1,r2, ... ,rn, 

2m-1 means IJ.. ~ 2m.-1 for all J .. 
"J J 
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The Hermite interpolation of f(!:_) in 1r .R. is defined as the polynomial 

s i£.) which satisfies 

O~p~m-1, (2.19) 

For example, consider a two-dimensional problem where s .R.(£.) is 

to be a bicubic polynomial. Then 

/-1. = (/..1.1 J /-1. 2), 

u - /-1.1 /-1.2 
.!::." - r1 r2 

Thus, we have s i£.) of the form 

2 3 
Si£.) = ao + a1r2 + a2r2 + a3r2 

2 3 
+ b1r1 + b2r1 + b3r1 

2 
+ c1r1r2 + c2r1r2 + c 3 r 1 r~ 

2 2 2 2 3 
+ d1r1r2 + d2r1r2 + d3r1r3 

3 3 2 3 3 
+ e1r1r2 + e2r1r2 + e3r1r2 

Note that there are 16 coefficients required to specify a unique s_e(£.). 

For Hermite interpolation, the interpolation data required to specify 

s _e(£.) would be the function values at the 4 mesh points of the element 

1r .e• the first derivative in each c:Urection at the 4 mesh points, and the 

4. mixed derivatives at each mesh point, i.e., a a~ at each corner. 
r1 r2 

Thus ·we have 4 values, 4 derivatives in r 1, 4 derivatives in r 
2 

and 4 

mixed derivatives. The corresponding .Hermite data are illustrated in 

Fig. 2.3. 
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In the previous section, we found that the interpolating polynomial 

was conveniently represented using the so-called element functions. 

In particular, using element functions permitted the interpolating poly-

nomial to be represented directly in terms of the Hermite data. A 

similar representation is possible in the multivariate case using multi-

variate element functions. 

In the univariate case, we have a notation which uses subscripts to 

identify the mesh point, superscripts to identify particular element 

functions, and a + or - superscript to identify the element to the left 

or to the right of the mesh point. We need a similar: but somewhat more 

general notation for the multivariate case. Let { uf''\!:.>} be a set of 

multivariate element functions defined by 

n p.,a. 
u:P'a(r) = lf u. J J(r .) , 

1 - j=1 lj J 
a. = (+) or (-) , 

J 
(2. 20) 

p .,a. 
where p = (p 1,p 2, ... ,pn), a= (a1, a 2, ... , an) and uif J(rj) is a uni-

variate element function as defined by Eq. (2.4a, b). Explicit 

expressions for low degree univariate element functions are given by 

Eqs. (2.6)-(2.8). If [r .. +1, r .. ] , 1 ~ j ~ n, are supports of 
p .,a. J, lj J, 1j 

u. J J(r .) , then the support of the multivariate element function u:P'a(r) 
1. J n 1 
J -

is specified by II [ r. . , r. . ] . 
j=1 J, 1/1 J, 1j 

Using multivariate element functions, the Hermite interpolate s .l!:.> 

which satisfies Eq. (2.19) can be represented by 

s /.!) = L: 
i EZ

1 

m-1 
\-' f(p)(r.) u:P'a(r) 
L.J -1 1 -

p=O 

(2. 21) 

where a= (a1, a 2 , •.. , an) is properly chosen such that uf•a(£.) have sup­

port on rr 
1

. 
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In the study of univariate interpolation we considered certain 

classes of functions of one variable. In particular, we defined classes 

with certain differentiability properties and continuity properties. We 

now consider analogous multivariate classes. 

Let Ct(n), t = (t1 , t 2, ... , tn) be the class of all functions defined on 

n which are t. times differentiable for the j-th variable. Let Ct(7T) be 
J . p 

the class of all functions f(.!:_) which belong to the class C t(7T .e) for 

.e = 1, 2, ... , L and have finite one-sided limits on the mesh element 

boundaries for derivatives up to order t. 

The uniqueness and the approximation error for the Hermite 

interpolation are stated in the following theorem. 

Theorem 2.3. Assume that f(.!:_) E: C\7T £). Lets(.!:_) be a multivariate 

polynomial of degree 2m-1 satisfying Eq. (2.19). Then, s(.!:_) is uniquely 

determined and satisfies 

I 
0 qq (f(.!:_)- S(.!:_)) II 
a!_ . L oo(7T ) 

.e 

·~1-q1 ~ -q 
~ K Ar + + K D.r n n 

1w. 1 · · · n n ' 

0 ~ 4 ~ m-1, 

where 

IJ. . ...., min( 2m., t.) , 
J J J 

.6.r. = lr .. +1 - r .. I 
J J' lj J' lj 

and K. is a constant independent of D.r., j = 1, 2, ... , n. 
J . . J 

Proof. Tlte theorem is proven in Appendix A. 
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Theorem 2.3 gives the pointwise error bounds in terms of exponents 

of varying orders depending on the degrees of the polynomials for dif-

ferent variables. In reactor problems, the theorem provides an esti-

mation of the order of convergence when polynomials of different degrees 

for. space and energy are used. In [16), [1 7] and [3 8), the error bounds 

were obtained only for polynomials of uniform degrees and theorems 

similar to Theorem 2.3 could not be found in previous works. 

We now introduce the· multivariate Hermite space H (1r), which is m 

defined as a set of multivariate piecewise polynomials of degree 2m.-1 
J 

for each variable rj(j = 1, 2, ... , n) on elements 1ri.., i.. = 1, ... , L of 

partition 1r. The dimension of the space is easily shown to be 
n . . 
lf 2m.(N .-1). In this space, the element functions { u:P•a(r)}J=

1 
defined 

j=1 J J :1 ~. 

by Eq. (2. 20) can be used as a set of basis functions. 

We define the H (7r)-interpolate of a piecewise continuous function 
m 

f(r) as any element of H ( 1r) which satisfies - m 
.) 

iE Z 
1f' 

0 ~ p ~ m-1, (2 .21a) 

where r.(a) = (r 1 . (a
1

). r 2 . (a
2

). ... , r . (a )) and a.=(±) for 1 ~ j ~ n. 
-1 ,11 ,12 n,1n n J 

£i(a) denotes .!:.i as a limiting point in a. multidimensional space approached 

along the coordinate axes from the direction specified by qj' s. 

Using the ele~ent functions·{ u:P ,a(r)} as the basis functions of H ( 1r), 
.1 - m 

the Hermite interpolate can be represented by 

L 

S{£) = 1 S/£) 
1..=1 

L 

= L L 
m-1 
L f(p\!:.i(a)) uf'a(£) 

p=O 

(2.21b) 



"43 

where s_e<.!:.> represents the Hermite interpolate in the element 1r.R.., as 

defined by Eq. (2.21). Thus, the convenient representation in terms of 

the Hermite data is possible in the multivariate case. 

The uniqueness and the interpolation error bounds are stated in the 

following theorem. 

Theorem 2.4. t Assume that f(£) E Cp( 1r). Let S(£) be a multivariate poly-

nomial of degree 2m-1, m = (m 1, m 2, ... , mn) satisfying Eq. (2.21). Then 

S(£) is uniquely determined and satisfies 

aq 
- (f(r)-s(r)) 

q - -or 

where 

f.J.. =min( 2m., t.), 
J J J 

~r. = max lr · · +1 - r · · I , J . J,l. J,l. 
1. J J 
J 

(.J. -q 
+ K ~r n n 

n n ' 

and K. io a constant independent of .ta.r. for j = 1; ?. , •.. , n. 
J J 

Proof. Analogous to the univariate spaces, Theorem 2.3 holds locally 

for each element and can be extended to apply for the whole region. The 

p1·oof is similar to that of Theorem 2.1 and will be omittPrl, 

This theorem enables us to estimate the order of convergence for 

individual variables. For example, in reactor problems, if one uses 

step functi.onR (m ~ i> for the energy variable and cubic functions (m = 2) 

f 
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for the space variable·, then Theorem 2.4 states that the error is given 

4 
by the order 0(.6.E) + 0(.6.r ) . This theorem is useful for estimating the 

approximation error for the solution of neutron diffusion problems in 

·the following chapters. 

Just as in the univariate space, coupling conditions can be imposed 

on the space H (7r). We define the set of coupling conditions ~ by rn 

% ={K?•a(j),k.: O~p.~k.~m-1, 1~j~n. iE Z.,.}. 
1 1 1 1 II 

t where for any s(r) E C ( rr), 
-. p 

( .) p1a1' ... ,p., ... ,p a 
K? • a J = K. . J n n 

1 1 

s(p)(r
1

. (a
1

), ... ,r .. (-). ... ,r . (a>) 
,1 1 J,1. n,1n n 

---------~----------~----------~-----
( ) . 

s p ( r 
1 

. ( a-
1

). ..... r. . ( +), ... , r . (a ) ) 
,11 · J,l. n,1 n 

J n 

a = +or -k J 
1~k~n. 

As in the univariate space, we define p. = -1 to mean that s(r) is 
J -

uncoupled at r. in the direction of the axis of r .. 
-1 . J 

(2.22a) 

(2.22b) 

The coupling conditions specify the ratio of derivatives approaching 

a mesh point in opposite direction.s on the coordinate axis. The con-

ditions may apply to all derivatives of order up to m-1 and all directions, 

or partially to some combinations of particular derivatives and directions. 

When K?•a(j) = 1, s(p)(r) is continuous at r.. K~' Q(j) =I= 1 means that 
1 - -1 1 

s(p) (r(a)) is bent at r.. The latter is important in applications to the · 
- -1 

diffusion problem. 

Associated with the set of coupling conditions %, we introduce the 

f!J(, 
space H ( rr). a subspace of H ( rr), whose elements satisfy the coupling m m 



conditions 8t. specified by Eq. (2.22). Similarly, as in the univariate 

space, it can be shown that the interpolation properties as stated by 

Theorem 2.4 apply to the subspaces H&t(7T). The dimension of HEt:(7T) 
m m 

is easily shown to be the dimension of H ( 7T) less the total number of 
m 

coupling conditions. Therefore, we obtain the following theorem. 
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Theorem 2.5. Let X be defined by Eq. (2.2.2). Then the dimension of 

the space HX( 7T) is given by 
m 

Dim H.o/G( 7T) = Dim H ( 7T) - k 
m m 

where k represents the total number of conditions specified by X. 

We now consider the generation of basis functions in the space Ho/G( 7T). 
m 

The multivariate basis functions are obtained by coupling the multivariate 

element functions defined by Eq. (2.20) according to the coupling con-

ditions specified by %. Using element functions permits us to generate 

multivariate basis functions for various types of continuity conditions. 

We take a two-dimensional space to illustrate the procedures. We 
pl ,p2+ 

shall denote u. (r) 
1 -

as a basis function which is obtained by coupling 
pl-,p2+ pl+,p2+ . 

two element functions u. (r) and u. (r) according to the 
1 - 1 -

pl,p2+ 
coupling condition K. such that (see Fig. 2.4) 

1 

I (2.23a) 

0 III, IV 



where {31 and f3II satisfy 

p1,p2+ 
u. (r) have support in regions I and II. 

1 -
Note that 

Similarly, we can define 
p1 +,p2-

u. (r) such that 
1 -

p1,p2-
u.· (r) by combining 

1 -

p1-,p2-
l3nr ui . (£) ' III 
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p1 +,p2-
f3rv ui (£)' IV (2.23b) 

0 ' I, II 

where {3III and f3rv satisfy 

p1,p2- p1,p2+ 
Ui have support in regions III and IV. (Fig. 2.4.) u. (r) and 

1 -
p p -

u. 1' 2 (r) define partially coupled functions in the direction of the r
1

-
1 -

p1-,p2 p1+,p2 
axis. We ca.n 8imilarly define 1.\ (~) r~.nd u1 <.!J by coupling 
p1-,p2- p1-,p2+ p +,p- p +p + 

ui and ui . , and ui 1 2 and ui 1 '. 2 , respectively. 
p1,p2 . p1±,p2± . 

We proceed further to define u. (r) coupling u. (r) such that 
1 - 1 -

{31 
p1 +,p2+ 

I u. (r), 
1 -

f3u 
pl-,p~+ 

II u. (r), 
pl ,p2 1 -

u. (r) = 
p1-,p2-

(2.23c) 
1 -

f3III ui (£) ' III 

p1+,p2-
!3rv ui (£)' IV 
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where {3I, {3II, {3III and {3IV satisfy 

and 

f3Iv P1+,p2 
-=k 
{3I i 

p1 ,p2 
Obviously, u. (r) has 

1 -
p ±,p2± 

whenallofK. 1 =1, 

support in regions I, II, III and IV. We note that 
p1 ,p2 

the coupled basis functions ui (!:_) have con-
1 

tinuous derivatives of orders p 1 and p 2 in r 1 and r2 , respectively, and this 

is identical to the basis functions in the smooth Hermite space as con­
p1±,p2± 

when K. . * 1, the generations 
1 

sidere~in [18] and [19]. However, 
p1 ,p2 . 

of u. (r) as given by Eq. (2. 23c) is more involved and in some cases, 
1 -

the coupling conditions can lead to {3 = 0 as the only acceptable constants. 

i -1 
2 

p1-,p2+ 
u. (r) 

1 -

II 

III 

p1-,p2-
u. (r) 

1 -

1 -1 
1 

p1+,p2+ 
u. (r) 
.1 -

I 

IV 

p1+,p2-
u. (r) 

1 -

Fig. 2.4. Element Functions in a Two-Dimensional Partition 
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This case is discussed in detail in the following. examples, in which some 

practical polynomial spaces· in the reactor analysis are considered. 

Example 2.2 

Let r2 = [a, b] and $ = [E . , E ] and let 1r be a partition of m1n max· 

r2 X£, such that 7T = 7T r2 X 7T $ where 

7T • 
IT 

E . = E 1 < E 2 < ... < EN = E m1n · max 
.E 

The diffusion coefficient D is assumed to be piecewise constant in each 

element of 7T • 

In this example, we are interested.in generating basis functions to 

·approximate the neutron-flux in subspaces of the Hermite space "H (1r) m 

where·m = (mx, mE). The neutron flux is assumed to satisfy the 

conditions: 

t 
(i) cf> E C E($), tE ?-- 2mE, 

t 
(ii) X t ;:,:. 2m , ( 2. 24) ¢ E c (7T

0
), 

p X X 

(iii) a ¢(x, E) and D ax ¢(x, E) are continuous at x = xi, 2 ~ i ~ N -1. 

Let Bt be the set of coupling conditions defined by Eq.· (2. 22) and 

conforming to Eq. (2.24). Then, we define basis functions:in the space 

H~(7T) for 1 ~ mx ~ 2 and mE ;:,:. 1/2 as follows (see Fig. 2.5) 
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px+ pE+ 
u. (x) u (E), 

1 g I 

II 

px p - p -
(2.25) 

(De ) u. x (x) u E (E), 
III 1 g 

III 

( 
8 )Px p + pE-

-D u. x (x) u (E), 
IV 1 g 

IV 

where 0 ~ p ~ m -1 and 0 ~ p ~ m -1. 
X X E E 

e P ± 
and usually is taken to be D ~ 1. ui x (x) 

8 is a normalization constant 

pE± 
and u (E) are univariate g . 

element functions and are defined by·Eqs. (2.4), (2.6), (2.7) and (2.8). 

The constructed basis functions.for various degrees of polynomials 

·in x and E are illustrated in Fig. 2.5. Note that the basis functions 

u~x·PE(x, E) with m = 2 and mE= 1 satisfy the conditions specified by 
.1,g X 

Eq. (2.24). Also note that the basis function,. in which mE= 1/2, leads 

to the conventional multigroup approximation. In this case, the basis 

functions are not continuous in the energy domain. 

We further comment on the definition of the basis functions. In 

general, the diffusion coefficient is dependent on the energy and space 

variables. The proper basis functions, which satisfy the requisite 

conditions ·Eq. (2. 24), are then defined by Eq. (2. 25) by permitting D to 

be a function of both ene:rgy and space. Bowever, when ~ is not a 

constant, the resulting basis functions do not belong to the space H ( 1r) m 

and thus Theorem 2.4 cannot be applied. 
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g+1 

II I 
g 

III IV 

g-1 

E 

r-1 N 

II II 1 
~ ~ 1 i-1 i i+1 N s s· 

X 

m = 1 ~~-X 

~I 
m =2 

\ 1\, 
X 

~I 

Fig. 2. 5. Energy- and Space-Dependent Basis Functions: Example (2. 2) 
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Example 2.3 

Consider s-2 =[a, b) X [c, d) in a two-dimensional space and let 1r be 

the partition of s-2 as defined by Eq. (2.17). Let i = (ix, iy). We designate 

the mesh elements surrounding r. as shown in Fig. 2. 6. And assume 
-1 

that the diffusion coefficients are constant in each element. 

In this example, we are interested in generating practical basis 

functions in two space variables for the approximation of neutron fluxes, 

which satisfy the conditions: 

(i) t cf>(r)EC (7r}, 
- p t ~2m, 

(ii) c/>(£), D :n c/>(~) are continuous at element interfaces, 
(2.26a) 

where <:>a denotes the derivative normal to the interface. Hence, we 
. un 

define Bt as the set of coupling.conditions, denoted by Eq. (2.22), which 

conr'orms with the continuity conditions, Eq. (2.26a). Thus, we consider 

the selection of basis functions in the subspace HX(7r) for m =m =1 and. 2. m x y 

First, we consider the space of bilinear functions Hfi, l)(7r). Then, 

there is one basis function at each mesh point which is defined by 

0+ 0+ 
I u. (x) u. (y), 

.1 '.1 

0- 0+ II u. (x) u. (y), 
u~O,O)(x, y) 

.1 .1 

= 
1 0- 0-u. (x) u. (y), III 

.1 1 

0+ 0-u. (x) u. · (y), 
1· 1 

IV 

where u?±(x), u?±(y) are defined by Eq. (2. 7). 
1 .1 

(2.27) 

u~O,O)(x,y) is continuous; 
1 

however,. it does not satisfy the continuity of D ;n cf> in Eq. (2.26a). 
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Next, we consider the bicubic space, H~~2 ) ( 7T). The basis functions 

·in H~, 2) ( 7T) depend on the diffusion coefficients surrounding £i. Thus,. 

we consider two cases separately. 

This condition. is satisfied for any. interior mesh .points or interface 

points except the singular points. Proper basis functions are given· by 

(see Fig. 2. 6) 

0+ 0+ I u. (x) u. (y), 
1 .1 

0- 0+ 
II u. (x) u. (y), 

u~O,O)(r) = 
:1 :1 

0- 0- (2-. 28a) 
·1 - u. (x) u. (y), III 

. ·1 ·1 

0+ 0-u. (x) u. (y), IV 
.1 ,1 

e l+ o+ I D u. (x) u. (y) 
I , 1 :1 

e l- O+ II D u. (x) u. (y), 
·1 ·1 

u~l,O)(r, D) = 
II . 

(2. 28b) 
·.1 - e l- o-D u. (x) u. (y), III 

II 1 1 

·fJ 1+ 0-
IV D u. (x) u. (y) , 

I 1 1 

or e and e may. be replaced by e and e respectively. 
DI DII DIV DIII ' 



u~0, 1 )(r, D) = 
·1 -

e and e or 
DII Dill 

e o+ 1+ I D u. (x) u. (y) , 
II 1 . 1 

e o- 1+ 
II D u. (x) u. (y} , 

II 1 .1 

e o- 1-rr- u. (x) u. (y}, III 
III 

1 1 

e 1+ 1- IV rr- u. (x) u. (y) , 
III 

1 1 

may be replaced by e and 
DI 

e 1+ 1+ D u. (x) u. (y), I 
I .1 1 

e 1- 1+ 
-D u. (x) u. (y) , 

II 1 . 1 

e 1- 1-_D u. (x) u. (y), 
III 1 1 

II 

III 

e 1+ 1-_D u. (x) u. (y) , IV 
IV 1 ·1 
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(2.28c) 

e respectively. 
0 IV' 

(2.28d) 

e denotes a normalization constant and is generally taken such that ~ ~ 1. 

u~±(x), u~±(y), p = 0, 1, are univariate cubic element functions defined by 
1 1 

Eq. (2.8). The basis functions satisfy the interface conditions Eq.(2.26a). 

for the neutron fluxes. 

In this case, !:.i is a singular point. When DID III * DIIDIV' it is easy 

to Rhow that the interface condition (2.26a) permits ¢(!:,)to have only 

a a 
~¢(r.) =~¢(r.) = 0. 
oX -1 uy -1 
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Therefore, in·Eq. (2.28), u~O,l)(r) and 
·1 -

u~l,O)(r) can be suppressed and 
1 -

the proper basis functions in the space ~ ( n') consist of two functions, m 

u~O,O)(r) ; Eq. (2.28a), 
·1 -

( 2. 2 9) 

·Eq. (2.28d) 

·At singular points, where DIDIII -:# DIIDIV' the ,acceptable Hermite 

interpolation data must include '='a cf>(r.) = J- cf>(r.) = 0, so that the basis 
. uX ~ uy ~ 

functions ·in:Eq. (2. 29) are adequate for the interpolation problem .. The 

sets of basis functions defined in cases (1) and (2) are compatible with 

the conditions·in,Eq. (2.26a) and they form complete bases·in·H!;',(7T). 

