
325
7-11-63

ORNL-3447
UC-32 - Mathematics and Computers

MASTER

A CDC-1604 SUBROUTINE PACKAGE FOR
MAKING LINEAR, LOGARITHMIC AND
SEMILOGARITHMIC GRAPHS USING
THE CALCOMP PLOTTER

D. K. Trubey
M. B. Emmett

OAK RIDGE NATIONAL LABORATORY
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ORNL-3447

Contract No. W-7405-eng-26

Neutron Physics Division

A CDC-1604 SUBROUTINE PACKAGE FOR MAKING LINEAR,
LOGARITHMIC AND SEMILOGARITHMIC GRAPHS
USING THE CALCOMP PLOTTER

D. K. Trubey and M. B. Emmett

Date Issued

JUN 24 1963

This document is
PUBLICLY RELEASABLE
B Steel
Authorizing Official
Date: 3/22/04

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

Abstract

A CDC-1604 subroutine package has been written to facilitate the plotting of curves and points on linear, logarithmic, and semilogarithmic graphs using the CALCOMP plotter. The subroutines accomplish the necessary computations and prepare a magnetic tape for use by the plotter.

The CALCOMP Digital Incremental Plotter may be used to plot curves and points from data placed on tape by the CDC-1604 or certain other computers. A FORTRAN subroutine package has been written to aid the programmer when making linear, log-log, or semilog plots. These routines make use of subroutines described by Cavin.¹ The package is very similar to an IBM-7090 package described previously² but had to be completely rewritten to make use of the new CDC-1604 routines described in Ref. 1. In the explanation which follows, a knowledge of FORTRAN will be assumed.

The height of the graphs is fixed at 10 in. but the width is under control of the user. The width of the plotting area should be set at 7 in. if an 8-1/2 x 11 in. graph is desired. The number of cycles is optional and so blank paper should be used in general but, with care, lined paper may also be used. There are three lines drawn per cycle at the values 10^N , 2×10^N , and 5×10^N .

The number of vertical lines drawn on the semilog and linear grids and the number of horizontal lines drawn on the linear grid are under the control of the user. Each line is labeled. The spacing between lines (called an "interval") is a parameter needed by the routines. Various labeling fixed-point formats are used to ensure at least two-figure accuracy on the x axis (independent variable) and at least three-figure accuracy on the y axis (dependent variable). To avoid truncation error in the labeling, the values of the interval should conform to the above specified accuracy. The maximum limits of the linear variables are -999 and 9999.

Data points may be shown, or curves drawn, or both done as desired. If any data points lie outside the range specified for the graph, these points will not be plotted. The entire curve will be drawn except for portions connecting points which do not lie on the graph. The various data points available are shown in Fig. 1. A curve is drawn by connecting

1. D. K. Cavin, "CALCOMP Plotter Subroutine Package," unpublished memorandum.
2. D. K. Trubey and M. B. Emmett, "An IBM-7090 Subroutine Package for Making Logarithmic and Semilogarithmic Graphs Using the CALCOMP Plotter," ORNL-TM-430 (Dec. 12, 1962) (see also Supplement ORNL-TM-430, Feb. 27, 1963).

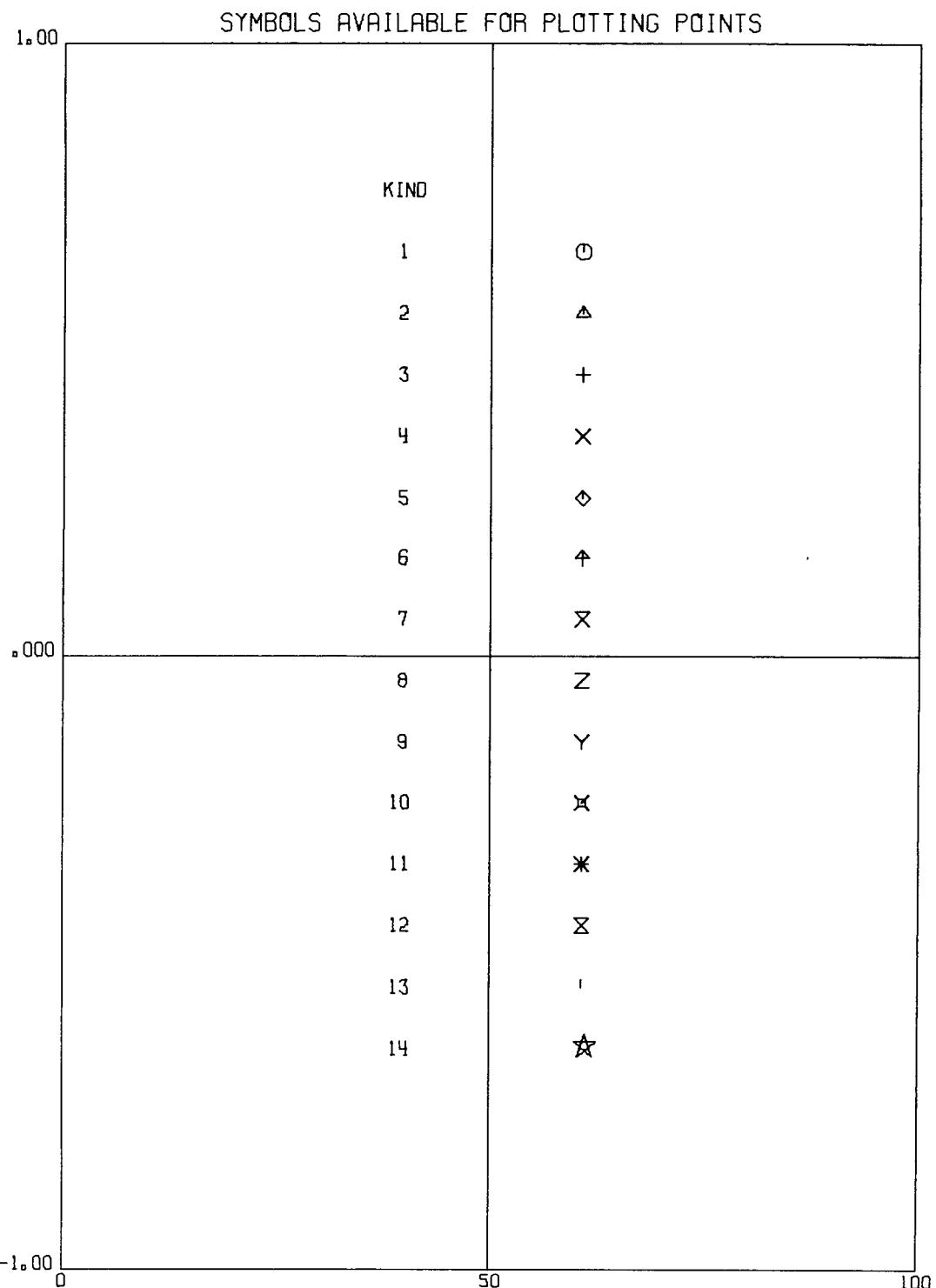

UNCLASSIFIED
ORNL-LR-DWG 79983

Fig. 1. Example of Linear Grid Showing Symbols Available for Plotting Points.

given points by straight lines. An option in the subroutine POINT allows one to mark the point only or draw a straight line to the point before marking it. If it is desired to fit a curve through a number of data points, a large number of values may be generated between data points by Lagrangian interpolation³ or by some other means. Then straight lines are drawn between these points.

The axes may be labeled and a title written at the top of the graph through a subroutine which uses Hollerith characters.

The logical tape assignment is a parameter supplied to the subroutine. The user writes a main program which calls the various subroutines of the package as desired. The parameters in the call statements are integers or floating point numbers consistent with FORTRAN nomenclature. The use of each part of the package is as follows:

1. MAIN (calling program supplied by user)

- (a) Must have a 6-cell array for passing information from one subroutine to another.
- (b) Must call LINEAR, SEMILOG, or LOGLOG before calling any other routine (except HOLLER) in the package.

2. LOGLOG

The routine is called by

```
CALL LOGLOG(NCY,ITOPY,ITOPX,NCX,WIDTH,JTAPE,A)
```

where

NCY = number of cycles of dependent variable (y).

ITOPY = largest exponent of 10 on y axis; the largest possible value of y is 10^{ITOPY} .

ITOPX = largest exponent of 10 on x axis.

NCX = number of cycles of independent variable (x).

3. S. K. Penny and M. B. Emmett, "An IBM-7090 Subroutine Package for Lagrangian Interpolation," ORNL-3428 (1962).

WIDTH = width of plotting area in inches.