Furthermore, Theorem 2.4 applies for interpolations of functions using 

the basis functions defined by Eqs. (2;28) and (2.29). 

In solving neutron diffusion problems, the singular solution requires 

special consideration if high-order accuracy. is to be obtained. However, 

in this thesis, no attempt is: made to.improve the solution with singulari-

ties for the reasons, mentioned. in Chapter I. As we shall see in Chapters 

IV and VI, we can reformulate the neutron diffusion problem to a weak 

form where the current continuity condition appears as a natural inter-

face condition. In the ··v:eak form, acceptable solutions are the functions 

which satisfy the conditions (cf., Sec. 4.1, Chap. IV): 

(i) cf>(E_) is continuous ·in &1, 
(2.26b) 

(ii) 'V </J(£) is square integrable in r.l. 

The bilinear function defined by Eq. (2.27), and the bicubic functions 

defined .by·Eqs. (2.28) and (2.29) satisfy the above conditions and thus 

are acceptable for calculations with the ·weak formulation. 



However, since the analytic solution at singular points are not 

necessarily required to satisfy <:>a cf>(r.) = <:>a cf>(r.) = 0, the use of the 
uX -1 uy -1 

basis functions defined by E q. ( 2. 2 9) can distort the solution and can 
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lead to poor approximations, especially for coarse mesh calculations. 

The condition (2.26b) relaxes the current contin1..1,ity conc:lition, and thus 

·it wo1..1,ld be desirable to choose basis functions a,t the singular point 

which are continuous but' for which the first derivatives are unspecified. 

The reason for this particular choice is that we want the approximation 

schemes themselves to choose the optimal coupling relation. 

By using the procedure described in this section, it is possible to 

generate various types of basis functions·in subspaces of H( 2, 2)(7T), 

which satisfy the condition (2.26b) and partially the current continuity 

condition. Below we give an example of such a set of basis functions, 

which has a minimum number of functions but whose first derivatives 

are not unnecessarily restrained. 

u~O,O)(r) = Eq. (2.28a), 
,1 -

(2.30a) 

1- 0+ 
u. (x) u. (y) , 

.1 .1 
II 

1- . 0-
u. (x) u. (y), 

.1 .1 
III (2.30b) 

0 J .I & IV 

1+ 0+ u. (x) u. (y) , I 
·1 ·1 

(1+,0)( ) 1+ 0- IV (2.30c) u. r = u. (x) u. (y) , 
;1 - 1 .1 

0 ' II & III 
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0- 1-u. (x) u. (y), III 
1 1 

u~0,1-)(r) = 
:1 -

0+ 1-
u. (x) u. (y), 

1 1 
IV (2.3 Od) 

0 ' I & II 

0+ 1+ u. (x) u. (y) , 
·1 •.1 

I 

(0,1+)( ) u. r 
·1 -

0- 1+ 
u. (x) u. (y) , 

1 1 
II (2.30e) 

0 ' III & IV 

·,u·<. 1, 1)(r) = E (2 28d) q. . . 
1 -

( 2.3 0 f) 

These functions are also shown in Fig. 2.6.b. There are six independent 

basis functions according to Theorem 2.5. u~O,O) and u~ 1 , 1 ) satisfy both 
_1 1 

the continuity of flux and currents. The remaining functions are partially 

coupled basis functions, and so the interface conditions are partially 

satisfied by these functions. Note that the coupling between up-,o) and 

u~ 1 +,0)' and u~ 0 ~ 1 -) and u~ 0 ~ 1 +) are unspecified so as to be determined 
1 1 1 

by a particular numerical scheme, say the Galerkin scheme. Numerical 

results (c.f., Sec. 4.4, Chap. IV) indicate that approximations using 

these sets give better convergence on flux shape and eigenvalues than 

those using. basis functions, whose deriva.ti.ves are erroneously fixed, 

such o.o the functions given by Eq. (2.2!1) or Set B in Example 4.4 in 

Chapter IV. 

In this example, we have limited the diffusion coefficients to piece-

wi RP. constant functions. However, they are generally dependent on the 

space and energy variables and the proper basis functions, which satisfy 



. i +1 
y 

i -1 
y 

. (0, 1) .£:\uix 

i -1 
X 

II 

III 

i 
X 

I 

IV 

i +1 
X 

~~·~ 
(1, 1) 

~ix 
(a) Eq. (2.28) · 

(0, 0) nixq (1 +, 0) 

;' .xq 
( 0' 1 +) nix r- -- - - -- - --, 

I u~l,l) · ··I 

I 
1 

I 
I . U...x 1 

I~, I 
I I 
I I 
L __________ _j 

(b) Eq. (2. 30) 

Fig. 2.6. Bicubic Basis Funct1ons: Example 2.3 
' I 

I 
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the requisite continuity conditions· Eq. ( 2. 26a), can be obtained by using 

variable diffusion coefficients in-Eqs. (2.28) - (2.30). However, the 

resulting basis functions do not belong to the Hermite space Hm ( 1r) 

(cf.,. Example 2.2), and thus Theorem 2.4 cannot be applied in this case. 

In summary, for solving the weak form of neutron diffusion prob­

lems,. we ·may use the set of bilinear basis functions defined by Eq. (2.27}, 

and the set of bicubic basis functions defined by Eq. (2.28) for all mesh 

points except singular points and.Eq. (2.30) for singular points. 

Generation of basis functions on the boundary can be considered as 

a special case of the above considerations. These are obtained by 

. coupling element functions whose supports are nonzero. For example, 

we consider a rectangular polygon as shown in Fig. 2. 7. The basis 

functions at point A coincide with element functions-in region I. The 

basis functions at point B are obtained.by coupling two element functions 

in regions I and II (cf.,. Eqs. (2.23a, b)). Finally, the basis functions at 

point C are obtained by coupling three element functions defined on 

regions I, II and III. 

We have confined our consideration to two-dimensional spaces. 

However, the basic procedure for generating .basis functions at regular 

and singular points can be carried over directly and applied in three­

dimensional spaces. 
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I c 
.. 

II III 

I II I 

A 
B 

J:t'ig. 2. 7. Ba::>i::; Functions on Boundary Points of a R.P.dangular Polygon 
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Chapter III 

NEUTRON SLOWING-DOWN PROBLEMS 

The principal application of the finite element method, in this thesis, 

is to few group diffusion theory problems. The few group equations are 

obtained from the cor1tinuous energy problem by some form of discreti­

zation of the energy variable. The customary practice in the field is to 

associate some spectrum with each region of the reactor and use this 

spectrum to generate few group cross sections, based on the conser­

vation of reaction rates. 

The spectrum used for the determination of group constants is found 

by solving a space-independent neutron slowing-down equation. Obviously, 

the truncation error in the energy variable is determined by the numeri­

cal procedure used in solving for the spectrum. To date, most spectrum 

codes use many energy intervals and simple step function behavior of the 

spectrum over each interval. 

Iu this chapter of the thesis, w~ shall generalize methods of com­

puting spectra to include the use of piecewise polynomials over energy 

intervals. The usual procedure ·will appear as a special case of the 

general method. A particularly important result of the application il? 

the development of rigorous error bounds for the spectrum. 

The application of the finite element method to spectrum problems 

will serve as a simple prototype of univariate expansions. The pro­

cedures to be discussed carry over to the spatial and temporal variables. 

We remark that we do not obtain specific numerical results in this 



chapter, hut rather use this problem as an example, which extends to 

the more important treatment of the space and time variables. 

3.1 Basic Equation 

The basic equation for the neutron slowing-down problem can be 

obtained from the energy-dependent diffusion equation, Eq. ( 1.1), 

neglecting the space and time dependencies. Then, the basic equation 

can be ·written as 

T<f>(E) = LT(E)</>(E) - j dE' L (E'-E)<f>(E') 
. .£ s 

- x~E) j dE' v Lf(E')</>(E') 
.£ 
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= Q(E). (3.1) 

Definitions for Eq. (3 .1) are developed in Chapter I. If Q(E) = 0, then 

Eq. (3.1) defines an eigenvalue problem where X. .is an eigenvalue. 

Frequently, activation experiments are performed to investigate 

the neutron spectrum. In this case; the governing equation can· be 

written a::; 

j dE' Lk(E ')X.(E ') = _Ak , 
. .£ 

k= 1,2, ... ,K, (3. 2) 

where Lk(E ') is the cross section for a particular reaction and,Ak is the 

activity measured in the experiment for the k-th element. Equation (3. 2) 

is considered as a special case of the general equation (3 .1). The 

methods developed in this chapter could thus also ·be used with Eq. (3. 2). 

In order to develop approximations, we need the following.defi-

nitions. We define the .inner product by 



= j uv dE 
.£ 

2 and the L -norm by 

1 

II u II 2 = <u, u>~ . 
L 

If ¢ is the solution to. Eq. ( 3.1), then ¢ satisfies 

62 

(3. 3) 

2 . >!< 
for all v(E) E L (.£). On the other hand,. in order for Eq. (3.3) to be 

satisfied for all v E r}(.£), T¢ = Q must be true. Thus, Eq. (3.1) and 

Eq. (3.3) are equivalent in the L 2(.£) space. 

The operator T is said to be positive definite [ 41]. if there exists a 

positive constant ')' such that 

(3.4) 

Positive definite operators are generally required to be symmetric. 

However, under the assumption (1.2) on cross sections, a certain class 

of nonsymmetric integral operators in reactor physics can also be shown 

to be positive definite. 

Now, we show the uniqueness of the solution to Eq. (3. 3) as a result 

of the assumption (3.4). Assume that both ¢ 1 and ¢2 are solutions. Then 

>'< 2 
·' L (.£ ) is a space consisting. of all functions defined on .£ which are 
measurable and for which lv(E) 12 is integrable. 



From the assumption.Eq. (3.4), 

and this requires that ¢ 1 = ¢ 2. This leads to the following lemma. 

Lemma 3.1. If the operator T satisfies the inequality (3.4), then the 

solution to· Eq. ( 3. 3) is unique. 

3.2 Approximation 

In this section, we shall develop approximation methods for the 

solution of Eq. (3.3). We assume that the solution is sufficiently 

* smooth. We consider an expansion of the neutron flux and cross 

sections in terms of piecewise ·polynomials in energy, and then apply 

the Galerkin process to determine the approximate solution. Finally, 

we show the uniqueness of the solution and establish a theorem, 

Theorem 3.1, on the convergence cif the approximate solutions. 

* The neutron flux is shown to be discontinuous in some cases. For 
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example, the neutron flux exhibits sharp discontinuities when neutrons 
from a monochromatic source are slowed down by scattering :in media 
of mass greater than unity (Chap. VI, [23] ). 
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Let 7T($) be a partition of .£ = [E . , E ] such that m1n max 

· 7T($): E . = E 1 < .E 2 < ... <.EN E 
mm . E m~ 

Let s
0 

be a trial space and let { u (E)}G be a basis in s
0

. In particular, 
g g=l 

we select s
0 

as a subspace of the Hermite space H ( 71"($)) as considered 
' m 

in Chapter II. The basis functions in the Hermite space ·may be reordered 

in a linear fashion as·{ u (E)}G . 
g g=l 

A 

Let the approximate solution cp(E) in s
0 

be represented by 

(3.5) 

Cross sections are frequently given by experimentally measured numer-

ical data. In such a case, it is desirable to represent the cross sections 

by continuous functions using certain interpolation schemes which give 

the same order of accuracy as the approximation. We may choose the 

Hermite interpolation (cf., Chap. II) in the trial space for '¢. If L and 
g 

L , are prope-r interpolation data, then the cross sections can be repre-
gg . . 

sented by 

L(E) 
G 

= ~ L u (E), 
g=l g g 

G G 
L.(E'-E) = ~ ~ l:gg'ug(E) ug,(E')) 

g=l g'=l 

(3. 6a) 

(3.6b) 

The expansion coefficients for the approximate solution ¢(E) can be 

determined by applying the Galerkin method (cf., Section 1.3, Chapter I) 

to Eq. (3.3): 

for. g = 1, 2, ... , G. (3. 7) 
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This procedure leads to G linear algebraic equations for the coef-

fie ients a g· 

We remark that if the approximate kernels, as given by Eq. (3. 6a,b), 

"' are used in the operator T, then T should be replaced by T, which repre-

sents the approximate operator. Furthermore, because of the physical 

fact that we cannot have negative reaction rate, we assume that the con­

dition ( 1. 2) is applied to the approximate solution ¢<E) itself, although 

not to the individual components of ¢<E). 

In matrix form,. Eq. (3. 7) can be written as 

where 

L= 

s = 

F= 

1 La - Sa + - Fa = q - - },. - -

0 
811 . 

8Gl 

r-

Fll 

.. ·;.· 

FGl FGG 

(3. 8) 
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Lgg' = (LTUg'' ug)$ , 

S , = (j dE'L (E'-E)u ,(E'),u (E)) 
gg s g g £ 

F , = (x(E) j dE'vLf(E')u v(E'),u (E)) . 
gg .g g £ 

The values of inner products for the basis functions· in Hermite spaces 

can be found in Appendix B. 

The matrix L is symmetric and positive definite and has a band 

structure whose band width (2G' + 1) depends on the degrees of the poly-

nomials used. For the· Hermite polynomial space of degree 2m-1 

(cf., Chap. II), there·are ·m basis functions at each mesh point. In this 

space, the half band .width G' is given by 2m-1. The ·matrices S and F. 

are in general nonsymmetric and do· not have band struch.].res. We 

remark that for m = 1/2 or piecewise continuous functions, Eq. (3 .8) 

leads to the conventional method for spectrum calculations. 

If Q = 0, then:Eq. (3.1) defines an eigenvalue problem, .and the 

corresponcl.ing cl.iscrete equations are given by 

1 -La.+Sa=-Fa . ; . A. (3. 9) 

where A. is an eigenvalue. In fact, the eigenvalues are the root of the 

characteristic equation 

det.I-L+s- ~ 1.= o. 

The solutions to· Eqs. (3. 8) and (3. 9) can be obtained· by direct or iter-

ative methods for linear algebraic systems as discussed in [35], [39] 

and,[ 40]. 
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The uniqueness of the approximate solution to Eq. (3. 7) can be shown 

similarJy as for the analytic solution, provided that the condition (3 .4) 

holds. We now show that the numerical stability of the approximate 

solution to Eq. (3.7) also results fr0m this condition. From Eq. (3.7), it 

is easy to show that 

From the Schwarz inequality [25] 

Hence, 

and 

This shows that the solution .is bounded by an upper limit which includes 

the source and thus leads to the following lemma .. 

Lemma 3.2. If the inequality (3.4) holds, then the approximate solution 

to Eq. (3. 7) is unique and the numerical process is stable. 

The approximation error for the solution is stated in the following 

theorem. The proof is given in Appendix-A. 

Theorem 3.1. Assume that the inequality (3.4) holds. Let cf>(E) be the 

solution to Eq. (3. 3) and c/>(E) E: c\e). If ¢(E) is the solution to Eq. (3. 7) 



A 

in the space H ( n{g)), then ¢(E) satisfies 
m 

II ¢ - ¢II 00 ~ K ~E J.l 
L ($) 
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where J.l = min( 2m, t), ~E = max IE .+1-.E .1 and K is a constant independ-
. 1 1 
1 

ent of ~E. 

Theorem 3.1 states that the approximate solution converges to the ana-

-2m -lytic solution as O(~E ) as ~E ...... 0 when t ~ 2m. For example, for 

m = 1/2 or piecewise continuous functions, the· method yields convergence 

of O(~E 1 ). 

We conclude this chapter with a remark on coarse mesh calculations 

using the finite element method. In general, nuclear cross sections 

contain fine structures due to the presence of resonance reactions. For 

high accuracy calculations which require takinginto account for effects 

of the individual resonance, it is necessary to divide the energy interval 

into a number of small mesh .intervals which are comparable to resonance 

·widths. However, the finite element method.also allows us to use rela-

tively large· mesh intervals as shown i.n Fig. 3.1, In this ca,se 1 each mesh 

.interval may include a number of resonances. In the Galerkin scheme, 

which leads to the matrix equati~n, Eq. ( 3. 8), the resonance effects can 

be accurately included in elements of the coefficient matrices by evalu-

ating inner· products. 



E g-1 E 
g 

Fig. 3.1. Coarse Mesh Method for the 
Neutron Spectrum Calculation 
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Chapter IV 

STATIC NEUTRON DIFFUSION PROBLEMS 

In tnis chapter, we consider the solution of time-independent 

diffusion problems, usingthe finite element method. In Section 4.1, 

we shall first review the diffusion equation in' the continuum, and 

present an alternative equivalent formulation of the problem. The 

alternative or "weak" formulation is more amenable to applications of 

the finite element method than the integra-differential formulation of 

the problem. We then present a few mathematical preliminaries 

dealing with the uniqueness of the problem solution. 

rfh'e principal application of the finite element method .is developed 

in Section 4.2, where we discuss both energy and.spatial variables. 

The conventional multigroup. method· appears. as a special case of the 

general method.developed . .in this chapter. We present a theorem 

which shows the error bounds for the approximation. In Section 4.3,. we 

discuss ::;orne numerical methods for solution of the linear systems of 

equations developed .in Section 4.2. 

In Section 4.4, we present some illustrative numerical results in 

one and two space dimensions which .indicate the power and utility of 

finite element methods in reactor static problems. 

4.1 Basic Equation 

The time-independent neutron diffusion equation can be written 

from Eq. ( 1.1a) as 
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::: Q(~, E) ( 4 .1a) 

w'ith boundary conditions 

and 
. a 

cf>(I, E) and Dan cf>(I., E) continuous on the· material interfaces 

(4.1c) 

where a~ represents an outwa~d normal derivative ·at the surface. 

Other notations are developed.in Chapter I. If·Q{!:_~E) = 0, then·Eq, (3.1a) 

becomes a:n.el.genvcilue problem. whel;"'e A.. is an eigenvalue. 

The path we shall follow to generate approximate solutions.to 

. Eq. (4.1) is to expand cf> ·in terms of some suitable basis functions. 

However, if we require the basis functions to· have the same differenti-

ability properties and contin~ity properties as cf> itself, then we will 

have great difficulties flnolng the basis functions. In order to avoid 

these. difficulties, we consider another formulation of the problem which 

weakens the continqity conditions and permits the use of a: much broader 

class of expansion functions . 

. We will 'use the inner product and the L 
2 -norm as. introduced in the 

last chapter. We have, for the space-energy problem 

and 

(u, v) = J dE J dV uv 
$ r.l 

1 

. II u II 2 = < u, u> 2 
• 

L 
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We also define a bilinear form a(q, v) as 

a(u, v) = (D\i'u,, \i'v) + (LTU, v) 

In order for the terms of a(u, v) to exist, we must require that u and v 

be continuous and have first derivatives·which are square-integrable; 

·We define w1
(n) as. the set of all functions which satisfy the above con-

* . . 
ditions. In view of the·boundary conditions in·Eq. (4.1c), we shall use 

1 1 
a subsf>ace of W (fJ), say W (f:l), whose elements satisfy the boundary 

. 0 

concHtions,. Eq. (4.1b). 

The ·weak formulation-[17], [ 42]. of the diffusion-problem may be 

stated as a-problem of finding ¢·in W~(n) satisfying · 

a(¢, v) = (Q, v) (4.2) 

for all v ·in the space w1(n). Any ¢(r, E) which satisfies·Eq. (4.2) will 
. 0 

be called a weak solution. to the diffusion problem. 

We observe that any ¢('£.,E) which .is a solution of Eqs. (4.1a, b, c) is 

·also a oolutiuu uf Eq. (4.2). To demonstl.-ate this, we consider intc· .. 

gration:by parts of the term 

* 1 . Tne ·space W (n) is called a Sobolev space [ 41]. The norm in this space is 

defined by. II u II 1 = ( J ('V'u2+u2) dV). t (cf., Eq. (4.13)). 
w (n) n 
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where the·last term on .the right is the sum of the surface· integrals for 

each subregion ni of n. Since ¢ satisfies ·Eqs. (4.1b, c), the summation 

vanishes. Thus, the equation (T¢, v) = (Q, v) leads to 

a(¢, v) = (Q, v) 1 for any v in W (r) . o-

Thus, ¢·i$ a solution.to·Eq. (4.2)._ 

Conversely, we now show that if the weak solution is-in the domain 

of the operator T, that is, twice differentiable in each ni, then .. it also 

satisfies ·Eqs. (4.1a, c). 