JTAPE = logical tape unit used for CALCOMP tape.

A = 6-cell array described for main routine (Sec. 1a).

This routine performs initialization which includes drawing the grid. An example is shown in Fig. 2.

3. SEMLOG

The routine is called by

CALL SEMLOG(NCY, ITOPY, XZERO, DELX, NOINT, WIDTH, JTAPE, A)

where

NCY = number of cycles of dependent variable (y).

ITOPY = largest exponent of 10 on y axis.

XZERO = smallest value of x.

DELX = "interval" width (described above) on x axis or space between grid lines in units of the x variable. (In Fig. 3, DELX = 2.)

NOINT = number of "intervals" along x axis. The largest value of x is XZERO + NOINT * DELX. (In Fig. 3, NOINT = 5.)

WIDTH = width of plotting area in inches.

JTAPE = logical tape unit used for CALCOMP tape.

A = 6-cell array described for main routine.

This routine initializes and draws the grid.

4. LINEAR

The routine is called by

CALL LINEAR(YZERO, DELY, NOINTY, XZERO, DELX, NOINTX, WIDTH, JTAPE, A)

where

YZERO = smallest value of dependent variable (y).

DELY = "interval" width on y axis or space between grid lines in units of the y variable.

NOINTY = number of "intervals" along y axis. The largest value of y is YZERO + NOINTY * DELY.

XZERO = smallest value of independent variable (x).

DELX = "interval" width along x axis.

NOINTX = number of "intervals" along x axis.

WIDTH = width of plotting area in inches.

JTAPE = logical tape unit used for CALCOMP tape.

A = 6-cell array described for main routine.

5. CURVE

The routine is called by

CALL CURVE(N,X,Y,A)

where

N = 1 for the first point on a curve

≠ 1 for second and subsequent points.

X = value of x.

Y = value of y.

A = 6-cell array described for main routine.

The routine must be called for every point (x,y) on the curve to be plotted. A straight line will be drawn between successive points provided both points are on the graph. Each time CURVE is called, the pen moves to (x,y), with the pen either up (N=1) or down (N≠1). The value of N must be 1 for the first point on the curve. If the points are supplied by means of a loop, it is often convenient to set the value of N equal to the loop index.

6. POINT

The routine is called by

CALL POINT(N,X,Y,KIND,SIZE,THETA,I,A)

where

$N = 1$ for the first point on a curve (see definition of I)
 $\neq 1$ for the second and subsequent points.

X = value of x .

Y = value of y .

$KIND$ = type of symbol to be plotted (see Fig. 1); $1 \leq KIND \leq 14$.

$SIZE$ = height of field of character to be plotted. For best results, $SIZE$ should be an integral multiple of 0.04. In Fig. 1, $SIZE = 0.12$; in Figs. 2 and 3, $SIZE = 0.08$.

$THETA$ = angle (counterclockwise) in degrees at which the point symbol is to be rotated. (In Fig. 1, $THETA=0$.)

I = curve option

= 1 for point symbols only (value of N immaterial)

≥ 2 for point symbols plus a straight line drawn from previous point to (x,y) .

A = 6-cell array described for main routine.

7. LETTER

The purpose of this subroutine is to label the x axis and y axis or to provide a title at the top. The routine is called by

CALL LETTER(LPOS,NL,nH----,A)

where

$LPOS$ = lettering position
= 0 for a title at the top
= 1 for x axis labeling
= 2 for y axis labeling.

NL = number of Hollerith characters (including spaces).

$n = NL$.

---- = Hollerith characters.

A = 6-cell array described for main routine.

The Hollerith array will be centered and will be of a size shown in the figures. There will be 8.33 characters plotted per inch. Thus the limit of characters depends on the field width. If LPOS = 2, the field width (graph height) is 10 in. Otherwise it is the graph width.

If a title is read into memory with input cards using HOLLER, the parameter nH--- is replaced by TITLE in the call statement (see Sec. 9).

8. EXPON

This routine will provide an exponent for any of the Hollerith characters provided by LETTER. The routine is called by

```
CALL EXPON(LPOS,NL,L,1H-,A)
```

where

LPOS = lettering position (see Sec. 7).

NL = number of Hollerith characters in corresponding LETTER statement.