Integrated by parts, the weak form Eq. (4.2) can be written 

for all v .E w!(n). First, we choose v such .that v is in w1(ni) and 

vanishes outside the region ni including the boundary ani. Then, we 

·obtain 

. T¢ - Q = 0 , 

Similarly, we can show that this equation .holds. in all ni, for 

· i = 1, 2, ... , L. Substituting these equations· back in. the original 

equation,. we further obtain 

Thus,. we have shown that the continuity conditions for D a~ ¢ (current) 

inE.qs. (4.1a,c) are·Euler.equations·in.the variation of v .. in the·weak 

form. Therefore, the weak solution satisfies·Eqs. (4.1a, c). For this 

reason, the current continuity condition· is called the "natural interface 

condition:" 
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What we have done is to write the diffusion equation in a form for 

which the conditions on <P are less restrictive than the original con-

ditions. However, If <P satisfies the original boundary conditions and is 

sufficiently differentiable, then <P satisfies the original statement of the 

problem. 

In view of the less restrictive conditions on <P in the weak form of 

the problem, we should expect that the class of appropriate basis 

functions is much larger. <P is only required to be an element of the 

space w 1
(n) and may not satisfy the current co~tinuity condition which 

0 

appears as a natural interface condition. These allow the piecewise 

linear function to be an acceptable function in the weak form. In fact, . \ 

the weak form is very well suited for the use of piecewise polynomials 

as basis functions, as we develop .in subsequent sections. 

The bilinear form a(¢,¢) is said to be positive definite (41] if there 

exists a positive constant 'Y such that 

(4. 3) 

In reactor physics problems~ positive definite bilinear forms are not 

necessarily required to be symmetric. The assumption ( 1. 2) for the 

integral operator T allows also a certain class of nonsymmetric bilinear 

forms to be positive definite. 

Analogously to Lemma 3.1, we can show the uniqueness of the weak 

solution. 

Lemma 4.1. If the bilinear form satisfies the inequality (4.3), then the 

solution to Eq. (4.2) is unique. 



75 

4.2 Approximations 

In this section,. we shall develop approximate ·methods for the solution 

of the weak form of the neutron qiffusion equation, Eq. (4.2). We consider 

expansions of the flux in terms of piecewise polynomials· in both space· and 

energy.· We sha.H first give an abstract summary of the· procedures-to be 

followed, and then Qevelop the treatment of each variable- in great detail. 

We denote the region of configuration space as ·n and the energy 

:interval as $ = .[E . , E ] . We assume our configuration space to be · m.1n max . 

one of the orthogonal coorciinate systems, for example, a Cartesian, 

cylindrical or polar coordinate system. ·Let $ and n be ·partitionedinto 

elements such that 

:rn : a 1 = r 11 < r 1 2 < < r 1N = b1' 
1 

< r2N = b2 ' 
2 

an = r n1 < r n2 < · · · <. r nN = bn 
n 

In .. particular, in partitioning .n, we assume that the partitioning :lines or 

surfaces coincide with the·material interfaces suchthat the·material 

properties -in each element are continuous either because of the nature 

·of the reactor or through the application of some homogenization pro-

cedure. This. allows .us. to consider each subregion with uniform 

materials as. elements of 1Tn and thus to use. the· method .developed .. in this 

chapter fur t..:uarse mesh calculations. 
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We consider a finite ciimensional trial space for the approximation 

of the solution. In.particular, we are interested in approximating in 

sub spaces of the Hermite space Hm ( 1rnX 1T$), whose elements satisfy 

the continuity conditions compatible with the interface conciitions, 

Eq. (4.1c). The ·generation of basis functions in the subspace is dis-

cussed.in detail in Chapter II, especially in Examples 2.1- 2.3. We 

then.impose boundary conciitions on basis functions·in r which lie on 
' -

I 

the physical bounciary. For notational simplicity, we reorder the basis 

functions ·and represent them using· linear indices. Let the basis 

functions ·be represented.by 

v. (r, E) = u.(r, D(E)) u (E) , 
'1g- ,1- g 1 ~ i ~ N, 

where N and G are the number of basis functions in space and energy, 

respectively. We note that the spatia·l basis functions u.(r, D(E)) are 
:1-

functions. of. the diffusion coefficient,. and thus functions of .!:. and E. 

Since ~/!:.• D(E)) is separable in .!:. and .E (cf., Chap. II), we rewrite 

v. (r,E) as 
·1g-

v. (r, E) = v.(r) v (E), 
•1g- 1- g 

1 ~ i ~ N, 

A 

The approximate solution, ¢(r_, E), is then represented as 

g=1 i=i 
a. v.(r) v (E). 

.1g 1-. g 
(4.4) 

The expansion CQefficients can: be determined .by applying the Galer kin 

scheme to the weak,form of the diffusion equation, Eq. (4.2): 

1:::; i ~ N, 1 ~ g -~G. (4. 5) 

1· 



This procedure leads to N x G linear algebraic equations for the coef-

ficients a .. 
. 1g 
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Our principal application of the method is to few group models, so 

we shall next consider the energy treatment to generate the few group 

equations and then turn to the spatial treatment. 

4.2.1 Generalized Multigroup Equations 

We consider approximations of Eqs. (4.1a, b, c) in energy. The 

method discussed in Chapter III is directly applicable in this section. 

We define CJ? (r) as g-
N 

CJ? (r) = \' a. v .(r) . 
g- .!....J 1g 1-

1=1 

-Equation (4.4) can then be written as 

G 
¢<r, E) = \' CJ? (r) v (E). 

- f....J g- g 
g=1 

(4.6a) 

A 

We apply the Galerkin scheme to Eqs. (4.1a, b, c),. such that</> satisfies, 

for g= 1, 2, ... ,G, 

(4. 7a) 

(4.7b) 

<¢, v g)£ and (D¢, v g)£ continuous on the material interfaces, (4. 7c) 

where (u, v)£ = Je uv dE. Equations (4. 7a, b, c) lead to the generalized 

multigroup equation!? whil:h art: given by, for g = 1, 2, ... , G, 



with boundary conditions 

~g(£)' I an = o, 

G 
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(4.8a) 

(4.8b) 

,, a 
LJ D gg' an ~g{~) continuous at material interfaces, (4. 8c) 

g'=l 

where 

LT . ,(£) = (LTV ,(E). v (E)) a-, gg:, g g dO 

L h, 1.(r) = ( f dE' L (E'--E) v ,(E'L v (E)) , 
sg6 ', - <e . s g g £ . 

X = (x(EL v (E)) , 
g g £ 

Lf 1(£) = j dE' Lf(E')h)v ,(E'), 
g £ . If g 

Q .(r) = (Q(r, E), v (E)) 
g- g £ 

The conventional multigroup.equations [22]- [24] are obtained as a 

special case of Eqs. (4. 8 a, b, c). In this case, we specify 

{ 

S(E), 
v (E) = 

g 0 
) 

Eg ~ E ~ Eg+l, 

otherwise, 

·where S(E) represents an infinite medium neutron spectrum. We then 

obtain the conve11tional multigroup equation, for g:::::: 1, 2,,.,, G~ 



·, 
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G 

I: ~ - \l · D \l <I> (r) + l:T <I> (r) - { 1: . ,<I> 1 + vl:f 1 <I> 1 } - g- g- g g --c sgg· g A. g g (4. 9a) 

gl=1 

with boundary conditions 

(4.9b) 

a <I>g(r.) and Dg an <I>g(r.) continuous at material interfaces, (4.9c) 

where 

D = 6 D g gg~. ggl; ' 

LT = 6 g· , LT . I . g g ' gg: 

Here 6 gg~: is the Kron.ecker·:delta. 

4.2.2 Spatial Approximations 

·In this section, we consider the approximation of the· solution to 

the generalized multigroup equations (4. 8a, b, c). 

From the definition in Eq. (4.6a), 

N 
<I> .= \' a. v .(r) . 

g L1 lg l --
i=1 

We apply the Galerkin scheme to the weak formulation of (4.8a) such that 

<I> satisfies 
g 

GI' ~ { (D . 1.\l<I> 1 ;\lv.)n+([l:T ~-. 1.-l: .,-, vl:fg']<I>g 1,v1
.)n} 

'.....J - gg . - g - l. ., g~::, . sgg. f\. "' 

g'=1 

i=1,2, ... ,N, (4.10) 

·where (u, v)rl = J
0 

uv dV. Rewritten in matrix form, Eq. (4.10) becomes 

1 
{L-S--F}a=q, 

A. - -
(4.11) 
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where 

. Ll ,G'+l 

0 
L= 

LG'+l 1 
J 

Lq...:G',G 

.LG G-G' 
' .X 

() 

.· 

s = 

Fll FlG 

F= 

FGl' . F GG 

a= col{~1 ,~2 , ... ,~}, 

(.L g' ,) ... , = (D . ;. \7v.,(r), \7v.(:r)\,+ (loT ~,.v.,Cd, v.(r)),.., .. g . 11 gg - 1 - - 1 - ~~ g5 ; 1 ,.- 1 - ~£ 

(S ,) .. , = 0:: . 1v.,(r), v.(r)),..,, 
gg, n sg~. 1 - 1- ~.£ 

(F ;) .. , = x (v~f ,v.,(r),v.(r)),..,, gg. il g g 1 - 1- ~£ 

~g = col{ agl, ag2 ' ... , agN} , 

.9g = col{ (Qg,vl )n, ... , (Qg' vN)~} · 



/ 
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The matrices L, S and F are block matrices. These matrices have 

the same properties as those defined in Eq. (3.8) in Chapter III, except 

that in this case the matrices have submatrices as their elements. The 

submatrices Lgg', Sgg~, and F gg' are sparse matrices with band 

structures. The band width depends on non-zero couplings between the 

spatial basis functions through inner products. For example, in one-

dimensional space, if there are m basis function,s at each mesh point, 

the half band width is given by 2m-1. In two-dimensional space, if 

there are m 2 basis functions at each mesh point, then the resulting-

submatrices are block tridiagonal matrices, which have band structures 

with half band width 2m
2 
-1. 

As an example, let D and LT be piecewise constant and { v /£)} be 

piecewise linear functions in one space variable. Then the matrix Lgg 

can be represented by 

0 

0 ( D- r.T-h-) (D~ . h-LT-) 
--h-- + -6-· -h_-+--=-3-

where h± = I xi± 1 - xi I . Note that the "V · D"V and LT terms are related to 

function values at three points. It is interesting to comp'7re with the con­

ventional 3-point difference formula for 
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where 

In this equation, the "V • D "V term has the same representation as in L , , 
gg 

but the L.Tc/> term is represented. by a single point relation. In integrating 

L.Tc/>' we have assumed that ¢ is constant within [xi_.l, xi+.l], and this 
2 2 

assumption implies the use of small mesh sizes. However, in the finite 

element method, the assumptions for constant ¢ or L.T are unnecessary 

and the matrix elements can be determined analytically. For this 

reason, the finite element· method allows us to use larger mesh elements 

than those associated with the finite difference scheme. In a two-

dimen$ional problem, the fin.ite element method u$ing bilinear functions 

yields a 9-point formula, whereas the finite difference scheme gives a 

5-point formula. The analogy for the "V · D "V terms between the two 

methods which we have seen. in one-dimensional problems can no longer 

be established in two-qimensional problems. 

If Q(,r, E)= 0, then Eq. (4.1a) defines an eigenvalue problem. 

Equation (4.11) then becomes 

{ L- S f F} ~ = 0 . ( 4 .12) 

A. is an eigenvalue which is determined by finding roots of the character-

istic equation 
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We now consider the uniqueness of the approximate solution to 

Eq. (4.5}. If the bilinear form a(¢,¢) satisfies the inequality (4.3), then 

we can prove the uniqueness of the approximate solution in a manner 

similar to the proofs of Lemmas 3.1 and 4 .1. 

Lemma 4.2. If the bilinear form satisfies the inequality (4.3), then 

the solution to Eq. (4.5) is unique. 

It is possible to provide analytic estimates of the error in the ap-

proximation to both the source problem and the eigenvalue problem. 

In the following theorem, the error bounds for the source problem are 

presented. 

Theorem 4.1. Assume that the inequality (4.3) holds. Let¢ be the 

solution of Eq. (4.2) and ¢ E Ct(7T~X7T~)'.~here ::t = (t , tE). If¢ is the 
P ~~. a; r 

solution of Eq. (4.5} in the space H (7T.....,X7TI."), where m = (m , m ), 
m ~' <Ji> r g 

A 

then ¢ satisfies 

where IJ.r= min(2mr,tr), IJ.E= min(2mE,tE), ~r =max ~rand 
7Tr2 

~E = max ~E, and K 1,K2 are constants independent of ~r and ~E, 
7T$ 

respectively. 

Proof. This theorem is proven in Appendix A. 
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The eigenvalue problem can be represented, in the weak form of 

the equation, as 

1 a(¢,¢) = b(¢, ¢) - X: (F¢, ¢) = o 

from Eq. (4.2). Then the eigenvalues are defined by 

X. -1 = b(¢, ¢) = b(..!. ..!.) 
(Fe/>,¢) '~'''I' , 

where we normalize the eigenfunctions such that (Fe/>,¢) = (F¢, '¢> = 1 . 

Then 

-1 ... _1 -1 ... ... -1. ... ... ... ... 
X. - X. = X. - b( cP, cP) = X. '· F ( cP, cP) - b( cP, cP) 

= x.- 1 (F(¢-cf>+¢), '¢-¢+¢) - b(¢-¢+¢, ¢-¢+¢) 

= X.-1 (F('¢-¢, ¢-¢) + X.-1(Ff,¢-cf>) + ·x.-1(F('¢~¢), ¢) 

+ x.- 1 (F~ ¢)- b(¢-cf>, '¢-¢)- b(¢,}1-¢)- b('¢-¢, ¢) - b(¢¥). 

Since b(¢, v) - f (Fe/>, v) = 0 for all v E W~ ·, 

... ... ... 
- b(¢-¢, ¢-¢) - b(¢-¢, ¢) . 

If T is self-adjoint, then 

-1 A A -1 A A 

X. (F(¢-¢), ¢) - b(¢-¢, ¢) = X. (Fe/>,¢-¢)- b(¢, ¢-¢) = 0 

and thus 

-1 ... _1 -1 ... ... ... ... 
X. - X. = X. (F(¢-¢), ¢-¢) - b(¢-¢, ¢-¢) . 

We define the norm in the opat:e w1 as 
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then from our assumptions on cross sections in Eq. ( 1.1), 

Thus, 

K'II<P-¢11 +K'': ll<t>-¢11 2 +K"'II<P-¢11 +K""II<P-¢11 2 
non-self-, 

I -1 "'-1~ 1 w1 \ W1 1 
L

00 1 
L

00 
adJ.oint A. - A. ~-

K211<P-¢11~1 + K2.11<P-¢11~ 00 self-adjoint . 

We consider iterative schemes to determine <f> and A.. In these schemes, 

the eigenvalue problem is treated as a source problem (cf., Sec. 4.3). 

We assume that the iterative scheme is convergent. Then we can apply 

Theorem 4.1 to the converged solution. If we assume that Theorem 4.1 

applies also to derivatives such that the orders of convergence are 

specified similarly. as in Theorem 2.4, then we obtain 

2m -1 2m 
o( Llr r ) + o( LlE E) non-self-adjoint , 

I -1 "'-11 A. -A. = 

_4mr -2 __ 4ulE) 
0 ( Llr ) + 0 ( LlE self-adjoint . (4 .13) 

Numerical results (Example 4.1 in Sec. 4.4) show that the order of con-

vergence for the non-self-adjoint case can be better than the conserva-

tive limit predicted above. 

4. 3 Numerical Methods 

We now consider appropriate numerical procedures for the solution 

to Eq. (4.11). The source. iterative scheme and the Cholesky method, 
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which are discussed in this section, are used in a computer program 

HERMITE-2D (Appendix D) for eigenvalue problems. 

A direct method such as the Gauss elimination method is inefficient 

compared to iterative schemes for large systems of linear equations. 

We consider the source iterative scheme [ 4 3] , [ 44) , which. is most com-

monly used in reactor physics calculations. In this method, the equation 

for the J -th iterative solution of Eq. (4.11) is set in the following form: 

G 
J+l ~ 1 J L a = -L 1-6 +S +- F a + gg-g { gg',·( gg'> gg~· X. gg~·} -g' ~g J 

g=1,2, ... ,G, 

gbl 
(4.14) 

where 6gg' is the Kronecker delta. ~0 is an initial guess. In our case, 

L is positive definite and we can use the Cholesky scheme [ 35) , [ 39) , gg 

which always gives a unique factorization of L in the form gg 

L = E ET 
gg 

(4.15a) 

where Eisa lower triangle·matrix. Let L .= (.£ .. ), E =(e .. ). Then we 
gg . lJ lJ 

note that 

j .:::; i . 

ThP.refore, e 1j can be determined using the algorithm, 

j-1 .!. 

e j j = (£ j j - . ~ e f k ) ?. 

k=1 

(4.15b) 



The matrices E and E T possess the same band structure as L . By . gg 

using the Cholesky scheme, the numerical inversion of Lggis simpli-

fied and it requires only forward and backward sweeps in inverting E 

and E T' respectively. 

In the eigenvalue problem defined by Eq. (4.12}, only the largest 

eigenvalue is of interest because it corresponds to the neutron multi-

plication constant in the reactor physics. The largest eigenvalue of 

Eq. (4.12) can be determined by the power method [43], [44], [45] 
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which will be briefly described. Suppose a':<J+1 is the (J+1)-th iterative 

solution to Eq. (4.14) with q = 0. Then, the largest eigenvalue and its 
-g 

eigenfunction are defined by 

\' (a:*J+1' aJ) 
LJ -g -g 

A.- ~ J + 1 = -=--~-.--:::-:-:;-=~'"" 
\' (a*J+1,a>:<J+1) ' 
/_; -g -g 

J+1 a 

g 

(4,16a) 

(4.16b) 

Variants of thP. dP.fini.tion of A. can be found in [ 4 51 . Steps defined by 

Eqs. (4.14)- (4.16) are repeated until the following convergence criteria 

are satisfied: 

~E a' (4.17a) 

(4.17b) 
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4.4 Numerical Results 

In this section) some of the numerical results for stationary eigen-

value problems are presented in order to check the theoretical results 

and also to test practical aspects of the finite element method. Calcu-

lations ·were performed using the computer programs HERMITE-1D and 

HERMITE-2D (Appendix D). 

In examples) the order of convergence is determined from the 
A 

numerical results. For example) if A.. is the approximate eigenvalue 
1 

usingthe uniform mesh size ~ri) then the order of convergence /.1. for 

the eigenvalue is determined from 

.( 5.18) 

A 

where A. is a reference eigenvalue> which is usually the most accurate 

eigenvalue obtainable. The orders of convergence) which are listed in 

the tables of numerical examples) correspond to average values of /J.'s 

which are obtained from Eq. (5.18). We note that Eq. (5.18) is also used 

in determining the order of convergence in tempo.ral approximations. in 

Chapters V and VI. 

Example 4.1. One-Dimensional Eigenvalue Problems 

In .this example) we consider one-ciimensional eigenvalue problems 

·previously cun::;idered by Wakoff [21]. In [21]) the· multigroup equations 

are written.in the following simple forms: 

d ( d. ) - -d p. -d U. + O'.U. = T.+1U'+1 > 
X 1 X .1 1 1 1 1 

- d~ (Pn d~ un.) + anun = AT1u1) 



where u .represents the eigenfunction in the highest energy group and 
n 

A.·= ~ is the eigenvalue. 
eff 
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We selected two examples from [21], a one-group two-region.prob-

lem and a two-group two-region. problem. We computed the largest 

eigenvalue using the cubic piecewise ·Hermite polynomials as defined 

by Eq .. (2.14). 

Table 4.l(a), (b) compares eigenvalues of the two examples with 

the results obtained by Wakoff. Eigenvalues computed by the finite 

difference scheme are also included for comparison. 

We note that both the modified spline space and the Hermite space 

give convergence of order 0(.6.x6) (cf.,. Eq. (4.13)), whereas the finite 

difference scheme gives 0(.6.~2 ) convergence. We also note that the 

non-self-adjoint problem (Table (b)) has the same order of convergence 

as the self-adjoint problem (Table (a)). 



Table 4.1. Eigenvalues on One-Dimensional Problems: Example 4.1 

(a) Eigenvalues of One-Group Equation: 

.{2 (0, ~) 
p = 1 1(~,1] 

T = 0 
1 

.,_ 
.6.x ·Modified Cubic Spline 

::::c 
Cubic Hermite Finite Difference"' 

1/4 4.8100921110 

1/8 4.8100900323 

1/16 4.8100899964 

1/32 4.8100899959 

Order of 
5.92 convergence 

,,, 
-·Data from G. I. Wakoff (21]. 

4.8100919803 4. 7750060178 

4.8100900308 4.8011066072 

4.8100899964 4.8078313856 

4.8100899959 4.8095245373 

5.96 2.15 

(b) Eigenvalues of Two-Group Equations 

p = {3 
1 2 

P 
--.{4 [0, ~) 

a-a-0 T=T=1 
2 3 (~ 1] 1 - 2 - ' 1 2 

4 J . 

.6.x Modified Cubic Spline Cubic Hermite Finite Difference 

1/4 71.5395485397 71.53 954 59139 70.057197 816 

1/8 71.5395176807 71.53951766 58 71.164716538 

1/16 . 71.5395171951 71.539fl17HHiO 71.44 55536 95 

1/32 71.5395171875 71.5395171875 71. 516 0 0 9 84 5 

Order of 
6.01 5.95 2.18 convergence 

90 
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Example 4.2. One-Dimensional Two-Group Two-Region Problem 

We consider an eigenvalue problem for a one-dimensional two-group. 

two-region diffusion problem. The reactor configuration is depicted in 

Fig. 4.1. The multigroup parameters for Eq. (4. 9a) can be found in 

Table C. 2 in Appendix C. 

For the numerical approximation using the finite element method, 

the linear (m=1) and cubic (m=2) Hermite basis functions as given by 

Eq. (2.14) were used. Calculations are also performed using the finite 

difference scheme. 

In Table 4. 2(a), comparisons are made for eigenvalues obtained by 

various methods. The eigenvalues converge to 0.9795 with the order 

0(.6.x 2m- 1) as predicted by Eq. (4.13) for the non-self-adjoint operators. 

The finite difference scheme gives the same order o( convergence as 

the linear Hermite method. In Table 4.2(b), the thermal neutron fluxes 

at x = 2L/ 3 are compared. The neutron fluxes are seen to converge to 

0.791334 with the order 0(.6.x2m) in coincidence with Theorem 4.1. On 

the other hand, for the finite difference method,· the order of 

convergence is found to be somewhat less than the expected value 2.0. 

In Fig. 4.2, the thermal flux distributions computed using the cubic 

Hermite method and the finite difference scheme are compared. In 

this figure, it is seen that the flux shape converges rapidly to a limit 

as the mesh sizes are refined. The results obtained by finite element 

methods compare favorably with the finite difference result which is 

obtained by using smaller mesh size .6.x= L/24. We also note in this 

figure that the finite element method using coarse meshes can accurately 

predict local thermal flux peak in the reflector region. 

In Table 4. 2(c), the integrated thermal fluxes and related errors 

are compared. Finally, in Table 4. 2(d), comparisons are made for the 



Table 4.2. One-Dimensional Two-Group, Two-Region 
.Eigenvalue Problem: Example 4.2 

(a) Eigenvalues (1 /'A) 

Hermite Method 

92 

.6.x m = 1 m = 2 Finite Difference 

-·-L-·- /3 

L/6 

L/12 

L/24 

Order of 
convergence 

-·--rL = 60 em. 

.6.x 

L/3 

L/n 

L/12 

L/24 

Order of 
convergence 

0. 97 576214 

0.97792715 

0. 97 897935 

0. 979376 56 

1.59 

0.97899829 

0. 97946629 

0.97952296 

3.84 

(b) Thermal Flux at x = 2L/3 

Hermite Method 

m = 1 m = 2 

0.65557645 0.81027209 

o. 82020106 0. 794'71 U4U 

0. 79589912 0. 79139325 

0. 79255659 

2.30 . 4.1 t 

~:: 

Normalized to ¢
2

(L) = 1.0. 

::::c: 

tReference flux ¢2 =0.7913344 for m=2, .6.x=L/60. 

0.97658226 

0.97646699 

0.97803760 

0.97905549 

1.40 

Fin it e. ;niffe reno.e 

0.80887720 

0. 812 89463 

0.80204605 

0. 79473074 

1.31 



Table 4. 2 (Concluded) 

J
.L 

(c) Integrated Thermal Flux ¢2(x) dx 
0 

Hermite Method 

..6.x m == 1 m == 2 Finite Difference 
.... 

L/3 
(19.5%(' (1.32%) (28.4%) 

30.978644 37.969594 49.415513 

(3.15%) (0.011%) (17 .3%) 
37.263231 38.482219 45.121380 L/6 

(0.52%) (0.003%) (4 .4%) 
38.680668 38.479082 36.772008 L/12 

(0.14%) (3.8%) 
38.533171 39.952596 L/24 

':< Relative errors based on the reference data 

..6.x 

L/3 

L/6 

L/12 

L/~'4 

JL ;, 2 I ¢
2 

dx == .38477937X,·10 for m == 2, ..6.x == L 15. 
0 0 

(d) Computation Time (sec) 

Hermite -Method 

m == 1 

2.81 

5. 72 

10.80 

¢ == 
0 

~ Reflector 
1 

0 L/3 

m == ·2 

2.89 

3.74 

9.25 

Nuclear Fuel 

'· 2L/3 

Finite Difference 

2.81 

5.81 

11.02 

d 
I-¢== o dx . 

L=60 em 

Fig. 4.1. Reactor Configuration for·Example 4.2 

93 



1.2 

1.0 

~ 0.8 rl ~ 
~ 

I ~ 
rl 
ro 
8 0.6 I 
~ 

I ~ 1 ..c: I 
~ I I 

0.4 ' i 
~ I I 
:> I ...... / 
+' j/ BICUBIC HERMITE ro 
rl 0.2 

,... 
~ Ax= L/3 

0:: ~ /.1 Ax= L/6 
0.0 I Ax= L/12 ,_ / 

0 FINITE DIFFERENCE 
-0.2 Ax= L/24 

0. 5 . 60.0 

x (em) 

Fig. 4.2. Thermal Neutron Fluxes: Example 4.2 
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computation time required for the eigenfunctions to satisfy a convergence 

criterion of Ea = 10- 10 (cf.,· Eq. (4.17a)). 

Comparing numerical results in the tables, it is seen that the finite 

~lement method using linear functions is somewhat more accurate than 

the finite difference scheme. Also, in this example it is demonstrated 

that the finite element method in cubic Hermite space is highly accurate 

and, in fact, that this method can be used as coarse mesh method to 

reduce computation time as compared with other methods. For example, 

the finite element method in the cubic Hermite space for .6-x = L/3 yields 

about the same accuracy for the eigenvalue and the integrated flux as 

the finite difference scheme using .6-x= L/24. Furthermore, it is shown 

in Table (d) that the finite element method requires less than 1/3 of the 

computation time of the finite difference scheme. 

:Example 4.3. Two-Dimensional, One-Group Model Problem 

In this example, we consider an eigenvalue problem for a two­

dimensiona,l neutron diffusion equation. The configuration of interest 

consists of uniform nuclear fuel (Fig. 4.3). The one-group nuclear data 

are given·in Table C.2 of Appendix C. 

Table 4.3 lists eigenvalues for different meshes obtained by the 

finite element method using piecewise cubic Hermite polynomials and 

the finite d.ifference scheme. In the finite element method, the basis 

functionR clP.fined by Eq. (2.28) were uocci. In this result, we ubtain 

0(.6.r6) convergence for the finite element method and 0(.6.r2) for the 

finite difference scheme. Also-we note that the finite element method 

for .6-x.= L/2 yields more accurate eigenva~ues than the finite difference 

scheme which uses .6-r=L/6. 



Table 4.3 .. Eigenvalues 1/A. of a Two-Dimensional, 
One-Group Model Problem: Example 4.3 

Cubic Hermite Finite Difference 

L/2 0. 9230904055 0. 922 80573 

L/4 0.9230903703 0 .. 92301801 

L/6 0. 92309036 97 0.92305812 

Order of 
5.89 2.65 convergence 

cP = 0 
L..-----------~ 

d 
- cP = 0 dx 

0 
0 

Nuclear 

Fuel 

d . 
.-cf>=O 
dy 

\....-----==:::.x 

L = 40 em 

cP = 0 

L 

Fig. 4.3. Reactor Configuration for Example 4.3 
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Example 4.4. Two-Dimensional, Two-Group Problem 

In this example, we consider an eigenvalue problem of two-group 

neutron diffusion equations. The system consists of a fuel region 

inside and a reflector outside (Fig. 4.4). The nuclear parameters of 

the materials are given in Table C.2 in Appendix C. 

For this calculation, we use the bicubic basis functions defined by 

Eq. (2.28). At the singular point, we consider three different types of 

bicubic functions: 

Set A: Two basis functions which satisfy cb and D 0~ cb continuity at 

the corner. These are given by Eq. (2.29). 

Set B: Four basis functions which are continuous. These are given 

. e o o) < o 1 > by Eq. (2.28) w1th D = 1 for u ' and u ' 

Set C: Six basis functions which are continuous. These are given 

by Eq. (2.30). 

Table 4.4 summarizes the eig~nvalues obtained by the finite differ-

ence method and the finite element method using linear and cubic poly­

nomials. We note that methods using cubic polynomials for ~x = L/2 

yield accuracy comparable to that of the finite difference scheme for 

Ax= L/'?.0. Furthermore, we nullce that, although set A has.low-order 

convergence, it gives quite accurate eigenvalues for large ~x. Eigen-

{ 3 
values for sets B and C converge in the order of O(~x:). All of the 

eigenvalues are seen to converge to the value 1 /'A. = 1.114. 

In Fig. 4.5, thermal fluxes for the Sets A, :8 and Care compan~rl. 

Figure 4.5(a) shows that at y = 0, where the singular functions vanish, 

the fluxes have similar shapes and all converge to the finite difference 

results for ~x = L/20. Figure 4.5(b) shows that at y = 20 em, flux 

shapes for Set A are rather distorted and have slow convergence. On 
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\ 

the other hand, the flux using sets B and C functions converges rapidly . 

. By comparison, we notice that set A basis functions approximate 

·poorly the flux for coarse mesh calculations, and that set C functions 

give better approx;imations than the other sets. 

Table 4.4. Eigenvalues 1/'A. of Two-Dimensionai, Two-Group, 
Two-Region Pr.oblem: -Example 4.4 · 

.6.x 

L/2 

L/4 

L/6 

L/20 

.m = 1 

1.0802150 

1.0962251 

1.1040456 

-

1.4 

d -¢ = 0 
dx 

Hermite ·Method 

·m = 2 Finite Difference 

A B c 

1.1157980 1.1081760 1.1082321 1.0783013 

1.1153879 1.1134294 1.1134916 1.0797120 

1.1149521 1.1140668 1.1140943 1.0895577 

-- - - 1.1105031 

Order of convergence 
o.95 1 3.2 1 3.2 0.8 

¢ = 0 
L r------------. 

Reflector 

L I 2 r-------, ¢ = 0 

Fuel 

L, 2 

d 

L = 40.0 em 

-¢ = 0 
dy 

J:t'ig. 4.4. Reactor Configuration for Example 4.4 
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Set A 

1.6 

1.2 

C'\1 0.8 -e. 

0.4 

0.0 

-0.4 
0.0 10.0 20.0 30.0 40.0 

Set B 
o. 

1.6 

1.2 

C\l 0.8 -e. 

0.4 

0.0 

-0.4 

0.0 10.u 20.0 30.0 40.0 

Set C 

1.6 

1.?. 

C\l 
0.8 -e. 

0.4 

0.0 

~0.4 

0.0 10.0 20.0 40.0 
x (em) 

(a) y = 0.0 em 
Fig. 4.5. Thermal Neutron Fluxes: Example 4.4 

KEY: Bicubic Hermite, ---Ax:-:: L/2, - - -Ax= L/3, --Ax= L/6; 
0 Finite Difference Ax= L/20. 
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Set A 1.0 

0.8 

0.6 

C\1 0.4 
-e. 

0.2 

0.0 
0.0 10.0 20.0 

Set B 1.2 

1.0 ...... 
... 

0.8 
" 

0.6 

C\1 0.4 
-e. 

0.2 

0.0 

-0.2 
0.0 10.0 20.0 30.0 40.0 

Set C 1.0 

0.8 

C\1 0.6 
-e. 

0.4 

0.2 

0.0 

-0.2 
0.0 10.0 20.0 30.0 40.0 

x (em) 

Fig. 4.5 (b) y = 20.0 em 
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Chapter V 

POINT I).INETICS PROBLEMS 

In this chapter, we develop the application of univariate piecewise 

approximations to problems in space-independent kinetics, that is, 

point kinetics problems. We first develop a general procedure for the 

solution of a system of first-order ordinary differential equations using 

piecewise polynomials in Section 5.1. We term this procedure the 

Hermite method, as it is based upon Hermite interpolation. The Hermite 

method results in a single-step algorithm and, for equations with variable 

coefficient A(t), yields a truncation error of order 2m for interpolation 

polynomials of degree 2m-1. It is shown that certain classic methods, 

i.e., the Crank-Nicolson method and the Pade (m, m) rational approxi­

mations for exponential functions [40), [46) appear as special cases of 

the Hermite method. 

We then apply the method to the point kinetics equations in Section 

5. 2. Especially, we present an alternative form of the kinetics equations 

which avoid the numerical operations of matrix inversion necessary to 

carry out the forward time step in the direct approach. Finally, 

numerical results are presented in Section 5.3 which confirm the accu­

racy of the error analysis. 

A number of authors considered the use of piecewise polynomials 

for initial value problems (e.g., see [47)- [50)); however, these studies 

have been limited either to the use of discontinuous polynomials [ 4 7) , [ 4 8] 

or to problems with constant coefficients [49), [50]. Nassif [51] extended 
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the Hermite method for polynomials of arbitrary degrees, and his study 

asserts the analogy between the Hermite ·method and the Pade (m, m) 

• approximations for the general m. 

5.1 The ·Hermite Method 

In .this section we shall develop the application of piecewise poly-

nomials to systems of coupled ordinary differential equations. We 

consider a system of the first-order ordinary differential equations 

tt ~(t) = A(t) ~(t) , 0.::::: t.::::: T, (5 .1a) 

~(0) = ~0' (5.1b) 

where ~(t) = col{ ¢ 1 (t), ¢ 2(t), ... , ¢N(t)} and A(t) is anN X N matrix. 

A(t) may ·be discontinuous in t. In reactor kinetics problems, the point 

kinetics equations and the semidiscrete neutron cliffusion equations can 

be representedin the form of Eq. (5.1a). 

We divide the interval [0, rr:J into a partition 1rt such that 

1rt: 0 = t 1 < t 2 < ... < tN · = T. 
. t 

If A(t) is discontinuous at some points-in [0, T], then we assume that the 

partition include~ such points as mesh points. 

We limit our consideration to a particular subinterval [\, ti+1]. 

Assume that ¢(t.) is given as the initial condition or as a result of previ­
- 1 

ous computation, and ~(ti+ 1 ) is to be determined. However, when A(t) is 

d.iscontinuous at·t=t. (or t.+1), ¢(t.) (or ¢(t.+1)) is to be interpreted as the 
1 -1 - 1 . - 1 

one-sided.limit, ¢(t:) (or ¢(t~+ 1 )). - 1 - 1 
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Let { ul?±(t)}m- 1 (j = i, i+1) be the element functions of degree 2m-1 
J p=O 

as defined by Eq .. (2.4) in Chapter II. And let the approximation solution 

to cp(t) be represented by 

(5.2) 

where 

j = i, i + 1 . 

In order to determine ¢(t), we assume that ¢(t) satisfies 

j ti+1 d¢(t) = Jti+1 A(t) ¢(t) dt. 
t. - t. -

(5.3) 

1 1 

Integrating explicitly, 

t m-1 ..... .... - f i+1 ~ { ""(p) p+ ""(p) p- } ¢.+1 - cf>.- A(t) ¢. u. (t) + ¢.+1 u.+1(t) dt 
-1 -1 t -1 1 -1 1 

. i p=O 

m-1 
= '\' {.A. ~p+) ¢~p) +.A. ~p-) ¢~p)} 

LJ 1 -1 1+1 -1+1 
p=O 

(5.4a) 

where 

(5.4b) 

Furthermore, we assume that 

d .... .... 
dt ¢ . = A ( t.) cf> . , 

-J 1 -J 
j = i, i+ 1 . (5. 5a) 



Then we can define A~p} such that 
1 

Similarly, 

A{p} -AP {p} - p We note that if A is independent of t, then i - i, Ai+1 -Ai+1 . 

general, for variable A(t), Eq. (5.4a) can be written as 

{I- m~1 .A<p-> A~p}} '¢. = {I+ m~1 .A.(p+) A~p}} '¢. 
. LJ 1+1 1+1 -1+1 LJ 1 1 -1 

p=O p=O 
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(5.5b) 

(5.5c) 

In 

(5.6a) 

A 

where I is the unit matrix. Eq. (5.6a) is a single-step equation. If ~i+ 1 
is determined by solving.Eq. (5.6a), the:h:.its derivatives i~~~ can be found 

A 

from Eq. (5.5c). These are substituted.into Eq. (5.2a) to construct ¢(t) in 

the interval [ ti, ti+ 1] • This method. will be called the Hermite· method 

because the method. is based on the Hermite interpolation. (Cf., Chap. II.) 

The error bound for the approximation in the Hermite method is stated 

in the following theorem. 
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Theorem 5.1 

Let lj>(t) be the solution to Eq. (5.1) where A(t) is Lipschitz continuous, 

i.e., there exists a positive constant a such that 

0A(t) (_i(t)-g(t) )0
00 
~ a [li(t)- g(t)0

00 
• 

A 

Let lj>(t) be the solution of Eq. (5.6) in the space H brt). Assume that 
- m-1 m 

there exists a constant T such that 0 L: ".A. r;1 Af+1 Ooo ~ 1 if lti+1-\ I < T 

p=O 
for 1~i~Nt-1. If¢ECt(7Tt)and.6.t= max lt.+1-t.l<r, then'¢ 

- p 1:<':<N 1 1 
~1~ t 

satisfies 

max 0 dq (lj>(t) - ¢<t)) 0 ~ K .6.-f'-q 
[ 0, T] dtq - - 00 

where IJ. = min(2m, t) and K is a constant independent of .6.t. 

Proof. The theorem is proven in Appendix A. 

As a special case, when A(t) is constant, the Hermite method 

leads to the Pade approximation for eA.6.t [39], [ 44] . For example, 

(i) m = 1 (linear function) 

{ I -~ t A} !i+ 1 = { I + ~ t A} _!i (5.6b) 

( ii) m = 2 (cubic function) 

{ 
.6.t .6.t

2 
2} ... { .6.t .6.t

2 
2} ... 

I - ""T A + 12 A !E_i + 1 = I + 2 A + 12 A ~_i • (5.6c) 

Equations (5.6b) and (5.6c) correspond to the (1.1) and (2.2) elements in 

the Pade table, respectively. Equation (5.6b) is also known as the 

Crank-Nicolson formula .. 
... 

The solution for ¢. 
1 

in Eqs. (5.6a, b, c) requires inversion of the 
-1+ 

coefficient matrices. For matrices of large order, iterative schemes 

' '-



are often more effective than direct methods. In this case, the initial 
..... 

value of .. Pt+1 needs to be estimated or extrapolated from previous 

values. Below, we give some low-order extrapolation formulae [49], 

which can be used with the one-step-method: 

..... ..... ..... 
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¢.+1 = 2¢· - ¢. 1 ' -1 -1 -1-
(5. 7a) 

= 2_¢1. - _¢1. -1 - ~t. 1<¢! 1- ¢!> i· 1- -1- . -1..'/ (5. 7b) 

The advantage of the Hermite ·method. is that the method can accu-

rately account for the variable A(t) within each mesh.element. Conse-

quently, the Herrnite·method allows the use of relatively large mesh 

elements. compared to the Pade appro~imation and other collocation 

schemes. ·Another important feature of the Hermite -method is that the 

method permits A(t) to be discontinuous. In reactor kinetics problems, 

A(t) can.represent the reactor controls such as the control movement 

or the coolant flow rate,. which change discontinuously in time. Then 

.the Hermite ·method can be a powerful method for studying the response 

to such discontinuous controls. 

5.2 Point Kinetics Equations 

In .tbis section, we consider the solution of the point k,inetics 

equation applying the Hermite·method developed in the preceding 

section. In .particular, we consider two versions of the point kinetics 

equations: equations with precursors in the differential forms and the 

time-integrated point kinetics equation in which the precu,rsors are 

eliminated .by integration. 



5.2.1. Point Kinetics Equations with Precursors 

The point kinetics equation with precursors can b~ written as 

[52], [53] 

where 

:t !E_(t) = A(t) !E_(t) I 

!£_(0) = fo ' 

p(t)- [3 
A 

A(t) = 

-A. 
1 

0 
0 

n(t) is the neutron concentration, p(t) is the reactivity and A is the 

generation time. Other definitions can be found in Section 1.1. 

107 . 

(5. 8a) 

(5.8b) 

The appru.xilnate solution can be found by applying the Hermite 

·method described in Section 5.1. For example, we consider the linear 

variation of the reactivity of the form 

Let 

..... 
!E_(t) = ( 5.9) 



Then, the Hermite method yields the following one- step equation, 

A 

B.+1 ¢.+1 = B. c/J. , 
1 -1 1..,.-1 

( i} m = 1 (linear function} 

where 

and 

..6.t ..6.t2 
Bi =I+ 2 Ai+1- -3-·A..6.' 