L = position of exponent, the Lth character will have the exponent.

- = exponent desired.

A = 6-cell array described for main routine.

9. HOLLER

This routine will read a title from input cards (via input tape) for use in LETTER. This provides flexibility in that the main program need not contain Hollerith titling. The routine is called by

```
CALL HOLLER(NL,TITLE,INTAPE)
```

where

NL = number of Hollerith characters to be read in (including blanks) starting in col. 1.

TITLE = array for storing the Hollerith characters (dimensioned by NL/8 or larger).

INTAPE = logical number of input tape.

The input for HOLLER is as follows:

CARD 1	FORMAT (I5)	NL.
CARD 2	FORMAT(9A8)	Hollerith title.

10. ADVANCE

The routine is called by

```
CALL ADVANCE(A)
```

(where A = 6-cell array described for main program). The routine must be called at the conclusion of each graph. The paper is then advanced, ready for the next plot.

Copies of the source or object decks may be obtained from the authors.

UNCLASSIFIED
ORNL-LR-DWG 79984

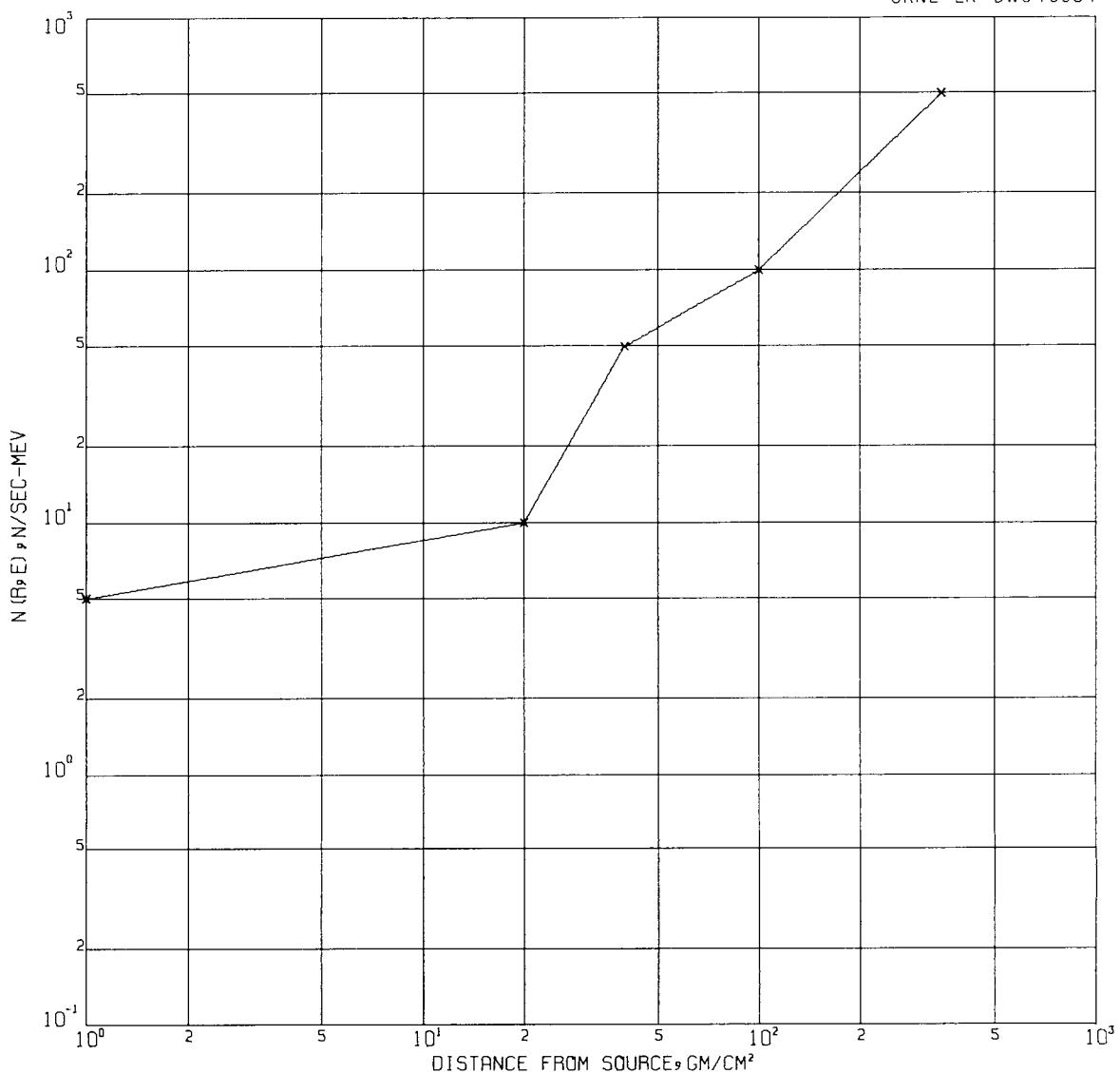


Fig. 2. Example of Log-Log Plot.

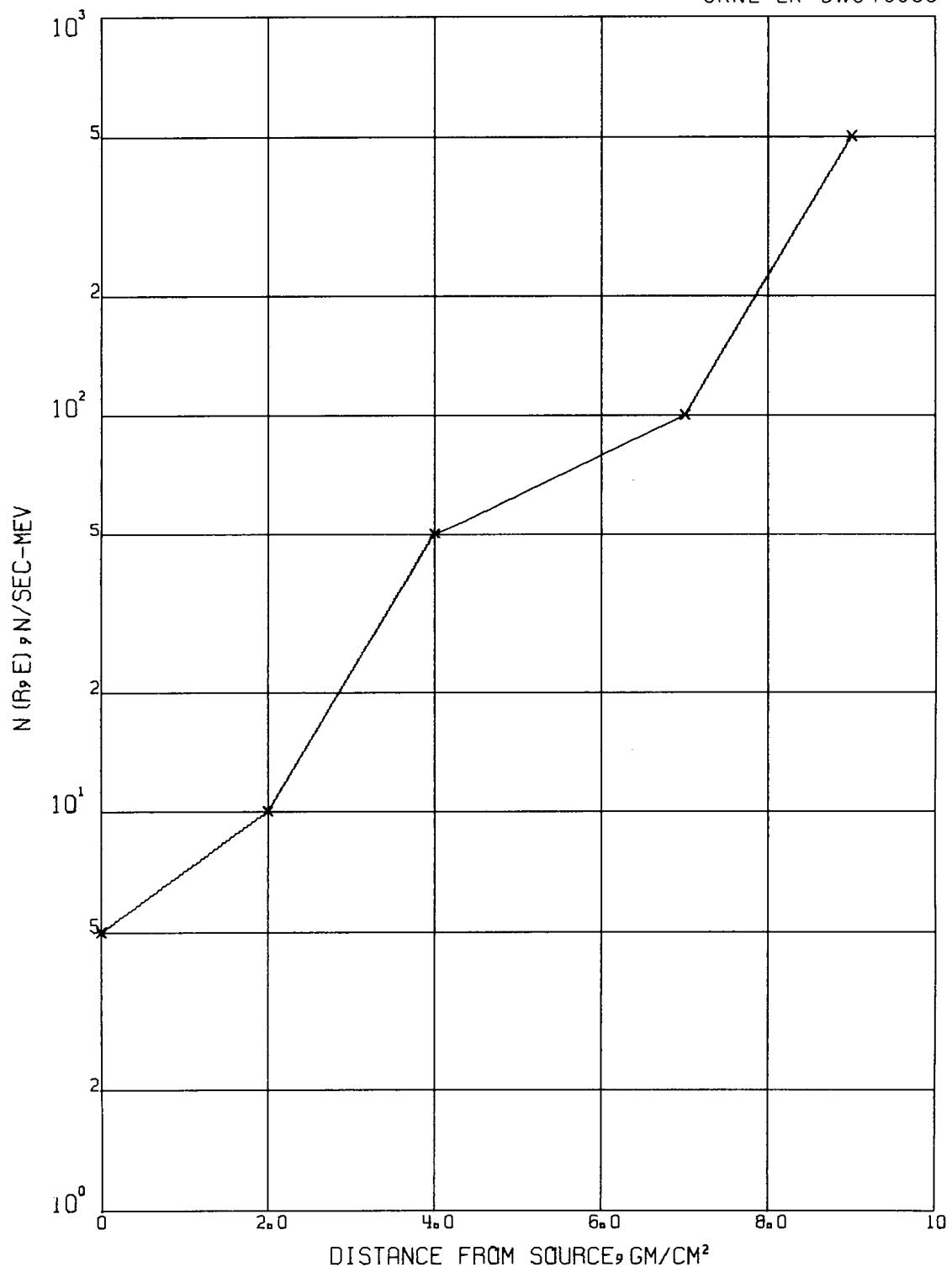

UNCLASSIFIED
ORNL-LR-DWG 79985

Fig. 3. Example of Semi-Log Plot.