A. = A(t.} 
1 .1 

A = ..6. o . 
Comparing with the Pade (m, Pl) approximations, we note that 
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(5.10a} 

(5.10b} 

Eqs. (5.J.Oh, r.} contain some additional terms in ..6.t
2 

and ..6.t3. In fact, 

these are the correction terms which account for the linear variation 

of the reactivity p(t}. 
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5.2.2. Time-Integrated Point Kinetics Equation 

The time integrated point kinetics equation is obtained by integrating 

the precursors and eliminating them from Eq. (5.8a). The result can be 

written as 

d (t) {3 J { -A.t (3. t -A.(t-s) } 
- n(t) = P - n(t) + \' A. C. e J + :.J J n(s) e J ds 
dt A _L.J J JO A O ' 

J=O . 

Let 

n(O) = n . 
0 

A 

Then we require that n(t) satisfies 

A A j'ti+1 p(~- {3 nA(t) .dt 
ni+1- ni = 

t. 
1 

(5.11a) 

(5.11b) 

(5.12) 

J t.+1 { -A.t ~~ t -A.(t-s) } 
+ ~ j 1 

Aj Cjo e J + ~ j ~(s) e J ds dt. 
j=l \ 0 

(5.13) 

Proceeding as in Section 5.1, we obtain a single-step equation from 

Eq. (5.13). 

For example, we consider a simple case of approximation using 

linear functions (m=1) and a ramp reactivity 

( 
-X. .ti -A .ti+1 ) 

e J -e J S .. 
' J' 1 

(5.14) 



where 

B.= 
1 

2 J p.- {3 .D..t. PA .D..t. (3. 
1 1 L.l. 1 \' J 1 - 1\ 2 - A -3- + u A.D..t. aj, i+1 ' 

j=1 1 

2 J P·- {3 .D..t. PA .D..t. {3. 
' 1 1 L.l. 1 \' ___:__]_ 1 + --x- 2 + A -6- + Ll A.D..t. aj, i 

j=1 1 

p. = p +PAt., 
1 0 L.l.1 

.D..t. = t.+1- t. ' 
1 1 1 

.D..t. (A . .6.t. 
a = - -· 1 __1____!. -

j,i+1 A. 2 
J 

.6.t. (A . .6.t. ) 
- 1 __1____!. a . . - ~ 2 + 1 + 

J' 1 1\,. 

J 
(

.6.\ 1 ) ( -A . .6.\ )' -+- e J -1 . 
A. A 2 

J ·j 

S. k+1 can be determined recursively from 
J, 

~i+ 1 is a scalar and can be determined from Eq. (5.14) by dividing by 

the scalar Bi+1. 

5.3 Numerical Results 

The computer program, HERMITE-OD, was prepared for calcu-
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lations in the numerical examples in this section .. HERMITE-OD solves 

the point kinetics equations by the Crank-Nicolson scheme (Eq. 5.6b) 
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and the Hermite method using piecewise linear or cubic polynomials 

(Eqs. (5.10a, b, c) and (5.14)). 

Example 5.1 

Consider a point kinetics problem defined by 

p(t) = ~ t 

with six delayed neutrons (Table C.1) and the following constants 

A= 5 X 10- 5 sec 

n(O) = 1.0, 

0 ::::; t::::; 2 sec. 

Table 5.1(a) compares n(t) computed by the Hermite ·method using 

polynomials of various degrees and the Crank-Nicolson method. In 

the latter, a constant reactivity in each time interval is assumed such 

that 

p(t) = p(t.) J 

1 

Convergence of order 0(.6.t2m) is observed for Hermite· methods 

u~:>ing pulynomial of degree 2m-L This coincid.eR with the statement in 

Theorem 5.1. However, the Crank-Nicolson Rcheme shows only 0(.6.t 1) 

convergence. This example demonstrates that the Hermite method 

retains high-order convergence for variable coefficients (reactivity), 

in contrast to the Crank-Nicolson scheme and other collocation schemes. 

We remark at this point that results by the Crank-Nicolson scheme 

can-be improved by usingthe average of p(t) in the interval [ti' ti+ 1 ] 

instead of values at mesh points. Thus, let 

p(t.) + p(t.+1) 
p(t) = p = 1 1 

2 
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Table 5.1. Point Kinetics Problem, 
-4 

A= 5X10 sec: Example 5.1 

(a) n(t) 

Hermite Method 
t Crank-

m = 1 m = 2 m = 1 Nicolson 
(time-integ.) 

1.0 0.5 1.5316543 1. 9144400 1. 946 5955 1. 9046032 

0.1 1. 8513059 1.9482021 1.9499962 :.1.94:76481 

0.05 1. 9002958 1.9495497 1. 9499987 1. 9494094 

0.01 1. 9400027 1. 9499808 1. 9499987 1.9499751 

0.005 1. 9540000 1. 9499942 1. 9499987 1. 9499928 
Order of 0.95 convergence 1.92 4.48 2.08 

2.0 0.5 5.4308838 11.145270 10.943181 10.925652 

0.1 9. 7275836 11.243498 11.227962 11.219269 

0.05 10.450756 11.232274 11.228356 11.22·6118 

0.01 11.068160 11:228529 . 11.228372 11.22 82 82 

0.005 11.14 7961 11.228411 11.228372 11.228349 
Order of 0.95 convergence . 1.97 4.36 2.09 

(b) n(t) by the Crank-Nicolson scheme using p 

.6.t t = 1.0 .t = 2.0 

0,5 1.RR1 Rl7~ 10.013090 

0.1 1.9467323 11.189778 

0.05 1.9491803 11.218824 

. 0.01 1.9499660 11.227991 

0.005 1. 9499905 11.228276 
Order of 
convergence 1. 8~ 1.86 

Results of the Crank-Nicolson scheme using pare shown in 

Table 5.l(b). The table shows that use of p improves the solution 

as well as the order of convergence. 



Example 5.2 

This example is basically the same as Example 5.1 except that 

A = 10- 7 sec. The neutron density in this example increases rapidly 

and reaches a magnitude of 10 5 two seconds after the insertion of · 

ramp. reactivity, p(t) = ~ t. This example is to test Hermite methods 

for numerical stability when applied to the fast system. 

Table 5.2 compares n(t) obtained by the Hermite methods and the 
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-3 -1 Crank-Nicolson method. For time step sizes, 5 X 10 ~ .6-t ~· 5 X 10 

in this example, uniform convergence is not observed. Also, this 

table compares relative errors of n(t) for .6-t = 0.01 sec. We observe 

in this table that, for la!'ge .6-t, the Hermite method as applied to the 

time-integrated kinetics equation gives more stable and accurate 

solution when compared to the kinetics equation with precursors. 



Table 5.2. n(t) of a Point Kinetics Problem, .A= 10- 7 . sec: Example 5.2 

Hermite Method 
t LH Crank-Nicolson 

m = 1 m = 2 m = 1 (time-integ.) 

1.0 0.5 1. 7398362 2.1903963 2.1453451 2.1770162 

0.1 2.1617929 2. 2835253 2.2761511 2.2823753 

0.05 2.2242740 2.2870330 2.2873140 2.2867310 
"i,c. 

(2.01 X 10- 3o/o) (2. 53 X 1 o- 4%) (6.90 X 10- 4%) 
0.01 (0.613o/o) 

2.2741454 2.2881595 2.2881994 2.2881894 

0.005 2.2806399 2.2881928 2.2882052 2.2881461 

Order of 0.947 1.93 3. 75 1.90 
convergence 

2..0 0.5 0.98040854 X l01 
0.62508242 X 10

2 
0.1319i022 X 105 0.10859238 X 10

3 

0.1 0.15045759 X 10 3 
0.11526595 X 104 0.63665597 X 104 0.26780006 X 104 

0.05 0.51885734 X J.0 3 0. 39038912 X .104 0.67090612 X 104 0. 807 57093 X 1 o4 

0.01 (68.3%) (2. 75%) 5 (10.92%) (0.81%) 
0.65411931 X 10

4 0.21227155 X 10 0.18399171 X 10 5 0.20823698 X 105 

0.005 0.11790377 X 10 5 0.21803225 X 10 5 0.20657232 X 105 0.20264628 X 10 5 

* 1 Relative error in % based on n (1. 0) = . 22882052 X 10 , 
5 

n(2.0) = .20657232 X 10 . 
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Chapter VI 

TIME-DEPENDENT NEUTRON DIFFUSION PROBLEMS 

In this chapter, we consider the approximate solution of the time­

dependent neutron diffusion equations. The equations are first 

developed in the weak formulation, as presented initially. in Chapter IV. 

We include the dealyed neutrons explicitly in the formulation. in order 

to avoid the computation of delayed neutron precursors .. We show that 

time-dependent solutions are unique for the case of no delayed neutrons. 

In Section 6.2, we derive the discrete equations in space, energy 

and time applyingthe methods developed in Chapters III, IV and V and 

show that the resulting approximate solution converges to the analytic 

solution, again for the case of no· delayed neutrons. We pre sent a 

theorem which shows the error bound for the approximation error. We 

conclude this chapter with some numerical examples and results in 

Section 6.3. 

6.1 Basic Equations 

The time-dependent diffusion equation is defined in. Eq. ( 1.1) in 

Chapter I. In particular,. we are interested in the time-dependent 

neutron diffusion equation, in which the delayed neutron precursors 

are eliminated by. _integration. For 0 ~ t ~ T, 
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1 a 
~E) at ¢(£, E, t) = T¢(£, E, t) + Q(!:._, E, t) 

= {Y'·D(£, E., t) V'- ~T(.r_, E, t)} cf>(.r_, E, t) 

+ .& dE' { ~s(!:,E '-.E, t)+( 1-,B)x(E)v~f(.r_,E', t)} ¢(.r_, E', t) 

and 

J { -A..t 
+ \' Xd . (E) A. . C . e J 

LJ J J JO 
j=1 

+ Q(r, E, t> , 

¢(_r, E J t) I t=O = ¢0 (_r, E) J 

¢(.r_, E. t) I orl = o , 

a ¢{r, E, t), D an ¢(.r_, E, t) continuous on the material interfaces. 

Definitions are developed. in Chapter I. 

We define the·inner products and L 2-norm by 

(u, v) = J J u, v dV dE , 
£ n 

1 

llull 2 = (u,v) 2 , 
L 

and· the bilinear form 

a(tt, v) ::: (D_s!u, _s!v) + (~Tu, v) 

(6.1a) 

(6.1b) 

.(6.1c). 

( 6 .1d) 

- {( f.t ~s(E'-.E)u(E')dE',v)}- (1-,B){(x(E) j~v~/E')u(E,-)dE',v)}. 

In this chapter, we make an assumption that there exists 'Y > 0 such that 

(6. 2) 
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We consider the problem of finding a¢(:£., E, t) from the weak formu-

lation of Eq. (6.1) such that 

for all 

where 

f_l a ) \51" at ¢, v + a(¢, :r) ==(Qd, v) , 

(cp(E_,E,t),v)lt=O = (¢
0

,v), 

1 vE W (n) (cf., Sec. 4.1, Chap. IV), 
0 

( 6. 3a) 

(6.3b) 

To show the uniqueness of the solution to Eqs. (6.3a, b) when {3= 0 

(no delayed neutrons), we proceed as follows .. Since (D'Y.¢, 'Y.¢), (Z:.Tcp,cp) > 0, 

where K' is a positive constant. Applyingthe Schwarz inequality, we 

obtain 

.-a(¢,¢) ~ K" .[e ¢2 dE 

Using the simple inequality, ab ~ ~ a 2 + ~ b 2
, 
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AlsoJ 

ThusJ. Eq. ( 6. 3a) with v = cf> leads to the following differential inequalityJ 

2 ~ :t II t/> 11
2 

2 ~ K" II c/> 11
2 

2 + ~ II c/> 11
2 

2 + ~ II Q 11
2 

.2 
max L L L L 

or 

Solving the differential inequality leads to the following lemma: 

Lemma 6.1. Let cf>(rJEJt) be the solution of Eq. (6.3) with {3 = 0. Then 

cf>(£.J EJ t) satisfies 

2 K1t 112 t K1(t-s)ll 112 
llcJ>II 2 ~e llc/> 0 L 2 +K2 J e Q 2 ds 

L 0 L 
(6.4) 

We remark that the inequality (6.4) shows that the time-dependent 

solution is bounded by the initial condition and the source term in the 
2 . 

L -norm. It further follows that the weak formulation of Eq. (6.1) has 

only a trivial solution if c/>
0 

= Q = 0. ThusJ Lemma 6.1implies the 

uniqueness of the solution to Eq. (6.3). 

When {3 =/:. OJ some fission neutrons are emitted not immediately but 

with some time delays. In this caseJ the solution depends on the past 

history of the neutron flux as well as the initial condition and the source 

term. We will not attempt to prove this but conjecture that the solution 

to Eq. (6.3) with {3 =/:. 0 exists uniquely. 



6.2 Approximations 

G. 2.1 Semidiscrctization 

In this section, we derive the discrete equations in energy and 

space applying methods developed in Chapters III and IV. 

Let 7Tn and 7T£ be the partitions of the region nand the energy 

interval £ such that 

a =r 1 <r 2 <. n n, n, .<r N =b, 
n, n n 

< E = E 
NE max 
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Selections of proper polynomial basis functions were discussed .. in 

ChaptersiiandiV. Let {v. =v.(r)v (E): 1~i~N, 1~g~G} forma lg ·1- g 

basis in the space Hm(7T
0

X7T£) where ·m = (mr' mE) and the approxi-
. 

·mate solution be represented by 

G N 

~ ~ a. (t) v.(r) v (E). 
lg' 1 = g 

(6.·5) 

g=1 i=1 

A 

The expansion coefficients of <P can be determined by applying the 

Galerkin scheme to the weak form of Eq. (:-6.1) such that '¢ satisfies 

( 
1 a A ) "' 

f!J/ at ¢, v + a(cf>, v) = (Qd, v), 

<¢, v) h=o = <'¢, v) ' 

where v = v. (r, E) for all i and g. lg-

(6.6) 
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In a manner analogous to the derivation of the inequality ( 6.4) for 
A 

the analytic solution, choosing v = ¢ and {3 = 0. in Eq. ( 6. 6), we obtain 

the following lemma: 

A 

Lemma 6. 2. Let ¢(:£., E, t) be the solution to Eq. ( 6. 6) with {3 = 0. Then 
A 

¢(.£., E, t) satisfies 

A 2 K 1 t A 2 · t K 1 (t-s) 2 . 
ll¢11 2 ~e II¢ 11.2 +K2 j e IIQII 2 ds. 

L 0 L 0 L 
( 6. 7) 

The inequality (6. 7) implies that the approximate solution is unique and 

the Galerkin scheme is numerically stable. 

Following the procedure of Chapter IV, we apply the Galerkin 

approxim~tions in steps, for the energy variable first and then for 

the space variables. 

Let 
N 

~ (r, t) = '\' a. (t) v.(r); 
g - LJ 1g 1-

. 1 1= 

then from. Eq. (6.5), 

G 
¢<r, E, t) = '\' ~ (r, t) v (E). - LJ g- g 

g=1 

Apply the Galerkin scheme to Eq. (6,1} for the energy variable such 

that, for g = 1, 2.,. · .. , G, 

( 6. 8a) 

(6.8b) 
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<¢<r,E,t),v) I = 0 
- g & an ' 

(6o8c) 

... ( a -- ) (¢, v ) D a¢, v continuous on the material interfaces, (6o8d) 
g£ n g £ 

where 

(u, v)£ = J uv dE o' 
£ 

. Equation (6o8) then:leads to the generalized time-dependent multi-

group equations, for g= 1, 2, 0 0 0, G, 

~ fl/1 ;t ~ '= ~ { '\i'oD . ,:Y'-I:T ,+I: ,+x (1-{3)vl:f ,} ~ ' 
gg. ,. g gg_., gg. sgg . g g.. g 

g'=1 . g'=1 . > ' • 

J { -X. .t t -X. .(t-s) G } 
+ L: xd. X. .C. e ·J +X. .{3 ·Xd J e J L: vl:f ,~ ,ds 

. Jg J JO J J g 0 . g; g 
J=1 g'=1 . 

with conditions 

G 

+Q 
g 

L: Mgg'·~g,(O) = ~og(£), 
g'=1 

·~g(£, t) I an- o, 

G 

(60 9a) 

(6~9b) 

(Go9c) 

~ (r, t), g- '\' D i-r' _aa ~ ,(r,t) continuous at material interface (6o9d) 
L; gE> .:: n g - ' 

g'=1 

where 

yl = (£Y~E)v ,,v ) 
gg'· g g £ 

Xd· = j xd.(E) v (E) dE Jg J g J 
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M = (v v ) gg'· g' , g , 
£ 

The remaining_parameters are defined .in Section 4.2.1. The conventional 

time-dependent multigroup equations can be obtained from Eq. _( 6. 9) as a 

special case (cf., Sec. 4.2.1). 

Now we apply the Galerkin scheme to the weak formulation of 

Eq. (6.9a) for the space variable such that, fori= 1, 2, ... ,N, 

where 

+ (q , v.), 
g 1 ~' 

(u, v)
0 

= J (u, v) dV. 
r.l 

N 

(6.10) 

Substituting for <I> .= \' a. (t) v.(r),. Eq. (6.10) can be written in-matrix . g _LJ 1g 1-
1=1 

form as 

V :t ~(t) = {-L + S + (1-{3)F}~ (t) 

J { -A..t t -A..(t-s) } 
+ \' A..C. e J +A..{3. J e J Fda(s)ds 

LJ J-JO J J -
j=1 0 

+ q (t) (6.11a) 

M a(O) = ¢ 
- -0 , 

(6.11b) 



where 

v 11 . V l,G'+l 

0 
V = V G'+l,l VG-G',G 

0 V G' · · · VGG G,G-

M11. .MlG' 

0 
M= MG'+l, 1 MG-G', G 

0 .MG,G-G' . . ."MGG 

F 11. . FlG 

F = d 

FGl. .FGG 

Co =col~~ .. ,·c.2, .. · ,5;;J.G}' l-Jl --J. -JO 
., 

.• 'I 

123 
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(Fd · ,) = Xd (vLf 1 v.,(r), v.(r)) , 
gg. ii' g g 1 - 1 - n 

(C. ) = 6.,. xd.j(C (r), v.(r)) , 
Jg

1 
.. , 11 J5 Jo- 1- n 
1. 

(M .,) =M. ,(v.,(r),v.(r)) , 
gg ·.·., gg 1 - 1- n 

11-

cf> = col{(c/> , v 1(r)) ... (cf> , vN(r)) } . -Og og - [2 og - [2 

Other matrices are defined in the same way as in Section 4.2.2. The 

properties of the matrices are discussed in Section 4.2.2. 

The error bound for the approximate solution is stated in the 

following theorem. 

Theorem 6.1. Assume that the inequality (6.2) holds.· Let cf>(r,E,t) be 

the solution of Eq. (6.3) and cf>(£:,E,t)E C~(7Tr(<7T0e) wheret=(tr,tE). If 
A 

¢(£.., E, t) is the solution to the semidiscrete equation (6.6) in the space 

Hm(7TciX7T:gL· then 

f..l ____J.J.E 
II¢(£, E, t)- ¢<£, E, t) II 

00 
~ K Ar r + K AE 

L (rlX$) 
1 2 

where f..l = min(2m , t ), f..lE = min(2mE, tE) and Ar =max Ar, 
r r r ~n 

AE = m1x AE and K 1 and K 2 are positive constants independent of 
.$ . ' 

Ar and AE, respectively. 
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6.2.2. Temporal Approximation 

In this section, we consider the application of the method developed 

in Chapter V to the semidiscrete equation, Eq. ( 6.11), for approxi-

rna tions in time. 

The semidiscrete equation, Eq. ( 6.11), can be rewritten as 

V :t ~(t) = { -L(t) + S + (1-,B)F} ~(t) 

J ( - A..t t -A..(t-s) } 
\' I J J J + u ~ A..C.

0
e +A..,B. e Fd~(s)ds 

j= 1 l, J J J J 0 

For simplicity, we assume that only L(t) is a function of t and it is 

given by 

L( t) = L + f( t) L . 
0 

Let ,i(t) be an approximation of .§:(t) such that for tk ~ t ~ tk+1 

mt-1 

~(t) = \' {a (p) ~p+(t) +a (p) up- (t)} - u - k k - k+ 1 k+ 1 
p=O I, 

(6.12) 

m -1 
where { uk±(t) ~=tO are the univariate element functions of degree 2mt -1 

as defined in Section 2.1, Chapter II. By combining.Eqs. (6.5) and (6.12), 

the approximate solution in ~' E and t can be represented by 

G 
~(!'_, E, t) = 2: 

g=1 

N 
\' ~. (t) v .(r) v (E) u lg 1- g 
i= 1 

(6 .13) 

Applying the Hermite method in Chapter IV, we obtain the following 

single step equation: 
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(6.14) 

In particular, when m = 1 (linear function), the matrices are defined by 

~t J 
Bk+1 = V- 2 k {-Lk+S+(l-,B)F}- L: 'Yk/j,BjF d + .Ck+1 , 

j=1 

' _!j_ ,_!j_ -1 
~j 1 - X.. F d ~(O), - X.. F dM !o , 

J J 

· ,B. { 1 -X. .tk+1 ( ~tk 1 X. .tk} 
11 - __:__.J__ - e J - - + -) e J '""kj - ~ t 2 X. . 2 , 

k X.. J X.. 
J J 

(3. {(~tk 1 X. .tk+1 1 X. .tk} 
c: - __:__.J__ - - -) u J + - .:. J 
~ kj - ~ t X. . 2 " 2 " . 

k J X.. X.. 
. J J 

.Ck and .Ck+1 depend on the functional form of L(t) in Eq. (6.13). For 

example, we consider two special cases: 
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(i) L(t) = L
0 

+ L~ t (linear) 

b.t2 
k 

.Ck = - -6- L~ ' 

~t2 
k 

.C k+ 1 = -3- L ~ ' 

(ii) L(t) = L
0 

+ L~ sin wt (oscillatory) 

The solution to Eq. (6.14) can be determined using general iterative 

schemes [35], [39], [40] which are applied to the finite difference 

scheme. The source iterative scheme which can be applied to the multi-

group system, and Cholesky factorization scheme for the inversion of 

positive definite matrices, can also be applied to solve Eq. (6.14). For 

fast convergence of the iterations; accurate prediction is required. The 

extrapolation formula given by Eqs. (5. 7a, b) can be used for this purpose. 

6.3 Numerical Results 

We consider the problem of solving the conventional time-dependent 

multigroup diffusion equation by the methods described in previous 

sections. Computer program HERMITE-2D (cf., Appendix D) basically 

solves Eq. (6.14) using the iterative schemes discussed in Section 4. 3, 

Chapter IV. 
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Example 6.1. Uniform Linear Perturbation 

Consider a one-group, two-dimensional problem with six groups of 

delayed neutron precursors. The configuration is a rectangular region 

which consists of a uniform nuclear fuel (Fig. 6.1). The thermal group 

nuclear data can be found in Table C. 2 in Appendix C. The critical 

fission cross section is found to be 0.20493483. 

Perturbation is induced by changing the thermal absorption cross 

section uniformly in the form 

L (t)=(L) {1-0.01t}. 
a a crit 

For computational purposes, the rectangular region was divided 

into coarse meshes as shown in Fig. 6 .1. Then, the bicubic basis 

functions as given by Eq. (2.28) were placed on the mesh elements. 

The total number of basis functions needed in this calculation is 18. 

The neutron fluxes were computed using HERMITE-2D. Table 6.1 

compares the neutron flux at points A and B (cf., Fig. 6.1) for various 

.0.t. The results shown demonstrate that the order of convergence is 

0(.0.t
2

). This coincides with.the prediction of Theorem 5.1 with m= 1. 

Example 6.2. Local ?inusoidal Perturbation (1) 

We consider a two-group, two-dimensional problem without delayed 

neutrons. The system is a rectangular region which consists of a uni-

form fuel (Fig. 6. 2). The nuclear data are given in Table C. 2 in 

Appendix C and the critical thermal fission cross section for the con-

figuration is found to be 0.25'10.4-786. 



Table 6.:... Uniform Linear Perturbation: Example 6.1 

~t 
cPA (t) cf>B(t) 

t = 0.1 t = 0.5 t = 0.1 t = 0.5 

0.1 0.11357615 X 10
1 

0.30271246 X 10
1 

0. 5678807 5 0.15135623 X 10
1 

0.05 0.11484423 X 101 0.30811922 X 101 0.57422114 0.15405961 X 101 

0.01 0.11467662 X 10
1 0.30987733 X 10

1 
0. 57 338308 0.15493866 X 101 

0.005 0.11468028 X 101 0.30993405 X 101 0.57340140 0.15496702 X 101 

Order of 2.4 1.9 2.4 2.0 convergence 

¢=0 
Lr-------r-----, 

rlrl. 
~= 0 
dx 

IB 
L/2 ----+----- ¢=0 

y 

L±x 
L = 20 em 

Fig. 6.1. Reactor Configuration for Example 6.1 
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The system is per~urbed locally in R 2 (cf., Fig. 6.2) from the criti­

cal state by changing the thermal cross section sinusoidally in the form 

L 2(t)=(L 2) . {1+0.2sin
2
T7Tt}, 

a a cr1t 
·-3 T = 10 sec. 

To apply the finite element method, the system is divided into 

coarse meshes as shown in Fig. 6.2. Bicubic basis functions, as given 

by Eq. (2. 30) and Eq. (2. 28), are then placed at the boundary points and 

internal points, respectively. A total of 18 basis functions are used. 

Neutron fluxes are approximated using HERMITE-2D. In Table .. 6.2, 

thermal neutron fluxes at points A and B are compared for various time 

steps. We note that the solution converges to the order 0(6t
2

) as pre-

!iicted by Theorem 5.1. This example demonstrates that large time steps 

can be used with the Hermite method. For example, the relative error 

for the flux is less than 5o/o when 6t = T /4 and less than 2o/o when 6t = T /8. 

If the finite difference scheme is used, then sine functions need to be 

approximated by a series of step functions, and this requires the use of 

many small time steps. However, as discussed in Chapter V, the 

Hermite method can treat perturbation analytically and for this reason 

the Hermite method allows use of large time steps while retaining high 

accuracy. 

In Fig. 6. 3 (a)- (c), the thermal fluxes constructed by the finite ele-

ment method are plotted .in three-dimensional and contour plots. In 

order to interpolate the flux distribution within mesh elements, mesh 

increments of 6x = 6y = 0.5 em and 1.0 em are used for the three-

dimensional and the contour plots, respectively. In these plots, it is 
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demonstrated that the finite element method can approximate the local 

perturbation of the flux using very coarse meshes. If the finite_ differ-

ence scheme is used in this calculation, much smaller mesh elements 

will be required for an accurate approximation. 

Table 6.2. Local Sinusoidal Perturbation: Example 6.2 

(a) Thermal Flux at Point A 

~t t = T/4 t = T/2 t = 3T /4 t = T 

,,, 

T/4 (2.1%r (3. 7%) ( 3.1 %) (4.9%) 
0.96849 0.87589 0.86531 1.0188 

T/8 
( 1.1 %) (0.8%) ( 1. 2%) ( 1. 2%) 

0. 95864 0.85150 0.88171 1. 0585 

T/16 0.94971 0. 84559 0.89122 1.0678 

T/20 0. 94805 0. 84462 0.89323 1.0714 

Order of 
convergence 1.83 2.5 1.9 1.9 

):( 

Relative errors with respect to thermal fluxes determined for 
~t = T/20. 

d'..l. 
~= 0 
dx 

R
1 

I 
I 

cf>=O 

I 
I 

15 ----~----

10 ----BI I-----

cf>=O 

··· · 25 em 

Fig. 6.2. Reactor Configuration for Example 6.2 



..6.t 

T/4 

T/8 

T/16 

T/20 

(b) 

t = T/4 

( 7. 3%) 
t.c 

.59227 

(0.4%) 
.55401 

.55329 

.55176 

Order of 2.4 convergence 

Table 6. 2 (concluded) 

Thermal Flux at Point B 

t = T/2 t = 3T/4 t = T 

(5.0%) (3.4%) (3. 7%) 
.50374 .64698 .76635 

(0.9o/o) (2.1 %) ( 1. 2%) 
.. 52536 .66985 . 74763 

.52973 .68189 .73980 

.53046 .68423 . 73843 

2.6 2.0 2.2 

>:<Relative errors with respect to thermal fluxes determined for 
..6.t = T /20. 
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Example 6. 3. Local Sinusoidal Perturbation (2) 

A symmetri~ perturbation was considered in Example 6.2. In this 

example, we consider asymmetric perturbations which are induced by 

two sinusoidal variations of cross sections in two subregions. The 

reactor consists of a uniform fuel (Fig. 6.4), whose two-group cross 

sections are given in Appendix C. There are six delayed groups in 

this example. The thermal absorption cross section in subregions R 2 

and R 3 are assumed to vary from the critical values in the f?rm 

(<L 2> {1-0.1 sin
2
T7ftL re:R2 , 

, a ·t ' cr1 
= I \ . 

! ( L 2) { 1 + 0. 1 sin 
2
T7r t}, £. e: R 3 , , a ·t 

\ Crl 

-3 T = 10 sec. 

Two-group calculations were performed using HERMITE-2D. The 

reactor geometry was divided into 16 equal mesh elements as shown in 

Fig. 6.4. A tota1 of 82 bicubic functions, defined by Eqs. (2.28) and 

(2. 30), were then placed on the partition. For the time integration, the 

time step s:i.ze ~t = T /8 was used. The critical thermal fission cross 

section was found to be 0. 23766006. 

Table 6. 3 lists the computed thermal neutron fluxes at space points 

A, B and C for the first period of the perturbation. It is to be noted that 

the neutron flux after each period is not the same as the initial flux 

distribution due to the presence of local neutron diffusion. The thermal 

neutron fluxes are interpolated in each mesh element using mesh incre-

ments ~x=~y= 0.5 em and are also plotted in Fig. 6.5(a), (b), and (c) at 

t = 0. 0, T /4 and 3T /4, respectively. As in the previous example, the 
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figures demonstrate that the finite element method not only yields continu-

ous approximations but also allows the use of coarse meshes in approxi-

mating local variations. The finite difference calculation using the same 

number of unknowns as the finite element calculation will require 

9X 9 = 81 mesh points on the space region. However, by using neutron 

fluxes at the 81 mesh points, it will be rather difficult to represent the 

locally peaked neutron flux distribution by a smooth surface. In fact, the 

flux distribution in Fig. 6.5 required the use of 60X 60 interpolation 

points. Generally speaking, the finite difference scheme is expected to 

require finer mesh elements compared to the finite element method in 

representing the overall flux distribution. 

~=0 
dx 

y 

cf>=O 
30.------.~.lr--.------~ 

, .... _.,t:., 

I 
l I . I C. I I .. , _,_- ·~~/~;--· --r-·-
.,.yJ) I 

-~-J·--'-1-·--~--T" vn/1 · 
, .. /~ I 

-~--- ~·--- ·-- "i- -,~--: ·-i 

20 

15 

10 

r 0~ 
~X 

1 ! : ______ __j 
10 15 

~=0 
dy 

20 30 

c/>=0 

Fig. 6.4. Reactor Config}.lration for Example 6. 3 
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Table 6.3. Thermal Neutron Fluxes: Example 6.3 

t </>A(t) </>B(t) <~>c<t> 

0.0 1.0000 0.43294 0.43294 

T/8 1.0000 0.42492 0.44152 

T/4 1.0016 0.40329 0.47167 

3T/8 1.0061 0.40691 . 0.47747 

T/2 1.0111 0.42380 0.456 35 

5T/8 1.0133 0.45048 0.42714 

3T/4 1. 0150 0.47743 0.40981 

.·.)J~t/'8. 1.0195 0.48352 0.41223 

T 1.0245 0.46295 0.37714 
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Fig. 6.5. Thermal Neutron Fluxes: Example 6.3 
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Chapter VII 

CONCLUSIONS AND RECOMMENDATIONS 

In this thesis, we have developed the finite element method for the 

neutron diffusion problems using .piecewise polynomials in space, 

energy and time variables. The advantages of using piecewise poly­

nomials are discussed in Chapter I. In addition, this method possesses 

the following properties: 

(i) The finite element method allows direct approximations to the 

diffusion problem and requires no assumption on .the sepa­

rability of solutions with respect to independent variables. 

(ii) This method yields high-order approximations with the order 

of accuracy depenc;l.ing upon the degree of the polynomials used. 

(iii) This ·method treats problems in a continuum and it permits 

high accuracy for problems with variables coefficients. The 

approximate solution ·is a continuous function and it is possible 

to find function values. at any point. 

(iv) In view of properties (.ii) and (.iii), the method allows one to 

use coarse·meshes or large mesh elements in space,. energy 

and time variables compared to the finite difference scheme. 

The finite element method using low degree polynomials are shown 

to lead to.various types of conventional numerical methods. However, 

the- method. developed in this thesis generalizes the existing .methods in 

the sense that it retains high accuracy for problems with variable 
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coefficients. Furthermore, the method suggests means for numerical 

approximations for higher accuracies. Table 7.1 summarizes the 

orders of accuracies of the finite element method when applied to the 

neutron diffusion .problems in energy, space and time variables. Also, 

in .the table, the finite element methods are compared with the ex:isting 

numerical methods. For example, the finite element method using 

piecewise constant functions in energy variable reduces the energy-

dependent diffusion equations to the conventional multigroup equations 

(cf., Chaps. III, IV, VI). It is also shown that the 3-point finite differ­

ence formula for the differential.operator d 2 j dx2 can be obtained by 

the finite element method using piecewise linear functions in space 

variable (cf., Chap.IV). Furthermor·e, the Hermite method applied to 

·the first-order ordinary differential equations gives the Pade formulae 

for eAt when A is constanL(cf., Chap. V). 

The orders of convergence of the finite element methods are checked 

.in numerical examples in Chapters IV, V and VI. For example, these 

are numerically checked for multigroup diffusion problems with piece-

wise constant cross sections in one- and two-dimensional spaces and for 

]:(inetics problems with variable coefficients. Thus far, the method has 

been limited to applications in linear problems. We have considered 

only regular partitions which are generated by orthogonal coordinate 

surfaces. Numerical calculations which are not presented .in this thesis 

and remain for further study are as follows: 

' (i) Neutron spectrum calculations using piecewise linear or cubic poly-

nomials. 
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Table 7.1 

The Finite Element Method Applied to Neutron .Diffusion .Problems 

H Energy _(E) Space (r) t Time (t) 
m 

m = 1/2 0(.6.E 1) 0(.6.r 1) '' 0(.6.t 1) 

(const.) Multigroup 
method 

m = 1 0(.6.E 2) 0(.6.r2)':' O(St2>':c 

.(linear) 3-pt. formula Crank-Nicolson 

f6F.ct 2 /dx2 Pade (1, 1) 

m = 2 0(.6.E 4) 0(.6.r 4>':' 0(.6.t 4>':< 

(cubic) Pade (2, 2) 

Remarks Chaps. III, Chaps. IV, VI Chaps. V, VI 
IV, VI ':' Numerical Order of conv. for 

examples Pade formulae 
available applies only for 

t No singularity constant coefficients. 
':< 
Numerical examples 



145 

(ii) Few group calculations for multidimensional problems using 

piecewise polynomial basis functions in space and energy as 

discussed. in-Example 2.2, Chapter II. 

(iii) Neutron diffusion.problems with variable cross sections. One 

can use basis functions defined. in. Example 2. 3, Chapter II. 

The calculation using coarse meshes will be very useful in 

studying the fuel depletion in multidimensional reactors. 

_(iv) Calculations for two- or three-dimensional problems in 

spherical or cylindrical geometries. 

The finite element methods developed in this thesis can further be 

extended to the following problems: 

(i) Transport equations: 

n. ~¢(~, n) + LT</>(~, n) = J L(~, n', n)¢(~, n') dn' + q(~, n) 

-Expand the approximate solution as 

I J 
¢<r, n) = \' \' a .. u.(r) u.(n) - u u lJ ·1- J 

i=l j=l . 

where ui(r) and u/n) are poil:tyhomial basis functionE? defined in 

Chapter II. The expansion coefficients a .. are then determined 
lJ 

by the Galerkin scheme. 

(ii) Coarse ·mesh calculations which account for the geometric and 

energetic fine structures. 

{iii) Applications to nonlinear problems. 

The areas.which require further inve::;tigatiuu::; are: 
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(i) Finite element methods which use other types of partitions 

such as triangular elements or combinations of these elements. 

(ii) Development of efficient numerical techniques for the inversion 

of large-order matrices which are obtained by the finite ele­

ment method. 

(iii) Investigation of the condition number of the stiffness,matrices 

for the neutron diffusion problems resulting. in the application 

of finite element methods. 

(iv) High-order approximation schemes whichincorporate the 

singular functions in numerical processes. 
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Appendix A 

PROOF OF THEOREMS 

A.1 Preliminaries 

In the previous chapters, we defined the inner products in the 

energy domain £ and the space domain st as 

(u, v) 

j uv dE, 
£ 

f i.lV dV, 
Q 

f f uv dV dE 
£ Q 

and the corresponqing L 
2 
-norms 

1 

llull 2 = (u,v) 2 

L (£) £ 

II ull _ t 
L 2(stX,£) - (u, v) . 

In addition, the L 
00 

-norm is defined by 

II u II = max I u(x) I . 
L oo(Q) Q 
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We also denote the vector and matrix norms by 0 0. In particular, 

the maximum norm for a vector x =col{ x 1, x2, ... , ~} and a matrix 

A = { aij} are defined by 

:o~ooo = max I x.l , 
1~i~N 1 

· 

N 

0A0
00 

= max ~ I a .. 1. 
1 $i~N j=l lJ 
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We shall frequently need the following inequalities [25] in our proofs: 

Triangle inequality, 

II u+vll ~ II ull +II vii , 

Schwarz inequality, 

A.2 Theorem 2.3 

t Assume that f(r_) E C (1r 
1

). Let s(£) be a multivariate polynomial of 

degree 2m-1 satisfying Eq. (2.19). Then, s(£) is uniquely determined 

and satisfies 

aq . 
. - (f(r)-s(r)) 
·arq - - 00 

L (7r i.) 

where 

"· = min(2m., t.) , ,...J . J J 

1\ - "" <''; = -w.r. - J. • • -!S..I'l. r . . • 
J J,l.,\~ J,l. 

}[,\1 J 
,J'. 

Proof. The multivariate Hermite interpolate in the element 1r i. can be 

constructed by repeated applications of univariate Hermite interpo-

lations for each independent variable as shall be demonstrated in the 

proof of this theorem. Theorem A states the uniqueness of the uni­

variate interpolations and thus the resulting interpolation in mti.ltivari-

ables is also unique. 



The proof of the error estimation· is by induction. 

(i) Suppose n= 1. Let f<r 1) be the Hermite interpolate to f(r 1) 

space H (7r 1). Then, from Theorem A, 
m1 

q1 
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in the 

d· --q- (f(r 1) -f(r1)) (A.2.1) 

dr 1 ' oo 
L (7r1) 

(ii) Suppose n = n' for arbitrary n'. Let 1\£') be the Hermite interpo-

late to f(£') in·Hm,(7r n') where .!:.' = (r 1, r 2, ... , r n') and. m' = (m 1, m 2, ... , mn,). 

Assume that 

dq' 
--, (f(£') - f(£')) 
drq 

(A.2.2) 

(iii) Suppose n = n' + 1. Let f(£) be the Hermite interpolate to f(£) in 

H (7r ) where r = .(r 1, r 2, ... , r ) = (r', r ) and m = (m1, m 2, ... , m ). nn - . n- n n 

We also. introduce the univariate Herrn.ite interpolate f(r ; r') to f(r) n- -

in H .(1r ) such that 
m n 

n 

1< q) ( r . ,· r ') = i q) ( r' , r . ) , 
n 1 - n 1 ' n ' n 

f(q)(r . · r') = r<q)(r' r . ) 0 ~ q ~ m-1 . 
n 1 +1•- -, n 1 +1 ' 

' n ' n 

Theorem A implies that r(r · r') satisfies n•-

dq . :::: 
- (f(r)- f(r · r')) q - n'-
dr 

n 

J,J, -q 
:<KA n n .... L..J.r . 

n 

Furthermore, from the assumptions (A.2.2) and.Eq. (A.2.3L 

(A.2. 3) 

(A.2.4) 



dq - z I dq - z I - ( f(r)- f(r · r')) , - ( f(_r)- f(r ; _r:-')) 
q - n'- r . d q n r . +1 d£. n, 1n L oo(7T) £. n, 1n 

, 
dq - -

Since -- ( f(r)-1'(r · r')) is a polynomial of degree 2m -1 in rn' this 
drq' - n'- n 

can be represented by 

q ' . m-1 d . -
--, (f(r)- f(r ; r')) = )' 
dr

q n- u 
p=O 

( + .. ) 

t p p p p- .,·. \ 
a. u. (r ) +a. 'L<1u .. +1.(r )J, 1 1 n br.' 1·. n . n n n: n 

where the factors tl.r2m-p are introduced as normalization factors to 
n 
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u:P+(r )and wiP;
1
(r ) in order that the error bounds on the right-hand side 

1n n 1ri n · 

have correct dimensions. Note that 

.and so 

Thus, 

(A. 2. 5) 
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Therefore, applying the triangle inequality and using the inequalities 

(A.2.4) and (A.2.5), we obtain 

(A. 2.6) 

We have shown.that for n=n'+ 1 the error bound.(A.2.6) holds. Thus, as 

a consequence of the steps (i), (ii) and. (iii), we conclude that (A. 2. 6) holds 

for any n. This completes the proof. 