Appendix

The following subroutines are in the package and consequently none of the user's routines can have the same names.

General Purpose CALCOMP Routines

NUMBER

SYMBOL

PLOT

PLOTS

Special Routines for the Present Package

RS

TENS

XTENS

YS

ORNL-3447
 UC-32 -- Mathematics and Computers
 TID-4500 (20th ed.)

INTERNAL DISTRIBUTION

1. Biology Library	68. Barbara Ann Flores
2-3. Central Research Library	69. T. B. Fowler
4. Reactor Division Library	70. R. E. Funderlic
5-6. CDPF Library	71. C. H. Gabbard
7-8. ORNL - Y-12 Technical Library Document Reference Section	72. D. A. Gardiner
9-28. Laboratory Records Department	73. Gerald Goldstein
29. Laboratory Records, ORNL R.C.	74. C. D. Goodman
30. R. K. Adams	75. A. A. Grau
31. Nancy B. Alexander	76. D. A. Griffin
32. E. D. Arnold	77. W. L. Griffith
33. G. J. Atta	78. M. L. Halbert
34. S. E. Atta	79. M. T. Harkrider
35. J. K. Bair	80. C. A. Horton
36. J. B. Ball	81. C. M. Jones
37. S. J. Ball	82. W. H. Jordan
38. R. Bender	83. M. A. Kastenbaum
39. J. O. Betterton, Jr.	84. B. H. Ketelle
40. Nancy Betz	85. W. E. Kinney
41. J. E. Bigelow	86. M. E. LaVerne
42. R. E. Biggers	87. Elmon Leach
43. R. D. Birkhoff	88. R. P. Leinius
44. E. P. Blizzard	89. M. P. Lietzke
45. W. E. Browning	90. Mary J. Mader
46. G. L. Broyles	91. C. D. Martin, Jr.
47. R. D. Bundy	92. V. K. Pare
48. V. R. Cain	93. R. P. Milford
49. R. S. Carlsmith	94. F. L. Miller
50. H. P. Carter	95. C. D. Moak
51. D. K. Cavin	96. E. C. Moncrief
52. H. R. Child	97. S. E. Moore
53. K. A. Christian	98. J. R. Muir
54. D. A. Costanzo	99. J. F. Murdock
55. R. L. Cowperthwaite	100. C. W. Nestor, Jr.
56. Arline Culkowski	101. P. J. Pasma
57. J. W. T. Dabbs	102. S. K. Penny
58. Wallace Davis, Jr.	103. D. G. Phillips
59. H. J. deBruin	104. J. J. Pinajian
60. P. B. DeNee	105. D. C. Ramsey
61. A. C. Downing	106. Mozelle Rankin
62. J. S. Eldridge	107. E. D. Rather
63. L. C. Emerson	108. R. M. Rush
64. M. B. Emmett	109. C. S. Shoup, Jr.
65. J. S. Faulkner	110. M. J. Skinner
66. Mannuel Feliciano	111. W. J. Stelzman
67. R. L. Ferguson	112. J. C. Suddath
	113. J. G. Sullivan

114. C. D. Susano	137. C. S. Williams
115. J. A. Swartout	138. F. J. Witt
116. D. B. Trauger	139. Harvel Wright
117-131. D. K. Trubey	140. H. L. Yakel
132. J. W. Wachter	141. W. Zobel
133. F. J. Walter	142. R. A. Charpie (consultant)
134. G. M. Watson	143. P. F. Gast (consultant)
135. A. M. Weinberg	144. R. F. Taschek (consultant)
136. John Wheeler	145. T. J. Thompson (consultant)

EXTERNAL DISTRIBUTION

146. Research and Development Division, AEC, ORO
147-756. Given distribution as shown in TID-4500 (20th ed.) under
Mathematics and Computers category (75 copies - OTS)