A.3 Theorem 3.1 

Assume that the inequality ( 3.4) holds. Let c/>(E) be the solution· to 

Eq. (3.3) and c/>(E) E Ct($). If ¢CE) is the solution to Eq. (3.7) in the 
A 

space H ( 11{g)), then c/>(E) satisfies m 

where·g = min(2m, t), .6.E = maxi.E.+1-E.j and K is a constant independ-
i 1 1 

ent of ~E. 

A 

f'roof. c1> and cp satisfy 

(Tc/>, v)$ = (Q, v)$ , 

(T¢, v)$ = (Q, v)$ , 

for all v = u (E), 1 ~ g :~ G. The difference of the two equations is g 

given by 

A 

(T(c/>-c/>), v)$ = 0.. (A. :3.1) 



Let '¢ be the Hermite interpolate of cf> in the space of H (7r(.£)) m 

(cf., Sec. 2.1, Chap. II). Then Eq. (A.3.1) can-be represented as 

(T(¢-¢>, v).£ = (T(cf>-¢>, v).£ . 

Theorem 2.1 implies that 

II cf>- ¢11 = K~Ef.l 
Loo 

Then we can show easily that 

(T(¢- 4)), ug).£ ~ (T(~Ef.l), ug)$ 

s:: K ~Ef.l 
g 

where Kg.= (TK, ug).£ . 
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(A. 3.2) 

(A. 3. 3) 

Let e(E) = ¢(E) - 4)(E). Since ¢ - ¢ is a polynomial of degree 2mE-1, we 

may represent e(E) as 

G 
e(E) = l: e u (E) . g g 

g=1 . 

Then Eq. (A.3.2) becomes 

where 

1 B = L- -S--F, 
X. 

~;;; col{K1,K2, ... ,K
0

} J 

~ = col{el'e 2, ... ,e0 }. 

Other matrices are defined .in Eq. ( 3. 8) in Chapter III. Then, 

and thus 
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. ~ 

0K0oo is a constant and thus it remains to prove that o\:B -1 Ooo is 

bounded. Descloux (54] considered bounds of the stiffness matrix and 

its inverse for a wide cl;i$s of problems in the finite element methods. 

We appeal to the work of Descloux to assert that there is a constant 'Y 

such that 

-1 0 B Ooo ~ 'Y • 

HenceJ 

II ¢- ¢II ~ max I e(E) I ~ KO e 0 
Leo £ - oo 

(A. 3.4) 

Therefore} applying the triangle inequality and the inequalities (A. 3. 3) 

and (A. 3.4) J we obtain 

II ¢ - ¢II 00 ~ II ¢ - ¢II 2 + II ¢ - ¢II 2 
L L L 

This completes the proof. 

A.4 Theorem 4.1 

Assume that the inequality (4.3a) holds. Let ¢(rJ E) be the solution 

of Eq. (4.2) and cf>E C~(7T$ X7Tn) where t = (trJtE) a~d m = (mrJmE). If 

¢<~JE) .is the solution of Eq. (4.5) in the space Hm(7T£X7TnL then ¢<~JE) 

satisfies 
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where 1-t =min( 2m , t ), 1-tE = min(2mE, tE), ~r =max ~r, ~E =max ~E 
r r r · 1Trl 1T £ 

and K 1 and K 2 are constants independent of ~r and zs:E, respectively. 

"' Proof. cf> and cf> satisfy 

a(¢, v) = (Q, v) , 

a('¢, v) =:(Q, v) , 

for all v = u.(r, D) u (E), 1 ~ i ~ N, 1 ~ g ~ G. The difference of the 
1- g 

two equations is given by 

"' a(¢-¢, v) = 0. (A.4.1) 

Let cp be a Hermite-interpolate of cf> in the space Hm(7TrlX 1T£) (cf., Sec. 2.2, 

Chap. II). Then.Eq. (A.4.1) can be written as 

a(¢-¢, v) = a(¢-'¢, v) . (A.4.2} 

Also, Theorem 2.4 implies that 

We now establish that 

(A.4.3) 

for all v = u (E) u. ( r, D), 1 ~ g ~ G, 1 ~ i ~ N. g .1-

Strang and Fix [ 38]. have shown that the interpolate f(£) of f(£) in the 

smooth Hermite space of degree 2m satisfies 
r 

2m 
- . ·- r 

( \7 (f(£) - f(£}}, \7 ui (.!.:_)) fi. ~ K ~r (A.4.4) 

where { ui(£)} is a basis of the Hermite space. In the space Hm (7r(rl)), 

however, the above relation holds locally in each mesh element only 
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if f(r) E Ct(7T). We can then show that the inequality (A.4.4) holds in the 
p 

entire region by a procedure similar to those in the proofs of Theorems 

2.1 and.2.4. Furthermore, when cf>(£,E) is dependent on both£ qnd E, 

it is conjectured from the result of Strang and Fix that 

for all v = u (E)u.(r,D), 1 ~ g ~ G, 1 ~ i ~ N. We now show that g 1-

IJ, IJ, 
(¢-'¢, v) ~ (K' ..6.r r + K" ..6.E 'E, v) 

IJ, IJ, 
~ K' ..6.r r +K" ..6.E ,E, 

( j L(r, E'-.E) [cf>(r, E')- '¢<r, E')JdE', v) 
g . 

~ K (~<cJ>-'¢)dE',v) 

~ K ( Jj K
1

..6.r/..lr + K
2

..6.E/..lE) dE', v) 

IJ, IJ, 

~ K]_ ..6.r r + K2 ..6.E E 

where u.(r), u (E) are normalized such that J u. dV = J u dE = 1. 
1 g t21 £g 

Combining the above results, we obtain the inequality (A.4.3) which was 

to be established. Let e(£, E) = "¢<£,E).-'¢(!:, E) . .Since:"¢-'¢ .. is a polynomial of 

degree 2m1 -1 and 2mE-1 in £ and E, respectively, e(_£, E) can be 

represented by 

G N 
\' \' e. u (E) u.(r, D). e(!:_, E) = u u 1g g .1 -

g=1 i=1 

Then, it can·be shown easily that Eq. (A.4.3) becomes 

IJ, IJ, 

B e ~ ~1 ..6.r r + ~2 ..6.E : E 



where 

1 B=L-S--F A. , 

~ = col{ell,e12' ... ,e21'e22' ... ,eGN}' 

~j = col{Kj 11 ,Kj 12,.,. ,Kj 21 ,Kj 22 , ... ,KjGN}, j= 1, 2. 
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K .. , 1 ~ g ~- G, 1 ~ i ~ N are constants. Other matrices are defined 
Jgl 

in Section 4.2.2, Chapter IV. Then, 

e~ 

so that 

O_!S:1 Doo and 0~2 000 are constant. We claim that there exists a constant 

'Y such that 

-1 0 B · Doo < 'Y • 

As ·in proofs in Sections (A. 3) and (A. 6), we appeal to the work of 

Descloux [54] to assert the above statement. Then, 

(A.4. 5) 

Finally, applying the triangle ·inequality and using the inequalities 

(A.4.3) and (A.4.5}, we obtain 

This completes the proof. 
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A. 5 Theorem 5.1 

Let !E_(t) be the solution to Eq. ( 5.1) where A(t) is Lipschitz 

continuous, i.e., there exists a positive constant cr such.that 

QA(t) (!_!t) -_g(t))Q
00 

~ crQ_!Jt)- _g(t)Q
00

• 

Let ¢<t) be the solution of Eq. ( 5. 6) in the space H ( 1rt). Assume that 
- m 

there exists a constant 7' such that 
m=1 

D \' p- P rr u .A.i+1 Ai+1 U oo ~ 1 
p=O 

if I ti+1-\l < 7' for 1 ~ i ~ Nt-1. If¢ E Ct(7rt) and ~t = ·max lt.+1-t.l < 7', 
A - p 1~i~Nt 1 1 

then ¢ satisfies 

.:, dq ·, 
max Oi-(.P_(t)-1(t))Q

00 
~ K~t~J-q 

[O,T] !!dtq ;; 

where f..l = min(2m, t) and K is a constant independent of ~t. 

Proof. Let '¢<t) be the Hermite interpolate of _2(t) of degree 2m-1 in 

the interval [\+1, \] (cf., Sec. 2.1, Chap. II). Then Theorem A implies 

that 

max Q dq (!k_(t)- ~(t)) ID ~ K~f:l-q 
[t t ] : dtq li 

00 1 
i + 1' i " II,(. 

where ~t. ~ I t.+1-t.l and K is a constant independent of ~t .. 
1 1 1 1 

Note -Lhal j_(t) and ~(t) satisfy 

ti+1 
!k_i+1 - !k_i = j A(t) !k_(t) dt , 

t. 
1 

A A t.+1 A 

:P_i+1 - .P_i = I 1 
A(t) .P_(t) dt. 

t. 
1 

(A. 5.1) 
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The difference of the two equations can be expressed by 

t. 1 . 1+ . 
1i+1- 1i+1 = li- li + f {A(~-1> + A(1-l>} dt · 

t. 
(A. 5.2) 

1 

Let ~i(t) = ~(t)- ~(t). Since ~(t) is a vector whose elements consist of 

polynomials of degree 2m-1, ~i(t) may be expanded in terms of the 

element functions u~p±)(t) such that 
1 

e .(t) = ~~ 
1 

{ e~ u~p+)(t) + e~ u~p-)} 
-1 LJ -1 1 -1+1 1+1 

p=O 

By applying the Hermite method developed in Chapter V, Eq. (A.5.2) 

becomes 

where 

ti+1 -
C .+1e .+1 = C .e. + J A(¢-¢) dt 1 -1 1-1 - -t. 

e. = e.(t.), -1 -1 1 

1 

\'- (p-) {p} i 
{ 

m 1 l 
Ci+1 = I - LJ .A.i+1 Ai+1jr ' 

p=O 

r m-1 I 
C. = I+ \' .A ~p+) A~p} :> 

1 l u ' 1 1 
p=O .) 

Other matrices are defined in Section 5:1, Chapter V. Hence, 

(A. 5. 3) 

(A. 5.4) 



Define 

.... 

m-1 
P.=.\' .A~p+)A~P}, 

1 LJ 1 1 
p=O 

m-1 
P \' A (p-}; A{p} 

i+1 LJ J\.i+1 i+1 
p=O 

A~p} and A {p} are independent of .6.t, and J I u?±(t) I dt = 0(.6.t?+1) 
1 i+1 1 1 

(cf., Sec. 2.1, Chap. II) and thus 

m-1 
P. ~ \' K. .6.t?+1 , 
. 1 LJ 1, p 1 

p=O 

where K. and K.+l are constant matrices independent of .6.t .. 
1, p 1 J p 1 

From the assumption, 0Pi+10
00 

< 1 for lti+1 -\1 < T and thus we 

can express 

[l-Pi+1r 1 
(I+Pi] = [I+Pi+1 +P~+ 1 + ... ] [I+Pi] 

= I + 0(.6.t.) . 
1 

Hence, the inequality (A.5.4) becomes 

Since o~lDoo = 0 for 0 ~ p ~ m-1,. it can be shown easily that 

Oe.+10 ~ K.6.tt-' -1 00 1 J 
i ~ 1. 
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Furthermore, since eJ? = A~p} e., 
-1 1 -1 

OeJ?+1D ~ K 6-t!'l, i ~ 1. 
-1 00 p 1 

Then, 

m-1 { dq dq + 
0 - e.(t)O ~ '\' D ei?O - uJ? (t) q -1 00 u -1 00 q 1 

dt p=O dt 

p dq P"' } 
+ D e.+1D - u.+1 <t> 

-1 00 dtq 1 

m-1 
= '\' K' 6-t~+p-q u p 1 

p=O 

(A.5. 5) 

where dq ul?+(t) = dq u~- (t) = 0(6-tp.,..q) are used. Therefore, 
dtq 1 dtq 1+ 1 

applying the triangle inequality and using the inequalities (A.4.1) and 

(A. 5. 5), we obtain 

dq A dq - dq - A 

max 0- (cf>(t)- cf>{t)0 ~ max 0- (¢- c/>)0 + max 0- (¢- c/>)0 
[O,T] dtq - - 00 [O,T] dtq - - [O,T] dtq - - 00 

This completes the proof. 

A .. 6 Theorem 6.1 

Assume that the inequality (6.2) holds. Let cf>(r, E, t) be the solution 

of Eq. (6.3) and cf>(r, E, t) E Ct (7T;X7Ti ). where· t= (t , tE). If ¢(r, E, t) is the 
- Prl,e' r -

solution to the semidiscrete equation (6. 6) in the space Hm (7T J< 1T $), then 



where #J.r = min(2mr, tr), tJ.E = min(2mE, tE), ~r =max ~r, and ~E = 
71"Q 

max .6-E and K
1 

and K 2 are positive constants independent of ~r and 
71"$ 

"KE, respectively. 

A 

Proof. cb and cb satisfy 

ll a · \$/at cf>, v) + a(cf>, v) = (Q, v), 

( 
1 a A A 

fY at cf>, v) + a(cf>, v) = (Q, v), 

for all v = u.(r, D) u (E), 1 ~ i ~ N, 1 ~ g ~ G. The differenc:e of the 
.1- g 

two equations is given by 
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(
1 a A ) A 

~at<cb-cf>},v +a(cf>-cf>,v)=O. (A.6.1) 

Let'¢ be the Hermite-interpolate of cb in Hm(7rnX7r$). Then, Theorem 2.4 

implies that 

t.l t.l 
II cP- '¢11 ~ K1 ~r r + K ~E ·E 

Loo 2 
(A.6.2) 

Then, we can write 

(1 a" - ) A - (1 a · - ). -fll at (cb ~ cf>), v + a(cf>- cf>, v) = ~at (cf>- cf>), v + a(cf>- cf>, v). 

In the proof of Theorem 4.), it was estabhsherl th::~t 

By a procedure similar to that in the above proof, we also have 
I 

( 
1 a - ) 1 ( a - ). _tJ. r _tJ.E 

f1r at (cb- cf>}, v ~ fY . at <cb- cf>}, v ~ K'~r + K".6.E 
m1n 
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Hence, 

(A.6. 3) 

Define e(!_, E, t) = '¢ - '¢. Since "J>(t) - '¢<t) is a polynomial of degree 2m -1 
r 

and 2mE-1.in E and .. E, respectively, e(t) can be represented.by 

G N 
'e(r,E,t) = '¢- '¢ = \' \' e. (t) v. (r,E) . . · - LJ LJ lg lg -

g=1 i=1 

Then the inequality (A.6. 3) becomes 

where 

A = L - S - ( 1-{3) F , 

Other matrices are defined by Eq. (6.11). Solving the differential 

inequality, we obtain 

~(t) .; exp [- J
0
t v- 1

A ds J ~ 

+ J
0
t exp [- J

8

t V-lA di" J V-l [K
1
Ll.r"r + K2Ll.E~E l ds. (A.6.4) 

:'•.,. 

We c~~:l:im that there exists constants -y1, -y2 and -y3 such that 

-1 
'Y1 < 0 V Doo < 'Y2 and QAOoo < 'Y3. 

As in proofs in Sections A. 3 and A.4, we appeal to the work by Descloux 

[54] to assert the above statement. Consequently, 
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Since 

Hence, 

Finally, applying the triangle inequality and using the inequalities (A.6.2) 

and (A.6.5), we obtain 

This completes the proof. 



Appendix B 

INNER PRODUCTS FOR ELEMENT FUNCTIONS 

Nonvanishinginner products for the univariate element functions 

{uf±(s); O~p~m-1}for m=1,2 (cf., Sec. 2.1, Chap. II) are listed 

below: Let h = x.- x. 1 and. h+ = x.+1 - x .. 
- 1 1- 1 1 

(i) m = 1 

h 
( u?-, u?+

1
) 

1 1- -6 

( 
d 0- d 0+ ) 1 

dx ~i ' dx ui -1 . = - h 

(ii) m = 2 

( 
0- 0+ ) 9 

ui ' ui-1 = 70 h-

( 1- 0+ ) = - ~ h2 
ui ' ui-1 420 -

( o- o-·) h 
ui 'ui = 3 

( 
d 0- d 0-) 1 

dx ui ' dx ui - h 

( 
d 0+ d 0-) 1 

dx ui ' dx ui = - h + 

( 
0- 1+ )' 13 2 

ui 'ui-1 = 420 h_ 

( 0- f-·) =- _l!_ h2 
ui ' ui 210 -

( 
0+ 1- ) 13 2 

ui ' ui+1 = - 420 h+ 

( 
1- 1+ 1 3 

ui 'ui-1) =- 140 h_ 

( 
1- 1-) 1 3 

ui ' ui = 1 0 5 h-

\ 
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( 1+ 0+) 11 2 
ui ' ui = 21 0 h + 

( 
d 0- d 0-) 6 1 

dx ui ' dx ui = 5 h 

( 
d 1+" d .0- ) 1 

dx ui ' dx ui+ 1 = - TO 

( 
d 0- d 1+ .). 

dx ui ~ dx ui-1 

( 
d 0- d 1-) = 

dx ui ' dx ui 

( 
d 0+ d 1- .) 1 

dx ui ' dx ui+ 1 = TO 

1 
- -h 30 -

( 
d 1- d 1-)· 2 

dx ui ' dx ui = T5 h 

( 
d 1+ d 1+. 2 

dx ui ' dx ui ) = T5 h + 

(~ u 1+ ~ u 1_). = - ._!_ h 
dx .i ' dx i 30 + 
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The inner products for multivariate element functions can be de-

termined using the univariate inner products. Consider an n-

dimensio-nal space and let multivariate element functions be defined by 

i .. (r) = u. (r
1

) u. (r
2

) 
11 - 11 12 n 

. u. (r ) . 
. 1n n 

Then, the multivariate inner products can be represented by 



n 
(v., v.,) = TI (u. , u.,) 

1 1 1. 1 . J 

j=1 J J 

n -u., -u., dr. 1. dr. 1 . 

('Vv., 'V'v.,) 
- 1- 1 

= -~ 
( d d ) 

(v., v.,) J ]" J J 
1 1 

j=1 (u. , u., ) 
1.' 1 . 
J J 

For example, for n = 2, the bivariate inner products are given by 

(v., v.,) = (u. , u., ) (u. , u., ) 
1 1 11 1 1 12 1 2 J 
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Appendix C 

NUCLEAR DATA 

Table C .1. Delayed Neutron Constants 

Group f3· 1 A· 
1 

1 0.285 X 10- 3 0.127 X 10- 1 

2 0.15975 X 10-2 
0.317.X 10 

-1 

3 0.141 X 10- 2 0.115 

4 0.30525 X 10-2 
Cil.311 

5 0.96 X 10- 3 0.14 X 16~> 
6 0.195 X 10- 3 0.387 X 101 

{3 = ~ {3. = 0.0075 
1 

Table C.2. Multigroup Nuclear Constants 

(a) Thermal Group 

Fuel Reflector 

D2 0.4 0.15 

-~T 0.2 0.02 
2 

v~ 
f 

(0.218) 0.0 

~- = 2.2)(105 em/sec. 

(b) Fast Group 

Fuel H.eflector 

D1 1.5 1.2 

~T. 0.0623 0.101 
1 

2.:1-+2 0.06 0.1 

v~f~:: 0.0 0.0 
1' 

'1= l.OXlOB em/sec. 
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The computer program HERMITE-OD for the numerical solution of 

the point kinetics equations is described in Section D.l. The two­

dimensional reactor kinetics program HERMITE-2D is described in 

Section D.2. These programs are written in FORTRAN IV for the 

IB~ 360/65 computer system. The source listings of the programs are 

presented in Appendix E. 

D.l The Point Kinetics Program HERMITE-OD 

In this section,. the general features of the program HERMITE-OD 

are discussed. Section D.l.l discusses the preparation of input data 

cards and Section D.1.2 presents a list of sample input data cards. 

HERMITE-OD is written for the purpose of testing piecewise poly-

nomial methods for the point kinetics equations. The general numerical 

methods are developed in Chapter V. The present program permits 

approximations using piecewise polynomials of degree up to 3. The 

reactivity change is limited to ramp variation.in time. 

HERMITE-OD provides four methods for the solution of the point 

kinetics equations: 

(i) Crank-Nicolson scheme, 

Eq. (5.6b) 
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(ii) Hermite method,. m=1, 

Eq. (5.10b) 

(iii) Hermite method, m=2, 

Eq. (5.1 Oc) 

(iv) Hermite method applied to the time-integrated point kinetics 

equation, m=1, 

J ( -A. .t. -A. .t.+1) 
"' - "' \' J1 J1 

Bi+1 ni+1 - Bini+ u e - e Sji 
j=1 . 

Eq. (5.14) 

where B.+
1, B. and S .. are defined in Eq. (5.14). 

1 1 J1 

In the program, the solutions of the methods (i), (ii) and (iii) are 

determined by using the Jacobi iteration scheme. However, the unknown 

in the method (iv) is a scalar and is determined simply by dividing the 

right-hand side by the coefficient of the unknown. 

D.1.1 Input Preparation for HERMITE-CD 

Card 1. FORMAT (20A4) 

Alphanumeric title with 1 in column 1 for page control. 

Card 2 FORMAT (16I5) 

This card provides the general information which specifies the 

problem. IC1 > 1 allows calculations .of the same problem with different 

time steps. 



IC1 =Number of different ~t's (see Card 6). 

IC2 = Maximum number of iterations: Methods (i), (ii) and 

(iii) only. 

IC 3 = Number of delayed precursor groups. 

IC4 = Number of time zones ~ 2. 

IC5 = Numerical method options: 

= 0 Method (i), 

= 1 Method (ii), 

= 2 Method (iii), 

= 3 Method (iv). 

Card 3 FORMAT (8D10.5) 

(cf.,Sec. D.1) 

p = Reactivity p(t) in dollars at t = 0. 
0 

E = Convergence criterion. 
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p ~ 1 = Linear coefficient of p(t) in dollars in the first time zone. 
J 

T 1 = Time at the end of the first time zone. 

p ~, 2 = Linear coefficient of p(t) in dollars in the second time zone. 

T 2 = Time at the end of the second time zone. 

Card 4 FORM AT (ROl 0. !1) 

A= Generation time. 

(}...(!), 1=1, J) = Decay constant of group I. 

Card 5 FORMAT (8D10.5) 

(/3(!), !=1, J) = Fraction of delayed neutrons of group I. 

Card 6 FORMAT (8D10. 5) 

~T = Time step size. 

Repeat Card 6 as many as IC1 times for different ~t's. 
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For another problem, a set of Cards·1 to 6 may be placed. immedi­

ately after Card 6. 

D.1.2 ·Input for Sample Problem 

On the next page, a .list of inp-pt cards. is presented for a calculation 

using the cubic Hermite method (m=2) and ..6.t=O. 5 sec in Example 5.1, 

Chapter V. For computation using.other methods, it is necessary to 

change IC5 in Card 2 as directed. in the input preparation. As the com­

puter output, the neutron density and the precursor densities will be 

printed at every. time step. 

D.2 The Two-Dimensional Reactor Kinetics Program HERMITE-2D 

The general features of the two-dimensional kinetics program 

HERMITE-2D are described in Section D.2.1. Section D.2.2 discusses 

the ·preparation of input data cards and Section D. 2. 3 'presents a list of 

sample input data cards. 

D.2.1 Description of HERMITE-2D 

The program HERMITE-2D is written for the purpose of testingthe 

finite element method for two-dimensional reactor kinetics problems. 

The program solves .the time-dependent neutron diffusion equation, 

. Eq .. (6.1), using bicubic polynomial basis functions. in space and piecewise 

linear function~. in time. The selection of polynomial basis functions is 

Q.iscussed in Chapter II and the finite element- methods.in space andtime 

domains are developed. in Chapters IV, V and VI. The program also per-

mits steady state calculations ·involving the determination of eigenvalues 

and the search for critical fission cross sections. 



1 SAMPLE INPUT FOR FXAMPLE 5.l,CHAP.V --HERMITE-00 
1 50 6 1 2 
o.ooo 1.00- 9 0.500 2.000 

5.00-4 0.1270-1 0.3170-1 0.1150 0 0.3110 0 0.140 1 0.3870 1 
0.2850-30.159750-2 0.1410-20.305250-2 0.960-3 0.1950-3 

5.00-1 

INPT0001 
INPT0002 
INPT0003 
I~PT0004 

INPT0005 
I NPT0006 

PAGE 176 
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HERMITE-2D is not intended to be general and its applications are 

rather limited to specific problems. Limitations to the present program 

are: 

(i) Rectangular ·geometry with the quarter core symmetry; 

rectangular partition. 

(ii) Two-group computations only. 

(iii) Regionwise constant cross sections; fissions only at thermal group 

with x1 = 1. 0; linear or sinusoidal time variations in thermal 

absorption cross sections. 

Numerical results for steady state problems presented in Chapter IV 

are obtained by using a modified version of HERMITE-2D which is mainly 

written for eigenvalue calculations in one- and two-group problems. The 

modified program allows the use of a larger number of mesh points com-

pared to HERMITE-2D. 

The reactor configurations (0, a] X (0, b] and the time interval [0, T] 

are partitioned such that 

0 = x 1 = x 2 < ... < xN = a, 
X 

O=y1 ::::;y~< ... <y:N =b, 
y 

0 = t 1 = t 2 < ... < tN = T. 
t 

It is assumed that material properties.in each mesh element are 

continuous. 

Bicubic basis functions are imposed on the spatial partition (c.f., 

Example 2.1 - 2.3, Chap. II). In order to facilitate the representation of 

the bicubic basis functions· in linear indices,. the basis functions are 

arranged alphabetically as folluws (see flgure::;): 

At regular points, 



Eguation 

a (2. 28b) 

b (2.28d) 

c (2.28c) 

d (2.28a) 

and at singular points, 

~ 

A 

B 

c 

D 

E 

F 

Equation 

(2.30b) 

(2.30c) 

(2.3 Of) 

(2. 30d) 

(2.30e) 

(2.30a) 

Expansion 
Coefficient 

~ 
dx 

_a 
dxdy 

~ 
dy 

cJ> 

Expansion 
Coefficient 

~, dx 

~, 
dx + 

de/> I 
dy-

~, 
dy + 
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a c 

b d 

The group dependent normalization factors e for the biCubic functions 
g 

are assumed to be equal to the average of diffusion constant over the 

entire material regions. Expansion coefficients of the bicubic basis 

functions correspond to function values and their derivatives at mesh 

points and these are indicated in the right columns. 

Figure D.l illustrates how the cubic basis functions are linearly 

indexed in the program. The region is partitioned into four elements 



c b c b 
15 16 17 18 

REFL1 ~CTOR 

~ 
p9 

6 12 13 
d F a 

c c ~~11 b 
5 9 0 14 

CORE 

y 
1 2 3 4 

d ·a d a 

'-----~X 

Fig. D.l. Linear Representation of Bicubic Basis Functions 
on a Rectangular Partition 
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and the point P 
9 

is a singular point. It can be. shown easily that the 

bicubic basis functions at boundary points, which satisfy the quarter 

core 1;3ymmetry boundary conditions, consist of the regular basis 

functions whose regions of definition in the above convention lie 

within the reactor geometry. For example, basis functions at 

corner points P 
1

, P 2, P 3 and P 4 consist of functions of types a .. b, c 

and d, respectively. Basis functions at boundary points P 5 , P 6, P 7 

and P 
8 

consist of sets of functions (a, b), (b, c), (c, d) and (a, d) s 

respectively. The singular point P 9 possesses functions of types A 

to F. If P 
9 

is a regular point, then it contains functions of types a to d. 
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The bicubic functions are numbered in a linear fashion sweeping in the 

x-direction and at each mesh point basis functions are ordered alphabeti-

cally: x sweep begins at P 4 and moves up to the increasing y-direction. 

The linear indices of basis.functions are shown in Fig. D.l. In this 

example, the total number of basis functions is 18. If P 
9 

is a regular 

point, then·it becomes 16. 

N 0± }Nt 
Let { v/!:)h= 1 and { uk .(t) k= 1 be the linearly indexed basis functions, 

bicubic in .!::. and linear in t, respectively. Then the approximate solution 

for the g-th group and tk ~ t ~ tk+1 is represented by 

¢(£, t) 

Applying the Galer kin scheme to the time-dependent neutron diffusion 

equation, Eq. (6.1), leads to a system of linear equations,. Eq. (6.14), for 

the expansion coefficients. 

In HERMITE-2D, the elements of the stiffness matrices in Eq. (6.14) 

are determined by using. inner products of bicubic functions as defined in 

Appendix B. The resulting matrix equation is then solved by the source 

iterative scheme incorporated with the Cholesky procedure which is dis-

cussed in Section 4.3, Chapter IV. The equation for the (K+1)th iterative 

solution. is set in the following. form: 
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G { ~tk 
= '\' V 6 ,+-2-[-o ,L k+S ,+(1-,B}F ,] LJ g gg gg g gg gg 

g'=1 

+ ~ ak.A. .{3 .Fd ,+6 ,£ k} aK,k LJ J J J gg gg g -g 
(D.1) 

where 

j=1 

+ ~ {~2t [ S ,+(1-{3)F ., ] + ~ ')'k.A. .{3 .Fd ,} 
LJ gg gg LJ J J J gg 

g'=1 j=1 

J 

+ L 
j=1 

-A. .tk -A. .tk+1 
[ e J -e J ]D 

~jkg 

~gk = col{ ag1k' ag2k' ... 'agNk}. 

K a -g',k+1 

Matrices in the above equation are defined in Eq. (6.14). The coefficient 

matrix of the vector ~~~~1 is symmetric and positive definite and thus 

the Cholesky scheme can be used in inverting the matrix. 

The matrices defined in Eq. (D.1) have band structures whose half 

width .is given by 

Half-band width = 4NX + 2NRX + 5 

where NX is the number of x mesh points and NRX is the number of 

x regions. In the program, only the band part of the coefficient matrices 

is stored in order to reduce the computer storage requirements. Further-

more, the variable dimensioning features of J:t'ORTRAN IV are used for 

coefficient matrices and the matrices are stored in a vector called 

A(NDIM) with aJength NDIM. The length of the vector A can be estimated 

from the formula, 
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NDIM = N{ 4G+J+NWD(1+4G)} +NT 

where N = number of basis functions in each group, G =number of groups, 

J = number of precursor groups, NT = number of time steps and NWD = 

total band width .which is equal to 2(half-band width) + 1. 

Figure D. 2 describes iteration procedures for the steady state cal­

culation in HERMITE-2D. The general numerical methods are discus.sed 

in Section 4.3, Chapter IV. In Box 1, the initial coefficient vector is 

read in or generated in the program as simple hill-shaped functions. 

The (J +1)th iterate for the coefficient vector is determined by solving 

Eq. (4.14) in Box 2. The eigenvalue is computed after every INNMAX 

iteration according to equations in Box 3. If IC4 * 2 and the eigenvalue 

satisfies the condition in Box 4, the computation of eigenvalue is com-

pleted. However, if IC4 = 2, the eigenvalue is required to be equal to 

1.0 with some tolerance as indicated in Box 5. In this case, the fission 

cross section is adjusted according to the equation in Box 6 and compu-

tations of the eigenvalue are repeated until the condition in Box 5 is 

satisfied. The final cross sectfon corresponds to the critical fission 

cross section .. ", 

The general procedures for the kinetics calculation in HERMITE-2D 

are illustrated in Fig. D. 3. In Box 1, the initial flux is either read in or 

' 
computed in the steady state part of the program. The new time-

dependent coefficient matrices for the time step k+1 are defined in Box 2. 

Then the coefficient vector at the step k+1 is computed from Eq, (D.1) and 

extrapolated as shown in Box 3. The convergence of the coefficient vector 

is then checked in Boxes 4 and 5. If they are not satisfied, the process 

returns to Box 3 and the same routine is repeated. If the solution vector 
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is converged satisfying the conditions in Boxes 4 and 5, the computation 

in the time step k+l is completed. The process then returns to Box 2 

for the next time step. These stepwise computations are continued until 

the maximum time limit is reached. The program also provides for run­

ning multiple jobs by specifying !STOP =I= 0. 



I 

v 

2 

1 

READ OR GENERATE 

INITIAL VECTOR ~~ 

COMPUTE a3 +1 BY EQ. (·L14) 
-g *J+1 

J+1 J + (~g J) 
~g = ~g E 3 A - ~g 

1:-, 

\ No 
(. IS J A MULTIPLE OF 1-------1 

INNMAX? I 
3 1 

'' ( a* J + 1, a J ) LJ -g -g 
A -1J+1 = _g _____ _ 

\' (a*J+1 a':<J+1· 
LJ -g , -g ) 
g 

4 -1-
-1J+1 -1J \ 

No 
IS 

A -A 
? l ------- < E1 

A-1J+1 

,,J.. 

No \ IS I c4 -··:·· 2~- ? ) 

5 ~ - 6 

( IS lA- LOI 
VLf 

< E2 ? \ ' --- VL I 
, A f 

Fig. D. 2. Logic for Steady State Calculation 

184 



185 

-------------------------------------~-------------------------------------
~--------------~~INPUT] 

2 

1 .{, 

READ OR COMPUTE 
INITIAL VECTOR ~g 1 

~ 

~ 
GENERATE COEF. MATRICES 

FOR STEP k+1 

lr-----~/------~ 
_y ' 

3 9 
J+1 

COMPUTE ~g,k+ 1 FROM EQ. (D.1) 

J+1 J ( >:<J+1 J ) 
~g,k+1 = ag,k+1 + €8 ag,k+1- ag,k+1 

I 
IS max 

i 

J 

1 
_ agi,k+ 1 

J+1 
agi,k+1 

No 

No 

/\ 

(END OF TIME LIMIT?jt-------N_o ______ __, 

J 
.__ ___ N_o ____ -1/ IS ISTOP = 0? 

\ 

Fig. D.3. Logic for Time-Dependent Calculation 



D.2.2 Input Preparation for HERMITE-2D 

Card 1 FORMAT (20A4) 

Alphanumeric title with 1 in column 1 for page control. 

Card 2 FORMAT (16!5) 

NG = Number of energy groups = 2. 

NX = Number of x mesh points. 

NY = Number of y mesh points. 

NRX = Number of x regions. 

NRY = Number of y regions. 

NZ =Number of time zones ~ 2. 

NPREC =Number of delayed neutron groups. 

( LF( 1, JR), JR= 1, NRX) = Mesh point number on the right 

region boundary; mesh point number on thP. left 

boundary of the first region is 1. 

( LF(2, KR), KR=1, NRY) = Mesh point number on the top 

region boundary; mesh point number on the bottom 

boundary of the first region is 1. 

Card _3 FORMAT( 16!5) 

This card contains control variables which specifies the problem. 
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IC 1 = Type of perturbation in thermal absorption cross section: 

= 0 ramp, 

= 1 sine function. 

IC2 = Frequency of flux print-outs: fluxes are printed every 

IC2 time steps. 

IC 3 = Maximum number of outer iterations. 
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IC4 = A variable which controls steady state calculation: 

= 0 no; initial fluxes are read in, 

= 1 eigenvalue calculation, 

= 2 search for critical thermal fission cross sections or 

calculation of initial equilibrium fluxes. 

IC5 =A variable which controls the kinetics calculation: 

= 0 no, 

= 1 yes. 

IC6 = Maximum number of inner iterations. 

IC7 =Number of iterations per inner ·iteration. 

IC8 =A variable which controls initial fluxes: 

= 0 generate, 

* 0 read in. 

IC9 =A variable which controls the termination of computations: 

= 0 last problem, 

* 0 next problem to follow. 

IC10 =A variable which controls flux punch in every IC2 time 

step. including the initial flux: 

= 0 no, 

= 1 yes. 

Card 4 FORMAT (D10.4) 

EPS1 = Convergence criterion for the eigenvalue: 

A.:_1J+1_A.:..:lJ 
< EPS1 . 

. A.-1.J+1 

EPS2 = Convergence criterion for the eigenvalue: 

1:>...-l.ol < EPS2. 
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EPS3 = Extrapolation parameter for the eigenvector: 

~J+ 1 = ~J + EPS3'\~':<J+ 1 - ~J). 

EPS4 = Not used. 

EPS5 =Frequency of the sine function (see Card 7). 
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EPS6 = Convergence criterion for the flux vector in the kinetics 

a~- 1 -; a~ i
1 

calculation: mt~ -.1- ( ~~ ) (a~~ 1 ) < EPS6. 

1 1 

EPS7 = Convergence criterion for the flux vector in the kinetics 
. a:J 

calculation: max 1- }+1 < EPS7. 
i a. 

1 

EPS8 =Extrapolation parameter for the flux vector in the 

K+1 K * ( >:<K+1 K .) 
kinetics calculation: ~k+1 = ~k+1 +EPS8 ~k+1 - ~k+l . 

Card 5 FORMAT (8D10.4) 

(H(1JJR)JJR=1JNRX) =mesh size in the JR-th x region. 

(H(2JKR),KR=1JNRY) =mesh size in the KR-th y region .. 

Card 6 FORMAT (16!5) 

NMA T = Number of different mate~Jals. 

NDATA =Number of material specification cards (Card 8). 

Card 7 FORMAT (5D1 0.4) 

Card 7 provides two-group cross sections for different 

materials. A group of Card 7 is read in the following order: 

DO I=1J NG J 

DO M=1JNMAT. 

D(IJ M) = Diffusion coefficient. 

rT(IJ M) = Total removal <..:ru::;::; secliuri. 
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r(I, M) = Cross section for neutron transfer; 

rr-I = 1-,-----------------------------------------

if I = 2. 

6L1 (I, M) = Coefficient of the ramp or sine function in thermal 

absorption cross section in time zone 1: I= 2 only. 

6L2(I, M) = Coefficient of the ramp or sine function in thermal 

absorption cross section in time zone 2: I= 2 only. 

The time-dependent thermal absorption cross sections have 

the form La 2(t) = La 2( 0) + 6Lf(t) where f(t) = t or sin(EPS5 ·t). 

Card 8 FORMAT (16I5) 

This card specifies material types in each material region of a 

reactor. 

NXL = x region number on the left boundary. 

NXR = x region number on the right boundary. 

NYB = y region number on the bottom boundary. 

NYT = y region number on the top boundary. 

NM = Material type ~ NMAT. 

Repeat Card 8 NDATA times. 

Card 9 FORMAT (8D10.4) 

~t =time step size. 

( TZ(IZ), IZ"'-1, NZ) = tim.e at the end of time zone IZ . 

. Canl 10 FORMAT (OD10.4) 

( VEL(I), I=1, NG) = Neutron speed of group I. 

Card 11 FORMAT (8D10.4) 

( A.(I) j I=1, NPREC) = Deca.y c.onstant of I-th precursor group. 



(> 

190 

Card 12 FORMAT (8D10.4) 

( {3(1), I= 1, NPREC) = Fraction of delayed neutrons of group I. 

Card 13 FORMAT (5D16.8) 

If IC8 =/:- 0, the initial flux coefficient vector is read in the following 

order: 

DO I=1, NG 

( U(I, J), J = 1, N) = J -th flux expansion coefficient of group I. 

If IC9 =/:- 0, a set of Cards 1 to 13 is to be placed immediately after 

Card 13. 

D.2.3 Input for Sample Problem: 

In the following page, a list of input cards is presented for a calcu­

lation using ilt=T/4.in Example 6.2, Chapter VI. The initial flux coef­

ficient vector, which was computed in a steady state calculation in 

HERMITE-2D, is also includes as part of the input data. As the com­

puter output, the neutron flux vector will be printed .and produced in the 

form of punched cards at every, time step. 
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- 0 • 2 g 8 7 6 8 C r:; [)- I) 1 -0 • 2 9 8 4 4 P.6 0 f)- 0 1 0 • 2 5 3 1 9 :2 lf) i)- (12 - ~) • 2 q .q 7 6 R C CS 0- 0 1 
o.~4S3817t>D oo -o.3t942537n-o1 o.31945134o-oz -0.62B67290D-01 

-o.50844926D-Ol o.31945134~-c2 -c.3A942537n-ot o.3952433lr-oz 

0.587713740 00 
-·o. zs 833120D-o 1 
-0.411284970-01 

0.475367690 00 
-0.217961510-01 

0.475367690 00 
-0.29844861)()-01 

0.2328113340-02 

• 
I '~~·T0001 
I \JfT!JrJO:~ 
I!\JPT0003 

I 

L~fT0004 
INPT0005 

I 
I '\iPT0 1)0!:> 

I 

INPT0007 
I 

I NPT0008 
I 

I r'-JfTOOO;I 
I\JPTOOlO 

I 
INPT0011 

I 
INPT0012 

I 
I\J~T0013 
I\JfTOOl4 
TNFTOOl? 

I 
P~fT0016 
INfTOD17 
I NPT 00 J..g 

I 
INPT001~ 

I 

I~fT0020 
INPT0021 

I 

Jr'.JPTOO?Z 
I -

INfT0023 
INPT0024 

I 

INPT0025 
I 

I i\IPT00,~6 
I 

ll\JPT0()27 
I 

INPT0028 
I 

INI-'TWJ29 
I 

1Nf>T0030 
INPT0031 

I 
I r~PT003? 

I 
INPf0033 

I 

I NrT0034 
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• 
Appendix E 

SOURCE LISTINGS OF COMPUTER PROGRAMS 

(Only in M. I. T. Library copies) 

... 

•. 




